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Abstract

In the smart grid context, the identification
and prediction of building energy flexibility
is a challenging open question. In this paper,
we propose a hybrid approach to address this
problem. It combines sparse smart meters
with deep learning methods, e.g. Factored
Four-Way Conditional Restricted Boltzmann
Machines (FFW-CRBMs), to accurately pre-
dict and identify the energy flexibility of
buildings unequipped with smart meters,
starting from their aggregated energy values.
The proposed approach was validated on a
real database, namely the Reference Energy
Disaggregation Dataset.

1. Introduction

Unprecedented high volumes of data and information
are available in the smart grid context, with the up-
ward growth of the smart metering infrastructure.
This recently developed network enables two-way com-
munication between smart grid and individual energy
consumers (i.e., the customers), with emerging needs
to monitor, predict, schedule, learn and make decisions
regarding local energy consumption and production,
all in real-time. One possible way to detect build-
ing energy flexibility in real-time is by performing en-
ergy disaggregation (Zeifman & Roth, 2011). In this
paper (Mocanu et al., 2016), we propose an unified
framework which incorporates two novel deep learn-
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ing models, namely Factored Four-Way Conditional
Restricted Boltzmann Machines (FFW-CRBM) (Mo-
canu et al., 2015) and Disjunctive Factored Four-Way
Conditional Restricted Boltzmann Machines (DFFW-
CRBM) (Mocanu et al., 2017), to perform energy
disaggregation, flexibility identification and flexibility
prediction simultaneously.

2. The proposed method

Recently, it has been proven that it is possible in an
unified framework to perform both, classification and
prediction, by using deep learning techniques, such as
in (Mocanu et al., 2014; Mocanu et al., 2015; Mocanu
et al., 2017). Consequently, in the context of flexibil-
ity detection and prediction, we explore the general-
ization capabilities of Factored Four-Way Conditional
Restricted Boltzmann Machines (FFW-CRBM) (Mo-
canu et al., 2015) and Disjunctive Factored Four-Way
Conditional Restricted Boltzmann Machines (DFFW-
CRBM) (Mocanu et al., 2017). Both models, FFW-
CRBM and DFFW-CRBM, have shown to be suc-
cessful on outperforming state-of-the-art techniques in
both, classification (e.g. Support Vector Machines)
and prediction (e.g. Conditional Restricted Boltz-
mann Machines), on time series classification and pre-
diction in the context of human activity recognition,
3D trajectories estimation and so on. In Figure 1
a high level schematic overview of FFW-CRBM and
DFFW-CRBM functionalities is depicted, while for a
comprehensive discussion on their mathematical de-
tails the interested reader is referred to (Mocanu et al.,
2015; Mocanu et al., 2017). The full methodology to
perform energy disaggregation can be found in (Mo-
canu et al., 2016).

The full paper has been published in the proceedings of IEEE International Conference on Systems, Man, and
and Cybernetics (SMC 2016), Pages 003765-003769, DOI 10.1109/SMC.2016.7844820.
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Figure 1. Classification and prediction schemes for FFW-
CRBMs (DFFW-CRBM function in a similar manner). To
perform classification the value of each neuron from the
dotted blue area has to be fixed (i.e. present and history
layers) and to let the model to infer the values of the label
neurons. To perform prediction the value of each neuron
from the dotted red area has to be fixed (i.e. label and
history layers) and to let the model to infer the values of
the present neurons.

We assessed our proposed framework on the The
Reference Energy Disaggregation Dataset (REDD)
dataset (Kolter & Johnson, 2011). The results pre-
sented in Table 1 and 2 show that both models per-
formed very well obtaining a minimum prediction error
on the power consumption of 1.85% and a maximum
error of 9.36%, while for the time-of-use prediction the
minimum error reached was 1.77% in the case of the
electric heater and the maximum error obtained was
8.79% for the refrigerator.

3. Conclusion

In this paper, we proposed a novel IoT framework
to perform simultaneously and in real-time flexibil-
ity identification and prediction, by making use of
Factored Four Way Conditional Restricted Boltzmann
Machines and their Disjunctive version. The experi-
mental validation performed on a real-world database
shows that both models perform very well, reaching
a similar performance with state-of-the-art models on
flexibility identification, while having the advantage of
being capable to perform also flexibility prediction.
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Table 1. Results showing accuracy [%] and balanced accu-
racy (%] for FFW-CRBM and DFFW-CRBM, when clas-

sifying an appliance versus all data.

Appliance Method Accuracy [%] Balanced
accuracy [%]

refrigerator FFW-CRBM 86.23 90.05
DFFW-CRBM 83.10 91.27
dishwasher FFW-CRBM 97.42 80.21
DFFW-CRBM 97.26 87.06
washer dryer FFW-CRBM 98.83 99.03
DFFW-CRBM 99.06 92.16
electric heater FFW-CRBM 99.10 90.58
DFFW-CRBM 99.03 92.05

Table 2. Results

showing the NRMSE [%)] obtained to es-
timate the electrical demand and the time-of-use for four
building electrical sub-systems using FFW-CRBM and

DFFW-CRBM.

Appliance Method Power Time-of-use
NRMSE [%]  NRMSE [%]

refrigerator FFW-CRBM 9.36 8.79

DFFW-CRBM 9.27 8.71

dishwasher FFW-CRBM 5.49 5.89

DFFW-CRBM 5.41 5.87

washer dryer FFW-CRBM 2.70 2.43

DFFW-CRBM 2.59 2.44

electric heater FFW-CRBM 1.86 1.78

DFFW-CRBM 1.85 1.77

the TKI SG-BEMS project of Dutch Top Sector.
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