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Networks of fixed-cycle intersections

M.A.A. Boon J.S.H. van Leeuwaarden

November 10, 2016

Abstract

We present an algorithmic method for analyzing networks of intersections with static sig-

naling, with as primary example a line network that allows traffic flow over several intersec-

tions in one main direction. The method decomposes the network into separate intersections

and treats each intersection in isolation using an extension of the fixed-cycle traffic-light

(FCTL) queue. The network effects are modeled by matching the output process of one inter-

section with the input process of the next (downstream) intersection. This network analysis

provides insight into wave phenomena due to vehicles experiencing progressive cascades of

green lights and sheds light on platoon forming in case of imperfections. Our algorithm is

shown to match results from extensive discrete-event simulations and can also be applied to

more complex network structures.

Keywords: fixed-cycle traffic-light queue; performance evaluation; queueing theory; steady-state

distribution; traffic engineering; transform solution; stochastic networks

AMS 2000 Subject Classification. 60E10, 60J10, 60K25, 68M20, 90B20

1 Introduction

Intersections are natural bottlenecks and crucially influence the dynamics of urban traffic. Traffic

lights trigger a switching process meant to manage conflicting traffic flows. The coordination is

sometimes done dynamically, according to sensor data of currently existing traffic flows; other-

wise it is done statically, by the use of timers. While intersections can be studied in isolation

[8, 17, 18], the larger picture of networks of multiple intersections is increasingly important, also

in view of the rapid growth of urbanization [3, 7]. This paper contributes to the theoretical un-

derpinning of traffic networks by extending classical models for isolated intersections to models

for networks of intersections with static signaling.

Think of a series of traffic lights designed to let traffic flow over several intersections in one

main direction. Any vehicle traveling along (at an approximate prescribed speed) wants to meet

a progressive cascade of green lights, and not have to stop at intersections. In practical use,

only a group of vehicles – referred to as platoon – can pass the intersection before the time

band is interrupted to give way to other traffic flows. The platoon sizes are governed by the

signal times. Our method to model such situations consists of two ingredients: An extension of a

classical queueing model for one isolated intersection that can deal with correlated input and that
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allows for a detailed characterization of the output process of an intersection, and an algorithm

for network analysis that decomposes the series of queues into multiple isolated queues. While

interesting in their own right, and likely to find more applications in transportation science,

network analysis of intersections requires the delicate combination of both ingredients. We now

discuss each of them separately.

Queueing model for one intersection. The classical model for an isolated intersection that we

adopt and extend in this paper is the fixed-cycle traffic-light (FCTL) queue; one of the most well-

studied stochastic models in traffic engineering [8, 15, 16, 19]. Vehicles arrive to an intersection

controlled by a traffic light and form a queue. The time scale is divided into time intervals of

unit length, and the traffic light alternates between red and green periods of fixed durations r

and g time units. Delayed vehicles depart during the green period, where it takes one time unit

for each delayed vehicle to depart; departures thus occur at equally spaced times until either the

queue dissipates or the green phase terminates. Darroch [8] obtained the probability generating

function (pgf) of the steady-state overflow queue (the number of vehicles waiting in front of the

traffic light at the end of a green period) and the pgf of the steady-state delay was obtained in

van Leeuwaarden [18]. Hence, all information about the distribution of the steady-state overflow

queue and steady-state delay in the FCTL queue can be obtained from the results in [8, 18], in-

cluding all moments of the steady-state queue length and delay, and the distribution of the output

process (the way vehicles leave the intersection). The output process of the first intersection is

of crucial importance for the present paper, because it will serve as input process for some other

signalized intersection. Moreover, the output process of a second intersection serves as input for

a third intersection, and so forth. This network effect acts as a filter that modifies, and perhaps

streamlines, the arrival process at consecutive intersections. Therefore, we shall address in this

paper the technical challenge of extending the classical FCTL queue to allow for nonuniform and

hence time-dependent correlated arrival processes. We call this extended model the generalized

FCTL queue.

Network algorithm. A network of intersections with correlated input and output processes ap-

pears not solvable. We therefore develop an approximation scheme to evaluate the system per-

formance based on decomposition. While this approach has been successfully applied to classic

queueing networks [4, 12, 20], a network of generalized FCTL queues poses additional challenges

due to the non-synchronized cyclic structures and inherently correlated arrival processes. We de-

compose the network into isolated generalized FCTL queues, which are then analyzed separately

by assuming specific arrival processes, and in particular the output process of one intersection

serves as the input process of an upstream intersection, hence creating the correlation structure

that comes with network topologies.

Outline of the paper. In Section 2 we provide a detailed model description of the general-

ized FCTL queue. In Section 3 we present the full analytic solution of the generalized FCTL

queue, both in terms of a formal characterization of the probability generating functions of the

queue length distribution, and in terms of practically implementable algorithms for calculating

the queue length distribution, for any given correlated arrival pattern. In Section 4 we design the

network algorithm based on decomposition and the results in Section 3. We also compare our

analytical results with extensive discrete-event simulation of the same network model. In Section

5 we present conclusions.
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2 FCTL queue with correlated arrivals

We now present a generalization of the classical FCTL queue that can deal with correlated ar-

rivals. In Subsection 2.1 we detail the model and its underlying assumptions. We then discuss

in Subsection 2.2 an example of an arrival pattern that contains some crucial features than are

anticipated in network settings. The numerical calculations for that example were performed

with the algorithmic method developed in Section 3.

2.1 Model description

The first two model assumptions are adopted from the classical FCTL queue [18]:

Assumption 2.1 (Discrete-time assumption) The time axis is divided into constant time intervals

of unit length, so-called slots, where each slot corresponds to the time needed for a delayed

vehicle to depart from the queue. The green and red periods, and thus the cycle time c, are

assumed to be fixed multiples of one slot. Hence, g, r, c are integers expressed in slots. Those

vehicles that arrive to the queue and are delayed, join the queue at the end of the slot in which

they arrive.

Assumption 2.2 (FCTL assumption) For those cycles in which the queue clears before the green

period terminates, all vehicles that arrive during the residual green period pass through the sys-

tem and experience no delay whatsoever.

The FCTL assumption lets vehicles that arrive during the residual green period pass the inter-

section without slowing down, and therefore the discharge rate of these vehicles is larger than

the discharge rate of the delayed vehicles (one per time unit). Because of the huge difference in

discharge rates of delayed vehicles (these vehicles have to accelerate) and non-delayed vehicles,

the FCTL assumption is a sensible assumption. The next assumption is new:

Assumption 2.3 (Correlated arrivals assumption) Let Yi,n denote the number of vehicles that

arrive to the intersection during slot i in cycle n. The random variables Yi,n are allowed to be

dependent within cycle n, but we assume that Yi,n and Yi,m are independent when n 6= m.

Notice that Assumptions 2.1 and 2.3 together make that the queue lengths at the end of time

slots can be modeled as a discrete-time Markov chain. This feature is exploited in Section 3 to

find a fully analytic characterization for the steady-state queue-length distribution.

It is crucial that Assumption 2.3 is less restrictive than its counterpart in [18] that assumes the

Yi,n to be independent and identically distributed (i.i.d.). We need to move beyond this i.i.d. as-

sumption in order to consider the correlated Yi,n sequences as they can occur in real network

settings, for instance when the output process of one intersection (or FCTL queue) forms the

input process for another intersection. Because the first intersection alters the original arrival

pattern, the second intersection is likely to be confronted with platoons of vehicles that have

been delayed by the upstream red signal.

The generalized FCTL queue defined by Assumptions 2.1-2.3 is in essence a queueing system

with multiple customer types and batch arrivals, where Yi,n can be interpreted as the number of

type i customers in batch n. Denote the pgf of the joint distribution of (Y1,n, Y2,n, . . . , Yc,n) by

Yn(y1, y2, . . . , yc) = E
h c∏

i=1

y
Yi,n

i

i

.

3



Although arrivals within a batch can be correlated, successive batches are i.i.d. Multi-type queue-

ing models with batch arrivals have been well-studied [9, 13, 14]. A marked difference however,

is that arrivals in the FCTL queue do not join the queue instantaneously, but are dictated when

to arrive according to their type: type i arrivals join the queue in time slot i, for i = 1,2, . . . , c.

Another crucial difference is Assumption 2.2, of course, which is very specific for traffic-light

settings.

2.2 Motivating example

We now give an exemplary arrival pattern with features that are anticipated in network settings.

We consider a generalized fixed-cycle traffic light queue with traffic arriving from one synchro-

nized upstream traffic intersection. The cyclic arrival pattern at this queue, illustrated in Figure 1,

starts with the arrival of a platoon of delayed vehicles from the major upstream flow. The settings

are synchronized such that the signal turns green at the exact moment that the first car in this

platoon arrives. This platoon is followed by a phase of free flow, with arriving vehicles that were

not delayed at the upstream intersection. After a short period of no arrivals, we have a similar

pattern of a platoon followed by free flow, arriving from a minor upstream flow. A more detailed

description of the arrival process can be found in Appendix C.

In Section 4.2 we show that this specific arrival pattern arises naturally in network settings.

Arrivals in the same cycle are correlated, but we assume independence between arrivals in suc-

cessive cycles.

platoon 1 free flow platoon 2 free flow

B1 10− B1 B2 3− B2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 1: The arrival pattern in Section 2.2. The lengths of platoons 1 and 2 are respectively B1

and B2. The cycle length is c = g + r = 10+ 10= 20 time slots.

5 10 15 20

0.5

1.0

1.5

i

E[X i]

Figure 2: The queue length of the isolated intersection in Section 2.2. The black dots represent

queue lengths obtained via a microscopic simulation of our model and the solid black line is

obtained by the algorithm developed in Section 3.
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Figure 2 shows the mean queue length during a cycle. The results from a microscopic discrete-

event simulation of this generalized FCTL queue have been used to validate the analytic method.

The longest queue occurs just before the traffic light turns green, and the queue is typically

minimized at the end of green periods. The graph shows an interesting pattern, where the queue

length remains constant for the first part of the red period, due to the absence of arrivals during

that period. The arrival of platoon 2 results in a steep increase in queue length, starting after

time slot 15. The shape of the graph in Figure 2 is different from the standard FCTL queue, which

is typically more V-shaped due to the constant arrival rate throughout the cycle.

The analytic results obtained in the next section allow us to determine the queue-length

distribution. Table 1 shows probabilities of the queue length exceeding certain levels during

the cycle. We see that the probability that the queue exceeds five vehicles at the cycle start is

0.015. At the end of the green period this probability is only 0.002. At any arbitrary moment, the

probability that there are more than five delayed vehicles is 0.008.

X P(X ≥ 1) P(X ≥ 2) P(X ≥ 3) P(X ≥ 4) P(X ≥ 5) P(X ≥ 6)

X0 0.829 0.547 0.302 0.075 0.036 0.015

X10 0.159 0.089 0.042 0.014 0.006 0.002

X̄ 0.496 0.294 0.146 0.042 0.019 0.008

Table 1: The queue length distribution at the beginning of a cycle (X0), at the end of a green

period (X10), and at arbitrary moments (X̄ ). The notation in brackets will be introduced in

Section 3.

3 Analytic solution and algorithms

We shall now show that the generalized FCTL queue with Assumptions 2.1-2.3 is analytically

solvable. Using generating function techniques and complex analysis, we are able to obtain an

explicit, analytic characterization for the steady-state queue-length distribution. In order to do

so, we exploit the Markovian nature of the queueing model at the level of cycles, and account

for the correlations that occur within the cycle. The recursion relation that connects consecutive

queue lengths during a cycle is given in Subsection 3.1, along with some further preliminaries.

Then in Subsection 3.2 we derive the generating function for the steady-state queue lengths at

the beginning of time slots throughout a cycle. In particular, we leverage this explicit generating

function to create an algorithm for calculating the complete queue-length distribution, at all

points in time. Special attention is paid to the mean queue lengths in Subsection 3.3.

3.1 Preliminaries

Let X i,n denote the queue length at the end of the i-th time slot in the n-th cycle with n= 1,2, . . . .

Let Yi,n denote the number of arrivals in time slot i during the n-th cycle, as defined in Assumption

2.1.

For convenience, define X0,n+1(z) := X c,n(z) as the pgf of the queue-length distribution at the

start of cycle n+1. We will determine the the steady-state queue length, in the limit as n→∞, at

the end of each time slot. Without loss of generality, we assume that the first g time slots in the

cycle have a green signal, and the last r time slots are red. The queue length in this slot-based
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system then evolves according to

Xk+1,n =







Xk,n+ Yk+1,n− 1 if Xk,n > 0 and k = 0, . . . , g − 1,

0 if Xk,n = 0 and k = 0, . . . , g − 1,

Xk,n+ Yk+1,n for k = g, . . . , c − 1.

(3.1)

In the classical FCTL queue [8, 18], with i.i.d. Y1,n, . . . , Yc,n, the function Xk+1,n(z) can be

expressed in terms of Xk,n(z) by conditioning on the event that Xk,n is equal to zero, or not. For

the generalized FCTL queue more detailed information is needed, which is why we will use a

lattice path counting approach to describe the queue-length evolution throughout the cycles.

Let 1{A} be the indicator function for event A. Define the function

T (x0, n1, n2, . . . , nk) = 1
{min(x0 ,x0+n1−1,x0+n1+n2−2,...,x0+

∑k
i=1 ni−k)≤0}

,

for k = 0,1,2, . . . , g. The parameters x0, n1, . . . , nk are allowed to be random variables. We

define S (k) ⊂ Nk as the set of k-dimensional integer-valued vectors (l, n1, n2, . . . , nk−1) for which

T (l, n1, n2, . . . , nk−1) = 1. For j = 0,1, . . . , k− 1, let S
(k)

j
⊆ S (k) denote the subset of S (k) with

elements (l, n1, n2, . . . , nk−1) that satisfy for m = 0,1, . . . , j − 1,

l +

m∑

i=1

ni −m > 0, and

l +

j∑

i=1

ni − j = 0.

Notice that S (k) contains all possible combinations (X0, Y1, Y2, . . . , Yk−1) that will cause Xk−1 to

be zero. Out of all these combinations, S
(k)

j
contains the combinations for which X j = 0, while

X0, . . . , X j−1 all take strictly positive values. Adopting the terminology from [5], we say that

S
(k)

j
contains all elements for which the effective green time equals j, which means to say that

the queue becomes empty after precisely j time slots. We will subdivide these subsets further by

conditioning on their first element, which represents the queue length at the beginning of the

cycle. Define S
(k)

j,l
⊆ S

(k)

j
as the elements of S

(k)

j
that have first entry l. Note that S

(k)

j,l
only

needs to be defined for l = 0,1, . . . , k− 1, for otherwise the queue cannot be empty at the end of

time slot k− 1. Finally, define

G j,l := {(n1, . . . , n j) | (l, n1, n2, . . . , n j, n j+1, . . . , nk) ∈ S
( j+1)

j,l
}

and notice that

(n1, n2, . . . , n j) ∈ G j,l

implies

(l, n1, n2, . . . , n j , n j+1, . . . , nk) ∈ S
(k)

j,l
,

for any n j+1, . . . , nk ∈ N and k = j+ 1, . . . , g − 1.

Remark 3.1 A technical issue is that we allow j to be zero in the definition of G j,l . The only way

to obtain an effective green time of length zero is when the queue length was zero at the cycle

start. As a consequence, we have

G0,0 = {( )}, G0,l = ; for l = 1,2, . . . ,

where we have used ( ) to denote a vector of dimension 0.
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We can now express the queue lengths Xk,n in terms of X0,n. For k = 1, . . . , g,

Xk,n =

(

0 if T (X0,n, Y1,n, Y2,n, . . . , Yk−1,n) = 1,

X0,n+
∑k

i=1 Yk,n− k otherwise.
(3.2)

and for k = g + 1, . . . , c,

Xk,n =

(∑k

i=g+1 Yk,n if T (X0,n, Y1,n, Y2,n, . . . , Yg−1,n) = 1,

X0,n+
∑k

i=1 Yk,n− g otherwise.
(3.3)

3.2 Generating function solution

From the recursion relation (3.2), and using the fact that X0 is independent of the future arrivals,

we find

Xk(z) =

∞∑

l=0

∞∑

n1=0

· · ·

∞∑

nk=0

�
1− T (l, n1, . . . , nk−1)

�
z l+n1+n2+···+nk−k

P(X0 = l, Y1 = n1, . . . , Yk = nk)

+

∞∑

l=0

∞∑

n1=0

· · ·

∞∑

nk=0

T (l, n1, . . . , nk−1)P(X0 = l, Y1 = n1, . . . , Yk = nk)

=

∞∑

l=0

∞∑

n1=0

· · ·

∞∑

nk=0

z l+n1+n2+···+nk−k
P(X0 = l, Y1 = n1, . . . , Yk = nk)

+

∞∑

l=0

∞∑

n1=0

· · ·

∞∑

nk=0

T (l, n1, . . . , nk−1)
�

1− z l+n1+n2+···+nk−k
�

P(X0 = l, Y1 = n1, . . . , Yk = nk)

Using the definitions of S
(k)

j
and the independence between X0 and Y1, . . . , Yk,

Xk(z) = X0(z)
Y (

k
︷ ︸︸ ︷
z, . . . , z, 1, . . . , 1)

zk

+

k−1∑

l=0

k−1∑

j=0

∑

(l ,n1,...,nk−1)∈S
(k)
j

∞∑

nk=0

�

1− z l+n1+n2+···+nk−k
�

P(X0 = l, Y1 = n1, . . . , Yk = nk).

Since P(X0 = l, Y1 = n1, . . . , Yk = nk) = qlP(Y1 = n1, . . . , Yk = nk) we get

Xk(z) = X0(z)
Y (

k
︷ ︸︸ ︷
z, . . . , z, 1, . . . , 1)

zk

+

k−1∑

l=0

ql

k−1∑

j=0

∑

(n1,...,n j)∈G j,l

∞∑

n j+1=0

· · ·

∞∑

nk=0

�

1− z l+n1+n2+···+nk−k
�

P(Y1 = n1, . . . , Yk = nk).
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Now, for an arbitrary element (n1, . . . , n j) in G j,l , it should hold that l + n1+ · · ·+ n j = j. We can

use this to write

∞∑

n j+1=0

· · ·

∞∑

nk=0

�

1− z l+n1+n2+···+nk−k
�

P(Y1 = n1, . . . , Yk = nk)

= P(Y1 = n1, . . . , Yj = n j)−

∞∑

n j+1=0

· · ·

∞∑

nk=0

z j+n j+1+···+nk−k
P(Y1 = n1, . . . , Yk = nk)

=: fk(1, n1, . . . , n j)− fk(z, n1, . . . , n j),

where

fk(z, n1, . . . , n j) =
∂

∂ y
n1

1
∂ y

n2

2
. . . ∂ y

n j

j

Y (y1, y2, . . . , y j ,

k− j
︷ ︸︸ ︷
z, . . . , z, 1, . . . , 1)

n1!n2! . . . n j!zk− j

�
�
�

y1=···=y j=0
. (3.4)

To see the latter, note that by definition

fk(z, n1, . . . , n j) =

∞∑

n j+1=0

∞∑

n j+2=0

· · ·

∞∑

nk=0

zn j+1+n j+2+···+nk−(k− j)
P
�
Y1 = n1, Y2 = n2, . . . , Yk = nk

�
,

and hence

fk(1, n1, . . . , n j) = P
�

Y1 = n1, Y2 = n2, . . . , Yj = n j

�

.

We thus obtain the following lemma, where we have omitted the subscript n that refers to a

particular cycle.

Lemma 3.2 Let n= (n1, . . . , n j) and ql = P(X0 = l) for l = 0,1, . . . , g−1. Then, for k = 1,2, . . . , g,

Xk(z) = X0(z)
Y (

k
︷ ︸︸ ︷
z, . . . , z, 1, . . . , 1)

zk
+

k−1∑

l=0

ql

k−1∑

j=0

∑

n∈G j,l

�
fk(1, n1, . . . , n j)− fk(z, n1, . . . , n j)

�
. (3.5)

Having expressed Xk(z) in terms of X0(z), for k = 1,2, . . . , g, we can use (3.3) to find X c(z).

Following the same steps as for deriving Lemma 3.2, we get the lemma below.

Lemma 3.3 For k = g + 1, . . . , c,

Xk(z) = X0(z)
Y (

k
︷ ︸︸ ︷
z, . . . , z, 1, . . . , 1)

zg

+

g−1∑

l=0

ql

g−1∑

j=0

∑

n∈G
(g)

j,l

�
hg(1,

k−g
︷ ︸︸ ︷
z, . . . , z,

c−k
︷ ︸︸ ︷

1, . . . , 1, n1, . . . , n j)− hg(z,

k−g
︷ ︸︸ ︷
z, . . . , z,

c−k
︷ ︸︸ ︷

1, . . . , 1, n1, . . . , n j)
�

with hm(z, ym+1, . . . , yc , n1, . . . , n j) defined as

∂

∂ y
n1

1 ∂ y
n2

2 . . .∂ y
n j

j

Y (y1, y2, . . . , y j ,

m− j
︷ ︸︸ ︷
z, . . . , z, ym+1, . . . , yc)

n1!n2! . . . n j!zm− j

�
�
�

y1=···=y j=0
. (3.6)
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If the system is in steady state, it should hold that X c,n
d
=X0,n, so we can equate X c(z) and X0(z)

and solve for X0(z) to arrive at the following result.

Theorem 3.4

X0(z) =

∑g−1

l=0
qlζl(z)

zg − Y (z, . . . , z)
, (3.7)

with

ζl(z) =

g−1∑

j=0

∑

n∈G j,l

zg
�
hg(1, z, . . . , z, n1, . . . , n j)− hg(z, z, . . . , z, n1, . . . , n j)

�
. (3.8)

Remark 3.5 To help interpret (3.7) write

zghg(1, z, . . . , z, n1, . . . , n j) = E
h

zg+Yg+1+···+Yc 1{Y1=n1,...,Yj=n j}

i

, (3.9)

zghg(z, z, . . . , z, n1, . . . , n j) = E
h

z j+Yj+1+···+Yc 1{Y1=n1,...,Yj=n j}

i

, (3.10)

and

X0(z) =
Y (z, . . . , z)

zg
X0(z) +

∑g−1

l=0
qlζl(z)

zg

=
Y (z, . . . , z)

zg
X0(z) +

g−1∑

l=0

qlE

h�

zg+Yg+1+···+Yc − z j+Yj+1+···+Yc

�

1{Y1=n1,...,Yj=n j}

i

. (3.11)

The first expression on the right hand side of (3.11) represents the relation X0,n+1 = X0,n +∑c

i=1 Yi,n − g in terms of generating functions. The last term in (3.11) contains all “correction

terms” for those summands where the queue becomes empty at time slot j, because then X0,n+1 =

X0,n+
∑ j

i=1 Yi,n+
∑c

i=g+1 Yi,n− j, which can be written as

X0,n+1 = X0,n+

c∑

i=1

Yi,n − g +
�

g +

g∑

i=g+1

Yi,n− j−

c∑

i= j+1

Yi,n

�

,

the last part being the correction term. The function ζl(z) is composed of all correction terms

that correspond to X0,n = l. Each correction term consists of the term (3.10), representing the

part that should be removed, and its replacement term (3.9).

Remark 3.6 If the Yi are independent (but not necessarily identically distributed) random vari-

ables, Equation (3.7) can be simplified. In this case, Y (y1, . . . , yc) =
∏c

i=1 Yi(z), which can be

substituted in (3.6) to find

hg(z, z, . . . , z, n1, . . . , n j) = z j−g
P(Y1 = n1, . . . , Yj = n j)

c∏

i= j+1

Yi(z), (3.12)

hg(1, z, . . . , z, n1, . . . , n j) = P(Y1 = n1, . . . , Yj = n j)

c∏

i=g+1

Yi(z). (3.13)

9



Let the random variable G denote the effective green time, as defined earlier, and notice that

P(G = j) =

g−1∑

l=0

ql

∑

n∈G j,l

P(Y1 = n1, . . . , Yj = n j). (3.14)

From (3.7) we then obtain

X0(z) =
zg
∑g−1

j=0 P(G = j)
�∏c

i=g+1 Yi(z)− z j−g
∏c

i= j+1 Yi(z)
�

zg −
∏c

i=1 Yi(z)

=
(1− P(G = g))zg

∏c

i=g+1 Yi(z)−
∑g−1

j=0 P(G = j)z j
∏c

i= j+1 Yi(z)

zg −
∏c

i=1 Yi(z)
. (3.15)

Using that P(G = 0) = P(X0 = 0), P(G = g) = 1 − P(X g−1 = 0), and P(G = j) = P(X j =

0)− P(X j−1 = 0), for j = 1, . . . , g − 1, (3.15) can be written as

X0(z) =

∑g

j=1

�

1− Yj(z)/z
�

P(X j−1 = 0)z j
∏c

i= j+1 Yi(z)

zg −
∏c

i=1 Yi(z)
,

where the unknown probabilities P(X i = 0) are still to be determined.

Remark 3.7 When Yi are i.i.d. random variables, with pgf Y (z), this expression simplifies further

to the classical result [8, 18]

X0(z) =
(1− Y (z)/z)
∑g

j=1 P(X j−1 = 0)z jY (z)c− j

zg − Y (z)c
.

Let us now proceed with the expression in (3.7) and show how this generating function can

be converted into algorithms for the performance analysis of the generalized FCTL queue. First

note that there are still g unknowns q0, . . . ,qg−1 in (3.7), which can be found using a classical

reasoning. With Rouché’s theorem [2], it can be shown that the denominator of (3.7) has g

zeros on or within the unit circle |z| ≤ 1. Since a pgf is analytic and well-defined in |z| ≤ 1,

the numerator of X0(z) should vanish at each of the zeros. This gives g equations. One of the

zeros equals 1, and leads to a trivial equation. However, the normalization condition X0(1) = 1

provides an additional equation. Using l’Hôpital’s rule, this condition is found to be

g−1∑

l=0

ql

g−1∑

j=0

∑

n∈G j,l

�

g − j−

g∑

i= j+1

E[Yi |A j]
�

P(A j) = g −

c∑

i=1

E[Yi], (3.16)

where we have defined A j as the event {Y1 = n1, . . . , Yj = n j} for compactness. From this defini-

tion it follows that E[Yi |A0] = E[Yi] and P(A0) = 1. We can write (3.16) as

g−1∑

l=0

ql bl = η.

Note that bl = ζ
′
l
(1), with ζl(z) as defined in (3.7). Denote the g roots of zg = Y (z, . . . , z) on

and within the unit circle by z0 = 1, z1, . . . , zg−1. The g unknowns q0, . . . ,qg−1 then follow from

10



solving the set of linear equations











b0 b1 b2 . . . bg−1

ζ0(z1) ζ1(z1) ζ2(z1) . . . ζg−1(z1)

ζ0(z2) ζ1(z2) ζ2(z2) . . . ζg−1(z2)
...

...
...

...
...

ζ0(zg−1) ζ1(zg−1) ζ2(zg−1) . . . ζg−1(zg−1)





















q0

q1

q2
...

qg−1











=











η

0

0
...

0











. (3.17)

To make this work, we need an efficient numerical algorithm for finding the roots z1, . . . , zg−1.

Many root-finding algorithms exist, for instance based on successive substitution [10] or the

Lagrange inversion theorem [11]. In the appendix we present a new scheme (Algorithm 4) based

on the truncation of infinite series in combination with a root-finding procedure for polynomial

functions.

We also need to deal with the sets S
(k)

j,l
that may have an infinite number of elements. For

this, notice that G j,l has a finite cardinality. Finding all elements in G j,l is rather straightforward,

because they can be found by a simple enumeration. When l = 0, the effective green period is

zero, meaning that j must be zero as well. As a consequence, all G j,0 are empty sets, except for

G0,0, which is a set containing one element: the empty vector ( ). For 0 < l < k, the minimum

effective green time is at least l. Fixing l between 1 and k − 1, and j between l and k − 1, we

note that all elements in G j,l must satisfy the following conditions:

l + n1− 1> 0,

l + n1 + n2− 2> 0,

...

l + n1 + · · ·+ n j−1 − ( j− 1)> 0,

l + n1 + · · ·+ n j − j = 0.

Since n1, . . . , n j are nonnegative integers, these conditions lead to an easy enumeration of all

elements n in G j,l . See Algorithm 5 in the appendix for efficiently calculating all nonempty sets

G j,l .

Taken everything together, we can evaluate the generating function X0(z) as described in

Algorithm 1.

3.3 Queue length distribution

Now that we can calculate X0(z), we proceed to use Algorithm 1 to obtain more information

about the queue length. Notice that with Lemmas 3.2 and 3.3 and Algorithm 1 we can evaluate

all Xk(z) for k = 1, . . . , c. While these are all pgfs at the end of specific time slots, the pgf of the

queue length at an arbitrary time slot X̄ (z) follows from

X̄ (z) =
1

c

c∑

i=1

X i(z). (3.18)

The queue-length distribution can then be calculated using a standard inverse theorem such as

Algorithm 6 in the appendix. We have used Algorithm 6 with (3.18) to generate the results in

Table 1. In the appendix we also present some compact expressions for the mean queue length

at the end of each time slot.

11



Algorithm 1 Computing X0(z)

1: Input g, c, and Y (z1, z2, . . . , zc)

2: Set E[Y ] = d

dz
Y (z, z, . . . , z)
�
�
z=1

3: Generate all nonempty sets G j,l using Algorithm 5

4: Determine all roots z1, z2, . . . , zg−1 inside the unit circle using Algorithm 4

5: for l = 0 to g − 1 do

6: Set ζl(z) = 0

7: for j = l to g − 1 do

8: for all n ∈ G j,l do

9: Set (n1, n2, . . . , n j) = n

10: Compute hg(z, yg+1, . . . , yc , n1, . . . , n j) using Equation (3.6)

11: Set ζl(z) = ζl(z) + zg
�
hg(1, z, . . . , z, n1, . . . , n j)− hg(z, z, . . . , z, n1, . . . , n j)

�

12: end for

13: end for

14: Set bl = ζ
′
l
(1)

15: end for

16: Set η = g −E[Y ]

17: Find q1,q2, . . . ,qg−1 by solving system (3.17)

18: Compute X0(z) using Equation (3.7)

19: return X0(z)

4 Network settings

With the algorithms developed in Section 3 to analyze the output of an intersection with cor-

related input, we now extend the scope in order to deal with a network of intersections. In

Subsection 4.1 we describe the decomposition approach, a heuristic method to combine multiple

isolated intersections into a network model, and in Subsection 4.2 we demonstrate the algorithm

for two network scenarios.

4.1 Decomposition approach

Let us first quantify the output process of the generalized FCTL queue in Section 3. Define Oi,n as

the output in time slot i (i = 1, . . . , g) in cycle n, so that

Oi,n =

(

1 if X i−1,n > 0,

Yi,n if X i−1,n = 0.
(4.1)

Let On(z1, . . . , zg) denote the pgf of the joint output (O1,n, . . . ,Og ,n) and Gn denote the effective

green time in cycle n. Note that the joint output vector (O1,n, . . . ,Og ,n), given that Gn = j, equals

(

j
︷ ︸︸ ︷

1,1, . . . , 1, Yj+1,n, . . . , Yg ,n), j = 1,2, . . . , g.

We will again omit the subscript n denoting the cycle number. If (n1, . . . , n j) is an arbitrary vector

in G j,l , it holds that l+n1+ · · ·+n j = j. The pgf of the joint output during this cycle follows from

12



summing over all possible l, j and (n1, . . . , n j) ∈ G j,l :

O(z1, . . . , zg) =

∞∑

l=0

∞∑

n1=0

· · ·

∞∑

ng=0

�
1− T (l, n1, . . . , ng−1)

�
� g∏

k=1

zk

�

P(X0 = l, Y1 = n1, . . . , Yg = ng)

+

g−1∑

l=0

g−1∑

j=0

∑

(n1,...,n j)∈G j,l

∞∑

n j+1=0

· · ·

∞∑

ng=0

� j∏

k=1

zk

�� g∏

k= j+1

z
nk

k

�

P(X0 = l, Y1 = n1, . . . , Yg = ng). (4.2)

This then gives

O(z1, . . . , zg) =

=
�

1−

g−1∑

l=0

g−1∑

j=0

∑

(n1,...,n j)∈G j,l

P(X0 = l, Y1 = n1, . . . , Yj = n j)
� g∏

k=1

zk

+

g−1∑

l=0

g−1∑

j=0

∑

(n1,...,n j)∈G j,l

∞∑

n j+1=0

· · ·

∞∑

ng=0

� j∏

k=1

zk

�� g∏

k= j+1

z
nk

k

�

P(X0 = l, Y1 = n1, . . . , Yg = ng)

=
�

1−

g−1∑

l=0

g−1∑

j=0

∑

n∈G j,l

qlP(A j)
� g∏

k=1

zk

+

g−1∑

l=0

ql

g−1∑

j=0

∑

n∈G j,l

� j∏

k=1

zk

�

h j(1, z j+1, . . . , zg ,

c−g
︷ ︸︸ ︷

1, . . . , 1, n1, . . . , n j) (4.3)

with h j as defined in (3.6). Note that h0(1, z1, . . . , zg , 1, . . . , 1) = Y (z1, . . . , zg , 1, . . . , 1) and P(A j) =

h j(1,1, . . . , 1, n1, . . . , n j). The complete program to compute O(z1, z2, . . . , zg) is then given in Al-

gorithm 2.

Algorithm 2 Computing O(z1, z2, . . . , zg)

1: Input g, c, and Y (z1, z2, . . . , zc)

2: Find q1,q2, . . . ,qg−1 using Algorithm 1

3: Set S = 0, T = 0

4: for l = 0 to g − 1 do

5: for j = l to g − 1 do

6: for all n ∈ G j,l do

7: Set (n1, n2, . . . , n j) = n

8: Compute h j(z, y j+1, . . . , yc, n1, . . . , n j) using Equation (3.6)

9: Set S = S + qlh j(1,1, . . . , 1, n1, . . . , n j)

10: Set T = T + ql

�∏ j

k=1
zk

�

h j(1, z j+1, . . . , zg , 1, . . . , 1, n1, . . . , n j),

11: end for

12: end for

13: end for

14: Set O(z1, z2, . . . , zg) = (1− S)
∏g

k=1
zk + T

15: return O(z1, z2, . . . , zg)
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Remark 4.1 It is evident that correlation in input carries over to correlation in output. Less

obvious is that even with independent input, the output processes in consecutive time slots are

correlated. In the case of independent Y1, . . . , Yc, the joint output pgf reduces to

O(z1, z2, . . . , zg) =P(G = 0)

g∏

i=1

Yi(zi) +

g−1∑

j=1

P(G = j)

j∏

i=1

zi

g∏

i= j+1

Yi(zi)

+ P(G = g)

g∏

i=1

zi. (4.4)

The correlation follows from the fact that this is not the product of the marginal pgfs Oi(zi) for

i = 1, . . . , g.

To analyze a network of fixed-cycle intersections, we decompose the network into isolated

generalized FCTL queues. We exclude situations where the output of a queue could become the

input of that same queue through some cyclic path in the network, meaning that the network can

be represented as a directed acyclic graph where nodes represent queues. Nodes without parents

can be modeled as standard FCTL queues with independent external arrivals. Figure 3 shows an

example of three intersections with one main traffic flow, with queues labeled Q(1,0),Q(2,0), and

Q(3,0), and three minor flows Q(1,1),Q(2,1), and Q(3,1) representing side traffic.

Q(1,0) Q(2,0) Q(3,0)

Q(1,1) Q(2,1) Q(3,1)

Figure 3: The network considered in this section.

This network can be decomposed into six queues. Queues Q(1,0),Q(1,1),Q(2,1), and Q(3,1) are

standard FCTL queues with Poisson input. The analysis in [18] can be used to obtain queue

length distributions and Equation (4.4) gives the joint output of each of these queues. Following

the main flow downstream, we first determine the input of Q(2,0), which is the superposition

of the delayed output processes of Q(1,0) and Q(1,1). The analysis in Section 3 gives the queue

length pgf, and the results from this section give the joint output. Algorithm 3 provides a detailed

description of this method, which can be used to find approximations for all queue-length pgfs in

the network.

4.2 Two example networks

Consider an idealized network of ten connected generalized FCTL queues, Q(1), . . . ,Q(10), each

with a fixed cycle of g = 10 green and r = 10 red time slots and a fixed travel time between two

consecutive intersections of d time slots. The setting is similar to that in Figure 3 without the side

traffic. Since all intersections have the same fixed-cycle plan of 10 green and 10 red time slots,

the case d = 0 corresponds to a perfect green wave where vehicles arrive exactly at the moment

that the signal turns green, and no queues will build up. In the case d = 5, the vehicles departing
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Algorithm 3 Network analysis

1: Input the number of intersections n

2: Input g(1,0), c, and Y (1,0)(z1, z2, . . . , zc) for Q(1,0)

3: Compute X
(1,0)
0 (z) using Algorithm 1

4: Compute O(1,0)(z1, z2, . . . , zg(1,0)) using Algorithm 2

5: for i = 2 to n do

6: Input g(i−1,1) and Y (i−1,1)(z1, z2, . . . , zc) for Q(i−1,1)

7: Input δ, the number of red time slots preceding the first green time slot at Q(i−1,1)

8: Compute O(i−1,1)(z1, z2, . . . , zg(i−1,1)) using Algorithm 2

9: Set Y (i,0)(z1, z2, . . . , zc) = O(i−1,0)(zmod(d,c)+1, zmod(1+d,c)+1, . . . , zmod(g(i−1,0)−1+d,c)+1)

10: ×O(i−1,1)(zmod(δ+d,c)+1, zmod(1+δ+d,c)+1, . . . , zmod(g(i−1,1)−1+δ+d,c)+1)

11: Compute X
(i,0)
0 (z) using Algorithm 1

12: Compute O(i,0)(z1, z2, . . . , zg(i,0)) using Algorithm 2

13: end for

during the first five time slots of Q(i), will arrive at Q(i+1) during time slots 6–10. These vehicles

will pass without delay, except when there is a queue of more than five vehicles waiting at the

beginning of the cycle. The vehicles departing in time slots 6–10 from Q(i), will arrive at Q(i+1)

during time slots 11–15, which means that they arrive during the red period and will be delayed

until (at least) the next green period.

Only Q(1) has external arrivals, assumed to arrive according to a Poisson process with rate

λ = 0.45 per time slot. The occupation rate ρ := λc/g = 0.9 is close to one, indicating that the

intersections are operating close to their maximum capacity. Appendix C provides more details

about the input settings of this example, and how to determine the arrival processes at the other

intersections.

Observe that in Figures 4(a) and 4(b) the simulated values (the black dots) are indistinguish-

able from those computed using our generalized FCTL analysis, based on the decomposition

approach (the black solid lines). Clearly, d = 5 results in a better traffic flow, with smaller mean

queue lengths, than d = 10.

We now extend the previous example by merging traffic in the main flow with side traffic from

minor roads, travelling towards the same destination as illustrated in Figure 3. Each intersection

has two flows, the main flow and the minor flow with side traffic. Note that the arrival patterns

of queues in the main flows are similar to those in Section 2.2, with one large batch of vehicles

arriving from the upstream main flow, and one smaller batch from the upstream minor flow. Each

of the batches may be followed by vehicles arriving in the free flow. The specific input settings in

this example can be found in Appendix C.

We have implemented this network model using Algorithm 3, with the purpose of comparing

the mean queue lengths of the main flows at each of the 10 intersections, but now for the cases

d = 0 and d = 5. Due to the inflow of side traffic, the case d = 0 will no longer result in empty

queues. The large batch of (maximally) ten vehicles will experience no delay only if no inflow

from side traffic took place during the previous cycle. With d = 5, the small batch of (maximally)

three vehicles will arrive exactly at the moment that the traffic signal of the main flow turns green.

As a consequence, these settings are favorable for the small batch, but also the first five vehicles

from the large batch might benefit. The results in Figures 5(a)–(d) and in Table 2 indicate that

for intersections 1–7, the generalized FCTL queue gives extremely accurate approximations for
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E[X̄ (i)] E[X̄ (i)]

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

i
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

i

(a) d = 5 (b) d = 10

Figure 4: Overall mean queue lengths in the network without side traffic in Section 4.2.

The dots represent the network simulation, the solid lines are obtained via the decomposition

method. Figures 4(a) and 4(b) depict the expected overall mean queue length at intersection i

(i = 1,2, . . . , 10), E[X̄ (i)] :=
∑c

k=1E[X
(i)

k
]/c for the cases d = 5 and d = 10 respectively.

the original network model, while for intersections 8–10, when the occupation rate ρ exceeds

0.7, the algorithmic method is less accurate but still reasonable.

Mean queue length X̄ (i,0) for d = 0

Intersection 1 2 3 4 5 6 7 8 9 10

Load ρ 0.3 0.37 0.43 0.5 0.57 0.63 0.7 0.77 0.83 0.9

Simulation 0.493 0.232 0.260 0.293 0.335 0.395 0.491 0.665 1.046 2.192

Decomposition 0.493 0.231 0.260 0.292 0.333 0.386 0.464 0.588 0.810 1.323

Mean queue length X̄ (i,0) for d = 5

Intersection 1 2 3 4 5 6 7 8 9 10

Load ρ 0.3 0.37 0.43 0.5 0.57 0.63 0.7 0.77 0.83 0.9

Simulation 0.493 0.359 1.161 0.821 1.549 1.287 1.984 1.939 2.814 3.829

Decomposition 0.493 0.359 1.159 0.819 1.534 1.273 1.920 1.835 2.478 2.858

Table 2: The mean queue lengths at each of the ten intersections, for the network with side traffic

of Section 4.2.

5 Conclusions

Classical models for fixed-cycle intersections do not cover scenarios where arriving traffic is corre-

lated, as typically encountered in traffic networks. Motivated by this observation, we introduced

a generalized fixed-cycle traffic model that can deal with an arbitrary arrival patterns such as pla-

toons and non-homogeneous traffic intensities. Generating-function methods for the stationary

queue-length distribution were used to develop an efficient numerical scheme for the perfor-
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(a) Q(2,0) with d = 0 (b) Q(8,0) with d = 0
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(c) Q(2,0) with d = 5 (d) Q(8,0) with d = 5

Figure 5: Mean queue lengths for intersections 2 and 8 in the network with side traffic in Section

4.2. The dots represent the network simulation, the solid lines are obtained via the decomposition

method.

mance analysis of an isolated intersection. We also proposed a network algorithm, which decom-

poses a network of intersections into separate generalized fixed-cycle network models, whose

distributional output and input are matched according to the network layout. Extensive simula-

tion experiments for a line network of multiple intersection support the network algorithm, and

reveal only a slight loss of accuracy in heavy-traffic scenarios. We expect our network algorithm

to work for many realistic network configurations, the study of which is an interesting topic for

further research.
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A Additional algorithms

Algorithm 4 Finding the roots inside the unit circle of zg − Y (z, z, . . . , z)

1: Input g and Y (z, z, . . . , z)

2: Set D(z) = zg − Y (z, z, . . . , z)

3: Set the truncation parameter n= g + 90

4: Set R= { }

5: while |R| 6= g − 1 do

6: n= n+ 10

7: Numerically compute D̃(z) :=
∑n

k=0 akzk,

8: the n-th order Taylor expansion of D(z) about z = 0

9: Find the roots of D̃(z) using a standard numerical polynomial root finding algorithm

10: Denote these roots by z̃1, z̃2, . . . , z̃n

11: R= { }

12: for i = 1 to n do

13: Numerically find a root zi for D(z) using starting point z = z̃i

14: if zi /∈ R and |zi| < 1 then

15: add zi to R

16: end if

17: end for

18: end while

19: return R

Algorithm 5 Creating all nonempty sets G j,l

1: G0,0 = {( )}

2: for l = 1 to g − 1 do

3: for j = l to g − 1 do

4: G j,l = { }

5: for n1 =max(0,2− l) to j− l do

6: for n2 =max(0,3− l − n1) to j− l − n1 do

7:
...

8: for n j−2 =max(0, j− 1− l − n1 − · · · − n j−3) to j− l − n1− · · · − n j−3 do

9: n j−1 =max(0, j− l − n1 − · · · − n j−2)

10: n j = 0

11: G j,l = G j,l ∪ {(n1, n2, . . . , n j)}

12: end for

13:
...

14: end for

15: end for

16: end for

17: end for
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Algorithm 6 Determine P(X = k) by inverting X (z) [1, 6]

1: Input X (z) and k

2: l = 1

3: γ = 10

4: if k = 0 then

5: pk = X (10−γ)

6: else

7: r = 10−γ/(2lk)

8: pk =
1

2lkrk

�

X (r)+ (−1)kX (−r)+ 2
∑lk−1

j=1 Re
h

X
�

r exp
�πi j

lk

�
exp
�
−
πi j

l

�
�i�

9: end if

10: return pk

B Mean queue length

Denote by N(z) and D(z) the numerator and denominator of X0(z) as given in (3.7). By differ-

entiation and L’Hôpital’s rule, it can be shown that

E[X0] =
N ′′(1)− D′′(1)

2D′(1)
,

where we have used that X0(1) = 1 and hence N ′(1) = D′(1). Define

Y ( j) :=

g∑

i= j+1

Yi, Y (r) =

c∑

i=g+1

Yi, Y =

c∑

i=1

Yi.

It is readily checked that

D′(1) = g −E[Y ], D′′(1) = g(g − 1)−E[Y (Y − 1)].

For the numerator, we find

N ′(1) =

g−1∑

l=0

ql

g−1∑

j=0

∑

n∈G j,l

�

E

h

(g + Y (r))1{A j}

i

−E
h

( j+ Y ( j) + Y (r))1{A j}

i�

=

g−1∑

l=0

ql

g−1∑

j=0

∑

n∈G j,l

�

g − j−E[Y ( j) |A j]
�

P(A j),

where as before A j = {Y1 = n1, . . . , Yj = n j}. Taking the second derivative yields

N ′′(1) =

g−1∑

l=0

ql

g−1∑

j=0

∑

n∈G j,l

�

E

h

(g + Y (r))2 1{A j}

i

−E
h

( j+ Y ( j) + Y (r))21{A j}

i�

− N ′(1).

Using D′′(1) = g2 −E[Y 2]− D′(1) and N ′(1) = D′(1) gives the following result:

Lemma B.1

E[X0] =
E[Y 2]− g2 +
∑

qlP(A j)(g
2− j2)

2(g −E[Y ])

−

g−1∑

l=0

g−1∑

j=0

∑

n∈G j,l

ql

2(g −E[Y ])
P(A j)E
h

2(g − j)Y (r) − 2( j− Y (r))Y ( j) −
�
Y ( j)
�2
�
�A j

i

. (B.1)
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Observe that (B.1) depends on the ql ’s, E[Yi] for i = 1, . . . , c, and E[YiYk |A j] for i = 1, . . . , g

and k = 1, . . . , c. The mean queue lengths E[Xk] for k = 1,2, . . . , c can be found by expressing

E[Xk] in terms of E[Xk−1] or E[Xk+1]. For queue lengths during the red period, we see that

E[Xk] = E[Xk+1]−E[Yk+1], k = c − 1, c − 2, . . . , g,

which means that these mean queue lengths can be expressed in E[X c] (and hence E[X0]) by

successive substitution.

During the green period, the expressions become slightly more involved, but it is possible to

express E[Xk] in terms of E[Xk−1] as

E[Xk] = E[Xk−1] +E[Yk]− 1−

k−1∑

l=0

ql

k−1∑

j=0

∑

n∈G j,l

P(A j)
�

E[Yk+1 |A j]− 1
�

, for k = 1, . . . , g − 1.

C Details of numerical examples

For completeness and reproducibility, we give a detailed overview of the input parameters of all

numerical examples in this paper.

Example Subsection 2.2. In this example we consider a generalized FCTL queue with a fixed-

cycle of c = g + r = 10+ 10 = 20 time slots. Vehicles may arrive in time slots 1–10 and 16–18.

The pgf of the joint distribution of Y1, Y2, . . . , Yc is given by

Y (z1, z2, . . . , z20) = O(1)(z1, z2, . . . , z10)O
(2)(z16, z17, z18), (C.1)

where

O(1)(z1, z2, . . . , z10) = 0.0476e0.3(z1+z2+z3+z4+z5+z6+z7+z8+z9+z10−10)

+ 0.107z1e0.3(z2+z3+z4+z5+z6+z7+z8+z9+z10−9)

+ 0.143z1z2e0.3(z3+z4+z5+z6+z7+z8+z9+z10−8)

+ 0.151z1z2z3e0.3(z4+z5+z6+z7+z8+z9+z10−7)

+ 0.138z1z2z3z4e0.3(z5+z6+z7+z8+z9+z10−6)

+ 0.114z1z2z3z4z5e0.3(z6+z7+z8+z9+z10−5)

+ 0.0887z1z2z3z4z5z6e0.3(z7+z8+z9+z10−4)

+ 0.0657z1z2z3z4z5z6z7e0.3(z8+z9+z10−3)

+ 0.0470z1z2z3z4z5z6z7z8e0.3(z9+z10−2)

+ 0.0328z1z2z3z4z5z6z7z8z9e0.3(z10−1)

+ 0.0655z1z2z3z4z5z6z7z8z9z10,

O(2)(z1, z2, z3) = 0.255e0.075(z1+z2+z3−3) + 0.317z1e0.075(z2+z3−2)

+ 0.223z1z2e0.075(z3−1) + 0.205z1z2z3.

Note that the pgfs O(1)(·) and O(2)(·) both have the form of the joint output pgf in (4.4). Each

of them can be interpreted as the output of an upstream intersection with independent Poisson
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arrivals with intensities respectively 0.3 and 0.075 and green periods of respectively ten and

three time slots. The probabilities 0.0476,0.107, . . . , 0.0655 and 0.255, . . . , 0.205 correspond to

the probability mass functions of the lengths of the effective green periods of the two upstream

flows. Equivalently, one can also consider them as the distributions of the platoon sizes B1 and

B2, see Figure 6.

free flow platoon 2 free flow platoon 1

(a)

0 1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0��0

k

P(B1 = k)

0 1 2 3
0.00

0.05

0.10

0.15

0.20

0.25

����

k

P(B2 = k)

(b) (c)

Figure 6: The arrival pattern in Section 2.2, and the probability distributions of the two platoon

sizes B1 and B2. (a) Graphical representation of the arrival pattern; (b) Distribution of platoon 1

size; (c) Distribution of platoon 2 size.

Network example without side traffic, Subsection 4.2. In this network all ten intersections

have synchronized settings with c = g + r = 10+ 10 = 20. The first intersection has external

arrivals from a Poisson process with intensity λ = 0.45,

Y (1)(z1, z2, . . . , z20) = e0.45(z1+z2+···+z20−20).

Let ρ = λc/g denote the occupation rate, which can be interpreted as the fraction of utilized

capacity at each intersection. Take λ= 0.45 and hence ρ = 0.9.

The arrival patterns at the downstream intersections depend on the delay parameter d . For
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example, when d = 5, we have

Y (2)(z1, z2, . . . , z20) = 0.0052e0.45(z6+z7+z8+z9+z10+z11+z12+z13+z14+z15−10)

+ 0.015z6e0.45(z7+z8+z9+z10+z11+z12+z13+z14+z15−9)

+ 0.028z6z7e0.45(z8+z9+z10+z11+z12+z13+z14+z15−8)

+ 0.039z6z7z8e0.45(z9+z10+z11+z12+z13+z14+z15−7)

+ 0.048z6z7z8z9e0.45(z10+z11+z12+z13+z14+z15−6)

+ 0.054z6z7z8z9z10e0.45(z11+z12+z13+z14+z15−5)

+ 0.057z6z7z8z9z10z11e0.45(z12+z13+z14+z15−4)

+ 0.058z6z7z8z9z10z11z12e0.45(z13+z14+z15−3)

+ 0.057z6z7z8z9z10z11z12z13e0.45(z14+z15−2)

+ 0.055z6z7z8z9z10z11z12z13z14e0.45(z15−1)

+ 0.583z6z7z8z9z10z11z12z13z14z15.

Again, 0.0052,0.015, . . . , 0.583 represent the probabilities that the platoon from the first inter-

section consists of, respectively, 0, 1, 2, . . . , 10 vehicles. Due to the fact that the first intersection

operates close to its maximum capacity, the maximum platoon size of ten vehicles is most likely

to occur.

Network example with side traffic, Subsection 4.2. In this network we have ten queues in the

main flow, Q(1,0), . . . ,Q(10,0), with synchronized settings c(i,0) = g(i,0) + r(i,0) = 10+ 10 = 20 for

i = 1,2, . . . , 10. The first intersection has external arrivals from a Poisson process with intensity

λ= 0.15,

Y (1,0)(z1, z2, . . . , z20) = e0.15(z1+z2+···+z20−20).

For i = 2,3, . . . , 10, the input of Q(i,0) consists of the delayed output of Q(i−1,0) and Q(i−1,1), see

Figure 3.

The minor flows Q(1,1), . . . ,Q(9,1) have cycle lengths of twenty time slots, which makes it

possible to synchronize them with the major flows. However, they have different green periods

of three time slots taking place in time slots 16, 17, and 18 to avoid conflicts with the main traffic

flow. The input to each of these minor flows is a Poisson process with intensity λ(i,1) = 1/30, for

i = 1,2, . . . , 9,

Y (i,1)(z1, z2, . . . , z20) = e
1

30
(z1+z2+···+z20−20).

We use ρ(i,0) = E[Y (i,0)]/g(i,0) to denote the occupation rate of the main flow of intersection i.

Due to the inflow of side traffic, the occupation rate of the main flows increases linearly from

ρ(1,0) = 3/10 to ρ(10,0) = 9/10.

These are all the required input values. The performance of the network is determined in

Section 4.2 using Algorithm 3.
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