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Design Heuristic for Parallel Many Server Systems under

FCFS-ALIS

Ivo Adan∗ Marko Boon† Gideon Weiss‡

March 7, 2016

Abstract

We study a parallel service queueing system with servers of types s1, . . . , sJ , customers
of types c1, . . . , cI , bipartite compatibility graph G, where arc (ci, sj) indicates that server
type sj can serve customer type ci, and service policy of first come first served FCFS, assign
longest idle server ALIS. For a general renewal stream of arriving customers and general
service time distributions, the behavior of such systems is very complicated, in particular
the calculation of matching rates rci,sj , the fraction of services of customers of type ci
by servers of type sj , is intractable. We suggest through a heuristic argument that if the
number of servers becomes large, the matching rates are well approximated by matching
rates calculated from the tractable FCFS bipartite infinite matching model. We present
simulation evidence to support this heuristic argument, and show how this can be used to
design systems for given performance requirements.

1 Introduction

Parallel service systems have servers of types S = {s1, . . . , sJ}, customers of types C = {c1, . . . , cI},
and bipartite compatibility graph G ⊆ C × S, where (ci, sj) ∈ G if servers of type sj can serve
customers of type ci. They model situations in which a large volume of service requests of various
types are channelled to a central facility, where they are attended by a large number of agents
differentiated by skill. Such situations commonly occur in manufacturing, transportation, service
contact centers, health systems, communications, internet data exchange, computing and various
other areas of applications. The queueing model has a general renewal stream of arriving cus-
tomers with rate λ, where successive arrivals are of i.i.d types, ci with probability αci , and there
is a total of n servers, nsj of which are of type sj . Service times are independent, distributed
according to general distributions Gci,sj , with mean mci,sj and service rate µsj ,ci = 1/mci,sj .
Customers have finite patience, with independent patience time distributions Fci , and a customer
abandons if he does not start service by the time his patience is exhausted.

Parallel server systems are widely discussed in the literature. An incomplete list would
include an early study [13]; applications to manufacturing and supply chain management [26, 21],
applications to call centers and internet service systems [11, 16, 22, 27], attempts to find optimal
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policies, mainly for small graph systems [29, 8, 6, 7, 12, 24], heavy traffic and fluid approximations
[17, 18], and many server scaling [14, 15]. Most relevant to our current paper are [10, 5, 23, 20].

In assessing such systems there are various objectives that may be of importance, on the
customer side they include waiting times and abandonment rates as well as consideration of
fairness to customers of various types or priorities for some types. In conflict with those, on
the server side there is the objective of maximum utilization of the servers, minimizing their
number, and reaching a balanced work division between the various types. Each of these may
carry a different weight in different application contexts. Often λ, αci and Fci are given, together
with some form of quality of service requirements. All the other parameters of the system can
be adjusted to achieve the requirements in an optimal way: One can redesign the bipartite
compatibility graph, change the service rates, change the workforce mix, decide on n, and decide
on the service policy. It should perhaps be pointed out that changing the service policy may be
as hard and costly as adjusting any of the other service parameters. At this level of generality
such systems do not allow a complete analytic analysis, and performance is often evaluated in
practice by simulation. However, any methods for calculating approximate performance measures
or supporting design without the need to use simulation should be quite valuable. It is the aim
of this paper to deliver such methods.

In the current paper we focus on the policy of first come first served (FCFS), where whenever
a server is available he will take the longest waiting compatible customer, and assign longest
idle server (ALIS), where whenever a customer arrives he will be assigned to the longest idling
compatible server. We provide a heuristic to calculate performance measures under this policy,
when λ and n are large.

FCFS-ALIS in a parallel service system has several advantages: It attempts to achieve re-
source pooling [25], i.e. all the servers are busy for about the same fraction of time, and it
attempts to give all customers the same service level, i.e. global FCFS, equally for all types of
customers [23]. It is also fair to the servers. One notable property of FCFS is the following:
Assume that arriving customers can choose the server they wish to go to, and servers then serve
the queueing customers FCFS. If each arrival has complete information on the schedule of all
the servers at his moment of arrival, then to minimize his waiting time he will join the compat-
ible server that has the shortest workload (JSW). Thus JSW is the Nash equilibrium of fully
informed customers minimizing waiting times. But this policy of JSW is automatically achieved
when customers queue up in a single queue and the servers are using FCFS. FCFS can then
serve as a benchmark, and comparison of the costs under FCFS with other policies will provide
an estimate of the price of anarchy. Apart form that, FCFS is easy to implement, as it does not
require any calculations or knowledge of system parameters. It is also sometimes required by
law. Finally it is indeed a policy very commonly used in practice. On the minus side, FCFS may
waste resources by letting servers serve customers for which they are not efficient, and it may
cause long delays to customer types that have a limited number of compatible servers. However,
some of these shortcomings can be avoided by redesigning the compatibility graph.

Unfortunately, analysis of parallel service systems under FCFS is very hard. Foss and Cher-
nova [10] provide an example of a symmetric system with 3 types of customer and 3 servers, and
just 2 service distributions with fixed fast and slow service rates, where stability of the system
depends on the entire shape of the service time distributions. The difficulty is in calculating the
matching rates rci,sj , defined as the long term average fraction of customers of type ci which are
processed by servers of types sj . Given the matching rates, one can calculate the total service
capacity of the system, as

µ =
∑

(ci,sj)∈G

rci,sjµci,sj .

It is the calculation of the matching rates, how many customers of type ci are served by servers
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of type sj under FCFS-ALIS, which is intractable, and may depend on the entire shape of the
service time distributions. Matching rates can be calculated for some types of graphs [23, 20],
and they can also be calculated for general bipartite graphs when arrivals are Poisson, service
rates depend only on the servers, and services are exponential [5], but not otherwise. However,
matching rates can be calculated for the much simpler and very tractable FCFS infinite bipartite
matching model [9, 4, 3].

It is our observation that when λ and n are large, the matching rates of the general parallel
service system under FCFS-ALIS are approximately those of the FCFS infinite bipartite matching
model, which is the basis for our current paper. We use our ability to calculate matching rates in
order to design parallel service systems operating under FCFS-ALIS. We consider parallel service
systems operating in Efficiency Driven mode (ED), Quality Driven mode (QD), and Quality and
Efficiency Driven mode (QED) [19]. Our objective in each of these is to design the workforce
required to achieve certain service requirements, specifically:

- In ED mode, we specify average waiting times for customers, and resulting abandonment
rates.

- In QD mode, we specify average idle time for the servers,
- In QED mode we specify almost full utilization, no wait or short wait, and no abandon-

ments.
Under FCFS-ALIS we achieve these pre-specified requirements with complete resource pooling
of servers, and balance service levels for all types of customers.

We also present designs where under FCFS-ALIS the parallel servers are not pooled, and
use this to achieve differentiated service levels for the various types of customers, based on
pre-specified priority levels.

The rest of the paper is structured as follows. In Section 2 we describe the FCFS infinite
bipartite matching model, and the formula for the calculation of matching rates. In Section 3
we present our conjecture on the behavior of FCFS-ALIS parallel service systems under many
server scaling, which ties them up with the infinite bipartite matching model. In Section 4 we
present our design algorithms, based on the calculation of matching rates. Finally, in Section
5 we present examples in which we calculate designs, and examine the performance under our
designs. We present extensive simulation results, that confirm the validity of our approach for a
range of λ, n scales.

This paper is an expansion, generalization, completion and extension of preliminary studies
in [2, 1]. A recent discussion of many server scaling for the “N” system appears in [30].

2 FCFS infinite bipartite matching

We now consider a system with customer types C and server types S, with a bipartite compati-
bility graph G, and a much simplified stochastic model: We have infinite sequences of customers
c1, c2, . . . , cm, . . . where cm ∈ C and of servers s1, s2, . . . , sn, . . . where sn ∈ S. We assume that
cm are drawn according to probabilities α = (αc1 , . . . , αcI ) and sn are drawn according to prob-
abilities β = (βs1 , . . . , βsJ ), and they are all independent. For each realization of the sequences
we match customers and servers according to a FCFS policy: sn is matched to the earliest com-
patible cm in c1, c2, . . . , which has not yet been matched to s1, . . . , sn−1. The matching process,
for given graph G, is illustrated in the figure below.
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C1 C1C1 C4C4C4 C2 C3C3

S3S3S3 S2S2S2 S1 S1S1S1 S2 S3 S4

C4C3C2C1

G

This model is much simpler than a queueing model, since it involves no arrival times, no service
times, no busy or idle servers, and since it treats customers and servers in an entirely symmetric
way. This system is studied in [9, 4, 3]. It is shown in [4] that the matching is uniquely
determined for any two sequences and that all customers and servers are matched almost surely.
Furthermore, the system demonstrates dynamic reversibility, and is associated with a Markov
chain that has a product form stationary distribution. The stationary distribution is used to
obtain explicit expressions for the matching rates. We describe the calculation of the matching
rates now.

We use the following notations: we let C(sj) be the set of customer types compatible with
server type sj , and S(ci) be the set of server types compatible with customer type ci. For a
subset of customer types C we let S(C) =

⋃
ci∈C S(ci), and for a subset of server types S we let

C(S) =
⋃

sj∈S C(sj). We also let U(S) = C(S) be the customer types that can only be served by

servers of types in S. For subsets C, S we define αC =
∑

ci∈C αci , and βS =
∑

sj∈S βsj .

Definition 2.1 For given α, β,G we say that there is complete resource pooling in the FCFS
infinite bipartite matching system if the following three equivalent conditions hold:

αC < βS(C), βS < αC(S), βS > αU(S), S ⊂ S, S 6= ∅,S, C ⊂ C, C 6= ∅, C. (1)

Theorem 2.2 (from [4]) Let rci,sj (n) be the (random) number of ci, sj matches between c1, . . . , cn

and s1, . . . , sn, in the FCFS infinite bipartite matching of the two sequences. If complete resource
pooling holds, then almost surely limn→∞ rci,sj (n) = rci,sj which is calculated by

rci,sj = βsj
∑
PJ

B

J−1∏
k=1

(β(k) − α(k))
−1

(
J−1∑
k=1

φk
α(k)

β(k) − α(k)χk

k−1∏
l=1

β(l) − α(l)

β(l) − α(l)χl
+

φJ
φJ + ψJ

J−1∏
l=1

β(l) − α(l)

β(l) − α(l)χl

)
, (2)

where the summation is over PJ , the set of all permutations of the server types S, and for each
permutation of the servers S1, . . . , SJ , the following notation is used:

α(k) = αU{S1,...,Sk}, β(k) = β{S1,...,Sk}, k = 1, . . . , J,

φk =
αU{S1,...,Sk}∩{ci}

αU{S1,...,Sk}
, ψk =

αU{S1,...,Sk}∩(C(sj)\{ci})

αU{S1,...,Sk}
, χk = 1− φk − ψk ,

and B is the normalizing constant:

B−1 =
∑
PJ

(
(β{S1} − αU{S1})(β{S1,S2} − αU{S1,S2}) · · · (β{S1,...,SJ−1} − αU{S1,...,SJ−1})

)−1
.

An easy example of this formula is for the case that I = J and C(sj) = C\cj , i.e the bipartite
compatibility graph is almost complete, each server can serve all but one of the customer types.
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In that case, complete resource pooling holds if and only if αcj +βsj < 1, and the matching rates
are:

rci,sj = αciβsj
(1− αci)(1− βsj )− αcjβsi

(1− αci − βsi)(1− αcj − βsj )

/(
1 +

I∑
i=1

αi βi
1− αi − βi

)
. (3)

However, for any other bipartite compatibility graph, this formula does not seem to simplify, and
we suspect that its calculation is ]P hard. We have programmed it to be able to calculate it up
to I, J ≤ 12, but it will become hard to compute the matching rates for larger number of types.
Further research to obtain perhaps easier approximations to rci,sj may be necessary.

When resource pooling does not hold, it is shown in [5] that there is a unique decomposition
(C,S) into subsystems (C(1),S(1)), . . . , (C(L),S(L)), such that

βS(1)

αC(1)
< · · · < βS(L)

αC(L)

, (C(l),S(l)) has complete resource pooling, l = 1, . . . , L. (4)

A Mathematica program to calculate the matching rates for given α, β,G is available from
the authors.

3 Matching under many server scaling

Consider a queueing system with a single customer type and a single server type, with arrival
rate λ, and patience distribution F , and with n servers, each with service rate µ, so that the
traffic intensity is ρ = λ/nµ. Many server scaling occurs when we keep µ and ρ fixed and let
both λ and n increase. Note that, to increase λ, we scale the inter-arrival time distribution,
and thus we do not alter its shape. Because of abandonments the system will always be stable.
There will be three behavior modes for this system: When ρ < 1 the system is in QD (quality
driven mode). In QD mode, there is always a fraction ≈ (1 − ρ) of idle servers and customers
never wait and nobody abandons. When ρ > 1 the system is in ED (efficiency driven mode). In
ED mode, servers are always busy, there is always a queue, and a fraction ≈F (W ) = (ρ− 1)/ρ
of customers abandons without service. Customers with patience ≤ W do not get served, and
customers with patience > W receive service after a wait of ≈W . When ρ ≈ 1 the system is
in QED (quality and efficiency driven mode). In QED mode, servers are busy most of the time
and if they idle that is only for a short while, an appreciable fraction of customers do not need
to wait, most customers wait a very short time, and very few customers abandon [28].

We now consider the system of parallel skill based servers of Section 1. We fix the fractions
αci , nsj/n, the service time distributions Gci,sj , and the patience distributions Fci . We use
FCFS-ALIS policy, and we let λ and n increase at the same rate, so that we get into many server
scaling. We cannot directly calculate ρ for this system, as it depends on the service policy, and
in particular we cannot calculate it directly under FCFS-ALIS, but we will try and approximate
it. Under many server scaling we can expect that for favorable choices of parameters, the system
will achieve resource pooling, so that customers of different types will have similar waiting times,
and servers of different types will have similar workloads and similar idle times. Under such
conditions, the system will again behave in one of the three modes, QD, ED or QED, according
to the traffic intensity.

We now make the following conjectures regarding the behavior of the system under many
server scaling, when resource pooling holds: We conjecture that the order in which customers
will reach the head of the line (if they did not abandon previously) will be such that the types of
customers will be i.i.d. with some probabilities αci , approximately. Also we conjecture that the
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order in which servers will become available at the head of line (if there is a queue of idle servers),
will be such that the types of servers will be i.i.d with some probabilities βsj , approximately.
Under this conjecture, the matching between customers and servers will be approximately the
same as for the FCFS infinite bipartite matching model.

The following three figures illustrate the operation of our system under FCFS-ALIS in each
of the above mentioned three modes:

In ED mode, all the servers are always busy, customers with enough patience wait a time W ,
and when they reach the head of the queue, they match with the next compatible server. Note
that customers entering service are still of i.i.d. types, approximately, but with new probabilities
αci , since they are thinned independently by impatience.

Servers, all are busy Patient customers Arrivals 

time length W

In QD mode, there is a queue of idle servers, each server, on completing a service, joins the
end of this queue. A server reaches the head of the queue after an idle time T , and matches with
the first compatible customer. Customers never wait and are of i.i.d. types with probabilities
αci .

Busy servers Idle servers

time length T

Arrivals 

In QED mode, the system alternates infrequently between periods with a queue of customers
and periods with a queue of servers. All servers are almost always busy, customers immediately
enter service or wait a short time, and there are only a few abandonments.

Arrivals 

The key assumption necessary for the matching rates to be according to the FCFS infinite
bipartite matching model is that approximately the sequence of customers entering service has
i.i.d. types and the sequence of servers that become available and that start service has i.i.d.
types.

When there is no resource pooling, the system decomposes into subsystems as in (4). The
following figure shows how such a system will behave under our conjecture. Here the system is
decomposed into three sub systems, where (C(3),S(3)) receives better service than (C(2),S(2)),
which receives better service than (C(1),S(1)).
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Servers, all are busy

Busy servers

Idle servers

Patient customers Arrivals 

idle lengths T

T

W

wait lengths W

Arrivals 

Arrivals 

The three illustrations depict behavior under ED (top figure), QD (middle figure), and in the
bottom one, (C(1),S(1)) is in ED, (C(2),S(2)) is in QED and (C(3),S(3)) is in QD. In ED mode,
customers of types C(1) wait the longest time, before being served by servers of types S(1). Servers
of types S(2) skip customers of type C(1) and serve customers of type C(2) that have a shorter
wait, and servers of types S(3) skip customers of type C(1), C(2) and serve customers of type C(3)
that have the shortest wait. In QD mode, servers of the high priority customers have longer
idle periods, and are available for the high priority customers immediately, while servers of lower
priority customers have shorter idle times, and are further in the queue, and their customers
will skip the high priority servers in the queue, which are incompatible with them. In the mixed
mode, low priority customers will wait, while high priority customers will have a queue of idle
servers ready to serve them.

4 Design Algorithms

4.1 General Strategy

We specify the quality of service requirements: For QD this means specifying the utilization of
the servers, for ED this means specifying the amount of waiting of patient customers, and for
QED this means no abandonment and no idling. We next specify which fraction of the service
should be done by each type of server. This is a design decision, which will not affect quality of
service, but it is relevant for the operational costs. These determine the α and β for the matching
of customers and servers. We then use the bipartite infinite matching model, formula (2), to
obtain the matching rates rci,sj . Once we have the matching rates, we can calculate the amount
of work required from each type of server, and this determines, by Little’s law, the number of
servers that are needed of each type in order to meet the requested service of quality. In the
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case of differentiated service, we decompose the server and customer types into ED, QED and
QD subsets.

In the following sections we show how to perform these steps for each of the three regimes,
and for the decomposition. We illustrate the calculations for the examples of Section 5, and
demonstrate the effectiveness of the heuristics through simulation.

Note that the inter-arrival time distribution and the service time distributions are not required
as input for the algorithm, only the arrival rate and the average service times are required. The
distribution of the abandonment time distribution is needed for design in ED mode.

4.2 Design for Quality Driven Service

Here the traffic intensity is < 1, and customers almost never wait, and therefore even more rarely
abandon. There are almost always some idle servers waiting for customers, and because of ALIS,
servers of different types all have the same idle time distribution. The quality parameter in this
case is the value T of the average idle time. It is a measure of the utilization of the servers.
Because there are virtually no abandonments, the patience time distribution is not required as
input.

Algorithm for QD
Input:
• Compatibility graph G
• Arrival rate λ
• Fractions of customer types αci

• Mean service times mci,sj

Requested quality of service parameter:
• Mean server idle time after each service T

Design parameters:
• Fraction of services performed by each server type βsj

Algorithm:

Check α, β for complete resource pooling

Compute matching rates rci,sj := use Equation (2)

Compute staffing levels nsj :=
∑

ci∈C(sj)

λrci,sj
(
mci,sj + T

)
Output:

• Required workforce nsj

4.3 Design for Efficiency Driven Service

Here the traffic intensity is > 1, servers are always busy and customers always need to wait,
and a certain fraction will abandon. By FCFS, customers of different types all have the same
waiting time distribution, and the system demonstrates global FCFS (this term was coined by
Talreja and Whitt [23]). The system is stabilized by abandonments, with average waiting time
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W . This means that approximately a fraction 1− Fci(W ) of customers of type ci will abandon.
The value of W is the quality of service parameter here, so that customers with patience less
than W do not get served, while customers with patience that exceeds W get served after a wait
of W . Since customers are thinned independently by impatience, we need to calculate the total
effective arrival rate (of patient customers) and we need to adjust the fractions αci of customer
types entering service.

Algorithm for ED
Input:
• Compatibility graph G
• Arrival rate λ
• Fractions of customer types αci

• Patience distributions Fci(·)
• Mean service times mci,sj

Requested quality of service parameter:
• Mean waiting time W

Design parameters:
• Fraction of services performed by each server type βsj

Algorithm:

Compute expected fraction of abandonments pci := Fci(W )

Compute the total effective arrival rate λ̃ :=

I∑
i=1

αciλ(1− pci)

Adjust fraction of each customer type αci :=
αciλ(1− pci)

λ̃
Check α, β for complete resource pooling

Compute matching rates rci,sj := use Equation (2)

Compute staffing levels nsj :=
∑

ci∈C(sj)

λ̃rci,sjmci,sj

Output:

• Required workforce nsj

4.4 Design for Quality and Efficiency Driven Service

Given the arrival rates, there is a unique FCFS system that will supply QED service, with
servers almost always busy, most customers either don’t wait or wait a short time, and few
abandonments. The calculation of QED design follows the same steps as for QD with T = 0 and
for ED with W = 0.
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4.5 Design for Differentiated Service

We now consider the case where we would like to give customers graded service levels, from high
priority to standard priority to low priority customer types. We have a partition of customer
types C into C(1), . . . , C(L), where customers of types ci ∈ C(l) have higher priority than customer
of type in C(l−1), l = 2, . . . , L. Customers in class C(l) will then have a set of servers S(l), so
that each customer type ci ∈ C(l) will have at least one compatible server type sj ∈ S(l). In this
decomposition to subsystems (C(l),S(l)), we will allow sj ∈ S(l) to serve ci ∈ C(k), k ≥ l, but
will not allow sj ∈ S(l) to serve ci ∈ C(k), k < l. In other words, we redesign the compatibility
graph G by eliminating all links from S(l) to C(k) for k < l, but we preserve the links to higher
priority customers in C(k) for k > l, since when we use FCFS, these links will hardly ever be
used, because servers in S(l) will be behind all servers in S(k) for k > l almost all the time.

The priorities will be translated into quality of service parameters: classes C(1), . . . , C(l) will
be served in ED mode with W1 > · · · > Wl ≥ 0, classes l + 1, . . . , L will be served in QD mode,
with 0 < Tl+1 < · · · < TL. Class l may be in QED mode.

Algorithm for Differentiated Service
Input:
• Compatibility graph G
• Arrival rate λ
• Fractions of customer types αci

• Patience distributions Fci(·)
• Mean service times mci,sj

Requested quality of service parameters:
• Partition of customer types by priority into C(1), . . . , C(L)

• Quality of service parameters: W1 > · · · > Wl = 0 = Tl < Tl+1 < · · · < TL

Design parameters:
• Choose partition of server types S(1), . . . ,S(L)

• Eliminate links from S(l) to C(k), for k < l
• Assign fraction of services performed by each server type βsj , within S(l)

Algorithm:

• For subsystem (C(l),S(l)), l = 1, . . . , L:
• Apply appropriate design algorithm for QD or ED to the subsystem

Output:

• Redesigned compatibility graph G
• Required workforce nsj

5 Examples of Designs and Simulation Results

In this section we describe three examples, for each of which we have prepared several designs,
under several modes of operation, and assuming Poisson arrivals using a range of values for λ.
We have then performed extensive simulation runs on each of these designs. Our purpose in this
section is threefold:
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(i) Illustrate the implementation of the algorithms;

(ii) Examine the validity of the matching rates conjecture;

(iii) Evaluate the efficacy of our designs.

The first example system has 3 customer types and 3 server types with an almost complete
bipartite compatibility graph. We have designed operation of this system with complete resource
pooling, in ED, QD and QED mode. The purpose of this example is to assess pooled service
designs. The second example has 5 customer types and 5 server types with a Hamiltonian
bipartite compatibility graph. This example is used to assess differentiated service, with the
customer types divided into high, standard and low priority customers. The third example has
6 customer types and 6 server types with a symmetric compatibility graph that has degree 3
for all nodes. The purpose of considering this example is to examine validity of the matching
conjecture in a complex graph.

The designs depend on the service rates for each link, but not on the actual distributions
of service times. To examine the validity of the matching conjecture and to assess the efficacy
of the designs, we have chosen to simulate service time distributions which are very different,
including uniform in a finite range, exponential and Pareto.

Our main conclusions from the simulations of these examples are:

(i) The matching rates conjecture seems to be valid under ED, QD and QED mode, for the
whole range of λ values, and under all the different distributions of service times. For
small values of λ the deviations are slightly larger, but this can be partly explained by the
fact that the algorithm yields real numbers for nsj , but in the final design rounded integer
values are used.

(ii) In ED mode, for large values of λ we get convergence to the exact values of W with very
small variability in waiting times, and exact abandonment rates. Similarly under QD, for
large values of λ we get convergence to the exact values of T with very small variability in
idle times, and almost all customers are not waiting for service.

(iii) Most important, it seems that for small values of λ, while waiting times in ED mode and
idle times in QD mode are quite variable, the average waiting time in ED and the average
idle time in QD are almost exactly as designed. This indicates that our design heuristic
may be effective already for a moderate number of servers.

(iv) Convergence in the QED mode is not appreciably worse than in the ED or QD modes.

(v) The system with differentiated service performs as designed.

(vi) The results do not seem to depend on the service time distributions.

We now present the three examples with detailed simulation results. The reported simulation
results for each design have been obtained as the average of 1,000 runs, where each run consists
of 1,250,000 customers. However, the first 250,000 customers have been removed from the results
to account for a possible startup effect.

5.1 Example 1 – 3 × 3 Almost Complete Graph with Pooled Service

In this example we investigate pooled service designs. The system is specified below, where
Exp(a) denotes the exponential distribution with rate a, U(a, b) is the uniform distribution on
the interval (a, b) and Pareto(k, a) is the Pareto distribution F (t) = 1− (k/t)a for t > k.
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Example 1 – System and Data
There are 3 types of customers and 3 types of servers. The total arrival rate is parame-
terized by λ, The graph and the values of αciλ are described in the following figure:

c1 c2 c3

s3s2s1

.2λ .5λ .3λ

The patience times and service time distribution are given in the tables below.

Patience time distributions
Fci

c1 Exp(0.1)
c2 U(0,10)
c3 Exp(0.2)

Service time distributions
Gci,sj c1 c2 c3
s1 Pareto(2, 3) Exp(0.125)
s2 Exp(0.2) U(2, 6)
s3 Pareto(3, 3) U(1, 5)

Only the mean service times are used by the design algorithms. The full distributions
are used in the simulations.

In the designs for Example 1 we take as service fractions: βs1 = 0.3, βs2 = 0.3, βs3 = 0.4.

ED design: We specify the average waiting time W = 1, corresponding to approximately 25%
of the average service times. For the given patience distributions this entails abandonment rates
of approximately 10% for customers of types 1 and 2, and of 18% for customers of type 3. We
calculate the effective arrival rates of customers that do get served after a wait of W = 1:

1−Fc1(W ) = e−0.1W = 0.905, 1−Fc2(W ) = (10−W )/10 = 0.9, 1−Fc3(W ) = e−0.2W = 0.819,

so

αc1λ(1−Fc1(W )) = 0.2λ×0.905 = 0.181λ, λc2(1−Fc2(W )) = 0.450λ, λc2(1−Fc2(W )) = 0.246λ,

and thus the effective arrival rate equals

λ̃ = (0.181 + 0.450 + 0.246)λ = 0.877λ.

Hence, the adjusted values of αcj are:

αc1 =
0.18

0.88
= 0.206, αc2 =

0.45

0.88
= 0.513, αc3 =

0.25

0.88
= 0.281.

QD design: We take an average idle time of T = 0.5. This corresponds to an utilization of
approximately 0.9.
QED design: The unadjusted values of λ, αci , mci,sj are used.

It is readily verified that in all three regimes (ED, QD and QED), Conditions (1) are satis-
fied, so complete resource polling holds. From the algorithms we obtain the calculated required
workforce for the three designs:
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Required workforce
ED regime QED regime QD regime

λ ns1 ns2 ns3 ns1 ns2 ns3 ns1 ns2 ns3
20 39 25 25 44 29 29 47 32 33
40 77 51 51 88 58 57 94 64 65
60 116 76 76 131 87 86 140 96 98
100 194 127 127 219 144 144 234 159 164
200 387 254 255 438 288 287 468 318 327

The simulation results for Example 1 are listed in the tables below. We note that the histograms
below only depict the waiting times and idle times greater than zero (so probability mass at zero
is not shown).

Matching rates
ED regime QED regime QD regime

Theoretical
rci,sj c1 c2 c3 c1 c2 c3 c1 c2 c3
s1 0.038 0.262 0.042 0.258 0.042 0.258
s2 0.251 0.049 0.242 0.058 0.242 0.058
s3 0.168 0.232 0.158 0.242 0.158 0.242

λ = 20
rci,sj c1 c2 c3 c1 c2 c3 c1 c2 c3
s1 0.046 0.262 0.048 0.260 0.047 0.258
s2 0.241 0.056 0.239 0.064 0.241 0.065
s3 0.164 0.230 0.155 0.234 0.153 0.236

λ = 60
rci,sj c1 c2 c3 c1 c2 c3 c1 c2 c3
s1 0.041 0.261 0.045 0.258 0.045 0.257
s2 0.248 0.051 0.242 0.061 0.243 0.062
s3 0.167 0.232 0.156 0.237 0.155 0.238

λ = 200
rci,sj c1 c2 c3 c1 c2 c3 c1 c2 c3
s1 0.039 0.261 0.043 0.259 0.043 0.258
s2 0.250 0.049 0.242 0.059 0.242 0.059
s3 0.168 0.232 0.157 0.240 0.157 0.241
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Customer waiting times and server idle times
ED Regime QED Regime QED Regime QD Regime

Waiting times Waiting times Idle times Idle times
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λ = 20 λ = 40 λ = 60 λ = 100 λ = 200

Fraction of no wait and of no idling
ED regime QED regime QD regime

λ No waiting No idling No waiting No idling No waiting No idling
20 0.047 0.946 0.444 0.540 0.814 0.181
60 0.003 0.997 0.420 0.571 0.947 0.053
200 0.000 1.000 0.410 0.585 0.999 0.001

Abandonment rates
ED regime QED regime QD regime

λ c1 c2 c3 c1 c2 c3 c1 c2 c3
20 0.089 0.123 0.168 0.020 0.035 0.039 0.003 0.008 0.006
60 0.091 0.109 0.173 0.014 0.020 0.027 0.000 0.001 0.001
200 0.093 0.102 0.177 0.008 0.010 0.016 0.000 0.000 0.000

Design 0.095 0.100 0.181 0.000 0.000 0.000 0.000 0.000 0.000

The table for the matching rates shows that the theoretical matching rates calculated by the
algorithm are quite close to the simulated (actual) matching rates, already for moderate values
of λ. The results for the waiting times and idle times confirm our intuition that they should
converge to the targeted quality of service requirements: for large values of λ, the probability
mass of the waiting times in ED concentrates near W and the probability mass of the idle times
in QD concentrates near T . In the QED regime, waiting times, idle times and abandonment
rates are small.
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5.2 Example 2 – 5×5 Hamiltonian Graph with Differentiated Service

This example illustrates differentiated service, with the customer types divided into three classes:
high, standard and low priority customers.

Example 2 – System and Data
There are 5 types of customers and 5 types of servers. The total arrival rate is parame-
terized by λ. The graph and the values of αciλ are described in the following figure:

c1 c2 c3

s3s2s1

.2λ .2λ .2λ .2λ .2λ
c4 c5

s5s4

The fractions αci are all equal, i.e., αci = 1
5 . The patience times are all exponentially dis-

tributed with mean 10. The service times are all uniformly distributed, with parameters
as given in the table below.

Service time distributions
Gci,sj c1 c2 c3 c4 c5
s1 U(2, 6) U(2, 4)
s2 U(1, 3) U(4, 7)
s3 U(3, 6) U(2, 6)
s4 U(1, 5) U(6, 11)
s5 U(3, 7) U(4, 9)

Only the mean service times are used by the design algorithms. The full distributions
are used in the simulations.

We consider the following decomposition of the system of Example 2:

C(1) = {c1, c2}, S(1) = {s1}, C(2) = {c3, c4}, S(2) = {s2, s3}, C(3) = {c5}, S(3) = {s4, s5}.

The decomposed system is described in the following figure:

c1 c2 c3

s3s2s1

.2λ .2λ .2λ .2λ .2λ
c4 c5

s5s4
βs1 = 1 βs2 =

1
3
βs3 =

2
3 βs4 = 1

2
βs5 =

1
2

Note that this decomposition results from eliminating three links in the compatibity graph: the
link from s2 to c2, s4 to c4, and from s5 to c1. We then have that:

- C(1),S(1) in isolation is a “V” system, with arrival rate 0.4λ, adjusted fractions αc1 = αc2 =
1
2 and βs1 = 1.

- C(2),S(2) in isolation is an “N” system, with arrival rates 0.4λ, adjusted fractions αc3 =
αc4 = 1

2 and we take βs2 = 1
3 , βs3 = 2

3 .

- C(3),S(3) in isolation is a “Λ” system, with arrival rate λ = 0.2λ, αc5 = 1 and we take
βs4 = βs5 = 1

2 .
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We make three designs for this network, in which customers c1, c2 have high priority, c3, c4
have standard priority, and c5 have low priority. The first design is for a system in ED regime,
the second is for a mixed design with the top priority sub-system in QD, the middle priority
sub-system in QED and low priority sub-system in ED, and the third design is for the three
systems in QD regime. It is readily verified, by checking Conditions (1), that in each design
complete resource pooling holds for each subsystem. The following table shows the calculated
workforce required for each type of server for the three designs, as a function of λ.

Required workforce
ED regime Mixed regime QD regime

W = 1 W = 2 W = 3 T = 1 QED W = 1 T = 2 T = 1 T = 0.5
λ ns1 ns2 ns3 ns4 ns5 ns1 ns2 ns3 ns4 ns5 ns1 ns2 ns3 ns4 ns5
20 25 12 18 13 10 36 15 22 15 12 44 17 27 18 14
40 51 24 36 25 19 72 29 44 31 24 88 35 55 36 28
60 76 36 54 38 29 108 44 66 46 35 132 52 82 54 42
100 127 60 90 63 48 180 73 110 77 59 220 87 137 90 70
200 253 120 180 126 96 360 147 220 154 118 440 173 273 180 140

The simulation results for Example 2 are listed in the tables below, and illustrate that the
system with differentiated service performs as designed.

Matching rates

ED regime Mixed regime QD regime

Theoretical

rci,sj c1 c2 c3 c4 c5 c1 c2 c3 c4 c5 c1 c2 c3 c4 c5
s1 0.216 0.216 0.204 0.204 0.200 0.200
s2 0.130 0.136 0.133
s3 0.065 0.195 0.068 0.204 0.067 0.200
s4 0.088 0.092 0.100
s5 0.088 0.092 0.100

λ = 20

rci,sj c1 c2 c3 c4 c5 c1 c2 c3 c4 c5 c1 c2 c3 c4 c5
s1 0.215 0.196 0.207 0.194 0.200 0.186
s2 0.021 0.121 0.014 0.126 0.015 0.118
s3 0.079 0.176 0.077 0.186 0.083 0.181
s4 0.017 0.084 0.014 0.086 0.020 0.094
s5 0.002 0.089 0.001 0.095 0.002 0.100

λ = 200

rci,sj c1 c2 c3 c4 c5 c1 c2 c3 c4 c5 c1 c2 c3 c4 c5
s1 0.216 0.216 0.205 0.205 0.200 0.200
s2 0.130 0.135 0.132
s3 0.066 0.194 0.068 0.201 0.069 0.197
s4 0.001 0.088 0.001 0.093 0.003 0.099
s5 0.088 0.093 0.101
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Customer waiting times and server idle times
ED Regime Mixed Regime Mixed Regime QD Regime

Waiting times Waiting times Idle times Idle times
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λ = 20 λ = 40 λ = 60 λ = 100 λ = 200

Fraction of no wait and of no idling
ED regime Mixed regime QD regime

λ No waiting No idling No waiting No idling No waiting No idling
20 0.056 0.934 0.578 0.398 0.869 0.124
60 0.010 0.988 0.570 0.412 0.935 0.063
200 0.000 1.000 0.556 0.430 0.974 0.025

5.3 Example 3 – 6×6 Symmetric Degree 3 Graph with Pooled Service

We now consider a more complex graph to examine the validity of the matching rates conjecture.
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Example 3 – System and Data
There are 6 types of customers and 6 types of servers. The total arrival rate is parame-
terized by λ, The graph and the values of λci/λ are described in the following figure:
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6

λci/λ
c1 1/9
c2 2/9
c3 1/9
c4 2/9
c5 1/9
c6 2/9

The patience times are all exponentially distributed with mean 10. The service times
distributions are given in the table below.

Service time distributions
c1 c2 c3 c4 c5 c6

s1 U E P
s2 P U E
s3 P U E
s4 P U E
s5 P U E
s6 E P U

With:
E ∼ Exp(1/4)
P ∼ Pareto(3, 3)
U ∼ U(1, 3)

Only the mean service times are used by the design algorithms. The full distributions
are used in the simulations.

In the designs for Example 3 we take as service fractions: βsj = 1/6, j = 1, . . . , 6. It then
follows, by checking Conditions (1), that in each regime (ED, QED and QD) service is pooled.

Required workforce
ED regime QED regime QD regime

λ ns1 ns2 ns3 ns4 ns5 ns6 ns1 ns2 ns3 ns4 ns5 ns6 ns1 ns2 ns3 ns4 ns5 ns6
20 12 9 12 9 12 9 13 10 13 10 13 10 15 12 15 12 15 12
40 23 19 23 19 23 19 26 21 26 21 26 21 29 24 29 24 29 24
60 35 28 35 28 35 28 39 31 39 31 39 31 44 36 44 36 44 36
100 58 47 58 47 58 47 64 52 64 52 64 52 73 60 73 60 73 60
200 117 94 117 94 117 94 129 104 129 104 129 104 146 121 146 121 146 121

The theoretical matching rates are given in the table below. Note that these matching rates
are the same for all three regimes (ED, QED and QD). This is caused by the fact that all
customers have the same patience distribution and the same target waiting times, resulting in
equal αci and βsj . The simulated matching rates are also practically identical for all three
regimes. In the tables we depict the averages over the three regimes, but the actual differences
between the three simulated values and their averaged values are less than 0.001.
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Theoretical matching rates (ED, QED, QD)
rci,sj c1 c2 c3 c4 c5 c6
s1 0.028 0.069 0.069
s2 0.041 0.084 0.041
s3 0.069 0.028 0.069
s4 0.041 0.084 0.041
s5 0.069 0.028 0.069
s6 0.041 0.041 0.084

Simulated matching rates λ = 20 (Average ED, QED, QD)
rci,sj c1 c2 c3 c4 c5 c6
s1 0.030 0.071 0.070
s2 0.041 0.080 0.041
s3 0.070 0.030 0.071
s4 0.041 0.080 0.041
s5 0.070 0.030 0.071
s6 0.041 0.041 0.080

Simulated matching rates λ = 200 (Average ED, QED, QD)
rci,sj c1 c2 c3 c4 c5 c6
s1 0.028 0.069 0.069
s2 0.041 0.084 0.041
s3 0.069 0.028 0.069
s4 0.041 0.084 0.041
s5 0.069 0.028 0.069
s6 0.041 0.041 0.084

Fraction of no wait and of no idling
ED regime QED regime QD regime

λ No waiting No idling No waiting No idling No waiting No idling
20 0.044 0.950 0.278 0.709 0.862 0.135
40 0.014 0.985 0.398 0.594 0.929 0.071
60 0.003 0.997 0.351 0.642 0.974 0.026
100 0.000 1.000 0.314 0.681 0.994 0.006
200 0.000 1.000 0.352 0.644 1.000 0.000

6 Conclusion

In this paper we considered a parallel queueing system with multiple server types and multiple
customer types, their compatibility described by a bipartite graph. This system has a general
renewal arrival process, general customer-server dependent service times and operates under
FCFS-ALIS service policy. As explained in the introduction, this system is relevant in many
areas of applications, though at this level of generality, it is analytically intractable. Based
on our intuitive understanding of how this system behaves under many server scaling and by
exploiting exact results for the matching rates in the related FCFS infinite matching model, we
proposed heuristic algorithms to calculate service work force levels required to meet quality of
service parameters in three modes of operation: ED, QD and QED.

Extensive simulation confirmed that the algorithms are accurate and effective: they produce
work force levels and, in case of differentiated service, a redesigned compatibility graph that
meet targeted quality of service requirements. Moreover, the heuristic algorithms also appeared
to work well when the required work force levels are not so large. As such, these algorithms
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provide a valuable tool to support decisions on the design of multi-type service systems. The
results suggest that our intuition, and in particular, the matching rates conjecture are correct.
However, a rigorous justification is lacking at this point, and left as a major challenge for future
research. A first step towards a rigorous analysis can be found in [30], treating many server
scaling for the exponential “N” system.
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