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Abstract Following the substantial progress in molecular
simulations of polymer-matrix nanocomposites, now is the
time to reconsider this topic from a critical point of view.
A comprehensive survey is reported herein providing an
overview of classical molecular simulations, reviewing their
major achievements in modeling polymer matrix nanocom-
posites, and identifying several open challenges. Molecu-
lar simulations at multiple length and time scales, working
hand-in-hand with sensitive experiments, have enhanced our
understanding of how nanofillers alter the structure, dynam-
ics, thermodynamics, rheology and mechanical properties of
the surrounding polymer matrices.

Keywords Molecular Simulations · Polymer-Matrix
Nanocomposites ·Multiscale Modeling

1 Introduction

Polymer-matrix nanocomposites (PNCs) have drawn intense
research interest over the last decade owing to both the
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rich fundamental physics associated with mixing macro-
molecules and particles and their unique mechanical, opti-
cal, magnetic and other material properties [1]. Driven by
the need to develop functionally superior materials, signifi-
cant effort has been invested in understanding the structure,
dynamics, thermodynamics, rheology and mechanical prop-
erties of polymer-nanoparticle (NP) mixtures.

There are numerous excellent reviews of the field avail-
able [1–19] The present overview, organized according to
the answers to specific questions posed and not according to
the simulation methods employed, aims at illustrating how
molecular simulations have enhanced our understanding of
the complex and fascinating field of PNCs.

1.1 Polymer-Matrix Nanocomposites

In the simplest sense, a composite is an object made up of
two or more distinct parts. Within materials science and en-
gineering, composite materials are put together from two
or more components that remain distinct or separate within
the final product. Composites can be found anywhere, be-
ing as simple as a matrix material that envelops a reinforc-
ing material, such as concrete surrounding steel bars, the
latter preventing failure under tension. The real challenge
is that the options in making a composite material are al-
most limitless, but only a few sets of materials will combine
synergistically, and the design criteria may not be obvious.
The observation that, other things being equal, the effective-
ness of the filler increases with an increase in surface to
volume ratio has provided large impetus to the shift from
micron- to nanosized particles. With the appearance of syn-
thetic methods that can produce nanometer sized fillers, re-
sulting in an enormous increase of surface area, a new class
of materials emerged, known as Polymer-Matrix Nanocom-
posites (PNCs), i.e., polymer hosts filled with nanoparticles,
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which possess properties that typically differ significantly
from those of the pure polymer, even at low nanoparticle
concentrations.[1, 15]

Nanocomposite materials contain particles of size αp ∼
10 nm dispersed at a volume fraction, ϕ , often lower than
10−3 within a polymer matrix. They are thus characterized
by particle number densities ρn = 3ϕ/

(
4πα3

p
)
≈ 1020 m−3,

interfacial areas per unit volume 3ϕ/αp ≈ 106 m−1, and in-
terparticle spacings, ρ

−1/3
n − 2αp ≈ 100 nm that are com-

mensurate with the particle dimensions, αp and the radii of
gyration of matrix chains, Rg ≈ 10 nm.

The practice of adding nanoscale filler particles to re-
inforce polymeric materials can be traced back to the early
years of the composite industry, in the second half of the
19th century. Charles Goodyear, inventor of vulcanized rub-
ber, attempted to prepare nanoparticle-toughened automo-
bile tires by blending carbon black, zinc oxide, and/or mag-
nesium sulfate particles with vulcanized rubber [20]. An-
other example was the clay-reinforced resin known as Bake-
lite that was introduced in the early 1900s as one of the first
mass-produced polymer-nanoparticle composites and fun-
damentally transformed the nature of practical household
materials [21–24]. Then, a long period of time passed till the
early 1990s when it was first demonstrated that the thermal
and mechanical properties of Nylon-6 were improved by the
addition of a few percent (2-4 % w/w) mica-type layered
silicates to the extent that it could be used in an automotive
engine compartment [25, 26].

Even though some property improvements have been
achieved in nanocomposites, nanoparticle dispersion is dif-
ficult to control, with both thermodynamic and kinetic pro-
cesses playing significant roles. It has been demonstrated
that dispersed spherical nanoparticles can yield a range of
multifunctional behavior, including a viscosity decrease, re-
duction of thermal degradation, increased mechanical damp-
ing, enriched electrical and/or magnetic performance, and
control of thermomechanical properties [27–31]. The tailor-
made properties of these systems are very important to
the manufacturing procedure, as they fully overcome many
of the existing operational limitations. As a final product,
a polymeric matrix enriched with dispersed particles may
have better properties than the neat polymeric material and
can be used in more demanding and novel applications.
Therefore, an understanding and quantitative description of
the physicochemical properties of these materials is of major
importance for their successful production.

As part of this renewed interest in nanocomposites, re-
searchers also began seeking design rules that would allow
them to engineer materials that combine the desirable prop-
erties of nanoparticles and polymers. In light of the diversity
of polymers and nanoparticles, the potential for use of PNCs
is nearly limitless. The ensuing research revealed a num-
ber of key challenges in producing nanocomposites that ex-

hibit a desired behavior. The greatest stumbling block to the
large-scale production and commercialization of nanocom-
posites is the dearth of cost-effective methods for controlling
the dispersion of the nanoparticles in polymeric hosts. The
nanoscale particles typically aggregate, which negates any
benefits associated with the nanoscopic dimension. PNCs
generally possess nonequilibrium morphologies due to the
complex interplay of enthalpic and entropic interactions
leading to particle aggregation, particle bridging interac-
tions, and phase separation at various length scales [32, 33].
The second challenge is associated with understanding and
predicting property enhancements in these materials, which
are intimately connected to their morphology.

Nanocomposite research has recently expanded to con-
sider more complicated systems involving polymer blends
and block copolymers, where novel electrical, magnetic and
optical properties arise [15, 34, 35].

1.2 Multiscale Modeling

Understanding the fascinating and complex structure and
dynamics of polymeric materials has been an ongoing chal-
lenge for many decades. From the point of view of molecular
simulations, the spectrum of length and time scales associ-
ated with polymer melts of long chains poses a formidable
challenge to studying their long-time dynamics [36, 37]. The
topological constraints arising from chain connectivity and
uncrossability (entanglements) dominate intermediate and
long-time relaxation[38] and transport phenomena when
polymers become sufficiently long. Atomistic molecular
simulations of dense phases of soft matter prove to be diffi-
cult for many systems across length and time scales of prac-
tical interest. Even coarse-grained particle-based simulation
methods may not be applicable due to the lack of faithful
descriptions of polymer-polymer and polymer-surface in-
teractions. Since complex interactions between constituent
phases at the atomic level ultimately manifest themselves in
macroscopic properties, a broad range of length and time
scales must be addressed and a combination of modeling
techniques is therefore required to simulate meaningfully
the bulk-level behavior of nanocomposites [9].

Soft condensed matter is a relatively new term describ-
ing a huge class of rather different materials such as colloids,
polymers, membranes, complex molecular assemblies, com-
plex fluids etc. Though these materials are rather different in
their structures, there is one unifying aspect, which makes it
very reasonable to treat such systems from a common point
of view. Compared to “hard matter” the characteristic en-
ergy density is much smaller. While the typical energy of a
chemical bond (C-C bond) is about 3×10−19 J≈ 140kBT at
room temperature of 300 K, the nonbonded interactions are
of the order of kBT and allow for strong density fluctuations
even though the molecular connectivity is never affected (kB



Multiscale Molecular Simulations of Polymer-matrix Nanocomposites 3

is the Boltzmann’s constant). It is instructive to compare the
cohesive energy density, which gives a first estimate of the
elastic constants, between a typical “hard matter” crystal to
soft matter. The ratio between the two shows that polymeric
systems are typically 100 to 10000 times softer than classi-
cal crystals. As a consequence the average thermal energy
kBT is not negligible for these systems any more, but rather
defines the essential energy scale. This means that entropy,
which typically contributes to the free energy a term of the
order of kBT per degree of freedom, plays a crucial role.
Especially in the case of macromolecules, this is mainly in-
tramolecular entropy, which for a linear polymer of length
N contributes to the free energy a term of order NkBT , rep-
resenting about 90% of the free energy of polymeric ma-
terials [39]. As an immediate consequence it is clear that
typical quantum chemical electronic structure calculations
(Hartree-Fock or DFT) which focus on obtaining the energy
as a function of nuclear coordinates cannot be sufficient to
characterize soft condensed matter and will even be less suf-
ficient to properly predict/interpret macroscopic properties.
Molecular theoretical and simulation methods which incor-
porate entropic effects are required for this.

The length and time scales governing polymer physics
range from Å and femtoseconds for the vibrations of atomic
bonds to millimeters and seconds for crack propagation in
polymer composites. The entities used as basic degrees of
freedom are: electrons (quantum chemistry), atoms (classi-
cal forcefields), monomers or groups of monomers (coarse-
grained or mesoscopic models) and entire polymer chains
(soft fluids). All these methods and many others have been
applied side by side to polymers. Until recently, however,
multiscale methods with rigorous bridging between the dif-
ferent scales have been few.

1.2.1 Atomistic Molecular Dynamics (MD)

The stepping stone of classical molecular simulations is
atomistic Molecular Dynamics (MD). As accurate MD po-
tentials are developed for a broad range of materials based
on quantum chemistry calculations and with the increase
of supercomputer performance, atomistic MD simulations
have become a very powerful tool for analyzing complex
physical phenomena in polymeric materials, including dy-
namics, viscosity and shear thinning. However, as discussed
above, entangled polymer systems are characterized by a
wide range of spatial and temporal scales. It is still not fea-
sible to equilibrate atomistic MD simulations of highly en-
tangled polymer chain systems, due to their long relaxation
times, long-range electrostatic interactions and tremendous
number of atoms. The atomistic MD model for such a sys-
tem, with a typical size of about a micrometer and a relax-
ation time on the scale of microseconds (or even up to the
scale of seconds for long-chain polymer melts), would con-

sist of billions of atoms and would require billions of time
steps to run, which is obviously beyond the capability of the
technique, even with the most sophisticated supercomputers
available today.

1.2.2 Monte Carlo (MC)

A robust sampling of the configuration space of polymeric
substances is a prerequisite for the reliable prediction of
their physical properties. The constraints posed by atom-
istic MD simulations can be overcome by resorting to MC
simulations, which enable us to use the complete arsenal of
equilibrium statistical mechanics, e.g. perform sampling in
all sorts of ensembles [36, 37, 40–42]. Through the design
of efficient unphysical moves, configurational sampling can
be dramatically enhanced. MC moves such as concerted ro-
tation [43], configurational bias [44, 45], and internal con-
figurational bias[46] have thus successfully addressed the
problem of equilibrating polymer systems of moderate chain
lengths.

Even these moves prove incapable of providing equili-
bration when applied to long-chain polymer melts, however.
A solution to this problem was given by the development
and efficient implementation of a chain connectivity-altering
MC move, end-bridging [47, 48]. Using end-bridging, atom-
istic systems consisting of a large number of long chains,
up to C6000, have been simulated in full atomistic detail
[48, 49]. Despite its efficiency in equilibrating long-chain
polymer melts, end-bridging cannot equilibrate monodis-
perse polymer melts; a finite degree of polydispersity is nec-
essary for the move to operate. While this is not a draw-
back in modeling industrial polymers, which are typically
polydisperse, an ability to equilibrate strictly monodisperse
polymers is highly desirable for comparing against theory or
model experimental systems. Morover, end-bridginig relies
on the existence of chain ends, rendering itself inappropri-
ate for dense phases of chains with nonlinear architectures.
These limitations have been overcome by the introduction of
Double Bridging (DB) and Intramolecular Double Rebridg-
ing (IDR) [50, 51]. The key innovation of those moves is the
construction of two bridging trimers between two different
chains, as far as the former is concerned, or along the same
chain, as far as the latter move is concerned, thus preserving
the initial chain lengths.

MC simulations using atomistic forcefields have inher-
ent limitations, as Doxastakis et al. have shown [52]. The
hard interactions between atoms reduce the acceptance rate
of the moves. Thus, it is essential to resort to parallel tem-
pering techniques in order to allow motion of the system in
its phase space [53].
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1.2.3 Coarse Graining (CG)

Polymers show a hierarchy of length and time scales. How-
ever, the connectivity in a polymer molecule enforces an
interdependence between features on different scales. As a
consequence, the choice of where one building block ends
and where the next one begins is not unique, and it is not ob-
vious how to abstract from a fundamental degree of freedom
and use it in an implicit way in a coarser model. Thus, we
will use the generic term “coarse-grained” for any model
employing the idea of soft interacting particles (blobs) equal
to or larger than the monomers constituting the polymeric
chains.

The degree of coarse-graining is application-driven and
describes the number of atoms/molecules in a typical blob
considered by the coarse-grained model. It is closely related
to the minimal features of the atomistic model that should
be retained in order to reproduce the desired properties from
the coarse-grained model. Mapping an atomistic model to
a coarse-grained one is very important in defining the posi-
tions of coarse-grained particles and directly influences the
parameterization of the coarse-grained force field.

A general procedure in coarse-graining usually involves:
defining the observable of interest and determining the de-
gree of coarse-graining; deciding an appropriate mapping of
the atomistic model to the coarse-grained one; deriving in-
teractions between the coarse-grained particles; reproducing
target functions with the coarse-grained model; optimizing
parameters/functions in the coarse-grained model and vali-
dating its range of applicability; conducting coarse-grained
simulations.

1.2.4 Mesoscopic Simulations

A major challenge in simulating realistic PNCs is that
neither the length nor the time scales can be adequately
addressed by atomistic simulations alone, because of the
extensive computational load. Until relatively recently, a
somewhat neglected level of description in materials model-
ing has been the mesoscopic regime, lying between atomic
(or super-atomic like) particles and finite element-based
representations of a continuum, and covering characteristic
length scales of 10−8 m to 10−5 m. At this scale, the system
is still too small to be regarded as a continuum, yet too large
to be simulated efficiently using atomic models. In a more
precise way, a mesoscale can be defined as an intermediate
length scale at which the phenomena at the next level below
(e.g. particle motions) can be regarded as having been equili-
brated, and at which new phenomena emerge with their own
characteristic time scales.

Among the several mesoscopic methods applied to the
study of polymers, Self Consistent Field theory has been a
well-founded tool [54]. This method adopts a field-theoretic

description of the polymeric fluids and makes a saddle-
point (mean-field) approximation. An alternative to invok-
ing the saddle-point approximation is performing a normal
Metropolis Monte Carlo (MC) simulation, with the poten-
tial energy of the system given by field-theoretic functionals.
One of the first attempts has been made by Laradji et al.[55]
for polymer brushes and then by Daoulas and Müller[56]
and Detcheverry et al.[57, 58] for polymeric melts. The co-
ordinates of all particles in the system are explicitly re-
tained as degrees of freedom and evolve through MC moves.
Tracking the motion of mesoscopic particles requires the use
of stochastic dynamics [59].

2 Selected Unresolved Issues in PNCs

PNCs have been an area of intense industrial and academic
research for the past twenty years. Irrespectively of the mea-
sure employed - articles, patents, or funding - efforts in
PNCs have been exponentially growing worldwide over the
last ten years. PNCs represent a radical alternative to con-
ventional filled polymers or polymer blends - a staple of
the modern plastics industry. Considering the multitude of
potential nanoparticles, polymeric resins, and applications,
the field of PNCs is immense [60]. The restricted class of
polymer nanocomposites defined above still presents a com-
plex and fascinating problem in statistical mechanics due to
the richness of physical phenomena in mixtures of flexible
polymer coils and hard impenetrable objects. Despite the un-
precedented efforts placed on PNCs research there are still
open questions which have not been definitely addressed
yet. In the following we will summarize a few of them; later
we will analyze the perspective simulations and theoretical
calculations have provided us with.

Fundamental issues and questions include, but are not
limited to: the packing and structure of dense mixtures of
long polymer chains and hard impenetrable fillers, in the
presence of attractive, neutral or repulsive interactions; per-
turbation of polymer packing and the possible nonexistence
of a bulk region of the polymer matrix, especially in the case
of PNC films; non-universal filler-induced polymer con-
formational changes triggered by interfacial effects and/or
modification of the excluded volume screening mechanism
of a pure polymer melt; the way in which geometric and
chemical factors determine, in a nonadditive manner, the
competing entropic and enthalpic contributions to the mix-
ture free energy, miscibility and the physical nature of phase
separated states. In all cases, the large particle surface-to-
volume ratio leads to an amplification of a number of rather
distinct molecular processes, implying pervasive interfer-
ence between polymer layering around nanoparticle sur-
faces.
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2.1 Segmental Dynamics and the Glass Transition
Temperature

When cooling a glass forming liquid, instead of freezing at
a well defined temperature, one observes a huge increase
of the viscosity which takes place continuously. Such glass
formers can be either simple liquids or polymer liquids, and
many features are similar in both regarding the glass tran-
sition. One defines the glass transition temperature, Tg, as
the temperature at which the dominant relaxation time on
the molecular scale (or monomeric scale in the case of poly-
mers) reaches about∼ 100 s, which corresponds typically to
a viscosity of 1012 Pa s in the case of simple liquids. Typi-
cally for such glass forming liquids, the viscosity increases
by twelve orders of magnitude over a change of temperature
of about 100 K down to Tg. The underlying mechanisms in-
volved in this dramatic increase are still poorly understood
[61, 62].

Experimental results on polymer dynamics and the glass
transition in PNCs are not conclusive concerning the mech-
anism and the details of this modification. Increases or de-
creases in Tg by as much as 30 K[63] have been reported de-
pending on polymer - nanoparticle interactions. Reduction
of Tg has been reported in the case of weak interactions be-
tween filler and polymer [64]. In other cases the addition of
nanoparticles causes no significant change to the glass tran-
sition of the polymer, presumably because effects causing
increase and decrease of polymer mobility are present si-
multaneously and effectively canceling out each other [65].
Moreover, strong interactions between the filler particles and
the polymer suppress crystallinity, yielding new segmental
relaxation mechanisms in semicrystalline polymers, origi-
nating from polymer chains restricted between condensed
crystal regions and the semi-bound polymer in an interfacial
layer with strongly reduced mobility [66].

Concerning the spatial extent of the Tg-shift, several
studies [67, 68] on PNCs show an increase of the glass tran-
sition temperature, suggesting that the mobility of the entire
volume of the polymer is restricted by the presence of the
nanoparticles. However, there are many experimental results
suggesting that the restriction of chain mobility caused by
the nanoparticles does not extend throughout the material
but affects only the chains within a few nanometers of the
filler surface [69]. The existence of such an interfacial layer
seems relatively well-established in the case of silica-filled
elastomers, however its exact nature is not well understood:
experimental results have been described in terms of one or
two distinct interfacial layers or a gradual change in dynam-
ics with changing distance from the particle.

2.2 Enhancing Nanoparticle Dispersion by Surface
Grafting

One of the biggest challenges is the rational control of filler
clustering or aggregation, which often adversely affects ma-
terial properties. The idea of achieving a good, uniform
nanoparticle dispersion state has been the focus of con-
siderable research, especially because of its favorable im-
pact on optical and some mechanical properties of the re-
sulting composites [70, 71]. In the past few years, several
research groups have modified the surface of nanoparticle
fillers in an effort to improve their dispersion in a poly-
mer matrix. A promising strategy for controlling the disper-
sion and morphology of PNCs is to graft polymer chains
onto the nanoparticles to form a brush layer [33]. The free
chain/brush interfacial interactions may be “tuned” by con-
trolling grafting density, σg, the degree of polymerization
of the grafted chains, Ng, and of the polymer host, Nf,
the nanoparticle size, αp, and its shape. For example, if
nanoparticles are grafted with chains compatible with the
matrix polymer, filler dispersion is favored [72–76]. Mo-
tivated by this concept, experimentalists have synthesized
nanometer sized particles with high surface grafting den-
sity [74, 77, 78]. At fixed polymer chemistry, when the
molecular weight of matrix polymer is lower than that of
grafted polymer, nanoparticles disperse. On the contrary, if
the molecular weight of the matrix polymer is higher than
that of the grafted polymer, nanoparticles are thought to ag-
gregate [74]. Since both the matrix and the brush have the
same chemical structure, the immiscibility for longer matrix
chains is entropic in origin and attributable to the concept of
“brush autophobicity” [72, 79–83].

2.3 Mechanical and Rheological Properties

The dispersion of micro- or nano-scale rigid particles within
a polymer matrix often - but by no means always - pro-
duces an enhancement in the mechanical properties of these
materials. As mentioned earlier, the most important appli-
cation of this sort involves rigid inorganic particles (origi-
nally carbon black, later also silica) in a cross-linked elas-
tomer matrix, where an improvement of mechanical proper-
ties is sought. This so-called rubber reinforcement is a com-
plex phenomenon, which may involve an enhanced grip of
tires on wet roads, an improved resistance to wear and abra-
sion, and an increase of tire’s ultimate mechanical strength
(toughness, tearing resistance and low rolling resistance).

There is a variety of phenomena seeking an explana-
tion. For the sake of readability, we will focus on a sub-
set of them. Under very small cyclic deformations, there
is a linear viscoelastic regime characterized by a very sig-
nificant increase (sometimes even by two orders of mag-
nitude compared to the reference unfilled network) of the
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in-phase storage modulus, both under elongation and under
shear [84]. At medium-to-large strains, filled elastomers ex-
hibit a markedly non-linear response which is absent in un-
filled elastomers (“Payne effect”) [85]. The degree of non-
linearity increases strongly with particle loading. An order-
of-magnitude drop in the modulus is often observed on go-
ing to 5 - 10 % deformation (under shear), bringing the
asymptotic modulus of the filled systems much closer to that
of the reference unfilled network.

Other related effects are commonly observed in filled
elastomers. One is deformation hysteresis (“Mullins ef-
fect”): under cyclic deformation, the elastic modulus in the
first cycle is higher than that in the following ones [86]. This
points to some kind of “damage” of the material, which,
however, is often reversible. The original properties can be
recovered within a few hours, by high-temperature anneal-
ing of the sample. Secondly, fillers affect also the dissipative,
out-of-phase components of the modulus. This is expected,
since, probably, friction of the polymer chains against the
filler surfaces, or of two particles against each other pro-
duces new energy dissipation mechanisms, which are absent
in unfilled elastomers. Elastic and dissipative effects likely
share a common origin. Finally, reinforcement effects have a
remarkable temperature dependence. The small-strain (lin-
ear) modulus of filled rubbers decreases with temperature,
pointing to important enthalpic effects. The situation is com-
pletely reversed compared to unfilled elastomers, where the
modulus increases linearly with absolute temperature due to
the entropic nature of rubber elasticity.

3 From Statistical Mechanics to Computer Simulations

Our discussion starts by introducing the formalism of sta-
tistical mechanics and briefly describing the basic methods
used in computer simulations. We limit ourselves to the ab-
solute minimum of definitions and methods to be presented,
trying not to sacrifice consistency and rigor.

3.1 Motion in Phase Space

Statistical physics describes a system of N particles at a
given state as one point in 6N/dimensional phase space,
containing the atom positions and momenta (and neglecting
the internal degrees of freedom).[87] In classical mechan-
ics, the state of the system is completely specified in terms
of a set of generalized coordinates {qi} and generalized mo-
menta {pi}, where i= 1, . . . ,N. [88] We will refer to the 3N-
dimensional set from which the generalized coordinates of
the system {q}≡ {q1,q2, . . . ,qN} take on values as configu-
ration space, and to the 3N-dimensional set from which the
generalized momenta {p} ≡ (p1,p2, . . . ,pN) take on values

as momentum space. Any instantaneous microscopic state of
the system can be written as a point:

Γ = ({qi} ,{pi}) (1)

in the phase space of the system. The set of values of
the macroscopic observables, such as temperature, pressure,
etc., describes the system’s macroscopic state. One macro-
scopic state corresponds to all the microscopic states that
provide the same values of the macroscopic observables, de-
fined by the macroscopic state.

If we know the Hamiltonian, H ({qi} ,{pi} , t), for the
system, then the time evolution of the quantities qi and pi
(i = 1, . . . ,N) is given by Hamilton’s equations of motion

ṗi ≡
∂pi

∂ t
=−∂H ({qi} ,{pi} , t)

∂qi
(2)

and

q̇i ≡
∂qi

∂ t
=

∂H ({qi} ,{pi} , t)
∂pi

(3)

where i = 1,2, . . . ,N and ∂/∂x ≡ ∇x symbolizes the gra-
dient operator with respect to the vectorial quantity x. As
the system evolves in time and its state changes, the system
point traces out a trajectory in Γ -space. Since the subsequent
motion of a classical system is uniquely determined by the
initial conditions, it follows that no two trajectories in phase
space can cross. If the Hamiltonian H does not depend ex-
plicitly on time, then H is a constant of the motion. Such is
the case for conservative systems.

3.1.1 Time Average

Any property of the system, A , is then a function of the
points traversed by the system in phase space. The instanta-
neous property at a time t is A (Γ (t)) and the macroscopi-
cally meaningful observable property Aobs is the time aver-
age of this,

Aobs = 〈A (Γ (t)) 〉t = lim
tobs→∞

1
tobs

∫ tobs

0
A (Γ (t))dt (4)

In experiments, the time average comes about quite natu-
rally, since almost all experimental methods measure over
much longer time scales than the longest relaxation time of
the system. A straightforward approach, in order to get A
from molecular simulations, is to determine a time average,
taking a discrete sum over M time steps of length ∆ t:

Aobs ' lim
M→∞

1
M∆ t

M

∑
j=1

A (Γ ( j∆ t))∆ t (5)

This is the approach undertaken in Molecular Dynamics
(MD) simulations, where the atoms trajectory is followed
as a function of time, so it is straightforward to obtain the
average.
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3.1.2 Phase Space Probability Density

When we deal with real systems, we can never specify ex-
actly the state of the system, despite the deterministic char-
acter of its motion in phase space. There will always be some
uncertainty in the initial conditions. Therefore, it is useful to
consider Γ as a stochastic variable and to introduce a prob-
ability density ρ (Γ , t) on the phase space. In doing so, we
envision the phase space filled with a continuum (or fluid)
of state points. If the fluid were composed of individual
discrete points, then each point would be equipped with a
probability in accordance with our initial knowledge of the
system and would carry this probability for all time, since
probability is conserved. Because state points must always
lie somewhere in the phase space, we have the normalization
condition∫

Γ

ρ (Γ , t)dΓ ≡
∫

Γ

ρ ({qi},{pi}, t)d3N p d3Nq = 1 (6)

where the integration takes place over the entire phase space.
Similarly, the probability of finding the system in a small
finite region D of Γ -space at time t is found by integrating
the probability density over that region:

P(D, t) =

∫
D

ρ ({qi},{pi}, t)d3N p d3Nq (7)

The probability density for finding a system in the vicin-
ity of Γ depends on the macroscopic state of the system, i.e.
on the macroscopic constraints defining the system’s size,
spatial extent, and interactions with its environment. A set
of microscopic states distributed in phase space according
to a certain probability density is called an ensemble. A very
important measure of the probability distribution of an equi-
librium ensemble is the partition function Q. This appears as
a normalizing factor in the probability distribution defined
by the ensemble.

3.1.3 Ensemble Average

The ergodic hypothesis, originally due to L. Boltzmann [89],
states that, over long periods of time, the time spent by a sys-
tem in some region of the phase space of microstates with
the same energy is proportional to the volume of that region,
i.e., that all accessible microstates are equiprobable over a
long period of time. Ergodicity is based on the assumption
(provable for some Hamiltonians) that any dynamical tra-
jectory, given sufficient time, will visit all “representative”
regions in phase space, the density distribution of points in
phase space traversed by the trajectory converging to a sta-
tionary distribution.

According to the ergodic hypothesis we can calculate
the observables of a system in equilibrium as averages over
phase space with respect to the probability density of an

equilibrium ensemble, ρens (Γ ). If ρens (Γ ) obeys the nor-
malization condition, eq 6, on the entire phase space Γ and
also is zero for all points outside the hypersurface H (Γ ) =

E, the ensemble average can be defined as:

Aobs = 〈A 〉ens =
∫

A (Γ )ρens (Γ )dΓ (8)

In Monte Carlo (MC) simulations, the desired thermody-
namic quantities are determined as ensemble averages:

〈A 〉ens =

∑
Γ

A (Γ )ρens (Γ )

∑
Γ

ρens (Γ )
(9)

If we wish to obtain an average over points in phase space,
there is no need to simulate any real time dependence of
the system; one need only construct a sequence of states in
phase space in the correct ensemble. In the context of equi-
librium simulations, it is always important to make sure that
the algorithm used in the simulation is ergodic. This means
that no particular region in phase space should be excluded
from sampling by the algorithm. Such an exclusion would
render the simulation wrong, even if the simulated object
itself is ergodic. From a practical point of view, the ergodic-
ity of the system can and should be checked through repro-
ducibility of the calculated thermodynamic properties (pres-
sure, temperature, etc.) in runs with different initial condi-
tions.

3.2 Statistical Ensembles

3.2.1 Microcanonical (NV E) Ensemble

In the microcanonical (NV E) ensemble the number of par-
ticles, N, the volume of the system, V and the total energy,
E, are conserved. This corresponds to a completely closed
system which does not interact in any way with the environ-
ment and lies in a container of fixed volume, V . For simplic-
ity, we neglect the internal degrees of freedom. Then, the
system energy will be a sum of kinetic, K , and potential,
V energies. Since the total energy E must be conserved, the
criterion for adding states in the ensemble would be

H ({qi},{pi}) =K ({qi},{pi})+V ({qi},{pi})
=constant = E0 (10)

which means that not all, but only those states in phase space
Γ that have total energy E0 are allowed. This can also be
stated so that the probability density of the ensemble is

ρNV E ({qi},{pi}) =
1

QNV E
δ [H ({qi},{pi})−E0] (11)
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where δ is the Kronecker delta for a discrete system, and
the Dirac delta function for a continuous one. The partition
function in the microcanonical ensemble, QNV E , is:

QNV E = ∑
Γ

δ [H (Γ )−E0] (12)

The summation over states, ∑Γ , is used if microscopic states
are discrete and ρ (Γ ) has the meaning of a probability. For
one-component classical systems, the sum can be replaced
by an integral, yielding

QNV E =
1

N!
1

h3N

∫
dΓ δ [H (Γ )−E0]

=
1

N!
1

h3N

∫ N

∏
i=1

d3ri d3 pi δ [H ({qi},{pi})−E0]

(13)

where N! takes care of the indistinguishability of particles
of the same species and h3N is the ultimate resolution for
counting states allowed by the uncertainty principle.

The proper thermodynamic potential for the micro-
canonical ensemble is the entropy:

S = kB ln(QNV E) (14)

where kB is the Boltzmann constant. We therefore have a
statistical thermodynamic definition of entropy as a quantity
proportional to the logarithm of the number of microscopic
states under given N, V , E. Eq 14 establishes a fundamental
thermodynamic equation in the entropy representation.

3.2.2 Canonical (NV T ) Ensemble

In the canonical (NV T ) ensemble the number of particles,
N, the volume of the system, V , and temperature, T are con-
served. This corresponds to a closed system, which, how-
ever, can exchange heat with a large surrounding bath. The
energy is fluctuating, but the temperature is constant, de-
scribing the probability distribution of energy fluctuations.
The total energy of the system is given by its Hamiltonian,
H ({qi},{pi}). The probability density of the ensemble is:

ρNV T ({qi},{pi}) =
1

QNV T

1
N!h3N exp

[
−H ({qi},{pi})

kBT

]
(15)

with kB being the Boltzmann’s constant and QNV T the parti-
tion function in the NV T ensemble:

QNV T =
1

N!h3N

∫ N

∏
i=1

d3qi d3 pi exp
[
−H ({qi},{pi})

kBT

]
(16)

The thermodynamic function of the system is the
Helmholtz energy:

A =−kBT ln(QNV T ) (17)

Eq 17 defines a fundamental equation in the Helmholtz en-
ergy representation by expressing A as a function of N, V ,
T .

3.2.3 Isothermal - Isobaric Ensemble (N pT )

The isothermal-isobaric ensemble describes the equilibrium
distribution in phase space of a system under constant num-
ber of particles, temperature, and pressure. The volume of
the system is allowed to fluctuate. Thus, a point in phase
space is defined by specifying V , {qi} and {pi}, where the
domain from which the qis take on values depend on the
value of V .

The probability density of the N pT ensemble can be de-
rived from that of the microcanonical ensemble, by consid-
ering a bath around the system which acts as both a heat and
a work reservoir for the system under study. The probability
density, in a classical statistical mechanical formulation, is:

ρN pT ({qi},{pi};V ) =
1

QN pT

exp
[
−H ({qi},{pi})+ pV

kBT

]
(18)

where QN pT is the isothermal-isobaric partition function:

QN pT =
1

N!h3N
1

V0

∫
dV

∫ N

∏
i=1

d3qi d3 pi

exp
[
−H ({qi},{pi})+ pV

kBT

]
(19)

where V0 denotes some basic unit of volume introduced to
make the partition function dimensionless (the exact magni-
tude of V0 is immaterial).

The connection between the formalism of the isothermal
- isobaric ensemble and macroscopic thermodynamic prop-
erties is established via the Gibbs energy:

G(N, p,T ) =−kBT ln(QN pT (N, p,T )) (20)

3.2.4 Configurational Integral

As long as the Born-Oppenheimer approximation[90] is
valid (as it practically always is in equilibrium thermody-
namics) the potential energy of the system, V (Γ ), depends
only on the generalized coordinates, {qi}. Similarly, the ki-
netic energy, K (Γ ), depends only on the momenta {pi}.
Hence we can rewrite the expression for the system Hamil-
tonian as:

H (Γ ) = K ({pi})+V ({qi}) (21)

It can be now seen that, in a classical (as opposed to quan-
tum mechanical) treatment, the partition function, e.g. of the



Multiscale Molecular Simulations of Polymer-matrix Nanocomposites 9

NV T ensemble, factorizes into a product of kinetic (ideal
gas) and potential (excess) parts:

QNV T =
1

N!
1

h3N

∫ N

∏
i=1

d3 pi exp
[
−K ({pi})

kBT

]
∫ N

∏
i=1

d3qi exp
[
−V ({qi})

kBT

]
(22)

This can be written as a product of the ideal gas contribution,
and the excess contribution as:

QNV T = Qid
NV TV−NZNV T (23)

where:

ZNV T =

∫ N

∏
i=1

d3qi exp
[
−V ({qi})

kBT

]
(24)

is the so called configurational integral. The partition func-
tion of the ideal gas is:

QNV T =
V N

N!Λ 3N (25)

with Λ being the de Broglie or thermal wavelength:

Λ =

(
h2

2πmkBT

)1/2

(26)

From the perspective of a particle-based model, the fun-
damental problem of equilibrium statistical mechanics, ac-
cording to Chandler [91], is to evaluate a configurational
partition function of the form of eq 24.

Two important consequences arise from eq 23. First, all
the thermodynamic properties can be expressed as a sum of
an ideal gas part and an excess part. The chemical details
which govern the interactions between the atoms of the sys-
tem are included in the latter. In fact, in MC simulations the
momentum part of the phase space is usually omitted, and
all calculations are performed in configuration space. The
second important consequence of eq 23 is that the total av-
erage kinetic energy is a universal quantity, independent of
the interactions in the system. Indeed, computing the aver-
age of

K =
N

∑
i=1

p2
i

2m
(27)

with respect to the probability distribution of eq 15 and using
the factorization of eq 23 we obtain that [87]:

〈K 〉= 3
2

NkBT (28)

or, more generally 〈K 〉= 1/2NdofkBT for a system of Ndof
degrees of freedom.1

1 If the kinetic energy can be separated into a sum of terms, each of
them being quadratic in only one momentum component, the average
kinetic energy per degree of freedom is 1/2kBT , which is a special case
of the equipartition theorem [92].

4 Simulation Methods

4.1 Molecular Dynamics

In Cartesian coordinates, and under the assumption that the
potential energy V is independent of velocities and time,
Hamilton’s equations of motion read:

ṙi ≡ vi =
pi

mi
(29)

ṗi ≡−
∂V

∂ri
= Fi (30)

hence

mir̈i = Fi (31)

where Fi is the force acting on atom i:

Fi =−∇riV (32)

with the gradient being taken keeping all positions other
than ri constant. Solving the equations of motion then in-
volves the integration of 3N second-order differential equa-
tions (eq 31) which are Newton’s equations of motion.

The classical equations of motion possess some inter-
esting properties, the most important one being the con-
servation law. If we assume that K and V do not depend
explicitly on time, then it is straightforward to verify that
Ḣ = dH /dt is zero, i.e., the Hamiltonian is a constant
of the motion. In actual calculations this conservation law
is satisfied if there exist no explicitly time- or velocity-
dependent forces acting on the system. A second impor-
tant property is that Hamilton’s equations of motion are re-
versible in time. This means that, if we change the signs of
all velocities, we will cause the molecules to retrace their
trajectories backwards. The computer-generated trajectories
should also possess this property.

Concerning the solution of equations of motion, in the
limit of very long times, it is clear that no algorithm provides
an essentially exact solution. However, this turns out to be
not a serious problem, because the main objective of an MD
simulation is not to trace the exact configuration of a sys-
tem after a long time, but rather to predict thermodynamic
properties as time averages and calculate time correlation
functions representative of the dynamics.

In the following we briefly describe the most popular
family of algorithms used in MD simulations for the solu-
tion of classical equations of motion: the Verlet algorithms.
Another family of algorithms comprises higher-order meth-
ods, whose basic idea is to use information about positions
and their first, second, and higher order time derivatives at
time t in order to estimate the positions and their derivatives
at time t +∆ t [93].

In general, higher-order methods are characterized by a
much better accuracy than the Verlet algorithms, particularly
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at small times. However, their main drawback is that they are
not reversible in time, which results in insufficient energy
conservation, especially in very long-time MD simulations.
On the contrary, the Verlet methods are not essentially exact
for small times but their inherent time reversibility guaran-
tees that the energy conservation law is satisfied even for
very long times. This feature renders the Verlet methods,
and particularly the velocity-Verlet algorithm, the most ap-
propriate ones to use in long atomistic MD simulations.

4.1.1 Verlet Algorithm

The initial Verlet algorithm[94] ends up calculating the po-
sitions at time t+∆ t by using two Taylor expansions around
times t−∆ t and t +∆ t, respectively:

ri (t−∆ t) = ri (t)−vi (t)∆ t +
Fi (t)
2mi

∆ t2

− ...r i (t)
∆ t3

3!
+O

(
∆ t4) (33)

ri (t +∆ t) = ri (t)+vi (t)∆ t +
Fi (t)
2mi

∆ t2

+
...r i (t)

∆ t3

3!
+O

(
∆ t4) (34)

Summing these two equations we obtain:

ri (t +∆ t)≈ 2ri (t)− ri (t−∆ t)+
Fi (t)

mi
∆ t2 (35)

The estimate of the new positions contains an error that is
in the order of ∆ t4, where ∆ t is the time step employed in
our MD scheme. It should be noted that the Verlet algorithm
does not use the velocities to compute the new positions.
One can, however, derive the velocities from knowledge of
the trajectory, using

vi (t) =
ri (t +∆ t)− ri (t−∆ t)

2∆ t
+O

(
∆ t2) (36)

which is only accurate to order ∆ t2.

4.1.2 Velocity-Verlet Algorithm

The problem of defining the positions and velocities at the
same time can be overcome by casting the Verlet algorithm
in a different way. This is the velocity-Verlet algorithm [95],
according to which positions are obtained through the usual
Taylor expansion

ri (t +∆ t) = ri (t)+vi (t)∆ t + r̈i (t)
∆ t2

2
(37)

whereas velocities are calculated through

vi (t +∆ t) = vi (t)+
∆ t
2

[r̈i (t)+ r̈i (t +∆ t)] (38)

with all accelerations computed from the forces at the con-
figuration corresponding to the considered time.

4.2 Langevin Dynamics

When a large system is simulated, it is generally desired
to keep the number of degrees of freedom as low as pos-
sible. If a certain subset of particles can be distinguished, of
which details of the motion are not relevant, these particles
can be omitted from a detailed MD simulation. However,
the forces they exert on the remaining particles must be rep-
resented as faithfully as possible. This means that correla-
tions of such forces with positions and velocities of particle
i must be incorporated in the equations of motion of parti-
cle i, while uncorrelated contributions can be represented by
random forces. This brings us to the field of Langevin Dy-
namics (LD)[96, 97]. In LD a frictional force, proportional
to the velocity, is added to the conservative force, in order to
mimic an implicitly treated background (e.g. solvent). The
friction removes kinetic energy from the system. In order
to compensate for the friction, a random force adds kinetic
energy to the system.

In the simplest case of LD, the random force is taken
to have white-noise character, and no correlations between
the various degrees of freedom are assumed to exist. Under
these conditions, the velocity dependent frictional forces be-
come proportional to the instantaneous velocity of the parti-
cle considered. Thus, the equation of motion of a particle i
is transformed into the stochastic equation:

miv̇i (t) = Fi ({ri (t)})−ζivi (t)+F i (t) (39)

where the friction coefficient of a particle is denoted by ζi
and the random force by F i. The systematic force Fi is the
explicit mutual force between the N particles of the system,
which is to be derived from the potential (or free) energy of
the system, which depends on the positions of all particles,
denoted by {ri}.

The stochastic force, F i (t), is assumed to be a station-
ary Gaussian random variable with zero mean and to have
no correlations with prior velocities or with the systematic
force:〈
F i,α (0)F j,β (t)

〉
ens = 2ζikBTrefδi jδαβ δ (t) (40)

W (F i) =
(
2π
〈
F 2

i
〉

ens

)−1/2
exp

(
− F 2

i

2
〈
F 2

i
〉

ens

)
(41)

〈F i〉ens = 0 (42)〈
vi,α (0)F j,β (t)

〉
ens = 0, t ≥ 0 (43)〈

Fi,α (0)F j,β (t)
〉

ens = 0, t ≥ 0 (44)

where 〈. . .〉ens denotes averaging over an equilibrium en-
semble, indices α , β run over the Cartesian components (x, y
and z), kB is Boltzmann’s constant, Tref is the reference tem-
perature of the LD simulation and W (F ) is the (Gaussian)
probability distribution of the stochastic force. According to
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van Gunsteren et al.[98], the solution of the linear, inhomo-
geneous, first order differential equation, eq 39, is:

v(t) =vi (0)exp
(
− ζi

mi
t
)

+
1
mi

∫ t

0
exp
[
− ζi

mi

(
t− t ′

)][
Fi
(
t ′
)
+F i

(
t ′
)]

dt ′ (45)

4.2.1 Fluctuation-Dissipation Theorem

To generate a canonical ensemble, the friction and random
force have to obey the fluctuation - dissipation theorem [99].
Einstein was the first to extract the diffusion coefficient and
mobility in a special case of Brownian motion [100], and
made allusions to the existence of a balance between ran-
dom forces and friction. Then, Nyquist [101] formulated a
limited version of the theorem, in his study of noise in resis-
tors. Later, Callen and Welton [102] proved the theorem in
a generalized form.

According to Kubo [103], two different kinds of the
fluctuation-dissipation theorem can be distinguished. The
fluctuation-dissipation theorem of the first kind relates the
linear response of a system to an externally applied pertur-
bation and a two-time correlation function of the system in
the absence of external forces. The latter form is closely re-
lated to the famous Green-Kubo expressions for transport
coefficients. The fluctuation-dissipation theorem of the sec-
ond kind constitutes a relationship between the frictional
and random forces in the system, relying on the assumption
that the response of a system in thermodynamic equilibrium
to a small applied perturbation is the same as its response to
a spontaneous fluctuation [59].

4.2.2 Mori-Zwanzig Projection Operator Formalism

A formal way of deriving LD is the projection operator for-
malism of Zwanzig [104, 105] and Mori [106, 107]. The ba-
sis of the formulation is the assumption that we have partial
knowledge of the evolving system, for example we can only
track certain variables, while the effect of the other variables
is modeled or approximated in a rigorous way. In this ap-
proach the phase space is divided into two parts, which we
are called interesting and uninteresting degrees of freedom.
For the approach to be useful, the uninteresting degrees of
freedom should be rapidly varying with respect to the in-
teresting ones. Mori introduced two projection operators,
which project the whole phase space onto the sets of inter-
esting and uninteresting degrees of freedom. The full equa-
tions of motion are projected only onto the set of interest-
ing degrees of freedom. The result is a differential equation
with three force terms: a mean force between the interesting
degrees of freedom, a dissipative or frictional force exerted
by the uninteresting degrees of freedom onto the interest-
ing ones and a third term containing forces not correlated

with the interesting degrees. When the uncorrelated force is
approximated by a random force the interesting degrees of
freedom are considered independent of the uninteresting de-
grees of freedom.

4.3 Brownian Dynamics

If the friction exerted by the background to the particles un-
der consideration is high, correlations in the velocity will
decay in a time period over which changes in the system-
atic force are negligible. Such a system can be called over-
damped. In this case, the left-hand side of eq 39 can be ne-
glected, after averaging over short times. The result is Brow-
nian Dynamics (BD), which is described by the position
Langevin equation:

vi (t) =
1
ζi

Fi ({ri (t)})+
1
ζi

F i (t) (46)

The time scale separation makes possible the exchange of
the second order stochastic differential equation (eq 39) for
a first order stochastic differential equation, eq 46, without
affecting the dynamics on time scales longer than mi/ζi.

Van Gunsteren and Berendsen [108, 109] have proposed
several algorithms for integrating eq 46. We will pay a closer
look to the one which reduces to the Verlet algorithm for
zero friction. If we assume a timestep of ∆ t, for large values
of ζi/mi∆ t in the diffusive regime, when the friction is so
strong that the velocities relax within ∆ t, the BD algorithm
reduces to:

ri,α (tn +∆ t) =ri,α (tn)

+
1
ζi

[
Fi,α (tn)∆ t +

1
2

Ḟi,α (tn)
(
(∆ t)2

)]
+Ri,α (∆ t) (47)

with i enumerating the particles, 1 ≤ i ≤ N, and α marking
a Cartesian component of the vectors. The random displace-
ment R (∆ t) is sampled from a Gaussian distribution with
zero mean and width:

〈
R2

i,α (∆ t)
〉
=

2kBTref

ζi
∆ t (48)

The reader is reminded that the integration timestep ∆ t
should be small enough, such that systematic forces do
not change significantly over its duration. The integration
scheme for BD (eq 47) resembles a MC algorithm, except
that there is no acceptance criterion. Rossy et al.[110] have
derived the correct acceptance probability and introduced
their method under the name “Smart Monte Carlo”.



12 Georgios G. Vogiatzis, Doros N. Theodorou

4.4 Dissipative Particle Dynamics

Molecular Dynamics (MD) is a powerful simulation tech-
nique capable of producing realistic results in a wide spec-
trum of applications. However, the computational cost of
a detailed atomistic interaction model in that paradigm
severely limits its applicability beyond extremely small spa-
tial and short temporal scales. Within the family of simu-
lation techniques designed to overcome the limitations of
MD, we turn our attention to Dissipative Particle Dynamics
(DPD), which allows the study of complex hydrodynamic
phenomena in extensive scales. The DPD method was in-
troduced in 1990s as a novel scheme for mesoscopic simu-
lations of complex fluids [111, 112]. In DPD simulations,
the particles represent clusters of molecules that interact
via conservative (non-dissipative), dissipative and fluctuat-
ing stochastic forces. Because the effective interactions be-
tween clusters of molecules are much softer than the interac-
tions between individual molecules, much longer time steps
can be taken relative to MD simulations. This approach is
ultimately based on the Langevin equation, the stochastic
differential equation describing Brownian motion account-
ing for the omitted degrees of freedom by a viscous force
and a noise term.

The original DPD model tracks the equation of motion
of the particles:

mi
∂vi

∂ t
= Fi , (49)

where mi, ri and vi =
∂ri
∂ t are the mass, position and velocity

of particle i, respectively. The total force, Fi, acting on each
particle consists of three parts:

Fi = ∑
j 6=i

(
FC

i j +FD
i j +FS

i j
)
, (50)

where FC
i j, FD

i j and FS
i j represent the conservative, dissipative

and stochastic forces between particles i and j, respectively.
The conservative force depends on the distance between par-
ticles i and j, ri j and is directed along the unit vector of their
separation, r̂i j:

FC
i j = f C (ri j) r̂i j (51)

where f C (ri j) is a non-negative (i.e. neutral or repulsive)
scalar function determining the form of the conservative in-
teractions, depending on the particular system of interest. In
literature it is frequently implemented as a soft repulsion of
the form:

f C (ri j) =

{
αi j

(
1− ri j

rc

)
ri j ≤ rc

0 ri j > rc
(52)

where αi j is a parameter determining the maximum repul-
sion between the particles and rc is a cut-off distance.

The dissipative force, FD
i j, represents the effect of vis-

cosity and depends on the relative positions and velocities
of the particles. The form usually used for this interaction in
DPD simulations is [113]:

FD
i j =−γwD (ri j)(r̂i j ·vi j) r̂i j (53)

where γ is a friction coefficient, vi j = vi− v j and wD (ri j)

is a distance-dependent weighting function. The fluctuating
random force depends on the relative positions of the parti-
cles, and is defined as:

FS
i j = σwS (ri j)ξir̂i j , (54)

with σ being a coefficient, wS (ri j) is a distance-dependent
weighting function and ξi is a random variable sampled from
a Gaussian distribution with zero mean and unit variance.
It should be noted that both the dissipative and the random
force act along the particle separation vector and therefore
conserve linear and angular momentum. Also, the result-
ing model fluids are Galilean invariant because the particle-
particle interactions depend only on relative positions and
velocities. The fluctuating stochastic force, FS

i j, heats up the
system, whereas the dissipative force, FD

i j, reduces the rela-
tive velocity of the particles, thus removing kinetic energy
and cooling down the system. Therefore, the stochastic and
dissipative forces act together to maintain an essentially con-
stant temperature which fluctuates around the nominal tem-
perature of the simulation, T . Dissipative particle dynam-
ics simulations can be thought of as thermostatted molecu-
lar dynamics simulations with soft particle-particle interac-
tions.

Despite qualitative observations, there was no theoret-
ical justification that DPD produces the correct hydrody-
namic behavior until Español and Warren [114] formulated
the Fokker-Planck equation for studying the equilibrium
properties of the stochastic differential equation describing
DPD. Later, Español [115] derived the macroscopic hydro-
dynamic variables starting from the microscopic descrip-
tion. In order to recover the proper thermodynamic equilib-
rium for a DPD fluid at a temperature T , the coefficients
and the weighting functions for the dissipative and random
forces should be related by:

wD (ri j) =
[
wS (ri j)

]2
(55)

and

γ =
σ2

2kBT
(56)

as required by the fluctuation-dissipation theorem. All in-
teraction energies are expressed in units of kBT , which is
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usually assigned a value of unity. One straightforward and
commonly used choice is:

wD (ri j) =
[
wS (ri j)

]2
=


(

1− ri j
rc

)s
r < rc

0 r ≥ rc

(57)

where rc is the cut-off distance of the the dissipative and the
random force. In conventional DPD formulation, it usually
takes the same value as the cut-off distance of the conser-
vative force but it can vary in order to modify the dynamic
properties in DPD simulations. For conventional DPD sim-
ulations, the exponent of the weighting function, s, is set
equal to 2 with wD and its gradient being continuous at
ri j/rc = 1.

Summarizing, Español and Warren [114] established a
sound theoretical basis for DPD and Groot and Warren [116]
obtained parameter ranges to achieve a satisfactory com-
promise between speed, stability, rate of temperature equili-
bration, and compressibility. Unlike traditional DPD meth-
ods using conservative pairwise forces between particles,
the multi-body DPD model presented by Pagonabarraga and
Frenkel [117] assumes that the conservative force depends
on the instantaneous local particle density, which in turn de-
pends on the positions of many neighboring particles. As
far as the integration of the DPD equations of motion is
concerned, Pagonabarraga et al.[118] proposed a leap-frog
scheme which was self-consistent and satisfied a form of mi-
croscopic reversibility. Thus, the correct equilibrium proper-
ties could be recovered from trajectories generated with that
algorithm.

4.5 Monte Carlo

The Monte Carlo (MC) method is a statistical approach for
finding approximate solutions to problems by means of ran-
dom sampling. In addition to molecular simulations and
physics, it is widely applied in other natural sciences, math-
ematics, engineering and social sciences [119]. The earliest
treatments in the subject, such as this by Babier [120], were
made in connection with the “Buffon’s needle problem”. 2

According to Metropolis [121], the invention of the modern
class of MC algorithms is due to Enrico Fermi, when he was
studying the properties of the then newly-discovered neu-
tron in 1930. It was further developed during the 1940s by
physicists working in the nuclear weapons program of the
United States, at the Los Alamos National Laboratory. The
technique was given its name by Nicholas Metropolis, in
reference to the famous casino in Monaco, considering the

2 The following problem was posed by Georges-Louis Leclerc,
Comte de Buffon: given a needle of length l dropped on a floor striped
with parallel lines t units apart, to find the probability that the needle
will land such that it crosses a line. (The answer being (2l)/(tπ).)

use of randomness and the repetitive nature of the sampling
process.

In their simplest version, MC simulations of simple flu-
ids are carried out by sampling trial moves for the molecules
from a uniform distribution. For example, in a canonical
(NV T ) ensemble simulation, a molecule is chosen at ran-
dom, and then displaced, also randomly to a new position.
The trial move is accepted or rejected according to an im-
portance sampling scheme [93, 122, 123]. A frequently used
importance sampling algorithm is the Metropolis algorithm,
originally derived for the specific case of the Boltzmann dis-
tribution [122] and later generalized to other distributions
[124] which need not to be analytical (e.g. the force-bias
method of Pangali et al.[123] provides a classical example
of such algorithms).

The probability of accepting a move, Paccept, of the form:

Paccept = min
[

1,
P(O|N )P(N )

P(N |O)P(O)

]
(58)

will asymptotically sample the configuration space accord-
ing to a probability P. In eq 58, Paccept is the probability with
which trial moves are accepted or rejected, P(N |O) is the
transition probability of making a trial move from state O
to state N , and P(O) is the probability of being at state O .
This means that, at equilibrium, the average number of ac-
cepted trial moves that result in the system leaving state O
must be exactly equal to the number of accepted trial moves
from all other states N to the state O . This is a looser state-
ment of the detailed balance condition, reflected in eq 58,
that at equilibrium the average number of accepted moves
from O to any other state N should be exactly canceled by
the number of reverse moves.

In the original Metropolis scheme [122], the probabil-
ities P(N |O) form a symmetric matrix, constructing a
Markov chain that has the Boltzmann distribution as its
equilibrium distribution. In this case, there is no bias in-
volved in making the move and eq 58 reduces to the standard
Metropolis acceptance criterion:

Paccept = min
{

1,exp
[
−V (N )−V (O)

kBT

]}
(59)

The advanced MC methods are based on judicious choices
of P(N |O) [93]. It should be noted that the simulation
steps in the MC technique are steps in configuration space
and there is no notion of “time” in MC simulations. This is
contrast to MD, where the simulation steps are explicit time
steps. Moreover, a computational advantage of MC over MD
is that only the energy needs to be calculated, not the forces,
rendering the Central Processing Unit (CPU) time needed
per step smaller than that of an MD simulation.
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Table 1 Conversion to reduced units for some commonly used quan-
tities with ε , σ and m as the basis units for energy, length and mass,
respectively.

Quantity In reduced units

Energy E∗ = E/ε

Length L∗ = L/σ

Mass M∗ = M/m
Density ρ∗ = σ3ρ

Temperature T ∗ = (kBT )/ε

Force F∗ = (σF)/ε

Pressure p∗ = (σ3 p)/ε

Time t∗ = t
√

ε/(mσ3)

4.6 Reduced Units

Molecular simulations can conveniently been performed in
non-dimensional or reduced units, based on the character-
istic physical dimensions of the system under study. Work-
ing with reduced units is preferred mainly because they are
physically easier to interpret, and the results obtained be-
come applicable to all materials modeled by the same po-
tential. Reduced units are obtained by expressing all quanti-
ties of the simulation in terms of selected base units which
are characterizing the system, in order to make equations di-
mensionless. Table 1 presents some reduced quantities. For
example, in the case of the Lennard-Jones potential, the par-
ticle diameter, σ , the depth of the potential well, ε , together
with the mass of the simulated particles, m, provide a mean-
ingful and complete set of base units for simulations.

5 Structural Predictions

5.1 Chain Dimensions in the Bulk

One of the most important and probably the most funda-
mental question in the area of PNCs is how the size of the
polymer chains is affected by the dispersion of nanoparti-
cles. There has been considerable controversy in the experi-
mental literature over whether nanoparticles cause chain ex-
pansion (swelling) [125, 126], contraction,[127] or neither
[128–133]. The sign (attractive or repulsive) and strength
of the nanoparticle/polymer interactions, the relative dimen-
sions of the chains with respect to the size of the nanopar-
ticle, Rg/Rn, and the exact state of dispersion, have been
identified as the key factors that can account for the afore-
mentioned differences in the structure of the matrix chains.

5.1.1 Experimental Findings

Chain conformations in PNCs have been primarily mea-
sured by small angle neutron scattering (SANS). These mea-
surements are greatly facilitated by combining deuterated
and hydrogenated chains such that the average scattering

length density of the polymer blend matches that of the filler.
This zero average contrast condition [134], which is hard
to achieve, minimizes the scattering due to the nanoparti-
cles. To date, studies which report increases in polymer di-
mensions, in the case of spherical nanoparticles, invoke the
presence of attractive nanoparticle / polymer interactions,
combined with Rg > Rn, and good nanoparticle dispersion
[135], to conclude that the nanoparticles behave as a good
solvent for the polymer chains. However, even though the
existence of a shell containing polymer of reduced mobility
is acceptable in nanocomposites composed of strongly in-
teracting particles and polymer, e.g. composed by silica and
PMMA, the size of the chains, e.g. in terms of their radius
of gyration, Rg, is intrinsically independent of the the vol-
ume fraction, φ , (up to φ ' 0.1) and the polymer-to-particle
size ratio [132]. All other studies on spherical nanoparticles
showed little if any changes in polymer Rg, that is where the
nanoparticle-polymer intractions are believed to be ather-
mal, or significant nanoparticle aggregation was present, due
to unfavorable nanoparticle/polymer interactions [136].

In an early study of a poly(dimethylosiloxane) / polysili-
cate (Rn = 1 nm) nanocomposite [125], a significant increase
of the polymer chain dimensions (reaching 60% expansion
at nanoparticle volume fraction, φ = 40%) was observed for
Rg > Rn and a decrease in polymer dimensions for Rg ≤ Rn.
Neutron scattering studies of an athermal polystyrene (PS)
PNC, indicated swelling of the matrix chains, induced by
dispersed tightly cross-linked PS nanoparticles [126]. PS
chains around crosslinked PS particles (Rn = 2− 3.6 nm)
were found to be expanded by up to 20 % relative to their
unperturbed size, when their unperturbed radius of gyration
was comparable to or larger than the radius of the dispersed
particles. More recent studies of PS/silica nanocomposite
[128, 129, 131] for Rg/Rn = 2−4,[131] and poly(ethylene-
propylene)/silica nanocomposites, [127] found no perturba-
tion of the matrix chain dimensions.

We may attribute the qualitatively different trends de-
duced by different experimental studies to several factors,
including, but not limited to the following: (a) most of the
polymers used exhibit significant polydispersity, (b) particle
dispersion/agglomeration cannot be adequately quantified,
(c) the molecular weight of the isotopic polymers blended
with the filler were quite different in at least one case. The
compound effect of these factors can result in significant un-
certainty in the chain dimensions measured. Molecular sim-
ulations can shed some light on the role of nanoparticles on
chain dimensions, especially in regimes where it is hard to
conduct experiments.

5.1.2 Insight Obtained from Simulations

From the point of view of molecular simulations, there also
exists controversy as to whether the incorporation of nano-
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Fig. 1 (a) Transmission electron microscopy (TEM) micrographs of
nanocomposites formed from PS of 250 kg/mol molecular weight and
indicating % vol loading of silica in each sample. (b) Ratio of the radius
of gyration of the PS chains in the presence of particles to their corre-
sponding value in the pure blend for 90 kg/mol PS (green squares), 250
kg/mol PS (blue circles) and 620 kg/mol PS (red triangles) as functions
of the silica volume fraction. In the inset to the figure, plot of small an-
gle neutron scattering intensities in absolute units as a function of q for
the 250 kg/mol PS nanocomposites. The interested reader can refer to
[128] for more details. (Reprinted figure with permission from [128].
Copyright 2007 by the American Physical Society).

particles in a polymer melt causes polymer chains to ex-
pand, remain unaltered or reduce [137–139] their dimen-
sions compared to their size in the bulk material. To date,
all studies have indicated that, irrespectively of the absolute
dimensions of the chains in the interparticle region, these
retain their unperturbed Gaussian scaling. This is a striking
feature, resembling the scaling behavior of chains in thin
films [140, 141], where chain conformations parallel to the
surface assume their unperturbed values even for film thick-
nesses < Rg. Most of the simulation works have addressed
polymer dimensions in nanocomposites below the percola-
tion threshold (φc = 31% [142]), except the early works of
Vacatello [137–139, 143] that were implemented at constant
density and spatially frozen nanoparticles.

Sen et al.[128] employed polymer reference interaction
site model (PRISM) [144, 145] calculations in order to inter-
pret small angle neutron scattering findings on polystyrene

loaded with spherical silica nanoparticles under contrast-
matched conditions. They considered blends with 66 wt %
hPS and 34 % dPS, which almost contrast match the sil-
ica. Nanocomposites with 0, 2.9, 6.1 and 9.1 % vol silica
were prepared for each molecular weight and 15.9 and 27.4
vol % for the higher molecular weights considered. How-
ever, in their experiments, as in earlier studies [146, 147],
the particles were imperfectly mixed with the polymeric ma-
trix, with particles being surrounded by “voids”, especially
at large filler contents. In parallel, the PRISM theory was
applied, by modeling the fillers as hard sphere and poly-
mers as freely jointed chains with a realistic persistence
length. Polymer-polymer and particle-particle interactions
were taken to be hard-core, while monomers and filler in-
teract via an exponentially decreasing attraction over a pre-
defined spatial range. From the experimental point of view
(Fig. 1), the low-q intensity increases dramatically with in-
creasing silica content, especially for loadings ≤ 10 vol %,
implying that the matrix is not totally contrast matched to
the filler (unsurprising in light of voids surrounding par-
ticles [146]). However, the scaling and dimensions of the
polymer chains can be obtained from the high-q intensity
which is expected to be independent of the filler structure
[146]. Their results (Fig. 1) showed that chain conforma-
tions follow unperturbed Gaussian statistics independent of
chain molecular weight and filler composition. Liquid state
theory calculations were consistent with this conclusion and
also predicted filler-induced modification of interchain poly-
mer correlations which had a distinctive scattering signature
that was in nearly quantitative agreement with the experi-
mental observations. The chain Rg varied from ∼ 8 nm (90
kg/mol) to 22 nm (620 kg/mol), bracketing the nanoparticle
diameter (∼ 14 nm), suggesting that the ratio of the particle
size to Rg was not an important variable in that context.

The structure of a polystyrene matrix filled with tightly
cross-linked polystyrene nanoparticles, forming an athermal
nanocomposite system, has been investigated by means of a
Monte Carlo sampling formalism by Vogiatzis et al. [148].
Although the level of description is coase-grained (e.g., em-
ploying freely jointed chains to represent the matrix), the ap-
proach developed aims at predicting the behavior of a nano-
composite with specific chemistry quantitatively, in contrast
to previous coarse-grained simulations. A main character-
istic of the method was that it treats polymer - polymer and
polymer - particle interactions in a different manner: the for-
mer are accounted for through a suitable functional of the
local polymer density, while the latter are described directly
by an explicit interaction potential. The simulation method-
ology was parameterized in a bottom-up fashion in order to
mimic the experiment studies. Many particle systems, with
volume fractions up to 15 vol %, were simulated. The posi-
tions of the nanoparticles were held constant in the course
of the simulation, while polymeric chains were allowed to
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Fig. 2 Radius of gyration of polystyrene chains in melts filled with
tightly cross-linked PS nanoparticles of radius Rn = 3.6 nm, normal-
ized by its value in the bulk, Rg,0, as a function of the particle volume
fraction. The corresponding molecular weights are 23 (a), 47 (b), 93
(c) and 187 (d) kg/mol, respectively. (Reprinted from [148] with per-
mission from Elsevier.)

equilibrate via a combination of MC moves. The generation
of many independent initial configurations compensated for
the immobility of the particles along the simulation. The val-
ues of the radius of gyration Rg, relative to the value for the
pure polymer melt Rg0 , are shown in Fig. 2 as a function of
the nanoparticle volume fraction for the four different chain
molecular weights used in that work (23, 47, 93 and 187
kg/mol). In general, an expansion of polymeric chains with
increasing nanoparticle volume fraction can be observed for
all chain lengths. This expansion is maximal for 23 kg/mol,
where the unperturbed radius of gyration Rg,0 ' 42 Å is
comparable to the radius of the nanoparticle, Rn = 36 Å.
It seems that there is a tendency of chains to swell when
their dimension is equal to or approaches the dimension of
the nanoparticle. This observation is in very good quantita-
tive agreement with experimental data reported for the same
system [126]. In all other cases, the swelling due to the pres-
ence of the nanoparticles could hardly be discerned.

Karatrantos et al.[135] have investigated the effect of
various spherical nanoparticles on chain dimensions in poly-
mer melts for high nanoparticle loading which was larger
than the percolation threshold, using coarse-grained molec-
ular dynamics simulations of the Kremer-Grest model [149].
Their results, presented in Fig. 3, revealed different be-
havior of the polymer chains in the presence of repulsive
or attractive particles. In nanocomposites containing repul-
sive nanoparticles (black symbols), the polymer dimensions
were not altered by the particle loading. These authors re-
ported that the polymers were phase separated from the re-
pulsive nanoparticles (of Rn = 2) in the nanocomposites,
thus, there were no changes in the radius of gyration values.
On the contrary, in the nanocomposites containing attrac-

Fig. 3 Radius of gyration of polymers in melt with nanoparticles of ra-
dius Rn = 1, 2 normalized with its value in the bulk for polymer chains
of N = 200 and N = 100 (inset) repeat units (monomers): (i) poly-
mer melt (blue filled circles), (ii) nanocomposite: attractive monomer-
nanoparticle (Rn = 2) interactions (red filled circles), (iii) nanocom-
posite: repulsive monomer-nanoparticle (Rn = 2) interactions (black
filled diamonds), (iv) nanocomposite: attractive monomer-nanoparticle
(Rn = 1) interactions (red open circles), (v) nanocomposite: repulsive
monomer-nanoparticle (Rn = 1) interactions (black open diamonds).
The black dashed line shows Rg/Rg,0 ∝ (1−φ)−1/3. (Reprinted from
[135] - Published by The Royal Society of Chemistry.)

tive nanoparticles, the overall polymer dimensions increased
dramatically at high particle loading. In particular, the mag-
nitude of expansion of polymer dimensions was larger for
polymers with N = 200 following qualitatively the experi-
mental data [125, 150]. The relation Rg/Rg,0 = (1−φ)−1/3,
included in Fig. 3 was proposed by Frischknecht et al.
[151] for predicting the polymer expansion due to the ex-
cluded volume introduced by the nanoparticles, assuming no
change in density on mixing. Finally, Karatrantos et al.[135]
reported that polymer chains, in all cases considered, did not
depart from Gaussian statistics.

Mathioudakis et al.[153] applied a hierarchical sim-
ulation approach in order to study the behavior of PS-
SiO2 nanocomposites. Two interconnected levels of repre-
sentation were employed. (a) A coarse-grained one [154],
wherein each polystyrene repeat unit was mapped into a sin-
gle “superatom” and each silica nanoparticle into a sphere.
The smoother effective potential energy hypersurface of the
coarse-grained representation permitted its equilibration at
all length scales by using powerful connectivity-altering
Monte Carlo algorithms [155].(b) A united atom representa-
tion, wherein polymer chains were represented by a united-
atom model and a silica nanoparticle was represented in full
atomistic detail. Coarse-graining and reverse-mapping be-
tween the two levels of representation was accomplished in
a manner that preserved tacticity and respected the detailed
conformational distribution of chains [156]. At the coarser
level, these authors estimated the root-mean-square radius
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Fig. 4 Root mean squared radius of gyration of the coarse-grained
chains of neat and nanocomposite polystyrene systems as a function
of molar mass, M, in the melt at 500 K (red, green and magenta rhom-
boid symbols). The systems contain one nanoparticle of diameter 3
nm (φ ' 1%) and 6 nm (φ ' 6%). Neutron scattering measurements
[152] for high molar mass PS are also included (blue rhomboid sym-
bols). The black dotted line is a linear least-squares fit to a relation of
the form

〈
R2

g
〉1/2

∝ M1/2 in the loglog coordinates of the plot. (Re-
produced from Ref. [153] with permission from The Royal Society of
Chemistry.)

of gyration
〈
R2

g
〉1/2 as a function of the molecular weight for

neat and nanocomposite polystyrene systems. Their results
are presented in Fig. 4 along with neutron scattering results
for bulk monodisperse PS [152] from 21 kg/mol to 1100
kg/mol. As far as the nanocomposite polystyrene systems
are concerned, the presence of the nanoparticles affected the
root- mean-square radius of gyration only slightly.

5.2 Polymer Structure in the Vicinity of the Filler Particles

5.2.1 Experimental Findings

SANS measurements show a clear scattering signature of a
polymer bound layer around the particles, which arises due
to a scattering length density different from the bulk polymer
matrix material, either due to H or D enrichment or a modi-
fication of the polymer density in the bound layer compared
to the surrounding polymer matrix [132, 133]. The measure-
ments of Jouault et al. [133] revealed that bound layer is
independent of the particles’ volume fraction. Then, as ob-
served by Jiang et al. [157], the bound layer volume fraction
is larger at the surface (that region being mostly composed
of loops) and decreases at larger distances as the bound layer
becomes more diffuse due to the contribution from the tails.
One can estimate the thickness of the bound polymer layer

around 2 nm. However, this thickness value is a simplifi-
cation because it does not completely describe the complex
chain behavior, some aspects of which will be analyzed be-
low.

5.2.2 Insight Obtained from Simulations

The local density of the polymer in the proximity of the sur-
face of a filler is often employed as an indication of the
strength of polymer-surface interactions and a decrease of
the first peak of the radial density distribution is expected
with curvature [158]. At this point we resort to the de-
tailed analysis of Pandey and Doxastakis [159] concerning a
polyethylene layer close to a filler surface (Fig. 5). These au-
thors coupled the application of preferential sampling tech-
niques [160] with connectivity-altering Monte Carlo algo-
rithms [161, 162] in order to explore the configurational
characteristics of a polyethylene melt in proximity to a silica
surface or around a nanoparticles and the changes induced
by high curvature when the particle radius is comparable to
the polymer Kuhn segment length.

The inset to Fig. 5 shows that indeed as we move from a
flat surface to a smaller nanoparticle a decrease is observed
with the exception of the fullerene where a significantly
higher density is found. To investigate further the concentra-
tion of adsorbed monomers, these authors followed the the
use of a simple distance criterion (adsorbed polymer chains
have an atom within 0.6 nm of an atom of the surface; intro-
duced by Daoulas et al. [163]) to decompose polymer seg-
ments according to the Scheutjens-Fleer theory [164] into
trains, tails and loops. Tails are the segments which are
hinged to the surface at one end while the other end is dan-
gling freely into the bulk polymer. Train segments consist of
monomers consecutively adsorbed on the surface. The loop
segments are constituted by the monomers in-between two
train segments, which are not adsorbed on the surface. Fig-
ure 5 exhibits three regimes for adsorbed chains: a first layer
of adsorbed monomers constituting train segments, a second
layer where a decay is dominated by a decrease of loop seg-
ments while tail density is constant and a third layer where
tail segments extend in the bulk melt. As shown in the in-
set to Fig. 5(a) the area under the first peak broadens as we
move to smaller particles.

An interesting feature of the interfacial systems to study
is the number of monomers that are in contact with the sur-
face. To this end, Pandey and Doxastakis [159], defined a
surface concentration by integrating the density profile of
train segments:

Φs =

∫
∞

Rn
ρtrain (r)4πr2dr

A
, (60)

where Rn is the radius of the nanoparticle, ρtrain is the density
profile of train segments, and A is the accessible surface area
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Fig. 5 (a) Density distribution of a polyethylene melt as a function of distance from the surface of a filler (graphite slab, silica nanoparticle or
fullerene C60). The decomposition into tails, trains and loops is carried out following Scheutjens and Fleer[164]. The inset provides profiles for
selected systems. (b) Surface concentration together with predictions based upon geometrical arguments for ideal spheres and surface monomer
density in the proximity of silica slabs. (Reprinted from [159], with the permission of AIP Publishing.)

to the polymer. If we assume that nanoparticles are spheres
surrounded by a constant density of polymer (ρ0), in a layer
of ∆r thickness, the surface concentration is given by:

Φs =
(r+∆r)3− r3

3r2 ρ0 , (61)

where a constant density is multiplied with the ratio of the
volume of a spherical shell representing the first adsorbed
monolayer to the surface of the sphere. The geometric pre-
dictions following the above line of reasoning, are shown
for different chain lengths by the dashed lines in Fig. 5(b).
It is apparent that a modest increase and ultimate leveling
off of the surface concentration with decreasing nanoparti-
cle radius is observed in sharp contrast to the estimations
based on the geometric arguments, which predict a contin-
uous increase. The lower than anticipated increase of sur-
face concentration with curvature suggests that collective
properties beyond the enthalpic interactions appear to play
a crucial role on surface concentration. At the extreme limit
where particles are comparable to the polymer Kuhn seg-
ment length, curvature penalizes the formation of long train
segments. As a result, an increased number of shorter con-
tacts belonging to different chains were made, competing
with the anticipated decrease of the bound layer thickness
with particle size if polymer adsorbed per unit area remained
constant.

Starr et al.[165] carried out extensive molecular dynam-
ics simulations of a single nanoscopic filler particle sur-
rounded by a dense polymer melt. The polymers were mod-
eled as chains of monomers connected via a finitely extensi-
ble nonlinear elastic (FENE) anharmonic potential and inter-
acting via a Lennard-Jones potential. That type of “coarse-
grained” model is frequently used to study general trends of

Fig. 6 Radius of gyration, Rg, in reduced Lennard-Jones units, of the
polymer chains as a function of the distance d/

〈
Rg
〉

of the center of
mass of a chain from the filler surface (d is normalized by the aver-
age

〈
Rg
〉

of all chains). Results are presented for (a) attractive and (b)
nonattractive interactions. The component of Rg perpendicular to the
surface, R⊥g is resolved. The dotted line shows

〈
R2

g
〉

for the pure sys-
tem. The increase of Rg, coupled with the decrease of R⊥g , indicates that
the chains become increasingly elongated and flattened as the surface
of the particle is approached. (Reprinted figure with permission from
[165]. Copyright 2001 by the American Physical Society).

polymer systems but does not provide information for a spe-
cific polymer. The filler particle shape was icosahedral with
interaction sites assigned at the vertices, at four equidistant
sites along each edge, and at six symmetric sites on the in-
terior of each face of the icosahedron. These authors con-
sidered a filler particle with an excluded volume interaction
only, as well as one with excluded volume plus attractive
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Fig. 7 Ratio L2
3/L2

1 of the largest to the smallest eigenvalue of the ra-
dius of gyration tensor of the chain as a function of the distance of the
center of mass of the chain from the center of mass of a silica nanopar-
ticle. The systems consist of chains of molar mass M = 208 kg/mol and
one nanoparticle of radius either 3 nm (silica volume fraction φSiO2

=
1%) or 6 nm (φSiO2

= 3 % and φSiO2
= 6%). The expected value from

the random walk model for bulk PS is also included (black dotted line)
[148]. (Reproduced from Ref. [153] with permission from The Royal
Society of Chemistry.)

interactions in the dilute nanoparticle regime (where bulk
chain dimensions are unlikely to be affected by the con-
finement between nanoparticles). By focusing on the depen-
dence of Rg on the distance d from the filler surface, these
authors were among the first to report a change in the over-
all polymer structure near the surface. In Fig. 6, R2

g, as well
as the radial component of from the filler center R⊥2

g (ap-
proximately the component perpendicular to the filler sur-
face) for both attractive and nonattractive polymer-filler in-
teractions at one temperature. A striking feature of Fig. 6,
R2

g is that R2
g increases by about 30% on approaching the

filler surface, while at the same time R⊥2
g decreases by more

than a factor of 2 for both (attractive and neutral) systems.
The combination of these results indicates that the chains
become slightly elongated near the surface and flatten sig-
nificantly. The range of flattening effect roughly spans a dis-
tance of an unperturbed radius of gyration, Rg,0, from the
surface and depend only weakly on the simulation temper-
ature, T . Moreover, the chains retain a Gaussian structure
near the surface.

Mathioudakis et al.[153] studied the shape of chains in
the presence of a silica nanoparticle by employing coarse-
grained MC simulations. These authors analyzed the eigen-
values of the the radius of gyration tensor, which serve as a
measure for characterizing the shape of the polymer chains.
In the polymer melt, the intrinsic shape of chains is that of
a flattened ellipsoid or soap bar [166]. Following ref. [166],
Mathioudakis et al. diagonalized the instantaneous radius of
gyration tensor of every chain to determine the eigenvalues
L2

3 ≥ L2
2 ≥ L2

1 (squared lengths of the principal semiaxes of

the ellipsoid representing the segment cloud of the chain)
and the corresponding eigenvectors (directions of the prin-
cipal semiaxes). The three semiaxes are generally unequal.
The sum L2

1 + L2
2 + L2

3 equals the squared radius of gyra-
tion of the chain. These authors observed that, when the
distance of the center of mass of the chain from the cen-
ter of the nanoparticle was shorter than the mean size of
the chain, the chains expanded along their principal semi-
axis, L3. That leaded to an increase of the radius of gyration,
R2

g = L2
1 + L2

2 + L2
3 near the nanoparticle. The deformation

of the molecules was smaller for chains whose dimensions
exceed by far the radius of the nanoparticle. Far from the sur-
face of the nanoparticle, the sum of the squares of the prin-
cipal semiaxes (sum of the eigenvalues of the radius of gy-
ration tensor) reaches the bulk average value of the squared
radius of gyration of PS, since the molecules were not af-
fected by the presence of the nanoparticle. These results are
shown in Fig. 7. Changes in the intrinsic shape of chains
were quantified as a function of distance of the center of
mass of the chain from the center of mass of the silica parti-
cle by calculating the ratio of largest to smallest eigenvalue
of the radius of gyration tensor. This local anisotropy of the
chains as a function of distance from the centre of mass of
the nanoparticle is also shown in Fig. 7.

The presence of the filler surface also influences the ori-
entation of the chains. Ndoro et al. [158] studied the dis-
tance dependence of the angle between the longest axis of
the radius of gyration tensor and the surface normal of bare
silica nanoparticle. Their results are presented in Fig. 8. The
observation that the free polymer chains generally prefer to
align tangentially to the ungrafted surface is in agreement
with conclusions from other researchers [148, 167]. In their
coarse-grained model using Monte Carlo simulations, Vo-
giatzis et al.[148] studied the orientational angles of local
chain segments. They also concluded that chain segments in
the vicinity of the nanoparticle surface were structured and
oriented tangentially to the interface.

Bačová et al. [168] conducted atomistic molecular dy-
namics simulations of graphene-based polymer nanocom-
posites composed of hydrogenated and carboxylated
graphene sheets dispersed in polar and nonpolar short poly-
mer matrices, in order to gain insight into the effects of the
edge group functionalization of graphene sheets on the prop-
erties of hybrid graphene-based materials. Poly(ethylene ox-
ide) and polyethylene serve as the polar and nonpolar ma-
trix, respectively. In Fig. 9 the structural properties of the
short polymer chains, i.e. their mean square end-to-end dis-
tance

〈
R2

e
〉
, and the radius of gyration,

〈
R2

g
〉
, for the chains,

whose center of mass is placed within a given layer. The
five layers employed are set up in accordance with the posi-
tions of the minima in the density profiles (cf. Fig. 9). The
results for all five parallel layers and both polymer matrices
are plotted in Fig. 9. The data are normalized by the bulk val-
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(a)

(b)

Fig. 8 (a) Schematic representation of the orientational angle θ be-
tween the longest axis of the radius of gyration tensor and the surface
normal (simulation snapshot). (Reprinted with permission from Ref.
[158]. Copyright (2011) American Chemical Society.) (b) PS Chain
orientation as a function of the chain (center-of-mass) distance from
the silica nanoparticle surface. The considered nanoparticle diameters
were 3, 4, and 5 nm. The orientation angle is calculated between the
longest axis of the squared radius of gyration tensor (eigenvector cor-
responding to its largest eigenvalue, disregarding the sign) and the sur-
face normal (c.f. (a)). The horizontal line at 57.3 marks the average
orientational angle for a random distribution. (Reprinted with permis-
sion from Ref. [158]. Copyright (2011) American Chemical Society.)

ues. The error bars correspond to the standard deviation and
were obtained through typical block averaging techniques.
In both matrices (PEO and PE), chains in the first layer ap-
pear to be slightly swollen with

〈
R2

e
〉

and
〈
R2

g
〉

higher than
the bulk values. In the case of PE, the difference is larger,
which can be caused by its tendency to lie flat on the surface
[169]. Small deviations from the bulk values are observed
also for the second and the third layer, while beyond the
fourth layer the vales of

〈
R2

e
〉

and
〈
R2

g
〉

are consistent with
those in the bulk within error bars.

Karatrantos et al.[170] investigated the static proper-
ties of monodisperse polymer/single wall carbon nanotube

Fig. 9 Mean square end-to-end distance of polymer chains located at
different layers parallel to graphene, normalized by the same quantity
measured in bulk. In the inset to the figure, the normalized radius of gy-
ration is plotted for the same set of data. The first layer extends within
distances 0.0 and 0.6 nm from the graphene sheet, the second between
0.6 and 1.0 nm, the third between 1.0 and 1.5 nm, the fourth between
1.5 and 2.0 nm and the last one, fifth, between 2.0 and approximately
half the edge length of the simulation box, 5.0 nm. (Reprinted with
permission from Ref. [168]. Copyright (2011) American Chemical So-
ciety.)

Fig. 10 End-to-end distance and radius of gyration of polymer chains
of different molecular weight of a polymer/SWCNT (rSWCNT = 0.66)
nanocomposite system from molecular dynamics simulations: (i) end-
to-end distance of a polymer melt (blue open diamonds), (ii) fitting of
the scaling law Re ∼ N1/2 on the simulation data (blue line), (iii) end-
to-end distance of polymer chains in contact with the SWCNT, inter-
acting with kBT energy with the SWCNT (blue filled diamonds), (iv)
radius of gyration of a polymer melt (red open circles), (v) fitting of the
scaling law Rg ∼ N1/2 on the simulation data (red line), and (vi) radius
of gyration of polymer chains in contact with the SWCNT, interacting
with kBT energy with the SWCNT (red filled circles). (Reprinted with
permission from Ref. [170]. Copyright (2011) American Chemical So-
ciety.)
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(SWCNT) nanocomposites by molecular dynamics simula-
tions of a polymer coarse grained model [171, 172]. The
SWCNT studied had a large aspect ratio and radius smaller
than the polymer radius of gyration (e.g. in a well dis-
persed PS/SWCNT nanocomposite the radius of the nan-
otube is of the order of the Kuhn length of PS). Polymer
chains are composed of bead-spring chains of Lennard-
Jones monomers m, of diameter σm = 1 and mass mm =
1. Three different SWCNTs ((12,0), (17,0), (22,0) of ra-
dius rSWCNT = 0.46σm, 0.66σm, 0.85σm, respectively) are
considered and span the simulation cell with their atoms
held fixed in a centered position in the simulation cell along
the z-axis. In Fig. 10, root mean squared average 〈Re〉 and〈
Rg
〉

of the polymer chains that remained in contact with the
SWCNT (so polymers in the polymer/SWCNT simulations
that do not always contact the SWCNT were ommitted from
those values) are shown. As can be clearly seen, the dimen-
sions of polymer chains in contact with the SCWCNT al-
most overlap with those in the polymer melt for all the poly-
mer molecular weight when interacting with the SWCNT
with energy in the kBT range.

5.3 End Grafted Polymers onto Nanoparticles

Controlling the spatial dispersion of nanoparticles is crit-
ical to the ultimate goal of producing polymer nanocom-
posites with desired macroscale properties. Experimental
studies [73, 150, 173] have shown that, often, nanoparti-
cles tend to aggregate into clusters, with the property im-
provements connected to their nanoscale dimension being
lost. One commonly used technique for controllably dis-
persing them is end grafting polymer chains to the nanopar-
ticle surface, so that nanoparticles become “brush coated”
[173]. When the coverage is high enough, the nanoparticles
are sterically stabilized, which results in good spatial dis-
persion. [174, 175] Moreover, spherical nanoparticles uni-
formly grafted with macromolecules robustly self-assemble
into a variety of anisotropic superstructures when they are
dispersed in the corresponding homopolymer matrix. [14]

A simpler system that is useful for understanding poly-
mer brushes grafted on spherical nanoparticles immersed in
melts is that of a brush grafted to a planar surface in con-
tact with a melt of chemically identical chains. Important
molecular parameters for this system are the Kuhn segment
length of the chains, b, the lengths (in Kuhn segments) of
the grafted, Ng and free, Nf, chains, and the surface graft-
ing density (chains per unit area), σ . The case of planar
polymer brushes exposed to low molecular weight solvent
was studied theoretically by de Gennes [176] and Alexan-
der [177]. These authors used a scaling approach in which
a constant density was assumed throughout the brush: all
the brush chains were assumed to be equally stretched to
a distance from the substrate equal to the thickness of the

brush. Aubouy et al. [178] extracted the phase diagram of
a planar brush exposed to a high molecular weight chemi-
cally identical matrix. Their scaling analysis is based on the
assumption of a steplike concentration profile and on impos-
ing the condition that all chain ends lie at the same distance
from the planar surface. Five regions with different scaling
laws for the height, h, of the brush were identified. For low
enough grafting densities, σ < N−1

g a−2 (with a being the

monomer size) and short free chains, Nf < N1/2
g , the brush

behaves as a swollen mushroom, with h ∼ N3/5
g . By keep-

ing the grafting density below N−1
g a−2 and increasing Nf,

so that Nf > N1/2
g , the brush becomes ideal with h ∼ N1/2

g .
For intermediate grafting densities, N−1

g < σ < N−1/2
g , high

molecular weight free chains, Nf > N1/2
g , can penetrate the

brush, thus ideally wetting it and leading to h ∼ N1/2
g . In-

creasing the grafting density while keeping Nf <N1/2
g forces

the chains to stretch, thus leading to a brush height scaling
as h∼ Ng.

Wijmans and Zhulina [179] employed similar ideas in
order to understand the configurations of polymer brushes
grafted to spherical nanoparticles dispersed in a polymer
melt. Here the radius of the nanoparticle, Rn, enters as an
additional parameter. Long polymers grafted to a surface
at fixed grafting density, σ , are strongly perturbed from
their ideal random-walk conformation [180]. Planar geom-
etry scaling (infinite curvature) is inadequate to explain the
case when the particle size is reduced to a level comparable
with the size of the brushes. The SCF theory has been ap-
plied to convex (cylindrical and spherical) surfaces by Ball
et al. [180]. For the cylindrical case, under melt conditions,
it was found that the free ends of grafted chains are excluded
from a zone near the grafting surface. The thickness of this
dead zone varies between zero for a flat surface to a finite
fraction of the brush height, h, in the limit of strong curva-
ture, when Rn/h is of order unity, with Rn being the radius
of curvature of the surface.

Borukhov and Leibler [181] presented a phase diagram
for brushes grafted to spherical particles, in which the five
regions of the work of Aubouy et al. can still be located, but
they also provide the scaling of the exclusion zone, where
matrix chains are not present. Such exclusion zones have
been observed in a special limiting case of grafted polymers,
namely, star shaped polymers. Daoud and Cotton [182]
showed that, in the poor-solvent limit, the free ends of the
chains are pushed outward, because of high densities near
the center of the star. The Daoud-Cotton model assumes
that all chain ends are a uniform distance away, while the
Wijmans-Zhulina model [179] has a well-defined exclusion
zone. For Θ solvents, in the limit of large curvature (small
particle radius, Rn), the segment density profile, φ(r), de-
creases with the radius as [179] φ(r) ∝ σ1/2 (Rn/r). It must
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be noted that φ is not linear in σ because the brush height
depends on σ . In the limit of small curvature (large Rn), a
distribution of chain ends must be accounted for [183], lead-
ing the segment density profile to a parabolic form: [179]

φ(r′) = 3σNgb3

h0

(
h
h0

)2
(

1−
(

r′
h

)2
)

where b is the statisti-

cal segment length, r′ = r−Rn is the radial distance from
the particle surface, h0 is the effective brush height for a flat
surface and h is the brush thickness. For large nanoparti-
cles, the above form asymptotically recovers the planar re-
sult (h→ h0). In the case of intermediate particle radii, a
combination of large and small curvature behaviors is antic-
ipated: [179] the segment density profile exhibits large cur-
vature behavior near the surface of the particle, followed by
a small curvature behavior away from it. Finally, following
Daoud and Cotton, the brush height is expected to scale as
h ∝ σ1/4N1/2

g . Recently, Chen et al.[184] revisited the scal-
ing laws for spherical polymer brushes and identified signif-
icant assumptions overlooked by Daoud and Cotton.

5.3.1 Experimental findings

Hasegawa et al.[174] used rheological measurements and
SCF calculations to show that particles are dispersed op-
timally when chains from the melt interpenetrate, or wet,
a grafted polymer brush (“complete wetting”). This oc-
curs at a critical grafting density, which coincides with
the formation of a stretched polymer brush on the particle
surface.[176, 177] Grafting just below this critical density
produces aggregates of particles due to attractive van der
Waals forces between them. The results of these authors
suggest that mushrooms of nonoverlapping grafted polymer
chains have no ability to stabilize the particles against ag-
gregation (“allophobic dewetting”). Grafting just above this
critical density also results in suboptimal dispersions, the ag-
gregation of the particles now being induced by an attraction
between the grafted brushes. For high curvature (small ra-
dius) nanoparticles, the polymer brush chains can explore
more space, resulting in less entropic loss to penetrate the
brush, reducing the tendency for autophobic dewetting.

Until recently, the experimental verification of theo-
retical and simulation predictions was mostly limited to
global information concerning the brush, such as its aver-
age height, but not its profile [185]. Recently Chevigny et
al.[186] used a combination of X-ray and Small Angle Neu-
tron Scattering (SANS) techniques to measure the confor-
mation of chains in polystyrene polymer brushes grafted to
silica nanoparticles with an average radius of 13 nm dis-
persed in polystyrene matrix. They found that, if the molec-
ular weight of the melt chains becomes large enough, the
polymer brushes are compressed by a factor of two in thick-
ness compared to their stretched conformation in solution.
Also, polymer brushes exposed to a high molecular weight

Fig. 11 (a) Concentration of the free ends of grafted chains, ρfe (z) as
a function of the distance z from the sphere surface for chains with
Ng = 50 grafted to the a sphere of radius R = 3 for various lengths of
free chains, N, and grafting densities. (c) Same as in (a) except R = 10.
(c) Same as in (a) except Ng = 80, R→ ∞. (Reprinted with permission
from Ref. [188]. Copyright (2004) American Chemical Society.)

matrix are slightly compressed in comparison to brushes
exposed to a low molecular weight matrix environment.
This observation implies a wet to dry conformational transi-
tion. The low molar mass free chains can penetrate into the
grafted brush and swell it (“wet” brush). Conversely, when
grafted and free chain molar masses are comparable, free
entities are expelled from the corona (“dry” brush). Later,
they examined the dispersion of these grafted particles in
melts of different molar masses, Mf.[187] They showed that
for Mg/Mf < 0.24, the nanoparticles formed a series of com-
pact aggregates, whereas for Mg/Mf > 0.24, the nanoparti-
cles were dispersed within the polymer host.

5.3.2 Insight Obtained from Simulations

Klos and Pakula [188] simulated linear flexible polymers of
Ng repeat units, end-grafted at density σ onto a spherical
surface of radius R (“hairy nanoparticle”), including the case
of flat impenetrable wall (R→ ∞) using their cooperative
motion algorithm [189, 190]. The simulations were carried
out for a wide range of parameters characterizing the hairy
surfaces (Ng, σ , and R) and concerned in detail the influence
of length of matrix chains on the anchored ones. That was
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achieved by gradually varying the polymerization degree N
of the matrix chains between the two extremes of a dense
melt of identical chains (N = Ng) and a simple solvent con-
sisting of single beads (N = 1). Their analysis of free grafted
chain-ends concentrations, ρfe (z), is shown in Figs. 11 (a),
(b) for R =3, 10 and for σ =1, 0.2, respectively. The length
unit used in their work was c/2 with c being the lattice con-
stant of the employed lattice Monte Carlo simulations. The
curves indicate how the medium in which the hairy sphere is
immersed influences the profiles of free ends of the grafted
chains. For both sizes of the spheres, the observed tendency
is such that the longer the matrix chains become, the closer
to the surface the free ends concentrate. In particular, this is
also the case for chains grafted to a flat surface, as presented
in Fig. 11(c). Furthermore, for N = Ng, R = 10, and R→ ∞,
the concentration of the free ends is finite even at the surface,
which means that a small fraction of the ends concentrate in
that region, creating grafted chain loops, in agreement with
earlier Molecular Dynamics simulations of brushes on flat
surfaces by Grest [191].

Spatial integration of the radial mass density profiles
around the nanoparticle allows for estimating the height of
the grafted polymer brush, which is usually defined as the
second moment of the segment density distribution, ρ(r), as
[179, 192]:

〈
h2〉 1

2 =

[∫
∞

Rn
4πr2dr(r−Rn)

2ρ(r)∫
∞

Rn
4πr2drρ(r)

] 1
2

(62)

with respect to the height h≡ r−Rn. However, comparison
with experimental brush heights requires a measurement of
where the major part of the grafted material is found. To this
effect, the brush height can also be arbitrarily defined as the
radius marking the location of a spherical Gibbs dividing
surface, in which 99% of the grafted material is included.
The theory of spherical polymer brushes was pioneered by
Daoud and Cotton [182]. In analogy to the scaling model de-
veloped by Alexander and de Gennes for planar interfaces,
Daoud and Cotton developed a model for spherical surfaces
through geometric considerations based on starlike poly-
mers. The spherical brush is divided into three regions, an
inner meltlike core region, an intermediate concentrated re-
gion (dense brush), and an outer semidilute region (swollen
brush). Daoud and Cotton predicted for star shaped poly-
mers in the matrix a change in the scaling behavior as the
blobs of the chains become non-ideal. The density profile is
directly related to the average brush height, h, or the exten-
sion of the corona chains. Neglecting the contribution of the
core to the radius of the star, they found that h ∝ N1/2

g σ1/4b.
Although the former relation exhibits “ideal” scaling with
respect to the chain length dependence, the presence of the
factor σ

1/4
r shows that the radius is in fact larger than it

would be for a single linear chain. Thus, although we are

Fig. 12 The calculated brush thickness (either
〈
h2
〉 1

2 or h99%) is plot-
ted versus the degree of polymerization of grafted chains, Ng, times
the grafting density, σ1/4. Points correspond to systems containing an
8-nm-radius silica particle grafted with PS chains and dispersed in PS
matrix. Linear behavior is predicted by the model proposed by Daoud
and Cotton for star shaped polymers [182]. (Reprinted with permission
from Ref. [193]. Copyright (2011) American Chemical Society.)

in a regime where the chain seems to be ideal, the structure
is actually stretched.

Vogiatzis and Theodorou [193] investigated the struc-
tural features of polystyrene brushes grafted on spherical
silica nanoparticles immersed in polystyrene by means of
a Monte Carlo methodology based on polymer mean field
theory. The nanoparticle radii (either 8 or 13 nm) were
held constant, while the grafting density and the lengths of
grafted and matrix chains were varied systematically in a
series of simulations. The primary objective of that work
was to simulate realistic nanocomposite systems of specific
chemistry at experimentally accessible length scales and
study the structure and scaling of the grafted brush. In Fig.
12 the average thickness is plotted versus N1/2

g σ1/4. Ng is
measured in Kuhn segments per chain and σ in chains per
nm2. The scaling prediction of Daoud and Cotton seems to

be fullfilled for both the rms height
〈
h2
〉 1

2 and the height
containing 99% of the brush material, h99%. The dashed
lines are linear fits, confirming the good agreement of the
simulation data with the theoretical scaling behavior. The
agreement seems to be better for the h99% data points. This
was expected, since the average brush thickness, as defined
in eq 62, is more sensitive to the discretization of the model
and to the post processing of the data, than the straightfor-
ward definition of the shell in which the 99% of the brush
material can be found. Moreover the results for the h99% es-
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Fig. 13 Distribution of unoccupied volume fraction, vUn, (left y-axis)
and the specific volume, vSp, (right y-axis) in the vicinity of a nanopar-
ticle with a diameter of 3 nm at a termperature of 590 K. The horizon-
tal line corresponds to the PS bulk value of vUn. The grafting density
is varying from 0.0 (ungrafted) to 0.5 and 1.0 grafted chains / nm2.
(Reprinted from [194] with permission from Elsevier.)

timate and the scattering pattern of the whole grafted corona
were in favorable agreement with SANS measurements.

Voyiatzis et al.[194] studied the confinement induced
effects on the accessible volume and the cavity size dis-
tribution in polystyrene-silica nanocomposites by atomistic
Molecular Dynamics simulations. The composite systems
contained a single α-quartz silica nanoparticle, either bare
or grafted with atactic PS chains which was embedded
into an unentangled atactic PS matrix [158]. Both free and
grafted chains consisted of 20 monomers. The considered
nanoparticle diameters were 3.0, 4.0 and 5.0 nm and three
different grafting densities were studied: 0.0, 0.5 and 1.0
chains / nm2. Those authors investigated the cavity distribu-
tion size by employing four spherical probe particles. Apart
from the limiting case of a dot-like probe particle (zero ra-
dius), the considered probe particles had radii, rp, of 0.128,
0.209 and 0.250 nm, corresponding to hard-sphere represen-
tations of helium, methane and ethane. The “unoccupied”
volume was defined as the volume accessible to a probe par-
ticle of rp = 0.

The influence of the grafting density on the spatial dis-
tribution of the unoccupied volume fraction, vUn, and the
specific volume, vSp, for a nanoparticle with a diameter of
3 nm is presented in Fig. 13. The black horizontal line cor-
responds to the bulk value of vUn. The greatest reductions
of vUn relative to the bulk value occur very close to the sur-
face, at distances smaller than 1 nm. The variation in the
vUn distribution of a grafted and an ungrafted nanoparti-
cle is different. The separation from the particle for which
vUn is below the bulk value for the grafted 1.0 chains/nm2

system exceeds by approximately 50% the distance for the
ungrafted system. The vUn profile for a grafting density of
0.5 chains / nm2 lies in between the two extremes. Unlike
vUn, the vSp spatial distributions exhibit a strong dependence
on the grafting density. An increase of the grafting density
leads to increased vUn values close to the particle’s surface.
This behavior was attributed to the (i) the chemistry of the
employed linker molecule and (ii) the expulsion of the free
chains from adsorbing on the nanoparticle surface. Contrary
to intuitive expectations, variations of the accessible volume
were not directly related to changes of the specific volume.

6 Dynamics

A complete understanding of PNC dynamics requires con-
fronting the difficult many-body problem associated with
non-dilute particle concentrations and coupled nanoparticle
and polymer motions over many time- and length- scales
[195–197]. Simulations are a valuable option, but are com-
putationally very intensive, resulting in only a limited pa-
rameter range being tractable to study, typically involving
rather small particles and weakly entangled polymers. The
transport properties of nanoparticle-polymer mixtures have
been the focus of much recent attention [198–208]. Cen-
tral problems in the area are the diffusion of nanoparticles
and polymers through the nanocomposite melts, as well as
the local polymer dynamics in the proximity of the filler
particles. For example, the incorporation of nanoparticles
can strongly modify the viscosity of polymer melts [209],
and the center-of-mass mobility of polymer chains can be
strongly retarded depending on nanoparticle size and con-
centration [210, 211].

6.1 Nanoparticle Diffusion in Polymers

6.1.1 Experimental Findings

There is good understanding of the motion of very large or
very small colloidal particles of radius Rn in a polymer melt.
The nanoparticle diffusion coefficient, D, in the large parti-
cle limit follows the classic continuum Stokes-Einstein re-
lation [212]. For a large and massive solute molecule of ra-
dius Rn in a solvent consisting of much smaller and lighter
molecules, the diffusion coefficient, D, of the solute is given
by [213]:

D =
kBT

f πηRn
(63)

where kB is Boltzmann’s constant, T is the absolute tem-
perature, η is the solvent viscosity and f takes the values
of 4 or 6 for slip or stick boundary conditions at the solute
surface, respectively [204]. The corresponding behavior of
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small nanoparticles, comparable to the size of a monomer, is
also described by the Stokes-Einstein relationship but with
a length-scale dependent viscosity that is smaller than the
macroscopic bulk value [214]. The relevant apparent viscos-
ity is controlled by the relaxation of subsections of chains
with an end-to-end distance comparable to the nanoparti-
cle size, as has been verified by Molecular Dynamics sim-
ulations [215]. Understanding nanoparticle diffusion in the
polymer matrix is of fundamental importance.

Despite the rather good understanding of the diffusion of
the particles in the two limits (very large and very small), the
dynamical behavior of nanoparticles of size comparable to
the entanglement mesh size of the polymer is contentious
[206, 216–218]. Brochard-Wyart and de Gennes[214] ar-
gued that the particle diffusion constant follows normal
Stokes-Einstein behavior essentially when its size becomes
larger than the entanglement mesh size. Such a sharp size-
dependent crossover to Stokes-Einstein scaling has been ob-
served by Szymanski et al.[219]. On the contrary, Cai et
al.[202] speculated that the motion of these intermediate
sized nanoparticles should be faster than Stokes-Einstein
behavior, since diffusion can be facilitated by hoplike mo-
tions trough the polymer’s entanglement mesh. The latter is
also supported by a microscopic force-level theory, wherein
chain relaxation and local entanglement mesh fluctuations,
i.e. “constraint release”, dominate over hopping [220].

Somoza et al.[221] studied experimentally the
anthracene rotation in poly(dimethylosiloxane) and
poly(isobutylene) by gradually increasing the chain length.
These authors reported that the diffusivity of the particles
exhibited a sharp transition with the increase of the poly-
mer radius of gyration, Rg, becoming dependent on the
“nanoviscosity” (rotation time of dissolved anthracene was
used as a measure of the viscosity on a nanometer-sized
object) rather than the macroscopic viscosity for small
Rn/Rg ratios (with Rn being the particle size). Narayaman
et al.[222] used X-ray photon correlation spectroscopy in
conjunction with resonance-enhanced grazing-incidence
small-angle X-ray scattering to probe the particle dynamics
in thin films, and also found that the particle dynamics
differ from the Stokes-Einstein Brownian motion, the
difference being caused by the viscoelastic effects and
interparticle interactions. Meanwhile, Tuteja et al.[199]
reported that the nanoparticles diffuse two orders of
magnitude faster in a polymer liquid than the prediction
of the Stokes-Einstein relation, an observation possibly
attributable to the nanoparticles being smaller than the
entanglement mesh. Later, Grabowski et al.[200] also
observed strong enhancement (250 times) of the diffusion
of gold nanoparticles in poly(butyl methacrylate), under
conditions where the nanoparticle dimensions were smaller
than the entanglement mesh length of the polymer.

Cai et al.[202] have carried out an extensive study of
nanoparticle diffusion by employing scaling theory to pre-
dict the motion of a probe nanoparticle of size Rn experienc-
ing thermal motion in polymer solutions and melts. Particles
with size smaller than the solution correlation length, ξ , un-
dergo ordinary diffusion with a diffusion coefficient similar
to that in pure solvent. The motion of particles of interme-
diate size (ξ < d < αpp), where αpp is the tube diameter
for entangled polymer liquids, is subdiffusive at short time
scales, since their motion is affected by subsections of poly-
mer chains. At long time scales the motion of these particles
is diffusive, and their diffusion coefficient is determined by
the effective viscosity of a polymer liquid with chains of size
comparable to the particle diameter Rn. The motion of parti-
cles larger than the tube diameter αpp at time scales shorter
than the relaxation time τe of an entanglement strand is sim-
ilar to the motion of particles of intermediate size. At longer
time scales (t > τe) large particles (d > αpp) are trapped by
entanglement mesh, and to move further they have to wait
for the surrounding polymer chains to relax at the reptation
time scale τrep. At longer times t > τrep, the motion of such
large particles (d > αpp) is diffusive with diffusion coeffi-
cient determined by the bulk viscosity of the entangled poly-
mer liquids. Finally, for nanoparticles with diameters larger
than the entanglement mesh size it appears that the competi-
tion of full chain relaxation versus the nanoparticle hopping
through entanglement gates controls nanoparticle diffusion
[223].

6.1.2 Insight Obtained from Simulations

Liu et al.[215] employed Molecular Dynamics simulations
of the Kremer-Grest model [149] in order to investigate
the diffusion process of spherical nanoparticles in polymer
melts. Their results indicated that the radius of gyration of
the polymer chains was the key factor determining the va-
lidity of the Stokes-Einstein relation in describing the par-
ticle diffusion at infinite dilution. In Fig. 14 the diffusion
coefficient estimated by the MD simulations is presented
alongside the predictions of the Stokes-Einstein formula. It
was found that, with the increase of the size ratio of Rn/Rg,
the Stokes-Einstein diffusion coefficient gradually approx-
imates the MD data under the slip (dotted curve) bound-
ary condition. The use of purely repulsive non-bonded in-
teractions fully justifies the use of the slip ( f = 4), instead
of the stick ( f = 6), boundary condition. As the size ratio,
Rn/Rg increases to 1, the predicted diffusion coefficients
agree reasonably well with those extracted from the simu-
lations. However, in the small size ratio, large deviation is
observed which qualitatively agrees with the experimental
results [199]. It seems like the local viscosity experienced by
nanoparticles is much smaller than the macroscopic viscos-
ity, as speculated by Wyart and de Gennes [214] and other
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Fig. 14 The diffusion coefficient, D, of a spherical particle as a func-
tion of the ratio Rn/Rg. The particle mass is proportional to its volume.
Open squares represent Molecular Dynamics data, while full dots rep-
resent the Stokes-Einstein relation predictions with slip boundary con-
dition. (Reprinted with permission from Ref. [215]. Copyright (2008)
American Chemical Society.)

researchers [224–227]. Finally, it should be noted that in
the experiments chains are strongly entangled, in the rep-
tation regime, while the polymer length used by Liu et al. is
smaller than the entanglement length of the polymer chain
[228].

Yamamoto and Schweizer [220, 229] have formulated
and applied a microscopic statistical-mechanical theory,
based on the Polymer Reference Interaction Site Model
(PRISM) integral equation theory [230], for the non-
hydrodynamic relative diffusion coefficient of a pair of
spherical nanoparticles in entangled polymer melts. Their
work was based on a combination of Brownian motion,
mode-coupling, and polymer physics ideas. They focused
on the mesoscopic regime, where particles are larger than
the entanglement spacing. The overall magnitude of the rel-
ative diffusivity was controlled by the ratio of the particle to
tube diameter and the number of entanglements per chain.
Figure 15 presents model calculations of the total relative
diffusivity, D(rel) (h) as a function of h/2Rn (with h being the
interparticle surface-to-surface separation distance) for two
reduced particle diameters. The ordinate of the figure is nor-
malized by the single particle Stokes-Einstein result, DSE,
while the abscissa extends up to the point where the theory is
argued to be reasonable. That theory is based on the mode-
coupling idea that the relevant slow dynamical variable is
the bilinear coupling of the nanoparticle and the collective
polymer density fluctuations. The original approach [220]
was not self-consistent since it assumed that the constrain-
ing forces on a particle relax entirely due to the length-scale
dependent motions of the polymer melt (constraint release
regime), which is an accurate simplification when particles
are larger than dT.

Fig. 15 Relative diffusivity normalized by the single-particle Stokes-
Einstein self-diffusion coefficient as a function of h/2Rn (with h being
the interparticle surface-to-surface separation distance), based on the
structural continuum model of Yamamoto and Schweizer [220, 229].
Calculations are presented for 2Rn/dT = 10 (with dT representing the
tube diameter) and N/Ne = 1 (dashed line), 4 (short-dashed line), 16
(short-dotted line), and 128 (dashed-dotted line), with Ne being the
number of chain segments per entangled strand. The hydrodynamic
result (solid curve) is also included as a reference. In the inset to the
figure, the same results as the main frame are presented, for larger par-
ticle size, 2Rn/dT = 40. (Reprinted from [229], with the permission of
AIP Publishing.)

Figure 15 exhibits several interesting trends. First,
the relative diffusivity approaches the asymptotic value
D(self)/DSE at h/2Rn >> 1, verifying the “isolated” limit
(two particles at infinite dilution). Note that it does not
necessarily approach unity if a Stokes-Einstein violation
is present at the single-particle level. The overall devia-
tion of D(rel) from the hydrodynamic result is enhanced
as 2Rn/dT decreases or N/Ne increases, in analogy with
a single-particle Stokes-Einstein violation effect. The un-
derlying physical mechanism can be understood as small
nanoparticles acquiring high mobility due to a weaker cou-
pling to the slow relaxation of entangled melts compared
to the continuum theory. As a consequence, the overesti-
mate of friction by a hydrodynamic approach grows as par-
ticle size decreases and/or chain length increases. The sec-
ond general feature in Fig. 15 concerns the role of the num-
ber of entanglements, N/Ne. Deviations cannot be discerned
from the hydrodynamic behavior for weakly entangled cases
(N/Ne ∼ 1) for either particle size. One may physically ra-
tionalize this result by recalling that the Rouse- like collec-
tive relaxation is diffusive above the segmental length-scale.
Finally, the most important feature of Fig. 15 is the predicted
non-trivial mobility enhancement compared to the hydrody-
namic result over a wide range of h/2Rn. Hydrodynamics
predicts zero relative diffusivity as h→ 0, whereas the re-
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sults of Yamamoto and Schweizer remain non-zero down to
small separations.

Kalathi et al.[231] have employed large-scale molecu-
lar dynamics simulations in order to examine the role of
entanglements on nanoparticle dynamics in the crossover
regime, where the diameter of the particles, σNP, is larger
than 2−10dT with dT being the entanglement tube diameter.
The transport behavior of nanoparticles in the crossover size
limit appears to be complicated by hopping effects, length-
scale dependent entanglement forces and dynamics, and the
interactions of polymers and nanoparticles. These authors
simulated weakly interacting mixtures of nanoparticles and
bead-spring polymer melts. For the polymer melts consid-
ered in that work, the entanglement chain length is approx-
imately 45, Ne ∼ 45, and dT in units of monomer diame-
ter, σ , is around 7 (the nanoparticle diameters were σNP =

1− 15, in units of polymer σ ). The diffusion coefficients
of nanoparticles smaller than dT ∼ 7− 10 (i.e. σNP = 1, 3,
and 5, respectively, Fig. 16(a)) in long chain melts show that
the relevant viscosity corresponds to a section of the chain
with NNP monomers that satisfies σ2

NP = NNPσ2. For shorter
chains the data can be described by the Stokes-Einstein re-
lation with the macroscopic viscosity of the chain fluid, i.e.,

D∗NP =
kBT

f πησNP
=

kBT
f πη1NσNP

(64)

where η = η1N (where η1 is the viscosity of a monomer
fluid at the same density) and f ∼ 4 (asymptote in Fig.
16(a)). The results of Kalathi et al.[231] for smaller nanopar-
ticles are in good agreement with the predictions of the
theory of Yamamoto and Schweizer [229]. Figure 16(b)
presents the results for nanoparticles with sizes larger than
the entanglement mesh length, dT ∼ 7− 10. The diffusion
of these particles in the longer chain melts does not fol-
low the “universal” plateau seen for small nanoparticles.
These results suggest that the chain-scale dynamics does
not control nanoparticle diffusion (no Stokes-Einstein scal-
ing). However, the fact that the diffusivity at high N of these
intermediate-sized particles does not reach the same plateau
as the small nanoparticles (Fig. 16) suggests that another
effect, probably entanglements, plays an important role.
Despite the fact that no conclusive evidence of hopping-
controlled transport was found, the spontaneous fluctuations
of the entanglement mesh (constraint release) in the mod-
erately long chain melts, may be the most important mode
of nanoparticle transport through the bulk of the material, in
agreement with theoretical predictions [229].

6.2 Polymer Diffusion and Dynamics

Early theoretical studies [232–234] have shown that poly-
mer diffusion through heterogeneous media is slowed down

due to entropy losses associated with impenetrable obsta-
cles. A natural choice of a parameter for quantifying the
ability of a nanocomposite to slow down polymer diffusion
is the spacing between the surfaces of neighboring nanopar-
ticles [235]. For monodisperse nanoparticles, this spacing
can be defined as the interparticle distance, dinter, given by
[236]:

dinter = d

[(
φmax

φ

) 1
3
−1

]
(65)

where d and φ are the nanoparticle diameter and nanopar-
ticle volume fraction, respectively.The maximum packing
density of the nanoparticles, φmax, depends on the packing
type, such as simple cubic (φmax = 0.524), face-centered
cubic (φmax = 0.740), body-centered cubic (φmax = 0.680),
and random dense packing (φmax = 0.637). Independently of
φmax, dinter decreases as nanoparticle size decreases at fixed
φ , suggesting that smaller nanoparticles slow down polymer
diffusion more effectively than larger ones[232, 233].

6.2.1 Experimental Findings

Gam et al.[211] have measured the tracer diffusion of
deuterated polystyrene (dPS) in a polystyrene nanocompos-
ite containing silica nanoparticles, with number average di-
ameters, dn, of 28.8 nm and 12.8 nm, using elastic recoil de-
tection. The corresponding volume fractions of the large and
small nanoparticles, φ , ranged from 0 to 0.5, and 0 to 0.1, re-
spectively. At the same volume fraction of nanoparticles, the
tracer diffusion of dPS is reduced as nanoparticle size de-
creases because the interparticle distance between nanopar-
ticles, dinter, decreases. The reduced diffusion coefficient,
defined as the tracer diffusion coefficient in the nanocom-
posite relative to pure PS (D/D0) is plotted against the con-
finement parameter divided by the tracer size in Fig. 17. All
measurements nearly collapse onto a master curve [235], al-
though D/D0 is slightly higher for the smaller particles. For
dinter = ID < 2Rg, D/D0 decreases rapidly as ID/2Rg de-
creases. For ID > 2Rg, D/D0 remains less than 1 indicating
that entropy loss reduces diffusion even when nanoparticles
are far apart relative to the tracer size. The dashed line is an
empirical fit, because a theory relating D to the fundamental
system parameters is lacking.

Schneider et al.[237] studied experimentally the re-
laxation of entangled poly(ethylene-alt-propylene) (PEP)
chains (tube diameter ∼ 5 nm) filled with silica nanoparti-
cles (average diameter∼ 17 nm). The silica volume fraction
was varied between 0.0 and 0.6 (as that was estimated from
the measured weight fraction of silica in the nanocompos-
ite). Neutron spin echo spectroscopy (NSE) was empoloyed
in order to explore chain dynamics in these nanocomposites,
characterized by non-attractive interactions. The resulting
collective dynamic scattering function data were analyzed
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Fig. 16 Terminal diffusion coefficient of nanoparticles of different size, D∗NP, in melts of different N plotted in scaled form. The combination of
the Stokes-Einstein equation with the Rouse model viscosity for a melt of chain length NNP, η = η1NNP (where η1 is the viscosity of a monomer
fluid at the same density) yields that the quantity D∗NPσ3

NP should be a constant, independent of chain length [202, 215]. (a) Nanoparticles that are
smaller than the entanglement mesh size, σNP < dT. (b) Nanoparticles that are larger than the entanglement mesh size, σNP ≥ dT. In all cases, a
slip boundary condition was assumed. Predictions of the theory of Yamamoto and Schweizer [229] are presented in solid lines. Moreover, if we
estimate the Rouse viscosity based on the actual chain length N, we get D∗NPσ3

NP ∼ (N/σ2
NP)
−1, which corresponds to the decaying curves on the

left-hand side of (a). (Reprinted figure with permission from [231]. Copyright 2014 by the American Physical Society).

Fig. 17 Reduced diffusion coefficient of a dPS polymer tracer (D/D0)
in a silica-polystyrene nanocomposite, plotted against the confinement
parameter, namely the interparticle distance, ID = dinter, relative to the
tracer size, Rg. Open and closed squares represent experimental data
for nanoparticles with number average diameters of 12.8 and 28.8 nm.
Employing the interparticle distance estimated from the average num-
ber nanoparticle diameter for monodisperse particles, the scaling of
D/D0 seems reasonable, although the values for the smaller particles
are higher than those for the larger particles. (Reprinted from [211] -
Published by The Royal Society of Chemistry.)

by employing the idea of a tube-like confinement for chain
relaxation below the reptation time. The following conclu-
sions were drawn from their study: (i) the monomeric relax-
ation rates were not unaffected by the addition of nanoparti-
cles, even at high particle loadings; (ii) chain conformations

remain Gaussian for all loadings considered; and (iii) the
tube diameter determined from analysis of neutron spin echo
data decreases monotonically upon adding nanoparticles.
Two contributions to overall chain dynamics were specu-
lated. On the one hand, the number of topological chain-
chain entanglements decreases with increased nanoparticle
loading, i.e., the chains disentangle from each other since
a part of the system volume is occupied by the NPs. On
the other hand, the chain acceleration caused by the reduc-
tion of entanglements is (more than) compensated by the
geometric constraints that nanoparticles present to chain dy-
namics. Since that second factor dominates at large loadings,
the neutron scattering experiments suggested an increase in
chain relaxation time, while at the same time a reduction of
chain-chain entanglements and an increase of particle-chain
entanglements take place.

6.2.2 Insight Obtained from Simulations

Desai et al.[238] investigated the chain dynamics of Kremer-
Grest polymer melts, composed of chains with a relatively
high degree of polymerization (N = 80) filled with solid
nanoparticles using molecular dynamics simulations. These
authors found that chain diffusivity is enhanced relative to
its bulk value when polymer-particle interactions are repul-
sive and is reduced when polymer-particle interactions are
strongly attractive (Fig. 18). In both cases chain diffusiv-
ity assumes its bulk value when the chain center of mass is
about one radius of gyration, Rg, away from the particle sur-
face. As shown in Fig. 18 for the particle volume fraction of
10%, the average chain diffusion coefficient is reduced by
a factor of 2 in the presence of strongly attractive particles.
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Fig. 18 The normalized (by its bulk value) overall diffusion coefficient
of bead-spring polymer chains as a function of % volume fraction of
nanoparticles for repulsive and strongly attractive systems. (Reprinted
from [238], with the permission of AIP Publishing.)

The case of repulsive particles appears to be even more in-
teresting, where the diffusion coefficient initially increases
with increasing particle concentration, but then reaches a
maximum before decreasing with further increase of the par-
ticle concentration. While the initial particle concentration
dependence of the diffusion coefficient reflects the polymer-
particle interactions, higher concentrations always lead to
a reduction of the diffusion coefficient, which may be at-
tributed to geometrical reasons (i.e. the presence of tortuous
paths in systems with high particle loadings).

Kalathi et al.[240] employed large-scale molecular dy-
namics simulations in order to study the internal relaxations
of chains in nanoparticle/polymer composites. They exam-
ined the Rouse modes of the chains, which resemble the ob-
servables of the self-intermediate scattering function, typi-
cally determined in an (incoherent) inelastic neutron scat-
tering experiment. The Rouse modes, p = 0,1,2, ...,N− 1,
of a chain of length N are defined as [241]:

Xp =

√
2
N

N

∑
i=1

ri cos
[

pπ

N

(
i− 1

2

)]
. (66)

The time autocorrelation of the Rouse modes is predicted
to decay exponentially and independently for each node p
for an ideal chain, with relaxation time, τp. The p = 0 mode
describes the motion of the chain center-of-mass, while the
modes with p≥ 1 describe internal relaxations with a mode
number p corresponding to a sub-chain of (N−1)/p seg-
ments. The comparison of the relaxation times of the differ-
ent modes for chains in the PNCs for three different degrees
of polymerization, N, filled with nanoparticles of different
sizes for φ = 0.1 to neat melt is presented in Fig. 19(a)-
(c). Their results (Fig. 19) showed that, for weakly inter-

acting mixtures of nanoparticles and polymers, the effec-
tive monomeric relaxation rates are faster than in neat melt
when the nanoparticles are smaller that the entanglement
mesh size. In this case, the nanoparticles serve to reduce
both the monomeric friction and the entanglements in the
polymer melt, as in the case of polymer-solvent mixtures.
On the contrary, for nanoparticles larger than half the en-
tanglement mesh size, the effective monomer relaxation re-
mains unaffected for low nanoparticle concentrations. Even
in this case, strong reduction of chain entanglements was
observed. These authors concluded that the role of nanopar-
ticles is to always reduce the number of entanglements. By
assuming that the relaxation time for a chain follows the
crossover bridging Rouse to reptation dynamics, the large
p modes directly yield information on the monomer fric-
tion and in the limit of p = 1, the plateau of τeff

p /τeff
p,neat is

directly proportional to the ratio of τ0/Ne in the PNC com-
pared to that in the pure melt. For small nanoparticles, which
act as a diluent, there was an additional speedup, which
was attributed to a reduction in entanglements, quantified
by Ne,melt/Ne,PNC ∼ 0.9 for long chains, which can also be
extracted by the stretching exponents (Fig. 19(e)).

6.3 Local Polymer Dynamics

6.3.1 Insight Obtained from Simulations

Brown et al.[167, 242] were among the first to study the
local dynamics of a model nanocomposite system. They ex-
amined the structure and dynamics of a system containing
an inorganic (silica) nanoparticle embedded in a polymer
(polyethylene-like) matrix. They thoroughly discussed the
variation of structure and dynamics with increasing distance
from the polymer-particle interface and as a function of pres-
sure. A clear structuring of the linear polymer chains around
the silica nanoparticle was observed, with prominent first
and second peaks in the radial density function and concur-
rent development of preferred chain orientation. Evidence
of chain immobilization was less obvious overall, although
dynamic properties were more sensitive to changes in the
pressure. Long simulations were carried out to determine
the variation in the glass transition of the filled polymers
as compared to the pure systems. In Fig. 20 the average re-
laxation times of the torsional autocorrelation function are
presented, resolved into concentric shells of 5 Å thickness
around the nanoparticle center of mass. This assignment was
based on the position of the center of mass of the four atoms
involved in the torsion at the time origin of the observation.
Although this means that at some later time an angle may be-
long to a different shell, it avoids the bias that would result
from selecting only angles that remain in a particular shell
(in any case diffusion of chains is relatively slow so that
should not be a problem). Based on Fig. 20, there is some
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Fig. 19 Normalized effective relaxation times of the p-th Rouse mode for chains in nanocomposites for different nanoparticle sizes at φ = 0.1:
(a) N = 40; (b) N = 100; (c) N = 400. (d) Effect of nanoparticle loading for N = 400, σNP = 10σ (closed triangles correspond to σNP = 10σ in
N = 500 at similar nanoparticle loading as in ref. [239]). Corresponding plot for the stretching exponent β . (Reprinted from [240] - Published by
The Royal Society of Chemistry.)

indication that the decreased translational mobility near the
interface increases the relaxation time associated with tor-
sional equilibration (establishment of the trans-gauche equi-
librium in the systems containing the nanoparticles with di-
ameters of 3 and 6 nm (R30L and R60L, respectively), but
otherwise most of the characteristic times are very close to
those obtained for the neat system, in agreement with previ-
ous studies [242, 243] of the same authors. It was concluded
that, within errors, the interphase thickness was independent
of the size of the nanoparticle for the range of particle sys-
tems analyzed.

Vogiatzis and Theodorou [156] produced atomistic con-
figurations of fullerene-filled polystyrene melts by reverse
mapping well-equilibrated coarse-grained melt configura-
tions, sampled by connectivity altering Monte Carlo, to the

atomistic level via a rigorous quasi Metropolis reconstruc-
tion. The main goal of their work, i.e., the study of PS-C60
dynamics at the segmental and local levels, has been ac-
complished by analyzing long MD trajectories of their well-
equilibrated reverse-mapped structures. Their simulation re-
sults generally indicate that the addition of C60 to PS leads
to slower segmental dynamics (as estimated by character-
istic times extracted from the decay of orientational time-
autocorrelation functions of suitably chosen vectors), sug-
gesting an increase of the bulk glass transition temperature,
Tg, by about 1 K, upon the addition of C60 at a concen-
tration of 1% by weight (in favorable agreement with dif-
ferential scanning calorimetry measurements [244]). They
then employed a space discretization in order to study the
effect of C60 on segmental dynamics at a local level. Each
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Fig. 20 The radial dependence of the relaxation time of the torsional
autocorrelation function of polyethylene around a silica nanoparticle.
All values are averages taken in 5 Å shells around the nanoparticle cen-
ter of mass. The points have been offset slightly for the three systems
along the x axis for clarity. The dotted line simply indicates the value
obtained for the 30-chain pure polymer system at the same tempera-
ture (400 K). (Reprinted with permission from Ref. [167]. Copyright
(2008) American Chemical Society.)

fullerene served as the center of a Voronoi cell, whose vol-
ume was determined by the neighboring fullerenes. Back-
bone carbons lying in every cell were tracked throughout the
atomistic Molecular Dynamics trajectory and their mean-
square displacement (MSD) was measured for the time they
resided in the same cell. Overall mean-square displacement
of backbone atoms was found to be smaller in the presence
of fullerenes, than in bulk PS. However, atoms moving in
smaller (more confined) Voronoi cells exhibited faster mo-
tion than the atoms moving inside larger Voronoi cells. Fig-
ure 21 presents the MSD of backbone carbon atoms as a
function of time at a temperature of 480 K for both the filled
and unfilled systems. As can be seen, nanocomposite sys-
tems exhibit lower mobility when compared to their neat
counterparts. The MSD of backbone carbons is depressed
upon the addition of fullerenes, in good agreement with the
neutron scattering observations of Kropka et al.[244]. In the
inset to Fig. 21, a logarithmic plot of the MSD is presented.
The scaling of t1/2 is expected for the very short time behav-
ior studied, as Likhtman and McLeish [245] have estimated
that the time marking the onset of the effect of topologi-
cal constraints on segmental motion, τe, is 3.36× 104 s for
polystyrene.

Moreover, Vogiatzis and Theodorou [156] estimated the
local mean-square displacement (MSD) of backbone car-
bon atoms of PS, for the timespan an atom spends inside
a particular cell of the Voronoi tessellation. In their analy-
sis used the average MSD from the three most confined and
three least confined cells. They observed that the volume of
the Voronoi cells did not change significantly as a function
of time. Based on that analysis for the nanocomposite sys-

Fig. 21 Mean-squared atomic displacements (MSD) of backbone car-
bon atoms as a function of time for filled and unfilled polystyrene sys-
tems at T = 480 K. In the case of fullerene nanocomposites, an analysis
of the dependence of backbone MSD on confinement is also presented
for most and least confined Voronoi cells (indicative error bars also
included). In the inset to the figure, the same data are presented in log-
arithmic axes. (Reprinted with permission from Ref. [156]. Copyright
(2014) American Chemical Society.)

tem, the degree of depression was found to be a function of
the confinement induced by the fullerenes. The diffusion of
chains was spatially inhomogeneous, as observed by Desai
et al. [246] earlier. Small Voronoi cells lead to higher mo-
bility of the polymer segments within them. Despite the fact
that the addition of fullerenes limited the diffusion of poly-
meric chains, there existed regions in space, where the poly-
mer could recover part of its dynamics due to the high level
of confinement. This finding was then correlated with the
increased rotational diffusion of fullerenes, as the volume of
the Voronoi cells became smaller. These authors envisioned
fullerenes as nanoscopic millstones, forcing the polymeric
chains to diffuse faster, when close to them, while the ge-
ometrical constraints imposed by their presence force the
chains to diffuse more slowly.

Pandey et al.[247] have extensively studied the local dy-
namics and the conformational properties of polyisoprene
next to a smooth graphite surface constructed by graphene
layers, via a multiscale simulation methodology. These au-
thors first performed fully atomistic molecular dynamics
simulations of isoprene oligomers, next to the surface. Sub-
sequently, Monte Carlo simulations of a systematically de-
rived coarse-grained model were employed in order to cre-
ate several uncorrelated structures for polymer systems. A
reverse mapping strategy was developed in order to reintro-
duce atomistic detail into the coarse-grained configurations.
Finally, multiple extensive fully atomistic simulations with
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Fig. 22 (a) Visual representation of the distribution of − logτc along
the normal to the surface and on the surface of graphene planes (τc
is average per slab relaxation time of the c-CH bonds). Each repeat
unit is colored with a scheme where red corresponds to the faster seg-
ments and blue to the slowest. (b) Average dynamics of repeat units
on graphite along a train segment as a function of the length of it.
(Reprinted from [247], with the permission of AIP Publishing.)

large systems of long macromolecules were conducted to
examine local dynamics in proximity to graphite. Their find-
ings supported the presence of increased dynamic hetero-
geneity emerging from both intermolecular interactions with
the flat surface and intramolecular cooperativity. For each
system, Pandey et al. extracted bond orientation autocorrela-
tion functions and sorted them in intervals of 0.03 nm based
on the position of the midpoint of the c-CH bond throughout
the simulation trajectory. For each interval, the autocorrela-
tion curves were averaged weighting by the population of
c-CH vectors found in a specific interval from each run. The
mean correlation times increased substantially in the prox-
imity of the surface, with dynamics at the surface almost 20
times slower (independently of the molecular weight of the
chains) than in bulk PI.

Figure 22 presents a qualitative visual inspection of the
distribution of times for a specific configuration. Pandey et
al.[247] evaluated an autocorrelation function individually
for every c-CH vector and colored each segment from blue

to red signifying lower relaxation times and higher mobil-
ity. As shown, segments in proximity to the surface were
found to be slower. They then separated all train segments
based on their length and calculated correlation times for
each position along the length of the train segment (Fig
22(b)), which was an extremely challenging task. Despite
a significant statistical error, several features are evident in
Fig.22(b). Specifically, when a chain makes a single con-
tact, dynamics are only decelerated to a small extent. The
second important finding was that, as train segments grow
in length along the surface, the dynamics of the repeat units
becomes progressively slower, with the findings implying
that, similar to chain-ends in bulk dynamics, [248, 249] the
ends of train segments contribute to increased dynamic het-
erogeneities on the surface. However, the former are only
significant for short chains, the latter were present for any
chain length studied. In addition, short train segments can
be more pronounced around surfaces with higher curvature
[16, 159]. Finally, a PI specific result was the asymmetry
present along a train segment originating from the methyl
group, much alike findings on bulk dynamics along the chain
backbone [249].

Rissanou and Harmandaris [250] presented a detailed
analysis of the dynamics of three different polymer-
graphene systems, through atomistic Molecular Dynamics
simulations. In more detail they studied (a) PS-graphene, (b)
PMMA-graphene and (c) PE-graphene interfacial systems,
as well as the corresponding bulk polymer systems. For PS
and PMMA polymer chains were 10-mers while PE chains
were 20-mer, in order to ensure that the backbone consisted
of almost the same number of CH2, and/or CH groups for
all systems (i.e. approximately 20 in all cases). A character-
istic quantity of the molecular level is the end-to-end vec-
tor Ree (t), whose autocorrelation function provides infor-
mation for the orientational dynamics at the entire chain
level. Rissanou and Harmandaris performed an analysis of
end-to-end autocorrelation function at different adsorption
layers and fit the corresponding curves for all chains to the
Kohlrausch - Williams - Watts (KWW) function [251–253].
At the entire chain level, the integral below the KWW curves
defines the molecular chain end-to-end relaxation time, τ

Ree
mol .

The molecular relaxation times together with the stretching
exponent, β , of the KWW fits are presented in Fig. 23 (a)
and (b) as functions of the distance from the surface. Data
in Fig. 23(a) reveal the dramatic increase of τ

Ree
mol close to

the graphene layer, compared to the corresponding bulk val-
ues, shown with dashed lines. Furthermore, a slight differ-
ence in the distance at which the τ

Ree
mol reaches the plateau

distance-independent bulk value was observed: for PE it is
about∼ 2 nm, whereas for PMMA and PS is about 3−4 nm.
The extreme difference in relaxation times between PE and
the other two systems is obvious. The β exponent of the
KWW relation for PE and PS reaches a constant value in
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Fig. 23 (a) Molecular relaxation time of the end-to-end orienta-
tional decorrelation function for PS, PMMA and PE hybrid polymer-
graphene systems as a function of the distance from graphene. Dashed
lines represent the values of the molecular relaxation times of the cor-
responding bulk systems. (b) The stretching exponent, β , as extracted
from the fit with KWW functions for the three systems. (Reprinted
from [250] - Published by The Royal Society of Chemistry.)

the bulk region, while the same does not apply for PMMA.
These values show that in the bulk region PMMA has the
wider distribution of relaxation times, PS follows and PE
has the narrowest one.

7 Phase Behavior

Polymer - nanoparticle blends exhibit a rich phase behavior
which is directly tied to the thermal, mechanical, and optical
properties of the composite system, with the achievement of
uniform dispersion being a long-standing challenge[1, 15,
33, 150, 173, 254, 255].

Significant progress towards the development of mi-
croscopic predictive theories of the equilibrium structure
and phase behavior of polymer nanocomposites has been
made recently based on liquid state integral equation formu-
lations, density functional calculations and self-consistent
mean field approaches. All these methods can complement
or surpass the explicit atom methods like Monte Carlo and

Fig. 24 Nanoparticle volume fraction at spinodal phase separation pre-
dicted by the Polymer Reference Interaction Site Model (PRISM) the-
ory for hard spheres of D/d = 10 (with D and d being the diameters
of the nanoparticle and the polymeric beads, respectively) in a freely
jointed chain polymer system of length N = 100, as a function of the
strength of exponential interfacial attraction at fixed spatial range. To-
tal mixture packing is 0.4. The depletion and bridging induced phase
separated regime bracket a window of miscibility at intermediate in-
terfacial cohesion strength. The type of polymer-mediated nanoparti-
cle organization is schematically indicated. (Reprinted from [258] with
permission from Elsevier.)

Molecular Dynamics, which have the potential to quantita-
tively predict structural correlations, thermodynamics and
phase behavior.

Chatterjee and Schweizer were the first to develop an
analytical integral equation theory for treating polymer-
induced effects on the structure and thermodynamics of di-
lute suspensions of hard spheres [256]. Results were pre-
sented for the potential of mean force, free energy of in-
sertion per particle into a polymer solution, and the sec-
ond virial coefficient between spheres. Later, Hoopper et
al.[257] employed the Polymer Reference Interaction Site
Model (PRISM) theory to investigate structure, effective
forces, and thermodynamics in dense polymer-particle mix-
tures in the one and two particle limit [144, 145].

7.1 Bare Nanoparticles

Hall et al.[258, 259] employed Polymer Reference Inter-
action Sites Model (PRISM) liquid state theory to study
phase transitions and structure of dense mixtures of hard
nanoparticles and flexible polymer coils. Their calculations
were performed over the entire compositional range from
the polymer melt to the hard sphere fluid, with the focus be-
ing on polymers that adsorb on nanoparticles. Many body
correlation effects were fully accounted for in the determi-
nation of the spinodal phase separation instabilities. An ex-
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Fig. 25 Second virial coefficient as a function of particle size for sil-
ica particles dispersed in PS matrix at volume fraction 5 %. (Reprinted
with permission from Ref. [260]. Copyright (2015) American Chemi-
cal Society.)

ample phase diagram is presented in Fig. 24. It can be dis-
cerned that depletion and bridging phase separation occur
at low and high attraction strengths, respectively. Quanti-
tatively, many particle effects are found to always reduce
miscibility. Depletion phase separation was similar for dif-
ferent attraction ranges, with a critical point at rather low
filler volume fractions. This is in contrast to the bridging
induced demixing transition where the critical point is lo-
cated at very high nanoparticle volume fractions. Moreover,
increasing the attraction range increases the thickness of the
bound layer and the importance of many body effects, which
further decreases miscibility in the high filler volume frac-
tion regime relative to what was predicted by a two parti-
cle virial analysis [145]. However, when bridging effects are
very strong and phase separation occurs at low volume frac-
tions, decreasing the attraction range can lead to a stronger,
shorter range bridging attraction that reduces miscibility. In-
creasing particle size generally disfavors miscibility on both
the depletion and bridging sides of the spinodal phase dia-
gram, though the effect on depletion is more significant.

Wei et al.[260] have investigated silica nanoparticle
dispersions in polystyrene, poly(methyl methacrylate), and
poly(ethylene oxide) melts by means of a density functional
approach. The polymer chains were regarded as coarse-
grained semi-flexible coils whose segment size matched
the Kuhn length of the polymer under investigation. The
particle-particle and particle-polymer interactions were cal-
culated in the grounds of the Hamaker theory, following
Vogiatzis and Theodorou [148, 193]. In order to character-
ize nanoparticle dispersion, Wei et al. employed the second
virial coefficient, B2, defined as:

B2 =
2
3

πσ
3
n +2π

∫
∞

σn

[
1− ρn (r)

ρn

]
r2dr (67)

where the first term accounts for the particle contribution,
and the second one is the polymer mediated contribution.
The local density of particles is denoted as ρn (r), while the
average particle density as ρn. ρn (r) varies as a function of
distance between particles, making it a critical link to parti-
cle microstructure. The pair correlation function approaches
asymptotically ρn (r)/ρn = 0 when r < 2Rn (Rn being the
radius of the particles) as particles cannot interpenetrate and
ρn (r)/ρn' 1 as r→∞ as the likelihood of finding a particle
becomes proportional to the average particle density. Figure
25 shows the second virial coefficients for different parti-
cle sizes at constant particle volume fraction φ = 5%. Posi-
tive values of B2 indicate stable particle dispersion (effective
particle-particle repulsion), while a negative value signifies
unstable dispersion. The results are in agreement with previ-
ous theoretical studies: the tendency to dispersion increases
as the particle size increases [261]. It can be seen that B2
becomes independent of the particle size after a threshold
value, that meaning the effect of particle size on the pair
correlation function becomes insignificant. Before that criti-
cal value, B2 increases but its increasing amplitude declines
as the particle size increases. Density functional theory con-
firms that large particles are more likely to achieve stable
dispersion than small particles.

7.2 Polymer Grafted Nanoparticles

One approach for controlling the particle dispersion in the
polymer matrix is to alter the particle surface chemistry
through the attachment of polymer chains. The compo-
sition, architecture, and distribution of the grafted chains
can be carefully designed to tailor interparticle interactions,
thereby controlling the dispersion state [33]. In the special
case where the chemical composition of the graft and ma-
trix chains are identical, the entropic contributions domi-
nate the thermodynamics [176, 262], and uniform dispersion
can be achieved both for the case of spherical nanoparticles
[175, 263], and the case of nanorods.[264]

7.2.1 Experimental Findings

In a number of studies, empirical phase diagrams have been
developed for this special case, where the particle misci-
bility is a function of grafting density, σ , the ratio be-
tween the molecular weight of the grafted chains, N, and
matrix chains, P, i.e. P/N, as well as the particle radius,
Rn [14, 71, 72, 174, 175, 263, 265–268]. Sunday et al.
[175, 269] quantified the stability of polystyrene-grafted sil-
ica nanoparticles in PS matrices with ultrasmall angle X-ray
scattering (USAXS) and transmission electron microscopy
(TEM). They developed the phase diagram presented in Fig.
26 to predict nanoparticle dispersion based on the graft poly-
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Fig. 26 Illustration of the phase diagram for nanoparticle stability as a
function of grafting density (σ ) and the ratio of the lengths of the free
over the grafted chains (P/N). Particles at low grafting densities en-
counter the allophobic dewetting transition at σ1. Increasing σ leads to
complete wetting of the brush by the melt, stabilizing the nanoparticle
dispersion. Increasing the graft density further leads to the autophobic
dewetting transition at σ2 and unstable dispersion. Particle dispersion
is unstable at all grafting densities when P/N > (P/N)∗. (Reprinted
with permission from Ref. [175]. Copyright (2012) American Chemi-
cal Society.)

mer density, σ , and the graft and free polymer molecular
weights, or N and P, respectively.

The phase diagram of Fig. 26 shows three distinct re-
gions. When σ is below the allophobic limit (σ1), the sur-
face coverage of grafted chains is low enough that the in-
teractions between the particle and the matrix chains are
not screened out sufficiently and the grafted particles be-
have similarly to block copolymers, aggregating into dis-
tinct morphologies [14, 270, 271]. As σ increases above σ1,
the matrix and grafted chains interpenetrate, resulting in a
“wet” brush and repulsive interactions between nanoparti-
cles, thus stabilizing their dispersion. The autophobic dewet-
ting line corresponds to a continuous, second-order transi-
tion, resulting from the expulsion of the melt from the brush
for densely grafted chains (σN1/2 > 1) which should lead
to nanoparticle aggregation through the attraction between
graft layers[272]. Larger values of Rn, σ , or P/N result in
a larger entropic penalty for intermixing due to crowding
of the grafted layer. As the entropic penalty grows, the in-
terpenetration width between the matrix and grafted chains
decreases until the matrix chains are completely expelled,
resulting in attractive interactions and particle aggregation.
This occurs above the autophobic phase transition at σ2, a
discontinuous, first-order transition at low grafting densities.

Bansal et al.[27] have experimentally observed and
modeled the anisotropic self-assembly of small PS-g-silica

nanoparticles with cores of Rn ∼ 10− 13nm in the allo-
phobic dewetting region at lower grafting densities (σ =

0.01−0.10 chains/nm2) [14]. Using slightly higher grafting
densities (σ ∼ 0.2− 0.7 chains/nm2), Chevigny et al.[187]
used similar-sized PS-g-silica NPs with N = 5−50 kg/mol
in P = 140 kg/mol where particles with the longest grafts
(P/N = 2.8) dispersed uniformly, whereas those with the
shortest grafts (P/N = 28) phase separated from the bulk,
forming spherical aggregates. The dispersion of silica NPs
with higher graft densities has been investigated in which
two sets of PS-g-silica NPs, the first with N = 110 kg/mol
and σ = 0.27 chains/nm2 and the second with N = 160
kg/mol and σ = 0.57 chains/nm2 have been shown to dis-
perse at least up to P/N = 2.3 [273] and 1.6 [27], respec-
tively.

Another way of tuning the mechanical properties of
composite materials is by dispersing hydrophilic nanofillers
in highly hydrophobic polymer matrices [274]. Martin et al.
[275] have performed simulations and experiments on mix-
tures containing polymer grafted nanoparticles in a chem-
ically distinct polymer matrix, where the graft and matrix
polymers exhibit attractive enthalpic interactions at low tem-
peratures that become progressively repulsive as tempera-
ture is increased.

7.2.2 Insight Obtained from Simulations

Trombly and Ganesan [266] have calculated the potential of
mean force (PMF) between grafted nanoparticles immersed
in a chemically identical polymer melt using a numerical im-
plementation of polymer mean-field theory. These authors
focused on the interpenetration width between the grafted
and free chains and its relationship to the polymer-mediated
interparticle interactions. To this end, they quantified the
interpenetration width as a function of particle curvature,
grafting density, and the relative molecular weights of the
grafted and free chains.

Meng et al.[268] used Molecular Dynamics simulations
to delineate the separation dependent forces between two
polymer-grafted nanoparticles in a homopolymer melt and
the associated potential of mean force (PMF). The nanopar-
ticle radius (= 5 in units of the chain monomers) and grafted
brush length (=10) were held constant, while the grafting
density and the polymer matrix length were varied system-
atically in a series of simulations. At first, it was shown that
simulations of a single nanoparticle did not reveal any sig-
natures of the expected autophobic dewetting of the brush
with increasing polymer matrix length (in agreement with
Monte Carlo simulations of Vogiatzis and Theodorou [193]).
In fact, density distributions of the matrix and grafted chains
around a single nanoparticle appeared to only depend on the
grafting density, but not on the matrix chain length. How-
ever, the calculated forces between two nanoparticles in a
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Fig. 27 Potential of mean force between two grafted nanoparticles in
two cases, Σ = 0.38 chains/σ2 and matrix chain length M = 10 shown
in solid black lines; Σ = 0.76 chains/σ2 and M = 70 shown in solid
red lines. The dotted lines show the potential of mean force obtained
from the corresponding cases of the work of Smith and Bedrov [276].
(Reprinted from [268] - Published by The Royal Society of Chemistry.)

melt, presented in Fig. 27, showed that increasing the matrix
chain length, M, from 10 to 70 causes the interparticle PMF
to go from purely repulsive to attractive with a well depth
of the order of kBT (with kB being the Boltzmann constant).
It was speculated that these results were purely entropic in
origin and arise from a competition between brush-brush
repulsion and an attractive inter-particle interaction caused
by matrix depletion from the inter-nanoparticle zone (i.e.
an Asakura-Oosawa type inter-particle attraction). Figure 27
compares the PMF with the results from Smith and Bedrov’
simulations [276] of a similar coarse-grained system using
the umbrella sampling method for an apparently identical
chain length and coverage. The two studies are in qualita-
tive agreement to each other, with the PMF of Meng et al.
consistently shifted toward smaller separations.

Martin et al.[277] presented an integrated theory and
simulation study of polydisperse polymer grafted nanopar-
ticles in a polymer matrix to demonstrate the effect of poly-
disperisty in graft length on the potential of mean force be-
tween the grafted particles. It is evident from Fig. 28 that in-
creasing polydispersity in graft length reduces the strength
of repulsion at contact and weakens the attractive well at
intermediate interparticle distances, completely eliminating
the latter at high polydispersity index. The reduction in
contact repulsion was attributed to polydispersity relieving
monomer crowding near the the particle surface, especially
at high grafting densities. The elimination of the midrange
attractive well could be attributed to the longer grafts in the
polydisperse graft length distribution that in turn introduced
longer range steric repulsion and altered the wetting of the

Fig. 28 Potential of Mean Force (PMF) in units of kBT versus interpar-
ticle distance, r−D (in units of monomer diameter, d), between grafted
nanoparticles (D = 5d) at grafting denisties of (a) 0.1, (b) 0.25 and (c)
0.65 chains/d2 and polydispersity indices 1.0 (circles), 1.5 (squares),
2.0 (upward facing triangles), and 2.5 (downward facing triangles) with
average grafted chain length of 20 in a dense solution of monodis-
perse homopolymer matrix chains of lenght 10 (solid symbols) and 40
(open symbols). The insets have the same axis labels as the main plots.
(Reprinted figure with permission from [277]. Copyright 2013 by the
American Physical Society).
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grafted layer by matrix chains. That work demonstrated that
at high grafting densities, polydispersity in graft length can
be used to stabilize dispersions of grafted nanoparticles in a
polymer matrix at conditions where monodisperse brushes
would cause aggregation.

8 Rheology

8.1 Polymer Entanglements

One of the fundamental concepts in the molecular de-
scription of structure - property relations of polymer melts
is chain entanglement. As the molecular weight of the
molecules in a polymer melt is increased, the spatial do-
main spanned by any given chain increasingly overlaps with
those occupied by its neighbors. When macromolecules in-
terpentrate, the term entanglements intends to describe the
topological interactions resulting from the uncrossability of
chains. The fact that two polymer chains cannot go though
each other in the course of their motion changes their dy-
namical behavior dramatically, without altering their equi-
librium properties. Entanglements play a key role in the vis-
coelastic properties of polymers, as evidenced, for example,
by the emergence of a plateau region in measurements of the
storage modulus as a function of frequency.

Molecular simulations have confirmed that the overall
motion of the chains in a polymer melt is restricted to diffu-
sion along their “primitive paths”, which represent the diffu-
sive paths that linear chain molecules follow between their
two ends as a result of topological constraints [149]. The
advent of computational algorithms enabled direct observa-
tion of entanglements that arise in polymeric melts [278–
280]. Anogiannakis et al.[38] have examined microscopi-
cally at what level topological constraints can be described
as a collective entanglement effect, as in tube model the-
ories, or as certain pairwise uncrossability interactions, as
in slip-link models. They employed a novel methodology,
which analyzes entanglement constraints into a complete set
of pairwise interactions (links), characterized by a spectrum
of confinement strengths. As a measure of the entanglement
strength, these authors used the fraction of time for which
the links are active. The confinement was found to be mainly
imposed by the strongest links. The weak, trapped, uncross-
ability interactions cannot contribute to the low frequency
modulus of an elastomer, or the plateau modulus of a melt.

8.1.1 Insight Obtained from Simulations

Riggleman et al.[281] have carried out a detailed exam-
ination of entanglements in a nanocomposite glass. They
have conducted Molecular Dynamics simulations of an ideal
bead-spring polymer [149] nanocomposite model in which
the nanoparticles were dispersed throughout the polymeric

Fig. 29 (a) Probability that a nanoparticle has a given number of con-
tacts in the initial state (open circles), after compressive deformation
(open diamonds), and after tensile deformation (open squares). The er-
rors are approximately the size of the symbols. (b) The total number of
primitive path contacts per nanoparticle as the system deforms in ten-
sion (solid line) or compression (dashed line). (c) Number of primitive
path contacts plotted against the instantaneous strain for three chosen
particles as the nanocomposite system deforms. The particle that ex-
hibited the largest nonaffine displacements is represented by left trian-
gles while the one with the smallest nonaffine displacements is plotted
using up triangles. (Reprinted from [281], with the permission of AIP
Publishing.)
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matrix. After equilibration in the melt state, all configura-
tions were cooled below their glass transition temperature,
where they were subsequently aged using MD for a short pe-
riod. Finally, a simulation of the creep response of each sam-
ple was performed, where tensile and compressive stresses
were applied to the glassy specimens. In order to reduce the
chains to their primitive paths, these authors employed the
CReTA algorithm of Tzoumanekas and Theodorou [280].
During the reduction process, the diameter of the particles is
reduced to facilitate slippage of entangled chains past each
other, up to the point that further decrease in the diameter
of the particles no longer has an appreciable effect on prim-
itive path statistics. The nanoparticles are necessarily frozen
in space as the algorithm proceeds.

By examining all particles, one can calculate the distri-
bution of the number of primitive path contacts per parti-
cle in the system, shown in Fig. 29(a). The majority of the
particles trap at least one primitive path. The entanglements
due to polymer chains crossing each other are expected to
exhibit little (if any) change during deformation. The only
mechanism for the entanglements to disappear is through
chain ends slipping past an entanglement junction; such ef-
fects are anticipated to be minimal in the glassy state. How-
ever, Fig. 29(a) reveals appreciable changes in the distribu-
tion of the number of primitive path contacts per particle; the
number of contacts per particle increases significantly upon
deformation. Figure 29(b) shows how the average number
of contacts per particle increases with time for both ten-
sile and compressive deformations. An intriguing, overall
physical picture emerges from the heterogenous nonaffine
displacements and the particle-induced nucleation of entan-
glements (Fig. 29(b)). Figure 29(c) provides the number of
entanglements for three particles. The particle that exhibits
the largest nonaffine displacements begins with two primi-
tive path contacts, and as the deformation proceeds loses its
primitive path contacts. Since that particle was not hindered
by any primitive paths, it was able to move throughout the
system more easily. In contrast, the particle with the smallest
nonaffine displacements (plotted using up triangles) experi-
enced two or more primitive path contacts during the entire
deformation. Those entanglements served to trap the parti-
cle and forced it to move along them, in an affine manner.
Nanoparticles were found to serve as entanglement attrac-
tors, particularly at large deformations, altering the topolog-
ical constraint network that arises in the composite material.

Hoy and Grest [282] performed primitive path analysis
[278] of polymer brushes embedded in long-chain melts. All
simulations were for a coarse-grained model [149] in which
monomers were represented by beads (of size σ ) connected
by springs. The systems studied consisted of long grafted
chains of length N = 501 beads, whereas the entanglement
length in a melt is approximately Ne = 70 [283]. The poly-
meric matrix studied consisted of melt chains of length

Fig. 30 Brush-brush (dashed), brush-melt (solid) and melt-melt (dash-
dotted) entanglement densities, ρbb

e (z), ρbm
e (z), and ρmm

e (z) for three
different grafting densities of (a) 0.008, (b) 0.03 and (c) 0.08 chains
σ−2. (Reprinted with permission from Ref. [282]. Copyright (2007)
American Chemical Society.)

P = 1000 beads. As expected, the brush-brush entanglement
density, ρbb

e (z), increases rapidly with the grafting density
for overlapping brushes. The brush-melt entanglement den-
sity, ρbm

e (z), increases also with the grafting density, but
even at low grafting densities there is considerable brush-
melt entanglement. Moreover, there is clear crossover from
dominance of brush-melt entanglements to brush-brush en-
tanglements as coverage increases. Figure 30 depicts brush-
brush, brush-melt and melt-melt entanglement densities for
three different grafted densities 0.008, 0.03 and 0.07 (in
units of σ−2). The peak of ρbm

e (z) is always at z ' 15σ ,
but the width of the first peak increases dramatically with
increasing grafting density. At low z, the crossover between
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a preponderance of brush-melt entanglements and prepon-
derance of brush- brush entanglements clearly occurs at
0.03σ−2 grafting density. At this coverage, the peaks of the
brush-brush and brush-melt entanglement densities are of
nearly equal height. For higher coverages, the peak of the
brush-brush entanglement density is higher, the reverse of
the situation for lower coverages. Summarizing, when sur-
rounded by melt, the brushes entangle predominantly with
the melt at low coverage and with themselves at high cov-
erage. The peak of the brush-melt entanglement density is
highest at an intermediate coverage, but the integrated areal
brush-melt entanglement density continues to increase with
coverage for the studied systems.

8.2 Viscosity

8.2.1 Experimental Findings

Nanoparticles have been shown to influence mechanical
properties, as well as transport properties, such as viscosity.
Until recently, the commonly held opinion was that particle
addition to liquids, including polymeric liquids, produces an
increase in viscosity, as predicted by Einstein a century ago
[284, 285]. However, it was recently found by Mackay and
coworkers [209, 286, 287] that the viscosity of polystyrene
melts blended with crosslinked polystyrene particles (and
later also with fullerenes and other particles) decreases and
scales with the change in free volume (due to introduction
of athermal excluded volume regions in the melt) and not
with the decrease in entanglement. Later, [287] fullerenes
and magnetite particles were found to produce the same non-
Einstein viscosity decrease effect.

Micron-sized spherical fillers increase the viscosity of a
pure polymer melt from ηp to a value of η predicted by the
Einstein-Batcelor law:
η

ηp
= 1+2.5φ +6.2φ

2 (68)

where φ is the particle volume fraction [202, 220, 288].
However, for nanosized fillers, η can be reduced or in-
creased relative to the pure polymer [209, 286, 289–295].
While there have been extensive simulations on nanocom-
posites, a few of them have focused on the importance of
nanoparticle addition on flow behavior [292, 296].

8.2.2 Insight Obtained from Simulations

Kalathi et al.[197] employed nonequilibrium Molecular Dy-
namics simulations in order to find out whether the shear
viscosity of a polymer melt can be significantly reduced
when filled with small energetically neutral nanoparticles.
That proved to be the case, apparently independently of the
polymer’s chain length. Analogous to solvent molecules,

Fig. 31 Viscosity of polymer nanocomposites as a function of the
polymer radius of gyration and nanoparticle diameter. Square symbols
correspond to η/ηp < 1, diamonds to η/ηp > 1, circles to η/ηp ' 1 at
low nanoparticle loading, and triangles to the case where an initial in-
crease of viscosity with nanoparticle loading is followed by a decrease.
(a) Experimental data for athermal systems are from [209, 286]. Sys-
tems above the solid orange line should be miscible. The black “vis-
cosity” line is extrapolated from the simulation findings. (b) Corre-
sponding plot for dissimilar mixtures. Only the viscosity line is shown,
Data are from [289–295] (Reprinted figure with permission from [197].
Copyright 2001 by the American Physical Society).

small nanoparticles seem to act as plasticizers and reduce
the viscosity of a polymer melt. Their simulations allowed
them to organize the viscosity data of filled polymer melts
as a function of the dimensions of the matrix chains and
the particles. Figure 31(a) plots simulation data for ather-
mal (with respect to the strength of polymer-particle inter-
actions) polymer nanocomposite melts, which correspond to
the experiments where the nanoparticles and the melts have
the same chemical structure [209, 286], while chemically
dissimilar mixtures are considered in Fig. 31(b) [289–295].
In Fig. 31(a), Kalathi et al. have also included the miscibility
line from ref. [150] suggesting that the experiments corre-
spond to miscible nanoparticle-polymer mixtures. The “vis-
cosity” line drawn from the simulations separates regions
where the nanocomposite’s viscosity is smaller from those
where viscosity is larger than that of the pure melt. For short
chains, the viscosity crossover occurs when the nanoparti-
cle size is comparable to Rg. In contrast, the limited data for
large Rg suggest that the line is nearly vertical.

Stephanou et al.[297] introduced a continuum model for
polymer melts filled with nanoparticles capable of describ-
ing in a unified way their microstructure, phase behavior,
and rheology in both the linear and nonlinear regimes. That
model was based on the Hamiltonian formulation of trans-
port phenomena for fluids with a complex microstructure
with the final dynamical equations derived by means of a
generalized (Poisson plus dissipative) bracket. The model
describes the polymer nanocomposite melt at a mesoscopic
level by using three fields (state variables): a vectorial (the
momentum density) and two tensorial ones (the conforma-
tion tensor for polymer chains and the orientation tensor for
nanoparticles). A key ingredient of the model is the expres-
sion for the Helmholtz energy, A, of the polymer nanocom-
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Fig. 32 Comparison of the model predictions of Stephanou et al.[297]
for the relative viscosity of a polymer nanocomposite as a function of
nanoparticle volume fraction and imposed shear with the experimental
measurements of Anderson and Zukoski [298]. (Reprinted with per-
mission from Ref. [297]. Copyright (2014) American Chemical Soci-
ety.)

posite. Beyond equilibrium, A contains additional terms that
account for the coupling between microstructure and flow.
In the absence of chain elasticity, the proposed evolution
equations capture known models for the hydrodynamics of
a Newtonian suspension of particles. Figure 32 presents the
relative viscosity predicted by the model of Stephanou et
al. for an unentangled PEO melt with molecular weight
M = 1000 g/mol filled with silica nanoparticles of diam-
eter D = 43 nm [298]. Due to the large nanoparticle vol-
ume fractions covered in the measurements (up to 50%),
neither the Einstein equation nor the Einstein - Berthelot -
Green one are applicable [298]. A better choice is the em-
pirical equation proposed by Krieger and Dougherty [299]
for dense Newtonian suspensions. It can also be observed
that for φ ≥ 0.27 the data in Fig. 32 exhibit a plateau in the
limit of infinitely high shear rates. At those shear rates, flow
is so fast that thermal motion cannot destroy the imposed
structure (fully aligned molecules) on polymer chains.

9 Mechanical Properties

9.1 Moduli of PNCs

Three different models [300] have been proposed by Ein-
stein [284, 285], Eilers [301], and Guth [302] for estimating
the enhancement of the shear modulus of composites incor-
porating spherical particles:

G
Gp

=


1+2.5φ Einstein
1+2.5φ +14.1φ 2 Guth[
1+1.25φ + 1.25φ

1−1.35φ

]2
Eilers

(69)

with φ being the volume fraction of particles dispersed and
G and Gp the shear moduli of the pure polymer and the com-
posite, respectively. Einstein derived his model for small
volume fractions of particles, where the enhancement in the
shear modulus (or viscosity increase) can be estimated by
a linear superposition of the shear distortions arising from
individual particles; though this relationship was originally
derived for shear viscosity of particle suspensions, it is also
applicable to a host of other properties, including the shear
modulus of composites. Later, Guth extended this model
to higher φ by accounting for additional shear distortion
arising from the interactions between the distortions aris-
ing from neighboring particles. Eilers made empirical cor-
rections to Einstein model to account for the dramatic rise
in the viscosity of suspensions observed when the volume
fraction approaches the close-packing sphere density limit.

Surve et al.[314] employed a combination of polymer
mean field theory and Monte Carlo simulations to study
the polymer-bridged gelation, clustering behavior, and elas-
tic moduli of polymer-nanoparticle mixtures. Polymer self-
consistent field theory was first numerically implemented in
order to quantify both the polymer induced interaction po-
tentials and the conformational statistics of polymer chains
between two spherical particles. Subsequently, the forma-
tion and structure of polymer-bridged nanoparticle gels were
examined using Monte Carlo simulations. These authors
used the number distribution of bridges, obtained from their
simulations, to quantify the elastic properties of the poly-
mer nanocomposites in the postgel regime. Similar to clas-
sical network theories, they assumed that the only contribu-
tion to the elastic response of the system comes from the
backbone of the percolated network and that the “sol” frac-
tion and the dangling ends of the network do not impact
elasticity to the system. They defined the backbone of the
percolated network as the percolated cluster, excluding the
dangling tails and dangling loops, that can be identified as
the largest biconnected component of a percolated cluster.
Since, for the case of bridging induced percolation, the inter-
particle bridges served as the stress bearing bonds between
the particles, the enhancement in the elastic modulus was as-
sumed to be proportional to the number of such bridges, at a
given volume fraction of particles. Figure 33(a) displays the
elastic moduli scaled by a constant factor as a function of
particle volume fraction, expressed as η−ηc, with η and ηc
being the volume fraction and the percolation volume frac-
tion of the particles, respectively. As observed from the fig-
ure, the elastic moduli follow a universal power law scaling,
G ∝ (η−ηc)

νη , with νη ' 1.79. If energetic contributions
to elasticity are taken into account, higher elastic exponents
appear from νη ∼ 2.1 to 3.8 depending on the relative in-
fluence of stretching entropy and bending energy [315, 316]
(Fig. 33(b)).
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Fig. 33 (a) Master curve for the scaled elastic modulus obtained from simulations as a function of the particle volume fraction η−ηc. (b) Scaled
elastic modulus for experimental polymer-particle systems. The sources of experimental data are listed in refs [303–313]. (Reprinted from [314],
with the permission of AIP Publishing.)

Fig. 34 Correspondence between the measured and the predicted mod-
uli, G′∞, of radius Rn ' 100 nm silica particles in 2 kg mol−1 PDMS
(filled circles), R ' 100 nm particles in 13 kg mol−1 PDMS (filled
light gray circles) and R ' 600 nm particles in 8 kg mol−1 PDMS
(open dark gray circles). Modulus predictions are also shown: MC
simulations (matching colored “x” symbols), the analytical Zwanzig-
Mountain relation (matching colored solid lines), and Hall equation
for close packed hard spheres (dark gray dashed line). (Reprinted from
[317] - Published by The Royal Society of Chemistry.)

McEwan et al.[317] predicted the storage modulus by
employing a Zwanzig-Mountain relation and Monte Carlo
simulations. In parallel, these authors measured the modulus
from rheology experiments on samples well characterized
with ultra-small angle X-ray scattering. These authors con-
nected particle microstructure to the storage modulus at infi-
nite frequency, G′∞, through the Zwanzig-Mountain equation

for isotropic molecular fluids [318]:

G′∞ =
kBT
R3

n

(
3φc

4π
+

3φ 2
c

40π

∫
∞

0
g(r)

d
dr

[
r4 U. (r)/(kBT )

dr

]
dr
)

(70)

where the first term within the parentheses represents an
ideal contribution to the modulus due to the presence of the
particles and the second term accounts for the contribution
due to their interaction and microstructure. The radial dis-
tribution of nanoparticles, g(r), was obtained from Monte
Carlo simulations of the particles obeying a Mewis-Russel
[319] potential for polymer-grafted spheres. Their results are
presented in Fig. 34. Silica particles of radii R' 100 nm and
600 nm were synthesized, grafted with hydroxyl-terminated
polydimethylosiloxane (PDMS) chains and finally dispersed
in PDMS matrices at volume fractions, φc, ranging from
0.02 to 0.65. The experimental measurements are presented
alongside the theoretical results in Fig. 34. It can be clearly
seen that the storage modulus increases upon the addition
of particles, following an almost universal scaling with the
volume fraction of the particles. In all cases, the Zwanzing-
Mountain predictions are very close to the experiments and
to the predictions of the Hall equation of state for solids
[320] (at high volume fractions where the materials behave
in a solid-like manner).

To provide insights into how polymer-grafted nanopar-
ticles (NPs) enhance the viscoelastic properties of poly-
mers, Hattemer and Arya [321] computed the frequency-
dependent storage and loss moduli of coarse-grained models
of polymer nanocomposites by employing Molecular Dy-
namics simulations. Figures 35(a) and (b) present the com-
puted G′/G′0 and G′′/G′′0 ratios plotted against φ for the
six polymer nanocomposites containing bare and grafted
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Fig. 35 Ratio of storage (a) and loss modulus (b) of the three bare- and
the three grafted-nanoparticle systems to that of pure polymer plotted
as a function of the effective nanoparticle volume fraction. The moduli
ratios obtained from simulations at low and high frequencies are shown
as blue circles and red squares, respectively. Open symbols represent
bare nanoparticles, and filled symbols represent grafted nanoparticles.
The black solid, dotted, and dashed lines represent predictions from the
models of Einstein [284, 285], Eilers [301], and Guth [302], respec-
tively. (Reprinted with permission from Ref. [321]. Copyright (2015)
American Chemical Society.)

nanoparticles at low- and high-frequency regimes along with
the the moduli predicted by using the theoretical models
of Einstein, Eilers and Guth. It is evident that both G′/G′0
and G′′/G′′0 increase with increasing volume fraction, con-
sistent with the trend obtained from the strain distortion
models, though the different models differ somewhat from
each other. Moreover, the moduli ratio computed from sim-
ulations at high frequencies are of comparable magnitude
to those predicted by the models, especially the model pro-
posed by Guth, whereas the ratios computed at low frequen-
cies tend to exceed all model predictions. At low frequen-
cies, the computed G′/G′0 ratios are more strongly affected
compared to G′′/G′′0 , which is consistent with the expec-
tation that G′ is more strongly affected by changes in the
relaxation times of the polymer chains (quadratic depen-
dence with the Rouse time) as compared to G′′ (linear de-
pendence).

9.2 Local Moduli

It is now generally accepted that a nanoparticle will per-
turb the conformation of the polymer around it. However,
the question still remains open whether such conformational
changes are directly responsible for the mechanical behavior
of the polymer, i.e. whether there are any reinforcement or
weakening effects of a polymer by a nanometer-sized parti-
cles, whether such effects are localized, and if so, what is the
extent and the magnitude of that localization. Papakonstan-
topoulos et al.[322, 323] have developed a formalism and
applied it to calculate the local mechanical properties of a
nanocomposite system in detail. Their coarse-grained, bead-
spring Monte Carlo simulations revealed that a glassy layer
is formed in the vicinity of the attractive filler, contributing

to the increased stiffness of the composite material. Follow-
ing Yoshimoto et al.[324], the local mechanical properties of
the system were determined by discretizing the simulation
box into small cubic elements and measuring the internal
stress fluctuations within each cubic subdomain [325].

Figure 36(a) shows the local shear modulus as a function
of the distance from the surface of the filler. An increase of
the local C̄44 is observed for the attractive systems in the
vicinity of the particle. This pronounced increase may be
indicative of the existence of a glassy layer around the parti-
cles, even at temperatures above the glass transition temper-
ature (T/Tg = 1.16), which was hypothesized by Berriot et
al.[326]. The results of the neutral and repulsive system are
more intriguing. The nanoparticle is surrounded by a region
of negative modulus which is followed by a second region of
higher than the bulk modulus. Figure 36(b) shows the local
shear modulus as a function of temperature for the attractive
particle. It can be seen that, as the temperature decreases, the
shear modulus of the solid-like layer around the particle in-
creases. The thickness of that glassy layer, which is compa-
rable to the radius of gyration of the polymer, also increases.
In all cases, far from the particle, the shear modulus decays
to the value corresponding to the pure polymer at the given
temperature, as expected. Summarizing, it seems that, even
above the glass transition temperature, nanoparticles induce
the formation of a solid-like layer, whose existence has been
invoked to explain experimentally observed increases of the
storage modulus in nanocomposites.

9.3 Deformation Simulations

Riggleman et al.[327] have examined the response of a
polymer and a polymer nanocomposite glass to creep and
constant strain rate deformations using Monte Carlo and
Molecular Dynamics simulations. These authors found that
nanoparticles stiffened the polymer glass, as evidenced by
an increase in the initial slope of the stress-strain curve and
a suppression of the creep response. Figure 37 shows the
stress-strain curves obtained by Riggleman et al.[327] for
both the neat and the nanocomposite polymer for both ten-
sion and compression at two different strain rates. All curves
exhibit similar features: it can be discerned an initial elastic
response followed by yield and strain softening when the
strain ε ' 0.05. For strains beyond ε ' 0.10 the stress rises
again as strain hardening begins. The Young’s modulus, E,
was obtained by fitting the linear part of the elastic response
(ε ≤ 0.02) σ = Eε . Both under tension and compression,
the nanocomposite system was found to be stiffer. Moreover,
these authors reported that constant strain rate and constant
stress deformations had different effect on the material’s po-
sition on its energy landscape, in a way that neither the stress
nor the strain rate were uniquely indicative of the relaxation
times in the material [328].
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Fig. 36 (a) Distribution of local C̄44 with respect to the distance r from the center of a nanoparticle for three different types of interaction considered
at temperature T = 0.5. (b) Distribution of the local C̄44 with respect to the distance r from the center of the nanoparticle for the attractive particle
in the melt and glass regime. (Reprinted figure with permission from [322]. Copyright 2005 by the American Physical Society).

Fig. 37 Stress-strain curves for both the pure polymer and the
nanocomposite at two true strain rates in both tension and compression.
The strain rates are indicated in each figure. Error bars are indicative.
(Reprinted with permission from Ref. [327]. Copyright (2009) Ameri-
can Chemical Society.)

Chao and Riggleman [329] studied the effect of nanopar-
ticle curvature and grafting density on the mechanical prop-
erties of polymer nanocomposites. In their study, they de-
veloped a coarse-grained model of a polymer glass contain-
ing grafted nanoparticles and examined the resulting effects
on the elastic constants, strain hardening modulus, as well
as the mobility of the polymer segments during deforma-
tion. They found that the elastic constants and yield prop-
erties were enhanced nearly uniformly for all nanocompos-
ite systems studied, while the strain hardening modulus de-
pended weakly on the grafted density and the nanoparticle
size. Figure 38 shows the mechanical response of the sys-
tems studied under compressive deformation at a constant
rate, where the measured stress is plotted against the ideal
rubber elasticity factor, g(λ ) = 1/λ −λ 2, with λ being the
macroscopic stretch imposed on the specimens. Early in the
deformation, the polymer nanocomposites exhibit an elas-
tic response (g(λ ) < 0.15) followed by yielding and strain
softening. Finally, at larger stretches (g(λ )> 0.3), the poly-
mer glasses enter the strain hardening regime, and the stress
resumes an increasing trend as strain continues to grow.
These authors decomposed the stress calculated in their sim-
ulations into its components. The normalized contribution
from the non-bonded interactions between the nanoparticles
and the grafted chains is presented in Fig. 38(a). It can be
seen that the interaction between the nanoparticle and the
grafted chains increases with the particle size, and its effect
is only observed in the strain hardening region. This find-
ing is coherent with the expected depletion of the matrix
from particle surfaces with increasing particle size. Simi-
larly, the stress contributions from the non-bonded interac-
tions among the grafted chains is presented in Fig. 38(b). For
low grafting densities (0.05 and 0.1) the non-bonded inter-
action between beads belonging to grafted chains does not
contribute significantly to the stress increase during strain
hardening. However, for higher grafting densities (0.2 and
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Fig. 38 Different contributions to the stress tensor plotted against g(λ ). (a) Stress contributions from the non-bonded interaction between particles
and the grafted chains for the systems with grafting density 0.2, and Rn = 1.5 (black), 3.0 (red), and 4.5 (green). (b) Stress contributions from the
non-bonded interactions between the monomers of the grafted chains for the systems with Rn = 3 and grafting densities 0.05 (black), 0.1 (red), 0.2
(green), and 0.4 (blue). All the stress values are normalized by the total number of grafted chains, M. (Reprinted from [329] with permission from
Elsevier.)

Fig. 39 Stress-strain relations of cross-linked polymer nanocomposite
networks with dispersed nanoparticles. Values of stress depend on the
strength of polymer-nanoparticle interactions. In the high strain region,
a rapid increase of the stress can be seen due to extended subchains of
the crosslinked network. (Reprinted with permission from Ref. [330].
Copyright (2016) American Chemical Society.)

0.4), the non-bonded interactions between the grafted chains
contribute significantly to strain hardening. In contrast to the
obvious dependence of the non-bonded component of the
stress tensor to the grafting density and particle radius, the
bonded component of the stress tensor did not exhibit signif-
icant changes in behavior across the various nanocomposite
systems investigated by Chao and Riggleman [329].

Hagita et al.[330] performed coarse-grained Molecu-
lar Dynamics simulations of nanocomposite rubbers with
spherical nanoparticles on the basis of the Kremer-Grest
[149] model. Figure 39 shows the stress-strain relations

of a small mesh cross-linked polymer network for three
nanoparticle-polymer interactions (repulsive, slightly attrac-
tive and attractive). There are clear differences between the
repulsive and the attractive cases. However, both cases with
attractive nanoparticle-polymer interactions seem to behave
similarly, probably due to the few contacts existing between
the nanoparticles. Thus, the effect of the exact interaction
strength on the stress-strain relations is minor. When the
nanoparticles are trapped and fixed in a cross-linked poly-
mer network, the number of contacts between them is ex-
pected to increase for a larger elongation ratio due to the
compression in the directions perpendicular to the elonga-
tion axis. These authors [330] have also calculated the two-
dimensional scattering patterns of nanoparticles during the
elongation of the network. For strain levels > 50% they ob-
served a spot pattern in the structure factor and a two-point
bar pattern in the scattering intensity.

10 Concluding Remarks

We have presented a detailed, result-driven, review of re-
search to address the fundamental problem of PNCs by im-
plementing computer simulations at different levels of de-
scription. It is unfeasible through the use of a single sim-
ulation technique to capture all the relevant physics of the
problem. On one hand, fully atomistic Molecular Dynam-
ics (MD) can account for the chemical interaction between
nanoparticles and the polymer matrix. However, due to the
computational demands of atomistic MD, the polymer ma-
trix has to be comprised of oligomers rather than entangled
polymers. On the other hand, coarse-grained methods can
provide us with an understanding of the underlying phenom-
ena. However, due to the lack of explicit chemical informa-
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tion, coarse-grained methods should be carefully parameter-
ized based on findings of more detailed simulations. In any
case, even the wide spectrum of molecular simulation meth-
ods developed till now cannot fully capture the macroscopic
behavior of PNCs. Coupling molecular simulations to con-
tinuum calculations is the way to achieve this [331–333].
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59. Öttinger HC (2005) Beyond Equilibrium Thermody-
namics. Wiley

60. Vaia RA, Wagner HD (2004) Framework for
nanocomposites. Mater Today 7(11):32 – 37, DOI
http://dx.doi.org/10.1016/S1369-7021(04)00506-1

61. Ediger MD, Angell CA, Nagel SR (1996) Supercooled
liquids and glasses. J Phys Chem 100(31):13,200–
13,212, DOI 10.1021/jp953538d

62. Angell CA (1995) Formation of glasses from liq-
uids and biopolymers. Science 267(5206):1924–1935,
DOI 10.1126/science.267.5206.1924

63. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson
JM (????) Model polymer nanocomposites provide an
understanding of confinement effects in real nanocom-
posites. Nat Mater 6:278 – 282

64. Ash B, Schadler L, Siegel R (2002) Glass tran-
sition behavior of alumina/polymethylmethacrylate
nanocomposites. Mater Lett 55(12):83 – 87, DOI
http://dx.doi.org/10.1016/S0167-577X(01)00626-7

65. Bershtein VA, Egorova LM, Yakushev PN, Pissis P,
Sysel P, Brozova L (2002) Molecular dynamics in
nanostructured polyimidesilica hybrid materials and
their thermal stability. J Polym Sci, Part B: Polym Phys
40(10):1056–1069, DOI 10.1002/polb.10162

66. Klonos P, Panagopoulou A, Bokobza L, Kyritsis
A, Peoglos V, Pissis P (2010) Comparative stud-
ies on effects of silica and titania nanoparticles on
crystallization and complex segmental dynamics in
poly(dimethylsiloxane). Polymer 51(23):5490 – 5499,
DOI http://dx.doi.org/10.1016/j.polymer.2010.09.054

67. Chen KH, Yang SM (2002) Synthesis of epoxy-
montmorillonite nanocomposite. J Appl Polym Sci
86(2):414–421, DOI 10.1002/app.10986

68. Liu X, Wu Q (2001) Pp/clay nanocomposites
prepared by grafting-melt intercalation. Polymer
42(25):10,013 – 10,019, DOI http://dx.doi.org/10.
1016/S0032-3861(01)00561-4

69. Fragiadakis D, Pissis P, Bokobza L (2005)
Glass transition and molecular dynamics in
poly(dimethylsiloxane)/silica nanocompos-
ites. Polymer 46(16):6001 – 6008, DOI
http://dx.doi.org/10.1016/j.polymer.2005.05.080

70. Tao P, Viswanath A, Schadler LS, Benicewicz BC,
Siegel RW (2011) Preparation and optical proper-
ties of indium tin oxide/epoxy nanocomposites with
polyglycidyl methacrylate grafted nanoparticles. ACS
Appl Mater Interfaces 3(9):3638–3645, DOI 10.1021/
am200841n

71. Srivastava S, Agarwal P, Archer LA (2012) Teth-
ered nanoparticlepolymer composites: Phase stabil-
ity and curvature. Langmuir 28(15):6276–6281, DOI
10.1021/la2049234

72. Harton SE, Kumar SK (2008) Mean-field theoreti-
cal analysis of brush-coated nanoparticle dispersion in
polymer matrices. J Polym Sci, Part B: Polym Phys
46(4):351–358, DOI 10.1002/polb.21346

73. Corbierre MK, Cameron NS, Sutton M, Laaziri
K, Lennox RB (2005) Gold nanoparticle/polymer



48 Georgios G. Vogiatzis, Doros N. Theodorou

nanocomposites: dispersion of nanoparticles as a func-
tion of capping agent molecular weight and grafting
density. Langmuir 21(13):6063–6072, DOI 10.1021/
la047193e

74. Lan Q, Francis LF, Bates FS (2007) Silica nanoparticle
dispersions in homopolymer versus block copolymer.
J Polym Sci, Part B: Polym Phys 45(16):2284–2299,
DOI 10.1002/polb.21251

75. Glogowski E, Tangirala R, Russell TP, Emrick T
(2006) Functionalization of nanoparticles for disper-
sion in polymers and assembly in fluids. J Polym
Sci, Part A: Polym Chem 44(17):5076–5086, DOI
10.1002/pola.21598

76. Krishnamoorti R (2007) Strategies for dispersing
nanoparticles in polymers. MRS Bull 32:341–347,
DOI 10.1557/mrs2007.233

77. Tsubokawa N (2007) Surface grafting of polymers
onto nanoparticles in a solvent-free dry-system and ap-
plications of polymer-grafted nanoparticles as novel
functional hybrid materials. Polym J (Tokyo, Jpn)
39:983 – 1000

78. Goel V, Chatterjee T, Bombalski L, Yurekli K, Maty-
jaszewski K, Krishnamoorti R (2006) Viscoelastic
properties of silica-grafted poly(styreneacrylonitrile)
nanocomposites. J Polym Sci, Part B: Polym Phys
44(14):2014–2023, DOI 10.1002/polb.20827

79. Schadler LS, Kumar SK, Benicewicz BC, Lewis SL,
Harton SE (2007) Designed interfaces in polymer
nanocomposites: A fundamental viewpoint. MRS Bull
32:335–340, DOI 10.1557/mrs2007.232

80. Iacovella CR, Horsch MA, Glotzer SC (2008) Lo-
cal ordering of polymer-tethered nanospheres and
nanorods and the stabilization of the double gyroid
phase. J Chem Phys 129(4):044,902, DOI http://dx.
doi.org/10.1063/1.2953581

81. Meli L, Arceo A, Green PF (2009) Control of the
entropic interactions and phase behavior of athermal
nanoparticle/homopolymer thin film mixtures. Soft
Matter 5:533–537, DOI 10.1039/B814714K

82. Zhao L, Li YG, Zhong C (2007) Integral equation
theory study on the phase separation in star polymer
nanocomposite melts. J Chem Phys 127(15):154,909,
DOI http://dx.doi.org/10.1063/1.2795717

83. Xu C, Ohno K, Ladmiral V, Composto RJ (2008)
Dispersion of polymer-grafted magnetic nanoparti-
cles in homopolymers and block copolymers. Polymer
49(16):3568 – 3577, DOI http://dx.doi.org/10.1016/j.
polymer.2008.05.040

84. Wang MJ (1998) Effect of polymer-filler and filler-
filler interactions on dynamic properties of filled vul-
canizates. Rubber Chem Technol 71:520 – 589, DOI
10.5254/1.3538492

85. Payne AR (1962) The dynamic properties of car-
bon black-loaded natural rubber vulcanizates. part i. J
Appl Polym Sci 6(19):57–63, DOI 10.1002/app.1962.
070061906

86. Mullins L (1969) Softening of rubber by deformation.
Rubber Chem Technol 42:339 – 362, DOI 10.5254/1.
3539210

87. Reichl L (2009) A Modern Course in Statistical
Physics. Wiley

88. Goldstein H (1980) Classical Mechanics. Addison-
Wesley series in physics, Addison-Wesley Publishing
Company

89. Boltzmann L (1887) Ueber die mechanischen analo-
gien des zweiten hauptsatzes der thermodynamik.
J Reine Angew Math 1887(100):201–212, DOI 10.
1515/crll.1887.100.201

90. Born M, Oppenheimer R (1927) Zur quantentheorie
der molekeln. Ann Phys (Berlin, Ger) 389(20):457–
484, DOI 10.1002/andp.19273892002

91. Chandler D (1987) Introduction to Modern Statistical
Mechanics. Oxford University Press

92. Landau L, Lifshitz E (1996) Statistical Physics, vol 5.
Elsevier Science

93. Allen P, Tildesley D (1989) Computer Simulation of
Liquids. Oxford Science Publ, Clarendon Press

94. Verlet L (1967) Computer ’experiments’ on classi-
cal fluids. i. thermodynamical properties of lennard-
jones molecules. Phys Rev 159:98–103, DOI 10.1103/
PhysRev.159.98

95. Swope WC, Andersen HC, Berens PH, Wilson KR
(1982) A computer simulation method for the calcu-
lation of equilibrium constants for the formation of
physical clusters of molecules: Application to small
water clusters. J Chem Phys 76(1):637–649, DOI
http://dx.doi.org/10.1063/1.442716

96. Langevin P (1908) Sur la théorie de mouvement
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Effect of filler particle size on the properties of model
nanocomposites. Macromolecules 41(4):1499–1511,
DOI 10.1021/ma701940j
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