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Abstract. A graph is k-planar (k ≥ 1) if it can be drawn in the plane
such that no edge is crossed more than k times. A graph is k-quasi planar
(k ≥ 2) if it can be drawn in the plane with no k pairwise crossing
edges. The families of k-planar and k-quasi planar graphs have been
widely studied in the literature, and several bounds have been proven on
their edge density. Nonetheless, only trivial results are known about the
relationship between these two graph families. In this paper we prove
that, for k ≥ 3, every k-planar graph is (k + 1)-quasi planar.

1 Introduction

Drawings of graphs are used in a variety of application domains, including soft-
ware engineering, circuit design, computer networks, database design, social sci-
ences, and biology (see e.g. [15,16,25,28,38,40]). The aim of a graph visualization
is to clearly convey the structure of the data and their relationships, in order
to support users in their analysis tasks. In this respect, and independent of the
specific domain, there is a general consensus that graph layouts with many edge
crossings are hard to read, as also witnessed by several user studies on the sub-
ject (see e.g. [24,35,36,43]). This motivation has generated lots of research on
finding bounds on the number of edge crossings in different graph families (see
e.g. [34,37,42]) and on the problem of automatically computing graph layouts
with as few crossings as possible (see e.g. [4,12]). We recall that, although it is
linear-time solvable to decide whether a graph admits a planar drawing (i.e. a
drawing without edge crossings) [10,23], minimizing the number of edge crossings
is a well-known NP-hard problem [21].

An emerging research area, informally recognized as beyond planarity (see
e.g. [22,26,29]), concentrates on different models of graph planarity relaxations,
which allow edge crossings but forbid specific configurations that would affect
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Fig. 1: (a) A crossing configuration that is forbidden in a 3-planar topological
graph. (b) A 3-planar topological graph. (c) A crossing configuration that is
forbidden in a 4-quasi planar topological graph. (d) A 4-quasi planar topological
graph obtained from the one of Figure (b) by suitably rerouting the thick edge.

the readability of the drawing too much. Forbidden crossing configurations can
be, for example, a single edge that is crossed too many times [33], a group of
mutually crossing edges [20,39], two edges that cross at a sharp angle [17], a
group of adjacent edges crossed by another edge [14], or an edge that crosses
two independent edges [5,9,27]. Different models give rise to different families
of “beyond planar” graphs. Two of the most popular families introduced in this
context are the k-planar graphs and the k-quasi planar graphs, which are usually
defined in terms of topological graphs, i.e., graphs with a geometric representation
in the plane with vertices as points and edges as Jordan arcs connecting their
endpoints. A topological graph is k-planar (k ≥ 1) if no edge is crossed more
than k times, while it is k-quasi planar (k ≥ 2) if it can be drawn in the plane
with no k pairwise crossing edges. Figure 1a shows a crossing configuration
that is forbidden in a 3-planar topological graph. Figure 1b depicts a 3-planar
topological graph that is not 2-planar (e.g., the thick edge is crossed three times).
Figure 1c shows a crossing configuration that is forbidden in a 4-quasi planar
topological graph. Figure 1d depicts a 4-quasi planar topological graph that is
not 3-quasi planar. A graph is k-planar (k-quasi planar) if it is isomorphic to
some k-planar (k-quasi planar) topological graph. Clearly, by definition, k-planar
graphs are also (k + 1)-planar and k-quasi planar graphs are also (k + 1)-quasi
planar. This naturally defines a hierarchy of k-planarity and a hierarchy of k-
quasi planarity. Also, the class of 2-quasi planar graphs coincides with that of
planar graphs. Note that, in the literature, 3-quasi planar graphs are also called
quasi planar.

The k-planarity and k-quasi planarity hierarchies have been widely explored
in graph theory, graph drawing, and computational geometry, mostly in terms
of edge density. Pach and Tóth [33] proved that a k-planar simple topological
graph with n vertices has at most 1.408

√
kn edges. We recall that a topological

graph is simple if any two edges cross in at most one point and no two adjacent
edges cross. For k ≤ 4, Pach and Tóth [33] also established a finer bound of
(k + 3)(n− 2) on the edge density, and prove its tightness for k ≤ 2. For k = 3,
the best known upper bound on the edge density is 5.5n− 11, which is tight up
to an additive constant [6,30].
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Concerning k-quasi planar graphs, a 20-year-old conjecture by Pach, Shahrokhi,
and Szegedy [32] asserts that, for every fixed k, the maximum number of edges
in a k-quasi planar graph with n vertices is O(n). However, linear upper bounds
have been proven only for k ≤ 4. Agarwal et al. [3] were the first to prove that
3-quasi planar simple topological graphs have a linear number of edges. This was
generalized by Pach et al. [31], who proved that all 3-quasi planar graphs on n
vertices have at most 65n edges. This bound was further improved to 8n−O(1)
by Ackerman and Tardos [2]. For 3-quasi planar simple topological graphs they
also proved a bound of 6.5n−20, which is tight up to an additive constant. Ack-
erman [1] also proved that 4-quasi planar graphs have at most a linear number of
edges. For k ≥ 5, several authors have shown super-linear upper bounds on the
edge density of k-quasi planar graphs (see, e.g., [13,19,20,32,41]). The most re-
cent results are due to Suk and Walczak [39], who proved that any k-quasi planar
simple topological graph on n vertices has at most ckn log n edges, where ck is a
number that depends only on k. For k-quasi planar topological graphs where two
edges can cross in at most t points, they give an upper bound of 2α(n)

c

n log n,
where α(n) is the inverse of the Ackermann function, and c depends only on k
and t.

Despite the many papers mentioned above, the relationships between the
hierarchies of k-planar and k-quasi planar graphs have not been studied yet
and only trivial results are known. For example, due to the tight bounds on
the edge density of 3-planar and 3-quasi planar simple graphs, it is immediate
to conclude that there are infinitely many 3-quasi planar graphs that are not
3-planar. Also, it can be easily observed that, for k ≥ 1, every k-planar graph is
(k+2)-quasi planar. Indeed, if a k-planar graph G were not (k+2)-quasi planar,
any topological graph isomorphic to G would contain k + 2 pairwise crossing
edges; but this would imply that any of these edges is crossed at least k + 1
times, thus contradicting the hypothesis that G is k-planar.

Contribution. In this paper we focus on simple topological graphs and prove
the first non-trivial inclusion relationship between the k-planarity and the k-
quasi planarity hierarchies. We show that every k-planar graph is (k + 1)-quasi
planar, for every k ≥ 3. In other words, we show that every k-planar simple
topological graph can be redrawn so to become a (k + 1)-quasi planar simple
topological graph (k ≥ 3). For example, the simple topological graph of Figure 1b
is 3-planar but not 4-quasi planar. The simple topological graph of Figure 1d,
on the other hand, is a 4-quasi planar graph obtained from the one of Figure 1b
by rerouting an edge (but it is no longer 3-planar).

The proof of our result is based on the following novel methods: (i) A gen-
eral purpose technique to “untangle” groups of mutually crossing edges. More
precisely, we show how to reroute the edges of a k-planar topological graph in
such a way that all vertices of a set of (k + 1) pairwise crossing edges lie in the
same connected region of the plane. (ii) A global edge rerouting technique, based
on a matching argument, used to remove all forbidden configurations of (k + 1)
pairwise crossing edges from a k-planar simple topological graph, provided that
these edges are “untangled”.
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(a) (b)

Fig. 2: (a) An untangled 3-crossing; all vertices belong to the same face of the
arrangement (the outer face). (b) A tangled 3-crossing; the circled vertices and
the solid vertices belong to distinct faces of the arrangement.

The remainder of the paper is structured as follows. In Section 2 we give
some basic terminology and observations that will be used throughout the paper.
Section 3 describes our general proof strategy. Section 4 and Section 5 provide
details about methods (i) and (ii), respectively. Conclusions and open problems
are in Section 6.

2 Preliminaries

We only consider graphs with neither parallel edges nor self-loops. Also, we will
assume our graphs to be connected, as our results immediately carry over to
disconnected graphs. A topological graph G is a graph drawn in the plane with
vertices represented by points and edges represented by Jordan arcs connecting
the corresponding endpoints. In notation and terminology, we do not distinguish
between the vertices and edges of a graph, and the points and arcs representing
them, respectively. Two edges cross if they share one interior point and alternate
around this point. Graph G is almost simple if any two edges cross at most once.
Graph G is simple if it is almost simple and no two adjacent edges cross each
other. Graph G divides the plane into topologically connected regions, called
faces. The unbounded region is the outer face. Note that the boundary of a face
can contain vertices of the graph and crossing points between edges.

If G and G′ are two isomorphic graphs, we write G ' G′. A graph G′ is
k-planar (k-quasi planar) if there exists a k-planar (k-quasi planar) topological
graph G ' G′.

Given a subgraph X of a graph G, the arrangement of X, denoted by AX , is
the arrangement of the curves corresponding to the edges of X. We denote the
vertices and edges of X by V (X) and E(X), respectively. A node of AX is either
a vertex or a crossing point of X. A segment of AX is a part of an edge of X that
connects two nodes, i.e., a maximal uncrossed part of an edge of X. A fan is a
set of edges that share a common endpoint. A set of k vertex-disjoint mutually
crossing edges in a topological graph G is called a k-crossing. A k-crossing X
is untangled if in the arrangement AX of X all nodes corresponding to vertices
in V (X) are incident to a common face. Otherwise, it is tangled. For example,

4
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Fig. 3: The rerouting operation for dissolving untangled (k+1)-crossings. (a) An
untangled (k+1)-crossing X. (b) The rerouting of the dashed edge (u, v) around
the marked vertex w. The arrangement A′X is thin red, the removed nodes and
segments are gray. Note that the dashed curve is part of A′X .

the 3-crossing in Figure 2a is untangled, whereas the 3-crossing in Figure 2b is
tangled. We observe the following.

Observation 1 Let G = (V,E) be a k-planar simple topological graph and let
X be a (k + 1)-crossing in G. An edge in E(X) cannot be crossed by any other
edge in E \ E(X). In particular, for any two (k + 1)-crossings X 6= Y in G,
E(X) ∩ E(Y ) = ∅ holds.

Proof. Each edge e in a (k+ 1)-crossing X crosses each of the remaining k edges
in E(X). Since graph G is k-planar, edge e is not crossed by any other edge in
E \ E(X). ut

3 Edge Rerouting Operations and Proof Strategy

We introduce an edge rerouting operation that will be a basic tool for our proof
strategy. Let G be a k-planar simple topological graph and consider an untangled
(k + 1)-crossing X in G. Without loss of generality, the vertices in V (X) lie in
the outer face of AX .

Let e = {u, v} ∈ E(X) and let w ∈ V (X) \ {u, v}. Denote by A′X the
arrangement obtained from AX by removing all nodes corresponding to vertices
in V (X)\{u, v, w}, together with their incident segments, and by removing edge
(u, v). The operation of rerouting e = {u, v} around w consists of redrawing e
sufficiently close to the boundary of the outer face of A′X , choosing the routing
that passes close to w, in such a way that e crosses the fan incident to w, but
not any other edge in E \E(X). See Figure 3b for an illustration. More precisely,
let D be a topological disk that encloses all crossing points of X and such that
each edge in E(X) crosses the boundary of D exactly twice. Then, the rerouted
edge keeps unchanged the parts of e that go from u to the boundary of D and
from v to the boundary of D. We call the unchanged parts of a rerouted edge
its tips and the remaining part, which routes around w, its hook.
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Lemma 1. Let G be a k-planar simple topological graph and let X be an untan-
gled (k + 1)-crossing in G. Let G′ ' G be the topological graph obtained from G
by rerouting an edge e = {u, v} ∈ E(X) around a vertex w ∈ V (X) \ {u, v}. Let
d be the edge of E(X) incident to w. G′ has the following properties: (i) Edges e
and d do not cross; (ii) The edges that are crossed by e in G′ but not in G form
a fan at w; (iii) G′ is almost simple.

Proof. Conditions (i) and (ii) immediately follow from the definition of the
rerouting operation and from the fact that edge e can be drawn arbitrarily close
to the boundary of the outer face of A′X . Since G is simple, in order to prove that
G′ is almost simple, we only need to show that edge e does not cross any other
edge more than once. The only part of e that is drawn in G′ differently than in
G is the one between the intersection points of e and the boundary B(D) of the
topological disk D that (a) encloses all crossing points of X and such that (b)
each edge in E(X) crosses the boundary of D exactly twice. By (b) and by the
definition of the rerouting operation, the two crossing points between an edge
e′ ∈ E(X) and B(D) alternate with the two crossing points between any edge
e′ 6= e′′ ∈ E(X) and B(D) along B(D). Hence, by redrawing edge e sufficiently
close to any of the two parts of B(D) between the two intersection points of edge
e and B(D), we encounter each edge in E(X) \ {e} exactly once. Thus, edge e
crosses all the edges in E(X) \ {e, d} exactly once. This concludes the proof. ut

Lemma 1 does not guarantee that graph G′ is simple. Indeed, if the edge
(u,w) or the edge (v, w) existed in G, then the rerouted edge e = (u, v) would
cross such an edge. We will show in Section 5 how to fix this problem by redraw-
ing (u,w) and (v, w).

We are now ready to describe our general strategy for transforming a k-
planar simple topological graph G into a simple topological graph G′ ' G that
is (k + 1)-quasi planar. The idea is to pick from each (k + 1)-crossing X in G
an edge eX and a vertex wX not adjacent to eX , and to apply the rerouting
operation simultaneously for all pairs (eX , wX), i.e., rerouting eX around wX .
This operation, which we call global rerouting, is well-defined since the (k + 1)-
crossings are pairwise edge-disjoint by Observation 1.

There are however several constraints that have to be satisfied in order for
such a global rerouting to have the desired effect. First of all, as mentioned
above, the rerouting operation can only be applied to untangled (k+1)-crossings.
Thus, as a first step, we will show that, in a k-planar simple topological graph,
all tangled (k + 1)-crossings can be removed, leaving the resulting graph simple
and k-planar. More precisely, given a tangled (k + 1)-crossing X, it is possible
to redraw the whole graph such that either at least two edges of X do not cross
or X becomes an untangled (k + 1)-crossing, and, further, any two edges cross
only if they crossed before the redrawing. The technical details for this operation
are described in Section 4. Notice that, even assuming that all (k + 1)-crossings
are untangled, there are further problems that can occur when performing all
the rerouting operations independently of each other. Specifically, the resulting
topological graph G′ may be non-simple and/or the rerouting may create new
(k + 1)-crossings. We explain how to overcome these issues in Section 5.
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Fig. 4: Illustration of the untangling procedure in the proof of Lemma 2: (a) A
3-planar simple topological graph with a 4-crossing X (thicker edges). (b) The
topological graph resulting from the procedure that untangles X.

4 Removing Tangled (k + 1)-Crossings

The proof of the next lemma describes a technique to “untangle” all (k + 1)-
crossings in a k-planar simple topological graph. This technique is of general
interest, as it gives more insights on the structure of k-planar simple topological
graphs.

Lemma 2. Let G be a k-planar simple topological graph. There exists a k-planar
simple topological graph G′ ' G without tangled (k + 1)-crossings.

Proof. We first show how to untangle a (k + 1)-crossing X in a k-planar simple
topological graph G by neither creating new (k + 1)-crossings nor introducing
new crossings.

Let X be a tangled (k+ 1)-crossing and let AX be its arrangement. For each
face f of AX , denote by Vf the subset of vertices of V (X) incident to f . Since
in X all vertices have degree 1, the sets Vf form a partition of V (X).

For each inner face f of AX , denote by Gf the subgraph of G consisting of
the vertices of Vf , and of the vertices and edges of G that lie in the interior of
f . Refer to Figure 4a for an illustration. Since G is k-planar and X is a (k+ 1)-
crossing, there exists no crossing between a segment in Gf and a segment not in
Gf . Therefore, the boundary of f corresponds to the boundary of a topological
disk Df such that Gf is k-planarly embedded inside Df : only the vertices of
Vf lie on the boundary of Df . For the external face h, graph Gh consists of
the vertices of Vh, and of the vertices and edges of G that lie outside AX . In
this case, the topological disk Dh is obtained after a suitable inversion of Gh,
if needed. We can rearrange and deform each Df such that: (i) the part of the
boundary of Df that contains all the vertices of Vf lies on a circle C; (ii) for
each face g 6= f of AX , disks Df and Dg do not intersect; (iii) the interior
of circle C is empty. Then, the k + 1 edges of X are redrawn as straight-line
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segments inside C. This construction implies that X is untangled (and some of
its edges may not cross anymore). Also, each subgraph Gf remains topologically
equivalent to its initial drawing. Thus, two edges cross after the transformation
only if they crossed before, which ensures that the resulting graph is simple and
no new (k + 1)-crossing is created.

We iteratively apply the above transformation to each subgraph Gf of the
new topological graph until all (k + 1)-crossings are untangled. This concludes
the proof. ut

An illustration of the untangling procedure described in the proof of Lemma 2
is given in Figure 4. Figure 4a shows an example of a 3-planar simple topological
graph G with a tangled 4-crossing X; the edges of X are thicker. Faces f , g,
and h are the three faces of AX whose union contains the vertices of V (X).
Subgraphs Gf , Gg, and Gh are schematically depicted. Figure 4b shows G after
the transformation that untangles X.

5 Removing Untangled (k + 1)-Crossings

Let G be a k-planar simple topological graph with k ≥ 3. By Lemma 2, we may
assume that G has no tangled (k + 1)-crossings. In Section 5.1, we show how to
transform G into a (possibly not almost simple) (k + 1)-quasi planar topological
graph G′ ' G. Then, in Section 5.2, we describe how to make G′ simple without
introducing (k + 1)-crossings.

5.1 Obtaining (k + 1)-quasi planarity

We first show the existence of a global rerouting such that no two edges of G
are rerouted around the same vertex (Lemma 5). Note that this is a necessary
condition for almost simplicity; see Figure 5a. Then, we show that any global
rerouting of G with this property yields a topological graph G′ with no (k+ 1)-
crossings (Lemma 9).

The existence of this global rerouting is proved by defining a bipartite graph
composed of the vertices of G and of its (k+1)-crossings, and by showing that a
matching covering all the (k+ 1)-crossings always exists. A bipartite graph with
vertex sets A and B is denoted by H = (A∪B,E ⊆ A×B). A matching from A
into B is a set M ⊆ E such that each vertex in A is incident to exactly one edge
in M and each vertex in B is incident to at most one edge in M . For a subset
A′ ⊆ A, we denote by N(A′) the set of all vertices in B that are adjacent to a
vertex in A′. We recall that, by Hall’s theorem, graph H has a matching from A
into B if and only if, for each set A′ ⊆ A, it is |N(A′)| ≥ |A′|. Let G be a k-planar
simple topological graph and let S be the set of (k+1)-crossings of G. We define
a bipartite graph H = (A ∪ B,E) as follows. For each (k + 1)-crossing X ∈ S,
set A contains a vertex v(X) and set B contains the endpoints of E(X) (that
is, B =

⋃
X∈S V (X)). Also, set E contains an edge between a vertex v(X) ∈ A

and a vertex v ∈ B if and only if v ∈ V (X). We have the following.

8



Lemma 3. Graph H = (A∪B,E) is a simple bipartite planar graph. Also, each
vertex in A has degree 2k + 2.

Proof. The graph is simple and bipartite, by construction. Also, for each (k+1)-
crossing X, vertex v(X) ∈ A is incident to the 2k + 2 vertices in B belonging
to V (X).

We prove that H is also planar by showing that a planar embedding of H
can be obtained from G as follows. First, we remove from G all the vertices and
edges that are not in any (k+1)-crossing. Then, for each (k+1)-crossing X of G,
we remove the portion of G in the interior of a topological disk D that encloses
all crossing points of X and such that each edge in E(X) crosses the boundary of
D exactly twice (as defined in Section 3) and add vertex v(X) inside D. Finally,
for each vertex v in V (X), let ev be the edge in X incident to v and let pv be
the intersection point between D and ev in G. We complete the drawing of edge
(v(X), v) by adding a curve between v(X) and pv in the interior of D without
introducing any crossings. The resulting topological graph is planar. ut

Lemma 4. Graph H has a matching from A into B.

Proof. Let A′ ⊆ A and let H ′ be the subgraph of H induced by A′ ∪ N(A′).
Since the vertices in A have degree 2k + 2, by Lemma 3, we have |E(H ′)| =
(2k + 2)|A′|. Also, since H (and thus H ′) is bipartite planar, by Lemma 3, we
have |E(H ′)| ≤ 2(|A′|+N(A′))−4. Thus, |N(A′)| ≥ k|A′|+ 2 > |A′|, and Hall’s
theorem applies. ut

Lemma 5. Let G be a k-planar simple topological graph. It is possible to execute
a global rerouting on G such that no two edges are rerouted around the same
vertex.

Proof. Let S = {X1, X2, . . . , Xh}, with h > 0, be the set of (k + 1)-crossings of
G. By Lemma 4, it is possible to assign a vertex vi ∈ V (Xi) to each (k + 1)-
crossing Xi in such a way that no two distinct (k+ 1)-crossings are assigned the
same vertex. The statement follows by considering a global rerouting such that,
for each (k+1)-crossing Xi, any edge in Xi not incident to vi is rerouted around
vi. ut

Denote by G′ the topological graph obtained from G by executing a global
rerouting as in Lemma 5. We prove that G′ has no (k + 1)-crossings. To this
aim, we first give the conditions under which new (k+ 1)-crossings may arise in
G′ (Lemmas 6–8).

Lemma 6. Let e and d be two edges that cross in G′ but not in G. Then, one
of e and d has been rerouted around an endpoint of the other.

Proof. Since e and d do not cross in G, we may assume that one of them, say e,
has been rerouted. Suppose first that the hook of e crosses d. We claim that e
has been rerouted around an endpoint of d. In fact, if d has not been rerouted,
then the claim is trivially true; see Figure 5b. On the other hand, if d has been

9
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Fig. 5: (a) Two edges rerouted around the same vertex. (b)–(c) Different cases of
edges that do not cross before a global rerouting operation but cross afterwards.
The vertices used for rerouting are filled green. (d) A 3-crossing arising from
redrawing three edges.

rerouted, then the crossing with e must be on a tip of d, and not on its hook,
since no two edges have been rerouted around the same vertex in the global
rerouting; see Figure 5c. Thus, the claim follows. Suppose now that a tip of e
crosses d. Then, this crossing must be with the hook of d, and the same argument
applies to prove that d has been rerouted around an endpoint of e. ut

Lemma 7. Every non-rerouted edge e is crossed by at most three rerouted edges
in G′. Further, if e is crossed by exactly three rerouted edges, then two of them
have been rerouted around distinct endpoints of e.

Proof. Since at most one edge has been rerouted around each vertex, by con-
struction, it suffices to prove that there exists at most one rerouted edge crossing
e that has not been rerouted around an endpoint of e.

For this, note that any edge with this property crosses e also in G, by
Lemma 6, and thus it belongs to the same (k + 1)-crossing as e. Since, by con-
struction, only one edge per (k + 1)-crossing is rerouted, the statement follows.

ut

Lemma 8. If G′ contains a (k + 1)-crossing X ′, then X ′ contains at most one
edge that has not been rerouted.

Proof. Assume to the contrary that a (k+ 1)-crossing X ′ in G′ contains at least
two non-rerouted edges e and e′.

We first claim that there exists an edge d of E(X ′) that does not cross e in
G. If e has less than k crossings in G, then the claim trivially follows. If e has
k crossings in G but it is not part of a (k + 1)-crossing, then none of the edges
crossing e in G can be part of a (k + 1)-crossing in G, as otherwise they would
have k crossings in the (k+ 1)-crossing and an additional crossing with e. Thus,
the claim follows also in this case. Finally, if e is part of a (k+1)-crossing X in G,
the claim follows from the fact that the edges of X do not form a (k+1)-crossing
in G′, due to a rerouting of one of its edges.

Thus, edge d has been rerouted around an endpoint of e, by Lemma 6, which
means that d is part of a (k + 1)-crossing in G containing neither e nor e′.
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Hence, d and e′ do not cross in G. We prove that they do not cross in G′

either, a contradiction to the assumption that X ′ is a (k + 1)-crossing. Namely,
by Lemma 1, all new crossings of d with non-rerouted edges are on its hook;
however, since e and e′ cross in G (which is simple), they do not share any
endpoint, and the statement follows. ut

Altogether the above lemmas can be used to prove the following.

Lemma 9. Graph G′ does not contain any (k + 1)-crossing.

Proof. Assume for a contradiction that G′ contains a (k + 1)-crossing X ′. By
Lemma 8, X ′ contains at most one non-rerouted edge.

Suppose that X ′ contains one of such edges e. By Lemma 7, there are at
most three rerouted edges crossing e in G′. If they are less than 3, then the
claim follows, as k ≥ 3. If they are three, say d, h, l, then by Lemma 7, two of
them, say d and h, have been rerouted around (distinct) endpoints of e. Thus,
d and h do not cross in G, by Observation 1, as they belong to different (k+ 1)-
crossings. Hence, they can cross in G′ only if one of them has been rerouted
around an endpoint of the other, by Lemma 6. This is not possible since neither
d nor h share an endpoint with e, as G is simple.

Suppose that X ′ contains only rerouted edges. Let e be any edge of X ′ and
let w be the vertex used for rerouting e. Since at most one edge in X ′ can be
incident to w and since k ≥ 3, there are two edges d, h in X ′ that have been
rerouted around distinct endpoints of e. As in the previous case, we can prove
that d and h do not cross. ut

For k = 2, Lemma 9 does not hold, as some 3-crossings may still appear after
the global rerouting; see Figure 5d for an illustration and refer to Section 6 for
a discussion.

5.2 Obtaining simplicity

Lemmas 2, 5, and 9 imply that, for k ≥ 3, any k-planar simple topological graph
G can be redrawn such that the resulting topological graph G′ ' G contains no
(k+1)-crossings and no two edges are rerouted around the same vertex. However,
the graph G′ may be not simple, and even not almost simple. We first show how
to remove from G′ pairs of edges crossing more than once, without introducing
(k + 1)-crossings, thus resulting in a (k + 1)-quasi planar almost-simple graph
(Lemma 11). Then we show how to remove crossings between edges incident to
a common vertex, still without introducing (k + 1)-crossings (Lemma 12). We
will use the following auxiliary lemma.

Lemma 10. Graph G′ is almost-simple if and only if there is no pair of edges
such that each of them is rerouted around an endpoint of the other.

Proof. Clearly the condition is necessary for almost simplicity; see Figure 6a.
For the sufficiency, suppose that there exist two edges e and d crossing twice

in G′. By Lemma 6 and by the simplicity of G, at least one of them, say e,
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Fig. 6: (a) A double crossing between two edges e, d, due to a global rerouting.
(b) Solving the configuration in (a) by redrawing e. (c) Edges crossing e after
the transformation.

has been rerouted. By Lemma 1, this rerouting did not introduce two crossings
between e and d, if d has not been rerouted, since the rerouting of a single
edge leaves the graph almost simple. Thus, we may assume that also d has been
rerouted. This implies that e and d belong to different (k+ 1)-crossings of G; so,
they do not cross in G, by Observation 1. Hence, by Lemma 6, at least one of
them has been rerouted around an endpoint of the other, say e around d. This
introduces a single crossing between e and d, namely between the hook of e and
a tip of d. Thus, the other crossing must be between the hook of d and a tip
of e, again by Lemma 6 and by the fact that in G′ no two edges are rerouted
around the same vertex, and so there is no crossing between the hooks of two
edges. The statement follows. ut

Lemma 11. There is a (k + 1)-quasi planar almost simple topological graph
G∗ ' G′.

Proof. We may assume that G′ is not almost simple, as otherwise the statement
would follow with G∗ = G′. By Lemma 10, there exist pairs of edges in which
each of the two edges has been rerouted around an endpoint of the other; see
Figure 6a. For each pair e, d, we remove the two crossings by redrawing one of
the two edges, say e, by following d between the two crossings. More precisely,
we redraw the tip of e crossed by the hook of d by following the tip of d crossed
by the hook of e, without crossing it; see Figure 6b. In the following we prove
that the graph G∗ obtained by applying this operation for all the pairs does not
contain new (k + 1)-crossings and is almost simple.

Observe first that each edge tip is involved in at most one pair, since no two
edges are rerouted around the same vertex. Thus, no tip of an edge is transformed
twice in G∗ and no two transformed edges cross each other. Hence, if a (k + 1)-
crossing exists in G∗, then it contains exactly one transformed edge. We prove
that this is not the possible.

Let e be an edge that has been redrawn due to a double crossing with an
edge d, and let Xe and Xd be the (k + 1)-crossings of G containing e and d,
respectively. The edges crossing e in G∗ are (see Figure 6c): (i) a set X ′d of edges
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Fig. 7: (a), (c) Topological graphs that are not simple. (b), (d) Avoiding the
non-simplicity in (a) and (c) by redrawing one of the two edges.

in Xd crossing the tip of d that has been used to redraw e; (ii) a set X ′e of edges
in Xe crossing the tip of e not crossed by d; (iii) a set Ew of edges incident to
the vertex w around which e has been rerouted (and thus cross the hook of e).
Note that X ′d contains all the edges that cross e in G∗ and not in G′. These
edges do not cross those in X ′e, since they are non-rerouted edges belonging to
distinct (k + 1)-crossings of G. Also, they do not cross edges in Ew, since Xd

does not contain any edge incident to w, other than d. Finally, the edges in X ′d
are at most k− 1, since Xd contains k+ 1 edges and at least two of them do not
cross e, namely d and the edge incident to the endpoint of e around which d has
been rerouted. Thus, the edges in X ′d are not involved in any (k + 1)-crossing
with e. To see that the same holds for the edges in X ′e and in Ew, note that
any (k + 1)-crossing in G∗ involving these edges and e would also appear in G′,
which is however (k + 1)-quasi planar.

To prove that G∗ is almost simple, we show that the edges in X ′d are crossed
only once by e. Recall that none of these edges crosses e in G′. Also, since each
tip is involved in at most one transformation, all the edges in X ′d cross the tip of
d (and hence the tip of e that has been redrawn) only once. On the other hand,
it could be that also the other tip of e has been transformed by following the tip
of an edge h and that this transformation introduced a new crossing between
e and d′. But then d′ crosses both d and h in G′, and hence by Lemma 6 also
in G. This is however not possible, since both d and h have been rerouted, and
hence they belong to different (k + 1)-crossings in G. ut

Lemma 12. There is a (k + 1)-quasi planar simple topological graph G ' G∗.

Proof. We may assume that G∗ is not simple, as otherwise the statement would
follow with G = G∗. Let e = (u, v) and e′ = (u,w) be two crossing edges that
share an endpoint u. Since G is simple, at least one of them has been redrawn,
say e.

We distinguish two cases, based on whether (i) e has rerouted but not trans-
formed afterwards, or (ii) e has also been transformed, due to a double crossing.

In case (i), edge e crosses e′ with its hook, see Figure 7a. We redraw e′ by
following e till reaching u, as in Figure 7b. This guarantees that e and e′ no
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longer cross and that e′ does not cross any edge twice, since e′ crosses only edges
that cross the tip of e incident to v. Also, no (k + 1)-crossing is introduced.
Indeed, any new (k + 1)-crossing should contain e′, but then also e would be
part of this (k+ 1)-crossing, which is impossible since e and e′ do not cross and
G∗ does not contain (k + 1)-crossings.

In case (ii), let d be the edge that crosses e twice in G′; note that d has not
been transformed, see Figure 7c. Recall that, by Lemma 10, e and d have been
rerouted one around an endpoint of the other. Suppose that the endpoint of e
around which d has been rerouted is v, the case in which it is u can be treated
analogously. This implies that e′ crosses a tip of d, and therefore e′ and d are
part of a (k+1)-crossing in G, namely the one that caused the rerouting of d. We
redraw the part of e′ from u to its crossing point with e by following e, without
crossing it, and leave the rest of e′ unchanged, as in Figure 7d. This guarantees
that e and e′ do no cross any longer, and that any new crossing of e′ is with an
edge that also crosses e. As in case (i), this implies that e′ does not cross any
edge twice and that no new (k + 1)-crossing has been generated. ut

The next theorem summarizes the main result of the paper.

Theorem 2. Let G be a k-planar simple topological graph. Then, there exists a
(k + 1)-quasi planar simple topological graph G such that G ' G.

Proof. First recall that, by Lemma 2, we can assume that G does not contain any
tangled (k + 1)-crossing. We apply Lemma 5 to compute a global rerouting for
G in which no two edges are rerouted around the same vertex. By Lemma 9, the
resulting topological graph G′ ' G is (k + 1)-quasi planar. Also, by Lemma 11,
if G′ is not almost simple, then it is possible to redraw some of its edges in
such a way that the resulting topological graph G∗ ' G′ is almost simple and
remains (k + 1)-quasi planar. Finally, by Lemma 12, if G∗ is not simple, then it
can be made so, again by redrawing some of its edges, while maintaining (k+1)-
quasi-planarity. This concludes the proof that there exists a (k + 1)-quasi planar
simple topological graph G ' G. ut

6 Conclusions and Open Problems

We proved that, for any k ≥ 3, the family of k-planar graphs is included in the
family of (k + 1)-quasi planar graphs. This result represents the first non-trivial
relationship between the k-planar and the k-quasi planar graph hierarchies, and
contributes to the literature that studies the connection between different fami-
lies of beyond planar graphs (see, e.g. [8,9,11,18]). Several interesting problems
remain open. Among them:

– The main open question is whether 2-planar graphs are quasi planar. The
reason why our technique does not apply to the case of k = 2 is mainly due to
the possible existence of three rerouted edges that are pairwise crossing after
a global rerouting (as in Figure 5d). A conceivable approach to overcome this

14



issue is by matching more than one vertex to each (k+ 1)-crossing, in order
to execute a global rerouting that does not create forbidden configurations.
In fact, within the lines of Lemma 4, we proved that up to k vertices can be
reserved for each (k+ 1)-crossing. Nonetheless, it is not clear how to control
which vertices of a (k+ 1)-crossing are assigned to it in the matching, which
makes it difficult to exploit these extra vertices. Note that it was recently
proved that optimal 2-planar graphs are (3-)quasi planar [7]. We recall that
an n-vertex 2-planar graph is optimal if it has 4n− 8 edges.

– For k ≥ 3, one can also ask whether the family of k-planar graphs is included
in the family of k-quasi planar graphs. For k = 2 the answer is trivially
negative, as 2-quasi planar graphs coincide with the planar graphs. On the
other hand, optimal 3-planar graphs are known to be (3-)quasi planar [7].
We recall that an n-vertex 3-planar graph is optimal if it has 5.5n−11 edges.
For sufficiently large values of k, one can even investigate whether every k-
planar simple topological (sparse) graph G is f(k)-quasi planar, for some
function f(k) = o(k).

– One can study non-inclusion relationships between the k-planar and the k-
quasi planar graph hierarchies, other than those that are easily derivable
from the known edge density results. For example, for any given k > 3, can
we establish an integer function h(k) such that some h(k)-planar graph is
not k-quasi planar?
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