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Abstract Commercial off-the-shelf programmable platforms for real-time systems
typically contain a cache to bridge the gap between the processor speed and main
memory speed. Because cache-related pre-emption delays (CRPD) can have a signif-
icant influence on the computation times of tasks, CRPD have been integrated in the
response time analysis for fixed-priority pre-emptive scheduling (FPPS). This paper
presents CRPD aware response-time analysis of sporadic tasks with arbitrary dead-
lines for fixed-priority pre-emption threshold scheduling (FPTS), generalizing earlier
work. The analysis is complemented by an optimal (pre-emption) threshold assign-
ment algorithm, assuming the priorities of tasks are given. We further improve upon
these results by presenting an algorithm that searches for a layout of tasks in memory
that makes a task set schedulable. The paper includes an extensive comparative eval-
uation of the schedulability ratios of FPPS and FPTS, taking CRPD into account. The
practical relevance of our work stems from FPTS support in AUTOSAR, a standard-
ized development model for the automotive industry. [(This paper forms an extended
version of Bril et al. (in Proceedings of 35th IEEE real-time systems symposium
(RTSS), 2014). The main extensions are described in Sect. 1.2.]
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1 Introduction

1.1 Background and motivation

For cost-effectiveness reasons, it is preferred to use commercial off-the-shelf (COTS)
programmable platforms for real-time embedded systems rather than dedicated,
application-domain specific platforms. These COTS platforms typically contain a
cache to bridge the gap between the processor speed and main memory speed and
to reduce the number of conflicts with other devices on the system bus. Unfortunately,
caches give rise to additional delays upon pre-emptions, because pre-emptions may
lead to cache flushes and reloads of blocks that are replaced. These cache-related pre-
emption delays (CRPDs) can significantly increase the computation times of tasks,
i.e., literature has reported inflated computation times of up to 50% (Pellizzoni and
Caccamo 2007. In order to account for the impact of the CRPD on the timeliness of
a task system, CRPD has therefore been integrated into the schedulability analysis of
tasks (Busquets-Mataix et al. 1996; Lee et al. 1998; Staschulat et al. 2005; Ramaprasad
and Mueller 2006; Altmeyer et al. 2012).

In real-time embedded systems, such as embedded vehicle control, fixed-priority
pre-emptive scheduling (FPPS) is widely used. The majority of the commercial real-
time operating systems (RTOSes) supports FPPS and makes use of corresponding
timing-analysis tools. FPPS is inherently fully pre-emptive, which causes at least two
types of pre-emption costs when using COTS hardware: spatial costs for saving and
restoring the context of all tasks in memory and contention delays such as CRPD
when cache blocks need to be reloaded. With FPPS these run-time overheads cannot
be resolved analytically. An important disadvantage of FPPS therefore remains that
arbitrary pre-emptions during execution may lead to inefficient memory use and high
run-time overheads (Gai et al. 2001; Ghattas and Dean 2007).

In order to overcome these inefficiencies, some RTOSmanufacturers were inclined
to use two static priorities per task (Carbone 2013; Wang and Saksena 1999): one base
priority is applied at task dispatching (sometimes also referred to as a task’s dispatching
priority) and a second priority is applied once a task is selected for execution until
its completion (referred to as a task’s pre-emption threshold). This scheme of fixed-
priority scheduling with pre-emptions thresholds (FPTS) has been shown to greatly
reduce the memory footprint of concurrent task systems (Gai et al. 2001) and reduce
the average case response times of tasks (Ghattas and Dean 2007). Currently, FPTS is
therefore already adopted by industry.

An important reason for the success of FPTS in industry is that pre-emption thresh-
olds can be applied to task systems even without making any changes to the tasks’
code. Pre-emption thresholds can be easily assigned to tasks at integration time. Such
support is specified by both the OSEK (OSE 2005) and AUTOSAR (AUT 2010)
operating-system standards in the form of internal resources. Strictly speaking, the
restriction inOSEKandAUTOSAR to assign atmost one internal resource to each task
must be lifted in order to fully implement and deploy FPTS.Many standards-compliant
RTOSes therefore go beyond the standard by implementing internal resources more
liberally than prescribed by their standard.
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To the best of our knowledge, however, the integration ofCRPD in the schedulability
analysis of FPTS has not been considered. The limited pre-emptive nature of FPTS
gives rise to specific challenges when integrating CRPD in the analysis, in particular
to prevent over-estimations of CRPD. For example, not all tasks contributing to the
worst-case response time of a task can actually pre-empt the execution of a job of
that task, unlike with FPPS, as illustrated by a non-pre-emptive task. Next, there is
no optimal (pre-emption) threshold assignment (OTA) algorithm available for FPTS
taking CRPD into account, not tomention an algorithm that minimizes CRPD. Finally,
existing comparisons between FPPS and FPTS, e.g. Buttazzo et al. (2013), do not
consider CRPD.

1.2 Contributions

This paper presents four main contributions. Firstly, it provides worst-case response-
time analysis of sporadic tasks with arbitrary deadlines for FPTS with CRPD,
generalizing the work in Altmeyer et al. (2012) from FPPS to FPTS and from con-
strained deadlines to arbitrary deadlines. Secondly, it provides and proves an OTA
algorithm for FPTS with CRPD. Thirdly, it presents a schedulable task-layout search
(STLS) algorithm that searches for a layout of tasks in memory that makes a task set
schedulable. The algorithm generalizes the one in Lunniss et al. (2012) from FPPS to
FPTS by exploring memory layouts and applying the OTA algorithm to them. In this
way, reloads of memory blocks into the cache result in minimal CRPD for the consid-
ered memory layout. Finally, this paper presents an extensive comparative evaluation
of the schedulability ratios of FPPS and FPTSwith and without CRPD. The evaluation
is based on three orthogonal dimensions, i.e. (i) the CRPD approach applied in the
analysis, (ii) the deadline type, being constrained, implicit, and arbitrary deadlines,
and (iii) thememory layout, and seven main experiments in which task-set parameters
and cache related parameters are varied. In addition, the effectiveness of the STLS
algorithm is evaluated.

1.2.1 Extended version

Compared to Bril et al. (2014), this extended version has the following two major
contributions. Firstly, it presents a generalized algorithm to improve the layout of
tasks in memory (Sect. 10). Secondly, it presents a major extension of the comparative
evaluation (Sect. 11). In particular, we added two orthogonal dimensions, i.e. the
CRPD approach and the deadline type, and two experiments, i.e. the evaluation of the
STLS algorithm (Sect. 11.2.2) and cache reuse (Sect. 11.4.3).

1.3 Outline

The remainder of this paper is organized as follows. Section 2 presents related work.
Section 3 presents our scheduling model for FPTS and CRPD. Section 4 recapitulates
analysis for FPTS without CRPD and analysis for FPPS with CRPD. Sections 5–8
present our response-time analysis for FPTS with CRPD [which revisits our analysis
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in Bril et al. (2014)]. The analysis is split into the following sections: Sect. 5 addresses
the main challenges, Sect. 6 focusses on pre-empting tasks, Sect. 7 on the pre-empted
tasks and Sect. 8 combines pre-empting and pre-empted tasks.

Next, Sect. 9 presents our Optimal Threshold Assignment (OTA) algorithm. Sec-
tion 10 presents our STLS algorithm which aims at further decreasing the CRPD by
improving the layout of the memory blocks of tasks. Section 11 evaluates the perfor-
mance of FPPS and FPTS in the presence of CRPD. Finally, Sect. 12 concludes this
paper. A complementary appendix contains all graphs of the comparative evaluation.

2 Related work

In this section, we first present an overview of scheduling schemes (including FPTS)
that may reduce the number of pre-emptions and their related costs in concurrent real-
time task systems. Secondly, we look at related works that investigated techniques for
dealing with CRPDs in pre-emptive systems.

2.1 Limited pre-emptive scheduling

Limited pre-emptive scheduling schemes received a lot of attention from academia
in the last decade. In particular, fixed-priority scheduling with deferred pre-emption
(FPDS) (Burns 1994; Bril et al. 2009; Davis and Bertogna 2012), also called co-
operative scheduling, and fixed-priority scheduling with pre-emption thresholds
(FPTS) (Wang and Saksena 1999; Saksena andWang 2000; Regehr 2002; Keskin et al.
2010) are considered viable alternatives between the extremes of fully pre-emptive and
non-pre-emptive scheduling. Compared to fully pre-emptive scheduling, limited pre-
emptive schemes can (i) reduce memory requirements (Saksena and Wang 2000; Gai
et al. 2001; Davis et al. 2000) and (ii) reduce the cost of arbitrary pre-emptions (Burns
1994; Bril et al. 2009; Bertogna et al. 2011b). In addition, compared to both FPPS and
non-pre-emptive scheduling, these schemes may significantly improve the schedula-
bility of a task set (Bril et al. 2009; Saksena and Wang 2000; Bertogna et al. 2011a;
Davis and Bertogna 2012).

Assuming strictly periodic tasks with known phasing, a single non-pre-emptive
region (NPR) can significantly reduce the pre-emptions that can feasibly occur
(Ramaprasad and Mueller 2008). NPRs may be placed statically in the code of a
task (as they are with FPDS) or they may be floating. Baruah (2005) proposed the
use of sporadic tasks with floating NPRs. Floating NPRs were designed for earliest-
deadline-first (EDF) scheduling of tasks in order to retain schedulability with limited
pre-emptions. However, floating NPRs require specific operating-system support, as
investigated byBaldovin et al. (2013), and they could lead to pre-emptions by all higher
priority tasks at arbitrary points in the code (Yao et al. 2009). These pre-emptions
may incur highly fluctuating CRPDs, which are non-monotonic in the length of the
NPR (Marinho et al. 2012), and CRPDs are therefore hard to analyze. With fixed-
priority scheduling, FPDS shows more schedulability improvements with its statically
placed NPRs compared to task models with floating NPRs, even when pre-emption
costs are ignored (Buttazzo et al. 2013).
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Although FPDS also outperforms FPTS from a theoretical perspective (Buttazzo et
al. 2013), applying FPDS in practice is still a challenge, because pre-emption points
have to be explicitly added in the code. Bertogna et al. (2011b) presented a model
based on constant pre-emption costs in order to place pre-emption points in the tasks’
code appropriately. Recently, Cavicchio et al. (2015) have further extended this work
by placing pre-emption points after computing and optimizing the CRPDs of a task.
However, these works assume a linear flow of the code blocks of tasks. In our current
work on FPTS we refrain from any assumption on the structure of the tasks’ code.

2.2 Cache-related pre-emption delays (CRPDs)

There are different techniques to deal with CRPDs. If the total number of memory
blocks of the tasks in a system exceeds the cache size, then this may obviously lead
to CRPDs due to reloads of blocks from memory to the cache. However, even if all
memory blocks fit in the cache simultaneously, there are scenarios in which some
memory blocks that are occupied by the tasks may be mapped to the same cache
block. Since the mapping of memory to cache is often statically prescribed by the
hardware (Patterson and Hennessy 2014), a proper memory layout of the tasks is
important even when the total number of occupied memory blocks fits into the cache.
Gebhard and Altmeyer (2007) and Lunniss et al. (2012) therefore tried to optimize
the CRPDs by changing the layout of tasks in memory, subject to a static mapping
of memory blocks to cache blocks. In our paper, we build upon the earlier work for
FPPS by Lunniss et al. (2012) and we generalize their approach to FPTS.

The resulting optimization procedures have complex underlying models for the
mapping of memory to cache and their usage by the tasks. These models are unneces-
sary if one could avoid the eviction of cache blocks by other tasks. For this purpose,
cache locking and cache partitioning techniques have been devised. Using cache lock-
ing, the eviction of cache blocks is restricted once a cache block has been loaded. This
restriction can either be for the duration of the system, resulting in a static locking
scheme (Campoy et al. 2001, 2005; Puaut and Decotigny 2002; Liu et al. 2012), or
for specific intervals of time, such as the duration of a code-fragment or until a pre-
emption occurs, resulting in a dynamic locking scheme (Campoy et al. 2002; Arnaud
and Puaut 2006; Liu et al. 2012). Moreover, cache-locking can either be global, where
each task “owns” a specific part of the cache, or local, where each task can use the
entire cache, but the cache is reloaded each time a pre-emption occurs. Although static
and dynamic cache locking schemes are incomparable in general, the dynamic scheme
typically performs better than the static scheme, in particular when the cache is rela-
tively small compared to the size of the code (Campoy et al. 2003; Liu et al. 2012).
The reloading costs for dynamic schemes give rise to pessimistic results, however.
Using cache partitioning, each tasks “owns” a specific part of the cache, like global
cache-locking. Unlike cache locking, self-evictions of cache blocks by tasks are not
restricted or prevented. Cache partitioning (or cache locking) may be implemented by
means of hardware support (Kirk 1989) or by means of software support (Puaut and
Decotigny 2002). Altmeyer et al. (2014) showed that cache partitioning may slightly
improve the performance of simple, short control tasks of which the pre-emption costs
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are relatively high compared to the computation times. However, they observed that
the advantage of cache partitioning is often negligible when the memory layout of
tasks is improved, so that memory blocks are loaded in the cache with less overlap.
Moreover, cache partitioning is not very suitable for tasks with lower locality of mem-
ory accesses and higher amounts of computation, i.e. when the pre-emption costs are
small compared to the computation times.

Wang et al. (2015) extended the applicability of cache partitioning to larger task
sets with the help of FPTS. They created mutual non-pre-emptive task groups, so
that tasks of the same group can together use a larger cache partition. However, we
expect that the scalability of their approach is limited, because for large task sets, with
lower locality of memory accesses and higher amounts of computation, FPTS will
suffer from the same drawbacks as FPPS. The elimination of CRPDs between tasks
may then not compensate for the performance degradation in the computation times
of tasks. In the current paper, we therefore follow the line of reasoning by Altmeyer
et al. (2014) and we complement our assignment of pre-emption thresholds with an
algorithm for improving the memory layout of tasks.

The CRPDs of tasks can be analysed based on the concepts of evicting cache blocks
(ECBs) and useful cache blocks (UCBs) (Lee et al. 1998; Altmeyer and Maiza 2011).
A cache block that may be accessed by a task is termed an ECB, as it may overwrite the
content of that cache block. A cache block that may be (re-) used at multiple program
points without being evicted by the task itself is termed a UCB. The set of UCBs and
ECBs of tasks can be analyzed with, for example, a prototype version of AbsInt’s aiT
Timing Analyzer for ARM (Ferdinand and Heckmann 2004). This type of analysis
using ECBs and UCBs applies to direct-mapped caches with a write-through policy
and to set-associative caches with a least-recently used (LRU) replacement policy and
awrite-through policy (Altmeyer et al. 2012). The concepts of ECBs andUCBs cannot
be applied to set-associative caches with a first-in-first-out (FIFO) or a pseudo-LRU
(PLRU) replacement policy, as shown in Burguière et al. (2009).

The integration of CRPD in the schedulability analysis of tasks has been addressed
for FPPS with a focus on the pre-empting tasks (Busquets-Mataix et al. 1996;
Tomiyama and Dutt 2000), the pre-empted tasks (Lee et al. 1998), and by considering
both the pre-empting and pre-empted tasks (Staschulat et al. 2005; Tan and Mooney
2007; Altmeyer et al. 2012). Figure 1 gives an overview of the various approaches
and their relation. When focussing on the pre-empting tasks, only the ECBs of a task
τ j pre-empting another task τi are used to bound the CRPD of task τi , as exemplified
by the ECB-Only approach (Busquets-Mataix et al. 1996). When focussing on the
pre-empted tasks, only the UCBs of the tasks pre-empted by task τ j that can affect
the response time of task τi are used to bound the CRPD of task τi , as exemplified by
the UCB-Only approach (Lee et al. 1998) and the UCB-Only Multiset approach (Bril
et al. 2014). Finally, when considering both the pre-empting and pre-empted tasks
both the ECBs of the pre-empting tasks as well as the UCBs of the pre-empted tasks
are used. Following the work of Staschulat et al. (2005), other approaches that further
tighten the CRPDs by combining the analysis of pre-empted and pre-empting tasks are
the UCB-Union approach by Tan and Mooney (2007) and the ECB-Union approach,
the UCB-Union Multiset and the ECB-Union Multiset approaches by Altmeyer et al.
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Fig. 1 Venn diagram showing
the relationship between the
different approaches for
computing CRPDs (as presented
by Altmeyer et al. 2012)

Combined

ECB
Only

UCB-Union

UCB
Only

ECB-Union

UCB-U. Mult. ECB-U. Mult.

(2012). In the current paper we extend the most effective approaches to FPTS, i.e., the
UCB/ECB-Union Multiset approaches.

3 Models and notation

This section presents the models and notation that we use throughout this paper. We
start with a basic, continuous scheduling model for FPPS, i.e., we assume time to be
taken from the real domain (R), similar to, e.g., Koymans (1990), Bril et al. (2009)
and Bertogna et al. (2011a). We subsequently refine this basic model for FPTS (Wang
and Saksena 1999). Next, we introduce a basic memory model and a model for cache-
related pre-emption costs. The section is concluded with remarks.

3.1 Basic model for FPPS

We assume a single processor and a set T of n independent sporadic tasks
τ1, τ2, . . . , τn , with unique priorities π1, π2, . . . , πn . At any moment in time, the pro-
cessor is used to execute the highest priority task that has work pending. For notational
convenience, we assume that (i) tasks are given in order of decreasing priorities, i.e.
τ1 has the highest and τn the lowest priority, and (ii) a higher priority is represented
by a higher value, i.e. π1 > π2 > . . . > πn . We use hp(π) (and lp(π)) to denote the
set of tasks with priorities higher than (lower than) π . Similarly, we use hep(π) (and
lep(π)) to denote the set of tasks with priorities higher (lower) than or equal to π .

Each task τi is characterized by a minimum inter-activation time Ti ∈ R
+, a worst-

case computation time Ci ∈ R
+, and a (relative) deadline Di ∈ R

+. We assume
that the constant pre-emption costs, such as context switches and pipeline flushes,
are subsumed into the worst-case computation times. We feature arbitrary deadlines,
i.e. the deadline Di may be smaller than, equal to, or larger than the period Ti . The
utilization Ui of task τi is given by Ci/Ti , and the utilization U of the set of tasks T
by

∑
1≤i≤n Ui . An activation of a task is also termed a job. The first job arrives at an

arbitrary time.
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Table 1 Notations for various
sets of indices of tasks

Classic notations for FPPS Additional notations for FPTS

hep(π)
def= {h|πh ≥ π} het(π)

def= {h|θh ≥ π}
lp(π)

def= {�|π > π�} lt(π)
def= {�|π > θ�}

hp(π)
def= {h|πh > π} b(i)

def= lp(πi ) \ lt(πi )
lep(π)

def= {�|π ≥ π�}

We also adopt standard basic assumptions (Liu and Layland 1973), i.e. tasks do
not suspend themselves and a job of a task does not start before its previous job is
completed.

For notational convenience, we introduce E j (t) = ⌈
t/Tj

⌉
and E∗

j (t) =
(
1 + ⌊

t/Tj
⌋)

to represent the maximum number of activations of τ j in an interval
[x, x + t) and [x, x + t], respectively, where both intervals have a length t .

3.2 Refined model for FPTS

In FPTS, each task τi has a pre-emption threshold θi , where π1 ≥ θi ≥ πi . When τi is
executing, it can only be pre-empted by tasks with a priority higher than θi . Note that
we have FPPS and FPNS as special cases when ∀1≤i≤nθi = πi and ∀1≤i≤nθi = π1,
respectively.

We use het(π) (and lt(π)) to denote the set of tasks with thresholds higher than or
equal to (lower than) π . Finally, we use b(i) to denote the set of tasks that may block
τi due to their pre-emption threshold assignment. An overview of notations for sets
of tasks is given in Table 1. Note that for FPPS hep(π) = het(π), lp(π) = lt(π), and
b(i) = ∅.

3.3 A memory model

We consider two types of memory, (main) memory and cache (memory). Memory and
cache are assumed to contain (memory) blocks of a fixed size, where memory contains
NM blocks and cache NC blocks, and typically NM � NC.Memory blocks and cache
blocks are numbered from 0 until NM −1 and from 0 to NC −1, respectively. Similar
to Altmeyer et al. (2012), we assume direct-mapped caches (Patterson and Hennessy
2014), i.e. a memory block is mapped to exactly one cache block, with a write-through
policy. A typical mapping scheme MapM2C for direct-mapped caches and systems
without virtual memory is that memory block m is mapped to cache block

MapM2C(m) = m mod NC. (1)

The worst-case block-reload time (BRT) is assumed to be a constant that upper bounds
the time to load a block from main memory to cache. The set of memory blocks of
task τi is denoted by MBi . This set contains natural numbers and each number refers
to a certain memory block.
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The cache utilization of a task τi is given by UC
i = |MBi |/NC, where |MBi |

denotes the cardinality of the set MBi . The cache utilization of an individual task can
therefore be larger than one, i.e. when |MBi | > NC. The cache utilization UC of the
set of tasks T is given by UC = ∑

1≤i≤n U
C
i .

The set of cache blocks of task τi is determined by MBi and MapM2C.

3.4 A model for cache-related pre-emption costs

Similar to Altmeyer et al. (2012), we use also the concepts of evicting cache blocks
(ECBs) and useful cache blocks (UCBs) in order to analyze CRPDs. The ECBs of
a task τi are denoted by the set ECBi ; the UCBs of a task τi are denoted by the set
UCBi . Just like MBi , these sets are also represented as sets of natural numbers. By
definition, the set UCBi is a subset of the set ECBi , i.e. UCBi ⊆ ECBi . The set ECBi

is determined by
ECBi =

⋃

m∈MBi

MapM2C(m). (2)

Example 1 shows the relation between the ECBs of a task (ECBi ), the UCBs of a
task (UCBi ) and the BRT.

Example 1 We assume a direct-mapped cache with 4 cache blocks and two tasks τ1
and τ2. The memory blocks of τ1 map to cache blocks 0, 1 and 2. Only τ1’s memory
block mapping to cache block 1 is useful, i.e. ECB1 = {0, 1, 2} and UCB1 = {1}.
The memory blocks of τ2 map to cache blocks 1, 2, and 3 and all three are useful, i.e.
ECB2 = {1, 2, 3} and UCB2 = {1, 2, 3}. The cache-related pre-emption cost of task
τ1 pre-empting task τ2 is thus given as follows:

|ECB1 ∩ UCB2| · BRT = |{1, 2}| · BRT = 2 · BRT.

Whether or not all memory blocks of a task τi can be mapped on different cache
blocks depends on the memory size |MBi | of τi and the size NC of the cache. As
described in Altmeyer et al. (2014) andWang et al. (2015), the worst-case computation
time of a task depends on the size of the cache. Whereas the worst-case computation
Ci of task τi is fixed when |MBi | ≤ NC, it may increase when |MBi | becomes larger
than NC due to self-eviction, i.e. τi may evict some of its own cache blocks. In the
remainder, we will assume that the costs of self-evictions, which are also referred to
as intra-task CRPDs, are subsumed into the worst-case computation times.

3.5 Concluding remarks

The schedulability analyses presented in this paper (Sect. 5–8) assumes direct-mapped
caches with a write-through policy and applies to instruction, data, and unified caches.
The analysis only operate on the sets of UCBs and ECBs and are thus (i) independent
of the mappingMapM2C from memory blocks to cache blocks and (ii) applicable for
every cache size. Primarily for ease of evaluation, we will make simplifying assump-
tions forMapM2C, e.g. assume the typical mapping scheme as given by (1).
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4 Recap of response time analysis for FPPS and FPTS

This section starts with a recapitulation of the exact schedulability analysis for FPTS,
as presented in Keskin et al. (2010). Next, that analysis is specialized for FPPS with
constrained deadlines, i.e. for cases with Di ≤ Ti , and extendedwith CRPD (Altmeyer
et al. 2012).

4.1 FPTS with arbitrary deadlines (without CRPD)

A set T of tasks is schedulable if and only if for every task τi ∈ T its worst-case
response time Ri is at most equal to its deadline Di , i.e. ∀1≤i≤n Ri ≤ Di . To determine
Ri , we need to consider the worst-case response times of all jobs in a so-called level-i
active period (Bril et al. 2009). The worst-case length Li of that period is given by the
smallest positive solution of

Li = Bi +
∑

∀ j∈hep(πi )

E j (Li ) · C j , (3)

where Bi denotes the worst-case blocking of task τi , given by

Bi = max

(

0, max∀b∈b(i)Cb

)

. (4)

Li can be found by fixed point iteration that is guaranteed to terminate for all i when
U < 1 (Bril et al. 2009).

As mentioned above, when a task τi is executing, it can only be pre-empted by tasks
τ j with j ∈ hp(θi ). In the worst-case response time analysis, we therefore consider
both the start-time and the finishing time of a job of a task. For a job k of τi , with
0 ≤ k < Ei (Li ), the worst-case start time Si,k and worst-case finalization time Fi,k
are given by

Si,k =

⎧
⎪⎨

⎪⎩

Bi + kCi + ∑

∀ j∈hp(πi )

E j (Si,k) · C j if Bi > 0

kCi + ∑

∀ j∈hp(πi )

E∗
j (Si,k) · C j if Bi = 0

(5)

and

Fi,k = Si,k + Ci +

⎧
⎪⎨

⎪⎩

∑

∀ j∈hp(θi )
(
E j (Fi,k) − E j (Si,k)

) · C j if Bi > 0

∑

∀ j∈hp(θi )

(
E j (Fi,k) − E∗

j (Si,k)
)

· C j if Bi = 0
. (6)

Later in this paper we prove that (6) can be simplified by removing the case distinction,
because E j (Si,k) = E∗

j (Si,k) (see Corollary 1). Similar to Li , the values for Si,k and
Fi,k can be found by means of an iterative procedure.
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The worst-case response time Ri of task τi is now given by

Ri = max
0≤k<Ei (Li )

(
Fi,k − k · Ti

)
. (7)

4.2 FPPS with constrained deadlines and CRPD

FPPS is a special case of FPTS, and the analysis of FPTS can therefore be simplified for
FPPS. For FPPS with constrained deadlines without CRPD, the worst-case response
time Ri of task τi is given by the smallest positive solution (Joseph and Pandya 1986;
Audsley et al. 1991) of

Ri = Ci +
∑

∀ j∈hp(πi )

E j (Ri ) · C j . (8)

An upper bound for Ri with CRPD (Staschulat et al. 2005; Altmeyer et al. 2012) can
be found using

Ri = Ci +
∑

∀ j∈hp(πi )

(
E j (Ri ) · C j + γi, j (Ri )

)
, (9)

where γi, j (Ri ) represents the cache-related pre-emption cost due to all jobs of a higher
priority pre-empting task τ j executing within the worst-case response time of task τi .
The definition of γi, j (t) depends on the specific approach chosen for determining these
costs (Altmeyer et al. 2012).

As we observed before (see Sect. 2), the integration of CRPD in the schedulabil-
ity analysis of tasks has been addressed for FPPS with a focus on the pre-empting
tasks (Busquets-Mataix et al. 1996; 2000, the pre-empted tasks (Lee et al. 1998), and
by considering both the pre-empting and pre-empted tasks (Staschulat et al. 2005;
2007; Altmeyer et al. 2012). These techniques use different ways to bound the con-
tribution of the CRPD, γi, j (Ri ), in the response-time analysis of a task τi . Below, we
briefly recapitulate representative approaches that we will use to illustrate our analy-
sis for FPTS including CRPD in subsequent chapters; see Altmeyer et al. (2012) for
further explanations of these approaches.

4.2.1 Pre-empting tasks

TheECB-Only approach focusses on the pre-empting tasks, i.e. only theECBs of a task
τ j pre-empting task τi are used to bound the CRPD of task τi . For each pre-emption
of τ j , a cost BRT · |ECB j | is accounted. For this case, γi, j (t) is given by1

γ ecb-o
i, j (t) =

{
BRT · E j (t) · ∣

∣ECB j
∣
∣ if aff(πi , π j ) �= ∅

0 otherwise
, (10)

1 Strictly speaking, the condition aff(πi , π j ) �= ∅ in (10) can be removed, because γ ecb-o
i, j (t) is only applied

in a context where i ∈ lp(π j ). We inserted the condition to ease the comparison of FPPS (this section) and
FPTS (later on).
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where aff(πi , π j ) denote the set of tasks that have a priority (i) higher than or equal to
πi , i.e. can affect the response time of τi , and (ii) lower than π j , i.e. can be pre-empted
by τ j . For FPPS with constrained deadlines, the set of tasks aff(πi , π j ) affecting task
τi and affected by τ j is defined as

aff(πi , π j )
def= hep(πi ) ∩ lp(π j ). (11)

Applying the ECB-Only approach to Example 1 would yield a CRPD of BRT ·
|ECB1| = BRT · 3 rather than BRT · 2 for a pre-emption of task τ2 by task τ1, i.e. a
pessimistic result.

4.2.2 Pre-empted tasks

The UCB-Only Multiset approach focusses on the pre-empted tasks, i.e. only the
UCBs of the tasks pre-empted by task τ j that can affect the response time of task τi
are used to bound the CRPD of task τi . Although the maximum number of UCBs over
all tasks from aff(πi , π j ) can be used for every pre-emption of τ j to account for nested
pre-emptions (Lee et al. 1998), this may give rise to pessimism. This is due to the fact
that the task with the maximum number of UCBs cannot necessarily be pre-empted
up to E j (t) times. In particular, a task τh , with h ∈ aff(πi , π j ), affecting task τi and
affected by task τ j is activated at most Eh(t) in an interval of length t , and each of
those activations is pre-empted at most E j (Rh) times by task τ j . An upper bound for
the number of times task τ j can pre-empt τh in an interval of length t is therefore
given by E j (Rh) · Eh(t), which may be considerably smaller than E j (t). Therefore,
a multiset Mucb-o

i, j (t) is created containing E j (Rh) · Eh(t) copies of the size of UCBh

of each task τh , with h ∈ aff(πi , π j ), i.e.

Mucb-o
i, j (t)

def=
⋃

h∈aff(πi ,π j )

⎛

⎝
⋃

E j (Rh)·Eh(t)

∣
∣UCBh

∣
∣

⎞

⎠ . (12)

For this approach, γi, j (t) is subsequently defined as2

γ ucb-o
i, j (t)

def= BRT ·
E j (t)∑

�=1

sort
(
Mucb-o

i, j (t)
)

[�], (13)

2 Compared to (10) in Bril et al. (2014), Eq. (13) has been simplified. Because Mucb-o
i, j (t) contains the sizes

of sets of UCBs, i.e. non-negative values rather than arbitrary values or the sets themselves, applying the

closed operator “| · |” to sort
(
Mucb-o
i, j (t)

)
[�] is either redundant, i.e. when the operator is interpreted as

absolute value, or wrong, i.e. when interpreted as set-cardinality. The operator is therefore absent in (13).
This simplification also applies to equations that have been derived from (13), in particular (32), (34), and
(38). We observe that Eq. (13) for γ ecb-u

i, j (t) in Altmeyer et al. (2012) contains the same redundancy or
problem as (10) in Bril et al. (2014).
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where the function sort() sorts the values in the multiset Mucb-o
i, j (t) in non-increasing

order. Hence, the sum of the E j (t) largest sizes in the multiset Mucb-o
i, j (t) is taken and

multiplied by BRT.3

Applying the UCB-Only Multiset approach to Example 1 would yield a CRPD of
BRT · |UCB2| = BRT · 3 rather than BRT · 2 for a pre-emption of task τ2 by task τ1,
i.e. a pessimistic result.

4.2.3 Pre-empting and pre-empted tasks

The ECB-Union Multiset approach focusses on both the pre-empting and pre-empted
tasks. To account for nested pre-emptions, the union of all ECBs that may affect a
pre-empted task is computed, i.e.

⋃
g∈hep(π j )

ECBg . Although the maximum number
over all tasks from aff(πi , π j ) of the intersection of the UCBs and that union of ECBs
can be used for every pre-emption of τ j (Altmeyer et al. 2012), this may give rise to
pessimism for the same reason as for the UCB-Only Multiset approach. Therefore,
for each task τh with h ∈ aff(πi , π j ) the multiset Mecb-u

i, j (t) contains E j (Rh) · Eh(t)
copies of the size of the intersection of UCBh and the ECBs of all tasks in hep(π j ),
i.e.

Mecb-u
i, j (t)

def=
⋃

h∈aff(πi ,π j )

⎛

⎝
⋃

E j (Rh)·Eh(t)

∣
∣
∣
∣
∣
∣
UCBh ∩

⎛

⎝
⋃

g∈hep(π j )

ECBg

⎞

⎠

∣
∣
∣
∣
∣
∣

⎞

⎠ . (14)

Note that (14) extends (12) by intersecting every UCBh with
(⋃

g∈hep(π j )
ECBg

)
. The

definition of γi, j (t) for the ECB-Union Multiset approach is identical to the definition
in (13) for the UCB-Only Multiset approach, except that it uses Mecb-u

i, j (t) instead of

Mucb-o
i, j (t).
Applying the ECB-Union Multiset approach to Example 1 would yield a CRPD of

BRT · |UCB2 ∩ ECB1| = BRT · 2 for every pre-emption of task τ2 by task τ1.
The UCB-Union Multiset approach also focusses on both the pre-empting and pre-

empted tasks. To account for nested pre-emptions, the union of UCBs of all tasks
from aff(πi , π j ) can be computed and combined with the ECBs of the pre-empting

task τ j (Tan and Mooney 2007), i.e.
(⋃

h∈aff(πi ,π j )

)
UCBh ∩ ECB j . Because task τ j

cannot necessarily pre-empt any task τh (h ∈ aff(πi , π j )) up to E j (t) times, dedicated
multisets are constructed for the affected tasks and the pre-empting task to reduce
pessimism. To this end, a multiset Mucb

i, j (t) is formed containing E j (Rh) ·Eh(t) copies
of the UCBh of each task τh with h ∈ aff(πi , π j ), i.e.

3 This approach to reduce pessimism, i.e. taking the sum of a finite number of largest values from amultiset
rather than multiplying that number with the largest value, has also been applied for blocking in the context
of synchronization protocols in Behnam et al. (2010).
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Mucb
i, j (t)

def=
⋃

h∈aff(πi ,π j )

⎛

⎝
⋃

E j (Rh)·Eh(t)

UCBh

⎞

⎠ . (15)

Apart from the cardinality operator in (12), the Eqs. (12) and (15) are identical. Next
a multi-set Mecb

j (t) is formed containing E j (t) copies of the ECB j of task τ j , i.e.

Mecb
j (t)

def=
⋃

E j (t)

ECB j . (16)

The CRPD γ ucb-u
i, j (t) is then given by the size of the multi-set intersection of Mecb

j (t)

and Mucb
i, j (t) multiplied by BRT, i.e.

γ ucb-u
i, j (t)

def= BRT ·
∣
∣
∣M ecb

j (t) ∩ Mucb
i, j (t)

∣
∣
∣ . (17)

Similar to the ECB-Union Multiset approach, applying the UCB-Union Multiset
approach to Example 1 also yields a CRPD of BRT · 2 for a pre-emption of task τ2 by
task τ1.

In the remainder of this paper, we follow a similar structure for extending FPTSwith
CRPD. Before looking at specific approaches, we consider challenges for FPTS with
CRPD (Sect. 5). We subsequently focus on pre-empting tasks (Sect. 6), pre-empted
tasks (Sect. 7), and the combination of pre-empting and pre-empted tasks (Sect. 8).

5 FPTS with CRPD: Preliminaries and challenges

To extend the schedulability analysis of FPTS with CRPD, we must extend the corre-
sponding formulas. For this purpose, we extend the worst-case length Li of the level-i
active period in (3), the worst-case start-time Si,k in (5) and the worst-case finaliza-
tion time Fi,k in (6) of job k of task τi with a new term γi, j (t) in a similar way as
the worst-case response time Ri in (9) has been extended for FPPS with constrained
deadlines. However, due to (i) the generalization towards arbitrary deadlines and (ii)
the limited-pre-emptive nature of FPTS, it is not possible to simply extend these equa-
tions for FPTS with a term γi, j (t) by reusing the existing approaches to determine
CRPD. This section addresses preliminaries and challenges for FPTS with CRPD.

5.1 Distinguishing executing and affected tasks

The extension for FPPS is based on the tasks that can execute and affect the execution
of a task τi in the interval under consideration.

An overview of these tasks for the response interval [0, Ri ) is given in Table 2, i.e.
the table shows

• Interval: A description of an interval under consideration, being [0, Ri );
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Table 2 Overview of tasks that can execute and affect the execution of task τi in a level-i active period
starting at time t = 0 for both FPPSwith constrained deadlines and FPTSwith arbitrary deadlines, assuming
a task τb that blocks τi for FPTS, i.e. b ∈ b(i)

Interval Execute Affected by τ j #-jobs

FPPS [0, Ri ) hep(πi ) hep(πi ) ∩ lp(π j )

{
Eh(Ri ) if h ∈ hep(πi )
0 otherwise

FPTS [0, Hi ) {i} ∪ hp(θi ) ({i} ∪ hp(θi )) ∩ lt(π j )

⎧
⎨

⎩

Eh(Hi ) if h ∈ hp(θi )
1 if i
0 otherwise

[0, Li ) {b} ∪ hep(πi ) ({b} ∪ hep(πi )) ∩ lt(π j )

⎧
⎨

⎩

Eh(Li ) if h ∈ hep(πi )
1 if b
0 otherwise

[0, Si,k ) As above for
[0, Li )

As above for
[0, Li )

⎧
⎪⎪⎨

⎪⎪⎩

Eh(Si,k ) if h ∈ hp(πi )
k if i
1 if b
0 otherwise

[0, Fi,k ) As above for
[0, Li )

As above for
[0, Li )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Eh(Fi,k ) if h ∈ hp(θi )
Eh(Si,k ) if h ∈ hp(πi ) \ hp(θi )
k + 1 if i
1 if b
0 otherwise

• Execute: The tasks that can execute jobs in the interval, being tasks with a priority
higher than or equal to the priority of τi , i.e. hep(πi );

• Affected by τ j : The set of tasks that (i) can execute jobs in the interval and (ii) can
be pre-empted by task τ j , i.e. hep(πi ) ∩ lp(π j );

• #-jobs: The number of job activations of a task that can execute in the interval, i.e.
Eh(Ri ) for each task τh ∈ hep(πi ).

The “ #-jobs” in the interval [0, Ri ) can be immediately derived from Ri , see (8). If
Ri ≤ Di ≤ Ti , then Ei (Ri ) = 1 and, as a result, task τi can be treated as any other
task.

When we focus only on the pre-empting tasks, e.g. when using the ECB-Only
approach, we only need the information of the row affected by τ j in Table 2; see (10).
When we consider the pre-empted tasks, e.g. when using the UCB-Only Multiset
approach, the #-jobs also play a role. To be more specific, the multiset Mucb-o

i, j (t) in
(12) contains E j (Rh) copies of the size of UCBh for each of the Eh(t) jobs of task
τh , with h ∈ aff(πi , π j ), affecting τi and affected by τ j .

In the remainder of this section, we first show how the number of pre-emptions
E j (Rh) of a job of a task τh by a task τ j can be tightened for FPTS. Next, we determine
the information in Table 2 for FPTS.We subsequently address specific topics related to
FPTS, such as blocking and termination of the iterative procedure for Li . We conclude
with a brief description of how the information presented in this section can be applied
to the extensions for FPTS with CRPD, which is addressed in the next sections.
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Fig. 2 The response time and
hold time of job k of task τi

task τi

timeai,k fi,k

response time
execution by
other tasks than τi
execution by τi
release

Legend:

si,k

hold time

5.2 Bounding the number of pre-emptions using hold times

For FPPS with constrained deadlines, all pre-emptions during the response time of
a job of a task may actually evict UCBs of that job. For FPTS, however, some pre-
emptions can only take place between the activation and the start of a job, and therefore
do not evict UCBs of that job. An obvious example is a non-pre-emptive task, where
no pre-emption can take place during the actual execution of its jobs.

To prevent pessimism in the analysis when focussing on pre-empted tasks, we
consider so-called hold times. To that end, we distinguish the (absolute) activation
time ai,k , (absolute) start-time si,k and (absolute) finishing time fi,k of a job k of task
τi ; see Fig. 2. The lengths of the intervals [ai,k, fi,k) and [si,k, fi,k) are termed the
response time Ri,k and the hold time4 Hi,k of job k of task τi , respectively.

Under FPPS, the worst-case hold time Hi of a task τi can be calculated by means of
(8), i.e. by using the equation to determine the worst-case response time Ri for FPPS
with constrained deadlines; see Bril (2004) and Bril et al. (2008). Under FPTS, only
tasks with a priority higher than the pre-emption threshold θi can pre-empt task τi .
Hence, the worst-case hold time Hi (without CRPD) is given by

Hi = Ci +
∑

∀ j∈hp(θi )
E j (Hi ) · C j . (18)

We will now show that the worst-case hold time is both a proper value to determine an
upper bound for the number of pre-emptions of a job of task τi as well as a potential
improvement over using the worst-case response time Ri . This allows us to tighten
the number of pre-emptions E j (Rh) by E j (Hh) in the construction of the multisets
for the approaches considering pre-empted tasks.

Being the worst-case hold time Hi of a task τi , Hi is an upper bound for the hold
time for every job of τi in general and for every job in the level-i active period with a
worst-case length Li in particular. The former is an immediate consequence of the fact
that the tasks that can influence the hold time of an individual job k of τi are identical
to those that can influence Hi , i.e. hp(θi ). The latter follows from the observation
that a critical instant to determine the worst-case response time Ri is not necessarily
a critical instant for the worst-case hold time Hi , hence ∀0≤k<Ei (Li )Hi,k ≤ Hi . The

4 The notion of hold time is inspired by the term resource hold times in Bertogna et al. (2007) and the
observation in Davis et al. (2000) and Gai et al. (2001) that it is possible to make two tasks mutually non-
pre-emptive by letting them share a so-called pseudo-resource. Our hold time is the same as the resource
hold time of the pseudo-resource.
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worst-case hold time Hi is therefore a proper value to determine an upper bound on
the number of pre-emptions of a job of task τi .

The worst-case hold time Hi of a task τi is at most equal to the worst-case response
time Ri of τi , i.e. Hi ≤ Ri . This result immediately follows from the fact that the set
of tasks that influences the worst-case hold time Hi of task τi is a subset of the set of
tasks that influences the worst-case response time Ri of τi . The worst-case hold time
Hi of a task τi may be smaller than the worst-case response time Ri . This is because
(i) the potential delay of the execution of a job by a previous job (Bril et al. 2008),
(ii) the blocking by a task τb with b ∈ b(i), and (iii) the interference of tasks τ j with
j ∈ hp(πi ) ∩ lep(θi ) are included in Ri but not in Hi . Example 2 below illustrates (i)
and Example 3 illustrates (ii) and (iii).

Example 2 The characteristics of a set T2 of periodic tasks is given in Table 3. The
timeline shown in Fig. 3 illustrates both the worst-case hold time H2 = 8.2 and the
worst-case response time R2 = 8.6 for the job activated at time t = 14. R2 is larger
than H2, because R2 includes a delay of 0.4 of the job activated at time t = 7. This
illustrates (i).

Example 3 The characteristics of a set T3 of periodic tasks are given in Table 4. The
worst-case hold times of all tasks are smaller than their worst-case response times.
Task τ1 is an example of (ii), task τ4 is an example of (iii), and tasks τ2 and τ3 are
examples of both (ii) and (iii).

Table 3 Task characteristics of T2 and worst-case response times and hold times of periodic tasks with
non-constrained deadlines under FPPS without CRPD

T D C π = θ R H

τ1 5 5 2 2 2 2

τ2 7 9 4.2 1 8.6 8.2

3020100 3525155

task τ1

task τ2

time

0.78.76.84.72.8

Fig. 3 Timeline for T2 for an entire hyper period (i.e. lcm(T1, T2) = 35) with a simultaneous release of
τ1 and τ2 at time t = 0. The numbers to the top right corner of the boxes denote the response times of the
respective job activations

Table 4 Task characteristics of
T2 and worst-case response
times and hold times of periodic
tasks under FPTS without CRPD

T = D C π θ R H

τ1 6 1 4 4 3 1

τ2 7 2 3 4 5 2

τ3 9 2 2 3 8 3

τ4 11 2 1 3 8 3

123



420 Real-Time Syst (2017) 53:403–466

Fig. 4 Task τ1 is activated
twice during the worst-case
response time of task τ4 but only
once during the worst-case hold
time of τ4

0 5

task τ3

task τ4

time

8

task τ1

task τ2

Tasks τ3 and τ4 of Example 3 are particularly interesting when FPTS is extended
with CRPD, because task τ1 can be activated twice during their worst-case response
time but only once during their worst-case hold time; see Fig. 4.

5.3 Determining the tasks that can execute and are affected by τ j

Having introduced the worst-case hold time Hi of task τi , we now determine for each
of the intervals [0, Hi ), [0, Li ), [0, Si,k), and [0, Fi,k) the tasks that can execute in the
interval (“execute”) and from these tasks those that are affected by task τ j (“affected
by τi”) for FPTS in Table 2.

The tasks that can execute in [0, Hi ) can immediately be derived from (18), i.e.
task τi and all tasks with a priority higher than the pre-emption threshold θi of task τi .
This set of tasks is therefore characterized by the set of indices {i}∪hp(θi ). Similarly,
the set of tasks that can execute in [0, Li ), [0, Si,k), and [0, Fi,k) can immediately be
derived from (3), (5), and (6), respectively. Assuming a task τb that blocks τi , i.e.
b∈ b(i), all these three sets are characterized by the set of indices {b} ∪ hep(πi ).

To determine the “affected by τ j” for each of these intervals, we simply take the
intersection of the set of indices for “execute” with lt(π j ), similar to FPPS.

5.4 Determining the number of job activations “ #-jobs”

We now show that we can derive the “ #-jobs” for FPTS in Table 2 from the equations
corresponding to the intervals, similar to FPPS. We start with the interval [0, Hi ). The
intervals [0, Li ), [0, Si,k) and [0, Fi,k) are subsequently addressed for Bi �= 0 and
Bi = 0.

5.4.1 #-jobs for [0, Hi )

The “ #-jobs” for the interval [0, Hi ) follows immediately from (18). Exactly 1 acti-
vation of τi is taken into account. To prevent pessimism when Ti is smaller than Hi ,
Table 2 contains a dedicated clause for identifying the appropriate number of job
activations of task τi itself.

123



Real-Time Syst (2017) 53:403–466 421

Example 4 We reconsider T2 of Example 2. For that example, E2(H2) = 2 rather
than 1. To prevent this pessimism, we take exactly one activation of τi into account.

5.4.2 #-jobs for [0, Li ), [0, Si,k), and [0, Fi,k) when Bi �= 0

Given a task τb that blocks τi under FPTS, i.e. b ∈ b(i), the number of activations
#-jobs in the intervals [0, Li ), [0, Si,k) and [0, Fi,k) in Table 2 can be immediately
derived from (3) for Li , (5) for Si,k and (6) for Fi,k . To prevent pessimism, exactly
one activation of τb is taken into account. Similarly, exactly k and k + 1 jobs of τi are
taken into account when determining Si,k and Fi,k , respectively.

Example 5 We reconsider T2 of Example 2. The worst-case finalization time F2,0 of
the first job of τ2 is equal to 8.2. Because E2(8.2) = 2, (12) would include 2 jobs
of τ2 in Mucb-o

2,1 (8.2) rather than 1. To prevent this pessimism, we explicitly take the
number of jobs of τi into account.

5.4.3 #-jobs for [0, Li ), [0, Si,k), and [0, Fi,k) when Bi = 0

Lemma 1 shows that E∗
j (Si,k) can be replaced by E j (Si,k) for the case Bi = 0 in (6)

for Fi,k .

Lemma 1 Let j ∈ hp(πi ) and assume a level-i active period starting at time t = 0
with a simultaneous release of τi and τ j . Let Si,k denote the worst-case start time
of job k of τi in that level-i active period and be derived by (5). Now the following
equality holds:

∀ j∈hp(πi )E
∗
j (Si,k) = E j (Si,k). (19)

Proof The term E∗
j (Si,k) represents the maximum number of activations of τ j in the

interval [0, Si,k]. When ∃m∈NSi,k = m ·Tj , task τ j is activated at time Si,k . This would
imply that τi cannot start at Si,k , which contradicts the definition of Si,k . We therefore
conclude that �m∈NSi,k = m · Tj . As a result, E∗

j (Si,k) = E j (Si,k), which proves the
lemma. ��

Corollary 1 We may simplify (6) by replacing E∗
j (Si,k) by E j (Si,k) and ignoring the

case distinction, i.e.

Fi,k = Si,k + Ci +
∑

∀ j∈hp(θi )

(
E j (Fi,k) − E j (Si,k)

) · C j . (20)

Similarly, Lemma 2 shows that γi, j (t) can be defined in terms of E j (Si,k) rather
than E∗

j (Si,k) for the case Bi = 0 in (5) when determining Si,k .

Lemma 2 When Si,k is extended with a term γi,k(t) for the case Bi = 0, γi,k(t) can
be based on E j (t) rather than E∗

j (t).
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Proof A solution for the recurrent relation for Si,k is found when S(�)
i,k = S(�+1)

i,k for

two subsequent iterations. For S(�)
i,k there are two cases, either E j (S

(�)
i,k ) = E∗

j (S
(�)
i,k ) or

E j (S
(�)
i,k ) �= E∗

j (S
(�)
i,k ).

Let E j (S
(�)
i,k ) = E∗

j (S
(�)
i,k ), i.e. �m∈NS(�)

i,k = m · Tj . As a result, it doesn’t matter
whether E j (t) or E∗

j (t) is used in γi,k(t).

Now let E j (S
(�)
i,k ) �= E∗

j (S
(�)
i,k ), i.e. ∃m∈NS(�)

i,k = m · Tj . As a result, an additional

activation of τ j will be taken into account when determining S(�+1)
i,k , irrespective of

using either E j (t) or E∗
j (t) in γi,k(t). Together, these two cases prove the lemma. ��

We therefore conclude that, apart from the number of job activations of τb, the
information in Table 2 also holds for τi when Bi = 0.

5.5 Identifying the task causing the largest blocking delay

A nice property of FPTS is that just one job of lower priority is able to cause blocking
delays. In the presence of CRPD, however, the largest computation time among the
blocking tasks does not necessarily result in the largest worst-case response time.

Example 6 We reconsider T3 of Example 3. Without CRPD, the blocking of τ2 due
to τ3 and τ4 is the same because C3 = C4, i.e. B2 = max(0,max{C3,C4}) = 1. The
blocking including CRPD may be different, however, due to different UCBs of τ3 and
τ4 and the ECBs of τ1. Even a smaller computation time of a blocking task may result
in a larger overall blocking effect when CRPD is included.

For the case with blocking (Bi �= 0), we therefore need a more complex procedure
to compute response times. Our new procedure determines the values for Li , Si,k, Fi,k ,
and Ri with CRPD by taking the maximum value over all tasks that may block τi .

5.6 Termination of the iterative procedure for Li

Termination of the iterative procedure to determine Li is no longer guaranteed when
U < 1, because the CRPD is not taken into account in the utilizationU . To address this
problem, we first observe that by definition every level-i active period, with 1 ≤ i < n,
is contained in a level-n active period (Bril et al. 2009). Hence, termination of the
iterative procedure to determine Ln guarantees termination for Li for all 1 ≤ i < n.
Next, the lowest priority task τn cannot be blocked. As a result, when Ln exceeds the
least common multiple (LCM) of the periods of the task set T , the iterative procedure
will not terminate. This is because at the LCM the activation pattern is repeated and if
the iterative procedure for Ln did not terminate at the LCM then there is pending load
pushed across the LCMboundary. By integrating CRPD into the analysis, the effective
utilization with CRPD is apparently larger than 1. The set is therefore considered
unschedulable when Ln exceeds the LCM.
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5.7 Applying the results

In this section, we studied various preliminaries for the integration of CRPD in the
analysis for FPTS. In the following sections, we apply the achieved results. In partic-
ular, we

• apply the notion of worst-case hold time by using E j (Hh) rather than E j (Rh)

to tighten the number of times that τ j may pre-empt a job of τh for approaches
considering pre-empted tasks. This influences the definition of the multiset Mi, j

for the UCB-Only Multiset approach, the ECB-Union Multiset approach, and the
UCB-Union Multiset approach.

• apply the derived “affected by τ j” information in the definitions of γi, j and Mi, j

for the various approaches. This requires an extension of the subscripts of Si,k ,
Fi,k, γi, j and Mi, j with b for those cases where a task τb may block a task τi .

• apply the derived “#-jobs” information for approaches considering pre-empted
tasks. This requires a case distinction following the information in Table 2 in the
definition of the multiset Mi, j . Moreover, it requires a further extension of the
subscripts of γi, j and Mi, j with k, and the introduction of an additional parameter
for both γi, j and Mi, j to cater for the pre-emptions in the intervals corresponding
to the worst-case start-time and the worst-case finalization time.

• take the maximum value over all tasks that may block τi to determine Li and Fi,k ,
when τi can be blocked.

6 FPTS with CRPD: pre-empting tasks

In this section, we consider the ECB-Only approach, i.e. focus only on the pre-empting
tasks. Because the worst-case hold time Hi and the row #-jobs in Table 2 only play a
role for pre-empted tasks, we ignore Hi and #-jobs in this section. In order to extend
the equations for Li , Si,k and Fi,k for FPTSwith a term γi, j (t), wemust adapt γ ecb-o

i, j (t)
by considering the tasks affected by task τ j (see the row affected by τ j in Table 2).
As shown in Table 2, the tasks being affected by pre-emptions are the same for the
intervals [0, Li ), [0, Si,k), and [0, Fi,k), but differ from the tasks being affected under
FPPSwith constrained deadlines.We therefore generalize, i.e. redefine, the set of tasks
aff(πi , π j ) for FPTS to

aff(πi , π j )
def= hep(πi ) ∩ lt(π j ). (21)

Because a task may but need not be blocked, we excluded “{b}” from (21) and will
use dedicated clauses to treat blocking tasks in the sequel. Equation (21) for FPTS
specializes to (11) for FPPS because lp(π j ) = lt(π j ) for FPPS.

To determine the worst-case response time Ri of task τi , we can then reuse (7).
In the subsections below, we consider the cases for tasks without and with blocking
separately.
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6.1 Worst-case length Li

For a task τi without blocking (Bi = 0), we can find an upper bound for Li with CRPD
by extending (3) with γi, j (t), similar to the extension of Ri in (9), i.e.

Li =
∑

∀ j∈hep(πi )

(
E j (Li ) · C j + γi, j (Li )

)
. (22)

For theECB-Only approach,wecan subsequently reuse (10) forγi, j (t)with aff(πi , π j )

as defined in (21).
For the case Bi �= 0, we rewrite (3) for Li by distributing addition over the inner-

max operation in equation (4) for Bi and subsequently extending the equation for
CRPD as explained in Sect. 5.5, i.e.

Li = max∀b∈b(i)

⎛

⎝Cb +
∑

∀ j∈hep(πi )

(
E j (Li ) · C j + γi, j,b(Li )

)
⎞

⎠ . (23)

A subscript “b” has been introduced in γi, j,b(t) to capture the CRPD related to the
blocking task τb. For the ECB-Only approach, γi, j,b(t) is defined as

γ ecb-o
i, j,b (t) =

{
BRT · E j (t) · ∣

∣ECB j
∣
∣ if aff(πi , π j ) �= ∅ ∨ b ∈ lt(π j )

0 otherwise
. (24)

Compared to (10) for FPPS, the first clause for γ ecb-o
i, j,b (t) in (24) for FPTS has been

extended with b ∈ lt(π j ), because τ j may in that case also pre-empt task τb. Note that
({b} ∪ hep(πi )) ∩ lt(π j ) in Table 2 is equal to aff(πi , π j ) ∪ ({b} ∩ lt(π j )) in (24).

6.2 Worst-case start time Si,k

Similar to Li , we extend Eq. (5) for Si,k with a term γi,k(t) to include CRPD for tasks
without blocking, i.e.

Si,k = kCi +
∑

∀ j∈hp(πi )

(
E∗

j (Si,k) · C j + γi, j (Si,k)
)

. (25)

Based on Lemma 2, we conclude that we can define γi, j (t) in terms of E j (t) rather
than E∗

j (t). Hence, we can also reuse γ ecb-o
i, j (t) from (10) for the ECB-Only approach,

i.e. we use aff(πi , π j ) as defined in (21), similar to Li .
For tasks with blocking, we extend Si,k with an additional subscript “b” and a term

γi, j,b(t), i.e.
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Si,k,b = Cb + kCi +
∑

∀ j∈hp(πi )

(
E j (Si,k,b) · C j + γi, j,b(Si,k,b)

)
. (26)

For the ECB-Only approach, we can reuse γ ecb-o
i, j,b (t) from (24) for γi, j,b(t), similar to

Li .

6.3 Worst-case finalization time Fi,k

For tasks without blocking, we can extend (20) with γi, j (t) terms complementing
E j (Fi,k) · C j and E j (Si,k) · C j , i.e.

Fi,k = Si,k + Ci +
∑

∀ j∈hp(θi )

(
E j (Fi,k) − E j (Si,k)

) · C j

+
∑

∀ j∈hp(θi )

(
γi, j (Fi,k) − γi, j (Si,k)

)
. (27)

Similar to Li and Si,k we use (10) for γi,k(t), with aff(πi , π j ) as defined in (21).
Similar to Si,k , we add a subscript “b” to Fi,k for tasks with blocking. Similar to

the case Bi = 0, we expand the formula with terms for CRPD, i.e.

Fi,k,b = Si,k,b + Ci +
∑

∀ j∈hp(θi )

(
E j (Fi,k,b) − E j (Si,k,b)

) · C j

+
∑

∀ j∈hp(θi )

(
γi, j,b(Fi,k,b) − γi, j,b(Si,k,b)

)
. (28)

The subtracted term γi, j,b(Si,k,b) in (28) prevents the cache-related pre-emption costs
already covered in (26) for Si,k,b being accounted for twice. Similar to Li and Si,k , we
apply (24) for γi, j,b(t). To compute Fi,k , we take the maximum value over all tasks
that may block τi , similar to Li and as explained in Sect. 5.5, i.e.

Fi,k = max∀b∈b(i) Fi,k,b. (29)

7 FPTS with CRPD: pre-empted tasks

In this section, we consider the UCB-Only Multiset approach, i.e. we focus on the
pre-empted tasks. In this case, the worst-case hold time Hi and the row #-jobs in
Table 2 also play a role. As shown in Table 2, a case distinction is needed to capture
the tasks that are being pre-empted, and these cases differ for [0, Hi ), [0, Li ), [0, Si,k)
and [0, Fi,k). As a consequence, this section presents dedicated adaptations of γ ucb-o

i, j (t)

and Mucb-o
i, j (t), for each interval. For ease of presentation, we only consider the case

where tasks may experience blocking. The other case is similar.

123



426 Real-Time Syst (2017) 53:403–466

7.1 Worst-case hold time Hi

We can find an upper bound for Hi with CRPD by extending (18) with γi, j (t), similar
to the extension of Ri with γi, j (t), i.e.

Hi = Ci +
∑

j∈hp(θi )

(
E j (Hi ) · C j + γi, j (Hi )

)
. (30)

Although we can apply γ ucb-o
i, j (t) in (13) for γi, j (t) in (30) for the UCB-Only Multiset

approach, we need to adapt the definition of Mucb-o
i, j (t) in (12) to prevent pessimism

and use the proper set of affected tasks, as discussed in Sects. 5.2, 5.3 and 5.4. Firstly,
worst-case hold times are to be considered for pre-empted tasks, rather thanworst-case
response times. Secondly, the set of affected tasks is to be adapted to ({i} ∪ hp(θi )) ∩
lt(πi ); see Table 2. Finally, exactly one job of task τi needs to be considered rather
than Ei (t) jobs, requiring a dedicated clause. These three adaptations of (12) result in

Mucb-o
i, j (t) =

⋃

h∈hp(θi )∩lt(π j )

⎛

⎝
⋃

E j (Hh)·Eh(t)

∣
∣UCBh

∣
∣

⎞

⎠ ∪

⎧
⎪⎨

⎪⎩

(
⋃

E j (Hi )

∣
∣UCBi

∣
∣

)

if i ∈ lt(π j )

∅ otherwise

.

(31)

7.2 Worst-case length Li

Similar to the ECB-Only approach, we can use (23) to find an upper bound for Li by
extending (13) for γ ucb-o

i, j (t) with a subscript b for the blocking task τb, with b ∈ b(i):

γ ucb-o
i, j,b (t) = BRT ·

E j (t)∑

�=1

sort
(
Mucb-o

i, j,b (t)
)

[�]. (32)

The definition of Mucb-o
i, j (t) in (12) also needs to be extended with a subscript b, to

consider exactly one blocking job of τb rather than Eb(t) jobs; see Table 2.

Mucb-o
i, j,b (t) =

⋃

h∈aff(πi ,π j )

⎛

⎝
⋃

E j (Hh)·Eh(t)

∣
∣UCBh

∣
∣

⎞

⎠ ∪

⎧
⎪⎨

⎪⎩

(
⋃

E j (Hb)

∣
∣UCBb

∣
∣

)

if b ∈ lt(π j )

∅ otherwise

.

(33)
The pre-condition b ∈ b(i) for Mucb-o

i, j,b (t) is taken into account by the max in (23).

The definition of Mucb-o
i, j,b (t) contains the worst-case hold times of τh and τb rather than

their worst-case response times to avoid pessimism.
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7.3 Worst-case start time Si,k

As well as considering exactly one job of task τb, the definitions of γ ucb-o
i, j,b (t) and

Mucb-o
i, j,b (t) are further extended for Si,k to consider exactly k jobs of τi (see Table 2),

i.e.

γ ucb-o
i, j,k,b(t) = BRT ·

E j (t)∑

�=1

sort
(
Mucb-o

i, j,k,b(t)
)

[�] (34)

and

Mucb-o
i, j,k,b(t) =

⋃

h∈aff(πi ,π j )\{i}

⎛

⎝
⋃

E j (Hh )·Eh (t)

∣
∣UCBh

∣
∣

⎞

⎠ ∪

⎧
⎪⎨

⎪⎩

(
⋃

E j (Hi )·k

∣
∣UCBi

∣
∣

)

if i ∈ lt(π j )

∅ otherwise

∪

⎧
⎪⎨

⎪⎩

(
⋃

E j (Hb)

∣
∣UCBb

∣
∣

)

if b ∈ lt(π j )

∅ otherwise

. (35)

Similar to Hi , task τi is again treated by a separate clause, which makes it necessary
to use aff(πi , π j ) \ {i} rather than aff(πi , π j ). Moreover, Mucb-o

i, j,k,b(t) is based on the
worst-case hold times of the tasks τh, τi , and τb rather than their worst-case response
times.

Similar to the ECB-Only approach, a subscript “b” is added to Si,k , and the equation
of Si,k in (5) is extended with γi, j,k,b(t) as follows:

Si,k,b = Cb + kCi +
∑

∀ j∈hp(πi )

(
E j (Si,k,b) · C j + γi, j,k,b(Si,k,b)

)
. (36)

7.4 Worst-case finishing time Fi,k

As indicated in Table 2, exactly k + 1 jobs of τi need to be considered for Fi,k .
Moreover, we need to split the set of tasks hp(πi ) into two subsets for Fi,k , i.e. the
set hp(πi ) \ hp(θi ) of tasks that can be blocked by τi and the set hp(θi ) that cannot be
blocked by τi . The former set can execute and experience pre-emptions in [0, Si,k),
whereas the latter set can execute and experience pre-emptions in [0, Fi,k). To take
the proper number of activations of tasks in these two sets into account, we use two
parameters ts and t f for γ ucb-o

i, j,k,b and Mucb-o
i, j,k,b, i.e.

γ ucb-o
i, j,k,b(ts, t f ) = BRT ·

E j (t f )∑

�=1

sort
(
Mucb-o

i, j,k,b(ts, t f )
)

[�], (37)
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and

Mucb-o
i, j,k,b(ts, t f ) = ⋃

h∈((aff (πi ,π j )\{i})∩ hp (θi ))

(
⋃

E j (Hh)·Eh(t f )

∣
∣ UCBh

∣
∣

)

∪ ⋃

h∈((aff (πi ,π j )\{i})\ hp (θi ))

(
⋃

E j (Hh)·Eh(ts )

∣
∣ UCBh

∣
∣

)

∪

⎧
⎪⎨

⎪⎩

(
⋃

E j (Hi )·(k+1)

∣
∣ UCBi

∣
∣

)

if i ∈ lt (π j )

∅ otherwise

∪

⎧
⎪⎨

⎪⎩

(
⋃

E j (Hb)

∣
∣ UCBb

∣
∣

)

if b ∈ lt (π j )

∅ otherwise

. (38)

Similar to the ECB-Only approach, Fi,k is extended with a subscript “b” and γi, j,k,b
terms, i.e.

Fi,k,b = Si,k,b + Ci

+
∑

∀ j∈hp(θi )

(
E j (Fi,k,b) − E j (Si,k,b)

) · C j

+
∑

∀ j∈hp(θi )

(
γi, j,k,b(Si,k,b, Fi,k,b) − γi, j,k,b(Si,k,b)

)
. (39)

The term γi, j,k,b(Si,k,b) in (39) prevents the cache-related pre-emption costs already
covered in (36) for Si,k,b being accounted for twice.

We may subsequently determine Fi,k by (29) and can derive Ri through (7) as
before.

8 FPTS with CRPD: pre-empting and pre-empted tasks

In this section, we consider the ECB-Union and UCB-Union Multiset approaches,
i.e. we consider both the pre-empting and the pre-empted tasks. As described in
Sect. 4.2 for FPPS with CRPD, the definitions of the multisets for the ECB-Union
and UCB-Union Multiset approaches can be derived from the definition of the multi-
set for the UCB-Only Multiset approach. A similar derivation applies for FPTS with
CRPD. We therefore only consider the definition of the multisets Mecb-u

i, j,k,b(ts, t f ) and

Mucb-u
i, j,k,b(ts, t f ) for the worst-case finalization time Fi,k for the case with blocking. The

derivation of the definitions for the case without blocking and for the worst-case hold
time Hi , worst-case length Li and worst-case start time Si,k are similar.

8.1 ECB-Union Multiset approach

The ECB-Union Multiset approach considers the pre-emption cost of pre-empting
tasks for every pre-empted task individually. Similar to FPPS with CRPD, the
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definition of the multiset of the UCB-Only Multiset approach is extended by inter-

secting the UCBs of every affected task with
(⋃

g∈hep(π j )
ECBg

)
, e.g. from (38) for

Mucb-o
i, j,k,b(ts, t f ) we derive

Mecb-u
i, j,k,b(ts, t f )

=
⋃

h∈((aff (πi ,π j )\{i})∩ hp (θi ))

⎛

⎝
⋃

E j (Hh)·Eh (t f )

∣
∣
∣
∣
∣
∣
UCBh ∩

⎛

⎝
⋃

g∈ hep(π j )

ECBg

⎞

⎠

∣
∣
∣
∣
∣
∣

⎞

⎠

∪
⋃

h∈((aff (πi ,π j )\{i})\ hp (θi ))

⎛

⎝
⋃

E j (Hh)·Eh(ts )

∣
∣
∣
∣
∣
∣
UCBh ∩

⎛

⎝
⋃

g∈ hep(π j )

ECBg

⎞

⎠

∣
∣
∣
∣
∣
∣

⎞

⎠

∪

⎧
⎪⎨

⎪⎩

(
⋃

E j (Hi )·(k+1)

∣
∣
∣
∣
∣
UCBi ∩

(
⋃

g∈ hep(π j )

ECBg

)∣
∣
∣
∣
∣

)

if i ∈ lt (π j )

∅ otherwise

∪

⎧
⎪⎨

⎪⎩

(
⋃

E j (Hb)

∣
∣
∣
∣
∣
UCBb ∩

(
⋃

g∈ hep(π j )

ECBg

)∣
∣
∣
∣
∣

)

if b ∈ lt (π j )

∅ otherwise

. (40)

The equation for γ ecb-u
i, j,k,b(ts, t f ) for the ECB-Union Multiset approach is identical

to (37) for the UCB-Only Multiset approach, except that it uses Mecb-u
i, j,k,b(t) instead

of Mucb-o
i, j,k,b(t). The equations for Fi,k,b in (39) and Fi,k in (29) can be reused for the

ECB-Union Multiset approach.

8.2 UCB-Union Multiset approach

For the UCB-Union Multiset approach, first a multiset Mucb
i, j,k,b(ts, t f ) is formed. Sim-

ilar to FPPS with CRPD, the definition for Mucb
i, j,k,b(ts, t f ) can be derived from (38)

for Mucb-o
i, j,k,b(ts, t f ) by removing all cardinality operators, i.e.

Mucb
i, j,k,b(ts, t f ) = ⋃

h∈((aff (πi ,π j )\{i})∩ hp (θi ))

(
⋃

E j (Hh)·Eh(t f )
UCBh

)

∪ ⋃

h∈((aff (πi ,π j )\{i})\ hp (θi ))

(
⋃

E j (Hh)·Eh(ts )
UCBh

)

∪

⎧
⎪⎨

⎪⎩

(
⋃

E j (Hi )·(k+1)
UCBi

)

if i ∈ lt (π j )

∅ otherwise

∪

⎧
⎪⎨

⎪⎩

(
⋃

E j (Hb)

UCBb

)

if b ∈ lt (π j )

∅ otherwise

. (41)
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Similar to FPPS with CRPD, the definition of γ ucb-u
i, j,k,b is given in terms of the size of

the multi-set intersection of Mecb
j (t) and Mucb

i, j,k,b(ts, t f ), i.e.

γ ucb-u
i, j,k,b(ts, t f ) = BRT ·

∣
∣
∣M ecb

j (t f ) ∩ Mucb
i, j,k,b(ts, t f )

∣
∣
∣ , (42)

where Mecb
j (t) is defined in (16). The equations for the worst-case finalization time

Fi,k,b in (39) and Fi,k in (29) also apply for the UCB-Union Multiset approach.

8.3 Composite approach

The ECB-Union Multiset and UCB-Union Multiset approaches can be combined into
a simple composite approach that dominates both (Altmeyer et al. 2012). For FPPS,
this composite approach uses

Ri = min(Recb-u
i , Rucb-u

i ), (43)

where Recb-u
i and Rucb-u

i are the worst-case response times of task τi using the ECB-
Union Multiset approach and the UCB-Union Multiset approach, respectively. As
(43) is applied on a task by task basis, some task-sets are deemed schedulable by the
combined approach, but not by any of the other approaches in isolation.

For FPTS, this simple composite approach is refined by first applying the composi-
tion to theworst-case hold times of the tasks. Thuswefirst use the ECB-UnionMultiset
and UCB-Union Multiset approaches to compute the worst-case hold times (H ecb

i and
Hucb
i , respectively) for each task τi . Then for each taskwe take theminimum value, i.e.

Hi = min(H ecb
i , Hucb

i ). (44)

The minimum worst-case hold times given by (44) are then used in the calculation of
response times using the ECB-Union Multiset and UCB-Union Multiset approaches.
Finally, theminimumworst-case response time computed by either approach is used as
output from the composite approach, as given by (43). Since this composite approach
is the most effective analysis for FPTS with CRPD, we use it in our evaluation.5

9 An optimal threshold assignment algorithm

In Wang and Saksena (1999) an OTA for a set T scheduled under FPTS without
CRPD is described, which assumes that priorities of tasks are given, i.e. it finds pre-
emption thresholds achieving schedulability of T under FPTS, if such an assignment
exists. When the OTA finds pre-emption thresholds for a set T , those thresholds will
be minimal. The algorithm traverses the tasks in ascending priority order, exploiting
the property that the schedulability test for task τi is independent of the pre-emption
thresholds of tasks with a priority higher than τi . For FPTS with CRPD this property

5 In Bril et al. (2014), only the simple composite approach is described and used in the evaluation.
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does not hold. As an example, a task τ j may affect a task τh , with j, h ∈ hp(πi ), when
the pre-emption threshold θh of τh is lower than the priority π j of τ j . The algorithm
subsequently presented in Saksena and Wang (2000) can determine the maximum
pre-emption thresholds of tasks, taking a threshold assignment for which the set is
schedulable as input.

This section presents an OTA algorithm for FPTS with CRPD, yielding the maxi-
mum pre-emption thresholds of tasks when the set is schedulable. The algorithm also
assumes that priorities of tasks are given and traverses the tasks in descending priority
order. It exploits the property that once a task τi is schedulable, it remains schedulable
when the pre-emption threshold θ� of a task τ� with a priority lower than task τi is
reduced and the pre-emption threshold θ� either was or becomes lower than priorityπi .

9.1 Algorithm description

Our OTA algorithm (see Algorithm 1) uses an auxiliary set �̂ = {θ̂1, θ̂2, . . . , θ̂n} of
maximum pre-emption thresholds next to a set � = {θ1, θ2, . . . , θn} of assigned pre-
emption thresholds. Upon initialization, all values in �̂ are set to the highest priority
π1 (line 2), i.e. tasks are non-pre-emptive and therefore experience minimal CRPD.
The algorithm traverses the tasks in descending priority order (lines 5–23). When it
considers a task τi , it first assigns its maximum pre-emption threshold θ̂i to θi (line 7).
Next, it tests schedulability of τi without any blocking and returns unschedulable

Algorithm 1: OptimalThresholdAssignment({τ1 . . . τn})
Input: Task set T = {τ1 . . . τn} with {Ci , Ti , Di , πi ,ECBi ,UCBi },∀τi ∈ T .
Output: Task set schedulable and θi ,∀τi ∈ T , where � ⊆ �.
1: for each τi do
2: θ̂i ← π1; {Init. the max. threshold θ̂i with the highest priority π1.}
3: θi ← πi ; {Init. the threshold θi with the priority πi of τi .}
4: end for{Invariant 1 holds for T H

0 .}
5: for each τi (from highest to lowest priority πi ) do
6: {Loop invariant: Invariant 1 holds for T H

i−1.}

7: θi ← θ̂i ; {Assign max. threshold θ̂i to θi of τi .}
8: Compute Ri ; {without blocking, i.e. Cb ← 0}
9: if Ri > Di then return unschedulable end if
10: {Invariant 2 holds for τi and T H

i .}
11: for each τ� with � ∈ lp(πi ) (from highest to lowest) do
12: {Loop invariant: Invariant 2 holds for τi and T H

�−1.}

13: {Test schedulability of τi when blocked by τ� based on θ̂�:}
14: θ� ← θ̂�; {Temporarily assign max. threshold θ̂� to θ� of τ�.}
15: Re-compute Ri ; {with blocking, i.e. Cb ← C�}
16: {Establish Invariant 2 for τi and T H

�
.}

17: if Ri > Di then {Disallow blocking by τ�:}
18: θ̂� ← πi+1;
19: end if
20: {Reset the threshold θ� of τ� (re-establish Invariant 1):}
21: θ� ← π�;
22: end for {Invariant 2 holds for τi and T H

n .}
23: end for {Invariant 1 holds for T H

n , i.e. � = �̂ ⊆ � ∧ ∀1≤i≤n Ri ≤ Di .}
24: return schedulable;
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when the test fails (line 9). Otherwise, it tests schedulability of τi with blocking by
considering each lower priority task τ� in isolation (lines 11–22). It decreases the
maximum pre-emption threshold θ̂� of τ� if-and-only-if τi is unschedulable due to
blocking by task τ� (lines 17–19). In that case, θ̂� is decreased to the highest priority of
all tasks with a priority lower than τi , i.e. πi+1 of τi+1. This may increase the CRPD of
tasks with a priority lower than τi but does not affect the schedulability of tasks with
a priority higher than πi . Hence, when the algorithm returns schedulable, i.e. the task
set is schedulable, it has assigned the maximum pre-emption threshold to each task. A
proof of correctness and detailed explanation of our OTA algorithm using invariants
are given in the next subsection.

9.2 Correctness and proof of OTA algorithm

Our algorithm is based on two invariants, which use � = {π1, π2, . . . , πn} to denote
the set of priorities and T H

m to denote the subset of m highest priority tasks with
0 ≤ m ≤ n, i.e. T H

0 = ∅, T H
i = {τh |h ∈ hep(πi )} for 1 ≤ i ≤ n, and T H

n = T .
If the following main invariant holds for T , then � contains the maximum pre-

emption thresholds for which all tasks in T are schedulable, where � = �̂ ⊆ �.

Invariant 1 Given a subset T H
m of m highest priority tasks

1. the set �̂ contains the maximum pre-emption threshold of each task such that all
tasks in T H

m meet their deadlines, i.e. ∀τi∈T H
m
Ri ≤ Di , where �̂ ⊆ �.

2. the set� contains the assigned pre-emption threshold of τ j if τ j ∈ T H
m , i.e. θ j = θ̂ j ,

and it contains the priority of τ j if τ j /∈ T H
m , i.e. θ j = π j .

The variables in �̂ and � are initialized to the highest (non-pre-emptive) priority
π1 (line 2) and the (fully pre-emptive) priority of the corresponding task (line 3),
respectively. As a result, Invariant 1 holds for the empty set T H

0 .
Next, the algorithm traverses the tasks in descending priority order (lines 5–23).

When a task τi is considered (line 5), Invariant 1 holds for T H
i−1. First the pre-emption

threshold of τi is assigned its maximum value, i.e. θi is set to θ̂i (line 7), and the
schedulability of τi without blocking is determined. If τi is not schedulable, then
the algorithm returns unschedulable (line 9), i.e. there does not exist a pre-emption
threshold assignment making the set of tasks T H

i schedulable. Otherwise 2) has been
established for T H

i and the inner-loop is entered.
The inner-loop (lines 11–22) considers each task τ� with a priority lower than τi

separately. The aim is to establish 1) for T H
i , based on the following invariant.

Invariant 2 Given a task τi and a subset T H
� with � ∈ lep(πi ), the set �̂ contains the

maximum pre-emption threshold for each task, where �̂ ⊆ �, such that

1. all tasks in T H
i−1 are schedulable, and

2. τi is schedulable when only the set T H
� is considered, i.e. when all tasks in T \T H

�

are ignored.

If this invariant holds for τi and T then �̂ contains the maximum pre-emption thresh-
olds for which all tasks in T H

i are schedulable, where �̂ ⊆ �, i.e. Invariant 1 holds
for T H

i .
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Before the inner-loop, Invariant 2 holds for τi and T H
i , and when a task τ� is

considered (line 11), it holds for τi and T H
�−1. When τi remains schedulable when

blocked by τ�, θ̂� remains unchanged. Otherwise θ̂� is set to the priority πi+1 of task
τi+1, i.e. the highest priority in � for which τi is not blocked by τ�. This may increase
the CRPD of tasks with a priority lower than τi , but does not affect the schedulability
of tasks with a priority higher than τi . Note that it doesn’t make sense to decrease
the threshold of τ� to a priority higher than or equal to the priority of τi , because
the CRPD experienced by τi remains at best the same and may even increase due to
additional pre-emptions during the execution of a job of τ�. Invariant 2 has therefore
been established for T H

� .

Theorem 1 Given a set of tasks T and a priority assignment �, the OTA algorithm
(Algorithm 1) assigns the maximum pre-emption thresholds� ⊆ � to tasks achieving
schedulability, if such an assignment exists.

Proof At each iteration of the outer-loop, the set T H
m of Invariant 1 is increased by

one task. Similarly, at each iteration of the inner-loop, the set T H
� of Invariant 2 is

increased by one task. Hence, the algorithm terminates with either schedulable and a
set of maximum pre-emption thresholds that deem the task set schedulable with the
least possible CRPD or unschedulable, in which case no assignment of pre-emption
thresholds achieving schedulability exists under the given priority assignment. ��

9.3 Algorithmic complexity

Algorithm 1 traverses the set of tasks (of size n) in descending priority order and it
may then consider any lower-priority task (at most n − 1 tasks). Hence, just like the
algorithm in Wang and Saksena (1999), our algorithm has O(n2) iterations. In each
iteration, the response time analysis is applied, which has a pseudo-polynomial time
complexity.

10 Layout of tasks in memory

The analysis presented in the previous sections integrates CRPD into the analysis
of FPTS based on ECBs and UCBs of tasks, i.e. the analysis is independent of the
memory blocks of tasks and the mapping from memory blocks to cache blocks. In
this section, we take a closer look at how the layout of tasks in memory influences the
schedulability of task sets.

10.1 Influence of task layout on CRPD

Given a mappingMapM2C from memory blocks to cache blocks, the layout of a task
τi in memory, as described byMBi , determines τi ’s set of evicting cache blocks ECBi ,
see (2). The layout of tasks in memory therefore impacts the pre-emption delays, as
illustrated by the following example.
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0 1 2 3 4 5 6 7 8
Cache Blocks

Task τ 1 Task τ 2

Task τ 3 Task τ 4

(a)

0 1 2 3 4 5 6 7 8
Cache Blocks

Task τ 1 Task τ 3

Task τ 2 Task τ 4

(b)

Fig. 5 Impact of the task layout on the pre-emption overhead. a The initial task layout produces pre-
emption related cache eviction in all cache blocks, because τ1 may pre-empt τ3 and τ2 may pre-empt τ4. b
An optimal task layout, which eliminates CRPD completely for FPTS, because tasks τ1 and τ2 as well as
tasks τ3 and τ4 are mutually non-pre-emptive. FPPS still produces CRPD in all cache blocks, however

Example 7 Figure 5 illustrates the impact of a task layout for FPTS.The cache contains
8 cache blocks. The task set contains 4 tasks, each with 4 ECBs and 4 UCBs. Task
τ1 and τ2 as well as τ3 and τ4 are mutually non-pre-emptive due to pre-emption
thresholds. An initial task layout resulting in ECB1 = ECB3 and ECB2 = ECB4
produces pre-emption related cache eviction in all cache blocks, whereas an optimal
layout resulting in ECB1 = ECB2 and ECB3 = ECB4 eliminates CRPD completely
under FPTS. Unlike FPTS, both layouts produce CRPD in all cache blocks under
FPPS for this task set.

The pre-emption costs can thus be reduced and the schedulability improved by
determining an appropriate memory layout. An intuitive task layout positions the
memory blocks of all tasks consecutively in memory without leaving gaps, i.e. without
leaving unused memory blocks between tasks’ blocks. This means that the memory
blocks of the first task τ1 are positioned at initial memory block Minit, the blocks of
the second task τ2 at Minit + |MB1|, and of task τi at Minit + ∑

j<i |MB j |. Lunniss
et al. (2012) have observed that gaps within a task layout, i.e. memory blocks that are
left empty between the tasks, only improves the schedulability slightly for FPPS, at
the cost of wasting memory. We therefore focus on sequential layouts in this paper
and only vary the order in which tasks are positioned in memory.

10.2 Determining ECBs and UCBs for a given task layout

As illustrated above, the ECBs and UCBs of tasks may change when the task layout
changes. We describe a task layout by means of a permutation P, i.e. an ordered n-
tuple that contains each task index 1 to n exactly once. In this paper, we assume an
initial task permutation Pinit defined by the tasks’ priorities

Pinit = (1, 2, 3, . . . , n). (45)

To determine the ECBs and UCBs of tasks for a given task layout, we assume that
they are initially given in normalized form, i.e. as if the first evicting cache blocks of
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every task start at cache block 0. We denote the normalized form of the ECBs and
UCBs of task τi as ECBN

i and UCBN
i , respectively. Given this normalized form, we

can determine the sets ECBi and UCBi of τi for a given permutation P and a cache
size NC using (1), i.e. simply by means of shifting. The set UCBi of task τi for a
permutation P and cache size NC is given by

UCBi =
⋃

c∈UCBN
i

⎛

⎝Minit +
∑

1≤ j<pi

|MBP[ j]| + c

⎞

⎠ mod NC, (46)

whereP[ j] denotes the index of the task at position j inP, and pi denotes the position
of task τi in P, i.e. P[pi ] = i . The set ECBi of task τi is defined analogously, i.e.

ECBi =
⋃

c∈ECBN
i

⎛

⎝Minit +
∑

1≤ j<pi

|MBP[ j]| + c

⎞

⎠ mod NC. (47)

We note that the normalization of the sets of UCBs and ECBs does not impact
the relative order of a task’s memory blocks. Instead, normalization corresponds to
shifting the complete task in memory without any modifications to the task itself.

In the following, we will use T N to denote a task set with ECBs and UCBs in
normalized form. Moreover, we assume a function ShiftCBs(T N,P, NC)which takes
a task set T N with ECBs and UCBs in normalized form and yields the same task set
but with ECBs and UCBs determined for permutation P and cache size NC.

10.3 An algorithm to search for a schedulable task layout

For a task set consisting of n tasks, there exists n! permutations. Given the size of this
space, we search for a schedulable task layout using simulated annealing (SA), similar
to Lunniss et al. (2012). When we encounter a schedulable task layout, we stop imme-
diately. In order to compare an unschedulable task layout with a new, unschedulable,
candidate layout, we need a metric. For this purpose, we use the breakdown utilization
U∗ (Lehoczky et al. 1989) based on scaling the computation times of tasks with a
factor 	. For an unschedulable task layout of a task set T , the breakdown utilization
U∗ is smaller than the utilization U of T , i.e. the largest possible scaling factor 	∗
for which T is schedulable for that layout will satisfy 0 < 	∗ < 1.

In contrast to hill-climbing, which never selects the candidate if the breakdown
utilization becomes worse, simulated annealing allows to select worse candidates to
escape local optima. To this end, simulated annealing maintains a temperature (T)
indicating the likelihood to select a neighboring candidate worse than the current
candidate. A candidate is selected with a probability P given by

P = min(1, e
U∗
new−U∗

T ), (48)

whereU∗ is the breakdown utilization of the current permutation andU∗
new the break-

down utilization of the new candidate. Similar to hill-climbing, better candidates are
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Algorithm 2: SchedulableTaskLayoutSearch({τ1 . . . τn}, NC)

Input: Task set T N = {τ1 . . . τn} with {Ci , Ti , Di , πi ,ECB
N
i ,UCBN

i },
∀τi ∈ T N, and cache size NC.

Output: Task set schedulable (for a permutation P found by SA).
1: P ← Pinit ; {Initialize the permutation}
2: T ← ShiftCBs(T N,P, NC); {Determine ECBs and UCBs for P}
3: if IsSchedulable(T ) then
4: return schedulable;
5: else
6: {Initialize for simulated annealing}
7: T ← Tinit ; {Initialize temperature}
8: U∗ ← BreakdownUtil(T ); {Compute breakdown util. of P}
9: while T > Ttarget do
10: {Compute new candidate by swapping positions of tasks}
11: if 0.5 > Rand(0, 1) then
12: Pnew ← swapFar(P); {Swap two distant tasks}
13: else
14: Pnew ← swapNear(P); {Swap neighboring tasks}
15: end if
16: T ← ShiftCBs(T N,Pnew, NC); {Determine CBs forPnew}
17: if IsSchedulable(T ) then
18: P ← Pnew;
19: return schedulable;
20: else
21: U∗

new ← BreakdownUtil(T ); {Compute U∗
new of Pnew}

22: P ← min(1, e
U∗
new−U∗

T ); {Probability to select new candidate}
23: if P ≥ Rand(0, 1) then {Select new candidate}
24: P ← Pnew;
25: U∗ ← U∗

new;
26: end if
27: T ← T ∗ fcooling; {Cool down temperature}
28: end if
29: end while
30: end if
31: return unschedulable;

always selected because U∗
new ≥ U∗ ⇒ P = 1, i.e. the candidate layout is selected

when the breakdown utilization improves.
The STLS algorithm (Algorithm 2) starts with an initial task permutation Pinit

(line 1). Next, it tests schedulability of the task set for the initial permutation and
returns schedulable when the test succeeds (line 4). When the test fails, the initial-
izations required for simulated annealing are performed (lines 7–8). The algorithm
subsequently repeatedly selects new layout candidates until either a schedulable lay-
out is found (line 19) or the bound on themaximumnumber of permutations considered
is reached (line 9). This bound can be expressed in terms of an initial temperature Tinit
(line 7) with 0 < Tinit , a target temperature Ttarget (line 9) with 0 < Ttarget ≤ Tinit,
and a cooling factor fcooling (line 27) with 0 < fcooling < 1. A candidate layout is
randomly chosen by swapping the position of two tasks in the current permutation
(lines 11–15). With equal probability, the algorithm swaps two neighboring tasks, or
two tasks at random irrespective of the position in the current layout. When the candi-
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date is schedulable, we are done (lines 17–19). Otherwise, we determine whether or
not to select the new candidate (lines 22–26).

Although the SA algorithm will not always find a schedulable layout whenever one
exists, i.e. Algorithm 2 is not an optimal algorithm, it performs close to a brute-force
algorithm (Lunniss et al. 2012) in terms of precision when appropriate parameters are
used.

10.4 Algorithmic complexity

The STLS algorithm (Algorithm 2) tries at most
⌈
logTtarget−logTinit

log fcooling
+ 1

⌉
out of n!

permutations of a task set T of size n. For each permutation P, the response time
analysis is applied to determine schedulability ofT using IsSchedulable(T ), which has
a pseudo-polynomial time complexity. The algorithm BreakdownUtil(T ) determines
the breakdown utilization of an unschedulable task layout. The breakdown utilization
can be approximated with a binary search on the scaling factor 0 < 	 < 1 and the
schedulability test.With a fixed number ofm steps, an approximation	′ on the scaling
factor 	 is derived with a precision of 1

2m+1 , i.e. 	
′ − 1

2m+1 ≤ 	 < 	′ + 1
2m+1 .

10.5 Instantiating the algorithm

Algorithm 2 is applicable to both FPPS and FPTS, i.e. the specific schedulability tests
to be executed are invoked within the functions IsSchedulable (T ) and BreakdownU-
til(T ). Our optimal threshold assignment algorithm (Algorithm 1) is executed as part
of the schedulability test for FPTS.

11 Evaluation

We perform similar simulation studies as in Altmeyer et al. (2012) to compare the
relative inter-task CRPD costs under FPTS, FPPS and FPNS. The results are compared
with those of the scheduling analysis ignoring inter-taskCRPD. In all cases,we assume
intra-task CRPD is subsumed into the worst-case computation times of tasks; see also
Sect. 3.4. We have therefore generated system configurations so that (i) the results for
FPTS ignoring inter-task CRPD match those in Bertogna et al. (2011b, 2012) and (ii)
the results for FPPS with CRPD match

• those in Altmeyer et al. (2012) for an initial layout of tasks inmemory, i.e. conform
the initial task permutation Pinit (45) and

• those in Lunniss et al. (2012) using the algorithm searching for a schedulable
layout of tasks in memory.

Our evaluation is based on three orthogonal dimensions:

1. CRPD approach: To compute the schedulability of a task set under CRPD, we
compare the most effective approaches, i.e. the composite approach combining the
UCB-UnionMultiset and the ECB-UnionMultiset, both for FPPS (seeAltmeyer et
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al. 2012) and FPTS (developed in this paper). In addition, we compare the various
approaches presented in this paper, i.e. the composite approach, the UCB-Union
Multiset, the ECB-Union Multiset, the UCB-Only Multiset, and the ECB-Only
approach.

2. Deadline type:We consider constrained deadlines, where tasks’ relative deadlines
are at most equal to their periods (i.e. Di ≤ Ti ), implicit deadlines, where relative
deadlines are equal to periods (i.e. Di = Ti ), and arbitrary deadlines, where no
relationship exists between relative deadlines and periods of tasks.

3. Memory layout: Next to the initial (sequential) layout of tasks in memory we also
consider permutations of the sequential layout using our schedulable task-layout
search (STLS) algorithm (Algorithm 2). These evaluations are only performed for
the composite approach, however.

In our evaluation, we compute the schedulability of a task set under FPTS and FPPS
with CRPD as well as under FPTS and FPPS ignoring inter-task CRPD. As described
in Sect. 3.4, intra-task CRPDs have been incorporated in the worst-case computation
times of tasks. Ignoring inter-task CRPD provides an upper bound on schedulability
that cannot be exceeded even with perfect analysis of CRPD, i.e. with no pessimism.
Hence, it gives a useful indicator of the maximum amount of pessimism that could be
present in the derived approaches.

In the remainder of this section, we first present our basic system configuration.
Next, we present the results of a series of experiments. In the first series of experiments,
we show the ratio of schedulable task sets as a function of task-set utilization and
evaluate our STLS algorithm for the composite approach. In the next two series of
experiments we vary task-set parameters and cache-related parameters.

In many experiments, we use the so-called weighted schedulability ratio (Bastoni
et al. 2010) as a metric. This metric takes a weighted average of the schedulability
ratio over the entire utilization rangeU ∈ [0, 1] using the utilization (U ) as a weight.
It is defined as follows (Bastoni et al. 2010). Let Sy(T , p) be the binary result (1 if
schedulable, 0 otherwise) of schedulability test y for a task set T and parameter value
p. Then:

Wy(p) =
∑

∀T U · Sy(T , p)
∑

∀T U
, (49)

where U is the utilization of task set T . This weighted schedulability ratio reduces
what would otherwise be a 3-dimensional plot to 2 dimensions (Bastoni et al. 2010).
Weighting the individual schedulability results by task-set utilization reflects the higher
value placed on being able to schedule higher utilization task sets.

11.1 Experimental setup

As described in Sect. 3.5, we assume the typical mapping scheme frommemory blocks
to cache blocks as given in (1).

In our basic system configuration, we assume a cache with NC = 512 cache blocks
and a total cache utilization of UC = 4, i.e. the total number of ECBs of all tasks is
NC × UC = 2048. We then select the cache utilization UC

i of each task (the number
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of MBs of a task, |MBi |) using UUnifast (Bini and Buttazzo 2005), and derive the
number of ECBs of a task, |ECBi | using (2). 40% of a task’s ECBs are also UCBs,
i.e. |UCBi | = 0.4 · |ECBi |. We assume a block reload time (BRT) of 8µs. For each
experiment and for each parameter configuration, we generate a new set of 1000
systems.

For each system, we generate n = 10 tasks which are assigned deadline monotonic
priorities. For constrained deadlines and arbitrary deadlines, the deadlines Di are
selected from [(Ci + Ti )/2, Ti ] and [(Ci + Ti )/2, 4Ti ], respectively. The task periods
Ti are randomly drawn from the interval [10, 1000]ms. The individual task utilizations
Ui (withCi = Ui ×Ti ) are generated using the UUnifast algorithm (Bini and Buttazzo
2005). The pre-emption thresholds of tasks are selected by our OTA algorithm (see
Sect. 9).

The parameters used for simulated annealing in the algorithm searching for a
schedulable layout of tasks in memory (see Sect. 10) match those in Lunniss et al.
(2012). The breakdown utilization is calculated in m = 10 steps, yielding a scal-
ing factor 	 with a precision of 1

2m+1 ≈ 0.5 × 10−3. The initial temperature is set
to Tinit = 1, the cooling factor is given by fcooling = 0.98, and the target tem-
perature by Ttarget = 0.05. Hence, the task-layout search algorithm tries at most⌈
logTtarget−logTinit

log fcooling
+ 1

⌉
= 150 out of n! = 3, 628, 800 permutations. The evaluation

for FPPS in Lunniss et al. (2012) has shown that even though the number of evaluated
layouts is only a fraction of the total number of layouts, the layout search is likely to
find a schedulable layout, if one exists. We perform a similar evaluation for FPTS in
the next section.

11.2 Task-sets’ utilization

In our first series of experiments, we vary the task-set utilization. We start with an
evaluation of the CRPD approaches and deadline types and subsequently evaluate our
STLS algorithm for FPTS.

11.2.1 CRPD approaches and deadline types

The CRPD approaches and deadline types are evaluated by varying the task-set uti-
lization in four experiments. In the first three experiments, we evaluate the CRPD
approaches for implicit deadlines, constrained deadlines, and arbitrary deadlines. The
results of these experiments are presented by six graphs on two facing pages. The
even pages show 3 graphs for the composite approach for constrained (top), implicit
(middle), and arbitrary (bottom) deadlines using both the initial layout and the layout
search. The odd pages show the 3 additional graphs for the various CRPD approaches
presented in this paper for constrained (top), implicit (middle), and arbitrary (bottom)
deadlines using the initial layout. The graphs have been aligned both vertically (on
one page) as well as horizontally (on the even and odd page) to ease comparison.
Furthermore, the lines on the graphs appear in the same order as they are described
in the legend. The graphs are best viewed online in color. In the fourth experiment,
we evaluate the CRPD approaches by varying the deadline factor, i.e. by determining
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Fig. 6 Ratio of schedulable task sets versus task set utilization for constrained (top), implicit (middle) and
arbitrary (bottom) deadlines. The composite approach is used when CRPD is taken into account

the weighted schedulability ratio for different values of a deadline factor x , where the
relative deadline of each task τi is given by Di = x · Ti .

Figure 6 (middle) shows the ratio of task sets deemed schedulable for implicit dead-
lines, where the composite approach is used when CRPD is taken into account. The
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Fig. 7 Ratio of schedulable task sets versus task set utilization for constrained (top), implicit (middle) and
arbitrary (bottom) deadlines. The initial layout is used for the various CRPD approaches

relative performance improvement of FPTS compared to FPPS is strongly amplified
when including the CRPD. In contrast, FPTS and FPPS ignoring inter-task CRPD,
which is denoted bymeans of “without CRPD” in the figures, only differ in case of high
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Fig. 8 Weighted schedulability ratio for varying deadline factor and the composite approach for CRPD

task utilization (starting at U = 0.85) and at most by 20%. In the presence of CRPD,
however, FPPS is only able to schedule half of all generated task sets at a utilization of
U = 0.8 for the initial permutation, while FPTS is able to schedule more than 90%.
FPTS only experiences a similar performance degradation at a considerably higher
utilization, i.e. approximately at U = 0.88. With the task-layout search algorithm,
the performance of FPPS with CRPD can be improved, but remains well below the
performance of FPTS with CRPD for the initial permutation. The task-layout search
algorithm allows to improve the performance of FPTS with CRPD even further, e.g.
with approximately 20% for a utilizationU = 0.9. The evaluation indicates that even
though FPTS with layout-search cannot completely hide the effects of CRPD, it can
mitigate the impact significantly.

Figure 7 (middle) shows the ratio of task sets deemed schedulable for implicit
deadlines and the initial memory layout using various approaches whenCRPD is taken
into account. We have put Figures 6 and 7 on facing pages to ease comparison. Note
that the lines in Figures 6 and 7 for FPTS and FPPS without CRPD, and FPNS are the
same. Moreover, the line for FPTS with CRPD (initial layout) in Fig. 6 is the same as
the line for FPTS - Composite Approach in Fig. 7. For this experiment, the composite
approach and the UCB-Union Multiset approach give comparable results, i.e. the
ECB-Union Multiset approach provides hardly any advantage over the UCB-Union
Multiset approach for the settings of this experiment. The UCB-Only Multiset and
ECB-Only approach are outperformed by the UCB-Union Multiset and ECB-Union
Multiset approaches, as expected. For FPTS with CRPD, the UCB-Only Multiset and
ECB-Only approach (shown if Fig. 7) are even outperformed by FPPS with CRPD
and the combined approach (shown in Fig. 6), clearly showing the superiority of the
composite approach over other approaches.

Our second and third experiments consider the ratio of task sets deemed schedulable
versus the task set utilization for constrained and arbitrary deadlines. From constrained
towards arbitrary deadlines, the performance of all algorithms improve; see Fig. 6.
The relative performance improvement of FPTS compared to FPPS when including
CRPD is remarkable; FPPSwith CRPD and layout search can hardly schedule any task
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Fig. 9 Weighted schedulability ratio for varying deadline factor, the initial memory layout, and the various
CRPD approaches

sets for arbitrary deadlines and a utilization of 0.975, while FPTS can still schedule
approximately 45% for the initial layout and almost 70%with layout search.Moreover,
the advantage of layout search over the initial layout for FPTS only increases for
increasing utilizations, whereas the advantage reduces again after an initial increase
for FPPS.

Figure 7 also shows the results for constrained and arbitrary deadlines. Similar to
implicit deadlines, the ECB-Union Multiset approach provides hardly any advantage
over the UCB-Union Multiset approach, as shown by the overlapping lines of the
UCB-Union Multiset approach and the composite approach. Whereas the UCB-Only
Multiset approach outperforms theECB-Only approach for both implicit deadlines and
constrained deadlines, the ECB-Only approach outperforms the UCB-Only Multiset
approach for arbitrary deadlines with utilizations higher than 0.85.

Our fourth experiment concerns the weighted schedulability ratio for a varying
deadline factor, using the composite approach when CRPD is taken into account; see
Fig. 8. For any deadline factor, a deadline monotonic priority assignment is identical
to a rate monotonic priority assignment. For FPPS, the worst-case response times of
tasks are therefore independent of the deadline factor. For FPTS, where pre-emption
thresholds can still be selected, worst-case response times are not necessarily fixed,
however. As an example, with an increasing deadline factor, a task can tolerate more
blocking from lower priority tasks, potentially allowing more lower tasks to raise
their preemption threshold. As a result, the ability to increase worst-case response
times of higher priority tasks for an increasing deadline factor, allows lower priority
tasks to reduce their worst-case response times, and therefore meet their deadlines
at lower deadline factors. Although this potential advantage of FPTS over FPPS is
hardly noticeable without CRPD, it explains (i) why FPTS with CRPD performs close
to FPPS and FPTS without CRPD, in particular for larger deadline factors, and (ii)
why FPPS with CRPD experiences a clear performance loss compared to FPTS with
CRPD, in particular for larger deadline factors. As expected, theweighted schedulabil-
ity ratio is increasing as a function of the deadline factor, although the lines for FPPS
with CRPD converge to a value well below 1. Figure 9 complements Fig. 8 by also
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showing the weighted schedulability ratio for the various CRPD approaches for the
initial memory layout. Similar to Fig. 8, the weighted schedulability ratio is increasing
for an increasing deadline factor for all approaches. Although the UCB-Only Multiset
and the ECB-Only approaches are considerably less effective in bounding the CRPD
than the UCB-Union Multiset and the ECB-Union Multiset approaches, their perfor-
mance remain increasing for FPTS whereas the combined approach converged for
FPPS in Fig. 8. The relative performance improvement of FPTS compared to FPPS
is highest around a deadline factor equal to one (i.e. for implicit deadlines) and grad-
ually decreases for both a decreasing as well as an increasing deadline factor. For an
increasing deadline factor, both FPTS and FPPS can achieve a weighted schedulability
ratio of 1. In the presence of CRPD, however, FPPS is only able to achieve a weighted
schedulability ratio of 80% of the task sets (with layout search), while FPTS is able
to achieve close to 100% for an increasing deadline factor. The evaluation therefore
indicates that FPTS can almost completely hide the effects of CRPDwhen the deadline
factor is increased.

11.2.2 Schedulable task-layout search (STLS) algorithm

In this section, we first evaluate the effectiveness of the STLS algorithm (Algorithm 2)
for FPTS. Next, we discuss the relative improvements that can be achieved using the
STLS algorithm for FPPS and FPTS.

To evaluate the effectiveness of theSTLSalgorithm,we compare the ratio of schedu-
lable task sets with n = 7 tasks of a brute force algorithm, with the STLS algorithm
using different values for the cooling factor fcooling and the initial (sequential) layout
of tasks in memory. The brute-force algorithm, potentially trying every permutation
of task ordering, determines the schedulability of at most 7! = 5040 different layouts.
Figure 10 (middle) shows the results for implicit deadlines for an initial temperature
Tinit = 100 and cooling factors 0.98, 0.95, 0.9, and 0.8, resulting in at most 378, 150,
74, and 36 configurations to be examined, respectively.

Whereas the relative improvement of using the STLS algorithm for a cooling factor
of 0.8 is significant compared to the initial layout, subsequent increases in the max-
imum number of layout configurations considered clearly show diminishing results.
Similar to the SA-algorithm for FPPS (Lunniss et al. 2012), the STLS algorithm is
able to find a schedulable layout for FPTS in many cases, but in significantly less
time than the brute-force approach. The STLS algorithm for FPTS does not get as
close to a brute-force algorithm as the SA algorithm for FPPS, however. This could
be due to the fact that the STLS algorithm is agnostic of FPTS, i.e. it does not exploit
that tasks could be mutually non-preemptive based on their preemption thresholds.
Figure 10 also shows the results for constrained and arbitrary deadlines. The peak
of the ratio shifts towards a higher utilization from constrained deadlines to implicit
deadlines, and is gone for arbitrary deadlines, as also shown by the evaluation in
Fig. 6.

Wediscuss the relative improvements that canbe achievedusing theSTLSalgorithm
for FPPS and FPTS based on the single weighted schedulability values for the lines for
FPTS and FPPS with CRPD in the baseline experiment, which are given in Table 5.
We use five metrics that give the improvements achieved using
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Fig. 10 Ratio of schedulable task sets for n = 7 tasks, constrained (top), implicit (middle) and arbitrary
(bottom) deadlines, and the composite approach for CRPD. The ratios have been normalized based on the
sequential layout
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Table 5 Weighted schedulability ratio for the various scheduling algorithms

Scheduling algorithm Weighted schedulability ratio Notation

Constrained Implicit Arbitrary

FPTS with CRPD (layout search) 0.762431 0.857890 0.974838 WFPTSLS

FPTS with CRPD (initial layout) 0.711737 0.818222 0.948140 WFPTSIL

FPPS with CRPD (layout search) 0.647439 0.724327 0.792571 WFPPSLS

FPPS with CRPD (initial layout) 0.593637 0.644919 0.722304 WFPPSIL

Table 6 Relative improvements achieved for the weighted schedulability ratio

# Metric Weighted schedulability ratio

Constrained Implicit Arbitrary

1 Layout search with FPPS 0.09 0.12 0.10

2 Layout search with FPTS 0.07 0.05 0.03

3 FPTS instead of FPPS with initial layout 0.20 0.27 0.31

4 FPTS instead of FPPS with layout search 0.18 0.18 0.23

5 Both FPTS and layout search over FPPS 0.28 0.33 0.35

1. layout search with FPPS: (WFPPSLS − WFPPSIL)/WFPPSIL ;
2. layout search with FPTS: (WFPTSLS − WFPTSIL)/WFPTSIL ;
3. FPTS instead of FPPS with initial layout: (WFPTSIL − WFPPSIL)/WFPPSIL ;
4. FPTS instead of FPPS with layout search: (WFPTSLS − WFPPSLS)/WFPPSLS ;
5. both FPTS and layout search over FPPS: (WFPTSLS − WFPPSIL)/WFPPSIL .

Metrics 1 and 2 illustrate that the layout search for FPPS is more effective than for
FPTS; whereas a 12% improvement can be achieved for FPPS with implicit deadlines,
only 5% can be achieved for FPTS; see Table 6. The improvement that can be achieved
by the layout search for FPTS decreases from constrained towards arbitrary deadlines.
This is an immediate consequence of the improved performance for FPTSwith CRPD,
decreasing the relative advantage of the layout search over the initial layout; see Fig. 6.
Metrics 3 and 4 show the amount of improvement we get employing pre-emption
thresholds, e.g. 27% for the initial layout and implicit deadlines and 18% with the
layout search and implicit deadlines. Because the improvement of FPTS compared to
FPPS when CRPD is included increases from constrained towards arbitrary deadlines
(see Fig. 6) both metric 3 and 4 increase from constrained towards arbitrary deadlines
as well. Finally, metric 5 shows the merit of applying both FPTS and layout search, i.e.
the recommended solution, over what might be considered the default option of FPPS
and initial layout. The amount of improvement is almost 33% for implicit deadlines.
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11.3 Varying task-set parameters

In this first series of experiments, we vary task-set parameters, i.e. the range of the task
period and the number of tasks. For each of these experiments, we use the weighted
schedulability ratio as metric.

11.3.1 Period range

In the first experiment in this series, we vary the range of the task periods in steps of
increasing orders of magnitude. Figure 11 (middle) shows the weighted schedulability
ratio for a varying period range and implicit deadlines, using the composite approach
when CRPD is taken into account. Since we generate computation times depending
on the task periods, a larger range of the periods results in a larger computation time
for some tasks. The performance of FPNS quickly drops, because computation times
of tasks with a large period may exceed the periods (and the implicit deadlines) of
other tasks in the system. For the same reason, however, we may be unable to assign
a pre-emption threshold to tasks with a large period and long computation time other
than its regular priority. The performance of FPPS with CRPD therefore approaches
the performance of FPTS with CRPD. At the other extreme, when the range of task
periods is small, then FPTS with CRPD provides performance close to that of FPTS
without CRPD. This is because with a small range of periods and deadlines, the
OTA algorithm can set pre-emption thresholds such that most tasks cannot pre-empt
each other, thus greatly reducing CRPD. Overall, FPTS provides consistently high
performance irrespective of the range of task periods. The performance benefits of the
task-layout search remain stable.

Figure 11 (top and bottom) also shows the results for constrained and arbitrary
deadlines (respectively). The graphs clearly illustrate that the weighted schedulability
ratio increases from constrained to arbitrary deadlines for all algorithms. The graphs
also illustrate that the performance loss for FPTS due to CRPD gradually decreases
from constrained to arbitrary deadlines, whereas the performance loss for FPPS due
to CRPD remains roughly the same. As before, we attribute this relative strength of
FPTS to its ability to increase the worst-case response time of higher priority tasks
allowing a decrease of response times of lower priority tasks. This strength becomes
amplified for increasing deadlines.

Figure 12 shows the results for the various approaches when CRPD is taken into
account. Similar to the earlier experiments, the UCB-Union Multiset approach and
the composite approach have overlapping lines in the graphs.

11.3.2 Number of tasks

In the second experiment we vary the number of tasks from 2 to 20 in steps of 2.
Figure 13 (middle) shows the results for implicit deadlines. An increasing number of
tasks leads to an improved performance of FPTS with CRPD relative to FPPS with
CRPD. There are two reasons for this: (i) as the cache utilization remains constant,
the ECBs per task decrease and (ii) by increasing the number of tasks, the individual
task utilizations and execution times decrease, thus decreasing the potential blocking
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Fig. 11 Weighted schedulability ratio for varying period range and constrained (top), implicit (middle) and
arbitrary (bottom) deadlines. The composite approach is used when CRPD is taken into account

times. This gives the OTA algorithm more freedom to set pre-emption thresholds
such that most tasks cannot pre-empt each other, again greatly reducing CRPD. For
a low number of tasks, the task-layout search algorithm has only a minor impact
on the performance of FPPS and FPTS. The number of task layouts is limited, and
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Fig. 12 Weighted schedulability ratio for varying period range, constrained (top), implicit (middle) and
arbitrary (bottom) deadlines. The initial layout is used for the various CRPD approaches

thus also the potential gain. The difference between the initial and the improved layout
becomes noticeable at a task-set size of 6, and has its peak at 10 and 12 tasks. Although
the task-layout search remains effective in case of large task sets, the performance
benefits drop slightly. The larger the task set, the more potential task permutations
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Fig. 13 Weighted schedulability ratio for varying number of tasks and constrained (top), implicit (middle)
and arbitrary (bottom) deadlines. The composite approach is used when CRPD is taken into account

exist. Consequently, the search algorithm is only able to explore a smaller fraction of
the complete search-space making it less likely to find an optimal or near-optimal task
layout.
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Fig. 14 Weighted schedulability ratio for varying number of tasks, constrained (top), implicit (middle) and
arbitrary (bottom) deadlines. The initial layout is used for the various CRPD approaches

Figure 13 (top and bottom) also shows the results for constrained and arbitrary
deadlines (respectively). The performance of FPTS with CRPD converges to FPTS
without CRPD for an increasing number of tasks. For arbitrary deadlines, the per-
formance of FPTS with CRPD and FPTS without CRPD are almost the same. For
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Fig. 15 Weighted schedulability ratio for varying block reload time, constrained (top), implicit (middle)
and arbitrary (bottom) deadlines, and the composite approach for CRPD. The vertical black line indicates
a change in the scale of the x-axis

FPPS, however, a relative performance improvement of FPPS with CRPD compared
to FPPS without CRPD is not noticeable from constrained deadlines towards arbitrary
deadlines.
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Fig. 16 Weighted schedulability ratio for varying block reload time, the initial memory layout, constrained
(top), implicit (middle) and arbitrary (bottom) deadlines, and various approaches for CRPD. The vertical
black line indicates a change in the scale of the x-axis

Figure 14 shows the results for the various CRPD approaches for constrained,
implicit, and arbitrary deadlines. Similar to the earlier experiments, the UCB-Union
Multiset approach and the composite approach have overlapping lines in the graphs.
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For an increasing number of tasks, the performance of the UCB-Only Multiset
approach degrades faster than that of the ECB-Only approach. The rationale for this
behavior is that as the number of tasks gets larger, so the affected sets tend to become
bigger and hence the change that the number of UCBs of the tasks affected by a task
τ j is larger than the ECBs of task τ j increases.

11.4 Varying cache-related parameters

In the second series of experiments, we vary cache-related parameters, i.e. the block-
reload time, the cache utilization, the cache reuse, and the number of cache blocks.
For each of these experiments, we use the weighted schedulability ratio as a metric.
Becausewe assume that intra-taskCRPD is subsumed in theworst-case response times
of tasks and we generate a new set of 1000 systems for each parameter configuration
the weighted schedulability ratios for FPTS and FPPS without CRPD as well as FPNS
are independent of the parameter configuration. Stated differently, FPTS and FPPS
without CRPD as well as FPNS are represented in the graphs by means of horizontal
lines.

11.4.1 Block reload time

In the first experiment, we vary the block reload time (BRT) from 0 to 640µs.
Figure 15 (middle) shows the results for implicit deadlines. By increasing the
BRT, we increase the CRPD and therefore penalise pre-emption. Consequently, the
number of task sets deemed schedulable with FPPS with CRPD quickly drops to
zero, while the performance of FPTS with CRPD converges to the performance of
FPNS (as expected). The impact of the task-layout is naturally limited on the two
extremes, i.e. when the overall impact of the pre-emption delay is either negligi-
ble or dominating. Consequently, the layout-search is most efficient in the middle
range. Nevertheless, the absolute difference between the initial layout and the
improved layout remains largely constant for most values of the BRT and hence,
the relative benefits of the task-layout search increase with the pre-emption over-
head.

It is interesting to see that FPTS with CRPD is able to deem more task sets schedu-
lable than FPNS, even for an infinite BRT. The reason is as follows. If the sets of UCBs
and ECBs of two tasks are completely disjoint (which may happen for randomly gen-
erated UCBs and ECBs of tasks), the CRPD of these two tasks pre-empting each other
will remain zero. It is therefore possible that FPTS with CRPD outperforms FPNS,
because not every pre-emption will be penalised.

Figure 16 (middle) shows the results for various CRPD approaches and implicit
deadlines. Similar to the earlier experiments, the UCB-Union Multiset approach and
the composite approach have overlapping lines in the graphs.

Figures 15 and 16 also show the results for constrained and arbitrary deadlines.
Again, FPTS with CRPD can take advantage of increasing deadlines, as illustrated
by (i) the reducing performance gap between FPTS without CRPD and FPTS with
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CRPD and (ii) the increasing performance gap between FPTS with CRPD and FPPS
with CRPD from constrained deadlines to arbitrary deadlines.

11.4.2 Cache utilization

In the second experiment, we vary the total cache utilization (UC) from 0 to 160 and
we reset the BRT to 8µs. Since the number of cache blocks (NC) remains the same,
increasing UC means increasing the number of ECBs of tasks. Figure 17 (middle)
shows again a weighted schedulability ratio for implicit deadlines. FPPS and FPTS
with CRPD are both able to schedule considerably more task sets than FPNS. This
is due to the fixed number of cache blocks, which restricts the maximum possible
pre-emption cost. At a total cache utilization of 40, each pre-emption evicts most of
the cache contents which then need to be reloaded, hence further increases in cache
utilization have little effect on schedulability. The performance of the task-layout
search follows the same scheme as in Fig. 15: The task layout has no impact when
there is no CRPD at all, and also, when each task evicts the complete cache content
on pre-emption.

Figure 18 (middle) shows the results for various CRPD approaches and implicit
deadlines.Unlike the earlier experiments, the line of theUCB-UnionMultiset approach
no longer coincides with the composite approach in Fig. 18. As the cache utilization
becomes very large, then nearly all tasks have ECBs that fill the cache; however the
UCBs are only 40% of the ECBs. This means that the ECB-Union Multiset approach,
which uses the UCBs of affected tasks (intersected with ECBs - which then makes
very little reduction) reduces to the performance of the UCB-Only Multiset approach.
The UCB-Union Multiset approach combines UCBs for affected tasks into larger
sets before intersection with ECBs (which again makes very little reduction). As the
cache utilization becomes large, fewer tasks have less than the maximum amount of
UCBs (e.g. 40% of the cache size, since the number of ECBs tend towards the size
of the cache), thus the union of UCBs becomes increasingly larger than one task’s
UCBs (as used in the ECB-Union Multiset approach). Hence, the performance of
the UCB Union Multiset deteriorates faster than the ECB-Union Multiset approach.
Note that is does not reduce to the same performance as the ECB-Only approach,
since the union of UCBs still does not equate to the whole cache for many of the
considered tasks, whereas with the ECB-Only approach, the ECBs nearly always
do.

Because our earlier experiments assume a relatively low cache utilization, i.e.UC =
4, the lines in the graphs for the UCB-Union Multi-set approach and the composite
approach coincide. From Fig. 10 in Altmeyer et al. (2012) and Fig. 18 we observe that
the point at which the lines for the UCB-UnionMulti-set approach and the ECB-Union
Multiset approach cross differ. In the case of FPPS, they cross at UC = 9, while for
FPTS they cross at UC = 20.

Figures 17 and 18 also show the results for constrained and arbitrary deadlines.
The trends of the graphs for constrained and arbitrary deadlines are the same as for
implicit deadlines.
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Fig. 17 Weighted schedulability ratio for varying total cache utilization, constrained (top), implicit (middle)
and arbitrary (bottom) deadlines, and the composite approach. The vertical black line indicates a change in
the scale of the x-axis
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Fig. 18 Weighted schedulability ratio for varying total cache utilization, the initial memory layout, con-
strained (top), implicit (middle) and arbitrary (bottom) deadlines, and various approaches for CRPD. The
vertical black line indicates a change in the scale of the x-axis
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Fig. 19 Weighted schedulability ratio for varying reuse factors (percentage of UCBs), constrained (top),
implicit (middle) and arbitrary (bottom) deadlines, and the composite approach for CRPD.

11.4.3 Cache reuse

In the third experiment, we vary the cache reuse, i.e. the percentage of ECBs
that are also UCBs. Figure 19 (middle) shows the weighted schedulability ratio
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Fig. 20 Weighted schedulability ratio for varying reuse factors (percentage of UCBs), the initial memory
layout, constrained (top), implicit (middle) and arbitrary (bottom) deadlines, and various approaches for
CRPD

for implicit deadlines. As the UCB percentage increases, the performance of
FPTS and FPPS with CRPD decreases. Figure 19 also shows the results for
constrained and arbitrary deadlines. Similar to earlier experiments, e.g. where
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Fig. 21 Weighted schedulability ratio for varying cache size (number of cache blocks), constrained (top),
implicit (middle) and arbitrary (bottom) deadlines, and the composite approach for CRPD

the block reload time is varied, FPTS with CRPD can take more advantage
of increasing deadlines than FPPS with CRPD. Considering the graphs from
constrained deadlines to arbitrary deadlines, this is illustrated by (i) the reduc-
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Fig. 22 Weighted schedulability ratio for varying cache size (number of cache blocks), the initial memory
layout, constrained (top), implicit (middle) and arbitrary (bottom) deadlines, and various approaches for
CRPD

ing performance gap between FPTS without CRPD and FPTS with CRPD and
(ii) the increasing performance gap between FPTS with CRPD and FPPS with
CRPD.
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Figure 20 shows the results for constrained (top), implicit (middle) and arbitrary
(bottom) deadlines. In general, the graphs have the same trends as those of earlier
experiments, with the exception of the ECB-Only approach. Because the number of
ECBs remains the same, Fig. 20 contains horizontal lines for the ECB-Only approach.
This figure nicely illustrates the difference between the ECB-Only approach and the
UCB-Only Multiset approach. When including a contribution for a task τ j , the ECB-
Only approach includes the ECBs of task τ j itself, whereas the UCB-Union Multiset
approach uses the ECBs of the tasks affected by task τ j . Which method performs best
depends on the comparison between these two factors. When the UCB percentage is
high, the number of UCBs of affected tasks is larger than the number of ECBs of task
τ j , and the ECB-Only approach outperforms the UCB-Only Multiset approach. In
contrast, when the UCB percentage is small, the opposite is true and the UCB-Only
Multiset approach outperforms the ECB-Only approach.

11.4.4 Number of cache blocks

In the last experiment of this series, we vary the number of cache blocks (NC). Fig-
ure 21 (middle) shows the weighted schedulability ratio for implicit deadlines. As NC

increases, the total number of ECBs being used by tasks also increases and, contrary to
the second experiment, more of these ECBs fit into the cache. Hence, the pre-emption
costs increase when more blocks need to be reloaded. The schedulability ratios of
FPPS and FPTS with CRPD therefore decrease. FPPS will eventually be unable to
schedule any tasks. The performance of FPTS, however, converges to the performance
of FPNS, i.e. with FPNS task sets are unaffected by the increased pre-emption costs.
We recall that FPTS with CRPD still outperforms FPNS, because, after assigning the
highest possible pre-emption thresholds to tasks using ourOTA, some of the remaining
pre-emptions in the system may effectively come for free due to the limited overlap
between the UCBs of some tasks and the ECBs of others. While the schedulability
ratios for FPPS and FPTS decrease with the number of cache blocks, the impact of the
task-layout search increases. More cache blocks means that the difference between
different layouts increases. Nevertheless, the overall trend remains: increasing the
cache size decreases the schedulability ratios.

Figure 21 again shows that FPTSwith CRPD can takemore advantage of increasing
deadlines than FPPS with CRPD.

Figure 22 shows the results for various CRPD approaches for constrained (top),
implicit (middle), and arbitrary (bottom) deadlines. These figures have the same trends
as those of earlier experiments.

12 Conclusions

In this paper, we integrated analysis of CRPD into response time analysis for fixed
priority scheduling of tasks with pre-emption thresholds (FPTS) and arbitrary dead-
lines. Moreover, we introduced an OTA algorithm that minimizes the effects of CRPD
given an initial set of task priorities. The analysis we provided generalizes existing
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analysis for FPPS with constrained deadlines and CRPD described in Altmeyer et al.
(2012), and covers the most effective approaches presented in that paper, in particular
the ECB-Union and UCB-Union Multiset approaches. Finally, building on the work
in Lunniss et al. (2012), we presented a Schedulable Task-Layout Search (STLS)
algorithm to improve the layout of tasks in memory in order to make the task set
schedulable.

Wepresented an extensive comparative evaluation of the performance of the schedu-
lability tests for FPTS and FPPS with and without CRPD based on 3 orthogonal
dimensions and seven main experiments. Interestingly, we found that the theoretical
performance advantage that FPTS has over FPPS when there are no CRPDs is mag-
nified when CRPDs are taken into account. Further, even when the overheads (block
reload times) affecting CRPD are increased to very high levels, FPTS still retains a
performance advantage over FPNS (which it also dominates). This is due to the limited
overlap between the UCBs of some tasks and the ECBs of others, meaning that some
pre-emptions effectively come for free (i.e. no CRPD).

Regarding the three orthogonal dimensions on which the comparative evaluation
is based, i.e. CRPD approach, deadline type, and task layout, we can draw the fol-
lowing conclusions. In most of our experiments, the UCB-Union Multiset approach
outperforms the ECB-UnionMultiset approach for FPTSwithCRPD. In particular, the
UCB-Union Multiset approach has the same performance as the composite approach
that combines the UCB-Union Multiset and ECB-Union Multiset approaches. This
differs from the results in Altmeyer et al. (2012) for FPPS and CRPD. The reason for
this can be found in the experiment in which the cache utilization is varied, which
shows that the UCB-Union Multiset approach out performs the ECB-Union Multiset
approach until a cache utilization of 20 is reached (compared to 9 for a similar transi-
tion with FPPS), showing that the two methods are incomparable. In our evaluation,
we considered constrained, implicit, and arbitrary deadlines. We observed that in all
major experiments the performance of FPTS with CRPD improved significantly from
constrained towards arbitrary deadlines, unlike FPPS with CRPD, which showed only
marginal improvements.We attribute this strength of FPTS to its ability to decrease the
worst-case response time of lower priority tasks by means of preemption thresholds
at the expense of an increase of the worst-case response time of higher priority tasks
whenever higher priority tasks tolerate the additional blocking incurred. Finally, our
evaluation shows the merit of applying both FPTS and layout search, i.e. the recom-
mended solution, over what might be considered the default option of FPPS and initial
layout. The amount of improvement in the weighted schedulability range is 33% for
implicit deadlines.

Our results indicate that FPTS can rightly be viewed as a potential successor to FPPS
as a defacto standard in industry, where it is already supported by both OSEK (2005)
and AUTOSAR (AUT 2010) compliant operating systems.

There are a number of ways in which this work can be extended. Firstly, our STLS-
algorithm is based on simulated annealing and considers sequential layouts of tasks in
memory. A more comprehensive search based on genetic algorithms, including varia-
tions in layout including gaps between tasks, is a direction for future work. Secondly,
OSEK and AUTOSAR only specify/require a restricted version of FPTS. Although
the consequences of this restriction on the schedulability ratio of task sets without

123



464 Real-Time Syst (2017) 53:403–466

CRPD is shown to be limited (Hatvani and Bril 2015), the consequences with CRPD
are to be investigated. Thirdly, our OTA algorithm assumes that task priorities are
provided. The problem of optimally assigning both priorities and thresholds using a
computationally tractable method remains open.
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