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We present a method to simulate two-dimensional scattering by dielectric objects embedded in a dielectric
layered medium with transverse magnetic polarization through a domain integral equation formulation.
A mixed spatial-spectral discretization is employed with both a spatial and a spectral representation along
the direction of the layer interfaces. In the spectral domain, a discretization on a path through the complex
plane is used on which the Green function is well behaved. To calculate the field-material interaction in
the spatial domain, an auxiliary field is employed similar to the Li factorization rules. Numerical results
show that this auxiliary-field formulation significantly improves the accuracy, compared to a formulation
that directly employs the electric field. © 2017 Optical Society of America

OCIS codes: (050.1755) Computational electromagnetic methods; (050.2770) Gratings; (130.2790) Guided waves.
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1. INTRODUCTION

The simulation of electromagnetic scattering from finitely sized
dielectric objects in a multilayered dielectric medium has sev-
eral important applications. Among these applications are
metrology for integrated-circuit production [1], metamaterials
[2], and elements on nanophotonic chips [3]. Fast and accu-
rate numerical methods are very important in these fields of
research.

In a preceding article [4], we proposed a method to calculate
the scattering from a two dimensional dielectric object illumi-
nated by a wave with transverse electric (TE) polarization in a
layered medium. We used a domain integral equation to solve
the scattering problem. There are two key ingredients to this
method. The first is the use of a Gabor frame as a discretization,
which ensures a fast and exact Fourier transform. The second
key ingredient is the use of a specially chosen path through the
complex plane in the spectral domain on which we discretize
the fields. On this path we are able to mitigate the poles and
branchcuts that are present in the Green function.

In this article we show that the same ingredients can also be
used for solving 2D scattering problems with Transverse Mag-
netic (TM) polarization. The challenge with TM polarization
is that the electric field is discontinuous wherever the contrast
function is discontinuous. After Lalanne and Granet discov-
ered a method to accurately calculate the TM-polarized scatter-

ing from an object [5, 6], Li put this into a rigorous framework
[7], which resulted in the so-called Li factorization rules. The
key point of these articles is that when two functions with dis-
continuities at the same spatial position are approximated by a
Fourier series, the product of the Fourier series does not con-
verge well. Lalanne [5] solves the issue by replacing the discon-
tinuous contrast operator by the inverse of a truncated inverse
contrast operator. Granet [6] avoids the multiplication of func-
tions with discontinuities at the same positions altogether by
a reformulation. The way Granet handles spatial discontinu-
ites can also be applied in the differential method formulation,
where a generalization to more arbitrary shapes in three dimen-
sions exists as the normal-vector field formulation [8, 9]. This
class of methods to handle spatial discontinuites is not unique
to each spectral method, they are applicable to many different
spectral methods such as the Rigorous Coupled-Wave Analy-
sis (RCWA) also known as the Fourier Modal Method [10, 11],
the periodic Volume Integral Method (pVIM) [12, 13] and the
Differential method [14].

We show that slow convergence of multiplications of func-
tions with discontinuities at the same positions is also an issue
when functions are represented by Gabor coefficients. How-
ever, following [6] we replace the electric field by an auxil-
iary field that is continuous. Multiplication of the discontinu-
ous contrast function with this continuous auxiliary field yields
a well-converging solution similar to the periodic case in [6].
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We use two validation cases to demonstrate that this spatial-
spectral approach yields accurate results.

2. FORMULATION

A. Problem description

Consider a two-dimensional dielectric object of finite size, de-
scribed in the x-z plane by its relative permittivity function
εr(x, z). This dielectric object is embedded in one layer of a
multilayered medium defined by N − 1 layers with dielectric
constants εrb,n in the region between zn and zn+1 and thickness
dn = zn+1 − zn. This is illustrated in Figure 1. Above the top
layer there is vacuum εrb,0 = 1 and below the lowest layer there
is a halfspace with relative permitivity εrb,N . We assume that
the dielectric object is completely embedded in layer i. We de-
fine the contrast function χ(x, z) by

χ(x, z) =
εr(x, z)

εrb,i
− 1, (1)

which is nonzero only on the object. The simulation domain
with bounds −W ≤ x ≤ W and zi ≤ zmin ≤ z ≤ zmax ≤ zi+1
contains the dielectric object completely.

Fig. 1. Scattering setup. A TM polarized field is incident on
a dielectric object located in layer i of a multilayered back-
ground medium.

We define the incoming field Ei as the field on the multilayer
medium in abscence of the scatterer. This field has transverse
magnetic (TM) polarization, i.e. its magnetic field Hi is directed
in the transverse y direction, so the Ei field lies in the x-z plane.
Since scattering will keep H pointing in the y direction, Ey = 0
everywhere, turning this problem into a two dimensional one.
When we define the total electric field E as the solution to this
scattering problem, the scattered field Es can be found from
Ei = E − Es.

B. The integral equation in the spatial domain

For ejωt time convention, the integral equation can be written
as the combination

Ei(x, z) =E(x, z)− Es(x, z) = E(x, z)−∫ W

−W
dx′

∫ zmax

zmin

dz′
k2

0
jωε0εrb,i

G(x, z|x′, z′) · J(x′, z′)

J(x, z) =jωε0εrb,iχ(x, z)E(x, z),

(2)

where the G denotes the rank-two Green-function tensor in x
and z, J = (Jx, Jz) defines the contrast current density and
k2

0 = ω2ε0µ0 defines the squared wavenumber in vacuum. With
the first of these equations we can compute the scattered field
from the contrast current density. The integrals of the integral
equation are in the form of a convolution with the Green ten-
sor. The second equation will be called the field-material inter-
action.

In the x direction, the calculation of the scattered field can
be handled most efficiently in the spectral domain, since there
we can exploit the x-directed translation symmetry in the lay-
ered background medium. In the z direction, perpendicular to
the layer interfaces, it is most convenient to work in the spatial
domain, since there is no translation symmetry. For the field-
material interaction we work in the spatial domain in both di-
rections.

In the next sections we will first discuss the Green function
operator (Section C). Then we describe how we discretize Eq. (2)
(Section D) and afterwards we will explain how we can accu-
rately compute the field material interaction (Section E).

C. The Green operator in the spectral domain

We use the Fourier transformation defined by

f (kx) = Fx[ f (x)](kx) =
∫ ∞

−∞
dx f (x)e−jkx x. (3)

In the spectral domain, we write functions with kx as an argu-
ment and in the spatial domain with argument x. The Fourier
transform of a function will be meant when the argument has
changed from x to kx and vice versa.

The Green operator can be written as a sum of two parts.
The first part, Gh, being the radiation into a homogeneous space
with background dielectric constant εrb,i. The second part being
the reflections at the layer interfaces. The scattered field due to
the homogeneous part of the Green function can be written as

Eh(kx, z) =
k2

0
jωε0εrb,i

∫ zmax

zmin

dz′ Gh(kx, z|z′) · J(kx, z), (4)

where the homogeneous Green function is given by

Gh(kx, z|z′) = −

 k2
0εrb,i − k2

x jkx∂z

jkx∂z k2
0εrb,i + ∂2

z

 e−γ|z−z′ |

2γk2
0

, (5)

with γ2 = k2
0 − k2

x. Note how we can identify a propagating part
e−γ|z−z′ | in Gh, that governs how the electric field propagates
over a distance |z − z′| in the z direction.

The second part of the Green operator adds the reflections,
originating from the layer interfaces, to the scattered electric
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field, i.e.

k2
0

jωε0εrb,i
(G ◦ J)(kx, z) = Es(kx, z) = Eh(kx, z)

+
(
Ru,u(kx) · Eh(kx, zmin) +Ru,d(kx) · Eh(kx, zmax)

)
e−γ(z−zmin)

+
(
Rd,d(kx) · Eh(kx, zmax) +Rd,u(kx) · Eh(kx, zmin)

)
e−γ(zmax−z).

(6)

Here the Rα,β denote the effective reflection coefficients, see
[15] Chapter 5, from the layers below and above layer i in-
cluding the offsets zmin − zi and zmax − zi+1. Here β = u/d
(up/down) denotes the z propagation direction of the wave
which generates the reflection and α denotes the direction in
which the reflection itself propagates [4].

D. Discretization and spectral path

For discreatization in the x-direction we employ the Gabor
frame as defined in [16] Chapter 8, with Gaussian window func-
tion

g(x) = 2
1
4 e

(
−π x2

X2

)
, (7)

where X defines the width of the window function. For bet-
ter convergence, rational oversampling by a factor 1/αβ is em-
ployed, with the Gabor frame defined by

gmn(x) = g(x − mαX)ejnβKx, (8)

where K = 2π/X, the spectral step. To calculate Gabor coef-
ficients, we use the dual frame found from the Moore-Penrose
inverse [16, 17]. More details on the use of Gabor frames as a
discretization for integral equations can be found in [4, 18].

Following the approach of [13, 19, 20], we use piecewise-
linear expansion functions in the z direction

Λn(z) =

{
1 − |z−n∆−zmin |

∆ if |z − n∆ − zmin| < ∆
0 if |z − n∆ − zmin| > ∆

. (9)

For the test functions we use Dirac delta functions at z = n∆ +
zmin. In [20] it is explained how the z′-intergral in Eq. (4) can be
computed efficiently.

In the x direction we use the Gabor frame as a basis and its
dual to test, as explained in [18]. There it is also explained that
in the spectral domain we do not represent functions on the real
axis, but instead on the path, τ ∈ R,

kx(τ) ∈


τ − jA if τ < −A
(1 + j)τ if − A ≤ τ < A
τ + jA if τ > A

. (10)

For A we choose a fixed value such that AW ≈ 3. When a
function f (x) is transformed to the spectral domain, it is split
up in fL(kx), fM(kx) and fR(kx), each corresponding to the sub-
sequent cases in Eq. (10). For fL(kx) and fR(kx) we use Ga-
bor frames to represent these functions and for the middle part
fM(kx) we use a Taylor series. Since A is small compared to the
total spectral range in which information is contained, the mid-
dle part contains little information and the Taylor series can be
truncated after a few terms.

E. The field-material interaction
The main difficulty encountered in the TM scattering problem
compared to the TE scattering problem is that the electric field
has discontinuities wherever the contrast function has discon-
tinuities. The electric field for TE scattering is continuous, so
there we do not encounter this problem.

For RCWA it was pointed out in [5–7] that the convergence
of a spatial-domain multiplication of two functions with a dis-
continuity at the same position is poor. In a spectral basis, such
as in RCWA, this spatial multiplication is represented in the
spectral domain by a convolution. When both functions have a
spatial discontinuity, their spectral convergence is poor and the
convergence of their convolution cannot be guaranteed. Wher-
ever the contrast function is discontinuous, the electric field
also has a discontinuous component, which leads to poor con-
vergence in the field-material interaction in Eq. (2).

Although we use the Gabor frame instead of a Fourier series
as a discretization, the same convergence problem comes into
play. A function f (x) represented by a set of Gabor coefficients
fmn can be written as

f (x) =
∞

∑
m=−∞

∞

∑
n=−∞

fmng(x − mαX)ejnβKx

=
∞

∑
m=−∞

f̊m(x)g(x − mαX),
(11)

with

f̊m(x) =
∞

∑
n=−∞

fmnejnβKx. (12)

Now f̊m(x) is the resulting periodic function of the Fourier se-
ries in n, so a Gabor-frame representation can be seen as a col-
lection in m of Fourier series in n. If f (x) is discontinuous, then
also (some of) the f̊m(x) are discontinuous. For a spatial multi-
plication, products with f̊m(x) are required and therefore again
poor convergence is obtained with the Gabor frame when both
functions have discontinuities at the same locations. In Figure
2 we illustrate this effect for a Heaviside stepfunction. We use
the tilde here to denote a truncated Gabor-approximation of a
function. Since the the Heaviside step function H(x) equals its
square: H(x) = H2(x), no noticable difference should be visi-
ble between the Gabor approximated H̃ and the Gabor approxi-

mated square ˜̃H ∗ H̃. Obviously, there is a significant difference
visible in Figure 2, hence the multiplication of discontinuous
functions represented by Gabor coefficients is not accurate. An
important difference is that the location of the step has shifted
to the right. When applied to the field-material interaction, this
would lead to a significantly smaller contrast current density
and therefore to inaccurate results. For a good approximation
these functions should overlap, since the same discretization is
used on both. Although this example is different from the ex-
ample used in [7], it is obvious that a significant error is made
in the multiplication of discontinuous functions.

A reformulation of the problem is possible such that only
one function is discontinuous [6, 12, 13, 21]. Let us consider
a rectangular scatterer that is aligned with the layer interfaces.
The electric-field component normal to a material interface is
discontinuous and the electric field parallel to the interface is
continuous. However, the electric flux density D = εrε0E nor-
mal to a material interface is continuous, whereas the electric
flux density parallel to the interface is discontinuous [22], Sec-
tion 1.5. According to the Li-rules [7], we should select the con-
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0.2

0.4
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0.8
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1.2

Fig. 2. Step functions approximated by Gabor coefficients trun-
cated to m ∈ −6, . . . , 6 and n ∈ −6, . . . , 6 in a Gabor frame
with X = 1 and α = β =

√
2/3. Solid line: a direct approxi-

mation of the step function. Dashed line: An approximation of
the square of the Gabor-represented step function, computed
by a truncated convolution.

tinuous components. Let us assume the scattering from a rect-
angular object aligned with the coordinates. The discontinuity
at the top and the bottom of the rectangle can be dealt with in
the spatial z discretization. However, at the left and right side of
the rectangle, Ex(x, z) is discontinuous along the x coordinate
and therefore the Li-rules are violated, so poor convergence can
be expected for these interfaces. Now Dx(x, z) and Ez(x, z) are
continuous at the sides of the of the rectangle

To address the problem of convergence we define the field
F(x, z) = x̂Dx(x, z)/ε0εrb,i + ẑEz(x, z). We can calculate the
electric field from F by

E = Lχ · F =

 1
1+χ 0

0 1

 · F (13)

and

J = Mχ · F =

 1 − 1
1+χ 0

0 χ

 · F. (14)

Following the notation in [12], we rewrite Eq. (2) in a single
equation as

Ei = Lχ · F +−k2
0G ◦ (Mχ · F). (15)

In the next section this formulation will be shown to converge
much better when we use Gabor frames in the x direction com-
pared to the case where the Li-rules have been ignored, i.e.
when we choose

Lχ = Id (16)

Mχ = χ Id, (17)

with Id the 2 × 2 identity matrix. We note that more general
objects can in principle be treated by using normal-vector fields
[8, 9, 23, 24].

3. RESULTS

A. Accuracy
We have validated the above outlined algorithm against the
JCMWave software package [25] for two different usecases. We
aimed for a relative accuracy of 10−3, since engineering param-
eters like the material properties are often determined with less
or similar precision for most practical applications. The simula-
tion parameters were chosen with this criterion in mind and op-
timized for speed. The first usecase, Figure 3(a), consists of two

(a)

(b)

Fig. 3. (a) The first use case consists of two blocks in a layered
medium. (b) A grating coupler consisting of grooves in a thin
high-contrast medium on top of a thick low-contrast layer.

blocks in a layered medium. This is a relatively low-contrast
case, since the difference in relative permitivity between the
background, εrb,1 = 3, and the blocks, with εr = 4, is small.

Figure 4 presents the real part of the scattered electric field
Es(x, z) for the geometry in Fig. 3 (a) excited by a plane wave
of unit amplitude. The first figure represents the x-directed
component of the electric field and the second figure shows
the z-directed component. For this simulation we used one
piecewise-linear basis function (Eq. (9)) per 2.5 nm in the z
direction. In the x direction a Gabor frame was chosen with
X = 250 nm in Eq. (7), α = β =

√
3/2 in Eq. (8), and index

m ∈ {−5, . . . , 5} and index n ∈ {−6, . . . , 6} in Eq. (8), totalling
143 Gabor coefficients in the x direction, equaling one coeffi-
cient per 15.7 nm on a simulation domain at some distance
around the object. We chose the discretization in both x- and
z-directions such that it contributed approximately the same er-
ror to the end result. Clearly, the Gabor coefficients in the x
direction are more efficient in accurately discretizing the prob-
lem than the piecewise-linear functions in the z direction. We
used 40% extra Gabor coefficients in the spectral domain for a
finer sampling of the auxiliary field in Eq. (4).

Figure 5 shows the error with respect to JCMWave for the
case in Figure 3 (a), in Figure (a) and (b) through the middle of
the blocks at z = 100 nm, and in (c) and (d) at z = 10 nm, just be-
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Fig. 4. The real part of (a) the scattered electric field in the x-
direction and (b) the electric field in the z-direction

low the upper interface. Results with the auxiliary field formu-
lation (Eq. (13) and Eq. (14)) and without the auxiliary field for-
mulation (Eq. (16) and Eq. (17)) are shown, so they can be com-
pared. In Figure 5 (a) we show the electric field Ex,V(x, 100nm)
from the JCMWave validation, Fx(x, 100nm)/(1+χ(x, 100nm))
from the presented algorithm with auxiliary field formulation,
and Ex(x, 100nm). It is clear that the accuracy found using the
auxiliary field formulation is much better, although we observe
some Gibbs ringing in the auxiliary field formulation as well in
Figure 5(b). The discontinuity of the dielectric object induces
the Gibbs phenomenon on the solution. Since this Gibbs error
has a very high frequency, it does not radiate very far away
from the blocks. For example, in scattering calculations this er-
ror does not contribute to the long-distance scattering. On the
blocks, the Gibbs phenomenon dominates the error, but at a dis-
tance the Gibbs ringing is attenuated, so only the error that re-
ally radiates dominates there. In Figures 5 (c) and (d) we have
plotted the electric field 10 nm below the upper layer. Here
the Gibss phenomenon does not play a role anymore and the
results obtained using the auxiliary field formulation (Eq. (13)
and Eq. (14)) have a relative accuracy better than 10−3. How-
ever, without the auxiliary-field formulation, the error is at least
two orders of magnitude larger.

The second usecase, Figure 3(b), was inspired by [3], where
several setups for grating couplers with TE polarization were
introduced. We have chosen the grating coupler geometry and
angle of incidence such that it couples TM waves efficiently into
the same multilayer medium. However, the geometry was not
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-4.×10-7 -2.×10-7 2.×10-7 4.×10-7
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Fig. 5. The electric field for the case in Figure 3 (a). In (a),(b) it
is Ex at z = 100 nm and in (c),(d) it is Ez at z = 10 nm. (a),(c)
show field strength. With old formulation we mean results ob-
tained without the auxiliary field formulation (Eq. (16) and
Eq. (17)), and with the new formulation the described algo-
rithm with auxiliary field formulation F is meant (Eq. (13) and
Eq. (14)). (b),(d) show the difference between simulation and
reference.
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optimized for optimal coupling to the same degree as in the
original article.

The electric field of the second testcase is presented in Fig-
ure 6 for excitation by a plane wave of unit amplitude. It
can be clearly seen that the incoming waves couple to a right-
travelling wave trapped within the 220 nm high-contrast layer.
Since the simulation domain can be limited to the grooves in the
multilayer medium, the simulation domain was chosen from
z = 0 tot z = 70 nm in 15 piecewise-linear expansion func-
tions, equalling one basis function per 4.6 nm. In the x direc-
tion a Gabor frame was chosen with X = 1550 nm in Eq. (7),
α = β =

√
3/2 in Eq. (8), and index m ∈ {−7, . . . , 7} and index

n ∈ {−40, . . . , 40} in Eq. (8), totalling 1215 Gabor coefficients
in the x direction, equalling one coefficient per 15.6 nm on a
simulation domain around the object.

These results were also validated using JCMWave. In Fig-
ure 6 (c), the difference between JCMWave and results obtained
with the present algorithm are shown. The results obtained
with the auxiliary field formulation (Eq. (13) and Eq. (14)) agree
well up to a level of 10−3, however, the iterative solver did not
converge to even 1 digit precision in 300 iterations for the for-
mulation without auxiliary field (Eq. (16) and Eq. (17)), whereas
the auxiliary field formulation converged in fewer than 25 it-
erations with BiCGStab(2) [26]. We calculated the error from
the field strengths at the lower side of the high-contrast layer
at z = 220nm to reduce the Gibbs ringing. From this we can
conclude that the amplitude of the wave coupled into the layer
agrees with the JCMWave results for the auxiliary field formu-
lation.

B. Computation time
To see how the computation time of our algorithm scales to a
finer discretization, we have refined both the discretization in
the x direction and the z direction, while keeping the discretiza-
tion in the other direction constant. Figure 7 shows that the
computation time scales as O(Nz) in the z-direction, with Nz
the number of piecewise-linear basis function in the z direction,
starting from the reference at Nz = 21 piecewise-linear func-
tions. The same figure also shows an O(Nx log Nx) dependence
with Nx corresponding to the range of n in the number of in-
cluded Gabor frame functions (Eq. (8)), starting from the refer-
ence Nx = 143 frame functions.

4. CONCLUSION

We have succesfully reformulated the two-dimensional TM
scattering problem for finitely sized dielectric scatterers in a di-
electric layered medium with a volume integral equation in a
mixed spatial and spectral basis in terms of a continuous auxil-
iary field F (Eq. (13) and Eq. (14)), which leads to a satisfactory
convergence. A formulation without such a continuous field
(Eq. (16) and Eq. (17)), which violates the Li-rules, shows much
poorer accuracy in one test case and in the other test case con-
vergence of the iterative solver was not reached.

We showed numerical evidence that the computation time
scales as O(Nx Nz log Nx) with respect to refinements in the dis-
cretization.

For two cases we have shown that the proposed algorithm,
that employs a discretization on a path through the complex
spectral plane, combined with a Gabor frame, can be used for
TM polarization.

This algorithm is capable of characterizing both the scatter-
ing from dielectric objects and the coupling of waves into a di-

- 1.5 - 1.0 - 0.5 0 0.5 1.0

(a)

0 0.5 1.0 1.5

(b)

-3 -2 -1 1 2
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-4

0.001

0.010

0.100

1

|E|

Electric

field

Absolute

error in

electric

field

(c)

Fig. 6. The x-directed scattered field Es
x(x, z) for an incoming

field of unit amplitude; (a) the real part, (b) the absolute value,
(c) top line: the |E| field at z = 220nm, bottom line: the abso-
lute difference with the JCMWave results.
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electric layer via a grating coupler.
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