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ROOTS OF BIVARIATE POLYNOMIAL SYSTEMS VIA
DETERMINANTAL REPRESENTATIONS∗

BOR PLESTENJAK† AND MICHIEL E. HOCHSTENBACH‡

Abstract. We give two determinantal representations for a bivariate polynomial. They may
be used to compute the zeros of a system of two of these polynomials via the eigenvalues of a two-
parameter eigenvalue problem. The first determinantal representation is suitable for polynomials
with scalar or matrix coefficients and consists of matrices with asymptotic order n2/4, where n is
the degree of the polynomial. The second representation is useful for scalar polynomials and has
asymptotic order n2/6. The resulting method to compute the roots of a system of two bivariate
polynomials is very competitive with some existing methods for polynomials up to degree 10, as well
as for polynomials with a small number of terms.

Key words. system of bivariate polynomial equations, determinantal representation, two-
parameter eigenvalue problem, polynomial two-parameter eigenvalue problem
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1. Introduction. In this paper, we make progress on a problem that has es-
sentially been open since Dixon’s 1902 paper [10]. It is well known that for each
monic polynomial p(x) = p0 + p1x+ · · ·+ pn−1x

n−1 + xn one can construct a matrix
A ∈ Cn×n such that det(xI − A) = p(x). One of the options is a companion matrix
(see, e.g., [21, p. 146])

Ap =



0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . 0

0 0 1
−p0 −p1 · · · · · · −pn−1

 .

Thus, we can numerically compute the zeros of the polynomial p as eigenvalues of the
corresponding companion matrix Ap using tools from numerical linear algebra. This
approach is used in many numerical packages, for instance, in the roots command in
MATLAB [30].
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The aim of this paper is to find a similar elegant tool for finding the zeros of a
system of two bivariate polynomials of degree n,

p(x, y) :=

n∑
i=0

n−j∑
j=0

pij x
i yj = 0,

q(x, y) :=

n∑
i=0

n−j∑
j=0

qij x
i yj = 0.

(1.1)

An approach analogous to the univariate case would be to construct matrices A1, B1,
C1, A2, B2, and C2 of size n× n such that

det(A1 + xB1 + yC1) = p(x, y),

det(A2 + xB2 + yC2) = q(x, y).
(1.2)

This would give an equivalent two-parameter eigenvalue problem [1]

(A1 + xB1 + yC1)u1 = 0,

(A2 + xB2 + yC2)u2 = 0
(1.3)

that could be solved by the standard tools like the QZ algorithm; see [17] for details.
This idea looks promising, but there are many obstacles on the way to a working

numerical algorithm that could be applied to a system of bivariate polynomials. Al-
though it has been known for more than a century [9, 10, 16] that such matrices of
size n× n exist, so far there are no efficient numerical algorithms that can construct
them. Even worse, it seems that the construction of such matrices might be an even
harder problem than finding zeros of polynomials p and q. There exist simple and
fast constructions [32, 40] that build matrices of size O(n2) that satisfy (1.2), where
the resulting two-parameter eigenvalue problem (1.3) is singular; we will discuss more
details in section 4. Recent results [32] show that it is possible to solve singular
two-parameter eigenvalue problems numerically for small to medium-sized matrices.
However, the O(n2) size of the matrices pushes the complexity of the algorithm to
the enormous O(n12) and it is reported in [31] that this approach to compute zeros
is competitive only for polynomials of degree n < 5.

The construction of [32] yields matrices that are of asymptotic order 1
2n

2, while
those of [40] are of asymptotic order 1

4n
2. In this paper we give two new representa-

tions. The first one uses the tree structure of monomials in x and y. The resulting
matrices are smaller than those of [40], with the same asymptotic order 1

4n
2. This

representation can be used for bivariate polynomials as well as for polynomial two-
parameter eigenvalue problems [33], that is, for polynomials with matrix coefficients.
The second representation is even more condensed, with asymptotic order 1

6n
2, and

can be applied to scalar bivariate polynomials. Although the size of the matrices
asymptotically still grows quadratically with n, the smaller size renders this approach
attractive for polynomials of degree n <∼ 10, or for larger n if the polynomials have only
a few terms. This already is an interesting size for a practical use and might trigger
additional interest in such methods that could culminate in even more efficient rep-
resentations. Moreover, as we will see, for modest n, the order of the matrices is only
roughly 2n. Furthermore, for polynomials of degree 3, we present a new construction
of matrices of order (exactly) 3.
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There are other ways to study a system of polynomials as an eigenvalue problem
(see, e.g., [11, 44]), but they involve more symbolic computation. In [28], an algorithm
is proposed that only requires to solve linear systems and check rank conditions, which
are similar tools that we use in the staircase method [32] to solve the obtained singular
two-parameter eigenvalue problem. Of course, there are many numerical methods
that can be applied to systems of bivariate polynomials. Two main approaches are
the homotopy continuation and the resultant method; see, e.g., [12, 23, 41, 45, 49] and
the references therein. There are also many methods which aim to compute only real
solutions of a system of two real bivariate polynomials; see, e.g., [34, 43]. We compare
our method with several existing approaches, including Mathematica’s NSolve [51]
and PHCpack [49], in section 7 and show that our approach is very competitive for
polynomials up to degree <∼ 10.

We mention that another advantage of writing the system of bivariate polynomials
as a two-parameter eigenvalue problem is that then we can apply iterative subspace
numerical methods such as the Jacobi–Davidson method and compute just a small
part of zeros close to a given target (x0, y0) [19]; we will not pursue this approach in
this paper.

The rest of this paper is organized as follows. In section 2 we give some applica-
tions where bivariate polynomial systems have to be solved. Section 3 introduces de-
terminantal representations, and section 4 focuses on two-parameter eigenvalue prob-
lems. In section 5 we give a determinantal representation that is based on the “tree”
of monomials, involves no computation, and is suitable for both scalar and matrix
polynomials. The matrices of the resulting representation are asymptotically of order
1
4n

2. In section 6 we give a representation with smaller matrices, of asymptotic order
1
6n

2, that involves just a trivial amount of numerical computation (such as comput-
ing roots of low-degree univariate polynomials) and can be computed very efficiently.
This representation may be used for scalar polynomials. We end with some numerical
experiments in section 7 and conclusions in section 8.

2. Motivation. Polynomial systems of form (1.1) arise in numerous applications
and fields, such as signal processing [5, 8, 14, 47] and robotics [53]. In computer aided
design, one may be interested in the intersections of algebraic curves, such as ellipses
[2, 26, 29]. In two-dimensional subspace minimization [7], such as polynomial tensor
optimization, one is interested in two-dimensional searches minα,β F (x+ αd1 + βd2),
where F : Rn → R, x is the current point, and d1 and d2 are search directions; see
[42, 43] and the references therein.

In delay differential equations, determining critical delays in the case of so-called
commensurate delays may lead to a problem of type (1.1) [22]. The simplest example
is of the form x′(t) = a x(t) + b x(t− τ) + c x(t− 2τ), where τ > 0 is the delay; asked
are values of τ that result in periodic solutions. This yields p and q of degrees 2 and
3, respectively. Taking more delay terms with delays that are multiples of τ gives
polynomials of higher degree.

In systems and control the first-order conditions of the L2-approximation problem
of minimizing ‖h− h̃‖2 =

∫∞
0
|h(t)− h̃(t)|2 dt, for a given impulse response h of degree

n, and degree(h̃) = ñ ≤ n, lead to a system of type (1.1) [13].
When considering quadratic eigenvalue problems in numerical linear algebra, it is

of interest to determine argminθ∈C‖(θ2A+ θB + C)u‖ as an approximate eigenvalue
for a given approximate eigenvector u, which gives a system of degree 3 in the real
and imaginary part of θ [20, section 2.3]. Generalizations to polynomial eigenvalue
problems give rise to polynomials p and q of higher degree.
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A768 BOR PLESTENJAK AND MICHIEL E. HOCHSTENBACH

Also, there has been some recent interest in this problem in the context of the
chebfun2 project [34, 46]. In chebfun2, nonlinear real bivariate functions are approxi-
mated by bivariate polynomials, so solving (1.1) is relevant for finding zeros of systems
of real nonlinear bivariate functions and for finding local extrema of such functions.

3. Determinantal representations. In this section we introduce determinan-
tal representations and present some existing constructions. The difference between
what should theoretically be possible and what can be done in practice is huge. The
algorithms we propose reduce the difference only by a small (but still significant)
factor; there seems to be plenty of room for future improvements.

We say that a bivariate polynomial p(x, y) has degree n if all its monomials
pijx

iyj have total degree less than or equal to n, i.e., i + j ≤ n, and if at least
one of the monomials has total degree equal to n. We say that the square m × m
matrices A, B, and C form a determinantal representation of the polynomial p if
det(A + xB + yC) = p(x, y). As our motivation is to use eigenvalue methods to
solve polynomial systems, we will, instead of determinantal representation, often use
the term linearization since a determinantal representation transforms an eigenvalue
problem that involves polynomials of degree n into a linear eigenvalue problem (1.3).
A definition of linearization that extends that for the univariate case (see, e.g., [27])
is the following.

Definition 3.1. A linear bivariate pencil A + xB + yC of size m ×m is a lin-
earization of the polynomial p(x, y) if there exist two polynomial matrices L(x, y) and
Q(x, y) such that det(L(x, y)) ≡ det(Q(x, y)) ≡ 1 and

L(x, y) (A+ xB + yC)Q(x, y) =

[
p(x, y) 0

0 Im−1

]
.

We are interested not only in linearizations of scalar polynomials but also in
linearizations of matrix bivariate polynomials of the form (cf. (1.1))

(3.1) P (x, y) =

n∑
i=0

n−j∑
j=0

xi yj Pij ,

where the Pij are k×k matrices. In line with the above, a linear pencil A+xB+yC of
matrices of size m×m presents a linearization (determinantal representation) of the
matrix polynomial P (x, y) if there exist two polynomial matrices L(x, y) and Q(x, y)
such that det(L(x, y)) ≡ det(Q(x, y)) ≡ 1 and

L(x, y) (A+ xB + yC)Q(x, y) =

[
P (x, y) 0

0 Im−k

]
.

In this case det(A + xB + yC) = det(P (x, y)). Each linearization of a matrix poly-
nomial gives a linearization for a scalar polynomial, as we can think of scalars as of
1× 1 matrices; the opposite is not true in general.

Dixon [10] showed that for every scalar bivariate polynomial p(x, y) of degree n
there exists a determinantal representation with symmetric matrices of size n × n.
Dickson [9] later showed that this result cannot be extended to general polynomials
in more than two variables, except for three variables and polynomials of degree two
and three, and four variables and polynomials of degree two. Although they both
give constructive proofs, there does not seem to exist an efficient numerical algorithm
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to construct the determinantal representation with matrices of size n× n for a given
bivariate polynomial of degree n.

In recent years, the research in determinantal representations has been growing,
as determinantal representations for a particular subset of polynomials, real zero poly-
nomials, are related to linear matrix inequality (LMI) constraints used in semidefinite
programming (SDP). For an overview see, e.g., [36, 50]; here we give just the essentials
for bivariate polynomials that are related to our problem.

We say that a real polynomial p(x, y) satisfies the real zero condition with respect
to (x0, y0) ∈ R2 if for all (x, y) ∈ R2 the univariate polynomial p(x,y)(t) = p(x0 +
tx, y0 + ty) has only real zeros. A two-dimensional LMI set is defined as{

(x, y) ∈ R2 : A+ xB + yC � 0
}
,

where A,B, and C are symmetric matrices of size m×m and � 0 stands for positive
semidefinite. In SDP we are interested in convex sets S ⊂ R2 that admit an LMI
representation, i.e., S is an LMI set for certain matrices A, B, and C. Such sets
are called spectrahedra and Helton and Vinnikov [16] showed that such S must be an
algebraic interior, whose minimal defining polynomial p satisfies the real zero condition
with respect to any point in the interior of S. Their results state that if a polynomial
p(x, y) of degree n satisfies real zero condition with respect to (x0, y0), then there exist
symmetric matrices A, B, and C of size n× n such that det(A+ xB + yC) = p(x, y)
and A+ x0B + y0C � 0. Matrices A, B, and C thus form a particular determinantal
representation for p.

The problem of constructing an LMI representation with symmetric or Hermitian
matrices A, B, and C for a given spectrahedron S raised much more interest than the
related problem of generating a determinantal representation for a generic bivariate
polynomial. There exist procedures, which rely heavily on slow symbolic computation
or other expensive steps, that return an LMI representation with Hermitian matrices
for a given spectrahedron, but they are not efficient enough. For instance, a method
from [38], based on the proof from [10], does return n× n matrices for a polynomial
of degree n, but the reported times (10 seconds for a polynomial of degree 10) show
that it is much too slow for our purpose. As a first step of the above method is to find
zeros of a system of bivariate polynomials of degree n and n− 1, this clearly cannot
be efficient enough for our needs. In addition, we are interested in determinantal
representations for polynomials that do not necessary satisfy the real zero condition.

In SDP and LMI the matrices have to be symmetric or Hermitian, which is not
required in our case. We need a simple and fast numerical construction of matri-
ces that satisfy (1.2) and are as small as possible—ideally their size should increase
linearly and not quadratically with n.

Regarding available determinantal representations for generic bivariate polynomi-
als, we first have the linearization by Khazanov with matrices of size n2 × n2 [25]. In
[33, Appendix], a smaller linearization for bivariate matrix polynomials is given with
block matrices of order 1

2n(n + 1). The linearization uses all monomials of degree
up to n− 1 and contains a direct expression for the matrices A, B, and C such that
det(A+ xB+ yC) = p(x, y). Similar to [25], it can be applied to matrix polynomials.
We give an example for a general matrix polynomial of degree 3, from which it is
possible to deduce the construction for a generic degree. This linearization will be
superseded in section 5 by a more economical one.D

ow
nl

oa
de

d 
01

/2
3/

17
 to

 1
31

.1
55

.1
51

.8
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A770 BOR PLESTENJAK AND MICHIEL E. HOCHSTENBACH

Example 3.2 (see [33, Appendix]). We take a matrix bivariate polynomial of
degree 3,

P (x, y) = P00+xP10+yP01+x2P20+xyP11+y2P02+x3P30+x2yP21+xy2P12+y3P03.

If u is a nonzero vector, then P (x, y)u = 0 if and only if (A+ xB + yC)u = 0, where
(3.2)

A+ xB + yC =


P00 P10 P01 P20 + xP30 P11 + xP21 P02 + xP12 + yP03

−xIk Ik 0 0 0 0
−yIk 0 Ik 0 0 0

0 −xIk 0 Ik 0 0
0 0 −xIk 0 Ik 0
0 0 −yIk 0 0 Ik


and

u = u⊗ [1 x y x2 xy y2]T .

We have det(A + xB + yC) = det(P (x, y)) and A + xB + yC is a linearization of
P (x, y).

We remark that Quarez [40] also gives explicit expressions for determinantal rep-
resentations. He is interested in symmetric representations and is able to construct,
for a bivariate polynomial of degree n such that p(0, 0) 6= 0, a linearization with
symmetric matrices of size N ×N , where

(3.3) N = 2

(
bn/2c+ 2

2

)
≈ n2

4
.

This has asymptotically the same order as the first linearization that we will give in
section 5; the second linearization in section 6 has a smaller order. We also remark
that in the phase, when we are solving a two-parameter eigenvalue problem to compute
the zeros of a system of two bivariate polynomials, we cannot exploit the fact that
the matrices are symmetric, so this is not important for our application.

There are some other available tools, for instance, it is possible to construct
a determinantal representation using the package NCAlgebra for noncommutative
algebra [15, 35] that runs in Mathematica [51], but this does not give satisfactory
results for our application as the matrices that we can construct have smaller size.

4. Two-parameter eigenvalue problems. In this section we briefly present
the two-parameter eigenvalue problem and some available numerical methods. A mo-
tivation for the search for small determinantal representations is that if we transform
a system of bivariate polynomials into an eigenvalue problem, then we can apply
existing numerical methods for such problems.

A two-parameter eigenvalue problem has the form (1.3), where Ai, Bi, and Ci
are given ni × ni complex matrices. We are looking for x, y ∈ C and nonzero vectors
ui ∈ Cni , i = 1, 2, such that (1.3) is satisfied. In such case we say that a pair (x, y) is
an eigenvalue and the tensor product u1 ⊗ u2 is the corresponding eigenvector. If we
introduce the so-called operator determinants, the matrices

∆0 = B1 ⊗ C2 − C1 ⊗B2,

∆1 = C1 ⊗A2 −A1 ⊗ C2,(4.1)

∆2 = A1 ⊗B2 −B1 ⊗A2,
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then the problem (1.3) is related to a coupled pair of generalized eigenvalue problems

∆1 w = x ∆0 w,
(4.2)

∆2 w = y ∆0 w

for a decomposable tensor w = u1 ⊗ u2. If ∆0 is nonsingular, then Atkinson [1]
showed that the solutions of (1.3) and (4.2) agree and the matrices ∆−10 ∆1 and
∆−10 ∆2 commute. In the nonsingular case the two-parameter problem (1.3) has n1n2
eigenvalues and we can numerically solve it with a variant of the QZ algorithm on (4.2)
from [17]. Ideally, if we could construct a determinantal representation with matrices
n×n for a bivariate polynomial of degree n, this would be the method that we would
apply on the “companion” two-parameter eigenvalue problem to get the zeros of the
polynomial system. As ∆0, ∆1, and ∆2 have size n1n2×n1n2, the computation of all
eigenvalues of a nonsingular two-parameter eigenvalue problem has time complexity
O(n31 n

3
2), which would lead to O(n6) algorithm for a system of bivariate polynomials.

Of course, for this approach we need a construction of a determinantal representation
with matrices n × n that should not be more computationally expensive than the
effort to solve a two-parameter eigenvalue problem.

Unfortunately, all practical constructions for determinantal representations (in-
cluding the two presented in this paper) return matrices that are much larger than
n × n. If we have a determinantal representation with matrices larger than the de-
gree of the polynomial, then the corresponding two-parameter eigenvalue problem is
singular, which means that both matrix pencils (4.2) are singular, and we are dealing
with a more difficult problem. There exists a numerical method from [33] that com-
putes the regular eigenvalues of (1.3) from the common regular part of (4.2). For the
generic singular case it is shown in [32] that the regular eigenvalues of (1.3) and (4.2)
agree. For other types of singular two-parameter eigenvalue problems the relation
between the regular eigenvalues of (1.3) and (4.2) is not completely known, but the
numerical examples indicate that the method from [33] can be successfully applied
to such problems as well. However, the numerical method, which is a variant of a
staircase algorithm [48], has to make a lot of decisions on the numerical rank and a
single inaccurate decision can cause the method to fail. As the size of the matrices
increases, the gaps between singular values may numerically disappear and it may be
difficult to solve the problem.

This is not the only issue that prevents the use of determinantal representations
to solve a bivariate system. The algorithm for the singular two-parameter eigenvalue
problems still has complexity O(n31 n

3
2), but the fast determinantal representations

that we are aware of return matrices of size O(n2) instead of O(n). This is what
pushes the overall complexity to O(n12) and makes this approach efficient only for
polynomials of small degree. Nonetheless, at complexity so high, each construction
that gives a smaller determinantal representation can make a change. In view of this,
we propose two new linearizations in the next two sections.

5. First linearization. We are interested in linearizations of the matrix poly-
nomial

P (x, y) = P00 + xP10 + yP01 + · · ·+ xnPn0 + xn−1yPn−1,1 + · · ·+ ynP0n

of degree n, where Pij are square matrices. Our goal is to find square matrices A,B,
and C as small as possible such that det(A + xB + yC) = det(P (x, y)). Also, we
need a relation that P (x, y)u = 0 if and only if (A + xB + yC)u = 0, where u is a
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tensor product of u and a polynomial of x and y. The linearization in this section
also applies to scalar bivariate polynomials, where all matrices are 1× 1 and u = 1.

In section 3 we have given a linearization with block matrices of order 1
2n(n+ 1).

We can view this linearization in the following way. If P (x, y)u = 0 for u 6= 0, then
det(A+ xB + yC)u = 0, where the vector u has the form

(5.1) u = u⊗ [1 x y x2 xy y2 · · · xn−1 xn−2y · · · yn−1]T .

This means that u always begins with the initial block u and then contains all blocks
of the form xjyku, where j + k ≤ n− 1. To simplify the presentation we will usually
omit u when referring to the blocks of the vector (5.1). The blocks are ordered in the
degree negative lexicographic ordering, i.e., xayb ≺ xcyd if a+b < c+d, or a+b = c+d
and a > c.

The above block structure of vector u is defined in the rows of the matrix from
the second one to the last one (see Example 3.2). For each block s = xjyk of (5.1)
such that j + k ≥ 1 there always exists a preceding block q of the grade j + k − 1
such that either s = xq or s = yq (when j ≥ 1 and k ≥ 1 both options are possible).
Suppose that s = xq, ind(s) = is, and ind(q) = iq, where function ind returns the
index of a block. Then the matrix A + xB + yC has block −xI on position (is, iq)
and block I on position (is, is). These are the only nonzero blocks in the block row
is. A similar construction with −xI replaced by −yI is used in the case s = yq.

The first block row of the matrix A + xB + yC is used to represent the matrix
polynomial P (x, y). One can see that there exist linear pencils A1i + xB1i + yC1i,
i = 1, . . . ,m, such that

(5.2) P (x, y)u =
[
A11 + xB11 + yC11 · · · A1m + xB1m + yC1m

]
u,

where m = 1
2n(n + 1) is the number of blocks in (5.1). The pencils in (5.2) are not

unique. For instance, a term xjykPjk of P (x, y) can be represented in one of up to
three possible ways:

(a) if j + k < n, we can set A1p = Pjk, where p = ind(xjyk),
(b) if j > 0, we can set B1p = Pjk, where p = ind(xj−1yk),
(c) if k > 0, we can set C1p = Pjk, where p = ind(xjyk−1).

Based on the above discussion we see that not all the blocks in (5.1) are needed to
represent a matrix polynomial P (x, y). What we need is a minimal set of monomials
xjyk, where j + k < n, that is sufficient for a matrix polynomial of degree n. We can
formulate the problem of finding the smallest possible set for a given polynomial as a
graph problem.

We can think about all possible terms xjyk, where j + k < n, as of nodes in
a directed graph G with the root 1 and a directed edge from node s to node t if
t = xs or t = ys (see Figure 1 for the case n = 5). Now, we are looking for the
smallest connected subgraph G′ with a root 1 that can represent a given polynomial.
Equivalently, we are looking for a minimal directed rooted tree. Let us remember
that for each term xjykPjk of the polynomial P (x, y) there are up to three possible
nodes in the graph G that can be used to represent it. It is sufficient that one of these
nodes is in a minimal tree G′. Furthermore, if j+ k > 1, then we can assume that we
always use a node of degree j + k − 1 to represent xjykPjk and then there are only
one or two options for a given term. All together, each nonzero term xjykPjk, where
j + k > 0, in the polynomial P defines one of the following rules for the subgraph G′:

(a) if k = 0, then xj−1y0 has to be in the subgraph G′,
(b) if j = 0, then x0yk−1 has to be in the subgraph G′,
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1

x y

x2 x y y2

x3 x2 y x y2 y3

x4 x3 y x2 y2 x y3 y4

y

y y

y y y

y y y y

x

x x

x x x

x x x x

Fig. 1. Graph G for the polynomial of degree 5.

(c) if j > 0, and k > 0, then at least one of xj−1yk or xjyk−1 has to be in the
subgraph G′.

The term P00 can be presented by the root 1, which is always present in the subgraph
G′.

Finding a minimal tree for a given polynomial is not an easy problem: it can be
formulated as an NP-hard directed Steiner tree problem (DST) (see, e.g., [24]), where
one has a directed graph G = (V,E) with nonnegative weights on edges and the goal
is to find the minimum weight directed rooted tree that connects all terminals X ⊂ V
to a given root r ∈ V .

Suppose that we are looking for a minimal representation tree for a polynomial
P (x, y) of degree n. In the graph G, which contains all nodes xjyk for j + k < n
(see Figure 1 for the case n = 5), we put weight 1 on all directed x and y edges.
Now we add a new vertex for each monomial xjyk that is present in P (x, y) and
connect it with zero weight edges from all possible nodes in G that could be used to
represent the monomial in the linearization. We make a DST problem by taking node
1 as a root and all newly added vertices as terminals. From a solution of the DST
problem the minimal representation tree can be recovered. Although this is an NP-
hard problem, there exist some polynomial time approximation algorithms that give a
solution close to the optimal one and could be used to construct a small determinantal
representation for a given polynomial with small number of nonzero terms. For the
latest available algorithms, see, e.g., [4] and the references therein.

Example 5.1. We are interested in a minimal tree for the matrix polynomial
(5.3)
P (x, y) = P00 +xP10 + yP01 + y3P03 +x2y2P22 +x4yP41 +xy4P14 +x6P60 +x2y4P24.

Nonzero terms in (5.3) define the nodes that have to be present in the minimal sub-
graph. They either are strictly defined as are the nodes 1, y2, and x5 or come in
pairs where at least one element of each pair has to be present in the subgraph. Such
pairs are (x2y, xy2), (x4, x3y), and (x2y3, xy4). The situation is presented in Figure 2,
where nodes and pairs, such that either the left or the right node has to be included,
are shadowed in green. The nodes of the minimal connected subgraph that includes
all required nodes are colored red.

In a DST formulation each green shadow presents a terminal linked by zero weight
edges to one or two nodes that are included in the region. On all other edges we put
weight 1 and then search for the minimum weight directed rooted tree that connects
all terminals to the root 1.
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1

x y

x2 x y y2

x3 x2 y x y2 y3

x4 x3 y x2 y2 x y3 y4

x5 x4 y x3 y2 x2 y3 x y4 y5

y

y

y

x

x

x x

x

x x

x5

x4

1

y2

x y2

x y3

x2 y3

x3 y

x2 y

y4

x y4

Fig. 2. A minimal directed subtree G′ for the matrix polynomial (5.3) of degree 6.

Matrix polynomial (5.3) can thus be represented with matrices of block size 11×
11. If we order the nodes of the subgraph in the degree negative lexicographic ordering,
then u has the form

u = u⊗ [1 x y x2 y2 x3 xy2 x4 xy3 x5 x2y3]T

and a possible first block row of A+ xB + yC has the form[
P10 + xP10 + yP01 0 0 0 yP03 0 yP22 yP41 yP14 xP60 yP24

]
.

In the subsequent block rows, the matrix A+xB+yC has only 20 nonzero blocks, 10
of them identity blocks on the main diagonal. The remaining nonzero blocks are −xI
on block positions (2, 1), (4, 2), (6, 4), (7, 5), (8, 6), (10, 8), (11, 9) and blocks −yI on
positions (3, 1), (5, 3), (9, 7).

If we have a generic matrix polynomial P (x, y), whose terms are all nonzero, then
it is easy to see that the subgraph that contains all terms xjyk, where j + k < n and
either j = 0 or k is even, is minimal. The detailed situation for the case n = 6 is
presented in Figure 3, and representation trees for polynomials of degree 1 to 8 are
presented in Figure 4. Counting the number of nodes in the tree gives the following
result:

(5.4) ψ(n) := |G′| =
{

1
4n(n+ 1), n even,

1
4 (n− 1)(n+ 5) + 1, n odd.

If we compare this with the linearization from Example 3.2 that has matrices of block
size 1

2n(n + 1), we see that the new linearization uses matrices of roughly half size.
The size of the matrices is also smaller than (3.3) from [40], while having the same
asymptotic order.

Theorem 5.2. We can linearize each matrix polynomial P (x, y) of degree n with
matrices of block size ψ(n) from (5.4) using a minimal tree G′ that contains the terms
xjyk, where j + k < n and either j = 0 or k is even.
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1

x y

x2 y2

x3 x y2 y3

x4 x2 y2 y4

y

y

y

y

x

x

x x

x x

Fig. 3. A minimal tree G′ for a generic polynomial of degree 5.

ψ(1) = 1 ψ(2) = 3 ψ(3) = 5 ψ(4) = 8

ψ(8) = 24ψ(7) = 19ψ(6) = 15ψ(5) = 11

Fig. 4. Minimal representation trees for polynomials of degrees 1 to 8.

Proof. We order all nodes of a minimal treeG′ in the degree negative lexicographic
ordering and form the block matrix L(x, y) in the following way. All diagonal blocks
of L(x, y) are I. If a node with index p is connected to a node with index q with an x
or y edge, then we put −xI or −yI in the block position (q, p), respectively. Because
of the ordering, the matrix L is block lower triangular and nonsingular. Its inverse
L(x, y)−1 is therefore also a lower triangular matrix with diagonal identity blocks.

Let m = ψ(n) be the number of nodes in G′. If follows from L(x, y)L(x, y)−1 = I
that the first block column of L(x, y)−1 has the form

(5.5) I ⊗
[
1 s2 s3 · · · sm

]T
,

where sj is the monomial in the jth node of G′ for j = 1, . . . ,m (s1 = 1).
Now we will construct the linearization of the matrix polynomial P (x, y). We

need a block matrix M(x, y) = A+ xB + yC, whose elements are linear pencils in x
and y. We take M(x, y) = L(x, y) and adjust the first block row M1(x, y), where we
put linear pencils such that

M1(x, y)(I ⊗
[
1 s2 s3 · · · sm

]T
) = P (x, y).

This is always possible as for each term xjykPjk in the polynomial P (x, y) there exists
a term xryq in G′ such that (j, k)− (r, q) is one of the following three options: (0, 0),
(1, 0), or (0, 1). The product M(x, y)L(x, y)−1 is an upper block triangular matrix of
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the form

M(x, y)L(x, y)−1 =


P (x, y) H2(x, y) · · · Hm(x, y)

I
. . .

I

 ,
where H2(x, y), . . . ,Hm(x, y) are matrix polynomials. If we introduce the matrix
polynomial

U(x, y) =


I −H2(x, y) · · · −Hm(x, y)

I
. . .

I

 ,
then it follows that

U(x, y)M(x, y)L(x, y)−1 =


P (x, y)

I
. . .

I

 ,
and since det(L(x, y)) ≡ det(U(x, y)) ≡ 1, this proves that M(x, y) = A + xB + yC
is indeed a linearization of the matrix polynomial P (x, y).

Example 5.3. As an example we consider the scalar bivariate polynomial

p(x, y) = 1 + 2x+ 3y + 4x2 + 5xy + 6y2 + 7x3 + 8x2y + 9xy2 + 10y3,

which was already linearized in [32] with matrices of size 6×6 (we can also get a 6×6
linearization if we insert the coefficients in matrix (3.2) of Example 3.2). Now we can
linearize it with matrices of size 5× 5 as p(x, y) = det(A+ xB + yC), where

A+ xB + yC =


1 + 2x+ 3y 4x+ 5y 6y 7x+ 8y 9x+ 10y

−x 1 0 0 0
−y 0 1 0 0
0 −x 0 1 0
0 0 −y 0 1

.
In the next section we will further reduce the size of the matrices to 4 × 4 and even
3× 3.

6. Second linearization. We will upgrade the approach from the previous sec-
tion and produce even smaller representations for scalar polynomials. As before,
representations have a form of the directed tree, but instead of using only x and y, an
edge can now be any linear polynomial αx+ βy such that (α, β) 6= (0, 0). These ad-
ditional parameters give us enough freedom to produce smaller representations. The
root is still 1, while the other nodes are polynomials in x and y that are products of
all edges on the path from the root to the node. In each node all monomials have
the same degree, which is equal to the graph distance to the root. Before we continue
with the construction, we give a small example to clarify the idea.

Example 6.1. A linearization of a polynomial of degree 3 with matrices of size
4 × 4 is presented in Figure 5. We now explain the figure and show how to produce
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1

q2 q4

q3

1+3x+2y

2x − y2x + 1

x + 3y
2x − yx − y

x + y

Fig. 5. A representation tree and a linearization for a polynomial of degree 3.

the matrices from the representation tree. The nodes in the representation tree are
the following polynomials:

q1(x, y) = 1, q2(x, y) = (x− y) q1(x, y) = x− y,
q3(x, y) = (x+ y) q2(x, y) = x2 − y2, q4(x, y) = (2x− y) q1(x, y) = 2x− y.

The polynomial of degree 3 is then a linear combination of nodes in the representation
tree and coefficients f1, . . . , f4 which are polynomials of degree 1 contained in the
ellipses. This gives

p(x, y) = (1 + 3x+ 2y) q1(x, y) + (2x+ 1) q2(x, y) + (x+ 3y) q3(x, y)

+ (2x− y) q4(x, y)

= 1 + 4x+ y + 6x2 − 6xy + y2 + x3 + 3x2y − xy2 − 3y3.

Similarly as in section 5, we can write the matrices by putting the linear coefficients
in the first row and relations between the polynomials q1(x, y) to q4(x, y) in the
subsequent rows. For each edge of the form qk = (αx+ βy) qj we put −(αx+ βy) in
the position (k, j) in the matrix M(x, y) = A+ xB + yC and 1 in the position (k, k).
In the first row we put ak+ bkx+ cky in the position (1, k) if fk(x, y) = ak+ bkx+ cky
is the linear factor that multiplies the polynomial qk(x, y) in the linearization. The
matrix M(x, y) that corresponds to Figure 5, such that det(M(x, y)) = p(x, y), is

M(x, y) =


1 + 3x+ 2y 2x+ 1 x+ 3y 2x− y
−x+ y 1 0 0

0 −x− y 1 0
−2x+ y 0 0 1

 .
In Example 6.1 we showed how to construct the bivariate pencil M(x, y) = A +

xB + yC from a representation tree and the corresponding linear coefficients. The
outline of an algorithm that constructs a representation tree and the corresponding
linear coefficients for a given polynomial p(x, y) is presented in Algorithm 1. In the
following discussion we give some missing details and show that the algorithm indeed
gives a linearization.

• The nodes q2, . . . , qn that we construct in step 2 are polynomials of the form
qk(x, y) = (x− ζ1y) · · · (x− ζk−1y) for k = 2, . . . , n. All monomials in qk have
degree k − 1 and the leading term is xk−1.
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Algorithm 1. Given a bivariate polynomial p(x, y) = α00+α10x+α01y+· · ·+αn0xn+
αn−1,1x

n−1y+ · · ·+α0ny
n such that αn0 6= 0, the algorithm returns a representation

tree with a determinantal representation of the polynomial.

1. Compute n zeros ζ1, . . . , ζn of the polynomial h(t) = αn0t
n + αn−1,1t

n−1 +
· · ·+ α0n.

2. Form a branch of the tree with the root q1(x, y) ≡ 1 and nodes q2, . . . , qn,
where qk+1 is a successor of qk and the edge from qk to qk+1 contains the
factor x− ζky for k = 1, . . . , n− 1.

3. Compute linear coefficients f1, . . . , fn for nodes q1, . . . , qn in the following
way:
(a) take f1(x, y) = α00 + α10x+ α01y,
(b) take fk(x, y) = αk0x + (αk−1,1 − αk0βk)y, where βk is a coefficient of

qk(x, y) at xk−1y, for k = 2, . . . , n− 1,
(c) take fn(x, y) = αn0(x− ζny).

4. Compute the remainder r(x, y) = p(x, y)−
∑n
i=1 fk(x, y) qk(x, y), which has

the form r(x, y) = y2s(x, y), where s(x, y) is a polynomial of degree n− 3.
5. If s(x, y) ≡ 0, then stop and return the tree.
6. Add node qn+1 and connect it to the root by an edge having the factor y.
7. If s(x, y) is a nonzero constant β00, then use fn+1 = β00y as a coefficient for

the node qn+1, stop, and return the tree.
8. Recursively call the same algorithm to obtain a representation tree with the

root q′1 for the polynomial s(x, y).
9. Connect qn+1 to q′1 by an edge with a factor y and return the tree with the

root q1.

• Each product qk(x, y)fk(x, y) for k = 2, . . . , n is a polynomial with monomials
of exact degree k, while q1(x, y)f1(x, y) is a polynomial of degree 1. The linear
factors fk(x, y) in step 3 are constructed so that

– The leading two monomials (xk and xk−1y) of fk(x, y) qk(x, y) agree
with the part αk0x

k + αk−1,1x
k−1y of the polynomial p(x, y) for k =

2, . . . , n− 1,
– the product fn(x, y) qn(x, y) = an0(x− ζ1y) · · · (x− ζny) agrees with the

part of p(x, y) composed of all monomials of degree exactly n,
– the product q1(x, y) f1(x, y) = a00 + a10x+ a01y agrees with the part of
p(x, y) composed of all monomials of degree up to 1.

As a result, the remainder in step 4 has the form y2s(x, y), where s(x, y) is
a polynomial of degree n− 3. The situation at the end of step 4 is presented
in Figure 6.

• If the coefficient αn0 is zero, then we can apply a linear substitution of x and
y of the form x = x̃ and y = ỹ + γx̃, where we pick γ such that

αn−1,1 γ + αn−2,2 γ
2 + · · ·+ α0n γ

n 6= 0.

This ensures that the substituted polynomial in x̃ and ỹ will have a nonzero
coefficient at x̃n. After we complete the representation tree for the substituted
polynomial in x̃ and ỹ, we perform the substitution back to x and y.

• If the polynomial s(x, y) in step 4 is not a constant, then we obtain a rep-
resentation subtree for s(x, y) by calling recursively the same algorithm. In
order to obtain the final representation tree, we then join the existing branch
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1

q2

qn−1

qn

fn

fn−1

f2

f1

x − ζ1 y

x − ζ2 y

x − ζn−2 y

x − ζn−1 y

Fig. 6. The representation tree after step 4 of Algorithm 1. The remainder p(x, y) −∑n
j=1 fj(x, y) qj(x, y) is a polynomial of the form y2s(x, y), where s(x, y) is a polynomial of de-

gree n− 3.

to the representation subtree for the polynomial s(x, y). We do this by in-
troducing a new node qn+1 in step 6 that is linked to the root by the edge
with the factor y. To this new node we link the root q′1 of the subtree for
the polynomial s(x, y) in step 9, again using the edge with the factor y. As
q′1 is linked to the root by two edges y, this multiplies all nodes in the sub-
tree by y2 and, since the subtree is a representation for s(x, y), this gives a
representation for the remainder r(x, y) from step 4. The situation after step
9 with the final representation tree for the polynomial p(x, y) is presented in
Figure 7.

1

q2 qn+1

eq1

qn−1

qn

y

y

x − ζ1 y

x − ζ2 y

x − ζn−2 y

x − ζn−1 y
subtree for s(x , y)

Fig. 7. The final representation tree.

From the output of Algorithm 1, matrices A,B,C such that det(A+xB+yC) = p(x, y)
can be obtained in the same way as in Example 6.1. We remark that the zeros
ζ1, . . . , ζn in step 1 can be complex, even if the polynomial p has real coefficients.
Thus, in a general case a linearization produced by Algorithm 1 has complex matrices
A,B, and C.
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θ(1) = 1 θ(2) = 2 θ(3) = 4 θ(4) = 6

θ(8) = 17θ(7) = 14θ(6) = 11θ(5) = 8

Fig. 8. Representation trees for polynomials of degrees 1 to 8.

Example 6.2. We apply Algorithm 1 on p(x, y) = 1 + 2x+ 3y+ 4x2 + 5xy+ 6y2 +
7x3 + 8x2y + 9xy2 + 10y3 from Example 5.3. First, we compute the roots

(6.1) ζ1 = −0.0079857− 1.1259i, ζ2 = −0.0079857 + 1.1259i, ζ3 = −1.1269

of the polynomial h(t) = 7t3 + 8t2 + 9t + 10. The zeros are ordered so that |ζ1| ≤
|ζ2| ≤ · · · ≤ |ζn|. In exact computation the order is not important, but in numerical
tests we experience better results with this order. This gives the polynomials in the
first branch of the representation tree:

q1(x, y) = 1, q2(x, y) = x+ (0.0079857 + 1.1259i)y,

q3(x, y) = x2 + 0.015971xy + 1.2677y2,

and we can compute the corresponding coefficients

f1(x, y) = 1+2x+3y, f2(x, y) = 4x+(4.9681+4.5036i)y, f3(x, y) = 7x+7.8882y.

For the remainder r(x, y) = p(x, y)−
∑3
j=1 fj(x, y) qj(x, y) = (0.88972+5.5576i)y2 we

need just one additional node q4(x, y) = y with the coefficient f4(x, y) = (0.88972 +
5.5576i)y. The determinantal representation with 4× 4 matrices is p(x, y) = det(A+
xB + yC), where

A =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, B =

 2 4 7 0
−1 0 0 0

0 −1 0 0
0 0 0 0

, and

C =

 3 4.9681 + 4.5036i 7.8882 0.88972 + 5.5576i
−0.0079857 + 1.1259i 0 0 0

0 −0.0079857 − 1.1259i 0 0
−1 0 0 0

.
Representation trees for polynomials of degree 1 to 8 are presented in Figure 8.

If we compare them to the determinantal representations from section 5 in Figure 4,
then we see that representations obtained by Algorithm 1 are much smaller. The
following lemma shows that asymptotically we use 1

3 fewer nodes than in section 5.

Lemma 6.3. Algorithm 1 returns representation tree G for the linearization of a
polynomial p(x, y) of degree n of size

(6.2) θ(n) = |G| =
{

1
6n(n+ 5), n = 3k or n = 3k + 1,

1
6n(n+ 5)− 1

3 , n = 3k + 2.
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Proof. It follows from the recursion in the algorithm (see Figure 7) that the
number of nodes satisfies the recurrence equation

θ(n) = n+ 1 + θ(n− 3).

The solution of this equation with the initial values θ(1) = 1, θ(2) = 2, and θ(3) = 4
is (6.2).

For generic polynomials of degrees n = 3 and n = 4 it turns out to be possible
to modify the construction and save one node in the representation tree. The main
idea is to apply a linear substitution of variables x and y in the preliminary phase to
the polynomial p(x, y) to eliminate some of the terms. This implies that the resulting
matrices are of orders 3 (n = 3) and 5 (n = 4), instead of orders 4 and 6 as seen
before, and it also reduces the size of the matrices for n = 3k and n = 3k + 1 by 1.
We give details in the following two subsections.

6.1. The special case n = 3. We consider a cubic bivariate polynomial
p(x, y) = α00 + α10x + α01y + · · · + α30x

3 + · · · + α03y
3, where we can assume that

α30 6= 0. We introduce a linear substitution of the form x = x̃ + sỹ + t and y = ỹ,
where s is such that

(6.3) h(s) := α30s
3 + α21s

2 + α12s+ α03 = 0

and t = −α20s
2+α11s+α02

h′(s) .

The substitution is well defined if s is a single root of (6.3) and the only situation
where this is not possible is when h has a triple root. This substitution transforms
p(x, y) into a polynomial p̃(x̃, ỹ) such that its coefficients α̃03 and α̃02 are both zero. If
we apply Algorithm 1 to p̃(x̃, ỹ) and choose ζ1 = 0 for the first zero, then the remainder

in step 4 is zero and we get 3×3 matrices Ã, B̃, and C̃ such that det(Ã+ x̃B̃+ ỹC̃) =

p̃(x̃, ỹ). Now, it is easy to see that for A = Ã − tB̃, B = B̃, and C = C̃ − sB̃,
det(A+ xB + yC) = p(x, y).

Example 6.4. We take the recurrent example p(x, y) = 1 + 2x+ 3y+ 4x2 + 5xy+
6y2 + 7x3 + 8x2y+ 9xy2 + 10y3 (see Examples 5.3 and 6.2). If we take s = 1.1269 (see
(6.3)) and t = −0.30873, then substitution x = x̃+ sỹ + t and y = ỹ changes p(x, y)
into a polynomial

p(x̃, ỹ) = 0.55782 + 1.5317x̃+ 0.49276ỹ − 2.4833x̃2 + 5.6571x̃ỹ + 7x̃3

− 15.665x̃2ỹ + 17.637x̃ỹ2.

Algorithm 1 gives 3× 3 matrices Ã, B̃, and C̃ such that det(Ã+ x̃B̃ + ỹC̃) = p̃(x̃, ỹ),
from which matrices

A =

[
1.0307 −0.76665 2.1611

−0.30873 1 0
0 −0.30873 1

]
, B =

[
1.5317 −2.4833 7
−1 0 0
0 −1 0

]
, and

C =

[
2.2189 2.8587 0.00559 + 7.8813i
−1.1269 0 0

0 −0.0079857 + 1.1259i 0

]
,

such that det(A+xB+ yC) = p(x, y), are obtained and we have a 3× 3 linearization.
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6.2. The special case n = 4. Before we give a construction for a generic quar-
tic bivariate polynomial, we consider a particular case when a polynomial p(x, y) =∑4
j=0

∑4−j
k=0 αjkx

jyk of degree 4 is such that α30 = α40 = α03 = α04 = 0. In this case
five nodes are enough to represent the polynomial p(x, y). The representation tree
for the polynomial p(x, y) is presented in Figure 9, where ζ1 and ζ2 are the zeros of
α31ζ

2 + α22ζ + α13.

1

x y

x y

x y(x−ζ1 y)

α00+α10 x+α01 y

α02 yα20 x + α11 y

α21 x + α12 y

α31(x − ζ2 y)

yx

y

x − ζ1 y

Fig. 9. A representation tree and a linearization for a polynomial p(x, y) =∑4
j=0

∑4−j
k=0 αjkx

jyk of degree 4 such that α30 = α40 = α03 = α04 = 0.

For a generic quartic polynomial we first transform it into one with zero coef-
ficients at x3, x4, y3, and y4. Except for very special polynomials, we can do this
with a combination of two linear substitutions. Similarly as in case n = 3, we first
introduce a linear substitution of the form x = x̃+ sỹ + t and y = ỹ, where s is such
that

h(s) := α40s
4 + α31s

3 + α22s
2 + α13s+ α04 = 0

and t = −α30s
3+α21s

2+α12s+α03

h′(s) .

The substitution is well defined if s is a single root of h(s). After the substitution
we have a polynomial p̃(x̃, ỹ) such that its coefficients α̃04 and α̃03 are both zero. On
this polynomial we apply a new substitution x̃ = x̂ and ỹ = ux̂+ ŷ + v, where

g(u) := α̃40 + α̃31u+ α̃22u
2 + α̃13u

3 = 0

and v = − α̃30+α̃21u+α̃12u
2

g′(u) .

This substitution is well defined if u is a single root of g(u); therefore, both
substitutions exist for a generic polynomial of degree 4.

After the second substitution we get a polynomial p̂(x̂, ŷ) such that its coefficients
α̂30, α̂40, α̂03, and α̂04 are all zero. For such a polynomial we can construct a repre-
sentation with matrices 5 × 5 as presented in Figure 9. This gives 5 × 5 matrices Â,
B̂, and Ĉ such that det(Â+ x̂B̂ + ŷĈ) = p̂(x̂, ŷ). Finally, if we take

A = Â− tB̂ − (v − tu) Ĉ, B = B̂ − u Ĉ, C = Ĉ − s B̂,

then det(A+ xB + y C) = p(x, y).
If we add the constructions from subsections 6.1 and 6.2 as special cases to Al-

gorithm 1, then we save one node for all generic polynomials of degree n = 3k or
n = 3k + 1. Although this advantage seems to be modest, numerical results in the
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following section point out that for small n this does speed up the computation of the
zeros considerably (for instance, for n = 6 the corresponding ∆-matrices are of order
102 = 100 instead of 112 = 121).

7. Numerical examples. Determinantal representations from sections 5 and 6
can be used to numerically solve a system of two bivariate polynomials. We first
linearize the problem as a two-parameter eigenvalue problem and then solve it with
the method for singular two-parameter eigenvalue problems from [33], which is im-
plemented in [39]. Subsequently, we refine the solutions by two steps of Newton’s
method. We refer to the numerical methods that use linearizations from sections 5
and 6 as Lin1 and Lin2, respectively. In the first example we take polynomials with
random coefficients, while the second example considers some challenging benchmark
polynomials.

The following numerical examples were obtained on a 64-bit Windows version of
MATLAB R2015a running on an Intel Core i5-4670 3.40 GHz processor with 16 GB
of RAM.

Example 7.1. We compare Lin1 and Lin2 to the following methods:
(a) NSolve in Mathematica 9 [51],
(b) PHCLab 1.04 [12] running PHCpack 2.3.84,
(c) BertiniLab 1.4 [37] running Bertini 1.5 [3],
(d) NAClab 3.0, a MATLAB toolbox for numerical algebraic computation [52],

where the last three methods use homotopy. We compare methods on systems of
full bivariate polynomials of the same degree, whose coefficients are random real
numbers uniformly distributed on [0, 1] or random complex numbers, such that real
and imaginary parts are both uniformly distributed on [0, 1]. We also tested NSolve in
Mathematica 10.1, but we do not report the results, as it is slower than Mathematica
9 for polynomials of small degree.

The results are presented in Table 1. For each n we run all methods on the
same set of 50 random polynomial systems and measure the average time. Lin1 and
Mathematica’s NSolve work faster for polynomials with real coefficients, while this
does not make a difference for Lin2, PHCLab, BertiniLab, and NAClab. Therefore,
the results in the table for Lin2 and PHCLab are an average of 50 real and 50 complex
examples. Clearly, if Lin1 is applied to a polynomial with real coefficients, then
matrices ∆0, ∆1, and ∆2 are real. If we apply Lin2, then the matrices are complex
in general as roots of univariate polynomials are used in the construction. Although
the complex arithmetic is more expensive than the real one, complex eigenproblems
from Lin2 are so small that they are solved faster than the larger real problems from
Lin1. The sizes of ∆-matrices obtained in Lin1 and Lin2 are presented in Table 2.

Computational times for all methods except NSolve are very similar for each of
the 50 test problems of the same degree, with the small exception that Lin1 and
Lin2 failed to compute solutions in 5 and 6 of the 800 systems, respectively, and
were therefore successfully restarted with polynomials where variables x and y are
interchanged. On the other hand, NSolve needs substantially more time for certain
systems. For example, for complex polynomials of degree n = 7, NSolve needed
approximately 0.65 s for 44 of the 50 examples and 3.8 s for the additional 6 examples.
That explains why the average time for NSolve (C) in case n = 7 is just slightly smaller
than in case n = 8. Lin1 is competitive in particular for real systems of degree n ≤ 7,
while Lin2 is the fastest method for real or complex systems of degree n ≤ 9. For
n ≥ 10 PHCLab becomes the fastest method.
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Table 1
Average computational times in milliseconds for Lin1, Lin2, NSolve, and PHCLab for random

full bivariate polynomial systems of degree 3 to 10. For Lin1 and NSolve results are separated for
real (R) and complex polynomials (C). Notice that these are the running times; the accuracy of the
methods varies, as we discuss in the text.

n Lin1 (R) Lin1 (C) Lin2 PHCLab NSolve(C) NSolve(R) BertiniLab NAClab

3 5 5 4 109 110 19 247 112
4 9 9 8 122 184 35 331 188
5 16 20 12 140 292 68 478 297
6 36 52 24 165 447 111 677 434
7 73 131 56 198 1043 336 971 605
8 192 356 122 244 1088 352 1585 844
9 461 1090 271 309 1815 833 2510 1110

10 1433 3411 631 383 4403 1968 4246 1432

Table 2
Size of ∆-matrices for Lin1 and Lin2.

Method n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

Lin1 25 64 121 225 361 576 841 1225
Lin2 9 25 64 100 169 289 400 576

Beside the computational time, accuracy and reliability are other important fac-
tors. The only methods that return all solutions in all examples are Lin1, Lin2, and
NSolve, but the results of NSolve are on average much less accurate than the results
of all other methods. As a measure of accuracy we use the maximum value of

(7.1) max(|p1(x0, y0)|, |p2(x0, y0)|) ‖J−1(x0, y0)‖,

where J(x0, y0) is the Jacobian matrix of p1 and p2 at (x0, y0), over all computed
zeros (x0, y0). ‖J−1(x0, y0)‖ is an absolute condition number of a zero (x0, y0) and
we assume that in random examples all zeros are simple. For a good method (7.1)
should be as small as possible.

For degree n ≤ 9, Lin2 is the fastest method and usually also a very accurate
one. It is never significantly less accurate than the others, so it clearly wins in this
case. The methods that are based on the homotopy sometimes fail to compute all the
solutions. This happens to BertiniLab, PHCLab, and NAClab in 1, 5, and 54 of 800
systems. As the methods are using random initial systems, a possible remedy is to
run them again.

We remark that every one fewer node in the representation tree really makes a
difference. For instance, if we do not apply the special case for n = 4 in subsection
6.2, then the ∆-matrices for Lin2 for polynomial systems of degree n = 10 are of size
625× 625 instead of 576× 576 and the average computational time rises from 0.63 s
to 0.72 s.

Example 7.2. We test Lin1 and Lin2 on 25 examples ex001 to ex025 from [6].
This set contains challenging benchmark problems with polynomials of small degree
from (3, 2) to (11, 10) that have many multiple zeros and usually have fewer solutions
than a generic pair of the same degrees. Lin1 and Lin2 performed satisfactorily on
most examples, but, using default parameters they also failed on some. Instead of
giving the details for all 25 examples, we give the key observations.

• Multiple zeros can present a problem for the algorithm from [17] that is used

to solve the projected regular problem ∆̃1 w = x ∆̃0 w, ∆̃2 w = y ∆̃0 w that
is obtained from (4.2) by the modified staircase algorithm from [33]. The
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QZ algorithm is first applied to ∆̃1 w = x ∆̃0 w and then ∆̃2 w = y ∆̃0 w is
multiplied by Q and Z. The eigenvalues are clustered along the diagonal so
that multiple eigenvalues x should be in the same block. For several of the
25 examples with eigenvalues of high multiplicity the clustering criteria have
to be adapted; otherwise the results are not very accurate. An example is
ex004.

• Lin2 is faster, but the accuracy can be lost and the method can fail if the
polynomial in step 1 of Algorithm 1 has multiple zeros; an example is p2
from ex008. In such a case it helps to compute the roots with a solver
uvFactor from NAClab that can compute multiple roots of a polynomial
more accurately.

• We get very good results in example ex005 with the system x9+y9−1 = 0 and
x10 + y10 − 1 = 0 using Lin2. In this case Lin2 returns optimal determinan-
tal representations with matrices of size 9× 9 and 10× 10, respectively. The
obtained two-parameter eigenvalue problem is not singular and we get the so-
lutions in 0.03 s, while PHCLab and NSolve need 0.25 s and 0.29 s, respectively.
For comparison, Lin1, applied to the same problem, returns ∆-matrices of
size 1015× 1015, while Lin2 gives ∆-matrices of size 90× 90.

• Lin1 is slower but can be more accurate. Because there is no computation
in the construction, no errors are introduced in the construction of the lin-
earization.

• For some examples Lin1 and Lin2 fail to compute the solutions using default
parameters. In all such cases we can adapt the parameters so that the meth-
ods compute the right number of solution accurately. In some cases, when
Lin1 and Lin2 fail, the solution is to simply exchange the variables x and y
or to apply a linear substitution x → αx̃ + βỹ, y → γx̃ + δỹ to the original
polynomials. Such examples are ex016 and ex018.

• Lin2 is the fastest method for all examples except for ex014, where PHCLab

is faster. The polynomials in this example are of degrees 11 and 10. NSolve

always finds all solutions but is slower than Lin1 and Lin2. PHCLab usually
does not find all instances of multiple eigenvalues and thus returns many
fewer zeros.

Example 7.3. Encouraged by the good results for ex005 in Example 7.2, we carry
out some experiments with polynomials of form p(x, y) = αn0x

n + · · · + α0ny
n +

h(x, y), where h(x, y) is a polynomial of small degree m � n. For such polynomials
Algorithm 1 returns matrices of size n+ 1 + θ(m) or even smaller. For example, it is
easy to see that for m = 1 we get linearization of the smallest possible size n×n. We
compared Lin2, PHCLab, and NSolve. Computational times for random polynomials
with complex coefficients of the above form are presented in Table 3. As n increases,
PHCLab becomes faster then Lin2, but for smaller degree Lin2 might be the preferred
method.

8. Conclusions. We have proposed two linearizations for bivariate polynomials.
The first linearization does not involve any computation as the coefficients of the poly-
nomials appear as (block) coefficients of the matrices A, B, and C. This linearization
is suitable for both scalar and matrix bivariate polynomials. The second linearization,
useful for scalar polynomials, involves little computation and returns much smaller
matrices. They are still larger than the theoretically smallest possible size n× n, but
their construction is very simple and fast. Moreover, while the asymptotic order is
1
6n

2, the order for small n is about 2n; for polynomials of degrees 3 and 4 we have
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Table 3
Computational times in seconds for Lin2, PHCLab, and NSolve for systems of two polynomials

of the form p(x, y) = αn0xn + · · · + α0nyn + h(x, y), where degree of h(x, y) is m� n.

n m Lin2 PHCLab NSolve

15 1 0.16 0.46 1.58
15 3 0.20 0.55 1.77

20 1 0.65 1.00 4.24
20 3 0.75 1.06 4.59

25 1 2.51 2.07 9.76
25 3 2.47 1.95 10.30

presented determinantal representations of orders 3 and 5, respectively.
As an application we have presented a method for finding roots of two bivariate

polynomials. We have shown that the presented approach, where the polynomial
system is first linearized into a two-parameter eigenvalue problem, which is later
solved by a modified staircase method, is numerically feasible and gives very promising
results for polynomials of degree n <∼ 10, as well as for polynomials of higher degree
but with few terms. Any further results on even smaller determinantal representations
that can be efficiently constructed numerically could enlarge the above degree.
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[33] A. Muhič and B. Plestenjak, On the quadratic two-parameter eigenvalue problem and its

linearization, Linear Algebra Appl., 432 (2010), pp. 2529–2542.
[34] Y. Nakatsukasa, V. Noferini, and A. Townsend, Computing the common zeros of two
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