EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Understanding non-compliance

Citation for published version (APA):
Ramezani Taghiabadi, E. (2017). Understanding non-compliance. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.

Document status and date:
Published: 16/01/2017

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/b5668d55-9755-4954-98e3-e76009f552b8

Understanding Non-compliance

Elham Ramezani Taghiabadi

Copyright © 2016 by E.Ramezani Taghianbadi. All Rights Reserved.
CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Ramezani Taghiabadi, E.

Understanding Non-compliance / by E.Ramezani Taghianbadi.
Eindhoven: Technische Universiteit Eindhoven, 2016. Proefschrift.

Cover design by Remco Wetzels

A catalogue record is available from the Eindhoven University of Tech-
nology Library

ISBN: 978-94-028-0487-4

Keywords: Process Mining, Conformance Checking, Compliance Check-
ing, Compliance Diagnostics

The work in this thesis has been sponsored by BOSS project.

Printed by IPSKAMP printing

Understanding Non-compliance

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een
commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen op
maandag 16 januari 2017 om 16:00 uur

door

Elham Ramezani Taghiabadi

geboren te Esfahan, Iran

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr. J. de Vlieg

le promotor: prof.drir. W.M.P. van der Aalst

co-promotor: dr. D. Fahland

leden: Univ.-Prof.Dipl.-Math.Dr. S. Rinderle-Ma (Universitit
Wien)
prof.dr. S. Sadiq (The University of Queensland)
dr. M. zur Muehlen (Stevens Institute of Technology)
prof.dr.ir. H. A. Reijers (VU)
prof.dr. S. Etalle

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

To my parents...

Summary

Understanding Non-compliance

This dissertation addresses the challenge of analyzing and improving process
compliance, i.e., the ability of an organization to follow legal and contractual
constraints in their daily operation. Using the design science research method,
we first analyzed different requirements on various phases of a compliance anal-
ysis approach including compliance rule elicitation and formalization require-
ments, requirements on compliance checking techniques and requirements on
diagnostics. By understanding requirements from literature and practise, we
developed the following compliance analysis techniques, each of which was it-
eratively evaluated and improved in various case studies.

* Elicit and specify informal compliance rules in terms of compliance pat-
terns without exposing users to technicalities of a specification language.
The elicitation and formalization part of our approach bridges the gap be-
tween informal constraints and formal rules by providing repositories of
configurable templates that capture details of rules as options for commonly-
required compliance constraints. These options are configured interac-
tively with end-users, using question trees and natural language.

* Detect violations of different types including violations from control-flow
compliance rules (rules constraining the execution of activities and their
sequence), temporal, data-aware, and resource aware compliance rules.
We check compliance based on computing optimal alignments between

viii

execution recorded in an event log and the “most likely compliant path”
according to a formal model of a compliance rule. Such an alignment
offers detailed diagnostics compared to current approaches of compliance
checking. We are able to provide users diagnostics on violating process
instances and activity instance, the rules that have been violated, and the
frequency of each type of violation. In case of a violation, we can give
diagnostics on what should have happened to make the process compliant.

» Aggregate compliance data and provide different statistics. We developed
a compliance database to integrate various sources of compliance data.
The data structure of this database provides us the flexibility to explore
compliance data from different perspectives and prepare reports based on
even complex criteria.

* Analyze the root-causes of violations by leveraging various data analy-
sis techniques. This part of the work focuses on understanding non-
compliance using the context of violations. We use association rule mining
to detect meaningful relations between violations and their context. The
result of this analysis enable business users to identify key insights in the
large amount of data. Furthermore, we use classification techniques to
differentiate violating and compliant patterns in data. These patterns can
be used for predicting possible future violations.

The techniques developed in this thesis implemented within the process min-
ing tool set ProM. Each technique has been evaluated on both synthetic and
real-life data. We evaluated all techniques combined in a large case study in
collaboration with the Dutch Employee Insurance Agency (UWV). The experi-
ment was conducted using A/B testing involving three business units. Together
with UWV, we chose a set of compliance rules and checked them in all the
three business units. One of the business units was informed about the results
of our analysis and we did not distribute the results to the other two units.
The case study continued with a follow-up study. We monitored and compared
the changes in compliance level of different business units. The results of the
analysis show that using our approach, we can provide detailed diagnostics
and enable root-cause analysis to improve compliance. The compliance level
w.r.t. some of the compliance rules show up to remarkable improvement in the
first group, the same effect is not observed in other business units. We received
positive feedback from domain experts about the applicability of the approach.

Contents

Summary vii
List of Figures xvii
List of Tables xxxi
1 Introduction 1
1.1 Adherence to Regulations in Times of BigData 1
1.2 Problem Statement and Research Goal 4
1.3 State of the Art in Compliance Management 8
1.4 Thesis Approachand Results 13
1.5 ThesisRoadMap v ittt it i i 14

2 Preliminaries 17
2.1 Behavior 17
2.2 Expressing Classical Event Logs as Behaviors 22
2.3 Prescribed Behaviors. oL 23
2.3.1 Introductionto Petrinets. 24

2.4
2.5

2.3.2 Behavioral Notions: Process Instance Run, Run, and Model 28
2.3.3 Precise Specification of a Particular Model as a (Data-
Aware) Petrinet 31
Aligning an Event LogtoaModel 36
Specifying Prescribed Behaviors from Different Perspectives . . . 43

CONTENTS

2.6 Specifying behaviors with (Data-Aware) Petri nets Using an Open
World Assumption
2.7 ConcludingRemarks

Requirements for Analyzing Compliance
3.1 Dimensions of Compliance Constraints
3.2 Compliance Analysis Overview
3.3 Requirements for Compliance Analysis
3.3.1 Requirements on Compliance Diagnostics
3.3.2 Requirements for Compliance Checking Techniques
3.3.3 Requirements for Event Logs as an Input for the Compli-
ance Checking Technique
3.3.4 Requirements for Elicitation and Formalization of Com-
pliance Constraints
3.4 Elicit and Formalize Compliance Rules
3.4.1 Atomic Compliance Constraints Found in Literature
3.4.2 Basic Considerations about Formal Compliance Rules . . .
3.4.3 Control-Flow ComplianceRules
3.4.4 Formalizing Temporal Compliance Rules.
3.4.5 Formalizing Data-Aware and Resource-Aware Compliance
Rules
3.4.6 Atomic Compliance Patterns Vs. a Composite Compliance
Model
3.5 Compliance Checking
3.5.1 LogPreparation
3.5.2 Detection of Compliance Violations Using Alignments
3.5.3 Detecting Control-Flow Compliance Violations Using Align-
IENLES & o v v v v e et e e e e e e e e e e e e
3.5.4 Detection of Temporal Compliance Violations Using Data-
Aware Alignments
3.5.5 Detection of Data-Aware and Resource-Aware Compliance
Violations Using Data-Aware Alignments
3.5.6 Summary: Detecting Violations in all Dimensions
3.5.7 Combining Compliance Violation Detection Results
3.6 Providing an Overview of Diagnostics and Root-Cause Analysis of
Violations e
3.7 ConcludingRemarks

45
46

49
51
52
53
53
60

63

63
65
65
69
70
75

76
78
83
83
86
87

90

CONTENTS

4 Control-Flow Compliance Checking 107
4.1 Checking Control-Flow Compliance Rules 109
4.1.1 Example 1: Precedence. 110
4.1.2 Parameters for Computing Alignments to Influence Diag-
nostic Information. L oL L. 115
4.1.3 Example 2: Bounded Existence of an Activity 116
4.1.4 Example 3: Simultaneous Occurrence of Two Activities . 119
4.1.5 Principles of Designing Atomic Compliance Patterns . .. 125
4.2 Generating the Checking Attribute and Its Values. 127
4.3 Applying Control-Flow Compliance Checking Using Real-Life Event
Logs . . o e 128
4.3.1 ImplementationinProM 128
4.3.2 Case Study Constraints and Results 130
4.4 Elicitation of Formal Compliance Rules 132
4.4.1 The Gap Between Informal Compliance Rules and Formal
Specification 133
4.4.2 A Methodology for Eliciting and Configuring Formal Com-
plianceRules L o 136
4.4.3 Configurable Compliance Pattern Repository 138
444 QuestionTree 141
4.4.5 Tllustrating a Compliance Rule to a Domain Expert. 143
4.5 Supporting Domain Experts to Specify Compliance Constraints . 143
4.5.1 ImplementationinProM 144
4.5.2 Elicitation of the Case Study Compliance Pattern 144

4.6 Control-Flow Compliance Rule Elicitation and Checking of a Com-
posite Compliance Model Versus a Set of Atomic Compliance Pat-

TEIMIS & & v v o e e e e e e e e e e e e 147
4.7 RelatedWork 148
4.8 ConcludingRemarks, 152
5 Temporal Compliance Checking 153
5.1 Temporal ComplianceRules 156
5.2 Technicalities of Temporal Compliance Checking 158
5.3 A Generic Temporal Pattern 167
5.4 Specifying a Set of Temporal Rules as Atomic Temporal Patterns
or A Composite Compliance Model 171
5.5 Log Abstraction for Temporal Checking. 174
5.6 Diagnostics in Temporal Checking 179

5.7 Applying Temporal Compliance Checking on Real-Life Event Logs 183

xii

CONTENTS

5.7.1 ImplementationinProM 183

5.7.2 Case Study Compliance Constraints and Results 188
58 RelatedWork 191
5.9 ConcludingRemarks 194
Data-Aware and Resource-Aware Compliance Checking 195
6.1 Data-Aware and Resource-Aware Compliance Rules 199
6.2 Methodology of Data-Aware and Resource-Aware Compliance Check-

NG o o e e 200
6.3 Compliance Checking of Rules Restricting Data Attributes 201
6.4 Compliance Checking of Rules Restricting Activities When a Cer-

tain Data Condition Holds 208

6.5 Diagnostics in Data and Resource-Aware Compliance Checking . 217
6.6 Specifying a Set of Data and Resource-Aware Compliance Rules

as Atomic Patterns or as a Composite Compliance Model 219
6.7 Case Study Constraintsand Results 219
6.7.1 Implementation 220
6.7.2 Case Study 1: Constraint and Results 223
6.7.3 Case Study 2: Constraints and Results 224
6.8 Related Work 227
6.9 ConcludingRemarks 229
Compliance Diagnostics 231
7.1 Motivating Example, 234
7.2 Overview of the Approach 237
7.3 Compliance Checking 237
7.3.1 Prescribed Behavior as a Composite Compliance Model . 238
7.3.2 Compliance Checking Based on Alignments 240
7.4 Violation Statistics L L 242
7.5 Identifying and Ranking Problems. 247
7.5.1 Generating Lists of Problem Statements 248
7.5.2 Ranking Problem Statements by Domain Knowledge . . . 254
7.5.3 Ranking Problem Statements by Context Relevance 255
7.6 Investigating Specific Problems 261
7.6.1 Decision Trees for Compliance Violations 261
7.6.2 Building Decision Trees from a Problem Statement 263
7.6.3 Using Decision Trees to Analyze the Cause of a Violation. 264
7.7 Implementation and Case Study Results 267

7.7.1 Setup of the Experiment 267

CONTENTS

xiii

8

7.7.2 Obtained Diagnostics 270

7.8 Improving the Compliance Framework Based on User feedback . 273

7.9 RelatedWork 278

7.10 ConcludingRemarks 279

Integrating Compliance Results for a Precise Analysis 281

8.1 Integrating Compliance Data Using Compliance Database 285

8.1.1 Sources of ComplianceData 285

8.1.2 Compliance Database and Its Components 289

8.2 Querying Information from the Compliance Database 299

8.2.1 Exploring ComplianceData 300

8.2.2 Analyzing Sets of Independent Events/Moves 303

8.2.3 Analyzing Sets of Dependent Events/Moves 304

8.3 Generating Enriched EventLogs 304

8.4 Populating the Compliance Database with Relevant Data 309

8.5 ProofofConcept 309

8.6 ConcludingRemarks 311

Case Study within UWV 313

9.1 Process Description 314

9.2 DesignoftheCaseStudy 319

9.2.1 Setup 320

9.2.2 CaseStudy Scope 321

9.3 PilotStudy. 321

9.4 Results and Observations of the First Study 326

9.4.1 Results of the First Study: Business Unit1 326
9.4.2 Results of the First Study for Business Unit 2 and Business

Unit3 ... e 331

9.5 Root-Cause Analysis and Dissemination of Results 332

9.5.1 Analyzing Process Related Information 333
9.5.2 Analyzing Combination of Process Related Attribute Val-

ues with Occurrences of Different Violations 338

9.5.3 Analyzing Client Related Information 343
9.5.4 Analyzing Combinations of Client Related Attribute Val-

ues with Occurrences of Different Violations 344

9.5.5 Summary of Observations from the First Study 344

9.6 Follow-UpAnalysis. 347

9.7 RelatedWork 352

9.8 Conclusions and Lessons Learned 358

Xiv

CONTENTS

10 Conclusions and Future Work

10.1 Contributions of the Thesis

10.2 Limitations i i e e e e e e

10.3 OpenProblems

A Repository of Control-Flow Compliance Rules
A.1 Existence Category v v v v vt i

A.2 Dependent Existence Category
A.3 Bounded Existence Category
A.4 Bounded Sequence Category
A5 ParallelCategoryo i

A.6 Precedence Category. v v v i it

A.7 Chain Precedence Category
A.8 Response Category v v v vttt
A9 Chain Response Category
A.10 Between Categoryo ot ii e

B Repository of Temporal Compliance Rules

B.1 PatternDurationc..c......
B.2 Delay Between Instances
B3 Validity...........
B.4 Time Restricted Existence
B.5 Repetition Time Constraint
B.6 Time Dependent Variability
B.7 Overlap

C Repository of Configurable Control-Flow Compliance Rules

C.1 EXistence. i it i ittt et
C.2 Sequence
C.3 Chain Precedence and Response
C.4 ParallelandBetween
C.5 DependentExistence.uuuun...

D Results of the Case Study within UWV

D.1 Analyzing Process Related Association Rules
D.2 Analyzing Client Related Association Rules

Bibliography

Acknowledgments

361

CONTENTS

XV

Curriculum Vitae

SIKS dissertations

491

493

List of Figures

1.1 Omnipresence of data allows us to leverage process mining and data

mining techniques for data-driven analysis of compliance. 2
1.2 Life Inc. requires an integrated compliance solution which is generic,

flexible, automated and provides detailed diagnostics. 4
1.3 Compliance Management lifecycle. 8
1.4 The thesis road map gives the mapping between chapters of the thesis

onto our compliance analysis approach.. 12
2.1 Example of observed behavior recorded in an eventlog. 18
2.2 Behavior B = (E,#,<) consisting of events related to two process in-

Stances p1 and P2. . . v v e 20
2.3 Behavior B’ = (F',#,<) consisting of events related to two process in-

stances p1 and Po. . . . e e e e e e e e e e e e e e e e e 21
2.4 Tree-view representation of the event log B consisting of two process

instances pr and p2. . . . o oo e e e e e e e e e e e e e e 23
2.5 The loan process modelled as a Petrinet. 25
2.6 A data-aware Petri net modelling the control-flow and data perspective

of theloan process. v v v v i i i i e e e e e e 27
2.7 Eventsin run R; are partially ordered. 29
2.8 EventSinrun Ra. . . . v v v v v e e e e e e e e e e e e e e e e e 30
2.9 The data-aware Petri net DPN specifying four firing sequences p1, p2, p3,

and Pa. . . e e e e e e e e e e e e e e e e 32

2.10 Prescribed behaviors specified by DPN. 33

xviii LIST OF FIGURES

2.11 The data-aware Petri net DPN' specifying R}, and Rj. 35
2.12 Prescribed behaviors specified by DPN'. 36
2.13 The partially ordered alignment A (c) between the event log L (a) and

the processmodelrun Ry (b). 39
2.14 The partially ordered alignment A’ (c) between the event log L (a) and

the processmodelrun Ry (b). 41
2.15 Alignment between the event log L and run R{ shown in tabular form. . 42
2.16 DPNresource; The data-aware Petri net modeling values of attribute re-

source as transition labels. L0000 44
2.17 DPN8ereric; The data-aware Petri net can replay R;, R, and many more

runs as long as they adhere to the constraints. 45

3.1 Thesis road map gives the mapping of the sections in Chap. 3 on to our

compliance analysis approach. 50
3.2 Compliance constraints framework. 51
3.3 Compliance analysis OVEIVIEW. . . . v v v v v v v v v v e e e e e e e e 53
3.4 Diagnostics about violations of the constraint C; and the violating activ-

IS, .« o e e e e e e e e e e e 55
3.5 Diagnostics about violations of the constraint C; extended with informa-

tion about the violation types and their frequency. 56
3.6 Information on how the process should have been executed differently

tobecompliant. e 58
3.7 The compliance checking technique should consider the impact of pro-

posed compliant values globally in a process instance. 62
3.8 Compliance analysis overview: Elicitation and formalization of compli-

ance rules. L e e e e 65
3.9 A Petri net modeling an exclusive relation between activitiesA and B. . 69
3.10 Petri net N formalizing the sequence (A,B). v v v oo .. 71
3.11 Declarative style Petri net N allowing for sequences where A is directly

followed by B including (C,A,B,D). v v v v v v v v i e e e 72
3.12 Declarative style Petri net N3 formalizing different instances of the com-

pliancerule. e e e e e e e 73
3.13 N, formalizes a relaxed version of the response compliance rule by adding

or removing some elements to N3. Ny also allows for (B, A,C, B, A, B, B). 74
3.14 A data-aware Petri net formalizing the temporal compliance rule. 76
3.15 A data-aware Petri net confining the execution of activity A w.r.t. role

and amount attributes.o e e e e e . 77

3.16 Violations of log trace t:{ A,D,B,D) against two micro compliance patterns. 79
3.17 Violations of log trace ¢ against the composite compliance model. . .. 80

LIST OF FIGURES

3.18 Compliance analysis overview: Compliance checking. 83
3.19 Execution of activity Demperidone administration (A) is required after
the activity tube feeding (T) when the value of nutrition with multifiber

(X) was not increased by 2 kcal/ml. e 84
3.20 Eventsinthelog L. e 87
3.21 Preprocessed event log after adding control-flow checking attribute and

shortening theeventlog. i 88

3.22 Three process instance runs Pgy, Pgo, and Pgs of the Petri net pattern. . 89
3.23 An alignment between pre-processed event log of Fig. 3.21 and the pro-

cessinstance run Ppy (inFig.3.22).. 90
3.24 An alignment between between pre-processed event log of Fig. 3.21 and

therun Ppo (inFig. 3.22). o i 90
3.25 An alignment between between pre-processed event log of Fig. 3.21 and

therun Prg (in Fig. 3.22). o o v v i i e e e e e e e 91
3.26 The temporal compliance rule formalized as the data-aware Petri net

DPNjomporale + « « « « + + e e e 92
3.27 The control-flow alignment resulting from the alignment of log L (in

Fig. 3.20) and DPNgppora (in Fig. 3.26)o oo oot 92
3.28 The data-aware alignment resulting from the alignment of log L and

data-aware Petri net DPNgpporals « + « + «+ + v o o oo e e e 93

3.29 The resource compliance rule formalized as a data-aware Petri net DPN yesource. 94
3.30 The event log L of Fig. 3.20 is prepared for checking the resource com-

pliancerule. e 94
3.31 Data-aware alignment resulted from aligning the prepared log of Fig. 3.30
and DPNyesource Of Fig. 3.30. o o o i e e e e 95

3.32 Steps taken in each compliance checking techniques. Each dedicated
compliance checking technique includes iterations of three main steps:

log preparation, checking and log enrichment. 96
3.33 Generating enriched event log with diagnostics obtained from several
alignNments. . . . v v v v e 98

3.34 The event log L enriched with compliance diagnostic information on
compliance state of each event w.r.t. different rules, rule instances, vio-

lation types, and compliant values. 100
3.35 Generating enriched event log with diagnostics based on one overall

alignmentresult. e e e e e e 102
3.36 Compliance analysis OVEIVIEW. v v v v v v v v v v v e e e e e s 102

3.37 Statistics in different abstraction levels are built over enriched log with
diagnostics including frequency of violations in total and per attribute
(€.8. PET ACHIVILY). « v v v v v e e e e e e e e e e e e e e e e e e 103

LIST OF FIGURES

3.38 Discovering process models that describe the behavior of cases violating
a specific constraint compared to those that are compliant w.r.t. that
CONSLIAINL. . v v v v v v ittt e e et e e e e e e

3.39 Correlations between violations and specific attribute values guide us in
hypothesizing about the causes of violations.

3.40 Classifying violations and non-violations based on their context help us
predict future violations. L L

4.1 Thesis road map gives the mapping of the sections in Chap. 4 on to our

compliance analysis approach.
4.2 Atomic compliance pattern: Direct precedence.
4.3 Overview of the control-flow compliance checking methodology.
4.4 Theexampleeventlog.
4.5 Abstracted event log obtained fromstep 1.
4.6 Shortened event log obtained fromstep 2.
4.7 Control-flow alignment obtained fromstep3.
4.8 Atomic compliance pattern: Bounded existence of an activity exactly k

4.9 Abstracted event log obtained fromstep 1.
4.10 Abstracted event log obtained fromstep 2.
4.11 Control-flow alignment obtained fromstep3.
4.12 Atomic compliance pattern: Simultaneous occurrence of two activities. .
4.13 An event log where activities have life-cycle attributes.
4.14 Abstracted event log obtained from step 1. Values of activity name and
life cycle attributes are combined for the checking attribute.
4.15 Shortened event log obtained from step 2. The event ey is deleted
during the shortenning of the eventlog.
4.16 Control-flow alignment obtained fromstep 3.
4.17 Mapping transition in the compliance pattern to events of the log.
4.18 Mapping transition in the compliance pattern to events of the log.
4.19 Activity X-ray must be executed at least once percase.
4.20 A non-compliant case: activity patient registration should have occurred
exactlyonce. e
4.21 Activity patient registration must be followed by activity X-ray.
4.22 An example of a non-compliant case. Activity X-ray is executed in a
WIONG POSItION. v v v v v it et e et e e e e e e e e e
4.23 Either CT-scan or MRI test must be taken for a patient.
4.24 An example of a non-compliant case. Activities MRI and CT-scan both
are executed withinacase.

LIST OF FIGURES

xxi

4.25 The pattern enforces that a patient must be registered before receiving

any treatment. . . . v v v v v v v v et e e e e e e e e e e e e e e
4.26 The pattern enforces multiple registration of a patient and direct se-

quence of patient registration followed by X-ray.
4.27 Control-flow compliance rule elicitation and formalization overview. . .
4.28 Sequence of patient registration and X-ray.
4.29 Configurable sequence of Patient registration and X-ray.
4.30 QT-phasel (left), QT-phase2 (right).
4.31 Elicit Compliance Rule plugin: Example compliant and violating cases

when a specific choice is made by theuser.

5.1 Thesis road map gives the mapping of the sections in Chap. 5 on to our
compliance analysis approach.
5.2 Executions of activities may overlap in different ways.
5.3 Overview of the temporal compliance checking methodology.
5.4 Example 1: Eventlog.
5.5 Example 1: Control-flow rule modeling cycles of three occurrences of
activity antibiotic administration.
5.6 Alignment of the log of Fig. 5.4 to the control-flow rule of Fig. 5.5 show-
ing a model-only move between eg and e7, i.e., once occurrence of A was
missing in the second rule instance.
5.7 Example 1, event log enriched with control-flow violations and temporal
information.
5.8 Example 1, the temporal dimension of the rule TR 1 modeled as a data-
awarePetrinet. o e
5.9 Example 1: Data-aware alignment of the enriched event log of Fig. 5.7
to the temporal compliance pattern of Fig. 5.8.
5.10 Projection of diagnostics on a timeline.
5.11 Enriched event log with control-flow and temporal diagnostics.
5.12 The generic temporal pattern. v v v v v v v v v v v e
5.13 The generic temporal pattern specifying delay between rule instances. .
5.14 Both Ry and Ry modelled together as a composite model by instantiating
the generic temporal pattern. v v v it
5.15 Sequence of activities (D, A, A, A,B). « « « v v v i e e e e
5.16 A composite model for specifying rules rule 1 and rule 2 together.
5.17 Rule 3,Eventlog. e
5.18 Rule 3- Atomic pattern describing the control-flow rule instance.
5.19 Rule 3- Control-flow alignment of the log of Fig. 5.17 to the control-flow
rule of Fig. 5.18. e e

146

160

164

175

xxii LIST OF FIGURES

5.20 Rule 3- Enriched event log with diagnostics obtained from control-flow

alignmentinFig. 5.19. o o o o 175
5.21 Rule 3- Preparing the event log of Fig. 5.20 for temporal compliance

checking by abstracting from activities outside rule instances. 176
5.22 Rule 3- Temporal pattern instantiated to specify the delay between ac-

tivitiesAand B.o e 177
5.23 Rule 3- Data-aware alignment of prepared log of Fig. 5.21 with the tem-

poral pattern of Fig. 5.22 indicates a temporal violation.. 177
5.24 Rule 3- Enriched event log with complete diagnostics obtained from

data-aware alignment of Fig. 5.23. 178

5.25 The data-aware alignment will suggest that activity B must occur at time 2.179
5.26 The temporal compliance checking minimizes the total deviation of ob-

served behavior from prescribed behavior. 181
5.27 The ‘Not-preferred’ control-flow alignment will lead to more temporal

VIOIAtioNS. .« « v v o e e e e e e e e e 182
5.28 Temporal compliance checking using data-aware alignment plugin takes

a control-flow alignmentasinput. 184
5.29 Instantiating the generic temporal pattern and definition of guards. . . 185
5.30 During temporal compliance checking, we allow the user to specify how

the missing temporal values should be repaired. 185
5.31 Mapping transitions of the generic temporal pattern to events of the log. 186
5.32 Mapping variables in the temporal pattern to attributes in the log. . .. 186
5.33 Setting costs for different temporal violations. 187
5.34 Temporal compliance checking provides combined diagnostics including

control-flow and temporal violations. 187
5.35 Violations versushandover of work. 189
5.36 Several hand-overs observed for a violating case within a short period of

HIME. .« o vt e 191
5.37 Example of a compliant case processed by a single resource. 192

6.1 Thesis road map gives the mapping of the sections in Chap. 6 on to our

compliance analysis approach. 197
6.2 Methodology for checking the first category of data-aware and resource-

aware compliancerules. e 200
6.3 Methodology for checking data-aware and resource-aware compliance

rules of the second category. e 201
6.4 An example event log partially shown for process instance p;. 202

6.5 The event log, built upon original log of Fig. 6.4, is abstracted and short-
ened from irrelevant information. 202

LIST OF FIGURES

xxiii

6.6 An atomic pattern specifying the control-flow condition of rule 1.
6.7 The control-flow alignment obtained from aligning PL of Fig. 6.5 and the
atomic pattern of Fig. 6.6.
6.8 The enriched log, built from control-flow alignment of Fig. 6.7, contains
control-flow diagnostics. oL e

203

204

205

6.9 The atomic pattern of Fig. 6.6 augmented with resource condition of rule 1.205

6.10 The data-aware alignment of the enriched log of Fig. 6.8 to pattern of
Fig. 6.9, indicates that the two activities were executed by different re-
SOUICES. « v v v v v v v e v e e e e et e e e e e

6.11 The enriched log obtained from data-aware alignment of Fig. 6.10 con-
tains diagnostics about compliance of rule 1.

6.12 Part of an example event log of a patientinICU.

6.13 The prepared log, built upon original log of Fig. 6.12, obtained from the
fIrSt StEP. & v v e

6.14 The data-aware Petri net is modelled to capture the situation where the
data condition of rule2holds.

6.15 The data aware alignment, obtained from aligning prepared log of Fig. 6.13

and pattern in Fig. 6.14, indicates situations where nutrition is not in-
creasedby 2 kcal/ml. e e e
6.16 The enriched event log with data condition obtained from the data-
aware alignment of Fig. 6.15.
6.17 The checking attribute combines the values of data condition and activity
name at each event in the enriched log of Fig. 6.16.

6.18 The prepared log has a reduced size by shortening sequence of Q events.

6.19 The atomic pattern specifying the control-flow condition of the rule. . .
6.20 The control-flow alignment indicates that in the second instance of the
rule, activity Demperidone administration is skipped.
6.21 The enriched event log with diagnostics obtained from the control-flow
alignment. e e e e e
6.22 A process model in BPMN describing correct occurrences of activities
ABC,andD. e e e e e e e e e e e e
6.23 The Data and Resource Compliance Checking-Rules Restricting Attributes
plug-in checks the compliance of an event log against the first category
of compliancerules.
6.24 The Data and Resource Compliance Checking-Rules Restricting Activities
plug-in checks the compliance of an event log against the second cate-
gory of compliance rules. 0o
6.25 During the log preparation step, the activities that can read and write an
attribute value are selected. Lo

210

210
211
212
213
214
215
216

217

220

221

XXiv LIST OF FIGURES

6.26 Mapping attributes of the compliance pattern to event log attributes. . . 222
6.27 Mapping transition labels of the compliance pattern to the values of the

checking attribute in the eventlog. 222
6.28 Classification of applications based on their compliance result. 223
6.29 An example of a compliant case where nutrition was increased via tube

feeding. 224
6.30 An example of a compliant case where Demperidone is administered to

the patient when nutrition was not increased via tube feeding. 225
6.31 An example of a case where Demperidone is administered although nu-

trition was increased via tube feeding., 226
6.32 An example of a violating case where Demperidone is not administered

to the patient although nutrition was not increased via tube feeding. . . 227

7.1 Thesis road map gives the mapping of the sections in Chap. 7 on to our

compliance analysis approach. 233
7.2 A process model for procurement 234
7.3 Overview of theapproach. 238
7.4 The data-aware Petri net DPNPTocurement gpecifying admissible execu-

tions of procurement process example. 239
7.5 Parts of the event log L showing four events from process instance p;. . 241
7.6 Alignment A resulted from aligning event log L and process instance run

R of process model DPNProcurement - L ... 241
7.7 Deviation statistics for procurement process example. 243
7.8 Statistics for attribute material(top) and detailed statistics for material

=glass. . oo e e e e e e e e e e e e 247
7.9 The structure of problem lists.« o oo i i i 248
7.10 A Venn diagram representation of how activity specific sets of deviations

referring to different problem statement levels are built. 250
7.11 Venn diagram representation of how attribute specific sets of deviations

referring to different problem statement levels are built. 252

7.12 A decision tree classifying moves to those skipped check off-site ware-
houses and those did not, considering inventory level and material as

predictor variables. 262
7.13 Part of the process model discovered from violating cases with inventory

level above threshold. 266
7.14 The compliant procurement process analyzed for experimental results. . 268
7.15 Activity deviations statistics table of experimental result. 269

7.16 Parts of the model describing cases containing violating activity outgoing
DAYMENL. « « v v v v vt e e e e e e e e e e e e e e e e e 271

LIST OF FIGURES

XXV

7.17 Part of the model describing cases containing unallowed executions of
activity goods receipt. e e e e e e
7.18 Part of the model describing violating cases where activities clearing
credit and clearing debit occurred before invoice receipt.
7.19 Part of the problem list obtained for the example log in our case study. .
7.20 Resources frequently linked to violations.
7.21 Root-cause analysis of unallowed executions of activities clearing debit
and clearing credit wrt attribute resource.

8.1 Compliance Analysis OVEIVIEW. v v v v v v v v v v e e e e e e v
8.2 Generating an enriched event log with diagnostics based on one align-
mentresult. L.l e
8.3 Generating an enriched event log with diagnostics obtained from several
alignments. i it e e e e e e e e e e e
8.4 Thesis road map gives the mapping of the sections in Chap. 8 on to our
compliance analysis approach.
8.5 Sources of compliancedata. oL
8.6 Different clusters of compliance data.
8.7 Relational data model of the compliance database.
8.8 Parts of Fig. 8.7 are chsen that show data entities and their relations
related to compliance rule profile.
8.9 An example compliance profile populated with two constraints and their
rules. ..o e e e e
8.10 Data entities and their relations related to event data.
8.11 Event data tables populated with an example log, two traces, and their
EVEMES. o v v v e
8.12 Data entities and their relations related to prepared log.
8.13 Entities and their relations of an example prepared log cluster populated
with four prepared logs, eight prepared traces, and their prepared events.
8.14 Data entities and their relations related to compliance checking result
cluster. e
8.15 Example entities and their relations related to a compliance checking
result. Figure above shows four alignments, ten types of violations, parts
of move table, and parts of rule_instancetable.
8.16 An example query in SQL requesting all the compliance rule that a pro-
cess pischecked against.
8.17 An example query in SQL requesting all the moves within time period
[t1, 2] w.r.t. all relevant compliance rules that a process p is checked
AGAINSE. .+ v v e e e e e e e e e e e e e e e e e e e

LIST OF FIGURES

8.18 The enriched event log with control-flow and temporal diagnostics. . . 306
8.19 Proposed framework for populating compliance database. 308
9.1 Life cycle of an unemployment application in UWV. 315
9.2 Split testing (A versusB) design of the case study including three business
units and steps taken for each business unit. 319
9.3 Different phases of the case study and their timing. 322
9.4 Different steps executed during the pilotstudy. 322
9.5 Collecting data from different data sources. 325
9.6 Comparing compliance results obtained during the first study for differ-
entbusinessunits.o Lo e 331
9.7 Filtered association rules mined between different violations and process
related attributes in Business Unit 1.« o v v v v v o .. 333
9.8 [Letter titles connected to violations of Rule (2) in each business unit. . . 335
9.9 Violating patterns that distinguish compliant and violating activities w.r.t. com-
pliance Rule (1) in Business Unit 1. oo 340
9.10 Violating patterns that distinguish compliant and violating activities w.r.t. com-
pliance Rule (1) in Business Unit 2. v v v v v v v v v v 341
9.11 Violating patterns that distinguish compliant and violating activities w.r.t. com-
pliance Rule (1) in Business Unit 3. 341
9.12 Violating patterns that distinguish compliant and violating activities w.r.t. com-
pliance Rule (2) in Business Unit 1. v v v v v v v v v oo 342
9.13 Association rules mined between different violations and client related
attributes in Business Uit 1. . . v v v v v v v v v v e e e e e e e e 343
9.14 Violating patterns that distinguish compliant and violating activities w.r.t. com-
pliance Rule (1) in Business Unit 1. v, 345
9.15 Violating patterns that distinguish compliant and violating activities w.r.t. com-
pliance Rule (1) for Business Unit 3. v v v v v v v i v v v v 346
9.16 History of violations of Rule (7) in three business units. 351

10.1 The main contribution of this work are highlighted in the thesis road map.362

10.2 Proposed compliance engine for real time compliance management. . . 368
A.1 Existence. Activity Universality compliancerule 371
A.2 Existence. Activity Absence compliancerule 372
A.3 Dependent Existence. Exclusive compliancerule 373
A.4 Dependent Existence. Mutual Exclusive compliancerule 374
A.5 Dependent Existence. Prerequisite compliancerule 375

A.6 ‘Dependent Existence. Inclusive’ compliancerule 376

LIST OF FIGURES xXvii

A.7 Dependent Existence. Substitute compliancerule 377
A.8 Dependent Existence. Co-requisite compliancerule 378
A.9 Bounded Existence of an Activity. Exactly k Times compliance rule 379
A.10 Bounded Existence of an Activity. At Least k Times compliance rule 380
A.11 Bounded Existence of an Activity. At Most k Times compliance rule 381

A.12 Bounded Existence of an Activity. Exactly k Times in a Row compliance rule 382
A.13 Bounded Existence of an Activity. At Least k Times in a Row compliance rule 383
A.14 Bounded Existence of an Activity. At Most k Times in a Row compliance rule 385
A.15 Bounded Existence of an Activity. Bursts of k Occurrences compliance rule 386
A.16 Bounded Existence of an Activity. n Bursts of k Occurrences compliance rule 387
A.17 Bounded Sequence of Activities. One to One Coexistence compliance rule . 388

A.18 Bounded Sequence of Activities. Coexistence compliance rule 389
A.19 Bounded Sequence of Activities. Exactly k Times compliance rule 390
A.20 Parallel. Simultaneous compliancerule 391
A.21 ‘Parallel. During’ compliancerule 392
A.22 Precedence. Simultaneous or Before compliancerule 393
A.23 Precedence. Direct compliancerule 394
A.24 Precedence. Direct or Indirect compliancerule 395
A.25 Precedence. At Least Once compliancerule. 396
A.26 Precedence. Direct Multiple Activities compliance rule 397
A.27 Precedence. Direct or Indirect Multiple Activities compliance rule 397
A.28 Precedence. Direct Multiple Different Activities compliance rule 398
A.29 Precedence. Direct or Indirect Multiple Different Activities compliance rule 399
A.30 Precedence. Never Direct compliancerule 400
A.31 Precedence. Never compliancerule 401
A.32 Chain Precedence. Direct compliancerule 403
A.33 Chain Precedence. Direct or Indirect compliancerule 405
A.34 Chain Precedence. Never Direct compliancerule 406
A.35 Chain Precedence. Never compliancerule 408
A.36 Response. Simultaneous or After compliancerule 409
A.37 Response. Direct compliancerule. 410
A.38 Response. Direct or Indirect compliancerule 411
A.39 Response. At Least Once compliancerule 412
A.40 Response. Direct Multiple Activities compliancerule 412
A.41 Response. Indirect Multiple Activities compliancerule 413
A.42 Response. Direct Multiple Different Activities compliance rule 414
A.43 ‘Chain Response. Direct’ compliancerule 415
A.44 Chain Response. Direct or Indirect compliancerule 418

A.45 Chain Response. Never Direct compliancerule 419

xXviii LIST OF FIGURES
A.46 Between. After-Before compliancerule 421
A.47 Between. Simultaneously or After-Before compliance rule 422
A.48 Between. After-Simultaneously or Before compliancerule 422
A.49 Between. Directly After-Directly Before compliancerule 423
A.50 Between. Simultaneously-Simultaneously compliance rule 424
A.51 Between. Simultaneously or After-Simultaneously or Before compliance rule 425
A.52 Between. At Least One Other Activity compliancerule 426
B.1 The generic temporal pattern. v v v v v v v v e 428

C.1 Configuration options in Bounded Existence-Upper Bound configurable rule.438
C.2 Configuration options in Bounded Existence. Lower Bound configurable

rule. . Lo e e e e e 440
C.3 Configuration options in Bounded Existence. Upper Bound configurable

rule. . .o e 440
C.4 Configuration options in Cyclic Occurrence configurable rule. 441
C.5 Configuration options in Sequence of Activities configurable rule. 442

C.6 Configuration options in Sequence of Multiple Activities configurable rule. 442
C.7 Configuration options in Negative Precedence or Response configurable rule.443

C.8 Configuration options in Bounded Sequence configurable rule. 444
C.9 Configuration options in Chain Precedence configurable rule. 446
C.10 Configuration options in Chain Response configurable rule. 447
C.11 Configuration options in Between configurablerule. 448
C.12 Configuration options in Not-in-Between configurable rule. 449
C.13 Configuration options in Parallel. During configurable rule. 449
C.14 Configuration options in Parallel. During (Sequence of Activities) config-
urablerule. 450
C.15 Configuration options in Parallel. Simultaneous configurable rule. 451
C.16 Configuration options in Inclusive, Pre-requisite and Co-requisite config-
urablerule. 452
C.17 Configuration options of Exclusive Compliancerule 453
C.18 Configuration options of Substitute Compliancerule 453

D.1 Filtered association rules mined between different violations and process
related attributes in Business Unit 1. The brown ellipses in the middle
indicate violations related to different rules. The blue edges show as-
sociations of type attribute value to violation (A — V) and yellow edges
indicate associations of type violation to attribute value (V — A). 456

LIST OF FIGURES xXix

D.2 Association rules mined between different violations and client related
attributes in Business Unit 1. v v v v v v v et e e e e e e e 460

List of Tables

3.1
3.2
3.3

4.1

5.1
5.2

6.1

7.1
7.2
7.3
7.4
7.5

7.6

8.1
8.2

9.1

Categorization of control flow compliance rules. 66
Categorization of the 15 temporal compliance rules. 67
Collection of data-aware and resource-aware compliance rules. 68
Categorization of the 54 control-flow compliance rules. 109
Categorization of the 15 temporal compliance rules. 156
Temporal compliance violations., 189
Collection of data-aware and resource-aware compliance rules. 198
Event attributes of the synthetic log obtained for the procurement process.240
Sets of different basic move types. 244
Different sets of moves related to a specific attribute. 245
Sets of compliance elements in compliance element collection €. 258
CPIR value and direction of some of the associations between

‘activity check off-site was skipped’ and its context. 261
Result of the survey on the visualization of the results in the Com-

pliance Framework. e 276
Number of scripts developed per component. 310
Summary of the dataset used as proof of concept. 310
Compliance rule types to be checked. 318

XXxii LIST OF TABLES

9.2 Two groups of data attributes (process and client related) that

we included in case study dataset. 323
9.3 The volume of cases and events in datasets for each business unit. 326
9.4 Total number of rule instances and the violation frequency per compli-

ance rule for each businessunit. 327
9.5 Total number of letters per category and distribution of violations

w.r.t. compliance Rule 2 over letter categories. 328
9.6 The total number of letters per category and distribution of vio-

lations w.r.t. compliance Rule 5 over letter categories. 329
9.7 The total number of letters per category and distribution of vio-

lations frequency w.r.t. compliance Rule 6 per letter category. . . 330
9.8 Association rules mined for different business units between vio-

lations and their contextualdata. 332
9.9 Filtered associations between different violations and team I2Y

in the three business units. 337
9.10 Grouping of attributes for classifying violations versusnon-violations.339
9.11 Number of cases and events in datasets of each business unit . . 347
9.12 Follow-up study, summary of violations per compliance rule in

three business units. L oL, 348
A.1 Categorization of the 54 control-flow compliance rules. 370

D.1 Summary of connections (between submission types and differ-
ent violations) and (between application phases and different vi-
olations) in three business units. The associations are of type at-
tribute value to violation (A — V) or of type violation to attribute
value (V—A). . . . o e 458
D.2 Summary of connections between decision categories and differ-
ent violations in the three business units. The associations are
of type attribute value to violation (A — V) or of type violation to
attribute value (V—A).« 459
D.3 Summary of connections between different violations and values
of attributes entitled for additional allowance and reasons of unem-
ployment. The associations are of type attribute value to violation
(A— V) or of type violation to attribute value (V — A). 463

Chapter 1

Introduction

This chapter gives an introduction to an integrated compliance checking and
analysis approach. We first discuss in Sect. 1.1 the challenges of legal constraints
and regulations and how (Big) Data techniques provide new opportunities to
ensure adherence to regulations, also known as Compliance. We then discuss
various approaches to ensure compliance using a fictive example corporation in
Sect. 1.2. In Sect. 1.3, we then identify a number of requirements for realizing
an integrated compliance checking technique for all compliance-relevant activ-
ities of an organization and discuss the state of the art. We present in Sect. 1.4
our approach towards realizing such an integrated technique and summarize
our results. Sect. 1.5 then provides a detailed overview of the structure of the
thesis.

1.1 Adherence to Regulations in Times of Big Data

The increasing power of compliance sources such as laws and regulations in
governing business operations has led to a need for systematic approach for
compliance management in corporations. The management (especially in larger
corporations) assign annually a considerable budget to internal and external au-
diting projects to ensure authorities that they have enforced necessary controls
in their operation.

Introduction

SERVICE LEVEL
AGREEMENTS

b4 RISK
m Management

POLICIES

Enterprise

Social ransacti-
R med al data

0y S

. ammyamyamy TRANSPARENCY

—F essage
A LAy
—— // Acti%
—_——— PUIERE flow logs
Financial
databases
INTERNAL CONTROLS data
STANDARDS (e.g., COSO)
(e.g., ITIL, I1SO)
Checking Behavior
e.g., “four-eyes principle”,
“two/three-way match”,
“authorization level”,
“A follows B”, s A)
“deadlines”, etc. Process Mining
- 7 < Discovery >
;) Event | — " [(Process)
E.g., “Are the medical Data Models
guidelines followed? Should F
they be improved?” Conformance
[! Checking
- A Provide diagnostics
E.g., “Did fraud happen? What < > when applied in
is the approval procedure” I I I I o Banks different domains
e Hospitals
—— e Public Sector (1]
D E.g., “Who created and who e Auditing Companies ’
approved the invoices?” e Manufacturing Plants
pp e .
- INSIGHT
E.g., “Are all the products '
checked for quality?” aomnn

Figure 1.1: Omnipresence of data allows us to leverage process mining and data mining
techniques for data-driven analysis of compliance.

1.1 Adherence to Regulations in Times of Big Data

Adherence to these compliance procedures also enables the management to
be in control of their business and make their operations more transparent. The
transparency obtained gives them a bargaining power in the market and attracts
the trust and confidence of their stakeholders and business partners including
their clients and suppliers.

Legislations such as Sarbanes-Oxley Act (SOX) Act of 2002, Basel II Accord
of 2004 (scheduled to be superseded by BASEL III), and COSO Framework of
1992 superseded by its updated version of 2013, urge corporations to ensure
and prove that they have implemented internal control systems. These regu-
lations require corporations to keep monitoring and evaluating their internal
control systems regularly.

Furthermore, it is not only laws and legislations that impose constraints on
corporations. Industry guidelines and standards such as ISO standards or In-
formation Technology Infrastructure Library (ITIL) for IT service management,
in many cases are demanded by clients or business partners of corporations in
each industry. Apart from legal consequences of non-compliance, not complying
to the standards can cause the cost of loosing a client or a business opportunity
as well.

Running compliance related activities incurs costs. However, the cost of
non-compliance can be staggering for organizations. According to Pricewater-
house Coopers (PwGC) Crime Survey 2011 involving 250 Dutch companies, an-
titrust(cartel) agreements or financial fraud caused a direct loss of more than
500,000 euro in a quarter of cases. The crime survey of 20142 shows a relative
increase of 13% in crimes related to bribery and corruption from what reported
in 2011.

Banks, hospitals, manufacturers, service provider, organizations in public
sector and almost every organization run information systems to support their
operations. These information systems can record detailed processing steps,
data accesses, message logs, and as illustrated in Fig. 1.1, many more types of
information. More and more organizations are inclined to store these logged
data at various granularity levels as the storage has become cheap and process-
ing power has increased.

At the same time, new technologies in data analysis and in particular process
mining [134] are providing opportunities to systematically observe processes at
a detailed level. The aim of this thesis is to extend and develop techniques that
can compare recorded event data to compliance constraints to answer and verify

Lhttp://crimesurvey.pwe.nl accessed on 2014.04.14
2http://www.pwc.com/crimesurvey accessed on 2015.01.15

Introduction

questions such as: Are the processes compliant or not? Which of the guidelines are
violated? What kind of violations are observed? Can a pattern be detected among
violations? etc.

Data is a strategic asset for organizations and as data-driven strategies take
hold, they will become an increasingly important point of competitive differen-
tiation. In this thesis we leverage from various process mining and data mining
techniques to analyze compliance of business processes and answer concrete
compliance related questions in various domains including health-care, bank-
ing, auditing, public sector, and etc.

1.2 Problem Statement and Research Goal

Suppose Life Inc. is a corporation including a family of pharmaceutical compa-
nies active in different regions of Europe. Life produces dozens of specialized
medicines. The corporation has several production lines for its groups of prod-
ucts. The operations of this corporation are highly regulated. There are many
health care regulations and protocols that need to be followed. Failing to com-
ply to any of these rules can have severe legal consequences for the company
and ruin its reputation. Furthermore, the consequences of such a failure may
be severe as the products of this corporation are directly connected to human

DIAGNOSTICS

‘ Standards ‘ Data ‘ ‘ Data ‘ ‘ Data ‘ the corporation, and each
H& v v v individual company?
Internal controls e Which regulations are violated
‘ Policies more?
‘ Regulations Complla‘nce Unified € i Analvsis Platf e What are the severe violations?
Contractual ~w constr_alnts ~— nified Compliance Analysis Platform ¥« How do different companies
obligations repository within the corporation differ

w.r.t compliance?

Which processes are more
vulnerable?

What are the causes of
violations?

What are improvement
potentials?

Figure 1.2: Life Inc. requires an integrated compliance solution which is generic, flexible,
automated and provides detailed diagnostics.

e What is the compliance level of

1.2 Problem Statement and Research Goal

health.

Medical guidelines and health-care protocols are not the only protocols that
the corporation should adhere to. The contractual obligations set with partners
and the industry specific standards are also important for the company. There
are several internal policies and procedures designed by in-house experts to
improve the productivity and efficiency in daily operations. Keeping track of
all the rules and monitoring the compliance status against them is a tedious
task for the management team. In addition, it seems that there is not common
agreement among different companies of this corporation about the rules and
their interpretation in daily operations.

As illustrated in Fig. 1.2, the corporation requires to detect possible viola-
tions against all the relevant compliance constraints and monitor its compliance
state level as a holding and in each of its individual companies. To better un-
derstand its compliance state, the management team needs to know which reg-
ulations are often violated and which of the processes are more vulnerable? In
addition to find improvement potential, the deviations need to be analyzed for
their causes. Above all, it is of the utmost importance to have a common under-
standing, within the corporation, of all the compliance constraints that need to
be followed.

Currently, the corporation lacks a unified platform for collecting and analyz-
ing compliance data. Monitoring compliance is limited to auditing initiatives on
sample data which is incomplete, manual and error prone. The management
requires an automated solution that enables continuous checking of whole pop-
ulation of data not only a sample. In fact, the management requires a dash-
board to monitor the compliance and get diagnostics on different abstraction
levels and from different perspectives. The complexity and difficulty of such a
comprehensive compliance solution comes from various sources as follows.

* Compliance constraints are typically written in an informal domain spe-
cific language. To enable automated compliance checking, compliance
constraints need to be specified precisely and formally. However, compli-
ance experts who are in charge of interpretation of compliance constraints
are usually less familiar with formalization techniques.

* Compliance constraints need to consider various perspectives of a business
process such as order of steps in a process, time between the execution
of these steps or data involved in executing various steps. Each type of
compliance constraint, requires a specific checking mechanism.

* Designing a compliant business process does not guarantee the compliant

Introduction

execution of a business process. It is hard and undesirable to enforce
constraints in a very strict manner and often there need to be ways to
check compliance after/during execution.

* For improving compliance, detailed diagnostics about violations are re-
quired. That is, it is not only enough to know whether a process is compli-
ant w.r.t. a rule, but also it is important to know what went wrong, what
should have happened instead and why a certain violation has happened.

* To have a complete picture about the compliance of a process, it is not
enough to analyze a sample of cases. Analyzing all the cases of a process is
only possible with an automated checking technique that can detect viola-
tions of different types.

An option for improving compliance and transparency would be the incor-
poration of all the relevant compliance constraints within business processes of
the companies. Following this approach will lead to adding many controlling
tasks to the underlying information systems supporting the processes. This op-
tion requires costly and time consuming changes for re-engineering of business
processes and re-configuration of underlying information systems. In addition,
inserting controlling tasks within business processes are not entirely aligned
with the business objectives of the company and will make the processes less
agile and less efficient. Even if these changes are in place, the management
team still can not be sure that the processes are executed as they are designed
and all the rules are followed in practice. Furthermore, compliance constraints
are changing and it is not feasible to change the processes and the supporting
information systems every time a regulation changes. All in all, polluting busi-
ness processes with compliance constraints does not seem to be a sustainable
solution for the corporation. The advantage, however, will be a unified system
of controls within the holding.

An alternative approach would be the establishment of a unified set of com-
pliance rules for all the companies. Then, a generic compliance analysis tech-
nique is required for analyzing historic data. The technique should be able to
detect any possible violation against all types of rules without changing the de-
sign of business processes and configuration of underlying information systems.
As mentioned earlier, for this, an automated and comprehensive compliance
checking technique is required for analyzing the complete population of data.
This solution should consider all the complexities mentioned earlier. In this
case, all the changes in regulations are managed separately from the business

1.2 Problem Statement and Research Goal

processes and in a unified manner for all the companies. The result of check-
ing is reliable, i.e., the management can trust on the result of the checking in a
sense that checking is done based on the facts not assumptions about the facts.

Research Goal

In this thesis, we will develop a comprehensive and data-driven approach for
analyzing compliance and understanding non-compliance. For this, we first
need a technique to transform informal constraints into precise and formalized
compliance rules. Although there are various rigorous mathematical formalisms
for representing compliance rules, these are often perceived to be difficult to use
for business users. The main challenges here are 1) to find a way to bridge
the gap between the informal description and the precise specification of
all compliance constraints in all process perspectives, and 2) to provide
compliance experts with techniques to create formal specifications without
being exposed to the details and difficulties of a formal language.

Our approach should enable 3) automated compliance checking of all
types of process compliance constraints. In particular, a compliance con-
straint may address different perspectives of a business process including the
control-flow of a process, the time perspective, the flow of data, and organiza-
tional aspects. The checking technique should enable a thorough compliance
analysis and be able to detect all types of violations. The challenge here is to
develop an approach which is 4) generic enough so that it enables checking
of different types of rules but at the same time specific enough to give us
a precise result about compliance. In addition, in case of a violation, it is
necessary 5) to provide detailed diagnostics about the violations.

Our approach should also 6) enable root-cause analysis on violations. To
improve compliance it is important to know what the common and important
violations and their frequencies are and why they occur. The challenge in this
part is to 7) identify key insights about violations in data that enable compli-
ance experts to understand non-compliance and plan corrective measures
accordingly. Finally, a comprehensive compliance analysis approach should 8)
aggregate all compliance data and support exploring and reporting about
compliance.

Existing techniques often address only a few of these requirements, but to
the best of our knowledge there exists no solution that addresses all of the
above in an integrated compliance analysis solution. The goal of this thesis is
to provide an approach that addresses all 8 requirements in a comprehensive
manner. Next, we will discuss state of the art w.r.t. compliance related activities.

Introduction

1.3 State of the Art in Compliance Management

Compliance management includes a set of activities in three interrelated but
distinct perspectives on compliance, namely preventive, detective, and correc-
tive [144]. These techniques aim at ensuring that the operations of a company
comply with regulations. Five types of compliance-related activities can be iden-
tified [49,99]:

» compliance elicitation: determine the relevant constraints for a process
that need to be satisfied (i.e., rules defining the boundaries of compliant
behaviors),

» compliance formalization: formulate precisely the compliance constraints
derived from laws and regulations in compliance elicitation,

* compliance implementation: implement and configure information systems
such that they fulfil compliance constraints,

* compliance checking: investigate whether the constraints will be met (for-
ward compliance checking) or have been met (backward compliance check-
ing), and

» compliance improvement: modify the processes and supporting informa-
tion systems based on the diagnostic information in order to improve com-
pliance.

These activities form five phases in Compliance Management (CM) life cycle
shown in Fig. 1.3. These phases are: (1) elicit, (2) formalize, (3) implement,
(4) analyze, and (5) improve. The challenges we listed above in Sect. 1.2 are
related to different phases of CM life cycle.

elicit

improve formalize

compliance
requirements

mplement

Figure 1.3: Compliance Management life cycle.

check

1.3 State of the Art in Compliance Management

Next, we give a short overview about the literature available for different
activities in CM life cycle. A more precise analysis of related works will be done
in the individual chapters.

Elicitation and formalization of compliance constraints. Several formaliza-
tion languages are proposed to capture compliance constraints precisely. For
example Formal Contractual Language (FCL) proposed in [113] extends Deon-
tic and Defeasible logic with modal operators, where a compliance constraint
can be reduced to the identification of what obligations an enterprise has to ful-
fill to be deemed as compliant. The combination of the two logics offers a good
trade off between expressive power and computational complexity. The critical
concern related to FCL is the high complexity of the language which makes it
difficult for compliance and business experts to use. Various techniques are de-
veloped for precisely describe compliance constraints in Linear Temporal Logic
(LTL) [92]. The advantages of this language is that several verification tools
have been developed for checking LTL formulas. Although LTL formulas are
simpler than FCL, they are still complex to write for business users. In addition,
the verification of formulas in LTL will lead to true or false result and does not
give more diagnostics. The above mentioned formalization languages are just
examples. In general, the problem for using different formalization languages
remains to be their complexity for business users.

To facilitate the task of formalization, many approaches use pre-formulated
templates and specification patterns for formulating compliance constraints [?,
40, 46, 132]. Specification patterns are extensively used in software develop-
ment [4,26,37,66,123]. A common problem in most of above mentioned works
is that pre-formulated patterns are limited and hard coded, hence they fail to
capture subtle aspects of different compliance constraints.

Compliance implementation and checking. There are two basic types of com-
pliance checking: (1) forward compliance checking aims to design and imple-
ment processes where conforming behavior is enforced and (2) backward com-
pliance checking aims to detect and localize non-conforming behavior.

* Forward compliance checking aims at ensuring compliant process execu-
tions. Processes can be constructed to be compliant [113] or verified
whether they are compliant [52,53,77,114]. Alternatively, compliance
constraints can be transformed into monitoring rules [49] or model an-
notations which then are used to enforce compliant process executions
[16,46]. Diagnostic information is obtained by pattern matching [14, 15,
15,48].

10

Introduction

* Backward compliance checking evaluates in hindsight whether process
executions complied to all compliance rules or when and where a par-
ticular rule was violated. A variety of conformance checking techniques
have been proposed to quantify conformance and detect deviations, based
on event data and a process model (e.g., a Petri net) [8-10, 24,27, 33,
44,50, 86,87,111, 135,145]. Also approaches based on temporal logic
[31,81,85,136,149] have been proposed to check compliance.

Forward compliance checking techniques are based on the idea of incorpo-
rating controlling objectives within business processes, i.e., , coupling CM and
BPM. The drawbacks of forward compliance checking techniques were mentioned
earlier in Sect. 1.2. In this thesis we focus on compliance auditing (i.e., back-
ward compliance checking) and separating CM from BPM. If we consider
the broader concept of compliance, then it does not only include compliance
w.r.t. strict financial controls imposed by legislation such as SOX, BASEL II or
COSO framework but also covers adherence to any desired process behavior
(e.g. medical protocols in health care or even more efficient ways of executing a
process). Configuring information system such that they adhere to all possible
desired ways of executing a process will lead to rigid and complex business pro-
cesses. We advocate the idea of keeping the design of business processes and
configuration of underlying information systems simple. Limiting the inserted
controls within business processes to only essential ones will increase the flexi-
bility and agility of business processes. At the same time, we can leverage from
the omnipresence of event data to do a factual analysis of compliance during
and after execution of processes instead of only relying on preventive controls.
We are interested to detect all possible deviations from desired process behav-
iors.

Compliance improvement based on diagnostics. Fewer works are available
in the area of root-cause analysis and improving compliance based on diagnos-
tics obtained during compliance analysis. Compliance auditing enables us to
analyze the actual execution of processes rather than assumptions about the
processes. In case of a deviation, we can use the contextual information of
a deviation (hidden in data) to understand why a specific desired process path
are not followed. The corrective measures, taken to improve business processes,
then will be based on the factual diagnostics obtained during compliance check-
ing.

The literature available on root-cause analysis of compliance violations us-
ing execution of business processes [104, 122] are mostly done in the area of
Service Oriented Architecture (SOA). The authours introduce Key Compliance

1.3 State of the Art in Compliance Management

11

Indicators (KCI) and report about compliance level of business services that
computing these indicators. These studies are limited to definition of appro-
priate indicators and reporting on them. However, using more advanced data
analysis techniques such as data mining for reasoning about root-causes of com-
pliance violations has been explored less.

Introduction

12

sisk|euy asned-100Yy pue sdi3soubelq adueljdwod)

6 191deyd

susayed Joineyaq
jueydwiodBuneloip

P

$3|N1 UONLIOSSY

SnsieIs

@

S)UDAS paLyIsse])

Buppay) sdueldwo)

siskjeue asned-100Yy

£ 13ydeyd

9d
aoueldwod

g u91deyd

/T

JuswubIy

JusWUBIY -
z1aadeyd \\\

BupaYd adueldwod

uojjezijewloL pue uoneyd!|3 dueldwod

Y

I
f
f
f 9 pue §'y s13deyd
f

ajns //

Juiesysuod
2dueldwod

»
>

JUSWILYILIUD
607

/ \

uoipalsp
uoneoIA

-—

[

uonesedasd

01

BuPAYD adUEIdWOd MO}-[013U0D

T
burpayd sdueldwod _m‘_anw._.i %
Q

[Buppayp dueidwiod a2inosas pue eyeg| O 2

991deyd

Q

1 49

G i9d

N
T § Uawnsodwoy /= > —

S - =
I & f -

>
(- -
= 2 3Ny
0 F ylomawesy
s ™ JuIRASUOD
[uienzed asueljdwod @dueldwiod

pazijew.oy pue
3|qeinbyuod jo Lioysoday

z Ja1deyd

S
zJ2rdeyd

¢ Jordeyd

Figure 1.4: The thesis road map gives the mapping between chapters of the thesis onto

our compliance analysis approach.

1.4 Thesis Approach and Results

13

1.4 Thesis Approach and Results

This thesis contributes a novel technique for the specification of compliance
constraints and data-driven analysis of process compliance. Using the research
method of design science which starts with understanding requirements from
literature and practice, we developed and implemented an approach and a fam-
ily of techniques, each of which was evaluated and improved iteratively in vari-
ous case studies. In Chap. 3, we will discuss the details of requirements for com-
pliance analysis and sketch our ideas on the approach. The exact techniques and
their implementation will be discussed in chapters 4 to 8 and Chap. 9 evaluates
our approach results.

Figure 1.4) is organized in alignment with our compliance analysis approach.
This approach enables compliance experts and business users to:

* Elicit and specify informal compliance rules in terms of compliance with-
out exposing them to technicalities of any specification language. Our
approach bridges the gap between informal constraints and formal rules
by providing repositories of configurable patterns that capture details of
rules as options for commonly-required compliance constraints. These op-
tions are configured interactively with end-users, using question trees and
natural language (addressing research goals 1 and 2). We also explain
how we can merge relevant compliance rules as a composite compliance
model.

* Detect violations of different types including violations from control-flow
compliance rules, temporal, data-aware, and resource aware compliance
rules. We check compliance by computing optimal alignments between
execution of a business process and the “most likely compliant path” ac-
cording to a formal model of a compliance rule. Such an alignment of-
fers detailed diagnostics compared to current approaches of compliance
checking (addressing research goals 3,4, and 5).

* Aggregate compliance data and provide the capacity for statistical analy-
sis. We developed a compliance database to integrate various sources of
compliance data. The data structure of this database provides us the flex-
ibility to explore compliance data from different perspectives and prepare
reports based on even complex criteria (addressing research goal 8).

* Analyze the root-causes of violations by leveraging various data analysis
techniques. We use association rule mining to detect meaningful relations

14

Introduction

between violations and their context. The result of this analysis enables
business users to identify key insights in the large amount of data. Fur-
thermore, We use classification techniques to differentiate violating and
compliant patterns in data. These patterns can be used for predicting pos-
sible future violations (addressing research goals 6 and 7).

As is shown in Fig. 1.4, our compliance analysis solution is organized in
three main parts: compliance elicitation and formalization, compliance checking,
and compliance diagnostics. Typically compliance constraints are decomposed
into a set of compliance rules. These rules are formalized individually as atomic
compliance rules or as a composite one. This choice of formulation impacts the
later phases. Dedicated checking techniques allow us to detect various violation
types. Different types of diagnostics about the detected violations are produced,
including statistics, associations between violations and their context, and con-
ditions when a certain violation type holds or not.

The results of this thesis have been implemented and evaluated in a large
case study in collaboration with the Dutch Employee Insurance Agency (UWV).
The case study was conducted using A/B testing on three business units in UWV.
The result showed a remarkable improvement in compliance of business units
that received feedback through our approach. In addition we received positive
feedback from domain experts about the applicability of our approach and its
findings.

1.5 Thesis Road Map

We conclude the introduction with the road map depicted in Fig. 1.4. This
road map gives the mapping between the thesis chapters onto our compliance
analysis approach.

Part I. After this introduction, Chap. 2 provides the formal background for this
thesis. We introduce the general concept of behavior to describe compliant be-
havior specified by compliance constraints and observed behavior that captures
executions of business processes. We introduce alignment to compare the ob-
served behavior versuscompliant behavior. In Chap. 3 we describe the research
questions in more detail and systematically develop the requirements for each
step, of, our approach based on literature and practical requirements.

Part II. Chapters 4, 5, 6 discuss our dedicated compliance elicitation and check-
ing techniques for compliance constraints confining control-flow, temporal, data
and organization perspectives of business processes.

1.5 Thesis Road Map

15

Part III. Chapter 7 explains our techniques for doing root-cause analysis on vio-
lations and providing detailed diagnostics about violations. Chapter 8 discusses
our solution for integrating various compliance data sources to enable exploring
data from different views and produce various reports.

Part IV. In Chap. 9 we report on a case study that we conducted in collaboration
with UWV (Dutch Employee Insurance Agency) to evaluate our approach and
its findings. We describe the design and scope of the experiment. The proce-
dures taken for data collection and data preparation are described. Then the
execution of the experiment including the techniques used and the compliance
rules that were checked will be discussed. We will elaborate on the results of the
analysis and the lessons learned in the project. We summarize our contribution
in Chap. 10. We conclude with open problems and ideas about future research.

The techniques developed and discussed in this thesis are implemented in
the Process Mining Toolkit ProM 6.6. 3 The implementation of the techniques
relevant for each chapter is discussed in the same chapter.

Savailable from: http://www.promtools.org/

Chapter 2

Preliminaries

As explained in Chap. 1, the main input elements to compliance checking are
(1) the legal constraints to satisfy, (2) and data about past business process ex-
ecutions to check for compliance. Both refer to process behaviors; normative
behavior that is prescribed and real behavior that has been observed. In this
chapter we define “behavior” as a general concept and we use it to relate ob-
served behavior (event logs) and prescribed behaviors (compliance constraints).
We discuss particular representations for event logs and compliance constraints:
the former in XES standard format and the latter as Petri nets. Both notions are
well-established in literature and we will present them only to the extent neces-
sary. We will use these concepts and definitions throughout the thesis to explain
our compliance checking approach.

The general definition of behavior is presented in Sect. 2.1. Section 2.2 dis-
cusses event logs. Section 2.3 presents prescribed behaviors and explains how
we express prescribed behaviors in terms of (data-aware) Petri nets. Section 2.4
explains the notion of alignments and how we compare observed behavior and
prescribed behaviors. In Sect. 2.5, we describe how we can capture prescribed
behavior from different perspectives (control-flow, time, data and resource)
and Sect. 2.7 concludes this chapter.

2.1 Behavior

An event log refers to one specific behavior describing what has happened
whereas a compliance constraint describes a set of prescribed behaviors. Later,

18

Preliminaries

we will align the observed behavior (event log) to the prescribed behavior
(model) to identify and measure the deviations between observed and pre-
scribed behaviors.

Figure 2.1 exemplifies an observed behavior as a collection of events in a
table.

event ID pi time act || resource
€ P1 1 a Nic
€ P1 2 b Nic
e3 p1 3 d Ben
ey P2 4 f Bill
es P2 5 a Sara
€ P2 6 C Nic
ey P2 7 d Ben

Figure 2.1: Example of observed behavior recorded in an event log.

Intuitively, an event is a record describing that a particular activity occurred
in a particular context. Formally, we distinguish events by their event identifiers
(the event ID column in Fig. 2.1). Each event refers to a particular activity: the
activity name (column ‘act’) in Fig. 2.1). An event may carry any number of
attributes having particular values, for example event timestamp (indicated as
column ‘time’ and resource (indicated as column Tesource’) in Fig. 2.1). These
attributes describe the event’s context. For instance, the resource (i.e., person
or device) executing or initiating the activity, the timestamp of the event, or
data elements recorded with the event (e.g. size of an order). Moreover, we
assume that each event can be associated to a unique process instance in which
the event occurred (indicated as column ‘pi’ in Fig. 2.1). One process instance
(also called case) can be viewed as a set of related events. This gives rise to the
following universes of identifiers, attributes, values and events.

Definition 2.1 (Universes)

& is the set of all process instance identifiers,

L]

Attr is the set of all possible attributes,

Val is the set of all possible attribute values,

& is the set of all events.

2.1 Behavior

19

As mentioned earlier, events are represented by a unique identifier. This
allows us to refer to a specific event, and events with the same properties can
be distinguished. We define a behavior as a partial order of events.

Definition 2.2 (Behavior) B = (E,#,<) is a behavior when:
e EC & is a set of events,

e #: E — (Attr /~ Val) maps events into a partial function assigning values to
some attributes, !

e < € ExE defines a partial order on events (< is reflexive, antisymmetric, and
transitive).

BH is the set of all behaviors.

Figure 2.2 shows the behavior defined from the events given in Fig. 2.1. The
behavior B = (E,#,<) consists of seven events that are totally ordered in two
process instances:

o set of events E = {e1, e, €3, ey, €5, €5, €7}.
o #acr(e1) = a, #4c0(€2) = b, etc. 2
o for 1=i<7, #rme(€;) = t; S.t. t; < tiz1.

o for i €{1,2,6}, #resource(€i) = Nic, for i € {3,7}, #resource(€;) = Ben, #resource(es) =
Bill, and #yesource(es) = Sara.

o #piler) =#pilex) = #pi(e3) = p1 and #p;(eq) = #pi(es) = #pi(es) = #pi(e7) = pa.
e <is a partial order.

In the following, we assume any two behaviors to be disjoint on events. We
write dom(#(e)) for the set of attributes having a value in e. We write #,4+(e) = v
if attribute attr € dom(#(e)) has value v. We assume that each event is assigned
to a process instance and formally pie dom(#(e)) and #,;(e) € #. For example,
#pi(e1) = p1 denotes that event e; belongs to process instance pi, #4ci(e1) = a
denotes that e; corresponds to the execution of activity a, #4me(e1) = 1 denotes
that the event occurred at time 1, and #esource(€1) = Nic denotes that Nic exe-
cuted this activity. In general activity name (act), and time are also assumed to

1fe X £ v is a partial function with domain dom(f) < X.
2#,(e) is a shorthand for (#(e))(a).

20

Preliminaries

event ID pi time act resource
€1 #pi(el)=p1 #time(el)=1 #act(el)=a #resource(el)=Nic
€2 #pi(e2)=p1 #time(e2)=2 #act(ez)=b #resource(ez)=Nic
€3 #pi(e3)=p1 #rime(€3)=3 #aci(es)=d | #resource(€3)=BeN
€4 #pi(e4)=p2 #time(e4)=4 #act(e4)=f #resource(e4)=Bi”
€5 #pi(e5)=p2 #time(es)zs #act(es)za #resource(es)zsara
€6 #pi(96)=p2 #time(e6)=6 #act(e6)=c #resource(e6)=Nic
€7 #pi(e7)=p2 #time(e7)=7 #act(e7)=d #resource(e7)=Ben

Nic Nic Ben
e e, es3

e ° 0 fori€{1,2,3}, #u(e) = p1

Bill Sara Nic Ben
ﬁ e.S e'6 i fori€ {4/51617}1 #pi(ei) =p2
A A A A A A
I I I I

4 5 6 7 time

=
N
w

Figure 2.2: Behavior B = (E, #,<) consisting of events related to two process instances p;
and po.

be attributes of each event. However, later in this thesis during event log en-
richment with compliance diagnostics, we introduce some artificial events that
may not have an activity name or time attribute.

Next, we discuss the role of the ordering relation < of a behavior and how it
relates to other attributes of events. For events e; and e,, we write e; < e, if and
only if e; < e, and e; # ;. e; < e, means that e; precedes e,. Note that, < does
not necessarily define a total order based on time. Hence, even if e; happens
before e,, it may still be the case that e; £ e;.

Figure 2.2 illustrates a graph of the totally ordered events in our example.
The arcs shows the precedence relation between events. For example, the arc
between event e;, and e, shows that e; is causally related to e;. Note that,
in the Fig. 2.2, we only show the non-transitive pairs of the relation <. For
example e; < e3 is not shown explicitly by an edge. According to our definition
of behavior, one behavior describes many process instances together. In our

2.1 Behavior

21

example, the events in behavior B are distributed over two process instances.

event ID pi time act
e; #Hoile1)=p1 | #imele1)=1 | #Hiler)=a
€2 #pi(e2)=p1 Hime(€2)=2 | #acler)=b
€3 #pi(e3)=pl Hiime(€3)=3 | #aciles)=d
€4 #pi(e4)=p2 Hiime(€a)=5 | #actles)=b
€5 #pi(e5)=p2 #time(e5)=6 #act(es)=c
€ #oi(€6)=p2 | H#iime(€s)=6 | #act(es)=d

a 0 0 fori €{1,2,3}, pi(e) = p1

>

time

[
N
w
N
[9,]

Figure 2.3: Behavior B’ = (E',#,<) consisting of events related to two process instances
p1 and pa.

While (Def. 2.2) allows that events in different process instances may also be
ordered, in this thesis, we only consider the orderings within process instances.
For example, in Fig. 2.2, although event e, occurs time-wise strictly after event
e3 (time 4 and time 3, respectively), both events are unordered as they belong
to different process instances.

Another example shown in Fig. 2.3 denotes a behavior where events within
the same process instance are partially ordered (interested reader is referred
to [78] for detailed discussion on partial ordering of events). The behavior B’ =
(E',#,<) shown in this figure exemplifies the general nature of Def. 2.2 with
three events totaly ordered in process instance p; and three events partially
ordered in process instance p,. As shown in Fig. 2.3, the events e5 and eg in
process instance p, are partially ordered and both occurred at time 6. In princi-

22

Preliminaries

ple, one can leave out explicit timestamps and order events based on a different
attribute (e.g. data dependency). If an event writes a value on an attribute that
is read by another event, these two events are related such thatthe second event
is dependent on the first event. In this case two independent events that occur
at different points in time, may be partially ordered. In the scope of this thesis,
we consider the ordering of events based on their timestamps only.

2.2 Expressing Classical Event Logs as Behaviors

Existing literature typically formalizes a process instance as a sequence of events
that occurred in that instance and an event log as a set of process instances.
Events are ordered based on their time of occurrence and often a total order
is assumed on all events of a process instance, whereas events from different
process instances are not ordered. We adopt this view for our work by imposing
constraints on the partial ordering of events.

Definition 2.3 (Event Logs) L= (E,#,<) is an event log if
e LeBH, ie., Lisa behavior,
* E is finite, and every event is also finite in the umber of attributes,
* Vey,ex€E e < e = #rme(e1) < #rme(€2) N#pi(e1) = #pi(e2).

The behaviour B shown in Fig. 2.2 is an event log. Note that, in the classical
definition of event logs the relation < on events is total for all events within the
same process instance, i.e., for all e;,e; € E and #p;(e1) = #pi(e2): e1 = ez, ey < e
orey<e.

Tree view representation of event logs. Event logs, as they occur in practice
and research, may be represented in various forms. Every system architecture
that includes some sort of logging mechanism has so far developed their own,
insular solution for this task. In many parts of this thesis we will use XES stan-
dard [57] for presenting event logs. XES is XML-based and is extensively used
in the process mining area. XES presents event logs in a hierarchical structure
with a log being the first-level object. A log then contains an arbitrary num-
ber of process instance objects and every process instance contains an arbitrary
number of events. Figure 2.4 shows the behavior B of Fig. 2.2 in the hierarchical
structure of an event log, subsequently called tree-view of an event log.

2.3 Prescribed Behaviors

23

Event log B

—4 b1

— — e
— #sile1)=p1

— #act(el)= a

— #time(el)z 1

_ #resource(el): Nic
— — e

— #Hoi(e2)=p1

— #act(el): b

— #ime(€2)= 2

—— Hresource(€2)= Nic

L — es
— #u(es)=p1

— #aa(es)=d

— #time(e3)= 3

_ #resource(eB)z Ben

— e
— #pi(ea)=p2

— #Haled)=f

— #time(e4)= 4
_ #resource(e4)= Bill

— es
— #i(es)=pa
— #aales)=a

— #time(eS)z 5

- #resource(e5)= Sara
— e

— #pi(ee)= P2

Hales)=c

— #time(eG)z 6

— #resource(96)= Nic

— e
— #i(es)=p;

— #act(e7): d

—— #ime(e7)=7

— #resource(e7)= Ben

Figure 2.4: Tree-view representation of the event log B consisting of two process in-

stances p; and po.

As shown in this figure, event log B has two process instances consisting of
in total seven events. Events that have p; as the value for their pi attribute are
grouped as the child nodes of this process instance and those that have p, as
the value for their pi attribute, are grouped under p,. Each event has several
attributes (act, time, and resource) that together form child nodes of that event.

2.3 Prescribed Behaviors

In the previous section we discussed how a finite “observed behavior” captures
an event log. Next, we discuss how to understand a possible infinite set of
behaviors as the prescribed behaviors, and how to use a finite model to specify

an infinite set of behaviors.

There are various rigorous and mathematical formalisms for representing

24

Preliminaries

prescribed behaviors using different specification languages, for example For-
mal Contractual Language (FCL) [53] from deontic logic family and Linear Tem-
poral Logic (LTL) [91] and Computational Tree Logic (CTL) [25] from temporal
logic family.

We use Petri nets to specify compliance constraints. Our choice of Petri
nets as the formalization language for representation of prescribed behavior has
several reasons that we will discuss in Chap. 3. No matter what formalization is
chosen, it must precisely specify what is allowed and what is not allowed as a
compliant behavior. It should allow for all possible compliant behaviors, while
excluding each non-compliant behavior. Next, we will give a short introduction
to Petri nets and we will discuss how we formalize compliant behaviors using
variants of Petri nets.

2.3.1 Introduction to Petri nets

Petri net is a process modelling technique that allows us to describe a system
behavior. The initial idea of Petri nets was introduced by Carl Adam Petri in
1962, however initial ideas were not supported by a graphical notation. This
notion evolved over several years and the first actual graphical Petri nets came
up in 1970’s.

Petri nets offer a formal but also a graphical notation and therefore are ac-
cessible for non-expert. In this section, we present the basic concepts of Petri
nets using some examples. The interested reader is referred to [141] for the
formalism and technical details.

Classical Petri nets. Suppose the following simple loan application process in
a bank. The process starts with receiving a loan application. The application is
checked for credit history. Based on the credit check history, the bank decides to
grant the loan to the applicant or reject the application. In case the application
is accepted, after the collection of required guarantees, the payment process
starts. In case of rejection, the applicant will be informed about the decision
and the decision is archived as well. The two activities (archive the decision
and inform client) may occur in any sequence. Finally, the case will be closed
and either way, the process ends.

The Petri net shown in Fig. 2.5 models this process. A Petri net is a graph
that is composed of two types of nodes: places and transitions that can be mu-
tually connected by arcs. A place shows the local state of a system. Places are
illustrated as circles in a Petri net structure. A transition represents a change
in the local state of a system. Transitions are illustrated as boxes in a Petri net

2.3 Prescribed Behaviors

25

collect
accept guarantees pay

HO—VO—V

receive loan check credit accepted collected
application history archive the
® o decision
start received checked end

inform client

tg O
rejected, informed

Figure 2.5: The loan process modelled as a Petri net.

structure.

The loan application is initially in the local state start. The execution of
the transition receive loan application, changes the local state to received. By
executing the check credit history transition, the application will be in the local
state checked. If the application gets accepted, it reaches the local state accepted.
After collecting guarantees, the application will be in the local state collected.
After the execution of the transition pay, the application reaches the final state
end. Alternatively, an application may be rejected and therefore the application
will be in the local states rejected; and rejected,. At this moment, the transitions
archive decision and inform client may be executed in any order. Consequently,
the application will be in the local states archived, and informed. Finally, after
closing the application, it will reach the final state end.

In this example, the possible local states are: start, received, checked, ac-
cepted, rejected;, rejected,, collected, archived, informed, or end. The possible
state transitions are: receive loan application (¢;), check credit history (t,), ac-
cept (13), collect guarantees (1), pay (t5), reject (t5), archive the decision (#7),
inform client (#g), and close the application (#y) where {f,,..., fo} denotes the set
of transition identifiers of the example Petri net, and {receive loan application,
check credit history, accept, collect guarantees, pay, reject, archive the decision,
inform client, close the application} is the set of transition labels of the example
net. Sometimes in this thesis for comprehensibility, we may refer to a transition
by its label instead of its identifier. This is only in case transitions have unique
labels. However, in principle different transitions with distinct identifiers may
have the same label. In this case, we will refer to a transition by its identifier or
simply add an index to its label to differentiate duplicate labels. For instance,

26

Preliminaries

if two transitions with distinct identifiers both have the same label a, we may
refer to these transitions as a; and a,.

A token in the place start models a case (an application) that was submitted
to the bank. The network structure of a Petri net is fixed. The distribution of
tokens over the places, however, can be changed by transitions. The marking of
a Petri net is determined by the distribution of tokens over the places of the net.
For instance, if there is a token in place received, the marking M of the net will
be the place received. Note that, only places can contain tokens, not transitions.
Transitions are the active components of a Petri net structure because they can
change the marking when they are executed. Execution of a transition (we
call it firing of a transition) is bound to rules. A transition may fire only if
there is a token in each of its input place(s)3. When it fires, it consumes one
token from each input place and produces a token in each output place. For
example, the transition receive loan application may only be executed if there is
a token in place start (i.e., its input place). Execution of the transition receive
loan application consumes the token from the place start and produces a token
in its output place checked. Transitions may have arbitrarily many inputs and
output places or even have common input and output places. Nevertheless, each
transition may fire only if there is a token in all of its input places. For example,
both reject and accept have the place checked as their input place. That is, if
there is a token in place checked, only one of the two transitions may fire. After
a transition is fired, it produces a token in all of its output places. Transition
reject has two output places, i.e., if it fires, it produces tokens for both of its
output places and consequently both transitions archive the decision, and inform
client may fire in any order.

A Petri net has an initial marking and a final marking. In the loan process
example, the initial marking of the net is Myy;;i; = [start], and the final marking
is Mfpqr = lend]. A firing sequence of a Petri net is a sequence of firings (of
its transitions). A terminating firing sequence of a Petri net with the initial
marking M, is a firing sequence that starts at the initial marking Miyisial
and lead to its final marking Mp,,,. There exists three distinct terminating firing
sequences for the example Petri net (Fig 2.5) that will change the initial marking
Minitiar to the final marking Mp,q: (1) (receive loan application, check credit
history, accept, collect guarantees, pay), (2) { receive loan application, check credit
history, reject, archive decision, inform client, close application), and (3) (receive
loan application, check credit history, reject, inform client, archive decision, close

3A place p is an input place of a transition ¢ if there is an arc from p to t. Likewise, a place is an
output place of a transition if there is an arc from ¢ to p.

2.3 Prescribed Behaviors

27

application).

In the example shown above, we used Petri nets to model the control-flow
perspective of a process. Processes in complex information systems may have
many more properties that need to be modelled as well to better describe the
behavior of a process. For example the choice between firing the transition
accept or pay in the above mentioned example can be made based on the result
of the credit history check. In case the result is OK, then the application gets
accepted and if NOK, it gets rejected. Data-aware Petri nets are a variant of
Petri nets that allow us to adequately model such situations. A data-aware Petri
net [34,121] extends classical Petri nets with data. Using data-aware Petri nets,
we can model when a transition is allowed to be executed based on some data.

Data-aware Petri nets are different from colored petri nets (CPNs) [141].
In colored Petri nets tokens in places have values. However, tokens in data-
aware Petri nets do not carry values (i.e., data-aware Petri nets only have black
tokens). However, the events produced as a result of firing a transition in a
data-aware Petri net have variables. Values stored in these variables. Similar to
any imperative programming language, values can be read from and written in
variables.

@ [x=0K] collect
&T[@ﬁ)/ accept guarantees pay

Is———= ty O
receive loan check credit : \\ accepted collected
application history .

1 | archive the
@ t O t decision
start received checked

rejected, informed
Figure 2.6: A data-aware Petri net modelling the control-flow and data perspective of
the loan process.

Petri net with data. A Petri net with data is a Petri net in which transitions
can read and write variables. A transition is allowed to write (or update) a
predefined subset of process variables. A transition can have a data-dependent
guard that prevents enabling of that transition if the guard evaluates to false.

28

Preliminaries

Only if the guard evaluates to true and all input places have sufficiently many
tokens, a transition can fire. A guard can be a boolean expression over the set of
variables. In the net, boolean expressions can be combined using the standard
logical operators such as conjunction (A), disjunction (v), and negation (—).
Figure 2.6 shows the example loan process modelled as a data-aware Petri
net. In this Petri net, the variable x stores the result of credit history check.
The ellipse shown in this net models this variable. The connections between
this ellipse and the transitions indicate the transitions that are allowed to read
(dashed arrow from variable to transition) or update (write) a value in variable
x (dashed arrow from the transition to variable). As is shown in Fig. 2.6, the
transition check credit history can update variable x and transitions accept and re-
ject, read a value from variable x. The transitions accept, and reject are guarded
and they may fire only if their guard evaluates to true. Therefore, the admis-
sible firing sequences of the data-aware Petri net in Fig. 2.6 is as follows: (1)
(t1, ta(write x = OK), t3(read x = OK), ty, t5), (2) {11, tz(write x = OK), tg(read x =
NOK), tg, t7, tg, t9), and (3) (t1, t2(write x = OK), tg(read x = NOK), tg, tg, t7, tg)

2.3.2 Behavioral Notions: Process Instance Run, Run, and
Model

The set of all possible firing sequences of a (data-aware) Petri net can be speci-
fied as a prescribed behavior. Next, we introduce the notion of “process instance
run” that corresponds to the notion of “firing sequence” in a (data-aware) Petri
net. Then, we discuss how several process instance runs together yield one be-
havior and finally the set of all such behaviors gives the complete semantics of
a (data-aware) Petri net.

Definition 2.4 (Process Instance Run)
P is a process instance run if:

e Pis a behavior, i.e., P = (E,# <), and

* there exists a p € # such that Ve € E, #y;(e;) = p, i.e., all the events in P have
the same value for their process instance attribute.

We express each terminating firing sequence in a (data-aware) Petri net
as a process instance run. Each terminating firing sequence of a (data-aware)
Petri net N defines a process instance run P = (E,#,<). We write P(N) for the
set of all process instance runs of a (data-aware) Petri net N. Note that we
only consider the terminating firing sequences of a data-aware Petri net as

2.3 Prescribed Behaviors

29

a process instance run. Each event in a process instance run is produced as a
result of firing a transition. Later in Sect. 2.3.3, we will discuss how attributes
of an event e € E and P € P(N) are derived from properties of a transition in N.

event ID pi time act resource
51 #pi(el)zpl #time(el)zl #act(el)za #resource(el)zNic
€ #pi(eZ)zpl #time(ez)zz #act(ez)zb #resource(eZ)zNic
€3 #pi(e3)=p1 H#ime(e3)=4 #aales)=d Hresource(€3)=Ben
€4 #pi(etl):pz #time(e4)=2 #act(e4)=a #resource(etl):Nic
€s #pi(es)=pz #time(es)=3 #acl(es)zb #resource(es)zNiC
€6 #pi(eﬁ)sz #time(es)za #act(es)zc #resource(eﬁ)zNic
ez #pi(e7)=p2 #time(e7)=5 #act(e7)=d #resource(e7)=sara
€1 € €3
Nic Nic Ben P
P2

time

Figure 2.7: Events in run R; are partially ordered.

Definition 2.5 (Run)

Let {P',...,P"} be a set of process instance runs with P! = (E!,#!,<!). Then
the behavior R= (E'u...UE",#' u...u#" <! u...u <" is a run (involving process
instance runs P',...,P"). Note that, R is a behavior, i.e., R€ BH.

A (data-aware) Petri net N may have infinitely many different process in-
stance runs. In this case, N has also infinitely many different runs. We write
R(N) for the set of all runs of N.

Definition 2.6 (Model) A Model Mod is a set of runs, i.e., Mod < BH

30

Preliminaries

event ID pi time act resource
€g #pl(es)=p3 #time(es)zz #act(es)za #resourue(es)zNic
€9 #oileo)=ps Hiime(e9)=4 #act(€9)=b || #resource(€9)=Ben
€1 #pi(e10)=ps | Hrime(€10)=6 || Hact(€10)=C | #resource(€10)=Nic
€11 #oi(e1)=pa #ime(€11)=2 Hacr(€11)=a || H#resource(€11)=NicC
#
#

€12 #pi(812)=P4 #rime(€12)=3 #acile12)=b resource(€12)=Nic

€13 #pi(el3)=p4 #time(el3):6 #act(el3)=c resource(el?i):NiC
€14 #pi(e14)=p4 #time(elll)=7 #act(914)=d #resource(614)=Ben
eg eg €10
N\ -
Nic Ben Nic
€11 €13 eq3 e1q P4
Nic Nic Nic Ben
time
A A A A A A A »
T) T) T) T
1 2 3 4 5 6 7

Figure 2.8: Events in run Ry.

A (data-aware) Petri net N defines the Model Mod(N) = R(N), i.e., the set of
all runs of N where each R € Mod(N) is the union of several process instance runs
of net N.

This rather unusual notion of a model will be used for aligning a log L to the
most similar run R € Mod(N), i.e., the set of process executions specified by the
model which match best the set of process executions recorded in the log.

Technically, we will identify a set R of process instance runs of N so that
there is a one-to-one mapping between the process instances in L and process
instance runs in R. We call R a run of N and formalize it as a single behavior.

Figures 2.7 and 2.8 exemplify two prescribed behaviors as two runs Ry, and
R,. Each contains the events of two different process instance runs, i.e., R; is a
run obtained from p; and p,, and R, is a run obtained from p3 and p4. Similar
to an event log a run is a collection of events that are partially ordered. In these
examples, runs R; and R, have seven events each, distributed over four process
instance runs pi, p2, ps, and ps. Each event has several attributes such as time,

2.3 Prescribed Behaviors

31

and resource.

In essence, each of the process instance runs in R; is a run (behavior) itself
where all the events in this run have the same value for their process instance
attribute pi. Recall from Definition 2.6 that a Model is a set of behaviors and
may include many runs. Next, we will show how we can describe all possible
runs of a Model as a (data-aware) Petri net.

2.3.3 Precise Specification of a Particular Model as a (Data-
Aware) Petri net

As we discussed earlier, we can present prescribed behavior in terms of (data-

aware) Petri nets. For instance, consider the data-aware Petri net DPN in Fig. 2.9.

DPN models exactly the prescribed behaviors R and R}, shown in Fig. 2.10. Note
that, the runs R} and R), are the same as the runs R, and R, shown in Fig. 2.7
and Fig. 2.8 with the difference that events in R| and R} have two additional
attributes tjp and labely. Note that, attribute label has exactly the same value
as the attribute act.

Preliminaries

Pattern parameters:

o #pi(e) 9 o]

#time(e) 9 t

#resouroe(e) >r

#uo(e) = transition ID
#a(€) = transition label

Hiapein(€)> transition label
o

[p’=p; & t’=1 & r’=Nic] [p=p, & t'=2 & r'=Nic] [p=p1 & t’=4 & r'=Ben]
{Wep,t,r} {W:p,t,r} {W:p,t,r}

T l—o—fu—o—u
a \ b W d N
[p=p, & t’=3 & r’=Nic]
{W:p,t,r}

[p’=p3 & t'=2 & r'=Nic] [p=p3; & t'=4 & r'=Ben] [p=p; & t'=6 & r'=Nic]
{Wep,t,r} {Wip,t,rt {W:p,t,r}

[p’=ps & t'=2 & r'=Nic] [p=ps & t'=3 & r'=Nic] [p=ps & t'=6 & r'=Nic] [p=p,& t’=7 & r’=Ben]

\

\

Wp,t,r} {Wep,t,r} (W:p,t,r} (W:p,t,r} |
ﬂ a0 fta——0——+tal |
b N d N

Figure 2.9: The data-aware Petri net DPN specifying four firing sequences p1, p2, p3, and
P4.

2.3 Prescribed Behaviors

33

event ID tip labely pi time act resource

4 € #tID(e1)=ty Habein(€1)=a #pi(el)=pl #ime(€1)=1 H#aaler)=a H#resource(€1)=Nic
€ #tID(e2)=t2 Haben(€2)=b #pl(eZ)zpl Hime(€2)=2 #aale2)=b Hresource(€2)=Nic
es #tID(e3)=ts | Hiabew(es)=d | #pi(es)=p1 || #ime(€3)=4 || Hacles)=d | Hresource(€3)=Ben

Rl1< €4 #tID(es)=ts | Hiaben(€s)=a | #ii(es)=p, #ime(€4)=2 || #ac(€s)=a || #resource(es)=Nic
€s #tID(es)=ts | #iabein(es)=b #oiles)=p2 Hime(€s5)=3 #acles)=b | #resource(€s)=Nic

5 #tID(eg)=ts | Hiaben(€s)=C | #pi(es)=p2 | H#ume(es)=3 || H#act(€s)=C | Hresource(€s)=Nic

.| & #tID(eg)=t; | H#aven(es)=d | #p(es)=p2 || #ume(€7)=5 | Hacler)=d | #resource(€s)=Sara

(es #tID(eg)=ts | H#iabem(€s)=a | #u(es)=ps || Hime(€s)=2 | Hact(€s)=a | Hresource(€s)=Nic

€9 #tlD(69)=t9 Hiabein(€9)=b #pi(e9)=p3 #time(99)=4 #act(e9)=b #resource(eS)=Ben
€10 #tID(e10)=t10 | Hiabein(€10)=C | #pi(€10)=P3 || #time(€10)=6 || #act(€10)=C | #resource(€10)=Nic
R 2< en #tID(e11)=t11 | Haven(€11)=a | #ni(e11)=ps || #ime(€11)=2 || #acr(€11)=a | #resource(€11)=Nic
en #tID(e12)=t12 | #aven(€12)=b | #ni(e12)=ps || #time(€12)=3 || #act(€12)=b | Hresource(€12)=Nic
€13 #tID(e13)=t13 | Hiabein(€13)=C | #pi(e13)=ps || #time(€13)=6 || #act(€13)=C | #resource(€13)=Nic
.| eu #tID(e14)=t14 | Hiabein(€14)=d | #pi(€14)=Pas || H#iime(€1a)=7 || #act(€1a)=d | #resource(€14)=Ben

Figure 2.10: Prescribed behaviors specified by DPN.

Each unique event in the runs R}, and R; is presented as a transition in DPN.

The ellipses connected to each transition represent three variables p, ¢, and r.
Each of these variables store the values of attributes of the events in R}, and R).
Three variables p, ¢, and r in DPN respectively capture the values for attributes
pi, time, and resource. This is denoted by the write statement {W : p,t,r} on
each transition. The additional attributes of events in Fig. 2.10 (¢tID, and act)
correspond to transition ID and transition label in DPN. Since the labelyt has
exactly the same values of attribute act, the values for attribute labelyt is also
captured by the transition label in DPN.

As can be seen, the control-flow of DPN precisely models the events and
their sequences according to R| and R,. Each process instance run in R; and
R}, corresponds to a terminating firing sequence in DPN. As soon as any of the
a-labelled transitions in DPN fires, it sets a value for process instance attribute
(pi), which is stored in variable p. Similarly the values for attributes time,
and resource are written and captured in variables ¢ and r. The variables get
updated as other transitions fire in a terminating firing sequence. However, the
value of variable p is only read by these other transitions. Note that, p, t, and r
denote respectively the read values for attributes pi, time, and resource at each
transition, and p’, ¢, and r’ denote the written value for these attributes. The
terminating firing sequences in DPN are limited to the process instance runs
shown in Fig. 2.10. The guards at transitions in DPN exclude other events with

34

Preliminaries

other attribute values than events and attribute values specified in Fig. 2.10.

Silent transitions and duplicate labels in Petri nets. As we mentioned in
Sect. 2.3.1, we can refer to transitions by their label instead of their identifiers
as long as the labels are unique. In case distinct transitions in a net have the
same label, we differentiate transitions by adding an index to their label. For
example, in DPN’ shown in Fig. 2.11 transition identifiers are replaced by the
transition labels.

Compared to DPN in Fig. 2.9, two transition with label t have been added in
DPN'. Firing 7-labelled transitions also results in an event in the corresponding
run with a value for the “act” attribute. DPN’ models the runs R} and R (shown
in Fig. 2.12).

2.3 Prescribed Behaviors

35

Pattern para meters:

o #ule) > p

o thime(e) > t

° #resource(e) >r

e #,p(e) > transition ID

o #,4(e) = transition label

e Hipen(e) = transition label ®<7 .
\

[p’=p; & t’=1 & r’=Nic] [p=p1& t'=2 & r'=Nic] [p=p; & t’=4 & r'=Ben]

{Wep,t,r} {W:p,t,r} {Wep,t,r}

{Wep,t,r}

[p’=p, & t'=2 & r’=Nic] [p=ps] [p=p, & t'=5 & r'=Sara]

{W:p,t,r} {W:p} {W:p,t,r}
In|tia|<0>—> d,) Final
\ \
\ \
\ \
N NN N N]
[p’=ps & t'=2 & r'=Nic] [p=p3; & t'=4 & r'=Ben] [p=p; & t'=6 & r'=Nic]
{W:p,t,r} {Wep,t,r} {W:p,t,r}

[p'=ps & t'=2 & r'=Nic] [p=p,; & t'=3 & r'=Nic] [p=ps & t'=6 & r'=Nic] [p=p, & t’=7 & r'=Ben]

\

\

W:p,t,r} {Wep,t,r {W:p,t,r} {W:p,t,r} ‘
— a, O b, | O [] O M.] \
A _

Figure 2.11: The data-aware Petri net DPN' specifying R}, and R}.

36

Preliminaries

The run R} has extended R; (Fig. 2.10) with two events. These events and
their attributes are hachured in Fig. 2.12. These events are referring to the two
t-labelled (so called silent or invisible) transitions in DPN’. These transition do
not represent any business activity and are usually used for modelling purposes
in Petri nets (e.g. for modelling concurrency or similar structures). Note that
when ignoring the technical attribute “ID” and projecting only on events with
visible activity names (non-7), then R, R}, and R{ express the same behavior.

event ID tp labley pi time act resource

(1 e #up(e1)=t1 | Hubemn(e1)=a | #i(e1)=p1 | #ime(e1)=1 | Hax(er)=a Hresource(€1)=NicC
) #Hup(€2)=ta | H#iaven(e2)=b | #pi(ex)=p1 | #ime(€2)=2 | #ac(€2)=b | #resource(®2)=Nic
e #uo(es)=ts | Hiapen(es)=d | #ii(es)=p1 | #ume(es)=4 | #ac(es)=d | #resource(es)=Ben
€ #up(€a)=ts | Havem(es)=a | #pi(es)=p2 | #ime(€s)=2 | H#aiules)=a Hresource(€4)=NiC
R"1 < es #up(es)=ts | Hiaben(€s)=b | #ii(es)=p; | #ime(es)=3 | #ac(es)=b | #resource(es)=Nic
€ #uo(es)=ts | H#iavemn(es)=C | #nilec)=p2 | Htime(es)=3 #aci(€s)=C Hresource(€6)=Nic
€7 #up(€7)=t7 | Haven(es)=d | #ier)=p2 | #ime(€7)=5 | H#aales)=d | #resource(€7)=Sara

€15 | Hup(eis)=tis : H#oi(e1s)=p2 5 -

_| €15 [#uo(eis)=tis ' #oi(e16)=p2

(| es #up(es)=ts | Havem(es)=a | #pi(es)=ps | #ime(es)=2 | H#aiulesg)=a H#resource(€8)=Nic
€y H#up(€o)=to | Hiabein(€s)=b | #ii(eo)=ps | #ime(€o)=4 | #acr(€0)=b | #resource(€9)=Ben
B €10 | #uo(€10)=tio | Hiaben(€10)=C | #pi(€10)=P3 | H#rime(€10)=6 | H#act(€10)=C | Hresource(€10)=Nic
R™ < e | #uo(en)=ti1 | #avem(e11)=a | #pi(€11)=ps | #rime(€11)=2 | #ac(€11)=a | #resource(€11)=Nic
en #up(€12)=t12 | #iabein(€12)=b | #pi(€12)=Pa | Hiime(€12)=3 | #act(€12)=b | #resource(€12)=Nic
€13 | #Huo(e1s)=tiz | Hiaben(€13)=C | #pi(€13)=ps | H#rime(€13)=6 | H#ac(€13)=C | Hresource(€13)=Nic
| €1 | Huo(e1s)=tia | #iaben(€1a)=d | #pi(€1a)=pa | #rime(€14)=7 | Hacr(€1a)=d | H#resource(€14)=BeN

Figure 2.12: Prescribed behaviors specified by DPN'.

Normally, event logs do not contain events referring to invisible (r-labelled)
steps, however, we will make extensive use of invisible steps in order to precisely
capture compliance constraints in a DPN.

2.4 Aligning an Event Log to a Model

An observed behavior (event log) may deviate from a prescribed behavior (run).
Deviations are detected using alignments [135]. An alignment pairs events of a
log to events of a run. Each pair (ef, e®) is called a move expressing that event
el of the log aligns to event e of the run. In case the log deviates from the run,

2.4 Aligning an Event Log to a Model

37

not all events can be paired. For this, we introduce the symbol > denoting a
“no move”, i.e.,, > ¢&. For any set EC&: E” = EU{>}.

Let EL be a set of log events and ER be a set of run events. (el, ef) e (EL)> x
(E®)> is a move. There are four types of moves:

o (e, ef) is a synchronous move if e* #> and ef #>,
o (ef,>) with el #> is a log-only move,

o (>,ef) with ef #> is a model-only move, and

e (>,>) is an invalid move.

There are two kinds of synchronous moves. A synchronous move is correct
(w.r.t. its attributes) if:

o #el) =#eP) | (dom@# (™) \ {tID}) 4.

Otherwise the synchronous move is incorrect.

An alignment of a log to a model pairs each event in the log to an event of
some run of the model up to deviations. Thereby, two events paired in a move
have to be consistent with the ordering of events both in the log and in the
runs of the model respectively. In the original definition of alignments [135],
two events of a move had to be consistent w.r.t. their activity name attribute
(act € Attr). In the following definition, we introduce an attribute checking € Attr
as the attribute for which two events in a move have to be consistent. We allow
the user to pick any attribute from the log as the checking attribute as long as all
the events in the L have this attribute, i.e., for any e € EL : checking € dom(#(e)).
Recall from Sect. 2.3.3 that each (data-aware) Petri net N maps its transition
label to an attribute labely of run events. We may pair log events with run
events in a synchronous move whenever the checking attribute of the log event
is consistent with the labely attribute of the run event.

Definition 2.7 (Alignment) A= (L,R, M, <) is an alignment of log L = (EX,#", <"
) to run R = (ER #%,<R) of some (data-aware) Petri net w.r.t. the consistency at-
tributes checking, labely € Attr if and only if:

o Mc ((EH” x (ER)>)\{(>>,>)} is a set of moves, and

o <M s a partial order, such that:

4Given a function f with domain dom(f) and X < dom(f): f | X is the function projected on
X,ie.,dom(f | X)=Xand forall xe X: f [X(x) = f(x)

38

Preliminaries

1. EL = (el | (el e®)e M A el # >}, i.e., the left hand-sides of all moves
are all log events,

2. ER=1{eR|(el,ef)e M A eR # >}, i.e., the right hand-sides of all moves
are all run events,

3. Vg l(ehe®)y e M| el = e}| = 1, i.e., for each event in the log there is
precisely one corresponding move,

4. Y ,epr (el ef) e M| ef = e}| = 1, i.e., for each event in the model run
there is precisely one corresponding move,

5. Y (oL oRyeMn(ELx ER) #pi(€") = #pi(eR), i.e., model events involved in a syn-
chronous move belong to the same process instance,

6. V(oL eRyeMn(ELxER) Hchecking(€") = #1apery (€F), ie., events involved in a
synchronous move hold in their checking attribute the value of the tran-
sition label,

7. Y (el o) ek elye M(EL x EF) el < ell = el < el, ie, the event log respects

the ordering in the model run, and

8. Vet oh) (b eyenr((err 1) <M (e7,€0)) < (Uef', e} S ER) A (eff <M ef)) v
(lek,ely < ELy (el <t el)), ie., ordering of the moves in the alignment
respects ordering of the log events in the event log or ordering of run
events in the run.

Here we use the notion of alignments different from literature [135]. First
of all, we do not align individual cases in the log, but align the log (a behavior)
as a whole to a run (of multiple process instance runs). Second, we do not
align activities but unique events. Third, we check consistency (i.e., enforce
synchronous moves) w.r.t. user-chosen attributes (checking, and labely). Note
that, labely) can be simply a copy of the another attribute e.g. activity name
(act) or it can be combination of several other attributes. Finally, we use partial
orders rather than a total ordering of moves.

Given a log and a model, infinitely many alignments are possible. We are
interested in alignments which minimize the number of “non-perfect matches”
between log events and model events.

2.4 Aligning an Event Log to a Model

L=(E#" <Y

L L L L L L L L
E={ey, e, es e, eqe7eql

e €Y A=(L, Ry, M)

eL3
@ p1 || M=((efe™), (e2e), (e"s,e), (esey), (>),

LR L R L
777777777777 (e's, €7), (e77,877), (e'g,>>)}

L L L log-onl v
€4 e ey P2 0g-only move

1 2 3 4 5 time

Ri=(E®, #°, <M

R R R R R R R R
E'={e"1, e e3e4ese%e 7}

R
€1 eRz €3
F—— - ———— — —
(S e eR7
efe
e m—
i 2 3 4 5 time

Figure 2.13: The partially ordered alignment A (c) between the event log L (a) and the
process model run Ry (b).

40

Preliminaries

Deviations related to events. Therefore, we typically define a notion of op-
timal alignment using a cost function to penalize moves where model and log
deviate. Obvious deviations are log-only moves (e’,>) and model-only moves
(>, ef). However, incorrect synchronous moves are also deviations which we
will discuss later in detail. Note that, different deviations may have different
costs (e.g. model-only moves, log-only moves and incorrect moves may have
different costs). Figure 2.13(c) shows an alignment between the event log L
shown in Fig. 2.13(a) and the run R; in Fig. 2.13(b). For this alignment we
choose checking = act, i.e., we align log event to run event w.r.t. the activity
name. The alignment A shown in Fig. 2.13(c) has a log-only move, a model-
only move, and six synchronous moves that are partially ordered in every pro-
cess instance. The log-only move in the alignment A indicates that event log
L has an event without a corresponding event in R; and the model-only move
shows that an event was missing in event log L that was supposed to happen
according to R;. The arcs shown in the graph® of the alignment A illustrate the
ordering of the moves.

Deviations related to attributes. A log and a model can also disagree with
respect to attributes and attribute values. There can be synchronous moves dis-
agreeing on attributes, i.e., (el,ef) with dom(#(e)) # dom(#(e®)) \ {tID}, or dis-
agreeing on an attribute value, i.e., #(e") # #(e®), for example #,g0(e") # #4ge(€R).
Synchronous moves never disagree on the consistency attributes (see Def. 2.7,
point 6).

These kinds of deviations are illustrated in Fig. 2.14 which extends the
events of Fig. 2.13 with their resource attribute. Besides the log-only move and
the model-only move, alignment A’ in Fig. 2.14(c) indicates an incorrect syn-

chronous move (a synchronous move with a deviating resource attribute), i.e., event

el was executed by Nic whereas the corresponding resource in the prescribed

behavior (R)) is Sara (#resource(eX) = Sara).

When aligning behaviors with many different attributes, we will present an
alignment in the form of a table. For example, Fig. 2.15 shows the alignment
between the event log L and the run R}’ (Fig. 2.12) in a tabular form. Note that,
R} is a run of the data-aware Petri net DPN' (Fig. 2.11). Log events are shown
in the top row of the table and run events are shown in the bottom row of the
table. Sub-rows refer to different event attributes and their values. The con-
sistency attributes are highlighted. The alignment shown in Fig. 2.15 denotes
five violations: three model-only moves, a log-only move, and an incorrect syn-

SNote, the graph of partially ordered alignment A includes only non-transitive arcs, i.e., we only
show the minimal set of arcs whose transitive closure defines a partial order.

2.4 Aligning an Event Log to a Model

41

Lo L | -
L=(E“#", <" resource attribute ||R,=(E", #°, <") resource attribute

L N .
Hresource(€1)=NiC #resource(€"1)=Nic

L)=Ni = {eR1, eRz, eks, eka, eks. eRs. 9R7) R f
Hresource(€ 2)=Nic Hresource(€2)=Nic

Logal bbb b oL L
E'={e,eyeseseqeqesl

L L L= R
ey ey ey el H#resource(€ 3)=Ben e ef, ety Hresource(€3)=Ben

Hresource(€s)=Nic @ o Hresource(€"a)=Nic
1

pr | Hresource(€s)=NiC Hresource(€"s)=NiC
Hresource(€"s)=Nic

L L P2 #resource(eLs)=NiC =
(> H#resource(€'7)=NicC e ° o Hresomceleo)=Sara
H#resource(€'8)=Nic

(a) (o) (b)

A =(L, Ry, M,<Y)

LR LR LR LR R L R LR L
M={(e",e"), (e2,e7), (e3,€73), (e74,874), (>>, €75), (e, €76), (e77,€77), (€5,>>)}

Nic e €' Nic Ben e e Nic log-only
(2 (b) @ DS
N/ i A
eR1 &, eni p1
L e e P
e X
- b /Nic d Jsara
ic - &

Incorrect
synchronous
. move
= Nic (C)

model-only
move

€6 Nic

Figure 2.14: The partially ordered alignment A’ (c¢) between the event log L (a) and the
process model run Ry (b).

chronous move. Columns with a “>” in the top row denote model-only moves,
the column with a “>” in the bottom row denotes a log-only move, the column
with different attribute values between top an bottom row indicates an incorrect
synchronous move (highlighted red). Note that two of these model-only moves
are due to 7-labelled (columns with gray background). Later, these will mostly
be considered as a “technical” artifact and not as a relevant deviation between
observed and specified behavior. We also typically abstract from transition ID
(tID) attribute since we pair run events, and log events on their consistency at-
tributes. Note that if we abstract from moves related to invisible transitions and
the attribute transition Id, in essence, we get the alignment A’ shown between
R}, and L (Fig. 2.12).

Finding optimal alignments requires solving an optimization problem mini-

42 Preliminaries
resource Nic| Nic| Ben | Nic | Nic Nic Nic
event timestamp 1 (24|52 3 5

L |process instance Pr| P1| P[P P2 >>|>>]| P2 >> o]
event ID el eh| e e el e’ e"
activity name (checking) alb|d]| f]|a C d
activity name (label) a|b| d a b|lc| T d
event ID eR1 eR2 eR3 eR4 eR15 eR5 eRe eR16 eR7

R"1 process instance Pi|Pi| P | |P2| P2 |P2|Pa] P> P2
event timestamp 112 4 2 - 313 - 5
resource Nic| Nic| Ben Nic| - |Nic[Nic| - [Sara
transition ID a, | by [dy almn |b|lclo | d

Figure 2.15: Alignment between the event log L and run R{ shown in tabular form.

mizing the differences between a model run and a log using a cost function. As
mentioned earlier, we can assign different costs to different violations (e.g. vi-
olations of types ‘model-only move’, ‘log-only move’ and ‘incorrect synchronous
move’ may have various costs). Here, we do not consider a specific algorithm
to solve the optimization problem and assume an “oracle”. A concrete oracle
for finding optimal alignments has been defined in [135]. Given a log and a
model, the oracle produces an optimal alignment. There could be multiple op-
timal alignments having the same deviation costs. However, in the following,
we limit ourselves to the setting where the oracle provides one of these optimal
alignments in a deterministic manner.

Definition 2.8 (Oracle) « is the oracle function, i.e., it is a deterministic function
such that for any event log L € BH and model Mod < BH: a/(L, Mod) = (L, R, M,<M)
is an alignment such that R € Mod.

Let § be a cost function that assigns each move m a cost f(m) = 0. The cost
of an alignment (L, R, M,<M) is then ¥ ,,c; B(m). An oracle « is a deterministic
function such that for any event log L € BH and any model Mod < BH holds:
a(L,Mod) = (L,R,M,<M) is an alignment such that R € Mod and for any other
alignment (L, R', M’,<M') of L and Mod holds: (M) = B(M).

It is easy to see that there always exists an alignment between a log L and
a model Mod: we can pick a run R € Mod and construct) the alignment A =
(L,R, M,<M) that has just log-only moves for the events in L and just model-
only moves for the events in R (of course the ordering need to be respected)s,

2.5 Specifying Prescribed Behaviors from Different Perspectives

43

i.e., M={(el,>)| el e ELyu{(>,eR) | ef € ER}. Such an alighment A, given also
the right <M, satisfies all the requirements of Definition 2.7. Oracle a always
returns an alignment with the least cost. It can be realized in a way similar
to [44,135].

2.5 Specifying Prescribed Behaviors from Different
Perspectives

The transition labels in DPN or DPN’ (Fig 2.9 and Fig. 2.11) capture the admis-
sible values of attribute act (activity name) for each event. Next, we discuss
how we can capture the admissible behaviors from a different perspective, for
example the resource attribute. DPN™°"““ shown in Fig. 2.16-(top) explicitly
models the resource values as the transition labels.

This net has an initial place, a final place, and five transitions including two
invisible transitions. The net has three variables capturing values of process
instance, activity name, and time attributes. For the ease of representation, the
ellipses related to these variables are not shown in the net. The first invisible 7-
labelled transition sets the initial values for attributes process instance, and time.
Other transitions will not update the value of process instance attribute. The
attributes time, and activity name get updated by other transitions except the
second invisible 7-labelled transition that will only change the resource value.

The runs generated from this net are partially shown in Fig. 2.16-(bottom).
If we abstract from transition ID attribute and events related to invisible tran-
sitions (these events are shaded in gray), the behaviors described in these runs
are the same behaviors described in R;, and R,. Therefore, in essence DPN,
DPN’, and DPN"®°¥¢ a]] specify the same behaviors. However, they differ sig-
nificantly in the perspective they give on the specified behavior (i.e., order of
activities versusorder of resources in a process). In principle, we can choose
any attribute of a run as the consistency attribute labely in run and model it
as transition labels of a (data-aware) Petri net as long as the attribute is global
in the run, i.e., all the events in the run share the chosen attribute. Note that,
for all the patterns always the mapping #,p.1, (€) — transition label always hold.
Therefore, in the remaining part of the thesis, we will not show this information
in the patterns.

Preliminaries

Pattern parameters:

b #pi(e) 9 p

o #time(e) 9 t

o #,4(e) > act

e #,p(e) = transition ID

o H.esource(€) = transition label [(p’=p; & t=0 & act’=a & t'=1) Or
- (p’=p; & t=1 & act’=b & t'=2) Or

o Hppan(e) = transition label 60 & acta & v-2) Or

(p'=p, & t=2 & act=b & t'=3) Or

{W:p,act,t}
(p’=p, & t=3 & act=c & t'=5) Or
Nic (p’=p3 & t=0 & act’=a & t'=2) Or

(p'=p3 & t=2 & act’=c & t'=6) Or
(p'=ps & t=0 & act’=a & t'=2) Or
| 1(p'=p: Or p'=p; Or p'=p; Or p'=py) & (t'=0)] | éz:z: g Zg g :2::?:::;}”
{W:p,t}
® e © O
Initial Final
| [p'=ps & t=6 & act’= d & '=7] | [(p'=p: & t=2 & act’=d & t'=4) Or
(p’=p, & t=3 & act’=d & t'=5) Or
Y (p’=ps, t=2, act’=b & t'=4)]
{W:p,act,t} Ben
{W:p,act t}
el;znt tmnls;tion labley pi act time resource
€15 t Hapen(€15)=T #oi(€15)=p1 2 Hime(€15)=0 || #resource(€15)=T
e, t, Hapen(€1)=Nic || #y(e1)=p; || #ax(e1)=a || H#ime(€1)=1 || #resource(€1)=Nic
e; t, Haven(€2)=Nic || #y(€5)=p1 || H#acr(€2)=b || H#ime(€2)=2 || #resource(€2)=Nic
es t3 Hapen(€3)=Ben || #i(es)=p; || #acles)=d || #ime(€3)=4 || H#resource(€3)=Ben
€16 ts Haben(€16)=T || #ai(e16)=p1 7 2 Hresource(€16)=T
€37 t Hapen(€17)=T #pi(eu)=Pz 7 Hime(€17)=0 || #resource(€17)=T
€, t, Haven(€s)=Nic || #,(eq)=p, || #ax(€4)=a || Hime(€4)=2 || Hresource(€s)=Nic
€s t Hapen(€s)=Nic || #y(es)=p; || #act(€s)=b || H#ime(€5)=3 || #resource(€5)=Nic
[t, Haben(€s)=Nic || #,(e6)=ps || #act(€6)=C || #ime(€6)=3 || #resource(€s)=Nic
e ty Habenn(€7)=5ara || #i(es)=p, || #ar(€7)=d || #ime(€7)=5 || Hresource(€7)=Sara
€13 ts Habein(€18)=T #pi(em):Pz - > Hresource(€18)=T
€19 t Habein(€19)=T #oi(e10)=ps 7 Hime(€10)=0 || #resource(€10)=T
g t Hiavens(€g)=Nic || #;i(es)=ps || Haci(€g)=a || Hime(€s)=2 || Hresource(€s)=Nic

Figure 2.16: DPN"®°4te; The data-aware Petri net modeling values of attribute resource
as transition labels.

2.6 Specifying behaviors with (Data-Aware) Petri nets Using an Open World Assumptidiy

Pattern parameters:
L4 #resource(e) 9 r
o #..(e) > transition label

[(r'=Ben) Or (r'=Sara)]
{W:r}

@—»

Initial Final

Figure 2.17: DPN8€"eric: The data-aware Petri net can replay R;, R, and many more runs
as long as they adhere to the constraints.

2.6 Specifying behaviors with (Data-Aware) Petri
nets Using an Open World Assumption

Although DPN, DPN’, and DPN"®%"* precisely describe the behaviors Ry and Ry,
the admissible firing sequences in these nets are limited to process instance runs
in R; and R, (abstracted from the transition ID and events related to invisible
transitions).

In this sense, the nets only allow for the behaviors exactly specified and ex-
clude any other behavior, which corresponds to closed world assumption. How-
ever, compliance constraints have an open world assumption: everything is al-
lowed unless it violates the given constraint. Next, we discuss how we can use
(data-aware) Petri nets to specify behaviors in an open-world assumption.

Assume we would allow for any occurrence of activities a, b, ¢, and d as long
as (1) the sequence (a,b) is present and (2) activity d may only be executed
by Ben or Sara. In this case, we can abstract from the strict guards annotating
the transitions in DPN, DPN’ or DPN"*°%*® and allow for any occurrence of

46

Preliminaries

these activities as long as they adhere to the constraints. DPN8“*" (shown in
Fig. 2.17) describes the two runs R; and R, and many more, while adhering to
the constraints we mentioned.

In this pattern, we capture the compliant sequence of activities by ordering
the transitions. As can be seen, similar to DPN and DPN’, transition labels in
DPNB8"’i¢ make activity names explicit, allowing us to abstract from attribute
act in the guards. In addition, we can also abstract from the attribute time as
long as activities follow the specified sequence. Note that the above specification
does not constrain time delays between two activities. We also do not need
the attribute pi since the start and completion of a firing sequence, specified
by DPN&°"¢ric is interpreted as exactly one process instance run. The precise
value of the process instance is irrelevant to us and it can take any value. The
alignment will then pick a suitable process instance for a given execution in a
log. The only attribute we need to explicitly model in DPN8“" is the resource.
Further, because this attribute is only constrained on the occurrences of activity
d, we can locally connect it to d and restrict it with the guard [(r = Ben) Or
(r=Sara)].

As discussed before, in a data-aware Petri net some attributes may be con-
nected to all the transitions and some may be used only locally for specific
transitions. Accordingly, the events produced as the result of executing these
transitions may or may not have an attribute. We can constrain the admissible
values of attributes by annotating each transition with guards. For all attributes
not specified in DPN&"¢"® their value can change arbitrarily except:

* pi (process instance attribute): for pi, we assume events related to each
firing sequence to have the same pi value (as required by the Def. 2.4.)

* time: We require that time values agree with the ordering of events. That
is, e1 < ex = #gime(e1) < #time(e2) Ni#piler) = #pi(ez).

Note that if we only have constraints on the presence of activities and their
sequence, we can abstract from all other attributes and model the behavior as
a classical Petri net. In chapters 4, 5, and 6, we will explain in detail how to
model prescribed behaviors as (data-aware) Petri nets.

2.7 Concluding Remarks

This chapter introduced the general definition of behavior as a collection of
partially ordered events. Intuitively each event refers to a set of attributes and

2.7 Concluding Remarks

47

value pairs that records an execution of a particular activity in a particular con-
text. Each event is represented by a unique identifier. Hence, we can distinguish
events even if they have identical properties.

Both event log and model are behaviors. We express prescribed behaviors
as a (data-aware) Petri net. We can constrain the presence of events, their
ordering of occurrence and their properties by using transitions, their sequence,
their attributes, and transition guards.

We use alignments to relate events in a prescribed behavior to events in
an observed behavior and detect deviations. An alignment is a collection of
partially ordered moves where each move refers to a particular event in the
observed behavior and a particular event in the prescribed behavior. A move can
be compliant or violating. Violating moves are of types: log-only move, model-
only move, or incorrect synchronous move. Since a move pairs two unique
events, moves with identical properties can be distinguished.

We introduced the notion of consistency attributes to the alignment which
allows us to pair observed and specified events based on a user-chosen attribute
from the log and the model. We will make extensive use of these consistency
attributes when checking for compliance w.r.t. various perspectives of a process.

Chapter 3

Requirements for Analyzing
Compliance

To improve compliance in a sustainable manner, it is necessary to understand
non-compliance. To understand non-compliance, we need diagnostics that pro-
vide insights needed. These diagnostics impose some requirements on different
phases of a compliance analysis approach.

In this chapter, we discuss different requirements on various phases of a
compliance analysis approach including compliance rule elicitation and formal-
ization requirements, requirements on compliance checking techniques and re-
quirements on diagnostics.

Figure 3.1 illustrates how this chapter is organized. In Sect. 3.1, we discuss
different dimensions of compliance constraints that a process must adhere to.
In Sect. 3.2, we propose a comprehensive compliance analysis approach and its
required steps. In Sect. 3.3, we sketch the type of diagnostics that the com-
pliance analysis approach should deliver us. We discuss the requirements of
a compliance checking technique both regarding the desired diagnostic infor-
mation and the kind of inputs required for such diagnostics. Based on these
requirements, we then discuss a number of technical and conceptual choices for
realizing compliance analysis.

In Sect. 3.4, we discuss various aspects of formalizing compliance constraints.
In the same section, we also present three collections of compliance constraints.
Section 3.5 discusses the selected compliance checking technique. We will
sketch our ideas for providing diagnostics in Sect. 3.6.

Requirements for Analyzing Compliance

50

1HOISNI

€'€ 295 T'E 98

®
i

~—

susaned Joineyaq
Jueyduwod Auneloip

-

9|1 UONEOSSY

sonsnels

@

SJUIAD PalyIsse

G'€29S
I

§'€ 95

[E

SVEINIGTIVE

1]

Bu ALY adueldwod

g9d
asueldwod

BuppPayYd adueldwod

JuaWUBIY
G'€ 23S -

e

9'€ 295

sisk|eue asned-100y

9'€ 99§

JuswIYdLIUD
6o

/ \

uonesedaid
boq

-—

co_UEmu
uone|oIn

BuppaYd dueldWOd MOJ-[0IU0D)

Buppayd adueydwod _m_onEw.:
T

[Buppayp adueldwiod 2inosal pue ejeq|

“““ (3

_ansodwo) /

~ L=

Jo Kioyisoday
'€ "I9S

§'€ "I9S

suiaiied ajqeinbiuod

%

1
2

O 2NY =1 yiomawely

JIRNSUOD

adueldwo)
L'€ 39S

ules suod
adueldwod

L'€ 29S

gledep

Figure 3.1: Thesis road map gives the mapping of the sections in Chap. 3 on to our

compliance analysis approach.

3.1 Dimensions of Compliance Constraints

51

3.1 Dimensions of Compliance Constraints

Compliance constraints prescribe how an internal or cross-organizational busi-
ness process has to be designed or executed. Usually a business process is
governed by several constraints. Compliance constraints may limit individual
perspectives of a business process (control flow, data flow, organizational as-
pects, and process time) or a combination of several perspectives. For example,
consider the compliance constraint: “After a claim of more than 3000 euros has
been filed, two different employees need to check the validity of the claim inde-
pendently. Each claim must be handled at most 6 months after the placement.”
This constraint refers to (1) control flow (“After a claim has been filed, validity
must be checked”), (2) data flow (“A claim of over 3000 euros requires two va-
lidity checks™), (3) the organization (“Multiple validity checks are carried out by
different employees”), and (4) the temporal dimension (“Within 6 months the
claim must be processed”).

Furthermore, a compliance constraint can (5) prescribe properties of a single

(6) Observation-based
Vs. Model-based v
7~

I, NG

Q

N
o
N

\

3

N
&

sased 9|du|n|Al ‘SA
aspa [pnpiaipuj (S)

_/(1) Control-flow rules

/(2) Data-flow rules

(3) Organization rules

Figure 3.2: Compliance constraints framework.

52

Requirements for Analyzing Compliance

case or of multiple cases e.g. “20% of all claims require a detailed check.”, and
(6) prescribe properties of the process design e.g. “The claim process must have
a time-out event handler.” or properties of the process executions, which can be
observed (i.e., recorded in an event log).

A constraint usually covers several perspectives of a process. Our stud-
ies [97,98, 130, 131] analyzing the existing body of literature in compliance
and our experience on different case studies show that even small compliance
constraints are concerned with multiple perspectives.

Based on these observations, we identified six orthogonal dimensions of
compliance constraints. These different aspects of compliance give rise to the
framework shown in Fig. 3.2.

To enable precise compliance checking of a constraint, we decompose it into
several related compliance rules. Each rule is concerned with one process di-
mension only. As discussed in Chap. 1, in this thesis we discuss techniques for
compliance auditing of a business process, i.e., checking after the execution of
a business process whether it complies to the relevant compliance constraints
or not (thereby we focus on rules that are observation-based). In addition, we
detect possible violations in the entire log for each case individually and we
do not focus on compliance rules constraining multiple cases. We define the
scope of this thesis to cover fully the remaining four dimensions of the frame-
work, i.e., we analyze compliance of processes against compliance constraints
that confine control-flow of a process, process time, process data, and organiza-
tion (resource).

3.2 Compliance Analysis Overview

In order to comply with a set of compliance constraints confining a business
operation, the Compliance Management (CM) life cycle 1.3 discussed in Chap. 1,
introduces five types of compliance related activities: (1) elicit compliance con-
straints that have to be satisfied, (2) formalize precisely the elicited compliance
constraints, (3) implement and configure information systems such that they
fulfill the compliance constraints, (4) check whether the compliance constraints
will be met (forward compliance checking) or have been met (backward compli-
ance checking), and (5) improve the processes and systems based on diagnostic
information.

Figure 3.3 illustrates an overview of our approach for compliance analy-
sis which reflects different phases of the CM life cycle. Our approach starts
with elicitation and formalization of compliance constraints. As discussed pre-

3.3 Requirements for Compliance Analysis

Compliance elicitation and
formalization
(phases (i), and (ii)
of CM life cycle)

Compliance checking
(phase (iv) of CM life cycle)

Compliance improvement
(phase (v) of CM life cycle)

‘m %;;{/ Alignment F:\:L: ; Classified events |

Compliance / - - f Y\

constraint \bfomphance checking 1 K ‘ Statistics ‘
APrOVid? I "

violations

Elicit& formalize Detect compliance Enrich event log
compliance rules with di i
T T

‘“{ Prepare log m
T T
T T ~
A Association rules |

= : L=)

L
Violating/comp\iant\
behavior patterns

Figure 3.3: Compliance analysis overview.

viously in Chap. 1, we advocate the idea of separating compliance management
from business process management. Therefore, we deliberately avoided adding
a component in our approach for implementing and configuring compliance
constraints within business processes. The next phase of the CM life cycle sup-
ported by the proposed approach is compliance checking and the approach ends
by providing diagnostics to improve a business operation.

In the following, we discuss how and under which conditions this proposed
approach can support compliance analysis in practice.

3.3 Requirements for Compliance Analysis

First, we discuss how our approach, depicted in Fig. 3.3, can realize compliance
analysis by discussing requirements from practice, starting from the desired di-
agnostics.

3.3.1 Requirements on Compliance Diagnostics

The aim of analyzing compliance of a process is to get an overview of how com-
pliant the process is. Yet a more important goal is to obtain insights about non-
compliance and possibly some insights about the root causes of violations that
would guide us to take corrective measures and improve compliance. Hence,

54

Requirements for Analyzing Compliance

there are several groups of questions that should be answered by the diagnostic
information we seek to produce:

* How many times each compliance constraint is violated? What are the
violating activities?

* What kind of violations occurred? How frequent they are?
* What exactly went wrong and what should have happened instead?
* Which violations are more important and require a closer look first?

* What are the causes of a specific violation?

These questions form the prerequisites for different steps of this approach.
Next, we will discuss these questions and illustrate the kind of answers a com-
pliance analyst might expect from our approach.

First group of questions: Violating constraints, violating activities and their
frequencies

We would like to know: how many times each compliance constraint is violated?
and what the violating activities are?

A business process usually is confined by several compliance constraints
(e.g. in Chap. 9, we analyze compliance of one single business process against
eight distinct compliance rules). There are many sources of compliance rules:
(1) regulatory compliance (e.g. national law), (2) commercial compliance (e.g. ser-
vice level agreements), (3) organizational compliance (e.g. internal policies of
organizations). Violation of a rule incurs cost or worse. In order to improve
business operations in the right way (i.e., such that violations no longer occur),
it is important to know for each rule whether it is violated and in which business
activity.

To answer these questions, we first need to have a clear definition of a vi-
olation. A violation can be defined as a deviation observed in reality from the
prescribed behavior specified by a compliance constraint. For example, con-
sider a simple compliance constraint C; stating: “Every execution of activity
A must be followed immediately by the sequence of activities (B,C)”. As-
sume we have the process instance p as shown in Fig. 3.4. We can see that this
process instance is violating the compliance constraint because at least three
occurrences of A were not followed by the sequence (B,C). In this process in-
stance, activity A occurred five times, that means the compliance constraint was

3.3 Requirements for Compliance Analysis

55

x© & 20" &
Sy o o < oo o o™
N
. @-@-@-0-@-0-0-@-0-0-0@ed
p: \Af ©-@-@ f\/ & EH OG- EHY
B C D
is missing is missing is not allowed

Diagnostic information:

e Number of violating process instances: 1
o Violating process instances: Process instance p
e Number of compliance constraint activations: 5
N e Number of violating activations of the constraint: 3
e Violating activations of the constraint: 1% ,Z"d, and 4" activations
e Number of violations: 3
e Activities involved in violations: B, C, and D

Figure 3.4: Diagnostics about violations of the constraint C; and the violating activities.

activated five times (i.e., each occurrence of A demands that the rule is satis-
fied (again)), but it was completed in a compliant manner only twice and three
times not, resulting in a violation. We are not only interested to know if a pro-
cess instance is compliant or violating but also we would like to know exactly
how many times a constraint is violated.

In addition, we would like to know what the violating activities are, because
we would like to spot where a process is more vulnerable and prone to violation.
The first activation of the constraint is non-compliant (B is missing). In the
second activation of the constraint, occurrence of C is missing. So, the violating
activity is C. The third activation is compliant. In the fourth activation of the
constraint, D occurred that was not allowed. Hence, D is the violating activity
and the fifth activation is compliant. Figure 3.4 (bottom) illustrates possible
diagnostics that could be reported for this example.

In general, suppose we have several constraints that a process must adhere
to, like the one of our example. We would like to know:

* What are the violating process instances per constraint?

56

Requirements for Analyzing Compliance

N Y o RN
0 o XO | X0 @& Y
s 2N 5 o o o0 o2& o
P G —

Diagnostic information:

Number of violating process instances: 1

Violating process instances: Process instance p

Number of compliance constraint activations: 5

Number of violating activations of the constraint: 4

Violating activations of the constraint: 1% ,2", 3" and 4" activations
Activities involved in violations: B, C, and D

~ [Violations: 4

- 3*(control-flow)
- 1*(temporal)

Figure 3.5: Diagnostics about violations of the constraint C; extended with information
about the violation types and their frequency.

* How many times each of the constraints are activated in total and how many
times they are violated? What activities are violating and how many viola-
tions are observed per activity? In total? Per process instance? and per
constraint?

The technique developed in this thesis should allow for producing such (or
even more comprehensive) diagnostic information. These diagnostics will help
us to get an overview about the compliance level of a business process.

Second group of questions: Violation types and their frequencies.

The second group of questions is concerned with the type of violations and the
frequency of each type.

Recall from Sect. 3.1 that a compliance constraint may restrict different per-
spectives of a business process. Hence, when we gather diagnostics about vio-

3.3 Requirements for Compliance Analysis

57

lations, it is useful to know what perspective of the process has been violated
(type of violation) and how violations are distributed over the different types.

Consider the following compliance constraint which extends the previous
example with a restriction on the temporal perspective: “Activity A must be
followed within three time units by the sequence of activities (B,C)”. Fig-
ure 3.5 shows events of a process instance p along a time axis.

As illustrated in Fig. 3.5, first and second activations of the compliance
constraint have violations of type skipped activity. The third activation of the
constraint is compliant with the control-flow restriction (i.e., occurrence of the
sequence (B,C) after A) but violated the temporal restriction (i.e., activity C oc-
curred later than expected). The fourth activation of the constraint violates the
control-flow (occurrence of D is not allowed). The fifth activation of the com-
pliance constraint is compliant. Both activities B, and C occurred within the
time specified by the constraint. Figure 3.5 (bottom) illustrates what kind of
diagnostics could be given.

Such diagnostics help understand the violations. That is, it helps under-
standing:

* What type of violations occurred in total (i.e., how vulnerable are the pro-
cesses W.r.t. to time, control-flow or data and resource perspectives)? In a
process instance? and per activity?

* How often did they occur?

* Which type of violations occurred more than others?

In order to produce diagnostics of this kind, one needs a compliance analysis
approach that can separate compliance constraints w.r.t. their different perspec-
tives, analyze compliance in each perspective, and integrate the results.

Third group of questions: Violation compensation.

These questions are related to identifying exactly what should change in a pro-
cess to make it compliant. We would like to know exactly:

* What went wrong? (e.g. which activity, which data, which resource with
which amount, ... of deviation)?

* What should have happened instead?, i.e., How the violation can be compen-
sated

58

Requirements for Analyzing Compliance

x© $o® 20°
d\\,a (,\"\\‘% o
X S W
£ 1 37 N s

- GEBOH OO0

O
X\©
W

A A A A A A A A A A A A A A
1 1 1 1 I 1 1 1 1 1 1 | | |

A A
T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time<5+3
Diagnostic information:

Number of violating process instances: 1
Violating process instances: Process instance p
Number of compliance constraint activations: 5
Number of violating activations of the constraint: 4
Violating activations of the constraint: 1%,2"®, 3" and 4" activations
Activities involved in violations: B, C, and D
Violations: 4
- 3*(control-flow)
-1*(B is missing)
N [-1*(C is missing)
-1*(D is not allowed)
- 1*(temporal)
[-1*(C occurred late. It should have occurred before time 8)

Figure 3.6: Information on how the process should have been executed differently to be
compliant.

To understand a specific violation, it is not enough to know the type of vio-
lation and its frequency. It is also important to know exactly where in a process
instance a violation occurred and how the process should have been executed
to be compliant.

For instance in case of our previous example, Fig. 3.6 shows in the first, and
second activation of the constraint which activities should have happened to
make process instance p compliant. It is also shown which activity was executed
while it was not allowed in the fourth activation of the constraint. Similarly it
is useful information to know that activity C in the third activation should have
happened before time 8. Such diagnostics are required to guide business users
to take corrective actions and change the process in order to prevent future
violations.

3.3 Requirements for Compliance Analysis

59

Thus, the compliance checking technique should not only report the viola-
tions, but also be able to show in detail the compliant behavior that should have
occurred instead.

Fourth group of questions: Important violations.

Compliance constraints in an organization may have different priorities. They
can be prioritized for instance based on the negative consequences that their
violation may impose, or based on the source that a compliance constraint origi-
nates from. Violating compliance constraints that originate from text of law may
have severe legal consequences for an organization compared to constraints that
originate from internal policies of a company and are set to improve business
operations. Another example would be compliance constraints that are indus-
try specific and usually are demanded by clients and business partners; violating
such constraints may lead to loosing a client or high costs.

As a result of compliance checking, many violations may be detected. How-
ever, not all of these violations have the same priority for a company or are of
the same severity. The severity of a violation is not limited to its frequency but
is also influenced by the negative consequences that it may have for an organi-
zation. We would like to know: What are the important violations that require a
closer look?

For instance, if violations of a specific rule are related to a higher monetary
value or have far reaching legal consequences for a company, they would be
more important compared to others. Hence, it is required to rank violations such
that the important ones are highlighted and will not to be hidden among minor
violations. We can compute severity of violations based on their frequency and
importance.

Suppose in our example, violations related to activity B have priority 1, tem-
poral violations have priority 2, and other types of violations have a lower pri-
ority. Since each type of violation observed occurred once, then the ranked list
of violations will be:

* Activity B is missing.
* Activity C occurred late.
¢ Activity C is missing.

* Activity D is not allowed.

60

Requirements for Analyzing Compliance

In this thesis, we will investigate how to determine the relevance of viola-
tions based on event data.

Fifth group of questions: Root causes of violations.

Reporting statistics about violations, their type, frequency and importance pro-
vides a view on the compliance level of a process but it is also important to have
diagnostics about the causes of violations. We would like to know if we can use
the contextual data available for the process to understand:

* Who are the main actors involved in violations of a particular type?
* Is there an indicator in the process that allows us to predict future violations?

* Can we find a pattern by comparing violating and non-violating instances of
activities and processes?

A compliance analysis technique needs to relate violations to the context in
which they occur in order to be able to detect the factors that influence compli-
ance or non-compliance.

Presenting diagnostics.

In addition to the requirements for diagnostics we listed above (described by
the five groups of questions to be answered), it is required that this information
should be presented at different abstraction levels to not only give an overview
about the compliance but also to provide detailed analysis of a specific violation.

These diagnostics should address the needs of the auditors and process ex-
perts who are in charge of assessing and understanding compliance. Therefore,
diagnostic information should be presented in concise and intuitive visualiza-
tions. Such a visualization must be complete and expressive in non-technical
terms to intuitively and interactively guide business users through the wealth of
information. Its structure must meaningfully group and summarize the avail-
able diagnostics and its navigation structure should effectively convey the nec-
essary information.

3.3.2 Requirements for Compliance Checking Techniques

In the following, we will discuss key requirements that compliance checking
techniques must have to provide the kind of diagnostics described in Sect. 3.3.1.

3.3 Requirements for Compliance Analysis

61

Existing techniques from process and data mining on event data can help
finding root causes and contexts of violations. Thus, projecting checking results
back to event logs, provides us the possibility to analyze the violations further
by preparing different statistical reports and leveraging various data mining
techniques.

To obtain diagnostics about violating events and activities (first and second
group of the questions listed in the previous section), we need to have dedi-
cated techniques to check compliance of a process from different perspectives
including control-flow, time, data, and resource. After checking compliance
from different perspectives and for all relevant compliance constraints, we need
to combine all obtained checking results to get an overall view on compliance.
These checking techniques should not only identify violating and non-violating
process instances. They should also detect all the violations in the entire pro-
cess, specify exactly the type of each violation, specify to which compliance
constraint it is referring, specify to which instance of a constraint is violated,
and specify what the violating activity is? Therefore, the checking technique
employed should be able to precisely locate each violation in a process instance.

The checking technique should state for each violation what should change
in a process to make it compliant (third group of questions). The proposed
change should not consider the impact of this change only locally per constraint
activation but globally in a process instance. This is of particular importance
when a violation related to one activity may influence the compliance of other
activities.

To elaborate on this, suppose we have a compliance constraint stating: (1)
“Activity A may only occur with amount values less than 20.” and another
constraint requires: (2)“If amount value is 10 or more then activity C must
be executed.”

Suppose we have observed the sequence of activities in a process instance p
as shown in Fig. 3.7!. Activity A is violating because its amount should have had
a value less than 20 according to (1). If the checking technique recommends a
value between 10 and 20 for amount, then the process instance p would be com-
pliant w.r.t. the first compliance constraint. Suppose the modified value is 15.
The new value for amount satisfies the second constraint because activity C is
not executed in the process instance p. Hence, the only acceptable amount value
that will not violate any of the constraints is between 0 and 10. A compliance
checking technique therefore requires to consider the impact of recommended
compliant values globally in a process instance.

INote that we use an informal representation of the notions we defined in Chap. 2.

62

Requirements for Analyzing Compliance

X
(D -~ a
P &) 0 SEmmmne

amount=21 amount=21 amount=21

0 < amount< 10

Figure 3.7: The compliance checking technique should consider the impact of proposed
compliant values globally in a process instance.

In summary, the checking technique should:

* detect violations of different types including control-flow related, tempo-
ral, data and resource related violations,

* detect all violations not only violating instances of a process,

* locate violations per process instance, constraint, constraint instance, and
activity, and

* suggest compensation for detected violations globally in a process in-
stance.

The (data-aware) alignment technique discussed in Chap. 2 satisfies all the
requirements for a checking technique we listed above. Using data-aware align-
ment we can detect violating constraints and violations of different types, locate
the process instance and constraint activation where a violation occurred, and
the suggests the compensation values that would make an execution of the pro-
cess compliant. All other diagnostics we listed above (questions in groups four
and five) can be built using other data analysis techniques such as association
rule mining and data classification based on the detailed results that alignment
produces.

By selecting alignments as a basic mechanism, we also make constrain the
kind of inputs our compliance analysis technique can accept: the ‘observed be-
havior’ has to be an event log (for example in XES format). We chose to formal-
ize compliance constraints as (data-aware) Petri nets to express the ‘prescribed
behavior’. There exists a powerful set of tooling for Petri nets in conjunction

3.3 Requirements for Compliance Analysis

63

with alignments. Next, we discuss requirements for inputs of our compliance
analysis approach.

3.3.3 Requirements for Event Logs as an Input for the Com-
pliance Checking Technique

To leverage the selected (data-aware) alignment checking technique, we need
to map the attributes of events being checked in an event log to transitions
in a (data-aware) Petri net. Recall from Sect. 2.4 that the use of alignments
implies that the user has to select a particular checking attribute to relate ob-
served events to transitions of the formal specification. Sometimes the checking
attribute can be simply the activity name (act), for instance when we are check-
ing the existence or sequence of occurrence of activities. However, in many
cases, we may have to consider several attributes together to decide whether
a particular event is subject to a compliance constraint. For example, if a rule
states that “ payments over 5000 have to be approved by a manager”, then
the rule only concerns those events with activity name “payment” where also
attribute “amount” is larger than 5000. The choice of the checking attribute
depends on the compliance constraint to be checked and may vary from one to
another. The compliance checking techniques must support checking attributes
in a generic way to be able to cover different compliance constraints. There-
fore, prior to the detection of violations, we need to prepare the event log for
checking by choosing the right attribute or combination of attributes.
In summary:

* we need to be able to elicit an appropriate checking attribute from the
information recorded in an event log,

* the attribute in the event log, chosen as the checking attribute to map
events to transitions of a Petri net, must be global. That is, all the events
in the event log must have a value recorded for the checking attribute. If
an attribute only has a value in some events of the log, it cannot be chosen
as the checking attribute.

3.3.4 Requirements for Elicitation and Formalization of Com-
pliance Constraints

In order to enable automated compliance checking, the user has to choose which
compliance constraints shall be checked.

64

Requirements for Analyzing Compliance

During the elicitation phase of the CM life cycle, the user identifies the com-
pliance constraints relevant for the organization by analyzing the profile of the
organization including information such as company size, industry, region, and
products or services.

After choosing suitable compliance constraints that an organization must
comply to, the user has to identify the restrictions imposed by the constraint
for each of the perspectives of the business process. As we discussed earlier
in Sect. 3.1, complex compliance constraints may confine control-flow, data,
resource, and time of a process. Detecting violations related to different con-
straints asks for a dedicated checking technique for each violation. Conse-
quently, we need to capture constraints on each perspective separately. To spec-
ify compliance constraints precisely, we decompose them to smaller compliance
rules. The formalization technique needs to be able to specify each compliance
rule precisely and only restrict the behavior of a process where necessary, i.e., it
must allow for all possible compliant behaviors.

Precise formalization of informal compliance rules, regardless of which for-
malization is used, is a difficult and time-consuming task that requires business
knowledge together with knowledge of an appropriate formalization language.
That particular combination is sometimes hard to find. Therefore, we require
tool support that enables business users to formalize the intended compliance
rule without being exposed to all the technicalities and inner workings of a
formalization language.

In summary the formalization should:

* enable us to precisely determine boundaries of a compliant behavior and
exclude violating behavior,

* have formal semantics to enable automated compliance checking,

* allow for specification of all types of compliance rules including control-
flow, data-aware, resource-aware, and temporal rules,

* allow for all possible compliant behavior,

* allow the user to focus only on confined behavior.

In summary the elicitation and specification approach should:

* be easy for non-technical users to employ for specifying an intended be-
havior of a compliance rule.

3.4 Elicit and Formalize Compliance Rules

65

Compliance pattern

< = s VR
== ::7 Allgnment = — Classified events
Prepared log Log with @
— _diagnostics J . ©)
/ f P—

Compliance \
constraint \ﬁf‘omphance checkmg 1 (‘ Statistics ‘
Elicit& formalize Detect compllance Enrich event log Provide I "
5 Prepare log o B
compliance rules violations W|th diagnostics diagnostics
Association rules
A /

/\/iolating/compliant\

behavior patterns

L /SN

Figure 3.8: Compliance analysis overview: Elicitation and formalization of compliance
rules.

After summarizing, the requirements that our compliance analysis approach
(Fig. 3.3) should fulfill in each step, we now sketch our ideas to fulfill these
requirements.

3.4 Elicit and Formalize Compliance Rules

As we discussed earlier during the elicitation and formalization step of our com-
pliance analysis approach (shown in Fig. 3.8), we may decompose a compliance
constraint into several compliance rules each focusing on a different dimentions
of a business process. In this section we will discuss the decomposition of com-
pliance constraints into control-flow, data-aware, resource-aware, and temporal
compliance rules. First, we describe a collection of compliance constraints cov-
ering all four dimensions identified in existing literature [3,5,7, 14, 19, 36, 38,
41,42,49,55,68,69,73,88,116-119,132,142,149,153]. Then, we show how
(data-aware) Petri nets (see Chap. 2) can be used to capture the compliance
constraints of each dimension by examples from our literature survey.

3.4.1 Atomic Compliance Constraints Found in Literature

We have collected compliance constraints that we found in the literature and
categorized them along the dimensions of this framework into three different
collections of compliance rules including control-flow compliance rule repository,
temporal compliance rule repository, and resource-aware and data-aware compli-

66

Requirements for Analyzing Compliance

Category (Rules) Description

Existence (2) Limits the occurrence or absence of an activity. [142], [14,
38], [55], [117], [118]

Bounded Existence (6) Limits the number of times an activity must or must not

occur. [38], [42]

Dependent Existence (6) Limits the presence or absence of an activity with respect
to existence or absence of another activity. [42]

Bounded Sequence (3) Limits the number of times a sequence of activities must or
must not occur. [38], [42]

Parallel (2) Limits the occurrence of a specific set of activities in parallel.
[117]

Precedence (10) Limits the occurrence of an activity in precedence over an-
other activity. [42], [38], [117], [118], [14], [49], [55]

Chain Precedence (4) Limits the occurrence of a sequence of activities in prece-
dence over another sequence of activities. [42], [38], [55]

Response (10) Limits occurrence of an activity in response to another ac-
tivity. [117], [42], [55], [38], [119], [14], [49]

Chain Response (4) Limits the occurrence of a sequence of activities in response
to another sequence of activities. [42]

Between (7) Limits the occurrence of an activity within (between) a se-

quence of activities. [38]

Table 3.1: Categorization of control flow compliance rules.

ance rule collection. Tables 3.1, 3.3, and 3.2 show our collections of compliance
rules.

Table 3.1 describes our collection of over 54 control-flow compliance rules.
These rules have been classified into 10 categories. Each category includes sev-
eral compliance rules. Note, the term “compliance rule” is reserved for atomic
level of compliance constraints, i.e., we do not decompose a compliance rule
further. Each compliance rule is parameterized over activities (e.g. activity A)
or numeric parameters (e.g. governing bounds for repetitions).

Table 3.2 lists our collection of temporal compliance rules that constrain
the time perspective of business processes. We collected about 15 temporal
compliance rules distributed over 7 categories.

Table 3.3 lists our collection of over 10 compliance rules that constrain the
data and the organization perspective of a business process.

3.4 Elicit and Formalize Compliance Rules

67

Category (Rules) Description
Instance Duration (2) Limits the duration in which a control-flow rule instance must
hold. [149]

Delay Between Instances (1)

Limits the delay between two subsequent instances of a
control-flow rule [5, 68,69, 88]

Validity (3)

Limits the time length in which an activity can be executed.
[68,69,88,149]

Time Restricted Existence (2)

Limits the execution time of an activity based on some cal-
endar. [68,69, 88]

Repetition (2)

Limits the delay between execution of two subsequent activ-
ities. [68,69,73,88,149,153]

Time Dependent variability(1)

Limits choice of a process path among several ones with re-
spect to temporal aspects. [68,69,88,149]

Overlap (4)

Limits the start and completion of an activity w.r.t. the start
and the completion of another activity. [68, 69, 88,149]

Table 3.2: Categorization of the 15 temporal compliance rules.

68

Requirements for Analyzing Compliance

Rule Description

| Example

Four-eye principle: The principle that re-
quires segregating the execution of critical
tasks and associated privileges among mul-
tiple users. [3,7,19,36,41,116,119]

The person requesting purchase of goods
should not be the one who approves it.

A purchase order approval requires two sig-
natures.

Authorization (Access control): A security
principle that limits execution of activities
or accessing a data object to authorized in-
dividuals [3,7,19,36,41,116,119].

Only a financial manager can approve a
loan.

Two (three) (four)-way match: An account-
ing rule that requires the value of two dif-
ferent data objects to match [3].

All vendor invoices that are based on pur-
chase orders should be matched with pur-
chase orders (two-way matching).

Activity T may/must (not) be executed if at-
tribute X has the value v; (X may be local
to the activity T or may appear anywhere in
a trace) [3,41,119].

An account must not be opened in case risk
is high.

During ventilation, patient must receive
“propofol" with dosage of (5mg).

Activity T} may/must (not) be executed if
attribute X has value v at activity T». (at-
tribute X is local to activity T») [3,41,119]

In case the respondent bank rating review is
rejected during evaluation, an account must
never be opened.

Activity T must not change value of at-
tribute X [3].

Bank account data must not change during
payment.

Value of attribute X must not change after
activity T is executed. [3]

All invoices must be archived and no change
must be made to the document.

Activity T; may occur only if the value of at-
tribute X is increased/decreased by activity
T, with d.

If gastric tube feeding cannot be increased
by (1,20 kcal/ml), then use ‘Erythromycin’
(ICU medical guideline in a Dutch hospi-
tal (internal policy)).

If attribute X has value v, then resource R
must execute the activity. [3, 7,19, 36, 41,
116,119]

Loans with value more than 1000000 Euro
must only be approved by CFO.

If activity T; is done by resource A, then
activity T» must be done by the same re-
source [36].

A customer complain must be handled with
the same agent registered the customer re-
quest.

Table 3.3: Collection of data-aware and resource-aware compliance rules.

3.4 Elicit and Formalize Compliance Rules

69

To enable automated techniques for compliance checking, it is important
that informal text of compliance rules are specified correctly and precisely, de-
scribing exactly the behavior intended. Next, we will discuss how we formalize
compliance rules.

3.4.2 Basic Considerations about Formal Compliance Rules

The formalization of compliance rules should enable automated compliance
checking, it should precisely specify what is allowed and what is not allowed
by the compliance rule to be checked, it should allow for all possible compliant
behaviors, and it should enable us to focus only on the specified activities (i.e., it
should be declarative).

As we discussed earlier in this chapter and Chap. 2, we use Petri nets to
formalize compliance rules. The choice of Petri nets meets all the requirements
we listed and allows us to build on past experience and tooling (ProM). Petri
nets allow us to leverage the (data-aware) alignment technique for compliance
checking. Consequently, we are able to check compliance of a process from
different process perspectives including control-flow, time, data and resource
and obtain the detailed diagnostics we need.

Leaving the available machinery for alignment technique aside, the choice
for Petri nets allows us to describe declarative constraints in a precise manner.

Pattern parameter:
e #,.(e)> transition label

Figure 3.9: A Petri net modeling an exclusive relation between activities A and B.

70

Requirements for Analyzing Compliance

For instance, for a process consisting of activities A, B, C, and D we would like
to enforce a mutual exclusive relation between two activities A and B: “Either
activity A or B must happen but not both". The Petri net shown in Fig. 3.9 models
this rule. As specified by the model, any activity may occur at the beginning.
The transition C/D represents occurrences of activities C and D. As soon as A or
B occurs the occurrence of the other one is not allowed. Other activities may
occur an arbitrary number of times within a process.

In our approach, we use Petri nets in a “declarative style”. This allows us
to specify only essential characteristics of process executions that need to be
checked against a compliance rule (e.g. see the C/D transition in Fig. 3.9 repre-
senting all activities in a process other than A and B). In this declarative style, we
can abstract information in a process irrelevant to any specific rule. In addition,
we are able to express all possible compliant behaviors (Note how the Petri net
model in Fig. 3.9 captures all possible compliant behaviors and excludes only
the violating behavior). Therefore, we overcome the hurdle of using imperative
models (so called “over specification" [101, 133]) for formalizing compliance
rules. In addition using Petri nets, we are able to capture subtle aspects of com-
pliance rules that are necessary for precise checking of them and usually will be
ignored using declarative techniques. 2

3.4.3 Control-Flow Compliance Rules

In the remainder of this chapter, we explain the basic principles of formalizing
compliance rules using Petri nets in a declarative style.

Suppose that we have a control-flow compliance rule stating: response: “Ac-
tivity A must be followed directly by activity B”. The Petri net shown in Fig. 3.10,
formalizes this rule. As can be seen, we can replay the sequence of activities
t1 : (A,B) over N; without any problem, hence we say f, is compliant with the
rule. Note that by using the Q-labeled transitions, one can seamlessly navigate
between the open world and closed world assumption.

2Note that by formalizing compliance rules as Petri nets, we do not face the difficulties of declar-
ative techniques such as Declare [138], DCR Graphs [60], and SCIFF [83] being “too academic
and less intuitive and less convincing for practitioners” [102]. Regardless of the notion, procedu-
ral modeling is perceived easier to read [102]. Worth to mention that we encountered the same
observation during the evaluation of our approach in the case study in collaboration with UWV
(presented in Chap. 9). We did not design a specific experiment whether declarative modeling or
procedural modeling is perceived easier among domain experts. However, we received the feedback
from domain experts that “it is easier to read and understand a process modeled in a procedural
notion than declarative notion. We can understand the flow of a process more easily following the
sequence of activities”.

3.4 Elicit and Formalize Compliance Rules

71

Pattern parameter:
o t#..(e) > transition label

©— o~ |0

A B

(N4)

w (A)-(8) vV
@ ®-®@x

Cand D are not allowed by the Petri net

Figure 3.10: Petri net N; formalizing the sequence (A, B).

Abstract from irrelevant activities.

Compliance rules usually focus on specific activities in a process and specify how
an activity or sequence of activities must be executed. A business process may
include many more activities than the specified ones. Some of these activities
may be irrelevant for a given compliance rule. For example, the Petri net N;
shown in Fig. 3.10 is not a good representative for all possible compliant behav-
iors w.r.t. activity A and B (recall the open world assumption versusthe closed
world assumption discussed in Sect. 2.6. The sequence of activities #, : (C,A,B,D)
(shown in Fig. 3.10) is not violating the stated compliance rule, but is not al-
lowed by the Petri net Nj.

In our “declarative style”, we overcome this problem by using an Q-labelled
transition in the Petri net specification that represents occurrence of any activ-
ity in a process except the activities that are confined by the compliance rule in
question. The Petri net N, shown in Fig. 3.11, describes how the Q-labelled tran-
sitions adjacent to the Initial and Final places of the net allow for an arbitrary
number of occurrences of other activities (excluding A and B). These activities
may occur before and after the specified sequence (A, B). As shown in Fig. 3.11,
N, allows for the sequence of activities t, : (C,A,B,D) without any problem.

72

Requirements for Analyzing Compliance

Pattern parameter:
e #..(e) > transition label

OO OO O OO

multiple occurrences of A is
not allowed by the Petri net

Figure 3.11: Declarative style Petri net N» allowing for sequences where A is directly fol-
lowed by B including (C, A, B, D).

Several occurrences of a rule in the same execution.

Activity A may be executed several times throughout the life time of a business
process instance. In principle, the response rule does not restrict the number of
occurrences of activity A. For example, consider the trace t3 shown in Fig. 3.11.
This trace does not violate the rule. However, the Petri net N> does not allow for
the second occurrence of A and its following activity B or the third occurrence
of activity A. In addition in case of a violation, we would like to know which
occurrence of activity A violated the rule. In 13, the second occurrence of A is
compliant with the response rule whereas the third one violates the rule. The
third occurrence of activity A is not followed by B. Note that each occurrence of
activity A activates the compliance rule (again) because the condition required
for the compliance rule to hold is present.

To check the compliance rule for all occurrences of activity A and capture
each occurrence as a separate activation of the compliance rule, we introduce

3.4 Elicit and Formalize Compliance Rules

73

the rule instance concept. A compliance rule instance captures and marks activa-
tions of a compliance rule within a business process instance.

Pattern parameter:
e #..(e) > transition label

Icmp

(Ns) o

O N
£° £°
5 7 I
N v %
s (Or@W-E@r@r @0, X
| | |
| | | : : L
' ' ; ! B is missing
It lemp st Ist, lemp

Figure 3.12: Declarative style Petri net N3 formalizing different instances of the compli-
ance rule.

Figure 3.12 formalizes a version of the response compliance rule which al-
lows us to model different instances of the rule and capture more diagnostic
information about possible violations. This net (N3) starts by firing transition
Start. A token in the place Final represents a completed process instance. The
core part of the compliance rule is between transitions I5; and Ic,, which rep-
resents an instance of the compliance rule. When the condition of a compliance
rule is present, an instance of the compliance rule is activated. In this example,
each occurrence of A must be followed by B. Hence, each occurrence of A re-
quires a new completion of the rule, i.e., a new rule instance. Firing transition
I;; denotes activation of the rule instance. When the compliance rule is satis-
fied, i.e., the constraint of the compliance rule holds, I.y,, fires which denotes

74

Requirements for Analyzing Compliance

the completion of the rule instance. The solid black transitions Start, Is;, Icmp, T,
and End are invisible. The Q-labelled activity after Start represents any other ac-
tivity in a process apart from A and B that may occur before or after occurrence
of (A,By. The invisible 7 transition allows for occurrence of several instances of
the specified sequence.

By distinguishing different instances of a compliance rule in N3, we are able
to mark to which rule instance a violation belongs. As can be seen in the trace
t3 in Fig. 3.12, the third instance of the compliance rule has a violation.

Specifying subtle aspects of a rule as different variants of that rule.

We can create variations of the response rule by adding some more elements to

Ns. Consider for instance, the pink shadowed fragment of the net N, (Fig. 3.13(a)).

Adding an Q-labelled transition to the place p, allows for a relaxed version of
the rule, i.e., an indirect sequence of A and B. Likewise, if we add the B-labelled
transition shown in the blue shadowed fragment of the net (Fig. 3.13 (b)), we
allow for occurrence of activity B independent from occurrences of A.

As we discussed above, the core behavior of a compliance rule is captured in
arule instance: any other elements added to or removed from the core behavior
will change what is allowed or not allowed by the Petri net and it will lead to
different variations of a compliance rule. Therefore, a detailed interpretation

Pattern parameter:
o #..(e) > transition label

(b)

B T
Start I‘

Initial@—-l\ s ® o lemp
Final O<—I/ DA i B
End

-

Q

Figure 3.13: N4 formalizes a relaxed version of the response compliance rule by adding
or removing some elements to N3. Ny also allows for (B, A,C, B, A, B, B).

3.4 Elicit and Formalize Compliance Rules

75

of a compliance rule is required to choose a Petri net that formalizes a compli-
ance rule precisely for instance by answering following questions: Are multiple
instances of a rule allowed or not? Can activity B occur independently from A or
not? Can other activities occur in between the sequence A and B or not?

Formalizing a compliance rule that specifies precisely the behavior intended
in the rule, can be difficult and time consuming especially if one is less familiar
with different formalisms.

Therefore, we need an approach to let the business user find and formalize
the right variant of a rule. In addition, the approach should allow us to express
all variations of a rule in a concise form. We introduce an approach based
on “disciplined natural language” that enables business users to formalize a
compliance rule without being exposed to the technicalities of modeling in Petri
nets. We will explain the details of this approach in Chap. 4.

3.4.4 Formalizing Temporal Compliance Rules.

Suppose the response compliance rule is extended with a temporal restriction
stating, response with time: “Activity A must be followed by activity B within 2
time units.” To specify that activity B must occur within 2 time units after A, we
first need to specify the occurrence of the sequence (A,B). Hence, we can use
the control-flow pattern we discussed previously and extend it with restrictions
on time. For this, we use data-aware Petri nets (see Chap. 2 for explanations
about data-aware Petri nets). For instance, the DP Nyeyporar Shown in Fig. 3.14
specifies the response with time compliance rule.

Variable 4 captures the time stamp of the events created as a result of firing
transition A and tp captures the time stamp of the events created as a result of
firing transition B. This is specified by the two statements {W : t4}, and {W : tg}
annotating transitions A and B. The B-labelled transition inside the rule instance
is guarded. This guard confines the value of the time attribute for events created
when this transition fires to be at most two time units later than the previous
occurrence of the A-labelled transition.

As discussed in Sect. 3.4.1, we collected temporal compliance rules that we
found in literature and practice in Table 3.2. In Chap. 5 we will introduce a
generic approach to specify all these temporal compliance rules without expos-
ing business users to the technicalities of data-aware Petri nets.

76

Requirements for Analyzing Compliance

3.4.5 Formalizing Data-Aware and Resource-Aware Compli-
ance Rules

Similar to temporal compliance rules, we use data-aware Petri nets to formalize
data-aware and resource-aware compliance rules with the difference that in-
stead of constraints on time attribute, constraints will be on data and resource
related attributes. Suppose we extend the restriction on activity A in our exam-
ple to be executed only by an agent carrying management role when amount
is more than 500. The data-aware Petri net shown in Fig. 3.15 formalizes this
compliance rule. Please note, this rule restricts only executions of activity A.
Hence, an instance of this compliance rule starts and completes with an oc-
currence of activity A. Two variables a and r capture the values for attributes
amount and role at executions of activity A. This is specified by the statements
W : a,r annotating activity A. In addition, activity A is guarded. This guard has
two parts. the statement (a =500 & r = management) specifies: if an amount
value at executions of activity A is more than 500, the activity must be executed
by an agent carrying management role. The second part of the guard (a < 500)
does not confine the agents executing activity A when amount value is less than
500.

Data-aware and resource-aware compliance rules fall in two categories. The
first category of these rules assume the underlying control-flow of the compli-
ance rule is correct and the restriction is put on the data or resource attributes
of events. Our example is of this type; this rule does not put any restriction

Pattern parameter:
o Hime(€) 2 ta ts
e #..(e) 2> transition label T

Initial

Final

Figure 3.14: A data-aware Petri net formalizing the temporal compliance rule.

3.4 Elicit and Formalize Compliance Rules

77

on the occurrence of activity A but on the role of the agent who executes this
activity with a specific amount.

The second category of data-aware and resource-aware compliance rules,
puts restrictions on the occurrences of an activity or sequence of activities when
a resource or data condition holds. Suppose a data-aware compliance rule stat-
ing: “Activity A must never be executed for Gold customers”. In this rule, the
customer type triggers the compliance rule and not occurrence of activity A.
Therefore, we need to first capture all situations where the value of attribute
customer type is Gold and then check whether activity A was executed or not in
any of these situations.

We specify compliance rules of the second category with two different Petri
nets: we classify the situations where the data or resource condition of the rule
holds, using a data-aware Petri net and we specify the control-flow condition of
the rule using a classical Petri net. We explain the specification and checking of
these compliance rules in detail in Chap.6.

In this section, we sketched the idea of how we specify a single compliance
rule individually using Petri nets. In the following we discuss the question about
how to handle more complex (sets of) compliance rules.

Pattern parameters:

® Hamount(€) > a

o H#oele)>r

e #..(e) > transition label

T

[(a’>500 & r'=management) OR

Start (a’<500)]
Initial It @ — {W:iar} @ lemp
-y -
Final \—,A
End

Figure 3.15: A data-aware Petri net confining the execution of activity A w.r.t. role and
amount attributes.

78

Requirements for Analyzing Compliance

3.4.6 Atomic Compliance Patterns Vs. a Composite Compli-
ance Model

As we discussed above, a complex compliance constraint can be decomposed
to several compliance rules. A compliance rule is the atomic level of compli-
ance constraints that cannot be decomposed further. Each compliance rule can
be formalized separately. On the other hand, each business process may be
subject of several compliance constraints. Consequently, activities can also be
constrained with multiple compliance rules. The question is: how we handle
multiple compliance rules then?

A set of compliance rules that a business process must adhere to can be cap-
tured as a set of individual Petri net models called “atomic compliance patterns”
or they can be specified as one large compliance model that we refer to as “com-
posite compliance model”. Both essentially follow the ideas of Sect. 3.4 but differ
in size and the diagnostics that we can obtain from them.

The choice to formalize a set of compliance rules for a business process as a
set of atomic compliance patterns or as a composite compliance model, depends
mostly on the possible mutual impact the rules may have on each other and on
the process compliance. Consider two compliance rules stating:

* Rule 1: Activity A must be followed directly by activity B.

* Rule 2: Activity D must be preceded directly by activity B or activity A.

In the following, we show how these two rules can be modeled as two sep-
arate atomic compliance patterns or as a composite compliance model and dis-
cuss the differences in diagnostic information that can be obtained choosing
either approaches.

Modeling compliance rules as atomic versusa composite compliance model.

The atomic Petri net patterns N5 and Ng shown in Fig. 3.16 specify the above
mentioned rules separately. The Petri net pattern N5 describes Rule 1. If there
is no A or just B occurred, any activity may occur. This is shown by activity Q
that maps to any activity in a trace that is not A or B.

Rule 2 is described by the pattern Ng. This Petri net describes a cycle of
D preceded by A or B. At first, any activity including A or B but D may occur,
because the rule allows for more than one A or B before D. As soon as an activity
A or B occurs, activity D may occur. After that, the cycle may repeat or other
activities but D may occur.

3.4 Elicit and Formalize Compliance Rules

79

Pattern parameter: Pattern parameter:
o #,4(e) > transition label o #,4(e) > transition label

(Ns) (Ne)
= @-@-0-@-@ X » @-©-0-®-® X
Occurrences of D are not allowed. Occurrence of A or B is missing.

They must not occur in between <A,B>.

S ORORORORON SIS OFOROROROR

B is missing. Occurrence of D is not allowed.

- @®O®O® X @O0 X

Occurrence of A is not allowed. Occurrence of D is not allowed.

Figure 3.16: Violations of log trace t:(A,D,B,D) against two micro compliance patterns.

The Petri net N; (shown in Fig. 3.17) specifies both rules combined. If A
occurs, it must be followed by B but B may occur an arbitrary number of times
anywhere in the process. By combining two rules, it becomes explicit that activ-
ity D may only be directly preceded by B. As illustrated, combining compliance
rules in a composite compliance model yields a model that is more specific
than modelling the rules separately. Nevertheless, no matter if a constraint is
modelled as several atomic patterns or as a composite compliance model, the
conclusion whether a trace is violating the constraint or not would be the same.

Diagnostics obtained from atomic compliance patterns versusa composite
compliance model.

Atomic compliance patterns and a composite compliance model do not only
differ in size and the behavior they specify but they may differ in the diagnostics
they provide as well. Consider the process instance ¢: (A,D,D,B,D). This process

80

Requirements for Analyzing Compliance

Pattern parameter:
o #ale) > transition label

« @-@-0-@-@ X

Occurrences of D are not allowed.
They must not occur in between <A,B>.

(combined a,and 04)-[az: @*’/\@ X

Occurrences of B are missing.

(combined ayas, and "4)“[ag: @"@ X
7\

Bis missing. Dis not allowed

Figure 3.17: Violations of log trace ¢ against the composite compliance model.

instance violates Rule 1 formalized as N5 (shown in Fig. 3.16). Three possible
explanations can be given for the violating process instance ¢: either a;) activity
D should not have occurred between A and B, but occurred twice or a,) an
occurrence of B is missing after A, or as) activity A should not have occurred.
As we can see in Fig. 3.16 (bottom right), trace r violates Rule 2 as well. The
diagnostics produced for Ng are a,) occurrence of A or B is missing between
two occurrences of D, or in as) and ag) one of the occurrences of D is not
allowed. This example shows that each compliance pattern provides diagnostic
information specific for the atomic patterns.

Figure 3.17 combines the two rules together as the composite model N;.
If we consider the combination of the two rules in N7, then the diagnostics
we obtain are globally optimized. Trace r is violating the rules specified in
this model as well. However, the composite model N; returns three different
explanations for the violations as shown in Fig. 3.17: a;) the two occurrences
of activity D is not allowed, or a;) two occurrences of activity B are missing, or
ag) the occurrence of B directly after A is missing, and one of the occurrences
of D is not allowed. Explanations a; and ag cannot be returned as diagnostics

3.4 Elicit and Formalize Compliance Rules

81

information from N5 and Ng as they combine information about violations from
both rules. Here, the composite rule N; gives more insights than N5 and Ng
together.

Modeling compliance rules as a set of atomic rules or as a composite model
does not change the semantics, i.e., it will not impact whether a rule is violated,
but it may impact the quality of diagnostic information. This statement holds
only if the compliance rules are not conflicting. For example, suppose three
rules given as “A has to be followed by B”, “B has to be followed by C”,
and “C has to be followed by A”. It is possible to pick any of the rules and
satisfy them, but there is no trace that can satisfy all three together. For one of
the rules, the “last activity” will not come in a finite trace, i.e., the finite trace
(A,B,C,A,B,C,A,B,C) violates the third rule. Note that it is not useful to check a
process against conflicting rules, however, when combining such rules we can
set limitations to solve the confliction. For example allowing for termination of
the process after three execution of the sequence (A,B,C).

Further differences between atomic compliance patterns versusa compos-
ite compliance model.

We discussed some of the differences between atomic patterns and a composite
compliance model above. Note that, apart from these differences, the concept of
“compliance rule instance” becomes blurred in a composite compliance model
compared to atomic patterns. When rules are modeled as a composite model,
we cannot assign a violation to a specific rule if rules overlap in activities. We
will elaborate on this using an example. Suppose a trace ¢’ : (A,D,B,D) given.
This trace violates the Rule 1 modelled in N5 but is compliant with Rule 2 mod-
eled in Ny and violates the composite model of the two rules as N;. When we
combine rules together that have common activities, sometimes it is not possi-
ble to assign the occurrence of activities to one of the rules. Hence, if we are
interested to know the compliance state of a business process w.r.t. compliance
rules separately, it is better to formalize rules as individual atomic compliance
patterns. If we combine compliance rules together as a composite compliance
model, in many situations when rules overlap, we cannot pinpoint to a specific
rule that is violated.

As we discussed the requirements of diagnostics in Sect. 3.2, detecting ex-
actly the compliance rules that are violated and those that are not can become
important if compliance rules in an organization are prioritized. Violating some
compliance rules may have more severe consequences compared to others.

Formalizing compliance rules together as a composite compliance model

Requirements for Analyzing Compliance

may lead to a very complex model as well. Especially if process must com-
ply to many rules. Suppose we have the following three compliance rules that
a business process must comply to:

* Activity D must occur at least 2 times.
* Activity A must be followed directly by activity B or activity C.

* Activity G must be preceded by activity E and F.

If the compliance rules are unrelated (i.e., violations of one will not influ-
ence the compliance of others), it would be better to consider them separately.
The compliance rules mentioned above do not overlap in any activity or any
condition. Formalizing these rules together will lead to a rather complex com-
posite compliance model. A composite model for above mentioned rules is the
“cartesian product” of their atomic compliance patterns that will be quite com-
plex without adding any value.

Modeling compliance rules that are related, as a composite compliance model,
will enable us to consider the global impact of these rules together on compli-
ance. At the same time when rules are unrelated, we get more precise diagnos-
tics if we formalize and check compliance rules separately.

In Chap. 5 and Chap. 6, we discuss some compliance rules that cannot be
specified by a composite compliance model as precise as is possible by atomic
compliance patterns. Furthermore, we have developed an automated approach
to formalize compliance rules as atomic compliance patterns, whereas compos-
ite compliance models are unique in context of each process and there is less
support for the automated elicitation of these models.

Apart from what we discussed above, any of these design choices have some
consequences on detection of compliance violations and later on combining the
results. Formalizing several compliance rules together as a composite compli-
ance model, allows us to check all the rules with only one single check and the
results will already include violations of different rules. Whereas if we formalize
compliance rules as atomic compliance patterns, we need to check each rule in
isolation and then we need to combine the checking results. We will discuss this
further in Chap. 8.

In this section, we sketched the idea of how we specify a set of compliance
rules for a business process. Chapters 4, 5, and 6 will present the details of
control-flow, temporal, and data-aware rules. Next, we will discuss our ideas on
how to check compliance of an event log against the specified compliance rules.

3.5 Compliance Checking

83

~

= Alignment —— Classified events

7 7 .
Compliance - - e
T (Compliance checking l & / \ Statistics ‘
- Elicit& formalize Detect compliance Enrich'event log Provide I n
. Prepare log e g = B p %
compliance rules violations with
A _A Association rules
Log 2

A ,/

N

Violating/compliant

Figure 3.18: Compliance analysis overview: Compliance checking.

3.5 Compliance Checking

Checking compliance of an event log against a prescribed behavior, modeled
in terms of a Petri net (either as an atomic compliance pattern or a composite
compliance model), includes the three main steps as shown in Fig. 3.18. These
steps may be repeated during the checking. The steps are: log preparation,
detection of compliance violations, and combining violation detection results.
Next, we will discuss different steps in compliance checking.

3.5.1 Log Preparation

Previously in Chap. 2 and Sect. 3.4, we discussed that compliance rules have
underlying conditions that specify when a certain compliance rule must hold
and we use checking attribute to be able to precisely identify the situations
under which the condition of the rule holds. In this section with the help of an
example we will explain how we prepare event logs to capture the condition of
a rule as a checking attribute.

For example, consider the compliance rule taken from a medical guideline
related to Intensive Care Unit (ICU) procedures stating: “If nutrition with multi-
fiber cannot be increased in tube feeding at least by (2 kcal/ml), then Demperi-
done must be administered to the patient”. According to the rule, it is expected
that execution of activity “tube feeding” increases the “nutrition with multi-
fiber” by 2 kcal/ml. If this increase does not happen, then the rule states that
the medicine “Demperidone” must be administered to the patient. Suppose the
dosage of “nutrition with multifiber” is captured in an attribute X. This attribute

84

Requirements for Analyzing Compliance

is accessed by the activity “tube feeding (T)”. Rephrasing the rule with a less
domain specific jargon, it states: “If value of attribute X is not increased by 2
kcal/ml at activity T, then activity A must be executed”.

This compliance rule requires that activity A must be executed when value
of attribute X was not increased by 2 kcal/ml. Therefore, we only should check
the rule for situations that attribute X was not increased or increased but less
than 2 kcal/ml.

Consider the simplified trace related to a patient shown in Fig. 3.19. Three
executions of activity T are shown. At the third execution of T, the expected
increase in the value of attribute X is not observed. According to the rule, the
execution of A after the third T is expected. The log is prepared with a new
attribute as the checking attribute which indicates where the condition of the
rule holds.

In our example, the checking attribute captures the occurrence of activity T
together with the change in the value of attribute X. Later we check whether for
those events that had no increase or an increase of less than 2 kcal/ml, activity
A was executed or not.

The checking attribute captures a specific value at each event when the con-
dition of the rule in question holds. Then we can detect whether the compliance
rule is followed for the events having that specific value at their checking at-
tribute. Values of a checking attribute can be: simply a copy of one of the event
attributes, the combination of several event attribute values, or a calculated

execution of Ais
expected after T

psz%/} T)

X=10 kcal/ml X=15 kcal/ml X=16 kcal/ml
Value of X increased Value of X increased by
by 5 kcal/ml less than 2 kcal/ml

Figure 3.19: Execution of activity Demperidone administration (A) is required after the
activity tube feeding (T) when the value of nutrition with multifiber (X) was
not increased by 2 kcal/ml.

3.5 Compliance Checking

85

value based on one of the event attributes or combination of them.

Choice of checking attribute for checking control-flow compliance rules.
When we check a control-flow compliance rule, the checking attribute is the ac-
tivity name itself, however the checking attribute gets a different value at events
that are not restricted by the compliance rule. Recall the Q-labelled transitions
in our “Petri nets in declarative style”, whenever an event is represented with
an Q-labelled, it gets the value Q for its checking attribute during log prepara-
tion. This allows us to focus only on specific events that are restricted by the
compliance rule and abstract from all other events that are not relevant to the
compliance rule.

Choice of checking attribute for checking temporal compliance rules. Simi-
lar to control-flow compliance checking, when we check a temporal compliance
rule, the checking attribute is the activity name of particular activities. We check
whether those activities occurred at a right time. For instance, if a compliance
rule states that “activity A must be followed directly by B not later than 2 time
units”, The checking attribute should capture the executions of A, and the first
B after it but not other occurrences of activity B (B events not following an A).

Choice of checking attribute for checking data-aware and resource-aware
compliance rules. When checking a data-aware or a resource-aware compli-
ance rule, the checking attribute captures the execution of specified activities or
combination of the execution of the specified activity together with the data/re-
source that they have been executed with. If the rule is of the first category of
data-aware and resource-aware rules, the checking attribute will be the activity
name of the specified activities. For the rules of the second category, the check-
ing attribute captures the combination of activity name and the data/resource
attributes. For instance instance, consider a compliance rule stating: “Activity C
must be executed by a resource carrying a management role ”, here the checking
attribute should capture the execution of activity C. For the rule stating: Loans
with value more than 500 must be approved by management role, the checking
attribute should capture executions of activity approval and value.

We will discuss in chapters 4, 5, and 6 dedicated, yet generic, techniques for
log preparation for checking control-flow, temporal, data-aware, and resource-
aware compliance rules. Enriching events in an event log with suitable checking
attributes is essential for correct and precise detection of compliance violations.

Log preparation for checking atomic compliance rules versusa composite
compliance model. When we formalize compliance constraints that a process
must adhere to as a set of atomic compliance patterns, we introduce an ap-

86

Requirements for Analyzing Compliance

propriate checking attribute separately for checking each rule. This allows for
a precise detection of compliance violation tailored for each compliance rule.
Introducing a checking attribute for a composite compliance model, is much
more difficult because each rule needs to be checked under its specific condi-
tion. Consequently, the checking attribute needs to have many values which is
the result of combining different underlying conditions for different compliance
rules.

Therefore, we use activity names as the checking attribute to basically map
events to transitions and create multiple variables in the composite compliance
model and map other attributes of events to them. Consequently, not all the
compliance rules that can be checked using atomic compliance rules can be
checked in a composite model. We will elaborate on this further in chapters 4, 5,
and 6.

Shortening event logs

Apart from the log abstraction (i.e., enriching events with suitable checking at-
tribute), we have another log preparation step that helps us abstract from infor-
mation in an event log that are not required for detecting compliance violations.
This log preparation step is not essential for the compliance checking, however,
it optimizes the performance of detecting compliance violations by making the
event log smaller. We will explain the details of this step in Chap. 4.

This step of log preparation is in principle the same in case of both atomic
compliance patterns and a composite compliance model. With the difference
that in case of a composite compliance model, the amount of information that
we can abstract from is less compared to considering the same set of compliance
rules separately as a set of atomic compliance patterns.

3.5.2 Detection of Compliance Violations Using Alignments

As discussed earlier, compliance rules put restrictions on different process per-
spectives (e.g. control-flow, data, resource, and time). However, regardless of
the compliance rule type, the detection of compliance violations should provide
the diagnostics we listed in Sect. 3.2. The core technique we use for detecting
compliance violations is the conformance checking technique based on align-
ments explained in Chap. 2. This technique constructs an alignment between
the events in the event log (observed behaviour) and the Petri net model that
specifies the compliance rule to be checked (prescribed behavior). Depending
on the rule to be checked we construct control-flow alignment or data-aware

3.5 Compliance Checking

alignment. Next, we will explain how we leverage conformance checking for
detecting compliance violations w.r.t. different rules.

We first discuss the detection of control-flow compliance violations and later
we explain the detection of violations for temporal, data-aware, and resource-
aware compliance rules.

3.5.3 Detecting Control-Flow Compliance Violations Using Align-
ments

Recall from Sect. 3.3 that we aim at producing detailed diagnostic information
about which compliance violations happened and which compliant behavior
should have happened instead. In Chap. 2, we discussed how alignments give
detailed diagnostics about differences between specified and observed behavior.
In the following, we show how to aligns an event log to a Petri net model that
formalizes a control-flow compliance rule (as explained in Sec. 3.4) allows us
to detect detailed control-flow violations.

Suppose we have an event log with the events all related to one process
instance Py as shown in Fig. 3.20. We would like to check compliance of this
log against a compliance rule stating: “Activity A must be followed directly by
the sequence of activities (B,D)”. As can be seen in the log, the occurrence of
activity D is missing and log is violating the rule.

By choosing the activity name as the checking attribute, we can restrict the
order of occurrences of activities by a compliance pattern. Next we illustrate
how alignments using the activity name as the checking attribute detect control-
flow violations.

We prepare the log by adding to each event the checking attribute with value
A, B, or D if the value of activity name is A, B or D respectively and Q otherwise.

event ID | process instance | events timestamp | activity names resource amount
eLl #pi(eL1)=p #t\'me(eLl):l #act(eLl):G #resource(eLl)zj‘Jhn #amount(eLl):loo
eL2 ”pi(eLZ):p #time(eLZ):z #act(eLZ):A #resource(eLZ)zsara #amount(eLZ):loo
eLS #pi(eLi)zp #time(eLS):6 #a:((eLS)zB #resource(eLS)zsara #amount(eLS):loo
ELA #pi(eLtl):p #tvme(eLA):7 #act(eLA)zc #resource(eLét)zsara “amount(eLA):loo
L=(E", #, <)
E'={e'y, e e, €'y, e's}

Figure 3.20: Events in the log L.

88

Requirements for Analyzing Compliance

event ID | process instance | events time stamp | activity names | control-flow checking attribute

el #,(e")=p Hime(e'1)=1 #a(e")=G #enec(€'1)=0
e, ,,.(e 2)=p Hrime(e)=2 Haaleh)=A Henec(€'2)=A
ey #,(e"3)=p Hime(e'3)=6 Haale'3)=B Henec(e'3)=B
el #a(e%)=p Hime(€'a)=7 #ac(€"a)=C H#enear(€'a)=0
L=(E“#, <)
E'= {eLL eLz, EL3, eLa. eLs}
eL1 eLz e"; EL4

B)

Process instance P: C}——@ @—@)

=
N —p-
w—p
IS

n—-
(9]

N

Figure 3.21: Preprocessed event log after adding control-flow checking attribute and
shortening the event log.

Note that el and el are now Q events. Figure 3.21 shows some of the attributes
of the events in L, and checking attribute for the rule in question and its val-
ues (Note that activity D is not executed). Using this checking attribute, the
events can be directly mapped to the transitions of the Petri net model shown
in Fig. 3.22 that formalizes the above compliance rule.

Recall the principles of atomic Petri net patterns discussed earlier in Sect. 3.4.3.
An instance of this rule includes the sequence of activities (A,B,D). In this figure
three process instance runs (Pg;, Pry, and Pg3) are shown from the infinite set
of possible process instance runs of this Petri net pattern.

Figures 3.23, 3.24, and 3.25 show three alignments between the events in
process instance P and these process instance runs.

The alignment between Pg; and the net of Fig. 3.22 shows a model-only
move (see Sec. 2.4); the model-only move indicates that activity D was ex-
pected according the compliance rule specified by the net, but did not occur.
The alignment between Pg, and the net of Fig. 3.22 shows a log-only move,
indicating that activity A occurred where it was not allowed. The third align-
ment shown in Fig. 3.25 indicates two violations: a model-only move related
to the skipped activity D and one log-only move related to execution of activity
A that was not allowed. This way, alignments and their model-only moves and
log-only moves produce exactly the diagnostics about violations and alternative
compliant behavior we described in Sec. 3.2 for control-flow compliance rules.

The cost function of an alignment allows us also to fine-tune which speci-

3.5 Compliance Checking

89

Pattern parameter:
e #,.(e) > transition label

lemp

R
€ € e3 (S} e’
process instance run Pg;: G ° ° c 6
R
€% €y €
process instance run Pg,:

e10 e11 e12

process instance run Pgs: e e 0 e

Figure 3.22: Three process instance runs Pgy, Pgr2, and Pgs3 of the Petri net pattern.

fied behavior is returned as the compliant behavior that should have happened.
Assuming that the cost of compliant moves is zero, and the cost of any viola-
tion is one, the total cost of violations for the first second and third alignment
respectively are one, one, and two. In this case both the first and the second
alignment can be considered as the optimal (best) alignment. However by as-
signing a higher cost for skipping activity A we can make sure that the alignment
technique returns a run in the model that is the closest to the behavior observed
in the log. Therefore, by adjusting the cost function based on the compliance
rule, we can guide the selection of a suitable alignment. In this thesis and all
the experiments we did, we used the cost function implemented in [10, 134].
We will discuss the role of the cost function for producing particular kinds of
diagnostic information in detail in later chapters.

90

Requirements for Analyzing Compliance

Alignment between events in P and
process instance run Pg;

model move: occurrence of activity D is missing

Figure 3.23: An alignment between pre-processed event log of Fig. 3.21 and the process
instance run Pp; (in Fig. 3.22).

3.5.4 Detection of Temporal Compliance Violations Using Data-
Aware Alignments

Temporal compliance rules restrict when activities may occur. Suppose there
is a time restriction on the specified sequence of (A,B) of our example as well
stating: “The delay between occurrence of A and B must be within 2 time units”.

To check compliance of an event log against a temporal rule, we need to
first check if the activities in question occurred at all. And if they occurred,
whether they occurred at the right time. If it did not occur, depending on the
rule to be checked either it is considered as a control-flow violation or it will
be ignored (i.e., the temporal rule is not triggered). The data-aware Petri net

Alignment between events in L and process
instance run Pg;

L L L L
e e e ey

Q AN B Q
La >> B Q
R

R R
e’ / e’ e'g

log move: occurrence of A is not allowed

Figure 3.24: An alignment between between pre-processed event log of Fig. 3.21 and
the run Pp, (in Fig. 3.22).

3.5 Compliance Checking

91

Alignment between event in L and process instance
run Pgs

model move: occurrence of D is missing

L L L L
€ \ €3 €3 €y

R W

log move: occurrence of A is not allowed

Figure 3.25: An alignment between between pre-processed event log of Fig. 3.21 and
the run Pg3 (in Fig. 3.22).

pattern formalizing this rule is shown in Fig. 3.26. We discussed the details of
this pattern earlier in Sect. 3.4.2.

To check if a specific event occurred at all, we first align log L with the
compliance pattern DPN jp0ra1 Without considering time value of events. Note
that compared to the previous example, in the temporal rule we only restrict the
delay between the two activities A and B. Hence, we will not model activity D
in DPN teyporal- The result of this step is an alignment highlighting control-flow
deviations of the rule to the log. In our example of Fig 3.27 no control-flow
deviations are identified.

Next, we enrich the original event log with information from the control-
flow alignment of Fig. 3.27. This allows us to check adherence of temporal
constraints for all those events that are relevant to the rule and occurred in the
correct order. The temporal restriction itself is expressed through guards that
constrain the time attribute of events in DPNeporar (as explained in Sec. 3.4.4).
We check whether activity B was executed within 2 time units after execution
of A. Figure 3.28 shows the resulting data-aware alignment. The data-aware
alignment detects the temporal violations and returns a compliant value for
violations based on the specification in the data-aware Petri net DPN soral-

Since there is no temporal restriction on the first A-labelled transition, the
event eg that describes the occurrence of A in the run, gets the same value
as its corresponding log event ef, i.e., #4mc(ef) = 2. Consequently variable 4
will get the same value. Hence, the event el is only allowed to get a value
between 2 and 4 as its time value, the guard on the B-labelled transition in N

92

Requirements for Analyzing Compliance

Pattern parameter:
o #ime(e) D ta ts

o #,.(e) > transition label

Start

Initial

Final

T

. 1
N
Cta

R
[\jW:tA} ~
O— +—O—

A

[testir2] Ctg)

{Wits}/ " lamp

2

End

Figure 3.26: The temporal compliance rule formalized as the data-aware Petri net
DPNtempoml'

specifies that. However, as event e} has time value 6, the alignment reports a
temporal violation. The compliant value returned by the data-aware alignment
is a value in the interval [2,4] which is taken from the time interval allowed by
the prescribed behavior in DPN eporqr. In Sect. 3.5.7, we show how to enrich
the event log with the diagnostics we obtained during checking.

3.5.5 Detection of Data-Aware and Resource-Aware Compli-
ance Violations Using Data-Aware Alignments

Checking data and resource-aware compliance rules follows the same principle
as temporal compliance checking, i.e., by constructing data-aware alignments,
with the difference that instead of constraints on time attribute, constraints will

ety e' el et
[aN A (BN (A
Q A B Q
e’ et ety et
1 t t t t t 1
1 2 3 4 5 6 7

Figure 3.27: The control-flow alignment resulting from the alignment of log L (in
Fig. 3.20) and DPN typore (in Fig. 3.26)

3.5 Compliance Checking

93

be on data and resource attributes. However, as explained in Sect. 3.4.5, there
are two types of data-aware compliance rules that require different approaches.
We explain both next.

Data on top of control-flow.

We discussed earlier that the first category of data-aware and resource-aware
compliance rules assumes that the underlying control-flow of the compliance
rule is correct, and the restriction is put on the data or resource attributes of
events. Suppose a resource-aware compliance rule stating “Activity C must be
executed by resource John”. This rule does not put any restriction on the oc-
currence of activity C but on the resource who executed this activity. Checking
this compliance rule is very similar to temporal compliance checking described
in Sect. 3.5.4. We first detect the occurrences of activity C and then we check
if this activity was executed by resource John or not. The data-aware Petri net
in DPNesource in Fig. 3.29 specifies this compliance rule. An instance of this rule
includes an occurrence of activity C. The value of attribute resource executed
this activity is captured in the variable r. The guard annotating transition C
specifies that activity C is only allowed to be executed by “John”.

Move with incorrect value
for time attribute

\

e' el
Hime(€") = 2 Hime(€s) = 6
ta=2 tz=6
ety e’ el ey
2 L D /B
NCY A B NCW
ey e, efs ey
et et
H#imele®)) =2 H#ume(€®2) S ta+2
ta=2 ta<4

Figure 3.28: The data-aware alignment resulting from the alignment of log L and data-
aware Petri net DPN tepporal-

94

Requirements for Analyzing Compliance

Pattern parameters:
® Hresource(€) D 1
o #,4(e) > transition label

Start [r= John] 7 g
Initial [(W 1}/

Final

g OLF
T

Figure 3.29: The resource compliance rule formalized as a data-aware Petri net
DPNI’ESOLH‘C@-

eL1 eLz eL3 eL4
T\ T\
\Qf’ & Q »\C :

Figure 3.30: The event log L of Fig. 3.20 is prepared for checking the resource compli-
ance rule.

We prepare the log L as we did for previous examples with the checking
attribute activity name to check this rule. The prepared log is shown in Fig. 3.30.
In the prepared log, el has for the checking attribute activity name value “C”
whereas all other events have value Q. According the original event log shown
in Fig. 3.20, event el has “Sara” for its resource attribute. Figure 3.31 shows
the alignment of the log L with DPN source- As can be seen, the log is violating
the rule and activity C should have been executed by “John”.

Control-flow on top of data.

The second category of data-aware and resource-aware compliance rules re-
stricts the occurrence of an activity or sequence of activities when a resource or
data condition holds. Suppose a data-aware compliance rule stating: “When-
ever value of attribute amount is higher than 100, activity C must not be
executed”. In this rule, the value of attribute amount triggers the compliance
rule but not occurrence of activity C. Therefore, we first need to identify all sit-
uations where the value of attribute amount is higher than 100 and then check
if in any of these situations activity C was executed or not. For this type of
data-aware and resource-aware compliance rules, we first need to construct a

3.5 Compliance Checking

95

Move with incorrect value
for resource attribute

\

L
€y

L
#resource(e 4) =Sara

r=Sara
eL1 eLz eL3 eL4
/A /@ /0 /A3
o/ e/ e/ ¢
et ek, ety ety
ef,

#resource(eRA) =John

r=John

Figure 3.31: Data-aware alignment resulted from aligning the prepared log of Fig. 3.30
and DPNesource of Fig. 3.30.

data-aware alignment to detect situations where the data condition of the rule
holds and only then construct a control-flow alignment to detect if under the
specified data condition a certain activity was executed or not. We will elabo-
rate more on the details of this approach in Chap. 6.

3.5.6 Summary: Detecting Violations in all Dimensions

Figure 3.32 summarizes the steps we take for checking each type of compliance
rule including control-flow, temporal, data-aware, and resource-aware compli-
ance rules. As can be seen, we have dedicated checking techniques for each
type of compliance rule. However, in principle all of these techniques combine
log preparation, control-flow alignment, data-aware alignment, and log enrich-
ment.

The input for control-flow compliance checking is a control-flow compliance
rule formalized as a Petri net and an event log. After log preparation which in-
cludes log abstraction and shortening the event log, the prepared log is aligned
with the Petri net pattern using control-flow checking technique. The resulting

Requirements for Analyzing Compliance

96

(#0)

suonejoln 7 3P3Yd2 40 7

[|y youuz| TN

uapoys
8 1eASqY

=-=IRN=*

9'deyd

o

suonIpuod

RElVh)
yam youu3 PP

Y - 7 .

el 4

suope|oIA

(| puuz| TN paueya 7 '

Pensqy AJW

el | B0

9'deyd

Yum youu3

SUOIE|OIA uanoys

jwi 39342 4D

7 7 B Peisqy
S—

=

7

SUOIe|0IA

([youuz| TN

7 $03Yd L 7

uayoys
3 Peansqy

N

g'deyd

Yum youu3

SUONE|oIA uauoys

- jj P3YI 4

]

7 7 R 12RASqQY
S—

i Bunjoayd sduedwod [esodwa)

3|nJ (¥/@) @2Jnosai/ereq
9|nJ (L) lesodway
3|n1 (40) moj4|013u0)

juawusije (y/q) @2inosal/eieq

juawusife (1) jesodway m_m_m_

uawusije (43) mojy|onuo)

sanow Ajuo-|apow 10j S}UBAS paltasul yum So| payouug

80| payouu3z/pasedaid E E 80| 1

W
2

ydeyd

suoie|oIn
YHm youu3

uauoys
g 19815qY

- jj 3Y2 43

%

]

i Suprayd 32ueldwod MOJ4-|0J3U0D)!

Figure 3.32: Steps taken in each compliance checking techniques. Each dedicated com-

log

pliance checking technique includes iterations of three main steps:

preparation, checking and log enrichment.

3.5 Compliance Checking

97

alignment with diagnostics about violations are used to enrich the original event
log.

Temporal compliance checking follows similar steps as control-flow check-
ing. After enriching the event log with diagnostics obtained from control-flow
checking, the enriched log needs to be prepared for temporal checking. This
preparation also includes log abstraction and shortening of the event log. The
prepared log and a temporal rule are used to build a data-aware alignment in-
dicating all temporal violations. These diagnostics are then used to enrich the
original event log with temporal violations.

Data-aware and resource-aware compliance checking may follow two dif-
ferent procedures according to the type of the rule to be checked. The first
category of data and resource-aware compliance rules follows almost the same
procedure as sketched for temporal compliance checking. In both approaches,
first we check whether the activities in question occurred or not and we build
data-aware alignment to check the temporal or data/resource condition of the
rule. There is a difference, however, in the inputs of the approach. In temporal
compliance checking the temporal rule and its underlying control-flow condi-
tion are formalized as two different Petri nets, while in data and resource-aware
checking (first category) both control-flow condition and the data or resource
restriction are modelled as one pattern.

In the second category of data and resource-ware compliance rules, the or-
der of building control-flow alinement and then data-aware alignment is re-
versed. We first detect the conditions where the rule must hold by building a
data-aware alignment and then we check whether on those situations the un-
derlying control-flow restriction holds or not. Note that in this approach two
separate patterns are used. Details of each technique will be discussed in the
following chapters 4, 5, and 6.

Finally, it is worth noting that the actual checking of a composite compliance
model does not differ from checking an atomic compliance rule. One can simply
apply any of the compliance techniques for control-flow/temporal and data-
aware checking also on composite compliance models. The advantages and
disadvantages for using atomic rules or composite models as discussed in detail
in Sect. 3.4.6 are entirely determined by the scope of the specification and not
by the checking technique. Note that one can even specify both data-aware
and temporal constraints in one composite model and check them together as
the underlying checking techniques are identical. One should be aware that
checking composite models of some data-aware constraints and some temporal
constraints requires a more specific approach. The details will be discussed in
chapters 5 and 6.

98

Requirements for Analyzing Compliance

= [DetectCF |
(@ Detect CF i
AN CF J violations AW Combine
TR alignments
G T ~N DetectT | k‘ Insert missing
AN J violations events
e\ Detect D/R L Proj S
\D/R/ - violations i fOJeC’f /_*ﬁ
ot A diagnostics

Figure 3.33: Generating enriched event log with diagnostics obtained from several align-
ments.

3.5.7 Combining Compliance Violation Detection Results

The compliance checking techniques described up to now return diagnostic in-
formation as an alignment between a log and a compliance rule. Some of the
paths described in Fig. 3.32 produce multiple alignments (i.e., one for control-
flow violations and one for temporal violations). Recall that our aim is to pro-
vide integrated insights into compliance violations by answering questions four
and five of Sect. 3.3.1. Thus, we have to integrate the diagnostic information
from different alignments. Technically, we choose to do this integration by en-
riching the original event log with diagnostic information from the different
alignments. This will allow us to leverage existing process mining techniques
and data mining techniques that operate on event logs to answer questions four
and five of Sect. 3.3.1. We enrich the event log as follows:

We map moves to events. Synchronous moves and log-only moves have
existing events that are enriched with further attributes. Artificial events need
to be created for model-only moves with new attributes containing diagnostic
information. In general enriching the original log with the diagnostics obtained
during checking includes three main steps shown in Fig. 3.33:

1. Combining detected violations during the checking.

2. Inserting artificial events for missing events, i.e., where a model-only move
was detected during compliance checking.

3. Projecting diagnostics on the original event log with inserted events by
adding a rule attribute for each compliance rule that is checked. This

3.5 Compliance Checking

99

attribute is a nested attribute that is added to all the events and captures
the compliance state of every event w.r.t. that rule, the rule instance, and in
case it is a violating event, its violation type, and compliant value of every
event.

Recall that using the approach described in sections 3.5.2 and 3.5.3, we may
check the log L of Fig. 3.20 against three different compliance rules, yielding
three alignments as shown in figures 3.23, 3.28, and 3.31). Applying the above
steps yield the log shown in Fig. 3.34 (using the tree representation explained
in Sect. 2.2); the diagnostic information added to the log is hachured.

As can be seen each event in the original log gets three nested attributes
representing the rules for which its compliance has been checked. Each of these
attributes have child-attributes that store the diagnostics related to that specific
rule. For instance, we can see that the second event el has been compliant to
all the three rules (see the attribute rulel. compliance state’, ‘rule2. compli-
ance state’, and rule3. compliance state of event el). It has been part of the
first activation of the control-flow rule instance and also the first activation of
the temporal rule instance, therefore it has been outside a rule instance when
checking the resource-aware compliance rule. The resource-aware rule is only
concerned with the executions of activity C.

100 Requirements for Analyzing Compliance

EL* (enriched log L with diagnostics)
EP* (enriched process instance P with diagnostics)
e = —Hhale1) =6 ' = — fhale')=D

Ly
Fumele 1)f ! #.e1(€”4)= control-flow-specified sequence
#amount(€ 1)= 100 Speiner)
— Hhesource(€71)= John Hrulet compliance stae(€"2) = violating
I #,e1(e"1)= control-flow-specified sequence Hrutermstance(€4)= 1% activation-control-flow

L R
Hime(€1)=1 Hrule1violation type(€ 4)= Missing event

7 ‘ R
Hrulelinstance(€'1)= OUtside rule instance #Hrule2.compmpliant value(€ 4)= D
I #e2(€"1)= temporal-delay between two activities L L
rute2(€71) P y e'y — #hales) =C
L . L
Hrulez.compliance stare(€ 1)= compliant — #ime(€’a)=7

— #amound(e"1)= 100

#ruie2 nstance(€'1)= OUtside rule instance i
Hresource(€1)= Sara

L— #,e3(e"1)= resource-authorization I #,e1(€")= control-flow-specified sequence
Hrules compliance stte(€1)= compliant Hrulencompliance state(€'4) = compliant
#ruesinstance(€'1)= outside rule instance Hrjetinsince(€'a)= Outside rule instance
e~ #“‘(eLzl) =A I #,12(€"4)= temporal-delay between two activities
Hime(€2)=2
Hamoun(€'7)= 100 Hruied compliance stae(€'4)= compliant
— #resource(€5)= Sara #ruezinstance(€'2)= outside rule instance

—— #iea(e)= control-flow-specified sequence

L ¢ L #.es(€"4)= resource-authorization
Hrule1 compliance state(€ 2)= compliant

L . .
ivati #ule3.compl 1ate(€ 4)= violating
H#ruie1nstance(€2)= 1" activation-control-flow rule3.compliance state!

H#uie3 instance(€'4)= 1% activation-resource-aware
Iy L= % s :
#,4e2(€)= temporal-delay between two activities Hrule3 violation type(€) = resource

[
#rulez.compliance state(€2)= compliant Hrules.compliant value(€ 2)= John

H#reznstance(€2)= 1% activation-temporal

L— #.es(€",)= resource-authorization

L /
#ule3 compliance state(€ 2)= compliant

#rues nstance(€2)= outside rule instance

L
e = —tle)=8
L
—— #ime(€3)=6
L
H#amount(€ 3)= 100

I Hresource(€1)= Sara
—— #uie1(e3)= control-flow-specified sequence

L i
Hrule1 compliance state(€ 3)= compliant
H#rulevinsance(€'3)= 1% activation-control-flow
Yo ﬁ,.,,sz(elz)= temporal-delay between two activities

e
Hrule2.compliance state(€ 3)= violating
Hruiez mstance(€'3)= 1" activation-temporal

L
H#rule2.compmpliant value(€3)= [2,4]
L

H#ryle.violation type(€ 3)= temporal

L— #,3(e"3)= resource-authorization

L .
Hrule3.compliance state(€ 3)= compliant

H#ruesinstance(€'3)= oUtside rule instance

Figure 3.34: The event log L enriched with compliance diagnostic information on com-
pliance state of each event w.r.t. different rules, rule instances, violation
types, and compliant values.

3.6 Providing an Overview of Diagnostics and Root-Cause Analysis of Violations 101

Similarly, we can see that the third event e’ is checked against all the three
compliance rules. This event is compliant with the control-flow and resource-
aware compliance rules but it violates the temporal compliance rule. This vi-
olation took place in the first activation of the temporal rule “temporal delay
between two activities”. Its violation is of the type temporal violation, and the
violating value is 6 for the time attribute whereas it should have been a value
in [2,4] interval. Note that the compliant value will always be taken from the
process instance run at the corresponding event.

In this example we have a control-flow violation. This is indicated using the
event eX. Note that this event does not exist in the original log, but was inserted
as an artificial event due to a model-only move in the alignment of Fig. 3.23 at
the respective position. The violation type assigned to this event is ‘missing
event’ and the compliant value is activity name D indicating that D should have
occurred at this moment in the execution. Since this event is just checked for
the control-flow compliance rule, we do not add diagnostics attributes for other
rules in the example.

We see one more violation at the event ef. As is indicated this event violated
the resource-aware “resource-authorization”. The violation occurred within
the first resource-aware rule instance and it has a violation of type resource.
The compliant value for this violation returned by its corresponding alignment
is John’.

Enriching an event log with results of checking a set of atomic compliance
patterns vs. checking a composite compliance model.

Generating an enriched event log as the result of checking a log against a set
of compliance rules that are formalized as atomic compliance patterns requires
combining the results of several alignments together as is shown in Fig. 3.33.
If we formalize a set of compliance rules as a composite compliance model, it
is only required to project the result of one alignment (usually a data-aware
alignment) on the original log. Figure 3.35 illustrates this difference. We will
discuss this difference and its consequences further in Chap. 8.

102 Requirements for Analyzing Compliance

Alignment contains control-
flow, temporal, data, and
resource violations

Insert missing
DetectCF,T,D/R | .| ~rO0T N/R events
!

violations A
Project

diagnostics

u

Figure 3.35: Generating enriched event log with diagnostics based on one overall align-
ment result.

émphaﬂgg_patte} = Alignment S— Classified events
NI 2
(W‘hecking 1

Prepare log m
J

Statistics

Association rules

V\o\a(mg/compham
behavlor patterns

Compliance
constraint

Enrich event log Prowde
violations with di i

Elicit& formalize
compliance rules

Detect comp\iancem

Figure 3.36: Compliance analysis overview.

3.6 Providing an Overview of Diagnostics and Root-
Cause Analysis of Violations

In the previous section we discussed dedicated techniques for checking the com-
pliance of a business process against different types of compliance rules. These
techniques are based on computing optimal alignments between an event log
and the “closest compliant run” according to a formal model of a single compli-
ance rule or a set of compliance rules. Such an alignment reveals the details of
what went wrong per process instance, per rule instance, and per activity and
what should have happened instead. However, these techniques do not provide
further diagnostics on root-cause(s) of a given violation nor a complete picture
about the violations in the entire process. Moreover, the results produced by
these techniques do not address the needs of people who are actually in charge
of assessing and understanding compliance. Analyzing the root cause(s) of vi-
olations is usually done by experienced analysts having in depth knowledge of

3.6 Providing an Overview of Diagnostics and Root-Cause Analysis of Violations 103

the underlying business process. The findings are interpreted typically in an ad-
hoc manner and without leveraging the transparency provided by data analysis
techniques. Consequently this makes it difficult for business analysts to identify
the causes of deviations when it is hidden in large amounts of data. Providing
diagnostics about deviations in a clear and compact way not only helps hav-
ing an up to date awareness of the compliance state of an organization, it also
provides useful information to take operative decisions on how to deal with
non-compliance and how to improve current operation.

Therefore, in our approach we have a dedicated step (Fig. 3.36 after check-
ing compliance) for providing further diagnostics about the detected violations
during compliance checking. The enriched event log obtained from the previous
step is a collection of events that contain all the information about the process
and its violations. We can provide various statistics about the violations in dif-
ferent abstraction levels. We visualize in a table for each attribute (Fig 3.37
top), in what kind of compliance violations it was involved and to which extent.
The proposed color coding allows a user to quickly spot a particular (group of)

F\Log_with'
diagnostics.

Attribute
(e.g., activity)

Violation types
A

Frequency
A

Violation type
Dev.1 Dev.2 Dev.n

Figure 3.37: Statistics in different abstraction levels are built over enriched log with diag-
nostics including frequency of violations in total and per attribute (e.g. per
activity).

104 Requirements for Analyzing Compliance

activities or compliance rules involved in many violations. Selecting an indi-
vidual activity then gives a detailed histogram for all violations of this attribute
(Fig. 3.37 bottom).

Any process mining technique can be used to further investigate this log.
For instance as shown in Fig. 3.38, we can filter the process instances in a log
containing a specific violation and discover a process model that describes them
best and compare it with the model that describes process instances without
that specific violation.

Since we have diagnostics at the level of events and the context that these
events occurred in (i.e., the event attributes and their values), we can also use
other machine learning techniques to uncover causes of a violation. We can use
association rule mining to detect possible meaningful correlations (exemplified
in Fig. 3.39) between certain violations and the context they occurred in. These

Log with
diagnostics

Process instances
compliant with a
specific constraint

Process instances
violating a specific

Filtering on
specific violation

constraint
_ -

Discovery Discovery
algorithm algorithm
(e.g., Inductive (e.g., Inductive

miner) miner)

o=~ Ee O< - 1A 1<—e

Figure 3.38: Discovering process models that describe the behavior of cases violating
a specific constraint compared to those that are compliant w.r.t. that con-
straint.

3.6 Providing an Overview of Diagnostics and Root-Cause Analysis of Violations

105

correlations can help us to predict future violations.

Using classification techniques, we can compare compliant and violating
events (exemplified in Fig. 3.40) w.r.t. their context and identify the conditions
under which a certain violation holds or does not hold.

We have adapted a combination of these techniques for root-cause analysis
of compliance violations in our compliance analysis approach. We combine
these techniques and present them in such a way that end-users are not exposed
to the underlying technicalities. These techniques and the presentation of the

T 7 When .’
is skipped

When — p—

Activit ayment’
v '° v Value > 1000 $ |F——

_—
is Iate
— —
Invoice
Four eyes pnnCIpIe When
is VIoIated

Figure 3.39: Correlations between violations and specific attribute values guide us in
hypothesizing about the causes of violations.

All executions of activity
‘payment’

Value > 100$ Value < 100$

compliant

Resource is
Suzan

Resource
is John

Resource is

compliant Sara compliant

violating

Figure 3.40: Classifying violations and non-violations based on their context help us pre-
dict future violations.

106

Requirements for Analyzing Compliance

results will be discussed in detail in Chap. 7.

Overview of diagnostics and root-cause diagnostics using a set of atomic
compliance patterns vs. a composite compliance model.

The input for providing overview of diagnostics and root-cause analysis of vio-
lations is the enriched event log with diagnostics. Whether we get the enriched
event log as the result of checking an event log against a set of atomic compli-
ance patterns or a composite compliance model does not matter in providing
diagnostics. We can apply our root-cause analysis techniques on enriched event
logs obtained in either way.

3.7 Concluding Remarks

In this chapter we discussed all the requirements for compliance analysis. Our
goal is to understand non-compliance and provide diagnostics about violations.
This goal imposes some requirements on how compliance violations are de-
tected, and how compliance rules are formalized. We discussed our choice to
use alignments as the checking technique that provides us with the type of di-
agnostics that we would like to obtain. We described the checking for differ-
ent compliance rule types including control-flow, temporal, data-aware, and
resource-aware.

We introduced two main approaches for formalizing compliance rules: (1) as
a set of atomic compliance patterns and (2) as a composite compliance model.
Chapters 4, 5, and 6 discuss how to check atomic compliance patterns and
are also expanded to composite compliance models with the limitations on log
preparations and diagnostics that can be obtained.

We sketched our ideas for combining different compliance checking results
to generate an enriched event log with all process and diagnostic information.
This enriched event log then can be used to uncover causes of violations. Gener-
ating an enriched event log with diagnostics using a set of compliance patterns
will be discussed in Chap. 8. The root-cause analysis of violations obtained
using a composite compliance model will be discussed in Chap. 7. The tech-
niques developed and discussed in each chapter are implemented in the Process
Mining Toolkit ProM 6.6 (available from http://www.promtools.org/). The
implementation of the techniques relevant for each chapter is discussed in the
same chapter. Cases to illustrate the applicability of our approach and its impact
in improving business processes are described in Chap. 9.

Chapter 4

Control-Flow Compliance
Checking

In Chap. 3, we showed how one can use alignments for compliance checking
of control-flow compliance rules. In this thesis we chose to formalize compli-
ance rules Petri nets to enable precise detection of compliance violations. This
way we can build on established techniques and tools for Petri nets and align-
ments. In this chapter, we will discuss in detail how to build and use Petri
net constructs for obtaining precise diagnostics on control-flow compliance vi-
olations. Figure 4.1 illustrates how the content of this chapter is organized in
different sections. In Sect. 4.1, we discuss in detail the Petri net constructs and
patterns needed to formalize particular compliance constraints, and how these
constructs then yield particular kinds of diagnostic using alignments. We then
turn to preparing event logs for control-flow compliance checking in Sect. 4.2.
In Sect. 4.3, we discuss results of applying control-flow checking in practice.
In Sect. 4.4, we then explore the problem of actually translating a compliance
constraint given in natural language into a formal model and present a solution
approach in the same section. In Sect. 4.5 we showcase this solution using a
real-life example. In Sect. 4.6, we explain how to build composite compliance
models. We discuss related work in Sect. 4.7 and conclude the main points of
this chapter in Sect. 4.8.

Control-Flow Compliance Checking

108

L1HODISNI

~~—

susa)jed Jomneyaq
jueydwod Bunejoin

=

53IN1 UOHLIOSSY

sonsieIs

@

S)UDAD palyIsse])

/T

RVEINIGIVE

e ——

dueldwod

BuppPayd adueldwod

Bunpay> dUENAWOD -\~ ,
X

JusWUbIY - N

JuSWIYILIUD
boq

sis|eue asned>-}00y

/ \

uone|oIA 607

uoiPdaRp 7 uonesedaid

Buppayp a>uelduwiod mojy-jo13uo))|
T
[Buppayp aueyjdwod [eiodwa] |

T

[Buppayp duelidwiod 321nosas pue ejeq|

195

9y 13

Jo Kioyisoday
' 3SR LY 135

€% 39S
BT PSS
B L'y S

Slomawely
JuleISuod
adueldwo)

juiesysuod
aoueldwod

Figure 4.1: Thesis road map gives the mapping of the sections in Chap. 4 on to our

compliance analysis approach.

4.1 Checking Control-Flow Compliance Rules

109

4.1 Checking Control-Flow Compliance Rules

Category (Rules) Description

Existence (2) Limits occurrence or absence of an activity. [142], [14,
38], [55], [117], [118]

Bounded Existence (6) Limits the number of times an activity must or must not occur.
[38]. [42]

Dependent Existence (6) Limits the presence or absence of an activity with respect to

existence or absence of another activity. [42]

Bounded Sequence (3) Limits the number of times a sequence of activities must or
must not occur. [38], [42]

Parallel (2) Limits the occurrence of a specific set of activities in parallel.
[117]

Precedence (10) Limits the occurrence of an activity in precedence over another

activity. [42], [38], [117], [118], [14], [49], [55]

Chain Precedence (4) Limits the occurrence of a sequence of activities in precedence

over another sequence of activities. [42], [38], [55]

Response (10) Limits the occurrence of an activity in response to another ac-

tivity. [117], [42]. [55]. [38]. [119], [14], [49]

Chain Response (4) Limits the occurrence of a sequence of activities in response to

another sequence of activities. [42]

Between (7) Limits the occurrence of an activity within (between) a sequence

of activities. [38]

Table 4.1: Categorization of the 54 control-flow compliance rules.

Table 4.1 (also discussed in the previous chapter) provides an overview of
54 control-flow compliance rules. This collection is the result of an extensive
literature study [14, 38,42,42,49,49,55,117-119, 142] including compliance
constraints used in practise. These rules are distributed over ten categories.
Each category includes several compliance rules. Categories are formed based
on the type of constraints they include.

Control-flow compliance rules confine the existence, number of executions,
and sequence of execution of activities in a business process. The specifica-
tion of the rules should enable us to distinguish the scope of a rule and its
activations throughout a process instance. In addition, the specification should
precisely exclude compliant and violating behavior. These requirements give
rise to a set of principles while formalizing a rule as an atomic Petri net that
allow us to produce particular kind of diagnostics. We approached this prob-

110

Control-Flow Compliance Checking

lem by formalizing all compliance constraints we found in literature. Through
formalizing these constrains, we developed a set of basic principles that help us
to formalize rules as Petri nets. These are related to counting occurrences of
activities, sequencing activities, excluding activities, and isolating different acti-
vations of a rule into clearly marked rule instances. Next we will present these
basic principles by showing the formalization of a few selected compliance rules
that use these principles. We will both focus on the formal modelling constructs
and how these yield particular kinds of diagnostics. The complete collection of
compliance rules and their formalization is provided in Appendix A.

4.1.1 Example 1: Precedence

The precedence relation between two or more activities is a typical compliance
constraint. Intuitively, it states that some activity B must have already occurred
prior to an activity A, though B can also occur on its own. Rules in Precedence,
Between, Bounded Sequence, and Chain Precedence categories are variants of this
constraint. Specifying a sequence of activities can be expressed easily in a
Petri net by ordering transitions. Yet, there are subtle aspects about each rule
that should be considered in its formalization.

Atomic pattern

To explain the basic principles of formalization, we choose the rule stating:
“Every time activity A is executed, it must be preceded directly by an occurrence
of activity B". If A occurs without a directly preceding B, this rule is violated. For
instance the sequences of activities (B,C,C,B,B,C) and { B,A,C,B,B,A) comply to
the rule, whereas the sequence of activities (B,A,B,C,A) violates the rule. Note
that the stated compliance rule is never activated for the sequence of activities
(B,C,C,B,B,C) because activity A has actually never happened.

The Petri net pattern shown in Fig. 4.2 formalizes this compliance rule. If B
does not occur before A, the rule is violated. An instance of this compliance rule
includes execution of activity A and its preceding B.

The scope of this compliance rule is modelled with the Start and End of
the pattern. As discussed in Chap. 2, we focus on compliance rules constraining
activities within a case. Thus, Start models the start of the case and End denotes
the end of the case. A token in the Final place indicates the completion of a case.
The core behavior specified by the rule is modelled between I;; (denoting
the activation of the rule) and I, (denoting the completion of the rule).
This compliance rule does not limit the number of executions of A but it requires

4.1 Checking Control-Flow Compliance Rules

111

Pattern parameters:
e #..(e) > transition label

Several instances of
B may occur at any therule is allowed

part of the process /

Icmp

A /
The rule instance contains the
core behavior of the rule

Arbitrary occurrences of
other activities are allowed

Figure 4.2: Atomic compliance pattern: Direct precedence.

every occurrence to be preceded by B. In essence the compliance rule can be
activated multiple times within the scope of the rule. Hence, the pattern should
allow for multiple occurrences of a B and A, so that A can only occur if B has
directly preceded it. In the pattern, this is realized by a cycle looping from I,
back to Is; (through an invisible transition) allowing for another activation of
the rule.

Transitions I, I, Start, End, and t are considered invisible, i.e., they are
used for modeling purposes only, therefore skipping them do not refer to a real
violation.

As soon as a B occurs which is followed by A, the rule instance is triggered.
In this situation the rule instance can complete and the pattern may terminate
by firing the transition End.

The pattern also has to allow for all possible compliant behaviors where
other activities than A and B occur, or no A occurs at all. This is achieved by
adding the Q-labelled transition. In Fig. 4.2, the Q-labelled transition models
an arbitrary number of occurrences of other activities that are not specified
in the rule. As there is no Q-labelled transition adjacent to the place P, B directly

112

Control-Flow Compliance Checking

Abstracted Prepared) ‘
event log event log Alignment with
Event Log diagnostics

e
i,

Control-flow
alignment

} Abstract event log JL’ Shorten event log. ‘J >

Petri net
Specification

Figure 4.3: Overview of the control-flow compliance checking methodology.

process instance | p; P1 P1 P1 P1 P1 P1 P1 P1 P1
event ID e; e e ey es = ey eg € e
L [time 1 | 2 | 3| 45| 6 7] 8 9|10
activity name A B B A C D E B B A

Figure 4.4: The example event log.

precedes A (i.e., occurrence of any other activity but A is excluded).

If there is no A or B just occurred, any activity may occur. Since the rule
does not put any restriction on occurrence of activity B, this activity may occur
an arbitrary number of times at any part of the process, also independent of
a rule activation. We realize this in the model of Fig. 4.2, by the B-labelled
transition outside the rule instance.

Checking

Suppose we would like to check the event log presented in Fig. 4.4 against the
precedence compliance rule formalized in Fig. 4.2. In the following we demon-
strate step by step how we do the checking.

Figure 4.3 recalls our methodology to check control-flow compliance rules
from Chap. 3. We prepare the event log in two steps and later detect control-
flow violations using the alignment technique introduced in Chap. 2.

Step 1: Abstracting the event log. First we prepare the event log by generating
the suitable checking attribute. As the activity name captures the occurrence
of activities, we use the values of this attribute to determine which activity
occurred in which position throughout a business process. Therefore, in this
example we take the values for the checking attribute at each event from its

4.1 Checking Control-Flow Compliance Rules

113

process instance | p; P1 P1 P1 P1 P1 P1 P1 P1 P1
event ID e; e, e; ey es € ey eg =) €10

L time 1 2 3 4 5 6 7 8 9 10
activity name A B B A C D E B B A
checking A B B A Q Q Q B B A

Figure 4.5: Abstracted event log obtained from step 1.

activity name.
The abstracted event log obtained from the first step is shown in Fig. 4.5.

The compliance rule specifies occurrences of activities A and B. We set #:pecking (€) :

#qct(e) for any event e where #4.¢(e) is A or B, otherwise we set #cpecking(€) : Q t0
abstract from all events not relevant to the compliance rule. In Sect. 4.2 we give
the full definition of generating checking attributes for control-flow compliance
checking.

process instance | p; P1 P1 P1 P1 P1 P1 P1
event ID e; e es ey e eg =) €10

L time 1 2 3 4 5 8 9 10
activity name A B B A C B B A
checking A B B A Q B B A

Q events deleted but their
position in the log is kept

Figure 4.6: Shortened event log obtained from step 2.

Step 2: Shortening the event log. The checking attribute will be used to map
events in the log to the transitions in the model. As can be seen, the abstracted
event log contains three occurrences of Q in a sequence. Since the rule only
specifies the relation between activities A and B, we can simply substitute three
occurrences of Q with one as this does not influence the compliance of the case
or detection of violations. Yet, it will improve performance while checking be-
cause it reduces the size of the event log. In essence, we abstract long sequences
of events that are not relevant to the compliance rule to shorter sequences. Note
that the order and relative position of compliance-relevant events are preserved

114

Control-Flow Compliance Checking

while irrelevant details are abstracted from. The position and ordering of events
are used during the projection of diagnostics on the original event log. We will

elaborate on this further in Chap. 8.

Figure 4.6 shows the event log that is obtained from this step. There, it is

indicated that two occurrences of Q events (eg, and e;) are removed.

an event is missing (model-only move)

l

L >> >> >> >> >>
checking B
M | transition name | Start | I B lemp T B
% A o .
]] activities outside
first rule instance rule instances
L >> >> >>
checking Q B
M | transition name lst e T Q B
A A
second rule instance
L >> >> >> >>
checking
M | transition name st lemp | T | End
% A

third rule instance

Figure 4.7: Control-flow alignment obtained from step 3.

4.1 Checking Control-Flow Compliance Rules

115

Step 3: Control-flow alignment. We use the prepared event log (abstracted
and shortened) and the atomic pattern of the rule (Fig. 4.2) to build a control-
flow alignment. Figure 4.7 shows a control-flow alignment for this example.

The alignment indicates three activations of the rule (i.e., three rule in-
stances). It also indicates that the violation was observed in the first rule in-
stance; activity A was executed without a preceding B, i.e., according to the
model, the execution of activity B is skipped (model-only move). This is repre-
sented by > value for the log event in the third move. The second and the third
activations of the rule instance are compliant. Note how the definition of rule
instance in the Petri net pattern enables us to locate the violation precisely. In
addition we can determine activities that fall inside the rule instance and those
that fall outside of it (for example two occurrences of B (e, and eg). Finally,
several model moves in the alignment are due to the invisible transitions in the
model (Start, Is; , Icmp, and End). These model-only moves do not refer to any
real violation.

4.1.2 Parameters for Computing Alignments to Influence Di-
agnostic Information

As we discussed in Chap. 2, infinitely many alignments are possible for a log and
a model. We are interested in alignments which maximize the number of “per-
fect matches” between log events and model events. Therefore, we typically
define a notion of optimal alignment using a cost function for moves where
model and log deviate including log-only moves, model-only moves, and incorrect
synchronous moves. We assign a cost-function k to each move (e’,e®). A com-
pliant move has cost 0 and all other types of moves have a cost> 0. The choice
of costs depends on the particular domain and can be set for instance based on
how likely a particular violation is known to happen. By giving frequent viola-
tions fewer costs than infrequent violations, the oracle function a (see Chap. 2)
returns the alignment giving the “closest compliant run” as the best alignment.
In case there are several “best alignments” (i.e., alignments with the same cost),
the oracle picks one of these optimal alignments in a deterministic manner.
The oracle function solves a conformance checking problem. Given a log L
and a model Mod, the oracle returns a run R € Mod and constructs the alignment
A = (L,R,M) with the lowest cost. The A*-based search on the space of (all
prefixes) of all alignments of a log L to a model Mod described in [10,135] can
be used to find the best alignment considering violations of type log-only move,
and model-only move. This approach is extended in [33, 134] to find violations

116

Control-Flow Compliance Checking

of type incorrect synchronous move; an ILP solver finds among all synchronous
moves values for attributes of R such that the total cost of an alignment related
to violations of type incorrect synchronous move are minimized.

Tuning the cost function influences the quality of diagnostics. Assume for the
previous example we assign the cost 0 to compliant moves, cost 1 to violations
of type log-only moves and cost 10 to violations of type model-only moves. In
this case, the technique would return a different alignment than what is shown
in Fig. 4.7 as the “optimal alignment”. That is, our alignment technique would
consider the first occurrence of activity A as a log-only move. This way, two com-
pliant rule instances will be detected and the occurrence of A will be captured as
a violation outside a rule instance. How to select the appropriate cost function
is a problem that is addressed in [134, 135]. We use the same setting for cost
function in the control-flow compliance checking.

4.1.3 Example 2: Bounded Existence of an Activity

In Sect. 4.1.1, we explained the basic steps of formalizing and checking control-
flow compliance rules that constrain the sequencing of activities on the example
of the Precedence rule. In the following, we consider how to constrain the num-
ber of occurrences of an activity.

The Bounded Existence and Bounded Sequence categories of compliance rules,
include rules that limit the repetition of activities or sequence of activities within
a chosen scope. To bound the repetition of a structure (either activities or
sequence of activities), we usually limit the number of times that the struc-
ture is enabled or insert a counter that counts the number of times that a
certain structure has been executed. We will illustrate compliance checking
for such rules by the bounded existence rule “Activity A must occur k times”. If A
is executed less than or more than k times, the compliance rule is violated. For
instance, for k = 2 the occurrence of the sequence (B,C,A,D,B,C,A,D) complies
to this rule and occurrence of the sequence (B,C,A,D,B,C,A,A,D) or the sequence
(B,C,D,B,C,D) violate the rule.

Formalizing as an atomic pattern.

Figure 4.8 shows the atomic pattern that formalizes the bounded existence rule.
Activity A is described by the A-labelled transition. As in Sect. 4.1.1, the pattern
abstracts from all other events in the process that are not specified by the com-
pliance rule through the Q-labelled transition.

4.1 Checking Control-Flow Compliance Rules

117

Pattern parameters:
e #.,(e) > transition label
o k

only one instance of the rule is enabled

k tokens in Py limits
the repetitions
the pattern cannot
terminate unless the rule
instance is completed

counter observes
o) the repetitions

Figure 4.8: Atomic compliance pattern: Bounded existence of an activity exactly k times.

An instance of this compliance rule includes all occurrences of activity A
within a case - in a compliant case A occurs exactly k times. This is realized
in the model of Fig. 4.8 by allowing the rule instance (between I, and Iyp)
to be activated only once during a case (no loop back from I, to Iy). In
addition, the pattern is designed such that the rule instance must be activated
otherwise the pattern cannot terminate. After the pattern started any activity
may be executed. The first occurrence of A triggers the rule instance. As soon as
activity A occurs k times, this rule is satisfied, i.e., the condition of this rule is
complete.

The pre-place P;. of A is initially marked with k tokens. The k tokens in
place P; assure that activity A can occur at most k times, as each occurrence of
A decrements the number of tokens in P and increments the number of tokens
in place Count. Place Count counts the occurrences of A. After k occurrences

118

Control-Flow Compliance Checking

process instance | p; P1 P1 P1 P1 P1 P1 P1 P1 P1
event ID e, e, es ey es € e eg = (=309

L time 1 2 3 4 5 6 7 8 9 10
activity name A B B A C D E B B A
checking A Q Q A Q Q Q Q Q A

Figure 4.9: Abstracted event log obtained from step 1.

of A, Py is empty and Count contains k tokens. In this situation transition A is
not enabled anymore. The compliance rule is satisfied and the pattern instance
is completed (Icp). The pattern can terminate only if the pattern instance is
completed implying that the condition of the rule is satisfied. The transition End
models that the end of the process instance has been reached. Please note that
Q-labeled transition is enabled throughout the whole pattern and may occur at
any point in time.

Checking

We check also for this example whether the event log (shown in Fig. 4.4) ad-
heres to the rule (formalized as the pattern shown in Fig. 4.8). Similar to the
previous example we go through the three steps shown in Fig. 4.3 to check this
rule.

Step 1: Abstracting the event log. The compliance rule specifies occurrences
of activity A, therefore wherever an event has value A for its activity name we
copy the same value as the value for its checking attribute. Otherwise we record
the generic value Q as value for the checking attribute. The abstracted event
log obtained from the first step is shown in Fig. 4.9.

Step 2: Shortening the event log. Similar to the previous example, we shorten
the event log to remove events that are not required for checking. Figure 4.10
illustrates the event log that is obtained from this step.

Note that the position of the removed Q events is kept (between e, and ey,
and between e5 and ejp). We need this information when we enrich the original
event log with the obtained diagnostics. This will be elborated in Chap. 8.

Step 3: Control-flow alignment. We align the shortened event log with the
Petri net pattern of this rule (Fig. 4.8). The resulting alignment is shown in
Fig. 4.11.

4.1 Checking Control-Flow Compliance Rules 119

process instance | p; p1 p1 p1 p1
event ID e e, e, ese
L time 1 2 4 5 10
activity name A B A C A
checking A Q A Q A
A A

Q events deleted but their
position in the log is kept

Figure 4.10: Abstracted event log obtained from step 2.

checking A Q A Q A
M | transition name | Start| | A Q A lemp Q >>

|

event is not allowed
(log-only move)

Figure 4.11: Control-flow alignment obtained from step 3.

The alignment shows one activation of the compliance rule instance. The
first two occurrences of A are compliant but the third A cannot be executed
according to the model. This is denoted (in red) as a log-only move in the
alignment.

The obtained alignment locates a violation in the event log and it also indi-
cates what should change to make the event log compliant. Later during the log
enrichment we project these diagnostics on the events of the original event log.

4.1.4 Example 3: Simultaneous Occurrence of Two Activities

So far we presented rules and their respective Petri net patterns assuming that
occurrences of activities are captured as atomic events in event logs. However,

120

Control-Flow Compliance Checking

Pattern parameters:
e #..(e) > transition label

By Bamp
Acmp

T lemp

Initial

Final

Bemp

Figure 4.12: Atomic compliance pattern: Simultaneous occurrence of two activities.

some activities may be captured by more than one event. For instance the ex-
ecution of an activity may be captured by two events denoting the start and
completion of execution of the activity. All the Petri net patterns that are listed
in Table 4.1, based on the setting, can be formalized in these different flavours.
The next example demonstrates a compliance rule in this way. This example
shows how intricate ordering constraints can be formalized using Petri nets in
an intuitive way.

The parallel category of compliance rules include compliance rules that limit
the occurrence of an activity in parallel with or during another activity. In case
of ongoing activities, they may overlap in time. Some compliance constraints
may require simultaneous occurrences of activities. For example the adminis-
tration of a specific medicine to a patient during a surgery. In this section we
show, by example, how we model and check such a compliance rule.

We pick the simultaneous compliance rule from the parallel category stating:
“Activity A must always occur simultaneously with activity B”. In this case we
need to capture and model the start and completion of activities separately.
Therefore, we represent start and completion of activity A with two different
transitions. Similarly activity B should be presented.

Atomic pattern

The Petri net pattern shown in Fig. 4.12 describes this rule. If A starts B should
also start, i.e., activity A cannot complete unless B has already started. Similarly

4.1 Checking Control-Flow Compliance Rules

121

process instance | p; P1 P1 P1 P1 P1 P1 P1
event ID e e e e, es [e eg

L life cycle sched| st st | cmp | cmp |sched| st st
time 1 2 3 4 5 6 7 8

activity name A A B B A A B A

process instance P1 P1 P1 P1 P1 P1 P1 P1
event ID €9 €10 €11 €1 €13 €14 €15 €16
L life cycle ...| cmp | cmp |[sched| cmp | st | cmp | st | cmp
time 9 10 11 12 13 14 15 16

activity name B A A D A A B B

Figure 4.13: An event log where activities have life-cycle attributes.

if start of the activity B activates the pattern instance, it is required that activity
A also starts. The pattern enforces - by construction - that the activities A and B
must complete together otherwise the pattern instance cannot complete, hence
the pattern may not terminate. Please note that Q-labeled activities and B may
occur outside the rule instance and throughout the pattern. The pattern allows
for multiple activations of the rule. The transition End models that the end of
the case has been reached and the pattern may terminate.

Checking

Figure 4.13 exemplifies an event log recorded in a setting where execution of
activities are captured with more than one event. As can be seen, events in
this log have an extra attribute life cycle which denotes the start, completion
or in general status of activities. For instance we observe that occurrences of
activity A iare presented with three different events scheduled (sched), start (st),
and complete (cmp) and activity B is presented with two events start (st), and
complete (cmp). We would like to check this log against the rule (shown in
Fig. 4.12).

Step 1: Abstracting the eventing log. Similar to previous examples, the first
step in log preparation includes the choice of the checking attribute and abstrac-
tion of the event log accordingly. When the execution of activities are captured
by several events, merely the values of attribute activity name do not suffice to
distinguish whether an event is referring to start or completion of that activ-
ity. Therefore, we combine values of activity name, and activity life cycle for the

122

Control-Flow Compliance Checking

process instance | p; P1 P1 P1 P1 P1 P1 P1
event ID e e es e, es € e, eg

L life cycle sched| sty st | cmp | cmp [sched| st st
time 1 2 | 3 4 5 6 7 8

activity name A A4 B B A A B A
checking Q A Bst | Bemp | Acmp Q Bt Ay

values of activity name and life cycle attributes
are combined for the checking attribute

process instance P1 P1 P1 P1 P1 P1 P1 P1
event ID €9 €10 €11 €12 €13 €14 €15 €16
L life cycle cmp | cmp [sched| cmp | st [cmp | st | cmp
time 9 10 11 12 13 14 15 16

activity name B A A D A A B B
checking Bemp | Acmp Q Q Ast | Acmp | Bst | Bemp

Figure 4.14: Abstracted event log obtained from step 1. Values of activity name and life
cycle attributes are combined for the checking attribute.

values of the checking attribute.

Figure 4.14 illustrates the abstracted event log obtained form this step. Note
that the checking attribute will get the value As; when activity name: A, and
activity life cycle: start (st), and it gets the value A.;;, when activity name: A,
and activity life cycle: complete (cmp). Similarly values of By, and B¢, for start
and completion of activity B is generated. The remaining events get the value
Q including the events related to activity A when life cycle: scheduled (sched).
Although this event is related to activity A, it is irrelevant for checking of the
rule, hence we will abstract from it.

Step 2: Shorten the event log. This step can be done as shown in the previous
example. The event log obtained from this step is shown in Fig. 4.15.

4.1 Checking Control-Flow Compliance Rules

123

process instance P, P, | Py Py P4 P, P, | Ps
event ID e, e, | e; e, es €6 e; | eg
L life cycle sched| st | st | cmp | cmp [sched| st | st
time 1 2 3 4 5 6 7 8
activity name A A B B A A B A
checking Q | Ag | Byt | Bemp | Acmp | Q Bs: | A
process instance P, | Py P4 P, Py P, | Py
event ID e | e | en e3 €11 | €15 | €15
L life cycle _[cmp|cmp sched| st | cmp | st |cmp
time 9 (10| 11 13 14 | 15| 16
activity name B A A A A B B
checking Bt |Acmp| Q As | Acmp | Bst | Byt

e,, is deleted during the
shortenning of the event log.

Figure 4.15: Shortened event log obtained from step 2. The event e is deleted during
the shortenning of the event log.

Step 3: Control-flow alignment. Figure 4.16 illustrates an alinement of the log
to the Petri net pattern of this rule. The alignment indicates three activations
of the compliance rule (i.e. three instances of the rule). Two of these instances
are compliant (the first and the second one) and the third instance is violating.
It is indicated in the third instance of the compliance rule that activity A is
completed before activity B starts. Therefore, we observe first a violation of
type log-only move and later a violation of type model-only move (indicating that
Acmp occurred in a wrong position).

124 Control-Flow Compliance Checking

process instance pP1 P1 P1 P1 P P1
event ID e, e, e; ey es €g
life cycle o sched o st st o> |.CMP | cmp |] sched
time 1 2 3 4 5 6
activity name A A B B A A
Checking Q Ast Bst chp Acmp Q
transition name | Start| Q lst Ag B T Bemp [Acmp | lem Q
process instance (o2} P1 P1 P1 P1
event ID ey eg €9 €10 €11
life cycle o st st os |CMP | cmp |] sched
time 7 8 9 10 11
activity name B A B A A
checking Bst At Bemp | Acmp Q
transition name [Byt At T | Bemp | Acmp | lem Q
process instance [} P1 P1 P1
event ID €13 €14 €15 €16
life cycle st cmp st cmp
fime | B w1521 7|27
activity name A A B B
Checking Ast Acmp Bst Bemp
transition name It Aqt >> Bst T Bemp | Acmp | lemp | End

T !

Acmp Occurred in a wrong position

Figure 4.16: Control-flow alignment obtained from step 3.

4.1 Checking Control-Flow Compliance Rules

125

4.1.5 Principles of Designing Atomic Compliance Patterns

The compliance patterns we discussed previously merely serve as a few sim-
ple examples from our much larger collection of control-flow compliance rules.
Using the Petri net structures we discussed earlier, we can model many more
intricate compliance rules. The complete collection of these rules is presented
in Appendix A. Regardless of the underlying compliance rule, all the atomic pat-
terns in our collection follow some systematics and basic principles that were
partially discussed for the showcased examples. The complete explanation is
available in Appendix A. In the following we briefly list some of the principles
in designing an atomic compliance pattern.

« Each atomic compliance pattern has a dedicated place Initial and a place
Final. See for example Fig. 4.2.

¢ A token in the final place defines the final marking of the pattern. When
a pattern reaches its final marking, the pattern is properly completed
(i.e., all other places of the net is empty).

« Every compliance pattern models a rule instance. The rule instance starts
as soon as an event occurs which triggers the underlying condition of the
rule. The rule instance completes as soon as its condition is satisfied. See
for example Fig. 4.2.

e The I;-labeled transition in every atomic pattern indicates the start of a
(rule instance) and the I.,,p-labeled indicates the completion of an rule
instance. See for example Fig. 4.2.

¢ A process instance (case) in a log complies to a (rule of a) pattern if after
executing that case, final transition End is enabled, and its occurrence
leads to the final marking.

o Start-labeled, End-labeled, I;-labeled, Icpp-labeled, and t-labeled transi-
tions are silent transitions. In finding an optimal alignment between a
log and a compliance pattern, the ‘alignment based technique’ of Chap. 2,
assigns the cost of zero for deviation of these transitions.

« X denotes the set of transition names for each atomic pattern. Depending
on the choice of compliance rules, it may include elements describing start
and completion of activities. See for example Fig. A.32.

126

Control-Flow Compliance Checking

L]

Occurrences of event(s) specified in the compliance rule are mimicked
by transitions in the pattern having the same label as the values for the
checking attribute.

Occurrences of any other events than the event(s) specified in the compli-
ance rule are mimicked by the Q-labeled transition. This way, the patterns
abstract from all other log events that are not described in the compliance
rule. Suppose a compliance rule restricts the occurrences of three specific
events A, B, and C; hence ¥ = QU{A,B,C} and Qni{A,B,C} = @.

In some patterns we need to exclude the occurrence of one specific event
from the events that may occur in a marking, therefore we subtract that
specific element from X. Suppose we need to exclude occurrence of a
compliance-relevant activity A € £\ Q at a marking; this is shown as X\
{A}, specifying that any event but A may occur at that marking. See for
example Fig. A.32.

Typically an occurrence of an activity A is represented as an atomic event
A in the log. In some patterns, the respective compliance rules require to
model the start and completion of activities in the Petri-net patterns. Any
activity, e.g. an activity A can also be represented by two events Ag;qrs (Ast)
and Acompiere (Acmp) indicating the start and completion of an ongoing
activity. Therefore, all atomic patterns of our collection rules come in
these two flavors and can be picked based on the setting. See for example
Fig. 4.12.

Arcs in patterns may have weight, the arc weight specifies how many to-
kens are consumed or produced as a result of firing a transition. If the arc
weight is greater than one, the respective arc is annotated with the weight
(i.e., a natural number); otherwise, it is assumed to be one.

In some patterns a reset arc connects a place with a transition. Usually
we use reset arcs to limit the number of executions of an activity to an
upper boundary. This arc ensures that when the corresponding transition
fires all tokens are consumed from the respective place (even if it con-
tains no token). We usually use reset arcs to consume all tokens from the
net, thereby guaranteeing that after firing End, no transition is enabled
anymore and the net is empty. See for example Fig. A.11

In some patterns we connect a place to a transition with an inhibitor arc.
Usually we use inhibitor arcs to limit the executions of an activity with

4.2 Generating the Checking Attribute and Its Values

127

a lower boundary. An inhibitor arc ensures that corresponding transition
can only fire if the place at the other end of the inhibitor arc is empty. See
for example Fig. A.13

Every compliance pattern must allow for all possible compliant behaviors
and exclude only what is specified as non-compliant by the underlying
rule.

4.2 Generating the Checking Attribute and Its Val-

ues

As we described the checking procedure for all the previous examples, the first
step in preparation of an event log comprises the generation of the checking
attribute and its values. We described earlier how this task is done in various
situations. Here, we would like to describe the preparation step in a more
generic way based on the definitions we gave in Chap. 2.

Given Attr as the set of all possible attributes, Val as the set of all possible
attribute values, and & as the set of all events:

The user picks the single attribute checking € Attr.

The user picks a set of attributes ay, ..., ai € Attr with k =1 from which the
value of the checking attribute is generated.

Va; () = {#y,(e)le € &}.

For each attribute a; with 1 < i = k, the user picks a set of values V; such
that V; c Val and V; € V4, (B).

if (#ay (€),#a,(0), ..., #q,(€) € Vi ... x Vi, then

* #checking(€) =#q,(€) +...+#g.(e),

. else #checking(e) =Q.

The values of the checking attribute can be mapped to transition names in
the atomic pattern for the checking. For example in Sect. 4.1.4:

The user picks the set of attributes {activity name, life cycle}, and

the set of values {A,B,st,cmp}.

128 Control-Flow Compliance Checking

o If #activity name(€)#life cycie(€) € {A,B,st,cmp}, then

* #checking(€) € {Ast, Acmp) Bst) Bemp}
. else #checking(€) = Q

values for the checking attribute was generated from concatenating values
of attribute activity name and life cycle. The user picks the attributes to

4.3 Applying Control-Flow Compliance Checking Us-
ing Real-Life Event Logs

We have evaluated our control-flow compliance checking technique on a real-
life log taken from the financial system of a large Dutch hospital. The log con-
tained over 150000 events from over 700 different activities in 1150 cases. Each
case representing a patient. The log was obtained from financial system of the
hospital in the period of 2005 to 2008. Beside anonymizing the log, all other
data in the log is preserved including activity names, involved resources, and
etc. We first describe the implementation used in this evaluation and then report
on some relevant compliance rules and the results we obtained for them.

4.3.1 Implementation in ProM

The presented technique was implemented as part of the Compliance package
of the Process Mining Toolkit ProM 6.6. The Check Compliance Using Confor-
mance Checking plugin takes a log and a rule formalized in terms of a Petri net
pattern as input. For each rule to check, the user then configures its parameters,
mostly by mapping events to transition names of the rule. The log preparation
is done at the back end accordingly. Then the alignment technique (Chap. 2) is
called to align the log to the rule’s Petri net pattern. The resulting alignment is
shown to the user. The alignment for each process instance is shown in a sepa-
rate row and deviations are highlighted. A log-only move indicates that an event
occurred which did not comply to the rule. A model-only move indicates that
an expected event did not appear in log and therefore the log does not comply
to the rule. Several figures in the next section show these diagnostics. Fig-
ures 4.17 and 4.18 show some functionalities of the Check Compliance Using
Conformance Checking plugin.

4.3 Applying Control-Flow Compliance Checking Using Real-Life Event Logs 129

B ProM UlTopia - olEd

Proll 6

Actions

net

g imported from CompleteLo. g Conformance Checking

Check Compliance Using Conformance
Checking plugin takes an event log and a
Petri net pattern as input.

Figure 4.17: Mapping transition in the compliance pattern to events of the log.

B ProM UlTopia - OEN

Mapping tra the compliance
pattern to the events in the log.

o Finish

Figure 4.18: Mapping transition in the compliance pattern to events of the log.

130

Control-Flow Compliance Checking

4.3.2 Case Study Constraints and Results

In the case study we followed the standard use case for compliance checking
(See compliance life cycle in Fig. 1.3): (1) check relevant regulations and elicit
respective compliance constraints, (2) for each constraint, identify the patterns
that precisely express the constraint from the rule collection in Table 4.1, (3)
take the corresponding atomic pattern from our pattern collection in Appendix A
and map its transitions to the events in the given log, and (4) run the compliance
checker.

In the following, we describe our findings for three compliance constraints
that were derived from the financial department’s internal policies and medical
guidelines.

Compliance Constraint 1. “The hospital should register each visiting patient
and prevent duplicate registrations for a patient.” This constraint is formalized
by the compliance rule “Event patient registration should occur exactly once per
case.” from the category ‘Bounded Existence’ of Table 4.1. The pattern shown in
Fig. 4.19 formalizes this rule (the pattern was discussed earlier in this chapter,
see Sect. 4.1.1). To obtain a reliable result, we needed to filter the data for
patients who started their treatment between 2005 and 2008, i.e., to make sure
we do not make any conclusion on partial cases that started sometime before
the analysis period. We checked compliance for 640 of 1150 cases and identified

Pattern parameters:
o #,.(e)> transition label
o K=1

Start ot Cf Count lmp End

Initial Final

Patient
registration

Figure 4.19: Activity X-ray must be executed at least once per case.

4.3 Applying Control-Flow Compliance Checking Using Real-Life Event Logs 131

622 compliant and 18 non-compliant cases.

Figure 4.20 shows diagnostic information for a non-compliant case. As de-

scribed above, ProM maps the log on to the compliance-influencing events: pa-
tient registration occurs twice, where the first occurrence is considered as com-
pliant (highlighted green) and the second one should not have been in the case
(highlighted yellow, move on log).
Compliance Constraint 2. The patients are sent to the hospital for specialized
treatment. Therefore a basic X-ray scan has to be performed after a patient
was registered. This constraint is formalized by two rules: “The event ‘patient
registration’ should be followed by the event X-ray.”

The atomic pattern formalizing this rule is shown in Fig. 4.21. The rule
specifies that activity patient registration must be followed eventually by X-ray.
More executions of activity X-ray is also allowed.

Figure 4.22 shows an example of a non-compliant case w.r.t. this rule. It
is indicated that activity X-ray was executed in a wrong position before the
execution of activity first visit registration (first violation), while it was expected
to occur afterwards (this is denoted by the second violation). In total we found
104 out of 640 cases compliant with this rule.

Compliance Constraint 3. “For safety reasons, either a CT-Scan or a MRI-test
of an organ should be taken from a patient but not both.” The corresponding
compliance rule from the Exclusive category has the atomic pattern of Fig. 4.23.

We checked this rule and identified 1092 compliant cases out of 1150. Fig. 4.24
shows diagnostic information for one non-compliant case. The relevant se-
quence of events for this case is (... MRI-test, CT-scan ...). The occurrence of

Patient registration
Start Ist | lemp End

Case 1D:5390221

Figure 4.20: A non-compliant case: activity patient registration should have occurred
exactly once.

132

Control-Flow Compliance Checking

Pattern parameters:
o #..(e) > transition label X-ray

L]

It

Patient Final

registration

[]

Q

Figure 4.21: Activity patient registration must be followed by activity X-ray.

MRI together with CT-scan is a violation.

Although the health care process analyzed was quite complex and diverse,
using our technique we could abstract from the complexity and focus on the
specific rules. Altogether, we could identify all deviating cases from the given
compliance rules in the real-life log. Furthermore, we could precisely locate
the violations in the process and demonstrate what should have happened to
compensate the observed violation.

4.4 Elicitation of Formal Compliance Rules

Earlier in this chapter and in Chap. 3, we discussed the necessity of specifying
compliance constraints precisely. In practise, compliance constraints are often
described in natural language which makes automated compliance checking a
difficult task. In addition, the descriptions of these constraints incorporate do-
main specific terminology, as well as structure and definitions. With the goal
to facilitate the automated compliance checking, we already collected a com-
prehensive collection of control flow compliance rules which allows to formally
capture a large set of compliance constraints (these rules are listed in Table 4.1
and their formalization can be found in Appendix A). Yet when instantiating any
of these rules in context of a specific business process, many details and subtle
aspects should be considered such that the rule exactly specifies the behavior
intended by domain experts.

4.4 Elicitation of Formal Compliance Rules

133

Case 1D:743415

Figure 4.22: An example of a non-compliant case. Activity X-ray is executed in a wrong
position.

In the following, we first illustrate the problem on a concert example and
then present an approach to help domain experts elicit compliance rules.

4.4.1 The Gap Between Informal Compliance Rules and For-
mal Specification

Consider the compliance constraint that we discussed in Sect. 4.3.2. This con-
straint is obtained from internal policies of a specialized hospital stating: “For
every patient registered in the hospital an X-ray must be taken”.

Our interpretation of this constraint led to the formalized form of this rule
shown in Fig. 4.21. This pattern enforces that patient registration must be fol-
lowed eventually by activity X-ray. Other activities may occur an arbitrary num-
ber of times during the case. Activity patient registration may occur only once.
Activity X-ray may be repeated several times.

However, the rule given above could also be interpreted slightly differently.
For example, Fig. 4.21 allows other activities to occur before patient registration
but one could also have interpreted the rule differently and require that patient
registration is the first activity in the case. This alternative interpretation is
be formalized by the model in Fig, 4.25. There is yet another interpretation
possible: activities other than patient registration and X-Ray are only allowed to
occur outside the rule instance as formalized in Fig. 4.26. As a side-effect, it

134

Control-Flow Compliance Checking

Pattern parameters:
e #..(e) > transition label

Start

Initial@—-l

End

CT-Scan

CT-Scan

Figure 4.23: Either CT-scan or MRI test must be taken for a patient.

also enforces that activity X-ray to be executed directly after patient registration.
Although the constraint seems very straightforward, it is important to de-
cide about some details during the formalization, independent of the chosen
formalization: e.g. , (1) whether patient registration should be directly followed
by X-ray or other activities may occur in between the specified sequence; (2)
whether it is allowed that other activities occur before patient registration or a
patient cannot receive any treatment without registration; (3) whether a patient
can be registered several times and if yes; (4) should the specified sequence be
followed every time; (5) whether it is allowed that the specified sequence never
occurs, i.e., if it is allowed that a patient is never registered. Note that decid-
ing about any of this details may change the result of checking and some cases
evaluated initially as compliant, may become non-compliant or vice versa.
Consequently technical experts may need to invest considerable effort choos-
ing a rule description and its formalization and check whether the recorded pro-
cess executions conform with it, only to later determine that the property has
been specified incorrectly, because in the step from natural language to precise
formalization many subtle aspects of the constraint have to be considered.

4.4 Elicitation of Formal Compliance Rules

135

CT-Scan
lempEnd

Start s

Case 1D:9597401

Figure 4.24: An example of a non-compliant case. Activities MRI and CT-scan both are

executed within a case.

Interpreting an informal rule with all its details can be surprisingly difficult
and must be done by domain experts who are usually less familiar with the
different formalisms. Therefore, an approach is required to hide the complexity
of the formalization from business user and at the same time support automated

compliance checking.

Pattern parameters:
o #,(e)> transition label

Initial

Patient
registration

X-ray

Figure 4.25: The pattern enforces that a patient must be registered before receiving any

treatment.

136 Control-Flow Compliance Checking

4.4.2 A Methodology for Eliciting and Configuring Formal Com-
pliance Rules

Numerous researchers have developed specification patterns to facilitate con-
struction of formal specification of compliance constraints. Feedback indicates [66]
that these patterns are considered helpful but they fail to capture subtle aspects
of a specific constraint. In addition, adaption and application of these patterns
are not trivial for many practitioners as they are less familiar with the underly-
ing formalization.

To address the gap between informal constraints and formal compliance
specifications, we propose an interactive approach for using tacit knowledge
of domain experts to specify compliance constraints. Our approach aims at
(1) enabling business users and compliance experts to specify compliance con-
straints as atomic Petri net patterns and (2) encouraging them to think about the
subtle aspects of their intended behavior when specifying a constraint. We de-
velop a ‘question and answer’ approach based on “disciplined" natural language.
Such an approach is also used in property specification for software develop-
ment in [26,96,123] and is a suitable candidate for compliance specification.
The key components of our approach are question trees, and generic configurable
compliance patterns.

The atomic compliance patterns we discussed earlier in this chapter and
in the previous chapter describe a specific compliance rule precisely and in a
compact way. Various atomic patterns may have common constraints but dif-

Pattern parameters: Patient
o i#,a(e) > transition label X-ray registration

Patient Final

registration

Figure 4.26: The pattern enforces multiple registration of a patient and direct sequence
of patient registration followed by X-ray.

4.4 Elicitation of Formal Compliance Rules

137

fer in subtle aspects. Configurable compliance patterns are pre-formalized in
configurable Petri nets and capture common compliance constraints. As men-
tioned, we have developed a repository of configurable compliance patterns
that is listed in Appendix A. Every of such pattern allows for alternative vari-
ations of a compliant behavior. Selecting an appropriate configurable pattern
and configuring it for its configuration options are done interactively with users
and will result in a specific atomic compliance pattern that can be used then for
compliance checking.

In this section, we explain how our approach can help practitioners elicit
a control-flow compliance rule by making informed choices between different
variations of a rule and formalize it as an atomic compliance pattern. Fig. 4.27
gives an overview of our approach for compliance specification. This approach
is built upon a repository of configurable compliance patterns.

/ .\ \
N
/ \ Questions for Selecting
> a Configurable
- ..\ Compliance Pattern
[] o
[] |)
I:I Configurable
Compliance Pattern
Configurable Compliance \

N
Pattern Repository /‘\
o
/ \ . Questions for
@

Configuring a Pattern
o \
.
B

|)

-
Atomic Compliance | C&

Pattern |

Figure 4.27: Control-flow compliance rule elicitation and formalization overview.

138

Control-Flow Compliance Checking

4.4.3 Configurable Compliance Pattern Repository

The collection of control-flow compliance rules that is listed in Table 4.1 con-
tains over 50 rules. Considering subtle variations of each of these rule, the
number of rules will increase rapidly. To help the user selecting the right rule
and a precise variation of a rule, we consolidated the compliance rules by merg-
ing similar rules (that differ in variations of subtle semantic aspects) into one
configurable compliance pattern that is easier to describe in general terms. Con-
solidating similar rules into a configurable pattern is done manually following
a generic approach. We first define a core behavior for the configurable pat-
tern and then extend the core behavior with all possible configuration options.
These configuration options allow us to define different variations of a compli-
ance constraint. The idea is that a user first picks a general configurable pattern
with all its configuration options and then configures it w.r.t. various subtle as-
pects.

Consolidating and organizing compliance rules in a repository.

The configurable compliance pattern repository is built upon the collection of
control-flow compliance rules listed in 4.1.) We consolidated these rules by
merging similar rules into a configurable pattern to eliminate redundancies and
allow for specifying different variations of a rule. A configurable compliance
pattern is a configurable Petri net which describes a group of compliance rules in
a concise way. Originally configurable process models [108,137] were proposed
to describe variants of a reference process. Here, we are applying the concept
to describe variants of compliance constraints.

Every configurable compliance pattern is parameterized and formalized in
terms of Petri nets with a core component. This core structure enforces a core
behavior (e.g. a sequence). In addition a pattern has several other components
which determine variations of the core behavior. The core behavior enables a
clear distinction between commonalities shared among compliance rules in one
category and variability.

To consolidate the rules in Appendix A, we studied rules which share a com-
mon behavior. We kept the core component in a configurable pattern and added
all possible configuration options to it. The resulting configurable pattern can
describe all the original rules it is derived from, and many more because of the

IThe formalizations of these rules in terms of atomic Petri net patterns are available in Ap-
pendix A.

4.4 Elicitation of Formal Compliance Rules

139

Pattern parameters:
e i#..(e) > transition label

|cmp

IS[
Initial @+O—>D—>O—>D—>O—>I—>O Final

Patient X-ray
registration

Figure 4.28: Sequence of patient registration and X-ray.

new possible combination of different configuration options. The configurable
patterns are sound by design.

Please recall the example given earlier in Sect. 4.3.2. The Petri net pattern
shown in Fig. 4.28 formalizes the core behavior of the requirement of this ex-
ample.

The core of the rule is formalized in the hachured part between transitions Is;
and I, which represents an instance of the compliance rule. The rule becomes
active when I, fires and it is satisfied when I.,,, fires. The core structure of the
pattern enforces: if patient registration occurs then it must be followed by X-ray.
If we want to add other options to the behavior specified in the this pattern, we
need to add some more components to the pattern and build a configurable
pattern out of it.

The configurable pattern shown in Fig. 4.29 is parameterized over the activ-
ity names such that activity A is Patient registration and activity B is X-ray. The
configurable pattern allows for defining variations of the core behavior and by
blocking or activating a component we can extend or limit admissible behavior.
In the following we will explain the components of the configurable pattern in
Fig. 4.29 and explain how blocking or activating a component can change the
behavior of the pattern.

e Comp.1 (Q): Activating this component allows for occurrences of other
activities after the specified sequence.

e Comp.2 (Q): Activating this component allows for occurrence of arbitrary
other activities in between the sequence (Patient registration, X-ray) and
blocking this component enforces that activity patient registration must be
followed directly by X-ray.

140

Control-Flow Compliance Checking

Pattern parameters: P]
8 Blocking
o #..(e) > transition label a =
Comp.4
iii
Comp.3 Comp.2 Comp.1

Q

Q
Start ﬁ ﬁ
Initial It lemp End,
. Final
Final (&) A B
ﬁ
A

End,
Comp.5

Comp.6 Comp.7 Comp.8

Figure 4.29: Configurable sequence of Patient registration and X-ray.

Comp.3 (Q): Activating or blocking this component, enforces that other
activities may occur before patient registration or not.

Comp.4 (t): Activating or blocking this component allows that the se-
quence (Patient registration, X-ray) occurs multiple times in a case or
not.

Comp.5 (Endy): Activating this component allows that the specified se-
quence { Patient registration, X-ray) never happens for a patient and block-
ing it enforces at least one occurrence of the specified sequence.

Comp.6 (A): Activating or blocking this component allows that several
registrations of a patient can be followed by one execution of activity X-
ray or not.

Comp.7 (A): Activating or blocking this component allows that after occur-
rence of the sequence (Patient registration, X-ray) a patient gets registered
without a following X-ray or not.

4.4 Elicitation of Formal Compliance Rules

141

e Comp.8 (B): Activating or blocking this component allows that activity
X-ray occurs independently from the specified sequence of (Patient Regis-
tration, X-ray) or not.

When designing a configurable compliance pattern, we abstract from con-
crete examples and consider all possible configuration options. The configura-
tion options we address in our approach include: activating, blocking a transi-
tion, an arc or a group of transitions and arcs. In addition, we consider config-
uring arc weights.

By developing configurable patterns, we could eliminate redundancies in a
compliance rule family and reuse the commonalities, thus decreasing the num-
ber of patterns to 22 configurable compliance patterns having 0-38 configura-
tion options each. This way, over 1000 different compliance patterns can be
derived (including the original 50 patterns) through picking different config-
uration options. The 22 configurable patterns are shown in Appendix C. The
configuration will result in an atomic compliance pattern that can be used for
compliance checking using the technique described in Sect. 4.1.

4.4.4 Question Tree

In order to enable domain experts to specify the intended behavior of a compli-
ance constraint, we apply an interactive question and answer based approach.
We aim to guide users to select an appropriate configurable compliance pattern
and elaborate on how to configure its configuration options such that it repre-
sents the intended behavior. Thus we apply a Question Tree (QT) representation
which is basically a decision tree and its content is based on disciplined natural
language.

We apply two distinct question trees (see Fig. 4.27); a set of questions which
guide the user to select a specific configurable compliance pattern and a set of
questions which are asked to resolve different configuration options of it in
order to specify details of intended admissible behavior.

Questions to Select a Configurable Compliance Pattern.

The QT of the first phase breaks the problem of deciding which configurable
pattern is most appropriate by asking users to consider only one differentiating
criteria at a time which finally leads to choice of a configurable pattern. In this
phase, QT has a hierarchical structure and this structure supports the separation
of concerns, only presenting a question to the user that is relevant in context of

142

Control-Flow Compliance Checking

A Which activities are constrained by the rule? I— Activity patient_registration must be followed by activity X_ray.
One activity A Is it allowed that the sequence <(patient_registration) (X-ray)>
occurs more than once in a trace?
Two activities: patient_registration and X-ray
|_ Yes. The sequence <(patient_registration) (X-ray) > may occur
Choose the type of limitation you would like to exert. several times in a trace.
Dependent existence No. The sequence <(patient_registration) (X-ray)> must not

occur several times in a trace.
Bounded existence
Is it allowed that other activities occur in between

Sequence of occurrence sequence <(patient_registration) (X-ray)>?

|— Are the activities you would like to restrict structured or atomic? N
I— Is it allowed that a trace starts with activity X_ray?
are represented with two different events) Yes. A trace may start with activity X-ray.

The activities are atomic (only one event represents
occurrence of every activity)

|: The activities are structured (start and completion of activities

No. Traces must not start with activity X_ray.

I_ Is it allowed that after sequence <(patient_registration) (X-ray)>,
ion ?

Please specify the limitation you would like to exert. activity X_ray occurs i from patient_

Questions for Selecting a Configurable Compliance Pattern
Questions for Configuring a Selected Pattern

Activity patient_registration must be followed by

activity X_ray. Yes. After occurrence of sequence <(patient_registration)

(X-ray)> activity X_ray may occur independently from
\ Activity X_ray must be preceded by activity patient_registration.
patient_registration.

v No. Activity patient_registration must never occur without
afollowing X rav.

Figure 4.30: QT-phasel (left), QT-phase2 (right).

their previous answer. A new question that can be revealed after answering a
given question is a child question of that previous answer; the previous question
is the parent question of that child question. By selecting a different answer to a
parent question, the user will explore a different set of child questions that are
relevant to that answer and will arrive at a different configurable pattern. Fig-
ure 4.30 QT-phasel (left) presents the question tree for selecting a configurable
pattern in the example discussed earlier in the previous section.

Questions to Configure a Configurable Compliance Pattern.

Questions in the second phase concern configuring subtle behavioral aspects of
a specific pattern. Not all questions in this phase have a hierarchical structure.
That is, many questions in this phase can be asked in any order, since there are
configuration options in each of configurable patterns which are conceptually
orthogonal to each other. See for example choices related to Comp.4 (1) and
Comp.2 () in Fig. 4.29. These questions will be presented to the user together
and s/he may answer them in any order based on personal preferences and
understanding.

However, some options are not orthogonal. For example, choices related to
Comp.4 (1) and two components Comp.7 (A), and Comp.8 (B) are orthogonal

4.5 Supporting Domain Experts to Specify Compliance Constraints

143

in Fig, 4.29. If we do not allow for repetitive occurrences of the sequence (A,
B), we cannot allow for activation of both components Comp.7 (A), and Comp.8
(B) (note that still activation of one maybe allowed). In such cases, the former
question is only asked if a certain pre-configuration holds for it.

Note that the configurable pattern, i.e., the underlying Petri net and its con-
figuration options are not shown to the end user and the user only deals with
textual descriptions of rules in terms of questions and answers. In the back-end,
every answer node of QT in the second phase is mapped to a configuration op-
tion in a configurable pattern and configures the pattern based on choices user
makes. The configuration process is continued until all details of a compliant
behavior is decided. Fig. 4.30 QT-phase2 (right) presents partially the question
tree of the second phase for the example of the previous section.

4.4.5 Illustrating a Compliance Rule to a Domain Expert.

The configurable compliance pattern is hidden from user and s/he is only rep-
resented with questions and answers which are designed in a simple structured
and clear text. In order to remove any ambiguity for the user while answering
questions regarding subtle behavioral aspects, there are several compliant and
non-compliant sample traces given for every answer. That is, a user can easily
see how a certain choice can impact (i.e., limit or extend) admissible behavior.
The configured compliance pattern determined in the second phase is a Petri
net that can be used for automated compliance checking using the alignment
technique we discussed earlier in this chapter in Sect. 4.1.

In the following we show a walk-though example illustrating how a user
selects and configures a compliance rule using the two question trees.

4.5 Supporting Domain Experts to Specify Compli-
ance Constraints

In this section we will elaborate our methodology (Sect 4.4.2) and its imple-
mentation by going through a real life example step by step and showcase how
a user who is not familiar with any formalism specifies his/her admissible be-
havior considering its detailed aspects.

144

Control-Flow Compliance Checking

4.5.1 Implementation in ProM

The technique is implemented in the Compliance package of the Process Mining
Toolkit ProM 6.6, available from http://www.processmining.org. The pack-
age contains the repository of all configurable compliance patterns. The Elicit
Compliance Rule plug-in takes a log as input and returns a compliance rule
using the approach of Sect. 4.4.2. The returned rule can be used for compliance
checking using the Check Compliance of a Log plug-in. In the following we show
how a user can use this implementation to select and configure a compliance
rule.

4.5.2 Elicitation of the Case Study Compliance Pattern

We chose the event log taken from BPI Challenge 2011 available from [1]. The
log is taken from a Dutch Academic Hospital. This log contains some 150.000
events in over 1100 cases. Apart from some anonymization, the log contains
data required to check the rule as it came from the hospital’s systems. Each case
refers to a patient of the hospital’s Gynaecology department. The log contains
information about when certain activities took place, which group performed
the activity and so on. Many attributes have been recorded that are relevant to
the process.

To demonstrate the approach, we chose to formalize a rule that captures
the following behavior observed on the event log [18]: Glucose level must be
estimated 4 times repetitively if a patient diagnosed for cervical cancer of uterus
(diagnosis code M13) and classified as an urgent case?>. We have preprocessed
this log for patients who are suffering from cervical cancer of uterus. Urgent pa-
tients are those cases where at least one activity of type urgent is manifested. A
very common activity representing an urgent case is ‘haemoglobin photoelectric-
urgent’. If we rephrase the constraint and substitute the activity names with
corresponding event names in the log, the rule states: In case of patients diag-
nosed for code M13, activity ‘haemoglobin-photoelectric-urgent’ must be followed
4 times by activity ‘glucose-urgent’.

We take this log as input and run the Elicit Compliance Rule plug-in that
implements the approach of Sect. 4.4.2. The very first question of the ques-
tionnaire always asks the user to specify the number of activities of primary
interest. For this a list of available activities in log is shown to user and the
user can choose the activities s/he wants to restrict from this list. Depending on

2Pplease note that the observed behavior does not indicate a medical rule but we chose this
observation to show how we can specify a behavior using Elicit Compliance Rule plug-in

http://www.processmining.org

4.5 Supporting Domain Experts to Specify Compliance Constraints

145

the number of activities chosen different sets of questions will be triggered. For
instance if the user chooses one activity of primary interest, the next question
will ask about the number of times a specified activity is allowed to occur. If
more than one activity (e.g. in case of our example two activities) is chosen, the
questions related to relationships between chosen activities will be asked. In
our example:

* Which type of limitation you would like to exert?

— Dependent Existence: define whether the occurrence or non-occurrence

of an activity imposes an obligation on occurrence or non-occurrence
of another activity, e.g. define an inclusive relation between two ac-
tivities.

— Bounded Existence: define whether number of occurrences of one
activity is dependent on number of occurrences of the other activity.

— Sequence of Occurrence: define whether there should be a sequen-
tial relation between occurrence of two activities, e.g. define a prece-
dence or simultaneous relation between two activities.

— Bounded Sequence of Occurrence: define whether a specified se-
quence must be repeated.

We choose Bounded Sequence of Occurrence from the list of alternative an-
swers. As the result of this choice, a configurable pattern is selected in the
back-end and questions to configure the selected pattern are presented.

The first question from the second phase will ask whether the user wants
to limit the repetition of activity ‘glucose-urgent’ after activity ‘haemoglobin-
photoelectric-urgent’ and if yes how many times ‘glucose-urgent’ must occur af-
ter ‘haemoglobin-photoelectric-urgent’. Figure 4.31 illustrates this step using the
‘Elicit Compliance Rule’ plug-in in ProM where we chose: 4 times repetition of
‘glucose-urgent’ after ‘haemoglobin-photoelectric-urgent’. In order to support the
user to make informed choices, for every answer a sample compliant trace and
non-compliant trace are given as shown in Fig. 4.31. Additionally, the outcome
of the currently chosen configuration is visualized to the user: the selected and
partially configured rule is used to check compliance of the log w.r.t. this prelim-
inary rule using the compliance checking technique presented in Sect. 4.1. The
screen in Fig. 4.31 shows several compliant and non-compliant traces by which
the user can use her domain knowledge to assess which answer translates her
intention best. Subsequent questions assist the user in deciding about details
of the intended behavior. These questions concern configuration options which

146

Control-Flow Compliance Checking

are orthogonal to each other, hence they can be resolved in any order. These
questions include:

Is it allowed that other activities occur between occurrences of activity
‘haemoglobin-photoelectric-urgent’ and ‘glucose-urgent’?

Is it allowed that other activities occur between occurrences of activity
‘glucose-urgent’?

Is it allowed that several occurrences of activity ‘haemoglobin-photoelectric-
urgent’ are followed by specified repetitions of activity ‘glucose-urgent’?

Is it allowed that activity ‘glucose-urgent’ occurs before activity ‘haemoglobin-
photoelectric-urgent’ independently from the defined sequence?

Is it allowed that the specified sequence of (haemoglobin-photoelectric-urgent,
glucose—urgent,...,glucose— urgent) occurs multiple times?

1
Is it allowed that the specified sequence of (haemoglobin-photoelectric-urgent,
glucose—urgent,...,glucose—urgent) never occurs?

4

Please specify the number of times activity 'glucose - spoed' must be
repeated after the occurrence of activity 'h globine foto-electrisch
- spoed".

- D

@ Pctivity "haemoglobine foto-electrisch - spoed” must be followed 4" times by activity
*glucose - spoed".

ectrisch-spoed

@ Activity *haemoglobine foto-electrisch - spoed’ must be followed by activity ‘glucose -
spoed' repetitively. The number of repetitions are not restricted.

sothers (Q)

)

Cancel | 4 Previous | > Next

Figure 4.31: Elicit Compliance Rule plugin: Example compliant and violating cases when

a specific choice is made by the user.

4.6 Control-Flow Compliance Rule Elicitation and Checking of a Composite Compliance
Model Versus a Set of Atomic Compliance Patterns 147

* Isitallowed that after the specified sequence (haemoglobin-photoelectric-urgent,
glucose—urgent,...,glucose— urgent), activity ‘haemoglobin-photoelectric-

~~

4
urgent’ occurs without being followed by repetitions of ‘glucose-urgent’?

Resolving these questions yields a configured atomic pattern which describes
precisely the intended behavior. This atomic Petri net pattern can be used fur-
ther for automated compliance checking.

4.6 Control-Flow Compliance Rule Elicitation and
Checking of a Composite Compliance Model
Versus a Set of Atomic Compliance Patterns

We have described in Sect. 4.4 how to elicit an atomic compliance pattern from
a set of configurable compliance patterns. The collection of configurable com-
pliance patterns allows for specifying various compliance rules constraining up
to four activities and their relations as an atomic compliance pattern. How-
ever, in case we would like to specify more activities in one model or combining
various rules we need to design the pattern manually.

The atomic patterns, derived automatically using our methodology, can be
combined using the synchronous product of the atomic patterns [143,150]. The
synchronous product matches activities by name and then merges their depen-
dencies and relations. However building a composite compliance model as the
synchronous product of a set of atomic patterns will usually result in a complex
and large model. Therefore we usually develop a composite compliance model
manually following the principles listed in Sect. 4.1.5. Earlier in Sect. 3.4.6, we
discussed composite compliance models. An example of a composite model is
shown in Fig. 7.4 and will be discussed later in Chap. 7.3

We have discussed the checking procedure for atomic compliance patterns in
Sect. 4.1. Checking an event log against a set of atomic compliance patterns or
a composite compliance model does not differ in terms of the steps that should
be taken to actually prepare the event log and detect control-flow violations.
The choice of the checking attribute is the same for checking a composite model
or a set of atomic patterns. Note that since in a composite compliance model
usually more activities are specified, the number of the activities that during the
abstraction and shortening of the event log will be mapped to Q events or will
be removed from the event log are less.

148

Control-Flow Compliance Checking

As we discussed in detail in the previous chapter (see Sect. 3.4.6), when we
check an event log against a composite compliance model, the alignment tech-
nique returns an alignment which is globally optimized for the combination of
the compliance constraints enforced in the respective composite model. Whilst
on the contrary, when we check an event log against a set of atomic patterns,
the alignment technique for each rule returns an alignment that is optimized
local to that rule. This difference has impact on the diagnostics that we obtain
(for details see Sect. 3.4.6).

In general when compliance rules overlap, we will receive more precise di-
agnostics if the rules are modelled combined as a composite compliance model.
On the contrary when rules do not overlap, it is better to formalize them as a
set of atomic compliance patterns because the diagnostics will be more precise,
and the Petri net patterns are smaller. In the context of control-flow compliance
rule, rules overlap when they put constraints on common activities.

4.7 Related Work

Our review of related work in control-flow compliance checking has two main
components: (1) the elicitation and formalization of control-flow compliance
constraints and (2) compliance checking and diagnostics obtained as the result
of checking. We will discuss related work along these two lines.

Elicitation and formalization of compliance constraints

The informal description of compliance constraints can be interpreted differ-
ently in context of different business operations. Therefore, precise specification
of them is necessary [65, 84].

Various approaches and formalizations are proposed for formulating com-
pliance constraints. Some approaches, such as [113], support the modeling of
control-objectives within business process structures using a modal logic based
approach called FCL (Formal Contract Language). The formalization believed
to offer the right trade off between expressive power and computational com-
plexity. However, applying the technique still requires a solid knowledge of the
underlying formalization. In this approach process models are annotated by
“control tags”; where tags are identified affecting control-flow, data, resource
and time. The authors of [52], also adopt FCL as formalism to model control
objectives.

4.7 Related Work

149

Several works such as [48, 81,85, 136] model compliance concerns in LTL
(Linear Temporal Logic). Many constraints formalized in LTL are supported by
Declarative templates, which makes using LTL-based checking techniques easier.
However, to use these templates one should have a thorough understanding of
Declare and the behavior specified by each template. In addition one should
be aware that capturing all subtle aspects of a compliance constraint may lead
to many Declare rules. It is worth mentioning that declarative modelling is not
necessary perceived easier and more intuitive for business users than procedural
modelling of processes [102].

The authors of [79] specify compliance rules in Compliance Rule Graphs
(CRG) which is a graph-based rule modelling language. They choose graphs
as a suitable representation for expressing occurrence and ordering relation be-
tween activities, and general structure of rules (i.e., if some conditions apply,
then some consequences must also apply). The problem with above mentioned
approach is again the task of formalizing constraints. It requires knowledge
about the formalization language, a knowledge that business users who are
typically in charge of compliance may be less familiar with. In addition the type
of rules that are covered by this approach is less compared to our repository of
rules and their variants.

To facilitate the task of formalization, many approaches use pre-formulated
templates and specification patterns for formulating compliance constraints [42,
46,119,132]. Specification patterns are extensively used in software develop-
ment [4, 26,37,66,123]. In [42,132], Elgammal et al. introduce a pattern-
based approach for capturing compliance constraints. Their patterns are pa-
rameterized and formalized in LTL. Most of these approaches use some type of
structured natural language and pre-formulated templates to construct formal
specifications that can then be analyzed. Often, these informal specifications
are initially mapped to an intermediate representation (e.g. model-driven pat-
terns), at which point context dependencies and ambiguities are resolved. In
order to make the approach usable for business users, authors developed a tool-
set where the user can define compliance constraints using a specialized version
of declare modeling notation.

A common problem in most of above mentioned works is that pre-formulated
patterns are limited and hard coded; hence they fail to capture subtle aspects of
different compliance constraints. In addition in most of the approaches, map-
ping and adapting patterns in a specific context requires extensive knowledge in
specification languages. Our approach aims to allow compliance specification
for end users without such an extensive knowledge.

Our compliance elicitation approach [98] is also based on pre-formulated

150 Control-Flow Compliance Checking

patterns. Yet it enables end users to specify precisely the compliance rules with-
out being exposed to technicalities of any formalization. Our repository of con-
figurable compliance patterns include a comprehensive collection of compliance
rules that can be configured to capture details and various aspects of compliance
constraints.

Compliance checking and diagnostics

The core challenge in addressing compliance on event behavior is to compare
the prescribed behavior (e.g., a process model or a set of rules) to an observed
behavior (e.g., audit trails, work-flow logs, transaction logs, message logs, and
databases). For this various approaches have been developed. In [136], it is
shown how constraints expressed in terms of Linear Temporal Logic (LTL) can
be checked with respect to an event log. This verification technique checks
whether each trace in an observed behavior complies to a LTL formula and the
result is shown as violating or compliant. Another logic-based checking ap-
proach is presented in [84]. In this approach compliance rules are formalized
using Event Calculus (EC). This formalization supports the constraint activation
(similar to our concept of rule instance). The verification technique tracks a run-
ning case and indicates the activation and evolution of compliance constraints,
then it reports on the compliance status of each activation. In [80] the authors
even present ways to quantify the degree of compliance.

Another group of compliance checking techniques are automaton-based check-
ing. For instance in [81], an automaton describes a compliance rule. Usually the
automaton is not directly generated from a compliance rule, but rules are mod-
elled using a formalism such as linear temporal logic (LTL) and the automaton
is generated from the formalization. Then a trace from the observed behavior
is replayed on the automaton. If the automaton reaches an accepting state, the
rule is satisfied otherwise it is violating.

In [85] both LTL-based and SCIFF-based (i.e., abductive logic programming)
approaches are used to check compliance with respect to a declarative process
model and an event log.

The authors of [79] model compliance constraints as Compliance Rule Graph
and check observed behavior directly on graphs. Their approach does not re-
quire any transformations into other representations (for instance to an automa-
ton). They also enable the concept of rule activation.

The authors in [147] leverage complex event processing for monitoring pro-
cess conformance. They create behavioral profiles from process models (can be

4.7 Related Work

151

considered as compliance constraints). The technique generates and run com-
plex event queries accordingly. Then the detected violations are aggregated.

The above mentioned approaches are compliance monitoring techniques.
That is, they check during the execution of a business processes whether it is
compliant or not. Our approach is categorized as backward compliance check-
ing, i.e., our technique identifies compliance violations after completion of exe-
cution of a process. In that sense, backward checking techniques should provide
diagnostics about violations related in a case globally (not per activation of a
rule). These diagnostics clarify how the violations in a case must be compen-
sated globally to make the case compliant. Using this setting, we can leverage
extensive root-cause diagnostics over all compliance results. In Chap. 7.3, we
explain how our root-cause analysis approach is built upon the diagnostics pro-
vided by our compliance checking technique.

Several conformance checking approaches are developed for backward com-
pliance checking. In [27], authors present an approach to measure discrepan-
cies between a process and a model. Event streams (sequence of events) are
built from process models and are compared with the execution event streams
(observed sequence of events). Then the distance between the two event streams
are measured. Another conformance checking approach is presented in [111].
In this approach compliance constraints can be formalized as a Petri net model.
The technique replays the observed behavior on Petri net model while counting
“missing” and “remaining” tokens. This approach does not provide precise and
detailed diagnostics about each violation.

State-of-the-art techniques in conformance checking retrieve this informa-
tion by computing optimal alignments [10,134,135] between traces in the event
log and “best fitting” paths in the model. The authors of [31] adapted the
alignment-based approaches defined for procedural models and present a con-
formance checking approach for declarative constraints. Existing approaches to
backwards compliance checking have two main problems. First of all, the elicita-
tion of compliance rules is not supported well. End users need to map compliance
rules onto Declare models (or expressions in temporal logic) or encode the rules
into a Petri-net-like process model. Second, many of the existing checking tech-
niques can discover violations but do not provide useful diagnostics [27,111].
Those that provide detailed diagnostics [10,31,135] are not tailored for com-
pliance checking.

Our compliance checking approach [97] builds upon cost-based conformance
checking [10, 135] and detects all activations of a compliance rule and can lo-
cate compliance violations. It also indicates the compensation for detected vio-
lations (i.e., what should have happened instead the detected violation).

152

Control-Flow Compliance Checking

4.8 Concluding Remarks

In this chapter we discussed control-flow compliance analysis from various an-
gles including the formalization of compliance rules, checking rules and offering
precise diagnostics about violations.

We developed a set of principles that can be used to formalize compliance
rules. Various control-flow compliance constraints were discussed. We proposed
a question and answer approach to improve formalization of compliance rules
by enabling business users to precisely elicit and formalize these rules. The
question and answer approach presented is based on configurable templates.
We have developed a comprehensive repository of configurable compliance pat-
terns that allows for specifying different types of compliance constraints we
found in literature and many more. By selecting a configurable compliance
pattern and configuring its options we can bridge the gap between informal
descriptions of compliance constraints and automated compliance checking for
commonly-required compliance constraints. The configurable compliance pat-
tern is selected and configured for its options, interactively with end-users and
will result in an atomic compliance pattern. The elicited compliance pattern
can be used further for compliance checking. Our elicitation approach was im-
plemented as a ProM plug-in. In addition, we developed some principles that
guide the user to build composite compliance models.

We presented a robust technique for backwards compliance checking which
enables us to provide diagnostic information in case of violations. Our approach
takes an event log and a compliance pattern and computes an alignment be-
tween between the model and the log. The alignment then indicates where the
event log deviated from the model. It also indicates how the violation could
be compensated. This approach is also supported by a ProM plugin. We have
tested our techniques using real-life logs and compliance constraints.

We will extensively rely on control-flow checking for checking temporal,
data-aware and resource-aware compliance rules in chapters 5 and 6.

Chapter 5

Temporal Compliance Checking

This chapter focuses on elicitation and checking of temporal compliance con-
straints in a systematic way. Temporal compliance rules constrain when activ-
ities may occur. Our temporal compliance analysis approach is built upon the
control-flow compliance checking (presented in the previous chapter). To check
whether an activity occurred at the right time, we need to first check whether it
occurred at all.

In Chap. 2, we illustrated our ideas for formalizing temporal constraints as
data-aware Petri nets and in Chap. 3 and 4 we discussed the problem of trans-
lating informal compliance constraints to formal models. In this chapter, we go
more in-depth showing how to formalize various kinds of temporal constraints
using a single generic temporal pattern. The generic pattern should capture all
possible temporal rules and instances of these rules. We will discuss in this chap-
ter, how the combination of two techniques, control-flow checking and temporal
checking, achieves this goal. We explain why the concept of rule instance dis-
cussed in previous chapters plays an essential role in our temporal compliance
checking approach. Only activities within a rule instance are governed by tem-
poral constraints. During the control-flow checking, we make sure specified
activities fall inside an instance of a rule. A clear boundary on activities which
are inside rule instances and the ones that are not, together with the generic
temporal pattern are inputs for our temporal compliance checking technique.

We listed the type of diagnostics we would like to obtain in Chap. 3. We
explained in Chap. 2, depending on how rules are formalized (atomic rules
versusa composite model) and how alignments are configured (cost of moves),

154

Temporal Compliance Checking

diagnostic information can differ. In this chapter, we investigate this matter for
temporal constraints. Next to the detection of temporal violations, the tempo-
ral checking approach provides explanations about the violations, i.e., how the
violations can be compensated to make a case compliant. These compensation
solutions are not built locally per violation but they consider the global impact
of the proposed compensation values in a case. This feature of our approach
leaves a quality on the diagnostics that one should be aware of it when inter-
preting the results.

Figure 5.1 illustrates how the content of this chapter is organized in different
sections. In the remainder of this chapter, we first consider an extensive collec-
tion of temporal compliance constraints identified in literature in Sect. 5.1. We
discuss different categories of rules in the collection and provide examples for
each category. In Sect. 5.2, we explain in detail our approach for temporal com-
pliance checking that was outlined in Chap. 2. We will show how to integrate
control-flow and data-aware checking on a technical level to achieve detailed
diagnostic information about violations of temporal compliance constraints. In
Sect. 5.3, we introduce a generic pattern for formalizing various temporal com-
pliance constraints and show how to instantiate it for concrete examples.

In Sect. 5.4, we discuss the differences between checking atomic rules ver-
suscomposite models that also cover temporal constraints. We show that the
generic pattern of Sect. 5.3 can cover some cases of composite rules but we also
discuss which set of temporal rules cannot be checked in a composite model.

In Sect. 5.5, we return to the problem of preparing event logs for compli-
ance checking. We adopt the log preparation techniques discussed in Chap. 3
and Chap. 4, such that the temporal compliance checking technique works for
all temporal compliance rules. Finally, we discuss which factors influence the
quality of diagnostic information in temporal compliance checking in Sect. 5.6.

We will showcase the applicability of our temporal compliance checking
technique on real-life data with the help of a case study in Sect. 5.7. Further,
we discuss the diagnostics obtained in this project. The related work will be
discussed in Sect. 5.8 and Sect. 5.9 will conclude this chapter.

155

~—

susaned Joimeyaq
juerdwodBuiiejoin

=

$9INJ UORLIOSSY

snsnes

@

S)UDAD paYyIsse))

¥'G PIS

sisk|eue asne>-}00y

ad
nueldwo)

/]

JuaWUBIY

Buppayd sueldwod g

F=Bunpayd adueldWwo)) <

€'619S

¥'G 195

ajnu //
,

_ansodwo)

==

JusWIUBIY
9GRS~

h(AA any)« |

JUBWILPLIUD
\ 607

) s9|nJ jesodwia}
Jo Aioyisoday
€G19SB LG I35

ejep
JUIAZ

/ §'G 189S

uolRalep
uoneoIA

7

uonesedasd

boq

[=EN

Buppayd adueldwod jerodwa]

Bupday> 35uey|duwiod Mo|y-|ouo) |

7
7 T
[Buppay dueyidwiod 93inosai pue ejeq|

| ———

i

Slomawely
uleJISU0d
dueldwo)

uiesysuod
asueldwo)

Figure 5.1: Thesis road map gives the mapping of the sections in Chap. 5 on to our

compliance analysis approach.

156

Temporal Compliance Checking

Category (Rules) Description

Instance Duration (2) Limits the time period in which a control-flow rule instance
must hold. [149]

Delay Between Instances (1) Limits the delay between two subsequent instances of a
control-flow rule [5, 68,69, 88]

Validity (3) Limits the time period in which an activity can be executed.
[68,69,88, 149]

Time Restricted Existence (2) Limits the execution time of an activity in calendar. [68,69,
88]

Repetition (2) Limits the delay between execution of two subsequent activ-

ities. [68,69,73,88,149,153]

Time Dependent variability(1) Limits choice of a process path among several ones with re-

spect to temporal aspects. [68,69,88,149]

Overlap (4) Limits start and completion of an activity to start and com-

pletion of another activity. [68,69, 88,149]

Table 5.1: Categorization of the 15 temporal compliance rules.

5.1 Temporal Compliance Rules

Similar to control-flow compliance rules, we surveyed existing literature on [5,
68,69, 73,88,149,153] and collected and classified temporal compliance rules
into a repository. Table 5.1 (also discussed in Chap. 3) gives an overview of
these rules. In total, we collected 15 compliance rules distributed over seven
categories. As we discussed in Chap. 2, we use data-aware Petri nets to formal-
ize these rules. The complete list of the temporal rules and their formalization
can be found in Appendix B.

From this repository (Table 5.1), the Instance Duration category of rules con-
strains the time period in which an instance of a control-flow rule must be ex-
ecuted. An example of this rule can be: “activity A must occur k times within
[@, B] time units since time ¢”.

This rule already illustrates that each temporal rule has a control-flow aspect
(“k occurrences of activity A”) and a temporal aspect (“within [a, 8] time unit
since time ¢”). Even if the ordering of activities is not restricted in a temporal
rule, at least the existence of some activities is specified.

The second category of temporal rules, Delay Between Instances, limits the
time gap between two instances of a control-flow rule, e.g. the previous rule
can be extended as: “activity A must occur in n cycles of k occurrences, and
between subsequent cycles there must be [a, f] time units delay”.

In the general case, the control-flow rule constrains more than just the exis-
tence of activities. For instance in the following rule taken from the Repetition

5.1 Temporal Compliance Rules

157

A A

L] |

| B | B . |

! I ! ; * ! "
I ' ! ! ' b ; ; ; ; ime
to A Byt Bemp Acmp ime to Bst As Bemp Acmp

A B

I]

! 'B ! A i

| —) . — _
— 1 ! ! time — 1 1 time
to A By Acmp Bemp to Bz A Acmp Bemp
Aq: start of activity A, Acmp: completion of activity A
B start of activity B, Bcmp: completion of activity B

Figure 5.2: Executions of activities may overlap in different ways.

category of temporal rules: “the delay between the execution of two subsequent
activities A and B must be within [«, §] time units”, the underlying control-flow
does not specify only the existence of activities A and B but also their sequence.

Form the remaining categories of temporal rules, the Validity category limits
the time length in which an activity must or must not be executed. An example
rule from this category can be: “activity A must be completed within [a, §] time
units since it starts”, or “ no activity A may be executed within [a, f] time units
since time ¢”.

The Restricted Existence limits the absolute execution time of activities. An
example rule from this category is: “activity A may only be executed (or may not
be executed) at times ty,...t,”. Temporal rules may also constrain the execution
time of one activity depending on the execution time of another activity. Rules in
the category Time Dependent Variability are of this type. An example of such rule
is: “activity A must be executed within [a, f] time units since time 7, if activity B
is executed within [y,] time units since time #,”. Similarly, the Overlap category
of temporal rules also limits the start and completion of one activity A to start
and completion of another activity B, and it gives rise to four different rules
visualized in Fig. 5.2.

Reviewing different types of temporal compliance rules leads to the follow-
ing working assumption: Any temporal compliance rule can be separated
into a control-flow aspect and a temporal aspect. The control-flow aspect
can be formalized as a control-flow compliance rule explained in Chap. 4. In
the following, we focus on how to formalize the temporal aspect (in a data-
aware Petri net) and how to combine two separate checks into one coherent

158 Temporal Compliance Checking

T [EC= , B
¥ oo o F
Abstract& L CF check 77//& Erjrlch‘wwh 77)& Abstract& jL' T check 7,/_. Enrich with |/ \
shorten violations
CT) Provide
J T

shorten violations i

—— Ldiagnostics §

Figure 5.3: Overview of the temporal compliance checking methodology.
diagnostic.

5.2 Technicalities of Temporal Compliance Check-
ing

As we discussed earlier, temporal compliance rules are built over control-flow
restrictions. The dependency between control-flow rules and temporal rules
raises a challenge for temporal compliance checking: we first have to identify
the different occurrences of a control-flow rule, for which then the temporal
rule can be checked. This gives rise to our approach for temporal compliance
checking shown in Fig. 5.3. We decompose a temporal constraint into a control-
flow and a temporal rule. The event log is first aligned to the control-flow rule
using the control-flow checking technique described in Chap. 4. As a result, we
obtain a control-flow alignment that indicates possible control-flow violations
in terms of missing events or inserted events. This alignment also distinguishes
several occurrences of a control-flow rule (recall the concept of rule instance
from Chap. 3, and Chap. 4). This information about rule instances and which
events are compliant to the control-flow (and hence contain reliable informa-
tion) is then passed on to the temporal checking by enriching the event log with
all diagnostic information from the control-flow alignment.

We model the temporal rule in terms of a data-aware Petri net. The temporal
rule and the prepared log are used to build a data-aware alignment. The data-
aware alignment then shows the temporal violations. To allow for root cause
analysis on all violations of the rule, we again enrich the log, now with the
diagnostics from the temporal checking step. In the following, we will go though
the temporal compliance checking approach step by step by example.

Example temporal constraint. Suppose a compliance constraint TR 1 stating:

5.2 Technicalities of Temporal Compliance Checking 159

“The treatment with antibiotics must be administered for three days with a delay
of one day between each administration. After each cycle of three treatments,
in case of necessity, the treatment can be extended for other cycles”.

time 1| 2 |30]|54(100/123|162(173
activity name B|A|A|A|A|C|A|D
L process instance | P1 | P1 | P1 | P1| P1| P1| P1| P1
event ID €1 | € | €3 | €| & [€[€[€

Figure 5.4: Example 1: Event log.

Assume we would like to check a given event log, partially shown in Fig. 5.4,
against this constraint. This event log has eight events, all belong to the case
p1- The event with “activity name=A” denotes the execution of activity “antibi-
otic administration”. Other values of activity name represent execution of other
activities in this case. According to TR 1, each cycle of treatment should contain
three antibiotic administration. However, as shown in Fig. 5.4, two cycles of
treatment is observed. One cycle contains only two antibiotic administration. In
addition, we expect between two occurrence of antibiotic administration within
a cycle to be 24 hours delay, however, some violations from this rule is observed.
For example, the delay between the first two occurrences of A is more than 24
hours.

Step 1 and 2: Log preparation and control-flow checking.

The atomic pattern shown in Fig. 5.5 models the underlying control-flow
restriction of TR 1.

The rule instance of TR 1 includes a cycle of three occurrences of activity
‘antibiotic adminstration’ (denoted as A in the pattern). The rule may occur
several times (i.e., multiple occurrences of the cycle is possible). This pattern
can be elicited using our elicitation technique discussed in Chap. 4 (see the
corresponding configurable pattern shown in Fig. C.1).

Figure 5.6 shows the alignment of the example event log of Fig. 5.4 to the
control-flow rule of Fig. 5.5. The alignment shows one instance of the rule with
three occurrences of A, and one instance of the rule with two occurrences of
activity A. The alignment denotes a missing event (model-only move) in the
second instance of the rule. Note, how the structure of the atomic pattern in
Fig. 5.5 enables us to explicitly mark two activations of the rule instance.

Steps 3, and 4: Enrich log with control-flow violations, and prepare it for

160

Temporal Compliance Checking

temporal checking. At this point, we enrich the event log with diagnostics
obtained during the control-flow checking. The log enrichment differs from the
enrichment for pure control-flow checking presented in Sect. 4.1. We have to
provide some additional information for temporal checking. The enriched event
log is shown in Fig. 5.7.

During the log enrichment 1) we translate each move in the control-flow
alignment to an event, 2) we insert missing events in positions indicated by the
control-flow alignment. In our example, event A was missing in the second in-
stance of the TR 1 rule. Similarly, we insert the missing events Start, I, Icmp,
and End. 3) We introduce a new attribute named CF condition, this attribute
records whether the control-flow condition holds at each event or not. Every
event originating in a non-synchronous move is marked False (F) for its CF con-
dition otherwise it gets the value True (T). 4) Finally, events inserted into the log
in steps 1 and 2, due to model-only move violations, do not have a timestamp.
To enable temporal checking, we generate time attribute values for each such
event. In particular, an event with a missing time attribute gets the time value
of the directly preceding event except Start, and I;; which get the time value of
the succeeding event. The enriched event log now contains enough information
to check the temporal constraint.

The example log dose not need further preparation (i.e., abstraction and
shortening). However, in some cases we require another round of log prepara-
tion. We will discuss this situation later in Sect. 5.5.

Pattern parameter:
e {#..(e) > transition label
e K=3
Q Q

Start D

Initial It A lem
k k

Final O=— Counter

End

Figure 5.5: Example 1: Control-flow rule modeling cycles of three occurrences of activity
antibiotic administration.

5.2 Technicalities of Temporal Compliance Checking

161

checking Q A|lA]|A Al Q A Q
M [transition name |Start] O [l | A | A | A |lmp| e | A | Q| A | A [lemp| Q [End

Figure 5.6: Alignment of the log of Fig. 5.4 to the control-flow rule of Fig. 5.5 showing a
model-only move between eg and ey, i.e., once occurrence of A was missing
in the second rule instance.

As explained, a “real” missing event ! (e.g. the missing activity A in our
example) inherits the time stamp of its direct preceding event. However, we can
think of other ways to infer a time stamp for such an event. For instance, Rogge
Solti et al. in [107] and [105] enrich a business process with performance
information. To this end, they align an event log to a model. Each event in
the event log is mapped to a transition. They use observed values extracted
from the event log and infer the most likely stochastic model that explains the

1By the “real” missing events we mean violations that reflect the absence of a real activity within
a process not Iy, Icmp, Start, End or t-labeled) events.

Project temporal information on missing events.

Vo N A AN A A A
time 1| 1f2] 2 |3054]54]|100{100|123|123[162]|162|173|173
EL*
F condition F T|F|T|T|T]|F FIT|T|F|T|[F]|T F
checking Start] Q [lg| A A A |lemp| I | A] Q| Af A |lmp| Q |End

\

This attribute records
whether the control-flow
condition holds or not.

Missing events are inserted.

Figure 5.7: Example 1, event log enriched with control-flow violations and temporal in-
formation.

162

Temporal Compliance Checking

observation best. We could adopt such an approach to build a stochastic model
for the timestamp of each activity in the process to assign the most probable
timestamp for a missing event when we observe that an activity is skipped in a
case. However, the approach in [105,107] is currently limited to acyclic models
whereas our control-flow rules often contain cycles.

Several imputation methods are proposed in literature to insert artificial
values for missing data [75]. A basic imputation method is mean substitu-
tion, i.e., replacing missing values of a variable with the sample mean of the
observed values. More sophisticated imputation methods are maximum likeli-
hood estimation, and Bayesian multiple imputation. These models make use of
all observed data to increase confidence in the estimation. The technical details
of these techniques are not in the focus of this thesis. The interested reader is
referred to [75] for this topic.

Step 5: Eliciting the temporal rule.

The atomic pattern in Fig. 5.5 was used to specify the control-flow condition
of TR 1 rule. Now, we need to model the temporal dimension of the constraint:
“delay between two occurrences of A must be one day (24hrs)”. We model this
rule as a data-aware Petri net. Figure 5.8 models the temporal dimension of the
rule.

We abstract the temporal rule to: “the delay between two subsequent exe-
cutions of A in an instance of the control-flow rule, must be within [a, §] time

Pattern parameters:
o Hime(€) 2 tsart, tist, tiemps tena, ta, to
o #,.(e) > transition label

L ta

{Set:tstart, tist, teng = undefined} {w: ta} {Set: ticmp, ta,to = undefined} [delay(A,24hrs,24hrs)]
{w: tsiartt Q {W: tre}
Start

nitial&—>| |

fw: teng}
Final 04—“
End

Tstart

teng

Figure 5.8: Example 1, the temporal dimension of the rule TR 1 modeled as a data-aware
Petri net.

5.2 Technicalities of Temporal Compliance Checking

163

units.”. The atomic pattern of this rule (Fig. 5.8) has a very simple control-
flow structure that just distinguishes whether the events are within an instance
of a control-flow rule (i.e., after I;; occurred) or outside of it (i.e., after I,
occurred). Note that the transitions Start, Iy, Icmp, and End are no longer mod-
elled as invisible because they represent events in the enriched event log.

The temporal pattern shown in Fig. 5.8 has six variables ¢4, t7_s, t1—cmp» tsiart tend>

and tq that capture the values for attribute time at events A, Iy, Iomp, Start, End,
and Q respectively. For ease of representation, we only show the ellipse related
to variable ¢4 in Fig. 5.8. Dashed arcs indicate that every occurrence of the
transition A and I;; can update the value of variable r4. Note that variables
tA, t—st» tT—cmp» tstart, tEna, and tq are all properties of the net that store the value
for attribute timestamp of respective run events.

The actual temporal aspect is described by the data annotations at transition
A and I;;. Annotation {W : t4} ensures that t4 stores the timestamp of the run
event A. The most important annotation is the guard [delay(A, a,)] defined
by delay(A,a,B) = t/, € [ta+a,ta+ Bl V t4 = undefined. The guard states that
the updated value of the variable t4(shown as #/,) has to be in the interval
[ts+a,ta+ B], where 1, is the read value of variable z4.

As the rule only ranges over occurrences of A within the same instance of
the control-flow rule, we have to take special care for the first A in an instance.
Therefore, the second statement of the guard (tﬁ4 = undefined) ensures that the
guard holds for first occurrences of A in each rule instance. The guard at I,
initializes ¢/, = undefined so that the guard of A also holds for the first A in every
instance.

By setting parameters A=antibiotic administration and a = § = 24 hours, the
pattern of Fig. 5.8 formalizes the temporal rule.

Step 6: Temporal checking. We check compliance of the enriched log (shown
in Fig. 5.7) against the temporal pattern. The data-aware alignment technique
explained in Chap. 2 compares the time stamp of the events in the enriched
log with admissible time stamps specified in the temporal pattern. Note that
the enriched event log fits perfectly the control-flow structure of the temporal
pattern. Hence, the data-aware alignment will not detect any control-flow vi-
olation. However, it detects deviations of observed attribute values, e.g. time,
from specified values as incorrect synchronous moves. The data-aware align-
ment obtained from aligning the enriched event log and the temporal pattern
is shown in Fig. 5.9, revealing three incorrect synchronous moves where the
events occurred not at the specified time.

As is shown in the alignment the second A in the first instance occurred

164

Temporal Compliance Checking

time 1] 1] 2| 2]30|54(|54]100[/100{123]|123(162|162|173|173
EL*

checking Start] Q [l [AL AL A |lamp| lsc | AL Q[A A]lemp| Q |End
M transitionname [Start| Q | I | A [A [A [lemp| s | A Q| A | A [lcmp| Q | End

admissible time 1 1 2 2 | 26| 54| 54]100|100)123]|124|148(162(173| 173

T b

Figure 5.9: Example 1: Data-aware alignment of the enriched event log of Fig. 5.7 to the
temporal compliance pattern of Fig. 5.8.

missing
Log (observed) B A <A A A CA «—A D
,l 1130 P |162 time
0 2 26 54 100 123||124 148 173
Model (compliant) B A A A A CA A D

Figure 5.10: Projection of diagnostics on a timeline.

28 time units after its proceeding A; violating the TR 1 rule. The data-aware
alignment returns the time at which the event should have occurred at the bot-
tom row of the alignment. In the same way, two deviations in the second rule
instance are highlighted. However, the “correct” time stamps 124, and 148 sug-
gested by the alignment have to be inspected carefully. Note that in the second
instance, the second A is missing in the log (a control-flow violation indicated
by the value False for attribute CF condition). In Sect. 5.6, we investigate further
how to interpret and fine tune these diagnostics. Next, we will explain how we
enrich the event log with the obtained diagnostics.

Step 7: Enrich log with temporal violations. Finally, we enrich the original
event log with all diagnostics we obtained including control-flow and temporal
violations and other diagnostics such as: the type of each violation, the violating
instance of a rule, and the values that would have led to a compliant execution.
Figure 5.10 visualizes the diagnostics obtained on a timeline and Fig. 5.11 illus-

5.2 Technicalities of Temporal Compliance Checking

165

trates the enriched event log. Each event is annotated with two new attributes
for the two rules (one on control-flow compliance and one on temporal com-
pliance). In Fig. 5.11, these attributes are hachured. For instance, it is shown
in Fig. 5.11 that the first event (el) was evaluated against two rules: a control-
flow rule (5 iterations of A) and a temporal rule (delay between two A). This
event occurred outside of a rule instance for both rules and it was evaluated to
compliant with both rules.

The third event (eé), however, is compliant w.r.t. the control-flow rule but it
violated the temporal rule. It occurred inside the first activation of the temporal
rule and it should have occurred at time =26 to be compliant. Event e5 violates
both rules and has violations of type: missing event, and temporal. Note, the
event e is inserted in the position where an execution of activity A was missing,
all the other events originate from the log.

166 Temporal Compliance Checking

. EL (Enriched log with control-flow and temporal violations)

P

L4 .
ey b —#(eh) =B e's = —#e)=cC
Himele'1)= 1 Hime(e'e)= 123
#,u|gl(eL1)(rule1)= control-flow-3 iterations of A #r.,.el(eLs)(rule1)= control-flow-3 iterations of A
#1ulet. compliance stare(€'1)= compliant Hrulet.compliance state(€s)= compliant
HruleLinstance(€"1)= OUtside rule instance #m\el_mmncﬁ(eLs)= 2" activation
#uiea(€'1)= temporal-delay between two A #ruea(€'s)= temporal-delay between two A
p y
L i i
Hiule.compliance state(€ 1)= compliant Hrulez compliance sate(€'s)= compliant
#ue2 nstancel€'1)= outside rule instance Hrutea mstance(€6)= 2™ activation
L
e — —#eh)=A e = —#(E5)=A
L
Hume(€'2)=2 Hume(€%7)= 123
L :] ; .
#uiea(€)= control-flow-3 iterations of A #uea(e’5)(rule;)= control-flow-3 iterations of A
L "
—— #rule1.compliance state(€ 2)= compliant - #rule1.compliance state(€”7)= violating
L S S
" #Het nstance(€2) = 17 activation L et metancel€s)= 2™ activation
S
#,ue2(€")= temporal-delay between two A — #ruie1.Compliant value(€77)= A
Sy
F— #1102 compliance state(€'2)= compliant Hrule1.violation type(€7)= Missing event
Lt #m\ez,ms,am(esz 1% activation #,ulez(e57)= temporal-delay between two A
S . .
ey - — #es) =A = #rule2.compliance state(€77) = Violating
S d A .
#ime(e'3)= 30 — #ruieznstance(€77)= 2™ activation
S
#.ue1(e's)(rule;)= control-flow-3 iterations of A Hrule2 compliant Va'"E(Se 7)= 124
#, olati e’;)= temporal
— #eie1 compliance sme(els)= compliant ule2.Violation type(€77) P
. . L
L #ouerinstance(€3)= 1 activation ey = —#ey)=A
Hueles)= |-del Hime(€'7)= 162
ue2(€3)= temporal-delay between two A time(€ 7
L - - 2 .
F— #uiez.compliance state(€3)= Violating #.ue1(e7)(rule;)= control-flow-3 iterations of A
i % L :
—— fuieansiance(€'3)= 1% activation —— Hrule.compliance state(€'7)= compliant
d . .
Hrulez.compliant vaiue(€3)= 26 L HruleLinstance(€'7)= 2™ activation
L
#uie2 violation ype(€'3)= temporal #ruie2(€7)= temporal-delay between two A
L . >
L Hrulez compliance state(€ 7)= Violating
L
s = e =A Hutez nstance(€'7)= 2" activation
Hime(€ zt)= 54 Hrulez.Compliant vaiue(€'7)= 148
= - -3 i i L
#.ue1(€4)(rule;)= control-flow-3 iterations of A #101e2.vilaton typel€17)= temporal
L "
#rulet.compliance state(€ 4)= compliant e L —#es)=D
#ru:sl,lnstance(el4)= 1" activation Hamele"s)= 173
#uuiea(€ 2)= temporal-delay between two A #nuie1(e's)(rule;)= control-flow-3 iterations of A
L %
#rulez.complianceftate(e‘4)= compliant — #rule compliance stte(€'5)= compliant
St
H#ulezinstance(€)= 17" activation L # uievnstance(€'s)= Outside rule instance
L L
€5— —ihales)=A #uea(€'s)= temporal-delay between two A
L)= .
#ume(€ s}= 100 Hulez.complance sate(€'s)= compliant
#rue1(es)(rule)= control-flow-3 iterations of A Hruleznstance(€')= Outside rule instance
L .
Hrule1.compliance state(€ 5)= compliant
Hruterinstance(€'s)= 2™ activation
#,mﬂ(eLg): temporal-delay between two A
L ¢S
. H#rule2.compliance state(€ 5)= compliant
: Hruiea nstance(€'s)= 2™ activation

Figure 5.11: Enriched event log with control-flow and temporal diagnostics.

5.3 A Generic Temporal Pattern

167

Pattern parameters:
o Hime(e) 2 ta, tswart, tisty tiemps tends txts woos tn
e #.,.(e) > transition label
o Xy . X,

tl-st

Estar
ot {W:tStart} {W:t\-st} tX1

{Set:tsury tisy tena = undefined} Q {Set: ticmps txa, - txn = undefined} Q

Initial (o) D ﬁ

Final O : 4

Figure 5.12: The generic temporal pattern.

5.3 A Generic Temporal Pattern

In Chap. 3 and in Sect. 5.2, we sketched the basic principles for formalizing
temporal compliance rules in data-aware Petri nets. There, we showed that
the temporal constraints can be expressed as guards on transitions that distin-
guish whether an activity occurs within an instance of the rule or outside a rule
instance. We now use this insight and present a generic temporal compliance
pattern that can be instantiated to formalize each of the 15 temporal compliance
rules that we collected in Sect. 5.1.

The generic pattern is shown in Fig. 5.12. It permits to constrain occurrences
of n activities Xj,..., X,, as well as the Start and End of a process instance and
start and end of each rule instance (by I5; and I.,,p). For each activity X;, the
net has a variable tx; that gets updated with the value of the time attribute of
any event of X;, therefore, tx, always holds that last moment X; was executed.
Similarly the variables tsiars, tgnas t,,, and tg,,, get updated by firing any of
the transitions Start, End, Is;, and I¢,,. The transition Start initializes the value
for 11, and 1;,,,, and the transition I, initializes the value for tx;. Each formal-
ization of a compliance rule assigns a guard to one or more transitions of the
pattern. Recall from previous section that all artificial events related to Start,

168

Temporal Compliance Checking

Pattern parameters:
o Hyme(€) 2 tsurt tist tremps tenas ta ta
o #,.(e) > transition label

[delay-instance (ls,lcmp, 168hrs,oo)]
{Set: ti.cmp, ta, to = undefined}
{Set: t,.« = undefined} D {W:| tsh
Start =

Figure 5.13: The generic temporal pattern specifying delay between rule instances.

Ist, Iemp, and End get valid timestamps.

In the following , we show how to instantiate this generic pattern for several
rules. The complete list of rules and the instantiation of the generic temporal
compliance pattern for each rule are explained in Appendix B.

Delay between instances. Consider the following variant of the compliance
constraint TR 1 from Sect. 5.2, “The treatment with antibiotics must be admin-
istered for three days with a delay of one day between each administration.
After each cycle of three treatments, in case of necessity, the treatment can be
extended for other cycles. The delay between cycles of treatment must be at
least one week.”

This constraint has two parts R;) between two administration of antibiotics
there should be a one day delay R,) between two cycles of treatment with an-
tibiotic there should be a delay of at least one week.

The instantiated generic temporal pattern for the second temporal rule (Ry)
is given in Fig. 5.13. The overall structure is similar to the first pattern given in
Fig. 5.8 as it distinguishes occurrences of A inside and outside of a rule instance.
The actual temporal logic is specified in the guards.

In this pattern n =1 and the variables ;,, and 1;,,,, record the time values
for Is;, and Icp,). For ease of representation, we do not show the ellipses related
to different variables and the write statements for each transition.

R, specifies a delay of at least one week (168 hours) between two occur-
rences of the control-flow rule instance (two treatments with three antibiotic
adminstration). Therefore, the guard [delay-instance (Is;, Icmp,,)] annotat-

5.3 A Generic Temporal Pattern

169

ing the transition I, specifies the gap between the two cycles of treatment. The
guard is defined by delay-instance (I, Icmp, @, B) = t}“ € [l + @ UL,y HPIV T, =
undefined. This guard states that the time 77, of the current occurrence of I,
has to be in the interval [¢;,p + @, t1,mp + B], Where t;_), is the time stamp of the
most recent occurrence of I.,,,. For the first instance of the rule (i.e., first occur-
rence of the I;;), the annotation at the transition Start initializes ¢;,, = undefined
so that the guard at transition I; holds.

By setting parameters A=antibiotic administration and a = 168 hours, and
B = oo, the pattern of Fig. 5.13 formalizes the second temporal rule R;. Note
that R, states that the delay between two cycles must be at least 168 hours.
Hence, the interval [a, f] = [168,00] does not have an upper bound.

Delay between activities of different kind. First temporal rule (R;) constrains
delays between repeated occurrences of the same activity; Fig. 5.8 shows how
to formalize such delays. Next, we show how to instantiate the generic pattern
to constrain delays between different activities e.g. two given activities A and B.

In this case, the generic temporal pattern will be instantiated for n = 2.
Therefore, the corresponding events having the value A, and B for their checking
attribute will be mapped respectively to the X;-labelled and X,-labelled transi-
tions in the temporal pattern. The guard delay-diff-activities 1 (A, B, t,a,f) =t/ €
M AM=[t+a,t+p] Ate{tg} Atg# undefined, is assigned to the X;-labeled
transition in Figure 5.12 to which A is mapped. Similarly the guard delay-diff-
activities 2 (A,B,t,a,B) =ty € M AM = [t+a,t+p] Ate{ta} Aty#undefined, is
assigned to the X,-labelled transition to which B is mapped.

Overlap. We can extend the temporal rules that specify the delay between two
activities to rules that limit start and completion of one activity A to start or
completion of another activity B. For these temporal rules, the generic temporal
pattern (Fig. 5.12), has (n = 4) transitions. Therefore events Ay, Acjnp, Bs: and
Bemp would be mapped respectively into X, ..., X;-labeled transitions in the
pattern. Suppose a rule states: “activity B must start within [a, 8] time units
after activity A starts and activity B must complete within [y,{] time units before
activity A completes.” In this case, the rule has two guards: start-after-complete-
before 11 (A, Bse, t,a, p) = tl’f?st EM AN M=[t+a,t+pl N telta,} Nia,}#
undefined. The first guard is assigned to transition X3 in the generic temporal
pattern which is mapped to Bs;.

The guard start-after-complete-before 2 (Acmp, Bemp, t,Y,{) = t;\cmp EMAM=
[t+y,t+(] Ate{tp,,,} AMib,,,} # undefined is assigned to the X,-labeled transi-
tion in the generic temporal pattern to which A, is mapped. Similarly other

170

Temporal Compliance Checking

rules in this category will be specified by assigning the guards to respective
transitions.

The first guard and the second guard ensures that the execution of activity
B overlaps with execution of activity A, i.e., B is executed during execution of
A. See Fig. 5.2 (top-left) for this situation. The first guard ensure that activity
B is allowed to start after A already started and B should complete before A
completes.

Pattern duration. Some compliance rules may limit the time length in which
a control-flow rule instance may be executed. For instance, the temporal rule
negation pattern duration states: “no instance of a control-flow rule must be
executed within [a, f] time units since time ¢”. To specify these type of rules,
we instantiate the generic temporal rule similar to previous examples and we
annotate I, to specify the duration of an instance. For example, in case of the
negation pattern duration, the guard negation-pattern-duration (t,a,) will be
assigned to I,p. This guard is defined by negation-pattern-duration (t,a,) =
t}cmp € M AM = [0,00)\[t+a, t+B] where ¢ can be chosen by the user from ¢ € {¢7,,,
tlcmpr Leaser Lealendar tXiS[’ tXicmp b

This guard ensures that I.,,, occurs [a, B] after time ¢ as a reference. This
reference time can be start of the rule instance (¢;,), start of the case (fcu),
a specific time in calendar (Z.gienqdqr) Or start/completion of an activity in the
process (tXis,’ tXigmp)'

Validity. These group of rules limits the time during which an activity execution
must complete. To specify these type of rules, the generic temporal pattern
is instantiated for n =1 or n = 2 depending on whether the activity execution
is recorded as an atomic event or by events with start and complete life-cycle
events. For instance, for the rule activity duration, we map an event Ag; (start
of activity A) to X;-labelled transition and A, (completion of activity A) to
X,-labelled transition. The guard activity duration then is defined by activity-
duration (Ass, Acmp, tag, @, B) = tz,%mp €M AM=[ty, +a,ta, + Pl and is assigned
to the X-labelled transition where A, is mapped.

For the rules that specify execution time of an atomic activity A, we instan-
tiate the pattern for n = 1 and map the Xj-labelled transition to the event A.
We assign to the X;-labelled transition the guard activity-execution, defined by
activity-execution (A,t,a,f) =t, € M AM = [t+a,t+ f]. The reference time ¢
can be chosen by the user from ¢ € {1, t1,,,, tcases Lcalendar- tx;}- Note that if
t = tx;, then the generic temporal pattern has to be instantiated with a second
transition X, (n =2) to allow tracking the occurrence times tx, of X».

5.4 Specifying a Set of Temporal Rules as Atomic Temporal Patterns or A Composite
Compliance Model 171

Time Dependent Variability. Some temporal rules specify the execution of an
activity or in general the control-flow of the process depending to the execution
of another activity. For example “a given activity B must be executed within
[a, B] time units since time ¢! if A has occurred within [y,{] time units since
time 2 7.

For this temporal rule, the generic temporal pattern has n = 2 transitions.
Therefore the events A and B are respectively mapped to the X;-labeled and
X,-labeled transitions in the pattern.

The guard, time-dependent-variability (A,B,t',t*,a,B,7,{)) = thb € M AM =
[t' +a,t' + Bl At €[> +y,t*+(], is assigned to the X,-labeled transition in
the generic temporal pattern to which B is mapped. The user chooses ¢! and
t? from t' e {tr,» tIL.m,,’ tstart tcalendar» 1X;} and 1% € {tr,, tlcm,,; IStart) LCalendars tX;}-
Note that if ¢! € {tx,}, or #* € {rx,} then the generic temporal pattern in Fig. 5.12
will have more than 1 transitions, where X; transition is mapped to the addi-
tional transition.

Similar to the examples we mentioned above, all other temporal compli-
ance constraints identified in literature can be formalized by instantiating the
generic temporal pattern of Fig. 5.12, see Appendix B for details. Each for-
malization is then eligible for temporal compliance checking using data-aware
alignments. Our temporal compliance checking technique is not limited to pre-
defined control-flow rules and temporal rules, but is extendible. Next, we show
how we can adapt a generic temporal compliance rule for compound and com-
plex temporal restrictions.

5.4 Specifying a Set of Temporal Rules as Atomic
Temporal Patterns or A Composite Compliance
Model

As is discussed by the examples above, the concept of rule instance is essential
in formalizing temporal rules. If we can specify the boundaries of a compli-
ance rule, then we can specify any constraint on temporal dimension, even a
combination of temporal rules.

Recall the example of ‘antibiotic administration’. The constraint has two
temporal rules: R;) Between two antibiotic administration there must be 24
hours delay, and Ry) between two cycles of antibiotic treatment there must be
168 hours delay. The underlying control-flow condition of both of these tem-
poral rules is specified in the atomic pattern shown in Fig. 5.5 which explicitly

172

Temporal Compliance Checking

defines the rule instance through the I, and Iy, transitions. As both temporal
rules use the same notion of rule instance, we can combine both rules together
and instantiate the generic temporal pattern so that it specifies the temporal
aspect of both rules together; the resulting pattern is shown in Fig. 5.14. For
ease of presentation, we do not show the ellipses related to different variables
and the write statements at each transition. As can be seen, we can constrain
the delay between the two cycles of treatment by the guard delay-instance for
transition I5;, and we constrain the delay between two administrations of an-
abiotic inside a cycle by the guard delay for transition A. By combining the two
rules in one composite model, we can get diagnostics about compliance of the
two rules combined in one data-aware alignment.

We may only express two temporal rules in the same temporal pattern if
both rules have the same notion of rule instance. Suppose two temporal rules
stating: rule 1)“activity D must be followed directly by activity A within two
time units”, and rule 2) “activity B may only occur if activity A has occurred
one time unit before it”. In this case we cannot define a single rule instance.
Suppose the sequence of activities (D, A, A, A, B) (as is shown in Fig. 5.15 have
been executed. As can be seen the first A is part of the rule instance of the

Pattern parameters:
d #time(e) 9 tStart: tl—str tI—cmpr tEnd: tAr tQ
o t.(e) > transition label

[delay-instance (ls,lcmp, 168hrs,o0)]
{Set: ti.qmp, ta= undefined}

{W: tl»st}
Q
{Set: t.s; = undefined}

Icmp

Figure 5.14: Both R; and R; modelled together as a composite model by instantiating
the generic temporal pattern.

5.4 Specifying a Set of Temporal Rules as Atomic Temporal Patterns or A Composite
Compliance Model 173

first rule, and the third A is part of the rule instance of the second rule. We
cannot simply use the generic temporal pattern 5.12 to specify both temporal
rules together in one pattern.

Assume we define a rule instance such that it contains all the three activ-
ities A, B, and D. The instantiated generic temporal pattern for this setting is
shown in Fig. 5.16. The pattern for n = 3 has three transitions inside the rule
instance that will be mapped to events A, B, and D. The guard of transition A
specifies the delay between D and A, and the guard at transition B specifies the

only this
execution of A is
violating

A
| I —
2 3\ s
I I I I

Instance of the Instance of the
first rule second rule

=+ O
o+ >

N+ w

Figure 5.15: Sequence of activities (D, 4, A, A, B).

Pattern parameters:
o Hime(€) > tswr tisy tiamps tenas o tasts, to
o #,q(e) > transition label

{Set: t,; = undefined}
Start

Initial @—

Q {Set: ti.cmp, ta, ts, to, to= undefined} Q

Final

[delay(D,A,0,2)]
A

End lemp D
[delay(A,B,0,1)]

B

Figure 5.16: A composite model for specifying rules rule 1 and rule 2 together.

174

Temporal Compliance Checking

delay between A and B. With this formalization, all three occurrences of A will
be evaluated with the guard annotating this transition and consequently all the
three occurrences of A in our example sequence (Fig. 5.15) will be detected as
violating whereas only the first A is violating the first temporal rule. That is,
because we could not differentiate between the rule instances, all executions of
A are evaluated with the same guard. Therefore, the generic temporal pattern
must be changed to better reflect the underlying control-flow structure. Never-
theless, although it is possible to express some temporal rules together by the
generic temporal pattern, there is no generic way for all possible combination
of temporal rules.

Section 5.1 to Sect. 5.4 were mainly about understanding temporal compli-
ance rules and their formalization. We showed how we can formalize various
atomic temporal rules using the generic temporal pattern. We explained our
temporal checking approach step by step using several examples. Next, we
will discuss the checking approach further by explaining log abstraction as a
preparation step for checking. In addition, we will investigate the quality of
diagnostics obtained using temporal compliance checking.

5.5 Log Abstraction for Temporal Checking

In Sect. 5.2, we introduced the log abstraction and log enrichment steps to
enable temporal compliance checking. While this technique works in general,
it makes the assumption that no instance of a specified activity occurs outside
rule instances. In this section, we discuss a case that violates this assumption
and show how to generalize log abstraction for all cases.

Suppose a compliance rule stating, rule 3: “every activity A must be followed
by activity B within two time units.” We would like to check whether the given
log shown in Fig. 5.17 adheres to this rule or not.

Steps 1, 2, and 3: Log preparation, control-flow checking, and log enrich-

time 112|478 9]10]11
activity name B|B|A|B|B|C|A]|B

process instance | P1 | P1 | P1 | P1| P1| P1| P1| P1

event ID €1 | € | €| € | 6 [€ € [¢€g

Figure 5.17: Rule 3, Event log.

5.5 Log Abstraction for Temporal Checking

175

ment. The atomic pattern that describes the control-flow condition of the rule

Pattern parameter:
e #..(e) > transition label

Q
Start
Initial It lemp
Final O A B
End
B

Figure 5.18: Rule 3- Atomic pattern describing the control-flow rule instance.

checking B | B Al B B[O A
M |transition name |Start| I | A | B [lemp| B | Q[l]| A | B |lmp|End

P 1

occurrences of activity B outside rule instances

Figure 5.19: Rule 3- Control-flow alignment of the log of Fig. 5.17 to the control-flow
rule of Fig. 5.18.

time 1 11241477)8[9]10]10(11]11] 11
EL

CF condition F{T|T|F|T|[T|[{F|T)|T]|F|T[T|F]|F

checking Startf B | B | I | A| B [lemp| B | Q| & | A [B |lmp|End

Figure 5.20: Rule 3- Enriched event log with diagnostics obtained from control-flow
alignment in Fig. 5.19.

176

Temporal Compliance Checking

is shown in Fig. 5.18. After abstracting the event log, we check it against the
control-flow rule and obtain the control-flow alignment shown in Fig. 5.19. The
log fits the pattern and therefore no control-flow violation is detected. Note
that in this alignment, some occurrences of activity B fall outside rule instances.
The enriched event log with diagnostics are shown in Fig. 5.20. Note that in
the previous example discussed in Sect. 5.2, all instances of specified activities
were inside rule instances.

Step 4: Preparing enriched event log for temporal checking. We discussed
previously that the generic temporal pattern is used to specify the temporal
aspect of a compliance rule, i.e., it only allows to detect temporal violations.
Therefore, any log used for temporal checking should fit the control-flow struc-
ture of the temporal pattern. Hence, we should prepare the event log enriched
with control-flow diagnostics to fit perfectly the control-flow structure of the
temporal pattern, i.e., the alignment shall only show temporal violations, but
no control-flow violations.

To this end, we abstract from any activity outside rule instances and mark
them as Q at their checking attribute. As a result we will obtain the prepared
log shown in Fig. 5.21. The two executions of activity B that are outside rule
instances are abstracted and get value Q for their consistency attribute checking.

This discussion emphasizes once more the importance of the rule instance
concept in our approach for temporal compliance checking. That is, in temporal
checking we only focus on activities that occurred inside a rule instance.

time 1 1(2(4(4|7]| 7|89 |10|10]11[11(11

EL

checking Startf Q| Q| Iy | A| B |lemp| Q| Q[| A | B |lgmp|End

P H

occurrences of activity B outside rule instances get
the value Q for their checking attribute

Figure 5.21: Rule 3- Preparing the event log of Fig. 5.20 for temporal compliance check-
ing by abstracting from activities outside rule instances.

5.5 Log Abstraction for Temporal Checking

177

Steps 6: Instantiating the generic temporal pattern. The temporal rule of
this example specifies the delay between two activities of different kind and
was discussed in Sect. 5.3. The instantiated temporal pattern for this rule is
shown in Fig. 5.22. The guard [delay(A,B,0,2)] at the transition B limits the
execution time of this activity to be at most two time units after the execution

Pattern parameters:
o #time(e) 9 tA; tStam tI—s'u tI—cmp: tEnd: tA; tB: tQ

Q

L]

{Set: ta, tg, to = undefined}

lst

Initial &)—

Final

{W:ta}

[delay(A,B,0,2)]

Figure 5.22: Rule 3- Temporal pattern instantiated to specify the delay between activities

A and B.
time 1121447 |7|8|9|10]10]11]11] 11
PL
checking Start] Q[Q[ls [A B |lemp] Q] Q| ls | A | B [lenp| End
M transition name |Start| Q | Q | I B [lep| Q1 Q| I | A B |lemp| End \
admissible time 1 1 2 2 4 6 7 8 9 l10)10| 11| 11] 11

activity B occurred
later than specified

the prepared log fits
the control-flow structure
of the temporal pattern perfectly

Figure 5.23: Rule 3- Data-aware alignment of prepared log of Fig. 5.21 with the temporal
pattern of Fig. 5.22 indicates a temporal violation.

178

Temporal Compliance Checking

of activity A.

Step 7: Temporal checking. Aligning the prepared log and the temporal pat-
tern, we obtain the data-aware alignment shown in Fig. 5.23. The alignment
indicates that the activity B in the first instance of the rule occurred later than
it should. As the next step, we can enrich this event log with the temporal
diagnostics obtained.

Step 8: Log enrichment with temporal violations. This step is done as similar
as for the previous examples. The result of log enrichment is shown in Fig. 5.24.

. EL (Enriched log with control-flow and temporal violations)

P

el

— #a:t(eLl) =B

I: Hmele'1)=1
#,ue1(e1)(rule;)= delay between A and B
L ¥
H#rule1.compliance state(€ 1)= compliant
L #eLinstance(€"1)= OUtside rule instance

—#(e%) =B

I: Hime(€")=2

#.uea(e')(rules)= delay between A and B
—— Hrule1.compliance state(€2)= compliant

L #ouermstance(€2)= outside rule instance

— #(e5) =A
Hime(€s)= 4
#uer(e's)(rule;)= delay between A and B
Hruten.compliance stae(€'3)= compliant
Hrutetinstance(€'3)= 1° activation
—#(e%) =B
Hime(€a)= 7
#eue1(€%)(ruley)= delay between A and B
Hrule.compliance state(€2) = violating
Hrerinstance(€a)= 1% activation
Hruez.compliant value(€'7)= 6

L
Hrute2.violation type(€ 7)= temporal

€’

”act(eLs) =B
Hime(€'s)= 8
#uei(e's)(rule;)= delay between A and B

L ,
Hrule1.compliance state(€ 5)= compliant
L . Z
H#rulermstance(€'5)= outside rule instance

—#(e's) =C

L
I: Hime(€'6)= 9
#rue(e')(rule;)= delay between A and B
—— Hrule1.compliance state(€'6)= compliant
L #ouermstance(€'6)= Outside rule instance

—#(e5) =A
I: Himele'7)= 10
#ue1(€%)(rule;)= delay between A and B

L .
—— #rule1.compliance state(€ 7)= compliant
L nd g i
—— H#rletinstance(€ 7)= 2" activation

—#(e's) =B
Hime(€s)= 11
#ouer(e's)(rule;)= delay between A and B

L $
Hrule1.compliance state(€ 8)= compliant
R
H#ruie1nstance(€)= 2™ activation

Figure 5.24: Rule 3- Enriched event log with complete diagnostics obtained from data-
aware alignment of Fig. 5.23.

5.6 Diagnostics in Temporal Checking

179

5.6 Diagnostics in Temporal Checking

So far, we assumed an oracle that will produce the data-aware alignment to
provide us with diagnostic information. In the following, we discuss the pa-
rameters of a specific technique, a multi-perspective conformance checking ap-
proach [33], and how these influence the diagnostic information.

Minimizing the total cost of violations globally

The technique of [33] builds a suitable Integer Linear Programme (ILP) to
minimize the total cost of deviations between an observed process instance and
a possible process instance by a model. Using this approach we are able to pro-
vide diagnostics that consider the global impact of the proposed compensation
in the process rather than compensate the deviation locally. We will elaborate
on this by an example.

Suppose a temporal constraint stating: “activity a must be followed within
two time units by activity B and activity C must occur later than one time unit
after B”, i.e., t; < t4+2 and t;, > tp + 1. The constraints are visualized in the top
part of Fig. 5.25. Assume activities A,B, and C occurred as given in the bottom
part of Fig. 5.25.

As can be seen, activity B is violating the constraint at transition B; it oc-
curred later than specified. The technique of [33] (which our temporal compli-
ance checking is based on) will indicate the execution of activity B as violating.
In addition it suggests that activity B must occur at time 2 to compensate the
violation. Time 2 is the value that satisfies both constraints together. When

Pattern parameters:
i #time(e) 9 tA: tB: tc
o #.,.(e) > transition label

[t's <ty +2] [t'e>ts +1]

{W:ta} {W:tg} {W:ta}
A B c

Prescribed behavior W

Figure 5.25: The data-aware alignment will suggest that activity B must occur at time 2.

180

Temporal Compliance Checking

the constraint 5 < t4 + 2 is considered in isolation, then tz may occur in the
interval [1,3] to be compliant. However, value 3 violates the second constraint
tc > tg+1. By considering all constraints together when searching for compliant
values, the approach of [33] returns a value that satisfies all constraints (unless
no such solution exists).

If we merely compare the execution time of activity B with the time that is
specified in the prescribed behavior, the activity B may occur sometime in the
[1,3] interval. However, if B occurs at time 3, which is correct considering merely
the constraint at transition B, then execution of activity C will be violating.
Our temporal compliance checking technique considers the impact of suggested
compliant value for activity B globally and will limit the compliant value to be
only 2. Thereby, minimizing the number of violations.

Minimizing the total value of deviation

In addition to minimizing the number of violations, the compliant value sug-
gested by temporal checking minimizes the total value of deviation as well. We
will also elaborate this point with the help of an example. Suppose a temporal
constraint says that there should be a delay of three hours between executions
of activities A, B, and C. Assume the sequence of activities (A,B,C) are executed
as shown in the top part of Fig. 5.26. Apparently, this sequence is violating the
constraint as there is not three hours delay between execution of these activities.

Among the many alignments that can be built, there are three compensation
explanations shown in Fig 5.26 that are correct according to the constraint and
will minimize the total number of violations. That is, if we assign a cost of one
to each violation, these solutions all have the same total cost of two. The first
explanation, suggests that activity B and C are violating and they should have
been executed respectively at 15: 00, and 18:00. If we take this explanation,
then the total deviation of observed behavior from the prescribed behavior is
five hours. The second explanation indicates that executions of activities A and
C are violating and they should have happened respectively at 10: 00, and 16: 00.
If this explanation is chosen, then the total deviation of the observed behavior
from the prescribed behavior is three hours. Similarly the third explanation
detects activities A, and B as violating and suggests they should have happened
respectively at 09:00, and 12:00. This explanation has the total violation of
four hours. In this situation, the technique of [33] will suggest the second
explanation as the compliant values for activities A and B.

Choice of the best control-flow alignment for temporal checking As our ap-
proach uses control-flow checking to identify rule instances and control-flow
violations prior to temporal analysis, we now discuss how the quality of the

5.6 Diagnostics in Temporal Checking

181

control-flow alignment impacts the temporal analysis and the overall diagnos-
tics.

We discussed in Chap. 3, and Chap. 4 that several control-flow alignments
may have the same total cost. In this situation, the control-flow compliance
checking technique picks an alignment randomly from the variants of an align-
ment with the same cost. However, if variants of a control-flow alignment have
the same cost, the total cost of temporal violations may vary depending on
which of the control-flow alignment variants are chosen for temporal checking.

In our example of ‘antibiotic treatment’ (presented in Sect. 5.2) several
control-flow alignments have the same cost as the alignment shown in Fig. 5.6.
For instance, the violation (missing event A) in this alignment (for now we call
it ‘preferred alignment’) is detected in the second rule instance. Suppose the
cost of this violation (missing activity A) is one. In this case, another control-
flow alignment (we call it ‘not-preferred alignment’) shown in Fig. 5.27 have
the same cost as the ‘preferred alignment’, while this alignment positions the
violation in the first rule instance. Although both control-flow alignments have
an equal cost one, they will result to different total cost (control-flow and tem-
poral) if we also consider the cost of temporal violations w.r.t. the temporal rule

O (2 g c'\
()) ()
NN N
Observed behavior } } } } } t t t time
12:00 13:00 14:00 15:00 16:00 17:00 18:00
N D N
& &+ &~
First compensation solution: \ \ \ \; \ N \ \ o time
o } } } } } } t } } }
* total cost of violation: 2 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
e total deviation: 5 hours
O\ o D\
(A) x (B) (c) «
) . NN A A
Second compensation solution: \ \ \ \ \ \ , \ , , time
- } } } } } } } } } }
* total cost of violations:2 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
e total deviation: 3 hours
D @ @
Third compensati_on sc_)lution: ‘\\A/“ X ‘\\B/" X @
e total cost of violation: 2 y y y y } | ' ' ' ' time
* total deviation: 4 hours 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

Figure 5.26: The temporal compliance checking minimizes the total deviation of ob-
served behavior from prescribed behavior.

182

Temporal Compliance Checking

These events will be detected as
violating in temporal checking.

checking Q Al A AlA]lQ|A Q
M |transition name |Start| Q [g [A | A | A llemp| lse | A| A [Q[A |lcmp| ©Q | End

Figure 5.27: The ‘Not-preferred’ control-flow alignment will lead to more temporal vio-
lations.

R; and R;. In this case, the ‘not-preferred alignment’ will lead to higher total
cost of control-flow and temporal violations together. As indicated in Fig. 5.27,
more events will be detected as violating (having temporal violations). Apart
from the missing activity A, the event e, will be violating because it should have
happened at least 168 hours after the previous A. The events e, e4, e5, and e;
will be detected as violating because according to the rule there should be a de-
lay of 24 hours between these events and their proceeding execution of activity
A.

To overcome this problem, our technique first computes all variants of a
control-flow alignment having the lowest control-flow cost. Then we create for
each control-flow alinement a new enriched log. We then compute a temporal
alignment for each of these logs and then choose the temporal alignment with
the lowest cost. All other temporal alignments are discarded.

Balanced consideration of control-flow and temporal violations

By building temporal checking upon control-flow checking, we are giving a
priority to the control-flow perspective of a process. Therefore, the diagnostics
we receive highly depends on the sequence of first control-flow alignment fol-
lowed by data-aware alignment. Recall the example of activities A, B, and C in
Fig. 5.26. The constraint states that there must be a delay of three hours be-
tween execution of these activities. All the three compliant solutions shown are
based on a control-flow alignment with cost 0, i.e., no control-flow violation.
However, another way to explain the violation in the observed behavior would

5.7 Applying Temporal Compliance Checking on Real-Life Event Logs

183

be that activity B should have not occurred. In this case, the delay between
two activities A, and C is three hours, i.e., no temporal violation happened but
activity B should have not occurred.

If cost of any violation (control-flow and temporal) is 1 or temporal violations
have a higher cost than control-flow violations, then the explanation (activity B
should have not occurred) will have a lower total cost compared to the previous
three explanations shown in Fig. 5.26.

The technique in [44] balances violations w.r.t. all process perspectives in-
cluding control-flow and time based on a customizable cost function. However,
using this technique we will loose the generality of our temporal checking ap-
proach that is based on the generic temporal pattern and is tailored for tempo-
ral checking. Recall from Sect. 5.2 that we combine control-flow checking and
data-aware checking in two steps: the control-flow checking for clearly defining
the boundary of rule instances and the data-aware checking for detecting tem-
poral violations. The clear boundary of rule instances allows us to prepare the
log such that it fits perfectly the control-flow of the generic temporal pattern
and focus only on temporal violations. However, using the technique in [44],
we will loose the clear distinction between the two steps and hence, we will
not be able to use the generic temporal pattern. Consequently, the user should
prepare a data-aware Petri net for each rule to be checked. In addition, domain
knowledge is required to adjust the cost function.

5.7 Applying Temporal Compliance Checking on Real-

Life Event Logs

Our temporal compliance checking technique has been implemented in ProM,
available from www.promtools.org, and was applied in a case study on real-life
logs. We briefly discuss the implementation in ProM and then provide details
on the case study.

5.7.1 Implementation in ProM

The temporal compliance checker is available in the package Compliance that
provides two user-friendly plugins for temporal compliance checking. The first
plugin provides control-flow compliance checking as described in the previous
chapter. The control-flow compliance checking plugin takes as input a log and
an atomic pattern and returns compliance diagnostics in form of a control-

www.promtools.org

184

Temporal Compliance Checking

=l QILG

Actions

Check Temporal Compliance plugin
takes a control-flow alignment
as input

Figure 5.28: Temporal compliance checking using data-aware alignment plugin takes a
control-flow alignment as input.

flow alignment. The control-flow atomic pattern can be built using the elic-
itation technique described in the previous chapter. The second plugin takes
the control-flow alignment (See Fig. 5.28), produces an enriched log and then
checks temporal compliance of the log to a temporal rule that can be specified
by the user through a wizard. The resulting alignment then provides diagnostic
information by showing control-flow compliance violations and temporal viola-
tions projected into the events of the original log. Figures 5.29, 5.30, 5.31, 5.32
, 5.33, 5.34 show several screenshots of different wizards in temporal compliance
checking using data-aware alignment plugin.

5.7 Applying Temporal Compliance Checking on Real-Life Event Logs 185

Instantiating the
generic temporal pattern Definition of

temporal guards

Prol 64

Figure 5.30: During temporal compliance checking, we allow the user to specify how the
missing temporal values should be repaired.

186 Temporal Compliance Checking

L3 ProM UlTopia

Mapping transitions of the
temporal pattern to events.
of the log

[Finisn

Figure 5.31: Mapping transitions of the generic temporal pattern to events of the log.

L (=0 i
[Mapping variables in the

temporal pattern to
attributes in the event log

Please provide the mapping for the following:

RR R 01 HOORD_010+campiete_time
NSl 01_HOOFD_490_3+complete._time. -
O TR R o8 _awB45_020_2+complete_time v

08_AWB45_040+complete_time

var_08_AWBA5_040_co...

[contnue

Figure 5.32: Mapping variables in the temporal pattern to attributes in the log.

5.7 Applying Temporal Compliance Checking on Real-Life Event Logs 187

Setting costs for
temporal violations

Combined diagnostics
(control-flow and temporal violations) |

Figure 5.34: Temporal compliance checking provides combined diagnostics including
control-flow and temporal violations.

188

Temporal Compliance Checking

5.7.2 Case Study Compliance Constraints and Results

We applied this implementation of the compliance checker in a case study for
checking compliance of the building permit process of five Dutch municipalities
(Mj,...,Ms) . The municipalities may carry out the building permit process in
different ways, as long as it is compliant to the regulations issued by the Dutch
legislative.

To test the feasibility of our temporal compliance checking technique, we
selected a rather involved temporal compliance constraint that combines static
and dynamic temporal aspects.

The compliance constraint was given informally: “Every application must
be processed within at most 8 weeks from the date of a submitted request. If
during the processing of the request, the organization requires additional in-
formation from the applicant, the time interval between asking for additional
information and providing the information by the client must be added to the
8 weeks.” This requirement is decomposed into two control-flow compliance
rules and one temporal compliance rule:

Control-Flow Compliance Rule 1: “Every time activity submit request (submit)
is executed, it must be followed eventually by activity publish result (publish).”

Control-Flow Compliance Rule 2: “The sequence of activities ask for additional
information (ask) and receive additional information (receive) may only be exe-
cuted after the execution of activity submit and before the execution of activity
publish.”

Temporal Compliance Rule: “The delay between execution of two subsequent
activities submit and publish in all instances of a control-flow pattern, must be
[a, B+ B2] time units since time ¢, where B, is the time between executing ask
and receive.”

We formalized the two control-flow compliance rules using the elicitation
technique described in the previous chapter. The formalization of the tem-
poral compliance rule was derived by instantiating the generic temporal pat-
tern of Fig. 5.12 as follows. The temporal rule requires four activities submit,
ask, receive, and publish and a variation of the guard delay-diff-activities in-

troduced earlier. The guard delay-3 (submit,ask,receive,publish, «, §) = t; ublish €

(tsubmit + @, tsubmit + B+ (Treceive — task)] V Lsubmir = undefined is assigned to tran-
sition publish with @ =0 and 8 = 8 weeks. As activities ask and receive are op-
tional, we have to provide valid time stamps in variables t,s and treceipe in
each iteration. Therefore, the instance start transition I;; of the temporal pat-
tern (Fig. 5.12) initializes both variables to 0, i.e., {t;Sk =0, t;mm =0}, making
their difference O if ask and receive are absent.

5.7 Applying Temporal Compliance Checking on Real-Life Event Logs

189

% violated —— trend (% violated) W # cases

100%; -H—% To—T00009 oo 70

; ' 60

Municip. Cases Violations 80% 3 l so
delay (months) 0% 4 7

avg. max. |)i 40

M1 257 51 3 8 40% - 730

M2 166 37 4 15 e 120

M3 353 54 3 10 20% "] 1

M4 269 38 3 11 LI e w . rio

M5 319 53 4 9 0% FoeWe ofe® Wy um g M miamgy Rlg |
25 30 35 40 45 S50 55 60 65 70

Table 5.2: Temporal compliance viola- Figure 5.35: Violations versushandover of
tions. work.

In order to check compliance of the building permit process to these require-
ments, we obtained five event logs, each coming from a different municipality.
Each log was extracted from the municipality’s case handling system and con-
tained all activities performed for a case together with time stamps and resource
information. In total we obtained 1408 cases as shown in Table 5.2 together
containing 35352 events. Cases had 37 events on average and 97 events at
most, distributed over 178 different event classes.

We first checked for compliance violations of the control-flow rules, followed
by temporal compliance checking. In our analysis of the control-flow violations,
we found 4 real violations and 40 false positives out of total number of 1408 cases
in all municipalities. Most of the false positives occurred due to inaccurate time
stamps and mistakes in data entries by a human user. The remaining real viola-
tions were mostly caused by the publication of the result before the municipality
processed the additional information provided by the applicants. In general, the
control-flow violations have not been severe because the process under analysis
is quite standardized in all 5 municipalities. However, the temporal violations in
all municipalities seem to be significant. Table 5.2 shows the result of temporal
compliance checking in different municipalities.

Based on the diagnostic information we got from the temporal compliance
checking, we investigated the cause of the high number of temporal violations.
We found that in compliant cases requests for additional information were is-
sued no later than 2 months after receiving the application. In all violating
cases, requests for additional information were made only later than 2 months
after receiving the application, i.e., when compliance was violated already. This
suggests that the process primarily needs to be improved in the initial phase
when employees gather and assess information about a particular application.

190

Temporal Compliance Checking

Another influential factor in increasing the violations, is the number of han-
dovers among employees working on a case. The diagram of Fig. 5.35 shows
the distribution of cases and the percentage of violating cases over the num-
ber of resource handovers happening in a case, for M1. The x-axis of Fig. 5.35
ranges over the number of hand-overs of work; the majority of cases had around
30-50 handovers, though there are several cases with up to 66 handovers. The
y coordinate of a blue diamond gives the percentage of cases with x handovers
of work that faces a compliance violation. The share of violations increases as
handovers increase. This observation suggests that less compliance violations
occur when an employee handles several subsequent activities of a case.

Figure 5.36 visualizes the data set of the municipality M 1. Each colored dot
represents an event, the color of the dot indicates the resource involved in the
event. All events of a case are arranged in one line, and we ordered cases based
on their duration

In total 16 different resources worked on this process. The zoomed-in part
of the figure shows the activities executed for one of the violating cases on
9" 0ct.2012. We chose this case based on the diagnostics we obtained during
the temporal checking. This case is violating the temporal constraint and has a
delay of nearly 5 months. As can be seen only on this day several hand-overs
between four resources are detected. Similarly many other violating cases have
a large number of handovers. On the contrary Fig. 5.37 shows a case that was
processed by only one resource.

Based on our analysis, we suggest to make further analysis on organizational
structure and division of work in M 1. A process oriented division of work
could decrease the number of handovers. In addition, a job rotation programme
could enrich the skill set of employees to be able to execute more activities with
respect to one case, hence decreasing the number of handovers and improve
compliance.

Applying the technique presented in this paper, we were able to check com-
pliance of all the cases in the event logs rather than being limited to sample
based compliance checking. The technique is fast and works on large event logs
because we can focus on events relevant to a specific compliance rule and ab-
stract from all other events. The remaining effort for a human user is in formal-
izing the compliance constraints and analyzing results. The effort in formalizing
constraints was kept low in our case study. We could elicit the control-flow rule
using the elicitation techniques described in the previous chapter. The main
effort was in expressing the temporal compliance constraint as the guard delay-
3 (submit,ask,receive,publish, a, B) presented earlier; once the guard was iden-
tified, the constraint could quickly be formalized by instantiating the generic

5.8 Related Work

191

pattern through a wizard. Note that this formalization need to be done once.
Checking could then be continued for all cases automatically.

The technique could identify, locate, and determine the extent of deviations.
Such diagnostic information can be used by the business analyst to analyze the
cause of the deviations.

5.8 Related Work

The work presented in this chapter is mainly based on [130]

e Case #: 4770968
- with several handovers
e between 4 different recources
i only in a short period (a day)
E 3030743
e
g (]
5 deseres wn
£ aoe7e18 (ge)
2588714 (O b o
3sgE3ze ni A % e . . 1 |.
3074788 | P 3 L] :-‘u k- d
e 3 W
2800338 5: . - s BT f" "
2832480 ;;'* "'“ , % - ..'-:' ..:l‘
3107602 | e B . - l
811018 -; ‘; S 1.1:: ! l: e
4474002 t_....- ""':. b .., ,,,: % .h.'!-l& ";i.'l_‘ S
TP T Sl T S SR UL LTI B+
508838 Ld o . -'-_-.- R i i i .
S | B 3 S Durathn

-1h0m0.000s 58d23h0m0.000s 119d23h0mD.000s 180d23h0mD.000s 243 days

Figure 5.36: Several hand-overs observed for a violating case within a short period of
time.

192

Temporal Compliance Checking

Existing work in temporal compliance checking primarily focuses on verifi-

cation at design time or at run time.

It is possible to derive temporal properties of acyclic process models by anno-
tating tasks with intervals of execution and waiting times; execution times and
waiting times of the entire process can then be derived by interval computations
and compared against predefined constraints of total execution times [39]. In
addition, the time-critical paths of a process model can be computed [93]. In a
similar fashion, the approach in [74] formulates temporal constraints in terms
of deadlines for completing an activity (relative to another activity). Reasoning

on time intervals is used to verify whether a constraint is violated.

3371871

3005764

3851157

3387527

3896338

3850331

4022302

3438808

4867412

3089485

3720208

3030743

3718043

3218828

3056705

Trace: conceptname

2067818

2868714

3888328

3074788

2809338

2832460

3197502

4811018

4474002

4508588

3885428

3026543

Case #

Bl
.'(:p"‘
2
e B ‘
rhra gt
- %) Case #: 278345
| F st | The case is handeled
| ¥ 4+ S .
(3o T with only one resource.
St
155 777 Jo o oo ° * @
B aaind
[o= e\
;;'-‘.'g k Il:
R B
Faz-n "% 0"
ket B
132 "oy
£ v By
o g™ ole FWu L
prras el &
Bagw™" [T L Y
3 o . ‘_
R R LN
;: o _'-. sepm ;"
M vY, v % .
l""°<~"-' ‘-... LACE. 'S ‘k‘-\.“ LTS
Bt i el 4 g e B L s,
Rl R Joee R T

“*"Duration

-1h0mD.000s 58d23h0m0.000s 119d23h0m0.000s 180d23h0m0.000s 243 days

Figure 5.37: Example of a compliant case processed by a single resource.

5.8 Related Work

193

For verifying that a process with loops satisfies a general time-related con-
straint, typically temporal model checking techniques are applied. The prop-
erties of interest are metric temporal constraints, e.g. deadline on execution of
activities in a business process. Metric temporal logic (MTL), a temporal logic
with metric temporal constraints, can express typical compliance requirements
as presented in this paper. Unfortunately, the model checking problem for MTL
is undecidable over models with infinite traces [67]. By introducing so called
observers on atomic propositions, the problem whether a process model, given
as a timed transition system (TTS), satisfies an MTL formula becomes decidable
by a reduction to LTL model checking [5]. This approach allows to check tem-
poral compliance of a real-time extension of Dwyer’s specification patterns [38].
A similar approach is followed in [47] for checking whether an extended CCSL
(Clock Constraint Specification Language) specification holds in a timed Petri
net; CCSL is less expressive than the constraints that can be expressed and
checked with our technique.

An alternative approach to describe temporal constraints is timed Declare [149]

in which LTL-like constraints are extended with the notion of time. By a trans-
lation to timed automata, such constraints can be monitored at runtime to eval-
uate whether a process instance might or will violate a temporal constraint. A
similar approach is proposed in [83].

In comparison, the technique presented in this paper focuses on backwards
checking of temporal constraints in execution logs. The generic Petri net pat-
tern proposed in Sect. 5.3 is capable to express all temporal constraints that we
encountered in the works discussed above, and other temporal constraints such
as cyclic temporal constraints not discussed elsewhere. Our technique detects
all temporal violations in a trace, not just the first temporal violation encoun-
tered as it happens in model checking approaches. In case of violations also
the compliant behavior (when a non-compliant event should have happened) is
returned as diagnostic information.

The work presented in [106] focus on detecting temporal anomalies of an
event log. The inputs of this approach is a Petri net representation of a process
and an event log. The historical executions of activities in the log is used then to
build a stochastic Petri net. A Bayesian network is inferred from an instantiation
of the Petri nets mode during the replay of each case in the event log. Finally
the likelihood whether an observation is drawn from the model distribution
is computed. This approach cannot be used in context of temporal compliance
checking because first of all the event log itself is used to generate the stochastic
Petri net from the Petri net model of the process. Hence, the model reflects the
log rather than compliance rules. That is, it is not clear how we can specify the

194

Temporal Compliance Checking

temporal rules with this approach, especially in case of intricate temporal rules.
Next, one cannot get the precise diagnostics our technique provides e.g. location
of violations, the deviation distance and compensation values.

5.9 Concluding Remarks

In this chapter we showed a complete set of temporal compliance rules. We
discussed how we can specify all the rules listed in this repository by a single
pattern that can be instantiated for each temporal compliance rule. The in-
stantiated temporal pattern and an event log are the inputs for our temporal
checking approach. We presented a robust technique for temporal compliance
checking. For this, we first check whether the activities specified by a temporal
rule occurred or not and then we check whether they occurred at the right time.
By leveraging an existing data-aware conformance checking technique [33], we
obtain detailed diagnostic information for both control-flow and temporal vio-
lations by computing an optimal data-aware alignment between an event log
and the instantiated temporal pattern. The alignment then indicates where the
event log deviated from the temporal rule. It also indicates how the violation
could be compensated. We discussed the quality of diagnostics obtained using
the temporal compliance checking technique. This approach is also supported
by a ProM plugin. We have tested our techniques using real-life logs and com-
pliance constraints.

Chapter 6

Data-Aware and
Resource-Aware Compliance
Checking

This chapter focuses on elicitation and checking of data-aware and resource-
aware compliance constraints in a systematic way. Similar to temporal com-
pliance checking (discussed in chap. 5), data-aware and resource-aware com-
pliance checking build upon control-flow compliance checking (discussed in
chap. 4).

In Chap. 5, we explained in detail how we formalize a temporal compli-
ance rule as a data-aware Petri net and how to combine two techniques of
control-flow checking and temporal checking to obtain the diagnostics we listed
in Chap. 3. Data-aware Petri nets are used for formalizing data-aware and
resource-aware compliance rules as well. However, these rules can be cate-
gorized in two main groups. The rules that restrict the data-flow of a process
and rules that restrict control-flow of a process when a given data condition
holds. In this chapter we will explain how to check compliance of each group
of rules. The selected approach influences the diagnostics obtained. Hence, we
will discuss how diagnostics obtained from both checking approaches need to
be interpreted.

We discussed in Chap. 3 that depending on how rules are formalized (atomic
versusa composite model) and how alignments are configured (cost of moves),

196

Data-Aware and Resource-Aware Compliance Checking

diagnostic information can differ. We investigated this matter for temporal con-
straints in Chap. 5. We will briefly discuss this matter in context of data-aware
and resource-aware rules.

Figure 6.1 illustrates how the content of this chapter is organized in different
sections. Section 6.1 presents a collection of data-aware and resource-aware
compliance rules and the categorization of these rules into two main groups
mentioned before. Section 6.2 sketches the two approaches for checking rules.
The details of each approach are discussed by the help of examples in Sect. 6.3,
and Sect. 6.4. We will discuss the quality of diagnostics obtained using these
approaches in Sect. 6.5. Section 6.6 will briefly explain the differences of speci-
fying a set of data and resource-aware compliance rules individually or together
as a composite compliance model. We will show the feasibility and applicability
of the checking techniques on real-life event logs in two different case studies.
Section 6.7 explains the implementation of the techniques and then the details
of the constraints in each case study and the results obtained, will be discussed.
We will review related work in Sect. 6.8 and conclude with Sect 6.9.

197

1HODISNI

S~

susaned Joineyaq
jueyidwiod Buneloip

=

59|N1 UOKIDOSSY

sansnels

@

S)UDAD paYyIsse])

1

sisk|eue asne>-}00y

4d
adueldwod

[

JusWIUBIY

—

Bupayd adueldwod

Bupayd adueldwod

-
-
-
-
-
-

\

9931935

/o9t N

aysodwo) /

O h(AA Ny«

S$3]NJ 91eME-9DIN0S3I puR
9IeME-B]EP JO UOIID3][0D

y

JusWIYdLIUD
boq

\

uonejoIA

uoiP3I3P

uonesedaid
6o

1’93335

ejep
—_—
AREEN
B €919
R T913S

i bupydayd adueldwod 931nosas pue eyeq

T
Buppay> adueyjduiod moy-jouo) |

Buppdayd sdueldwod jerodwa) ﬁ

=

sjJomawesy
Jule1ISUOd
asueldwo)

Juies3suod
aoueldwo)

Figure 6.1: Thesis road map gives the mapping of the sections in Chap. 6 on to our
compliance analysis approach.

198

Data-Aware and Resource-Aware Compliance Checking

Rule Description

| Example

Four-eye principle: A security principle that.
requires segregating the execution of crit-
ical tasks and associated privileges among
multiple users [3,7,19,36,41,116,119,132]

The person requesting purchase of goods
should not be the one who approves it.

A purchase order approval requires two sig-
natures from different agents.

Authorization (Access control): A security prin-
ciple that limits execution of activities or ac-
cessing a data object to authorized individu-
als [3,7,19,36,41,116,119,132].

Only a financial manager can approve a
loan.

Two (three) (four)-way match: An accounting
rule that requires the value of two or more dif-
ferent data objects to match [3].

All vendor invoices that are based on pur-
chase orders should be matched with pur-
chase orders (two-way matching).

Activity T may/must (not) be executed if at-
tribute X has the value v in a given range;
(X may be local to the activity T or may ap-
pear anywhere in a case) [3,41,119].

An account must not be opened in case risk
is high.

During ventilation, patient must receive
“propofol" with dosage of (5mg).

Activity T} may/must (not) be executed if at-
tribute X has value v in a given range at activ-
ity T» (attribute X is local to activity T») [3,41,
119].

In case the respondent bank rating review is
rejected during evaluation, an account must
never be opened.

Activity T must not change the value of at-
tribute X [3].

Bank account data must not change during
payment.

The value of attribute X must not change after
activity T is executed [3].

All invoices must be archived and no
changes must be made to the document.

Activity T7 may occur only if the value of at-
tribute X is increased/decreased by activity T»
with d (ICU medical guideline in a Dutch hos-
pital (internal policy)).

If gastric tube feeding cannot be increased
by (1,20 kcal/ml), then use ‘Erythromycin’.

If attribute X has value v in a given range, then
resource R must execute the activity [3,7, 19,
36,41,116,119,132].

Loans with value more than 1000000 Euro
must only be approved by CFO.

If activity T; is done by agent A, then activity
T, must be done by the same agent [36].

A customer complain must be handled with
the same agent registered the customer re-
quest.

Table 6.1: Collection of data-aware and resource-aware compliance rules.

6.1 Data-Aware and Resource-Aware Compliance Rules

199

6.1 Data-Aware and Resource-Aware Compliance
Rules

Like for control-flow and temporal compliance rules, our extensive literature
study in compliance checking [3,7,19,36,41,116,119, 132] resulted in a col-
lection of rules confining process data and process resource. Table 6.1 also
shown in Chap. 3 presents our collection of compliance rules taken from these
sources and some more taken from practise e.g. medical guidelines. We found
some typical restrictions on process data and resources such as four-eye prin-
ciple (separation of duties), authorization level or three-way match and some
domain specific compliance rules.

In addition to the classification presented in Table 6.1, all different types of
data-aware and resource-aware constraints fall into two main categories: (1)
constraints that enforce a restriction on data attributes, and (2) constraints that
restrict activities when a certain data condition holds. For example a compli-
ance rule such as the four-eye principle is of the first category. This rule specifies
that two activities A and B must be executed by two different resources. The
rule assumes that the underlying control-flow sequence is correct, i.e., no mat-
ter in which order two activities A or B are executed, the restriction is on the
corresponding data attribute (resource). In case A is executed first by resource
R;, the rule will urge that B must not be executed by R;. Whereas, if B was
executed first, the restriction would be on the resource executing activity A.
These rules are very similar to the temporal rules, i.e., we assume the under-
lying control-flow is correct and then we check whether it occurred with the
correct resource or data. The checking procedure of these rules is also very
similar to the temporal checking.

In contrary with rules like four-eye principle, a rule stating “activity B must
not be executed for gold customers” belongs to the second category. This rule
restricts the execution of activity B when a certain value (gold) for data attribute
customer type holds. That is, based on a certain data condition, the constraint
restricts the control-flow, i.e., restricting execution of activity B.

Next section will discuss our methodology for checking data-aware and resource-

aware compliance rules of each category.

200 Data-Aware and Resource-Aware Compliance Checking

/ e o ’:ﬁ:‘ =3 — % =T
/éF\ iiﬁ\ :Efj i i 7E7L 7ﬁ7 JK’ Enrich with BJ-j
Co e e |t | o
|/ Elicit O/R \,ﬂ\ | Provide

| rule | diagnostics

lﬁ Prepared/Enriched log EEEEL# Enriched log with inserted events for model-only moves

m

Fe o6
— Control flow (CF) rule

Control flow (CF) alignment
EEE' Temporal (T) alignment (Temporal (T) rule
Data/resource (D/R) alignment Data/resource (D/R) rule
Figure 6.2: Methodology for checking the first category of data-aware and resource-
aware compliance rules.

6.2 Methodology of Data-Aware and Resource-Aware
Compliance Checking

This section presents our main contribution in the context of data-aware and
resource-aware compliance checking as two dedicated approaches for checking
the two categories of rules on past executions recorded in event logs.

Figure 6.2 depicts the approach we use for checking the compliance rules
of the first category. For these rules, we need to check if a specified activity
was executed with a correct data or resource. Hence, the restriction on data
attributes must be checked and the underlying control-flow is assumed to be
correct. To check every compliance rule, we need to detect its instances, i.e., we
identify whenever the rule is triggered. We capture boundaries of a compliance
rule by formalizing it as a data-aware Petri net.

An instance of a rule from the first category is defined based on the occur-
rence of an activity or sequence of activities. We use the elicitation technique
described in Chap. 4 to specify an instance of a rule. The obtained atomic pat-
tern is then augmented with guards to restrict data or resource. Accordingly,
we prepare the event log and abstract from irrelevant information. Similar to
temporal compliance checking, we first check whether the specified activities
occurred or not by aligning the event log and the elicited atomic pattern. After-
wards we use the control-flow alignment to enrich the event log with control-
flow diagnostics. The enriched event log and the atomic pattern augmented
with guards are then used to build a data-aware alignment. After detecting
data or resource violations, we enrich the event log with these diagnostics.

6.3 Compliance Checking of Rules Restricting Data Attributes

201

ok] i R])
PL PL P 1

i i Enrich with
,,,,, Abstract jL’ D/R check Jk’ Enncr.\ }Mth Jk’ St i» CF check J :i:Jllcati:rI\ts J \
[Elicit o/R | conditions shorten N E—
L,“ﬂe<l\%/31 (_CF) |diagnostics|

| ElicitcF | _—
| e T ——— - — —— -

A Prepared/Enriched log EZEELEY Enriched log with inserted events for model-only moves

Control flow (CF) alignment ,—— Control flow (CF) rule
Temporal (T) alignment \) Temporal (T) rule
Data/resource (D/R) alignment Data/resource (D/R) rule

Figure 6.3: Methodology for checking data-aware and resource-aware compliance rules
of the second category.

The compliance rules of the second category confine the execution of activ-
ities when a certain data or resource condition holds. These rules assume the
data-flow is correct and the control-flow, i.e., the execution of activities under
that data or resource condition, must be checked. Figure 6.3 describes the ap-
proach we employ for checking compliance rules of the second category. We
specify the data or resource condition of a rule in terms of a data-aware Petri
net with a generic and simple structure. The event log is prepared accordingly.
After log preparation, we align the log and the data-aware Petri net to capture
the situations where the condition of the rule holds. We use the obtained data-
aware alignment to specify where in a log an instance of a rule is triggered.
The the event log is enriched with this information. The next step is the elicita-
tion of the control-flow condition of the rule as a Petri net. For this we use the
rule elicitation technique described in Chap. 4. The elicited control-flow rule
and the prepared log are then used for detecting control-flow violations. In the
following we will elaborate on both approaches by example.

6.3 Compliance Checking of Rules Restricting Data
Attributes

Consider the four-eyes principle in the context of a procurement process stating,

rule 1): “purchase orders must be created and approved by different resources.”
Suppose we would like to check the given event log L partially shown for a

| Provide |

202

Data-Aware and Resource-Aware Compliance Checking

resource Chloe Luis Luis Clara Luis Chloe Amir
role clerk expert expert manager expert clerk director
time 1 2 3 4 5 6 7

L activity name receive PR | evaluate PR | create PO | approve PO | send to supplier | receive goods pay
process instance P1 P1 P1 P1 P1 P1 P1
event ID €1 €, €3 €, €s €6 €7

Figure 6.4: An example event log partially shown for process instance p;.

single process instance in Fig. 6.4 ! against this rule.

This rule falls in the first category of compliance rules. For checking such
rules we employ the approach shown in Fig. 6.2. In the following we will ex-
plain the checking procedure step by step for this example.

resource Luis Luis Clara Luis
pLlactivity name evaluate PR | create PO [approve PO | send to supplier
checking 0] create PO | approve PO Q

Figure 6.5: The event log, built upon original log of Fig. 6.4, is abstracted and shortened
from irrelevant information.

1In the event log partially shown in Fig. 6.4, PR stands for purchase request and PO stands for

purchase order.

6.3 Compliance Checking of Rules Restricting Data Attributes

203

Step 1: Log preparation (Abstracting and shortening the event log). Log
preparation has been extensively discussed in Sect. 3.5.1, Sect. 4.1.1, and Sect. 5.2.
In this step, we first select the attributes that are required for checking, i.e., ac-
tivity name, and resource. Then we introduce the consistency attribute checking.
The checking attribute gets value create PO when ‘activity name =create PO’ and

it gets the value approve PO when ‘activity name = approve PO’, else it will get
the generic value Q. We also shorten the event log by removing the extra Q
events. Consequently we obtain prepared log PL shown in Fig. 6.5.

Pattern parameter:
e f#..(e) > transition label

Start create PO

Initial (@—»

approve PO
Final

Figure 6.6: An atomic pattern specifying the control-flow condition of rule 1.

204

Data-Aware and Resource-Aware Compliance Checking

PL

checking Q create PO [approve PO Q

M |transition name |Start Q It | create PO [approve PO | lemp Q

@

End

Figure 6.7: The control-flow alignment obtained from aligning PL of Fig. 6.5 and the
atomic pattern of Fig. 6.6.

Step 2: Control-flow checking. Similar to temporal compliance checking, we
first need to detect the control-flow condition of the rule, i.e., whether the two
activities create PO and approve PO occurred or not. The atomic pattern shown
in Fig. 6.6 captures the occurrences of the two activities. We can use the elici-
tation technique described in Chap. 4. The pattern in Fig. 6.6 is a configuration
of the pattern in Fig. C.16 from the configurable rule repository which is in-
stantiated for two activities create PO and approve PO. Note that the sequence
of occurrence of these activities is not important for the underlying resource-
aware rule (rule 1). Therefore as long as the control-flow pattern captures the
occurrences of the specified activities, we can use it. An instance of this rule
is triggered as soon as one of the two activities is executed. We align the pre-
pared log PL with this pattern. The resulting control-flow alignment is shown in
Fig. 6.7 indicating one instance for this rule.

Step 3: Log enrichment with control-flow diagnostics. The control-flow
alignment obtained in the previous step does not indicate any violation. There-
fore, the log enrichment step is straight-forward by adding the attribute CF con-
dition which states whether the event in the log was compliant to the control-
flow aspect of the rule. Value F for attribute CF condition in Fig. 6.8 indicates a
control-flow violation and value T indicates that the event has been compliant
with the control-flow aspect of rule 1. As can be seen in Fig. 6.8, the start and
completion of the rule instance is marked.

6.3 Compliance Checking of Rules Restricting Data Attributes

205

resource - Luis - Luis Clara - Luis -
role - expert - expert manager - expert -
time - 2 - 3 4 - 5 -
activity name - | evaluate PR | - | create PO | approve PO| - | send to supplier | -
*

EL process instance - P1 - P1 P1 - P1 -
event ID es1 €; esz €3 €, esg €s eS4
CF condition F T F T T F T F
checking Start Q It | create PO [approve PO | lmp Q End

Figure 6.8: The enriched log, built from control-flow alignment of Fig. 6.7, contains

control-flow diagnostics.

Pattern parameters:
o #,u(e) > transition label
* Hresource(€) 21

[(r'=undefined) Or (r'#r)]

- {W:r}

- -
[

create PO

[(r'=undefined) Or (r'#r)]

~< {W:r}

= -
[

lemp

Figure 6.9: The atomic pattern of Fig. 6.6 augmented with resource condition of rule 1.

206

Data-Aware and Resource-Aware Compliance Checking

Step 4: Data-aware alignment. To detect violations on resource attribute, we
first need to specify the data dimension of rule 1 to constrain values for the
resource attribute. For this, we will augment the atomic control-flow pattern
(Fig. 6.6) with an appropriate guard. The data-aware pattern shown in Fig. 6.9
illustrates the control-flow pattern with required annotations. The attribute
resource is shown as the ellipse in this pattern. The connections between tran-
sitions and resource attribute indicate the transitions that write or read a value
from attribute resource.

The write statements {W : r} at create PO, and approve PO specify that r
records the resource value at transitions create PO, and approve PO. We annotate
the transition I, with [r’ = undefined) to express that the moment an instance of
the rule is activated the value of variable r is set to undefined. The guard [(r =
undefined) Or (r' # r)] annotated at transition create PO and approve PO specifies
that r is allowed to get a new value if its previous value is undefined, i.e., (r =
undefined) or in case it has already a value, the new value must be different with
current value, i.e., (r' # r). The latter statement implies that activities create PO
and approve PO must be executed with different resources.

We use the enriched log and the augmented atomic pattern with the re-
source condition to build a data-aware alignment. The data-aware alignment
in Fig. 6.10 illustrates that both guards evaluated to true. Hence the log is
compliant with the resource-aware rule.

Activities were executed with different agents.

N

resource - Luis - Luis Clara - Luis
EL*
checking Start Q It | create PO | approve PO | l¢mp Q
M transition name Start Q 5| create PO | approve PO | lmp Q
admissible resource - Luis - Luis Clara - Luis

Figure 6.10: The data-aware alignment of the enriched log of Fig. 6.8 to pattern of
Fig. 6.9, indicates that the two activities were executed by different re-
sources.

6.3 Compliance Checking of Rules Restricting Data Attributes

207

Step 5:Enrich log with diagnostics. In this step, we enrich the event log with
the diagnostics obtained. Figure 6.11 illustrates the enriched log. The diagnos-

tics are marked with a hachured background.

. EL (Enriched log with control-flow and resource diagnostics)

€

€3

€y

Figure 6.11: The enriched log obtained from data-aware alignment of Fig. 6.10 contains

— #aa(€1) = receive PR
Hime(e1)=1
H#resource(€1)= Chloe

#eore(€1)= clerk

#4e1(e1)(rule,)= four-eyes principle
Hrule1.compliance state(€1)= compliant
#euletinstance(€1)= Outside rule instance
— #,c(e;) = evaluate PR

Hime(€2)=2

Hresource(€2)= Luis

#eore(€2)= expert

#,uie1(€2)(rule;)= four-eyes principle
Hrule1.compliance state(€2)= compliant
Hruletinstance(€2)= outside rule instance
— #,c(e3) = create PO

Hime(€3)=3

Hresource(€3)= Luis

#,01e(€3)= eXpert

#eue1(e3)(rule;)= four-eyes principle
Hrule1.compliance state(€3)= compliant
H#ruleLinstance(€3)= 1% activation
— #,ct(€4) = approve PO

#ime(€a)= 4

#resource(€4)= Clara

#,01e(€4)= manager

#:4e1(e4)(rule;)= four-eyes principle
H#rule1.compliance state(€4)= compliant
H#rulevinstance(€4)= 1°* activation

€6

— —#,ales) = send to supplier
Hime(€s)=5

Hresource(€5)= Luis

#role(€s)= expert

#ue1(es)(ruley)= four-eyes principle

#rule1.compliance state(€5)= compliant
Hruletinstance(€5)= outside rule instance
—— —#,4(eq) = receive goods

Hime(es)= 6

Hresource(€6)= Chloe

#ole(e6)= Clerk

#ruie1(e6)(rule;)= four-eyes principle
Hrule1.compliance state(€6)= cOmpliant

H#ruletinstance(€6)= Outside rule instance

—— —#aales) = pay
Hime(€7)=7
Hresource(€7)= Chloe

Heole(e7)= clerk
#eue1(e;)(rule;)= four-eyes principle
Hrule1.compliance state(€7)= compliant

#ruletinstance(€7)= Outside rule instance

diagnostics about compliance of rule 1.

208

Data-Aware and Resource-Aware Compliance Checking

nutrition (multi-fiber) 10 kcal/ml - 11 kcal/ml - 13 kcal/ml | 14 kcal/ml
medication dosage 5mg
diagnostis C12 C12 C12 C12 C12 C12 C12
time 1 2 3 4 5 6 7

. activity name tube ventilation tube Demp. tube tube X-ray

feeding feeding [Administration | feeding | feeding

process instance P1 P1 P1 P1 P1 P1 P1
event ID €1 €, €3 €, €5 3 €7

Figure 6.12: Part of an example event log of a patient in ICU.

6.4 Compliance Checking of Rules Restricting Ac-
tivities When a Certain Data Condition Holds

As was discussed previously, the second category of data-aware and resource-
aware compliance rules assume the data-flow of a process is correct and one
needs to confine the execution of activities under certain data condition. Con-
sider a compliance rule taken from a medical guideline used in ICU department
of a Dutch hospital stating rule 2):“If nutrition with multi-fiber cannot be in-
creased via tube feeding by 2 (kcal/ml), then medication Demperidone must be
administered to the patient”. This rule does not constrain the increase or de-
crease in multi-fiber nutrition but it requires the medication ‘Demperidone to be
administered to patients in case the nutrition is not increased. Hence, we need
to capture the situation the rule must hold, i.e., where nutrition is not increased
by the specified amount.

Suppose the event log in Fig. 6.12 is given: it shows events related to a
process instance p;. We would like to check whether this event log is compliant
with the rule or not. To do so, we follow the approach visualized in Fig. 6.3. We
will go through this approach step by step.

Step 1: Log preparation. At first, we select the attributes that are relevant for
the rule, i.e., activity name, and nutrition. Next the consistency attribute check-
ing is introduced. However, in this case the checking attribute does not reflect
the values of the activity name but the data attribute to be checked (i.e., nutri-
tion). For each event, we assign to the checking attribute the value data write
wherever the attribute nutrition has a value, else the checking attribute will get
the generic value Q. The prepared log is shown in Fig. 6.13.

6.4 Compliance Checking of Rules Restricting Activities When a Certain Data Condition

Holds 209
nutrition (multi-fiber) 10 kcal/ml - 11 kcal/ml - 13 kcal/ml | 14 kcal/ml
PL . e tube . tube Demp. tube tube
activity name) ventilation) X-ray
feeding feeding | Administration | feeding feeding
checking data write Q data write Q data write | data write| Q

N D

checking attribute captures the situations where a value for nutrition is recorded

Figure 6.13: The prepared log, built upon original log of Fig. 6.12, obtained from the
first step.

Step 2: Capturing the data condition. The checking attribute in the prepared
log indicates wherever an event has a value for its attribute nutrition. The
next step would be to detect the situations that the data condition of the rule
holds, i.e., (whenever nutrition has not increased by 2 kcal/ml). To do so we
align the prepared log with the data-aware Petri net shown in Fig. 6.14. This
net has a simple structure with only two transitions Q, and data write and two
attributes modelled as the two ellipses. The write statement {W:x} captures the
value of attribute nutrition at each event that is mapped to data write and the
guard [x’ = x+ 2k/cal]l checks whether the new values of x are 2k/cal more than
its current value.

We map respectively the values of the checking attribute in the log to the cor-
responding transitions in the net. Therefore events with ‘checking= data write’
are mapped to the transition data write in the net and similarly the events with
‘checking=Q’ will be mapped to the Q-labelled transition. The event attribute
nutrition will be mapped to the modelled attribute nutrition in the net.

210 Data-Aware and Resource-Aware Compliance Checking

Pattern parameter:
o Hyeuing(€) > transition label
° #nutrition(e) 9 X

[x'=x+2 kcal/ml]

{W: x}
e
Q data write

Figure 6.14: The data-aware Petri net is modelled to capture the situation where the
data condition of rule 2 holds.

nutrition (multi-fiber) 10 kcal/ml - 11 kcal/ml 13 kcal/ml | 14 kcal/ml -
PL

checking data write Q data write Q data write | data write| Q

transition name data write Q data write Q data write [data write| Q

admissible nutrition 10 kcal/ml - 12 kcal/ml 13 kcal/ml | 15 kcal/ml

in two situation nutrition was not increased by 2 kcal/ml

Figure 6.15: The data aware alignment, obtained from aligning prepared log of Fig. 6.13

and pattern in Fig. 6.14, indicates situations where nutrition is not in-
creased by 2 kcal/ml.

6.4 Compliance Checking of Rules Restricting Activities When a Certain Data Condition
Holds 211

We align the prepared log to this net and obtain the data-aware alignment
shown in Fig. 6.15. As is indicated, the data-aware alignment detects two situa-
tions where the value of nutrition is not increased sufficiently(present at events
es and eg). Recall from rule 2 that these are exactly the situations where Dem-
peridone must be administered. In the next step, we will check whether this in-
deed happened or not. Note that the data-aware Petri net described in Fig. 6.14
is generic and in essence can capture any type of data condition, we only require
to adjust the guards and its parameters according to the rule.

nutrition (multi-fiber) 10 kcal/ml - 11 kcal/ml - 13 kcal/ml | 14 kcal/ml
medication dosage - - - 5mg - - -
diagnostis C12 C12 C12 C12 C12 C12 C12
time 1 2 3 4 5 6 7
ELL s tube L tube Demp. tube tube
activity name ; ventilation ; o . : . X-ray
feeding feeding | Administration | feeding | feeding

process instance P1 P1 P1 P1 P1 P1 P1
event ID e; e, €3 e, es e ey
data condition T NA F NA T F NA

Figure 6.16: The enriched event log with data condition obtained from the data-aware
alignment of Fig. 6.15.

Step 3: Enrich the event log with data condition obtained from data-aware
alignment. We enrich the event log with the data diagnostics obtained from the
the data-aware alignment of Fig. 6.15. The enriched log is shown in Fig. 6.16.
By introducing the attribute data condition we mark the situations where the
data condition of rule 2 holds or not. The value T (true) for the attribute data
condition indicates that the nutrition was increased according to the rule, F
(false) indicates that the nutrition was not increased according to the rule, and
NA (not applicable) indicates that the event was irrelevant for the rule.

Data-Aware and Resource-Aware Compliance Checking

212

paulqwod aJe
aweu Ajapoe
13 UOL}IPUOD BlEP

-8uipas. -8uipasa. -uopesysiuiw -8u1pasa. -3uipasa.
>, 4-8uipady | [-3uIpady | ¥YN-uonessiuiwpy | 4-3ulpasy VN-UOE|BU3A 1-8uIpa3) | uonoesisqe 2404aq
agnl agn} ‘dwag agn} agn} aingune SuppPayd
,uopnesisiuiwpe auopradwa(, pue ,4-Suipaa) agni, Ueyl JAYI0 SAN|BA WOJ) JOBIISHE dM
4-Suipasy VN-uonensiuiwpy [4-8uipasy
ainqgune uppPayd
U aqm U -dwag aqm U U nqLe Suppay
VN E] 1 VN 4 VN 1 uonlpuod eyep
L5 % S9 73 €3 % Ta [«[RUELE]
d Td d Td d d d 2oue)su| ssadoud|1d
Suipas Suipaa uopessiuiw Suipaa Suipaa,
Aeus-x L 1Po34 BRI 1Po34 uone|BuUaA L aweu Ajapoe
agm agn} ‘dwaq agn} agn
L 9 S 14 € [4 T swn
[4%] (4%} (4%} (4%} (4%} (4%} (4%} susouselp
_ z - Swg - - - 28esop uopedipaw
- |w/jedy ¢T | |w/[ed €T - Jw/|eay 1T - |w/|eay 0T (43qy-nnw) uoniinu

Figure 6.17: The checking attribute combines the values of data condition and activity

name at each event in the enriched log of Fig. 6.16.

6.4 Compliance Checking of Rules Restricting Activities When a Certain Data Condition
Holds 213

Step 4: Log preparation for control-flow checking. At this phase we need to
prepare the event log for detecting control-flow violations. Similar to the log
preparation step that was described in Chap. 4, log preparation at this phase
has three parts: introducing the checking attribute, log abstraction, and log
shortening. Figure 6.17 illustrates how we perform the first two parts.

The second checking step shall test whether “tube feeding” with less than a
2 kcal/ml increase was always followed by “Demperidone” as this would not be
necessary when there was a proper 2 kcal/ml increase in nutrition. Rather,
we have to select only those “tube feeding” events without a 2 kcal/ml in-
crease, i.e., where the data-aware alignment of Step 2 returned False. To achieve
this, we introduce as checking attribute the combination of activity name and
data condition. On this checking attribute, an event “tube feeding-F” has to be
followed by a “Demperidone-x” event; all other events are irrelevant for the rule
and can be abstracted.

The ‘checking attribute before abstraction’ in Fig. 6.17 illustrates how we com-
bine the values of activity name, and data condition at each event and abstract
the values that are not relevant for control-flow checking and store it in the
attribute checking.

nutrition (multi-fiber) - 11 kcal/ml - 13 kcal/ml | 14 kcal/ml
medication dosage - - 5mg - - -
diagnostis C12 C12 C12 C12 C12 C12
time 2 3 4 5 6 7
L. - tube Demp. tube tube
activity name ventilation X-ray
PL, feeding Administration feeding feeding
process instance P1 P1 P1 P1 P1 P1
event ID e, e; e, es eg ey
data condition NA F NA T F NA
tube Demp. tube
checking attribute Q . - p. Q . Q
feeding-F | Administration-NA feeding-F

sequence of Q events are shortenned

Figure 6.18: The prepared log has a reduced size by shortening sequence of Q events.

The shortening of the event log is shown in Fig. 6.18 where we reduce the
sized of the log by shortening sequences of Q events (in this case only one event
is discarded).

Step 5: Detecting control-flow violations. The atomic pattern shown in
Fig. 6.19 models the rule in a way that matches our chosen checking attribute of

214

Data-Aware and Resource-Aware Compliance Checking

Pattern parameter:
o #,(e) > transition label

Start

Initial (@—

Demperidone
Tube feeding-F administration

Q Q

Figure 6.19: The atomic pattern specifying the control-flow condition of the rule.

the log in Fig. 6.18. An instance of this rule starts as soon an activity tube feeding
occurs that did not increase nutrition by the specified amount. If such an activ-
ity occurs, then the rule requires that Demperidone needs to be administered to
the patient.

We align the prepared log with this pattern and obtain the control-flow align-
ment shown in Fig. 6.20. The alignment detects two instances of the rule. The
first instance is compliant and the second instance is violating. Occurrence of
activity Demperidone administration is missing after a situation where tube feed-
ing did not increase the nutrition by 2 kcal/ml.

Step 6: Enrich the event log with control-flow violations. At this phase,
we enrich the event log with the diagnostics obtained from the control-flow
alignment. The enriched event log is shown in Fig. 6.21. As is shown the
artificial event e3 is added where the activity Demp. administration was skipped.

6.4 Compliance Checking of Rules Restricting Activities When a Certain Data Condition
Holds 215

>>
End

Q
Q

>>
lemp

>>
Demp.

tube

feeding-F

tube
feeding-F | Administration

Demperidon administraion is skipped

>>
Ist

>>
lemp

Demp.
Demp.

tube
feeding-F [Administration-NA

tube
st feeding-F [Administration-NA

>>

Q
Q

>>
Start

checking attribute

M |transition name

—
a

Figure 6.20: The control-flow alignment indicates that in the second instance of the rule,
activity Demperidone administration is skipped.

216

Data-Aware and Resource-Aware Compliance Checking

. EL (Enriched log with control-flow and violations and resource diagnostics)

€3

— #acles) = tube feeding
Hrime(€1)= 1
Houtrition(€1)= 10 kcal/ml
Haiagnosis(€1)= C12

#eue1(e1)(rules)= nutrition increase

Hrule1.compliance state(€1)= compliant
#ruleLnstance(€1)= Outside rule instance
— #ac(ez) = ventilation

Hrime(e2)= 2

#diagms‘s(ez)= C12

#ue1(€2)(ruley)= nutrition increase
#rule1.compliance state(€2)= compliant

#ruernstance(€2)= Outside rule instance

— #,c(e3) = tube feeding

#ime(€3)= 3

H#nutrition(€3)= 11 kcal/ml
#Haiagnosis(€3)= C12

#rue1(es)(rule;)= nutrition increase

Hrule1.compliance state(€3)= compliant
HrueLmstance(€3)= 17 activation

— #,c(e4) = Demperidone administration
Hime(€4)= 4

H#medicine dosage(€4)= 5 Mg

Haiagnosis(€a)= C12

#rue1(eq)(rules)= nutrition increase
Hrule1.compliance state(€4)= compliant
HruleLinstance(€4)= 17 activation

es [— —#ules) = tube feeding
#Hiime(€5)=5
Hnutition(€5)= 15 keal/ml
Haiagnosis(€s)= C12
#rue1(es)(rules)= nutrition increase
Hrule1.compliance state(€5)= compliant
#rulernstance(€5)= outside rule instance
€5 [—#ales) = tube feeding
H#iime(es)= 6
Hnutrition(€6)= 14 kcal/ml
#diagnosis(es)= C12
#rue1(es)(rule;)= nutrition increase
#1ule1.compliance state (€)= compliant
d % %
H#rule1 nstance(€6)= 2™ activation
S s Py .
e [— — #,4(e%) = Demperidone administration
#rue1(e%)(rule;)= nutrition increase
S " 4
H#rule1.compliance state(€)= violating
S d . ‘
HruleLinstance(€76)= 2™ activation
S o .
Hrule1.compliant value(€”6)= Demp. administration
S
#rule1violation type(€”6)= control-flow
€ — —#aa(es) = X-ray

#ime(€7)=7

Hdiagnosis(€7)= C12

#rue1(e7)(rules)= nutrition increase
Hrule1.compliance state(€7)= compliant

#eulerinstance(€7)= Outside rule instance

Figure 6.21: The enriched event log with diagnostics obtained from the control-flow

alignment.

6.5 Diagnostics in Data and Resource-Aware Compliance Checking

217

6.5 Diagnostics in Data and Resource-Aware Com-
pliance Checking

So far, we discussed different groups of data-aware and resource-aware com-
pliance rules and the appropriate checking procedure for each group. For the
first group of rule, the checking attribute was simply a copy of the activity name.
However, for the second group of rules, a checking attribute was created such
that it refines the control-flow perspective based on data attributes. Deciding
whether a data-aware rule is of the first category or of the second category of
rules will lead to a specific choice of the checking technique and consequently
on the diagnostics we obtain.

Figure 6.22: A process model in BPMN describing correct occurrences of activities A,B,C,
and D.

Suppose a process model describes the execution of activities A, B, C, and
D as is shown in Fig. 6.22 and a sequence of activities is given as: o = ((A4,x =
10), (B, x = 10), (D, x = 10)). According to the model of Fig. 6.22, activity B may
occur with a value for attribute x to be greater than 10. Hence, the sequence
of activities o violates the behavior specified in Fig. 6.22. In this case two ex-
planations may be provided about this violation: 1) activity B should not have
been executed or 2) the value of attribute x should have been greater than 10.
Picking any of these explanations as the more “precise explanation” imposes an
assumption on the rule that is checked. The first explanation assumes that the
priority is with the data-flow, i.e., value of attribute x, while the latter expla-
nation assumes that the control-flow is correct (i.e., execution of activity B).
This brings us back to the definition of the rules in two different categories of
data-aware and resource-aware rules. By choosing one or the other we follow
a different checking procedure and finally we may end up with different diag-
nostics. In this example, if we define the rule as: “the value of attribute x must
be greater than 10 at activity B”, then the second explanation is more precise.
However, if the rule is defined as ;“activity B may only be executed if attribute

218

Data-Aware and Resource-Aware Compliance Checking

x is greater than 10”, then the first explanation is more precise. Note that in
either way a violation is detected. Therefore, it is very important to precisely
define a rule and pick the checking approach accordingly.

Alternatively one can use the balanced conformance checking [44] approach
and consider data-alow and control-flow together. However, then the cost func-
tion in computing an alignment between a log and a data-aware behavior plays
an essential role. That is, by adjusting the cost function we can prioritize the
data-flow or control-flow. Balanced conformance checking is computationally
expensive, because the search space for computing an alignment with the least
cost between a log and data-aware Petri net grows exponentially in the length of
process instances and number of variables. Besides performance issues, this ap-
proach has some drawbacks in case it is used in context of compliance checking
as follows:

* Adjusting the cost function requires domain knowledge and technical knowl-
edge to balance the two so that one gets the desired diagnostics.

* In case of considering rules separately as individual atomic patterns, this

approach may give imprecise diagnostics. If the cost function is not chosen
precisely then the condition of the rule may be ignored. For example for a
rule of the second type -where the data-flow assumed to be correct- based
on the cost of violations, the technique in [44] may detect a violation on
data-flow rather than the control-flow. That is, for this technique both
control-flow and data-flow have equal priority and only the total cost of
violations is the influential factor on the diagnostics produced not the rule
definition.
Note that we assume each compliance rule has a precise condition to
be checked. A violation from a compliance rule can have severe conse-
quences (e.g. legal consequences), therefore, a violation is only meaning-
ful if we precisely define the condition of the rule. In case, we consider
multiple rules together using balanced conformance checking, the align-
ment obtained from balanced conformance checking leaves interpretation
of the results open to the user. Whether a detected violation is false posi-
tive or a real violation should be decided by the domain expert per viola-
tion.

The diagnostics obtained using data-aware and resource-aware compliance
checking are influenced by the qualities described in Sect. 5.6 for diagnostics
obtained from temporal compliance checking as well. These qualities include:

6.6 Specifying a Set of Data and Resource-Aware Compliance Rules as Atomic Patterns
or as a Composite Compliance Model 219

minimizing the total cost of violations globally, minimizing the total value of devi-
ation, and choice of the ‘best’ control-flow or data-aware alignment.

6.6 Specifying a Set of Data and Resource-Aware
Compliance Rules as Atomic Patterns or as a
Composite Compliance Model

We discussed various compliance rules and the approaches for checking each
group of rules. We have discussed the quality of diagnostics obtained using each
approach. Next, we will briefly explain, depending on how rules are formalized
(atomic versusa composite model), diagnostic information can differ.

As with other types of compliance rules (control-flow and temporal), it is
possible to model a set of compliance rules as a composite model. However,
there are some limitations that one should be aware of. If compliance rules to
be combined are of the same category, and overlap in activities or underlying
conditions of rules to be combined, it is better to specify them as a composite
compliance model. However, if rules are of different categories, it is not always
possible or easy to specify them as a composite model. As described in Sect. 6.4,
the second category of rules are always formalized as two different patterns;
one capturing the data condition that triggered the rule and one specifies the
control-flow condition of the rule. Accordingly in the checking procedure for the
rules of the second category, we first build the data-aware alignment and then
control-flow alignment. Whereas the first category of rules are formalized as
one pattern and the during the checking, we first build control-flow alignment
and then data-aware alignment (these approaches are visualized in Fig.6.2, and
Fig. 6.3). Therefore it is not possible to combine rules from the two categories
in one composite model.

6.7 Case Study Constraints and Results

Our data-aware and resource-aware compliance checking techniques have been
implemented in ProM, available from www.promtools.org, and was applied in
two different case studies on real-life logs. We briefly discuss the implementa-
tion in ProM and then provide details on the case studies.

www.promtools.org

220

Data-Aware and Resource-Aware Compliance Checking

6.7.1 Implementation

The presented technique is supported by two plugins in the ComplianceFrame-
work package of ProM. The Data and Resource Compliance Checking-Rules Re-
stricting Attributes plug-in (see Fig. 6.23) checks the compliance of event logs
against rules of the first category and takes an event log and a data-aware Petri
net as input. The Data and Resource Compliance Checking-Rules Restricting Ac-
tivities plugin (see Fig. 6.24) checks the compliance of event logs against rules
of the second category and takes an event log, a data-aware Petri net, and a
classical Petri net as input. Both return diagnostics about deviations in the from
of an alignment. The resulting alignments provide diagnostics by showing data
and resource violations and control-flow violations projected over the original
log. Figures 6.25, 6.26, 6.27 show different functionalities of the two plugins.

Actions

Compliance Checking-Rules Restricting Attributes
com)

“Data and Resource Compliance Checking-Rules Restricting Attributes”
takes a compliance pattern and an event log as input. The control-flow|
condition and the data condition of these rules (first category) are
formalized together as a data-aware Petri net.

Figure 6.23: The Data and Resource Compliance Checking-Rules Restricting Attributes
plug-in checks the compliance of an event log against the first category
of compliance rules.

6.7 Case Study Constraints and Results 221

hecking-Rules Restricting Activities

The “Data and Resource Compliance Checking-Rules Restricting Activities” i

Bltakes two compliance patterns and an event log as input. The data
condition of the rule (second category of rules) is captured as a data-aware
Petri net and the control-flow condition of the rule is formalized as a
classical Petri net.

Figure 6.24: The Data and Resource Compliance Checking-Rules Restricting Activities plug-
in checks the compliance of an event log against the second category of
compliance rules.

B ProM UlTopia - TE.

ronn

Selecting activities that can
read and write an attribute
value.

Figure 6.25: During the log preparation step, the activities that can read and write an
attribute value are selected.

222

Data-Aware and Resource-Aware Compliance Checking

» ProM UlTopia - olEl

ariable Mapping

Please provide the mapping for the following:

Figure 6.26: Mapping attributes of the compliance pattern to event log attributes.

B ProM UiTopia =

Figure 6.27: Mapping transition labels of the compliance pattern to the values of the

checking attribute in the event log.

6.7 Case Study Constraints and Results

223

We applied our approach and toolset in two case studies: one for checking
compliance of a personal loan process within a global financial organization and
one for analyzing the process of patient treatment in ICU department of a Dutch
hospital against a medical guideline.

6.7.2 Case Study 1: Constraint and Results

The event log related to the first case study is taken from the BPI challenge of
2012 and it has 13,087 traces and 262,200 events distributed over 36 activities2.
The events have timestamps in the period from 1-Oct-2011 to 14-Mar-2012.
The overall process can be summarized as follows: a submitted loan application
is subject to some automatic check. The application can be declined if it does
not pass any checks. If the automated checks passed, then applications are
approved and activated (the activation of an application implies the payment
of the loan value to the applicant). The applications may also be cancelled and
some applications do not have a decision yet.

Financial Log
13087

Activated
2246

Not activated
10841

Non-violating Violating
2129 117

Not checked Checked Not checked Checked
2101 28 115 2

Figure 6.28: Classification of applications based on their compliance result.

A compliance rule restricting this process states: “loan applications with re-
quested amount less than 5000 (< 5000) or 50,000 and more (= 50,000) must
not be approved/activated”. This compliance rule is of the second type of data-
aware compliance rules. We found 117 deviations from this compliance rule

2This event log is publicly available at:
dx.doi:10.4121/unid:3926db30-£712-4394-aebc-75976070e91f

dx.doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

224

Data-Aware and Resource-Aware Compliance Checking

for the 13,087 traces executed. Figure 6.28 illustrates the violating applica-
tions. Out of 13,087 applications, 2246 cases were approved and activated
while 10,841 were either declined, cancelled or undecided.

Furthermore some cases are considered suspicious and apart from regular
checks, a special check for fraud was performed. It is interesting to observe that
for two of the violating cases also the fraud check is performed.

Using the technique of this chapter, we were able to check a data-aware
rule in a real operation setting. We detected all violations and got diagnostics
about the violating activities. Further analysis can be done on detecting possible
common characteristics in violating cases that can differentiate them from com-
pliant ones. We will discuss our approach for this type of analysis in Chap. 7.3
and will apply it on a real-life example in Chap. 9.

6.7.3 Case Study 2: Constraints and Results

In this case study we investigated the compliance of an event log taken from ICU
department of a Dutch hospital with a medical guideline restricting tube feeding
nutrition of patients. The event log has 1207 traces; each trace recorded the
treatment that a patient received in ICU department. The compliance constraint
states: “If gastric tube feeding cannot be increased then use Demperidone or
Metoclopramide. The starting dosage is usually (12-50m!) and it is recommended
that the increase follows the pattern (12-50ml,12-100ml,12-120ml)”.

Case ID: 51774

Figure 6.29: An example of a compliant case where nutrition was increased via tube
feeding.

The guideline is not precise here, hence we check two different data-aware
rules: (1) The nutrition must increase, else Demperidone or Metoclopramide
must be administered to the patient (the running example presented in this

6.7 Case Study Constraints and Results

225

chapter is a modified version of this rule). (2) the increase must follow the
pattern (12-50ml,12-100ml,12-120ml).

Case ID: 53480

Figure 6.30: An example of a compliant case where Demperidone is administered to the
patient when nutrition was not increased via tube feeding.

First results: We first checked if the nutrition has been increased for the respec-
tive patients and if not, we checked whether they received either Demperidone
or Metoclopramide. We observed that from 1207 patients treated in ICU, 209
received tube feeding nutrition. In addition we found that Metoclopramide has
not been administered for these patients; only one patient has received this
medicine and it has been independent from tube feeding nutrition. For 72
patients, the tube feeding nutrition had increased without any problems. An
example case is shown in Fig 6.29: patient 51774 received tube feeding while
nutrition was increased.

56 patients received Demperidone when nutrition was not increased. Case
53480 shown in Fig. 6.30 is of this group. As can be seen, an instance of this
rule is activated when nutrition did not increase the tube feeding, and this event
is followed by a Demperidone administration.

We observed in total 81 violating cases. We identified several patterns for
these violations. In some of the violating traces, we observed that although
nutrition has increased, patients received Demperidone (an example is shown
in Fig 6.31). It could be that Demperidone was administered to these patients
independent from nutrition and for other purposes.

Another group of violations is related to patients that did not receive Dem-
peridone although nutrition was not increased for them. An example of these

226

Data-Aware and Resource-Aware Compliance Checking

Case ID: 52324

Figure 6.31: An example of a case where Demperidone is administered although nutrition
was increased via tube feeding.

cases is illustrated in Fig. 6.32.

Detailed analysis of violations: We checked these traces further and found
that this violation occurs in two situations. In one of these two situations, there
were real violations because patients never received Demperidone despite the
nutrition was not increased. However, for another group of patients we ob-
served several iterations of tube feeding nutrition with an increase inside every
iteration. For example a patient has received nutrition following two times the
pattern (12-50ml,12-100ml,12-120ml). That is we see the increase in every
occurrence of the pattern, yet the second occurrence of the pattern starts again
from (12-50ml).

Analysis of the second part of the rule: We also investigated if the recom-
mended pattern of increase has been followed or not. We found out that for
less than 20% of patients the recommended pattern of the guideline is followed.
From the remaining patients, we identified 3 groups of patients. One group of
course were the 56 patients for whom the nutrition has not been increased.
For the second group of patients, the nutrition was increased with the pattern
(12-50ml,12-100ml,12-140ml). The third group mostly followed the pattern
(500m1,1000m!,1500m!1,1700ml). These patients received Demperidone once in
every 24 hours, unlike the other groups that received Demperidone every two
hours a day.

Applying the technique presented in this chapter, we were able to automati-
cally check compliance for all the cases in the event logs. The technique works

6.8 Related Work

227

Case ID: 53231
t

Figure 6.32: An example of a violating case where Demperidone is not administered to
the patient although nutrition was not increased via tube feeding.

on large event logs because we can focus on events relevant to a specific com-
pliance rule and abstract from all other events. Our technique identified and
located the deviations by visualizing for each trace the difference between ad-
missible and observed behavior in the alignment. The extent of the deviation
is reported in two ways: (1) The alignment visualizes observed and expected
values of deviating events. (2) We compute statically information about the
number of deviations per case, in total, etc.

6.8 Related Work

This chapter is based on the paper [131].

Existing work in data and resource compliance checking mainly focuses on
design time verification. In [15], authors incorporate data in specification of
compliance rules. These rules are expressed using a query language which is an
extended version of BPMN-Q and they are formalized by mapping them onto
PLTL. The approach is used to visualize violations by indicating execution paths
in a process model causing them.

In [112] the control-flow is modeled and for any other process perspective
a data object is defined. Later an object state change becomes explicit in the
process model and then the process model is used to generate life-cycles for
each object type used in the process. The consistency between business process
models and life-cycles of business objects is checked. Apart from the fact that
this approach focuses on verification of models, it is not discussed how viola-
tions are represented to the user and if further diagnostics about violations are

228

Data-Aware and Resource-Aware Compliance Checking

provided.

Other approaches such as [42,119,132] enforce compliance of business pro-
cesses through the use of compliance patterns. These patterns include some of
the data and resource-aware compliance constraints such as four-eyes princi-
ple. However, specific checking techniques are not discussed. Further on, the
work in [64] addresses the verification of process models for data-aware com-
pliance constraints. The authors do not apply a particular modeling language
for specifying compliance rules, but introduce a general notion for data-aware
conditions. For checking data-aware constraints, abstraction strategies are in-
troduced to reduce the complexity of data-aware compliance checking and to
deal with state explosion issues. This is achieved by abstracting from concrete
state of data objects. The approach automatically derives an abstract process
model and an abstract compliance rule.

Process mining techniques [134] offer a means to more rigorously check
compliance and ascertain the validity of information about an organization’s
core processes.

The classical data-aware conformance checking [33] that we have applied
in our approach, allow for aligning event logs and process models for multi-
perspective conformance checking but it has some limitations. It can only check
the compliance rules of the first category we discussed earlier. In addition if a
deviation is observed for an activity that is restricted with several data attributes
at the same time, the classical data-aware conformance checking can only indi-
cate the deviation but not the specific data attribute(s) causing the deviation;
resulting in less precise diagnostics. Moreover, using classical data-aware con-
formance checking, we cannot focus only on specific rules and abstract from
other activities that are not restricted by respective compliance rule. That is, we
need to provide a data-aware Petri net that captures the behavior of the whole
process. Consequently, we need to know exactly how a process must be exe-
cuted and we need to model all possible compliant process paths (i.e., sequence
of activities and the values for data attributes they may have) that can be ob-
served in a process. This task is not trivial, especially in some domains such
as health care where the processes are very flexible. In this case we loose the
flexibility offered by our compliance checking approaches. In our work we have
tried to address the limitations mentioned by extending the classical data-aware
conformance checking.

6.9 Concluding Remarks

229

6.9 Concluding Remarks

In this chapter, we provided an approach for data and resource-aware compli-
ance checking of behavior recorded in execution logs. We showed a collection
of different compliance rules involving data and resource constraints and we
discussed how to formalize them using data-aware Pteri nets. In addition, we
provided two generic techniques to check rules involving multiple perspectives.
Our technique separates control-flow, data and resource compliance checking
as much as possible. It produced integrated diagnostics about both control-flow
and data or resource related violations by enriching the log with diagnostic in-
formation between checking steps. In particular, our technique is capable of
showing combined diagnostic information about violations of a compliance rule
in a process instance. We showed this technique to be feasible for compliance
rules on data dependencies between two or three data attributes. More com-
plex rules are possible but require additional pre-processing and data-aware
alignment steps. A more scalable technique is subject of further research.

We provided an implementation of our techniques in the ComplianceFarme-
work package of ProM. The software has been tested on synthetic logs and two
case studies involving real-life logs from a financial institute and an ICU de-
partment of a hospital. The results are encouraging: we were able to uncover
various violations and no performance issues were encountered.

In the next chapter we explore violations that can be detected using various
compliance checking techniques including: control-flow checking (Chap. 4),
temporal checking (Chap. 5), and data-aware and resource-aware compliance
checking (presented in this chapter). We will use the context of violations to
analyze whether we can detect the cause of violations and whether we can
differentiate compliance activities versusviolating ones using the information
available in a dataset.

Chapter 7

Compliance Diagnostics

In Chapters 4, 5, and 6 we presented techniques to detect compliance violations
from different process perspectives. We demonstrated by the help of several case
studies that the techniques presented are able to provide diagnostics about the
rules that are violated, the violating activities, violating cases and the frequency
of violations. We could also locate exactly where in a process a violation has
occurred and which rule instances are violating. Moreover, in case of a violation,
we could specify how an activity should have been executed to make the process
compliant. This information helps us detect all violations in a precise manner.
However, understanding the compliance level of a process and why a violation
occurs and under which circumstances remain unclear. To be able to improve
compliance, it is important to understand non-compliance and to understand
non-compliance, it is necessary to have an overview of the compliance level of a
process, prioritize violations based on their severity, and finally provide means
to investigate the causes of violations.

This chapter focuses on understanding non-compliance. In this chapter, we
give an overview of the compliance of a process. We present an approach for re-
porting compliance violations on different abstraction levels. At first, we aggre-
gate violation data from different process perspectives and present a complete
picture about all the deviations that occurred in a process. Then we rank devia-
tions based on their business impact and frequency and suggest where a deeper
analysis is recommended. In order to give more insights into the root-cause(s)
of violations, we use data analysis techniques and identify relations between vi-
olations and their context information available in the event log. We would like

232

Compliance Diagnostics

to investigate a specific problem to get in depth insight and develop hypothe-
ses about why it happened. We present the obtained diagnostics in two ways:
(1) by showing interactive tables and diagrams presenting process data and (2)
by presenting a list of violations that are ranked based on their importance in
non-technical terms such that these can be easier understood by business users.

Figure 7.1 illustrates how the content of this chapter is organized in different
sections. In Sect. 7.1, we provide a motivating example to elaborate on prob-
lems we are addressing. In the motivating example, we analyze the compliance
of a business process against several compliance rules. We model these rules
combined as a composite model. We introduce a synthetic event data for this
process. This chapter builds on the result of compliance checking techniques
that were discussed in previous chapters. Using data-aware alignments, we de-
tect all violation combined and use these diagnostics for analyzing violations
and understanding them. This example is used throughout the chapter to in-
troduce and discuss the details of our techniques. A general overview about
the approach is introduced in Sect. 7.2. The checking procedure and the inputs
are discussed in Sect. 7.3. In Sect. 7.4 and Sect. 7.5 we discuss how we ob-
tain statistics about deviations and sort them. Our solution for investigating the
root-cause(s) of deviations is presented in Sect. 7.6. The implementation of our
technique and results of a case study are presented and discussed in Sect. 7.7.
We conducted a survey to evaluate the understandability of the results gen-
erated with our technique by business users. The outcome of this survey is
presented in Sec. 7.8. We discuss related work in Sect. 7.9 and conclude this
chapter in Sect. 7.10.

233

......— -—

LHOISNI

&

~—

swaned tojneyaq |9'L
Jueydwod/3uneloin

=

$3|NJ UOI3eI0SSY

sonsiels

SIuana payisse)d (G/|

1095

[WARSEN

w_w>_mcm 295ned-100y

1995

1095

Bupjayd aoueldwo)

oueldwo)

Bunjoayd aoueldwo)

10112119 @dueldwo)

uBWYILUD
801

/ \

uonesedasd
807

uoiop
uone|oIn

7

Su2ayd dueldwod MOj}-|043U0D

T
Bunpayd souerdwod _m‘_oQEw:

[Bunppayo aoueyjdwiod a2inosai pue eeq|

e
l& " yiomawesy

UleJISU0D
2oueldwo)

\a/

A3

< >

uiesIsuod
2oueldwo)

Figure 7.1: Thesis road map gives the mapping of the sections in Chap. 7 on to our

compliance analysis approach.

234

Compliance Diagnostics

Receive
request for
purchasing
goods
(Rec-Req.)

(Che.)

Check off-site
warehouses

Goods

Formulate
purchase
requisition
(For.)

Choose
supplier
(Cho.)

Cash
withdrawal
(Cw.)

Urgent
approval
(App-Urg.)

{

Normal
inventory
level

Urgent

Evaluate
purchase
requisition
(Eva.)

inventory level

Risk
reduction
measures
(Red.)

Prepare
purchase
requisition
document
(Pre.)

PR value>

10

PR

Purchase

requisition
approval (1)

(App.I)

<100000

delivery
(Del.)

Purchase
requisition
approval (I1)
(App.11)

Purchase
requisition
approval (1)
(App.1)

0000

value

Create
purchase
order (Cre.)

Send
purchase
order to
supplier
(Sen.)

Receive
invoice
(Rec-Inv.)

A

Receive
goods
(Rec-G.)

-

Payment
(Pay.)

Figure 7.2: A process model for procurement.!

7.1 Motivating Example

In this section we introduce a motivating example which we use throughout this
chapter to explain the problems we are addressing and our solutions to them.
The example is built based on a real purchase process in a manufacturing com-
pany. Throughout the paper we will present synthetic executions of this process
that illustrate compliance violations of a realistic business case. The process
model, expressed in BPMN in Fig. 7.2 describes the procurement process in our
example.

This process starts with activity receive request for purchasing goods (Rec-

Req.). This happens whenever the warehouse department realizes that the in-
ventory level of a material falls below a certain limit. Afterwards availability
of the goods on demand is checked in off-site warehouses (Che.); if the goods
are available they get delivered (Del.), otherwise the activity choosing supplier
(Cho.) is triggered. After formulating the initial purchase requisition (For.),

IThe acronyms, that are used to shorten the activity names are shown within‘ brackets, there are

acronyms that are used to shorten the activity names.

7.1 Motivating Example

235

the standard procedure requires the evaluation of the requisition (Eva.) by an
expert. This is in case the inventory level of the good on demand is not in an
urgent state.

The choice of the supplier always carries a risk which is calculated based on
a set of factors such as the past performance of the supplier, legal background,
capital structure, and etc. Consequently the risk is classified as high or low. If
risk is high and not acceptable (N-OK), the procurement expert follows some
risk reduction measures (Red.). These measures may lead to a low risk or the
risk may remain high. The procurement expert must decide based on the new
information to continue with the risk reduction measures (Red.) or accept the
risk. Once risk is accepted, a purchase requisition document can be prepared
(Pre.).

If the purchase requisition value exceeds the threshold of 100,000 euros,
then two approvals (App.I) and (App.II) are required by two different agents
having directorate role. Otherwise, if the value is 100,000 euros or less one
approval (App.D) is sufficient. Based on an approved purchase requisition, a
purchase order is created (Cre.), and it is sent to the supplier (Sen.). The process
continues with receiving invoice (Rec-Inv.). After receiving goods (Rec-G.) by the
warehouse, the payment (Pay.) is done and the process ends. In exceptional
cases when the inventory level drops to an even lower level (urgent), standard
checks for the purchase requisition document may be omitted and the urgent
approval (App-Urg.) will be executed. Urgent approval is usually followed by
cash withdrawal (C-W.). In this case, the payment (Pay.) activity is limited to
updating books and recording journal entries.

In addition to the general procedure of the procurement process, to comply
with regulations and prevent fraud, the company must abide some compliance
rules as well. Here we list six of the compliance rules? that the procurement
process must comply to:

* Rule 1: Payment must always be done after receiving goods.

* Rule 2: If during the choice of a supplier risk is classified as high, at least
once activity risk reduction measures must be executed.

* Rule 3 (Four-eyes principle): Purchase requisitions having a value of more
than 100,000 euros must be approved by two signatures.

2Generic form of these rules can be found in the rule repositories discussed in Chap. 4, Chap. 5,
and 6.

236

Compliance Diagnostics

* Rule 4: Urgent approval may only be executed in critical situations when
the inventory level is urgent.

* Rule 5 (Authorization level): Purchase requisitions may only be approved
by agents carrying directorate role.

* Rule 6: Goods on demand must be supplied from company warehouses
(off-site) unless the inventory level is urgent or there are no goods avail-
able in any of the company warehouses.

These compliance rules are just a subset of typical rules such a procurement
processes has to comply to. Executions of processes are recorded in the form of
event logs. For example assume that the procurement process has been executed
3714 times and a particular type of fraud has occurred. The problem relevant
for the process owner is to know whether in the past each of the 3714 cases
satisfied all of the above rules or not, and more specifically, when a case did
not satisfy one or more of the rules, to provide detailed diagnostics about the
deviations.

The diagnostic information needed to assist practitioners extends beyond the
detection of deviations. Recall from Chap. 3, practitioners want to understand
deviations from different angles, asking questions such as:

* How many times each of the compliance rules listed above are violated in
total?

* What type of violations occurred more than others?
* Can we relate a certain type of violation for instance violations related to
four-eyes principle or authorization level to specific contextual information

(e.g. to a specific supplier or material)?

* Can we find out based on the information available in the event log, who
were the main human actors when a violation takes place?

* [s there an indicator available in the event log that can be used to predict
future violations?

7.2 Overview of the Approach

237

7.2 Overview of the Approach

Figure 7.3 presents our proposed approach for helping organizations analyze
the compliance of a process from different perspectives, report on compliance
violations, and investigate reasons for compliance violations in order to answer
the questions presented in Sect. 7.1.

This approach has three main components: Compliance Checking checks
compliance of a process from different perspectives. The compliance check-
ing component of the approach has been discussed intensively in the previous
chapters. Note that so far we mainly discussed compliance checking of individ-
ual atomic patterns. In this chapter we specify a set of compliance rules as a
composite compliance model. Using data-aware alignment, we check whether
an event log adheres to the constraints of the composite compliance model or
not and detect the violations and their type.

Violation data are aggregated to provide different statistics in the Compliance
Dashboard component (Fig. 7.3-bottom left). The statistics are summarized at
different abstraction levels enabling users to obtain detailed data and vice versa.
It is important for business analysts to identify key insights in large amounts of
event data. Hence, we present a sorted list of violations based on their impor-
tance. In this list, we also point out for every type of violation, the context
information available in the event log that has a meaningful relation with that
violation. We use association rule mining to quantify the relevance between a
specific violation and its contextual information.

The “Get Problem Insight” component of the approach (Fig. 7.3-bottom right)
allows us to study specific violations and investigate the conditions that lead to
that violation; for this we use decision tree learning techniques. We will dis-
cuss root-cause analysis components (Compliance Dashboard, and Get Problem
Insight) of the approach in detail using the procurement process example. How-
ever, first, we briefly discuss compliance checking for the example.

7.3 Compliance Checking

In this section we explain the composite compliance model that specifies the
procurement process of the motivating example (Sect. 7.1) combined with all
the compliance rules from different perspectives. Then, we illustrate how align-
ments reveal compliance deviations on this example.

238

Compliance Diagnostics

Compliance Checking | Sect.7.3

Ve

Summary of Chap.4,5 and 6

Violation from
Different
Perspectives

Get Problem Insight Sect.7.5

Y, Investigating Conditions
Leading to a Specific Violation

Enriched event log

Compliance Dashboard v Sect.7.4 {/Tcﬁﬁ)@
Holds Doesn’t Hold

Sorted List of Violations

with Diagnostics about
Relevant Context Info

Statistics about) Condition | ‘ ‘ Condition Il ‘

Violations

Decision tree learning

~ Venn Diagram for Violations and their Occurrence
Conditions
Association rules
Condition.| &Il
Detailed Statistics Condition.| Violation X&Y v
holds |

Violation X holds Violation Y holds

Condition IV

Condition Il
No Violation Y

No Violation X

Condition l1&IV
No Violation X or Y

Figure 7.3: Overview of the approach.

7.3.1 Prescribed Behavior as a Composite Compliance Model

The data-aware Petri net DPN-procurement shown in Fig. 7.4 models the pro-
curement process as that modeled in Fig. 7.2. Note that in this example we
do not specify compliance rules separately. DPNProcurement ig a composite com-
pliance model that specifies the presence of events and their ordering together
with event attributes and their admissible values. Table 7.1 gives an overview
of the attributes used in this process. In addition, due to readability reasons,
we are not showing the variables and set statements. We only show write state-

ments and guards.
Among others, the model specifies the compliance rules of the procurement

7.3 Compliance Checking

239

process discussed in Sect. 7.1 as indicated by the shaded parts in Fig. 7.4. All
firing sequences of DPNProcurement correspond to process executions that com-
ply with these compliance rules. Next, we choose two process fragments in
DPNprocurement 1 elaborate on how this net describes a compliance rule.

Rule 1 is a typical control-flow rule specifying that payment (Pay.) must
be preceded by receive goods (Rec-G.). This behavior is formally expressed in
Fig. 7.4 in the shaded part labeled (C). Rule 3 and Rule 5 are focused on at-
tributes: Rule 3 states that the four-eyes principle has to be applied on the

Pattern parameters:
® Hinventory Level(€) 2 IL
#Resource(e) > Rs
#raele) > Ro
#risk(€) > Ri
H#amount(€) > A
#.«(e) > transition label

(G):
Rule 6
Del.
(A):
[Ri= High]
[RO’ = Dir.]& (B): (©):
{W:Ri} [A’ >100,000]& Rules 3.5 .
[(Rs’#Rs)Or(Rs=undefined)] LRE Rule 1
’ Cho. MForm. Eva. {W: Ri, Ro, A}
O App.| O—
[Ro = Dir.]&
(E): [A” > 100,000]&
Rule 2 [(Rs’#Rs)Or(Rs=undefined)]
[IL= Urgent] [Ri = Low] {W:Ri, Ro, A}
Rule 4
(F): [Ro’ = Dir.]&
Rules 3,5 [A’ £100,000]
{W: Ri, Ro, A} ’ App-l Cre. H)——{ Sen.

Figure 7.4: The data-aware Petri net DPNPTOc#rement specifying admissible executions of

procurement process example.

240 Compliance Diagnostics

Attribute Name Description

Inventory Level (IL) Describes the state of the inventory level of the material in request
that is available in the warehouse.

Resource (Rs) Describes the name of the agent that executed an activity.

Role (Ro) Describes the organizational responsibility of the resource that ex-
ecuted an activity.

Risk (Ri) Describes the risk calculated for a supplier.

Amount (A) Describes the amount value of a purchase requisition (PR).

Material (Mt) Describes the material which is being purchased.

Supplier (S) Describes the supplier.

Date (D) Describes the date an activity was executed.

Table 7.1: Event attributes of the synthetic log obtained for the procurement process.

Approval if the amount is above 100,000 euros, and Rule 5 demands that the
approval has to be carried out by agents having directorate role in the company.
This is expressed in the shaded part (B) where transitions have additional an-
notations that specify attribute values of events. Labeled transitions App.I and
App.II represent respectively events with activity names purchase requisition ap-
proval (I) and purchase requisition approval (II). The statement [Ro’ = Dir.] in
the guard of transition App—1 and App.II specifies that these events must be
executed with value director of their attribute role; expressing the restriction in
Rule 5. Similarly the statement [A’ > 100,000] in the guard of transitions App.I
and App.II, specifies that both of these activities must be executed for cases with
value more than 100,000 of their amount attribute; enforcing a part of Rule 3.
Rule 3 limits the execution of the two approvals such that execution of one will
limit the resources that are allowed to execute the next one. To express this
condition, we use variable Rs. The statement [Rs’ # Rs) Or(Rs = undefined)] in the
guard of both transitions then expresses that events with activity names App.I
and App.II must be executed with different resources. This statement evaluates
to true if Rs = undefined implying the corresponding event is the first one that
writes in Rs, or if Rs' # Rs indicating that the value for resource attribute of the
latter event must be different from its previous one.

7.3.2 Compliance Checking Based on Alignments

Table 7.1 shows (a part of) a possible event log for the procurement process. Vi-

olations are detected by aligning the event log and the data-aware model shown

in Fig. 7.4 (see Chap. 2 for detailed explanation on data-aware alignment).
Figure 7.6 shows a part of the alignment obtained by aligning the log behav-

7.3 Compliance Checking

241

ior of Fig. 7.5 to the process instance runs described by the model of Fig. 7.4.

For simplicity we only show parts of the alignment that are related to the
subnet (B) that captures Rule 2, Rule 3 and Rule 5. The model-only move indi-
cated in red, refers to the skipped event prepare purchase requisition document
(Pre.). The next violation indicates an incorrect synchronous move. The log
event e} has resource Shiva whereas the process instance run event el requires
resource Arash.

This violation can be detected based on the statement [RS # Rs)Or(Rs =
undefined)] annotated at App.I and App.II which together express that the two
approvals must be executed with different agents in one process instance. This

event ID

L
€5

L
€7y

eLg

L
€9

process instance

#ai(e's)=ps

#pi(eL7):p1

#pi(eL8)=p1

#i(e's)=p;

activity name (act)

#act(eLS)zEva~

#ac((eL7)=App'|

#aele's)=App.Il

#a(e's)=Cre.

date (D)

#o(e's)=01-05-09

#p(e';)=04-05-09

#p(e's)=10-05-09

#o(e')=11-05-09

amount (A) " #a(e'5)=1210000 | #4(e";)=110000 | #a(e')=110000 | #4(e"s)=110000
resource (Rs) #eo(e's)=Ross #es(e")=Shiva #ro(e's)=Shiva #ro(e'o)=Sina
role (Ro) Heole's)=expert | #po(e'y)=director | #zo(e's)=director | #zo(e's)=director
risk (Ri) #a(e's)=low #a(e')=low H#rile's)=low #ri(e's)=low

Figure 7.5: Parts of the event log L showing four events from process instance p;.

of process model DPNProcurement

event ID eLs eLy eLg eLg
#oil€') P1 P1 P1 P1
#aale’) Eva. App.| App.ll Cre.

L #g{eL) . 01-05-09 o - 04-05-09 || 10-05-09 - 11-05-09
#a(e") 110000 110000 |{110000 110000
#pol€') Ross Shiva Shiva Sina
#rol€’) expert director || director director
#ale') low | |llow low L low |
event ID eRs eRG] eR7 eR3] eR9
#aile”) P1 P1 P1 P1 P1
#o(€”) Eva. Pre. App-I. App-Il. Cre.

R #o(e") .01-05-09 ||02-05-09 t 04-05-09 || 10-05-09 t 11-05-09
#a(e") 110000 |/ 110000 110000 |{110000 110000
#es(€") Ross Katy Shiva Arash Sina
#role”) expert clerk director || director director

L #R,(eR) low low L low low L low L

Figure 7.6: Alignment A resulted from aligning event log L and process instance run R

242 Compliance Diagnostics

statement is evaluated to true for execution of the first activity (App.I), but it
is evaluated to false for App.II since both log events are executed by the same
agent Shiva; violating the four-eyes principle.

7.4 Violation Statistics

In the previous chapters, we presented individual alignments and discussed the
diagnostic information about compliance and non-compliance at the event level
and at the process instance level. In order to get insights regarding the compli-
ance status of the entire process, we will aggregate the diagnostic information
from the event level to activity level. In the following, we present several statis-
tics and a dashboard view to explore these statistics interactively.

Figure 7.7 shows part of the Compliance Dashboard with statistics for the
activities in the procurement process. The table shown in this figure contains
the list of activities and statistics of different violation types for every activ-
ity. As is shown in this table, activity check off-site warehouses (Che.) was
skipped 1447 times. Based on the company internal policies, this activity may
be skipped in urgent situations (although not modelled, as it is not the standard
procedure). In this case the procurement department proceeds with buying
the requested goods directly without following the standard procedure. This
could be an explanation for occurrences of this deviation. Note that activity ur-
gent approval (App-Urg.) has indeed been executed many times (1136 times).
However, the “accepted” deviation (i.e., skipping check off-site warehouses fol-
lowed by the urgent approval) can be costly because the standard approvals are
skipped. Hence, there is a room to investigate about the high number of urgent
cases.

Another deviation observed refers to the activity purchase requisition approval-
I (App.D). This activity was executed 314 times with incorrect value for attributes
role and amount which indicates frequent deviations from one or more compli-
ance rules including authorization level and four-eyes principle. Similarly activity
purchase requisition approval-Il (App.II) was executed 499 times with an incor-
rect value for attributes resource, role and amount; referring to violations from
one or more rules. In addition, we can observe that activity payment (Pay.) is
executed twice where it was not allowed and two times it was skipped, suggest-
ing that activity payment (Pay.) was executed in a wrong situation. The other
deviation observed refers to three instances where activity prepare purchase
requisition document (Pre.) is executed with a wrong value for risk.

7.4 Violation Statistics

243

- . Attributes with Incorrect Value Unwanted Events | Skipped Events

Activity | # Moves in Total | — " -

Risk |Resource |Amount |Supplier |Role |Material |Inventory | (log-only move) |(model-only move)
Rec-Req. 3714 O 0 0 0 0 0 0 0 0
Che. 3714 O 0 0 0 0 0 0 0 1447
Cho. 3337, O 0 0 0 0 0 0 0 0
Form. 3337, O 0 0 0 0 0 0 0 0
Eva. 2201 O 0 0 0 0 0 0 0 0
Red. 1531 0 0 0 0 0 0 0 0 0
Pre. 2201 3 0 0 0 0 0 0 0 0
App.| 2201 O 0 314 0 314 0 0 0 0
App.Il 1921 0 499 499 0| 499 0 0 0 0
App-Urg. 1136/ 0 0 0 0 0 0 0 0 0
c-w 1136/ 0 0 0 0 0 0 0 0 0
Cre. 3337, O 0 0 0 0 0 0 0 0
Sen. 3337, O 0 0 0 0 0 0 0 0
Rec-Inv. 3337, O 0 0 0 0 0 0 0 0
Rec-G. 3339 0 0 0 0 0 0 0 0 0
Pay. 3337, O 0 0 0 0 0 0 2 2
Del. 3771 0 0 0 0 0 0 0 0 0

Figure 7.7: Deviation statistics for procurement process example.

Obtaining statistics of high-level compliance analysis.

To provide a highly aggregated view on the violations as those shown in Fig. 7.7

for the procurement process, we first divide an alignment into its elements, i.e., align-

ment moves. With M being the collection of all alignment moves, we can filter
M to build different sets of alignment moves, each characterized by a specific
deviation type.

The input to computing the statistics is the alignment A = a(L, Mod) = (L, R, M, <M

) that relates log L = (E',#,<) € BH to a run R = (ER® #,<) from a given model
R € Mod. For this alignment we can define various sets of basic move types as
listed in Table 7.2.

In addition to classifying moves in general, a business user may want to
aggregate results for a specific activity to show how many deviations in total
and from each type were observed for that activity. Hence, we filter M for
moves referring to a specific activity and different deviations of the activity in
question. Such filters and statistics are not restricted to activities but can be
defined for arbitrary attributes.

For instance, we would like to know how many times a specific attribute
had an incorrect value. Table 7.3 shows some examples of statistics that can be
obtained for a given attribute.

These filters on activities and attributes can be combined as the following

244

Compliance Diagnostics

Name

| Description and Definition

M log—only.move

set of all log-only moves in the alignment.
Miog—onty.move = (el ef) e M| (ef =) A (el # >)).

Mmodel- only.move

set of all model-only moves in the alignment.
Mmodel—only.move = {(eL; eR) eEM| (eL =) A (eR # >)}

set of all synchronous moves in the alignment.

Msyn Mgy, = M (EL x EF).

set of all correct synchronous moves in the alignment.
Meor.syn Meor.syn = {(€", %) € Myyy | #(e") = #(e®) | (dom(#(e™) \ {ID})

(See Sect. 2.4).

set of all incorrect synchronous moves in the alignment.
Mincor.syn Mincor.syn = Msyn \ Mcor.syn-

set of all moves having at least one type of violation.
Mvioluting Muiolating = Mlog—only. move Y Mmodel—only.move U Mincor.syn-

examples show.

o M4

act

Table 7.2: Sets of different basic move types.

N Miog—only.move are all log-only moves involving activity a € Val,

* MY, 0 Miodel-onily.move are all model-only moves involving activity a € Val,

act

* MY, N Myioiaring are all moves involving activity a € Val and having at least

act

one type of violation,

* My,nMi, nM* are all synchronous moves involving activity

act

attr.incorrect.value

a € Val while disagreeing on attribute x € Attr,

* Mgy,n M5, nM: are all synchronous moves involving activity

act

attr.missing.in.log

a € Val where attribute x € Attr is missing in the event log,

H#aci(€R) | (e", e®) € Miodel—oniy.move} is the set of all activities involved in a
model-only move,

{a € Val | IM,; 0 Migg—only.movel = 5} is the set of all activities executed at
least 5 times while model did not allow for it, and

etc.

7.4 Violation Statistics

245

Name \ Description and Definition
a set of all moves involving activity a € Val.
Mact Mg, = {(e"e®) e M| ((e" #3) A (Hact(e") = @) v (R #>
) A (#ace(eF) = @)
. set of all moves involving attribute x € Atzr.
Maur MY, = {(eF, e®) e M| x € dom(#(ef)) U dom(#(e))}.
set of all moves having value v for their attribute x € Attr.
M M"E = {(eL, ey € M| x € dom(#(eb)) A#y(eb) = 1.

attr

X
attr.missing.in.log

set of all synchronous moves where attribute x € Astr is
missing in the event log.

X _ L LR 3 R
Mattr.missing.in.log = {(e",e") € Mmcor.syn | x € dom(#(e™)) \

dom#(ef))}.

X
attr.missing.in.model

set of all synchronous moves where attribute x € Astr is
missing in the run.

X — L ,R . L
Mattr.missing.in.model ={(e™,e") € Mincor.syn | X € dom(#(e™)) \

dom#(e™))}.

X
attr.incorrect.value

set of all synchronous moves where log and model dis-
agree on the value of attribute x € Artr.

x _ (oL R . L
Muttr.incorrect.value = {(e",e") € Mincor.syn | x € (dom(#(e)) N

dom(#(eR))) A #x(eh) # #c(eP)).

X
attr.violating

set of all moves involving a violating attribute x € Attr.
X = M* U M* U
attr.violating attr.incorrect.value attr.missing.in.model
X

attr.missing.in.log"

Table 7.3:

Different sets of moves related to a specific attribute.

246

Compliance Diagnostics

The above expressions are only examples. The cardinality of these sets gives
the frequency of the various deviation types in the entire event log.

Referring back to the high-level statistics of the procurement example shown
in Fig. 7.7, for instance the number ‘1447’ for activity check off-site warehouses
(Che.) is the cardinality of the set of all alignment moves with the activity name
check off-site warehouse that were skipped (Mgc’t’e' N Miodel-only.move) -

Fig. 7.7 shows aggregated results for deviations at the activity instance level
in the entire event log. In addition to individual activities, a user may want to
know how many process instances satisfy a compliance rule or violate it. There-
fore, we give statistics on process instance level as well using the type of expres-
sions listed earlier:

. {#pi(eL) | (e, ef) e Miog—only.move} are all process instances having a log-only
move,

o {#pi(e®) | (el e®) € (Mgact N Minodei-onty.move)} are all process instances hav-
ing a model-only move involving activity a € Val, and

* etc.

For example, we can give statistics about all process instances having at
least one move with activity App.I executed with incorrect value for attribute re-
source. Hence, we can see in total what percentage of cases contain at least one
occurrence of such violation. In our example, statistics at the process instance
level are the same as those at the activity instance level since we do not have
duplicate executions of one activity in a process instance.

By creating different sets of alignment moves related to any of the attributes
in the event log, we can provide above mentioned statistics not only for activities
but for attributes as well. For instance Fig. 7.8 (top) shows statistics related to
the attribute material of the example. On the left side of the table, all the
materials observed in the log are listed. The column # Moves in Total shows
the number of moves that have a specific material. The columns in the middle
indicate the number of moves that have an incorrect value for one of the listed
attributes: Risk, Resource, Amount, Supplier, Role, Material, and Inventory that
co-occur with a value in the column Material. The columns Unwanted Events
and Skipped Events show the number of moves that have a violation of type
log-only move or model-only move with the respective material. In this table, for
example the value 86 in the column Skipped Events, is derived from the following
expression:

aluminium, material
¢ Mattr N Mmodelfonly.move-

7.5 Identifying and Ranking Problems

247

Figure 7.8: Statistics for attribute material(top) and detailed statistics for material =
glass.

In another view in compliance dashboard, we can get detailed data about
a specific attribute value. For instance, Fig. 7.8 (down) shows the statistics
calculated for attribute material having the value glass. This bar chart shows
that in 5% of the cases that the material requested is glass, we observe violations
of type model-only move. In 2% of the cases, value glass of attribute material
coincides with incorrect values for attributes role, amount, and resource.

7.5 Identifying and Ranking Problems

When the number of attributes and activities grows, focusing on important devi-
ations by solely reading statistic tables and corresponding bar charts introduced
in Sect. 7.4 will not be easy. Moreover, if there exists a meaningful relation
between a deviation and its context information available in the event log, this
relation cannot be highlighted using the aggregated statistics presented in the

Material | #Moves in Total Attributes with Incorrect Value Unwanted Events | Skipped Events
Risk |Resource |Amount |Supplier |Role |Material |Inventory| (log-only moves) (model-only
Rubber 7077 0 123 135 0l 135 0 0 0 137
Aluminum 6487 0 116 128 0l 128 0 0 1 86
Glass 12964 3 196 215 0| 215 0, 0. 0, 600
Steel Plate 7188 0 128 145 0 145 o) 0 0, 137
Cooper 11308 0 177 190 0/ 190 0 0 1 439
Material = glass
14000 7
12000 7
10000
8000
6000 T
4000 7
2000 1~ 2% 2% 2% 5%
= >
0 ¥ T T T T T T T T T 4
&0‘?} gL\"’\. N o\\'& \\é °\® qf@ &06 e(‘\@ z“é
& & SR ‘Q‘ <& b‘c‘ <&
&f’ 0,5 &« 2 o‘® & “\o & er
S \,\\o ,\@b c(\ (@ \Q(, (\e @o \‘@e \{;\Q
X & & \,\49

248

Compliance Diagnostics

previous section.

To guide users in identifying important and frequent patterns of violations,

we prepare a list of problem statements.

7.5.1 Generating Lists of Problem Statements

Each problem statement indicates a deviation type and its relation with the
contextual information of the violation at the event level or process instance
level.

Problem statements related to a specific

Problem statements related to a specific

activity

attribute assignment

A

As context of a violation we consider event-level attributes of the violating

Problem List

- Activity a has [M?, /) Miiowting| Violations. (1° level)

* Activity @ was skipped [M,% /7 Mimadet-oriy.mave | times. (2" level)

* Activity @ was skipped /Ma; [Mpodet-only.move /)Mﬂ"': | timeswhen x=v. (3 level)

« Activity @ occurred [Mpe 1?Miog.ony.move | times where it was not allowed. (2" level)

* Activity @ was skipped [Mict 17 Miog-onty.move 1M, | times when x = v. (37 level)

« Activity @ occurred [Mae ﬂM;m‘V,-u,,',-,,gl times with a violating attribute z.(2" jevel)

* Activity a occurred [Mace 1M viowting (1 Mg | times with a violating z when x = v.(37 e vel)

- When x=v, |M‘;’;, /1 Mionting] number of violationsis observed. (1° level)

* When x=v, activities were skipped [Mz 1M podet-ony.move | NUMber of times. (2" fevel)

* When x=v, activity a was skipped [MZee /?Myr MM moget.onty move | times. (3 level)

*When x=v, /M,‘,';; /1 Momoder-ony.mave | times, activities occurred where they were not allowed. (2" level)

* When x=v, activity @ occurred [Mic /1My /1Miog.ony.mve | times where it was not allowed. (37 fevel)

* When x=v, /M,,V,'; /IM,:,,,},,,—,,M,-,,QI times, activities occurred with a violating z. (2 level)

* When X=v, [Mair 1Myt viokating /1 Miaee| times, activity a occurred with a violating z. (37 level)

Figure 7.9: The structure of problem lists.

7.5 Identifying and Ranking Problems

249

event and trace-level attributes which describe the information of the entire pro-
cess instance in which the violation was observed. Technically, we make all
trace-level attributes event-level attributes by copying them to each event.

Figure 7.9 shows how we structure the problem list hierarchically. In the
problem list, deviations that are related to a specific activity or attribute value
or combination of both will be grouped and listed as two categories of problem
statements. Every problem statement in this list refers to a set of deviations that
have some characteristics in common. For instance all the deviations of type
‘log-only moves’ for ‘activity a’. The sets of deviations are built using the ex-
pressions discussed in Sect. 7.4. We use these sets then to generate the problem
statements in the problem list.

Since one of the main goals of compliance checking is to enable practitioners
and business users to get insight and understand the compliance of their pro-
cesses, the problem list is presented in a textual format. As is shown in Fig. 7.9,
the problem list is presented as text. Thereby the text should avoid technical
terms where possible.

The problem list is ranked based on the severity of the deviations and the
strength of the relation found between the deviations and their contextual in-
formation. We will discuss ranking of problem statements in detail in Sect. 7.5.2
and Sect. 7.5.3.

Next we will explain how we build different sets of deviations and their
corresponding problem statement in a problem list.

Problem statements related to a specific activity. As is shown in the problem
list structure in Fig. 7.9, first-level problem statements in this category report
the total number of violations observed for each activity. Second-level problem
statements specify the type of violation, and a third-level problem statement
reveals an association between the observed violation and its contextual data.

Figure 7.10 illustrates a Venn diagram based representation showing sets of
deviations. These sets show how different levels of problem statements related
to a specific activity are built. As is indicated both in Fig. 7.10 and Fig. 7.9,
first-level problem statements in this category are generated as the intersection
of moves involving activity a, and set of all violating moves. To compute the
list of all first-level violations, we compute this intersection for each activity a
in the log.

The second-level problem statements of this category are intersections of
moves involving activity a and moves having a specific violation type (for in-
stance model-only moves). The third level-problem statements are built as the
intersection of moves involving activity a, moves having a specific violation type

250 Compliance Diagnostics

and moves having a specific (attribute, value) combination (for instance all the
moves where attribute x = v). That is, the third level problem statements in-
dicate how often a second level problem occurred together with a particular
(attribute,value) combination. We generate the complete list of all third level
problem statements of a particular violation of activity a (model-only move, log-
only move, and incorrect synchronous move by computing the intersection for
each attribute/value combination occurring in a violating move of activity a.

For numeric attributes, value intervals instead of single values are used to
build sets. In case of a model-only move, where no context information of a
log event is available (because the event is missing), the attributes of the di-
rectly proceeding events are considered. We will further elaborate on this in
Sect. 7.5.3.

The following list shows problem statements related to activity check off-site
warehouses in our example:

* First-level: 1447 violations were observed when activity check off-site ware-

First level Mace N Muioiating
Mace N (Mrvioiting OR .. OR Mt ioiting)
Second level Mot N Miogontymove
Mae N M model-only.move

. a Vv, X V,X z
Th |rd |eVe| . Mact n Mattr n(MmodeI-only.move OR Mlog-only.move OR Mattr.violating OR...OR Mattr.violating)

a
Mact IVlviolating

z
Mattr.violating

I\/Iincor.sync
y
Manr.violating

M log-only.move

M model-only.move

Figure 7.10: A Venn diagram representation of how activity specific sets of deviations
referring to different problem statement levels are built.

7.5 Identifying and Ranking Problems

251

houses was executed.

— Second-level: Activity check off-site warehouses was skipped 1447 times.

« Third-level: Activity check off-site warehouses was skipped 1288
times when amount was more than 100000.

* Third-level: Activity check off-site warehouses was skipped 1412
times when inventory level was above threshold.

« Third-level: Activity check off-site warehouses was skipped 600
times when material was glass.

+ Third-level: Activity check off-site warehouses was skipped 488
times when material was copper.

* Third-level: Activity check off-site warehouses was skipped 573
times when resource was Sara.

« Third-level: Activity check off-site warehouses was skipped 476
times when resource was Chloe.

« Third-level: Activity check off-site warehouses was skipped 398
times when resource was Anna.

o First-level: ...

As is shown in the above problem list, the first-level problem statement re-
lated to check off-site warehouses activity reports in total 1447 number of viola-
tions for this activity. The second-level problem statement specifies the type of
the violation observed for this activity together with its frequency; and the third-
level problem statements reveal the associations between the observed violation
and its contextual data. As activity check off-site warehouse is constrained only
with one compliance rule (Rule 6), we see only one type of violation for this
activity in the problem list, hence, only one second-level problem statement is
reported for this activity. From the third-level problem statements of this activ-
ity, we only show problems statements related to four attributes amount, inven-
tory level, and resource. Similarly, the problems statements of different levels for
every violating activity is prepared.

The textual format of the problem list facilitates focusing on important prob-
lems and finding relations between deviations and the contextual information
available in the log. For instance from the third-level statements listed in the
example problem list, the second sentence reveals an unexpected association
between the inventory level being above threshold and skipping check off-site

252 Compliance Diagnostics

warehouses. We previously discussed that ‘skipped check off-site warehouses’
may only be justified if inventory level is urgent. We also observe that, three
resources Sara, Chloe, and Anna are often being in charge when the violations
of this type occurred. Similarly the coexistence of the described violation with
the values more than 100,000 for attribute amount and values glass, and copper
for attribute material is highlighted.

Problem statements related to a specific (attribute,value) assignment. In
addition to describing compliance problems in terms of violating activities and
their context, we propose to also group problems by their context to get an
overview of problematic contexts. This gives rise to the second category of
problem statements as is shown in the lower part of Fig. 7.9. These categories
are based on a specific (attribute,value) assignment rather than activities.
These problem statements are built based on the intersection between set of
all moves having v € Val for their attribute x € Artr and different sets of violat-
ing moves. Figure 7.11 illustrates how sets of deviations referring to different

FIrSt Ievel M‘;‘t’;rn Mvio\ating
v, X v z
Mattr n (Mattr.vio\ating OR..OR Mattr.violating)
Second level Matr N Miog.oniy. move
v, X
Martr n Mmodel-only.move

. a Vv, X y z
Th |rd Ievel . Mact n Mam n(Mmode\—onlv.move OR Mlog—only.move OR Mattr.violating OR..OR Mam.vio\ating)

z
Mattr.violating

I\/Iincor.sync

y
Matt r.violating

I\/Iact
Iv'log-only.move

Mmodel-only.move

Figure 7.11: Venn diagram representation of how attribute specific sets of deviations re-
ferring to different problem statement levels are built.

7.5 Identifying and Ranking Problems

253

problem statement levels in this category are built. The first-level problem state-
ments of this category indicates the total number of violations observed when
attribute x has value v. The sets, related to these problem statements, are gener-
ated as the intersection between all the moves having value v for their attribute
x, and set of all violating moves. The second-level problem statements specify
the type of violations observed and their frequency. Therefore, a second-level
problem statement is generated as the intersection of all the moves having value
v for their attribute x and moves with a specific violation either: log-only move,
model-only move, or moves with an incorrect attribute.

Third-level problem statements of the first category and the second category
are the same, they are built as the intersection of all moves having value v for
their attribute x with all the moves involving activity a and having a specific
violation type either.

The following list of problem statements shows all violations and their type
that were observed when material was glass in our example:

* First level: When material was glass, 1229 violations were observed.

— Second level: When material was glass, 600 times activities were
skipped.

« Third level: When material was glass, 600 times activity check
off-site warehouses was skipped.

— Second level: When material was glass, 196 times activities were exe-
cuted with an incorrect resource.

« Third level: When material was glass, 150 times activity purchase
requisition approval-II was executed with an incorrect resource.

« Third level: When material was glass, 65 times activity purchase
requisition approval-I was executed with an incorrect resource.

— Second level: When material was glass, 215 times activities were exe-
cuted with an incorrect amount.

« Third level: When material was glass, 65 times activity purchase
requisition approval-I was executed with an incorrect amount.

« Third level: When material was glass, 150 times activity purchase
requisition approval-II was executed with an incorrect amount.

— Second level: When material was glass, 215 times activities were exe-
cuted with incorrect role.

254

Compliance Diagnostics

* Third level: When material was glass, 65 times activity purchase
requisition approval-I was executed with an incorrect role.

« Third level: When material was glass, 150 times activity purchase
requisition approval-II was executed with an incorrect role.

— Second level: When material was glass, 3 times activities were exe-
cuted with an incorrect risk.

x Third level: When material was glass, 3 times activity prepare pur-
chase requisition document was executed with an incorrect risk.

e First level: ...

The problem list at this stage can become very long specially if there are
many activities and attributes present in the log. To improve its comprehensi-
bility, all the statements in the list that refer to an empty set of moves will be
removed. Moreover we rank the problem statements to make the more impor-
tant problems appear earlier in the list. Next, we will explain the two ways that
we rank the problem list.

7.5.2 Ranking Problem Statements by Domain Knowledge

We use domain knowledge to rank problem statements in the list. For this, we
propose to use a user-configurable severity score. The score is calculated for
each activity or attribute based on the importance given to a certain attribute
or activity by the user multiplied with the frequency of the observed deviation
for that activity or attribute. For instance if deviations about activity payment or
attribute amount are of more importance, the severity metric for payment will
increase and the deviations related to payment and attribute amount may end
up in an earlier position in the problem list. For example for the list:

* Activity check off-site warehouses was skipped 1412 times when inven-
tory level was above threshold.

* Activity check off-site warehouses was skipped 1288 times when amount
was more than 10,000.

If the user chooses severity weight of attribute inventory level as 1 and
amount as 4, then the entry with attribute amount will be shown at an earlier
position than the entry with attribute inventory level.

7.5 Identifying and Ranking Problems

255

7.5.3 Ranking Problem Statements by Context Relevance

The type of problem statements explained previously may reveal important in-
formation about the coexistence of a deviation and a particular attribute value.
For instance, the statement ‘When material is glass, 600 times activity check off-
site warehouses was skipped’ indicates that the deviation ‘skipped check off-site
warehouses’ and the (attribute,value) assignment ‘material is glass’ coincide 600
times; hypothesizing a relation between them.

We can consider such a relation as an association rule of the form X =
Y, with X being the antecedent of the rule and Y being the consequent of the
rule. The antecedent or consequent of the rule can be a violation e.g. ‘activity
check off-site is skipped’, or an (attribute,value) assignment e.g. ‘material is glass’.
Many of such rules can be found after checking compliance of a dataset. We
can leverage various metrics proposed in association rule mining literature to
evaluate the relevance of a rule and thereby the relevance between a violation
and an (attribute,value) assignment.

To evaluate an association rule from business perspective, it is important to
understand (1) the direction of the association and (2) how much more often,
the antecedent and consequent of the rule co-occur than expected if they were
statistically independent. The (1) is important if we want to use association
rules for predicting possible violations in the future. For instance, if a specific
(attribute,value) assignment implies a violation, we can predict that future ex-
ecutions of activities with that (attribute,value) assignment are probably violat-
ing. The latter is important because it help us detect infrequent but important
associations.

As mentioned before, several interest measures are defined in literature. In
the following we compare some of them w.r.t. the two requirements we have.
We will discuss support [12], confidence [12], Lift (interest) [22], and we fi-
nally choose the Conditional Probability Increment Ratio (CPIR) metric defined
in [152] to quantify the relevance between violations and their contextual in-
formation available in the event log. First we establish some notation.

Let I ={i1,ip,...,in} be a set of distinct elements called compliance elements.
An example of a compliance element could be (check off-site warehouses,skipped).
A compliance element i € I is a pair (x, v) with x € Attr, and v € Val U {skipped, not
allowed, executed, violating attribute}.

In the following, we will discuss finite (sub)sets A, B < I of compliance ele-
ments; |A| is the size of A (i.e., the number of elements in A). Further, we call a
set € = {A;, Ay, ..., A} € 2! of sets of compliance elements, a compliance element
collection of size k.

256 Compliance Diagnostics

Intuitively, € corresponds to a, say, second-level problem statement p and
each A; € € corresponds to the (attribute,value) pairs of third-level problem
statements under p. We define

ce: M — {(x,v)} is a function that maps a move m € M to its compliance
elements.

* For m=(el,>) € Miog-onty.move*
ce(m) = {(#acr(€"), not allowed)} U{(x, #(e")|x € dom(#(e") \ {act}.
* For m=(>,ef)e Mmodel-only.move'
ce(m) = {(#aci(e™), skipped)} U{(x, #.(e™))| Im’ = (™", ™) € MA

el > am' <M m a #,,i(e/L) =#,,i(eR) -V x € dom#(e™) \ {act}}

That is, if an event is skipped, ce(rm) maps move m = (>,ef) to the (at-
tribute,value) pairs of an event (e'") that precedes move m’'. In our imple-
mentation we pick the e that occurred last before the model-only move
m, and

* For me My, atr.violating let Aatir.violating =y € Attr\ {act}|(y € dom(#(e")) A Vé
dom(#(e™))) v(y € dom#(eR)) Ay ¢ dom(#(e"))) v (y € (dom(#(el)) ndom(#(eR))) A
(#y(e") # #,(ef))}, be the attributes of move m where e”, and e® differ in
some form. Then:

ce(m) = {(#qcs(e"), executed)} U {(y € Auyyr. violating violating)}u
{(x, #x(e")|x € dom(#(e™) \ {act}}.

The choice of the compliance elements ce(m) of a model-only move may
require adjustments or careful log preparation to deliver meaningful results.
When an event is missing, there is no event-level attribute for the skipped event
to be considered as context of the violation. The challenges and possible solu-
tions for dealing with missing events were discussed already in Sec. 5.2. We
can use trace-level attributes and contextual data available for other events in
the same process instance (for instance neighbouring events) as a context of the
skipped event. In order to do so, we have two decisions to make: (1) we need
to choose the event(s) that can be considered as context of the missing event,
and (2) we need to choose attributes that need to be considered relevant for
analyzing the skipped event. Domain knowledge is required to make aforemen-
tioned choices. However, next we elaborate on consequences of the choices we
make in these two decisions.

7.5 Identifying and Ranking Problems

257

* Choice of events. Neighbour events (predecessor and/or successor) of
an skipped event, are the closest context to be considered. Yet, domain
knowledge and definition of the compliance rule can help us choose dif-
ferent relevant event(s) as a context for an skipped event. As mentioned
earlier, use attributes of the direct proceeding event of a skipped event
as its context. However, our approach can be extended to allow users to
choose the relevant event(s) as the context of a skipped event. In case a
number of events are chosen, we should make sure that they do not have
common event-level attributes with different values.

* Choice of attributes. Suppose we have chosen the relevant event(s) to be
considered as the context of a skipped event. We also need to choose the
attributes of these events that should be considered as a context for the
skipped event. Trace attributes can easily be included as the context of a
skipped event since they have a fixed value throughout a process instance.
If event-level attributes hold a fixed value for a sequence of events, they
should be included in context of a skipped event. For instance attributes
such as amount or resource are as such. There are some attributes which
are very local to a specific event, for instance dose of a medicine that is
administered to a patient, or characteristics of the machine that produced
an event. In case of such attributes, it is better not to include them in
the context because they are irrelevant for the skipped event and most
probably they will not add much information. Yet, domain knowledge can
also be very useful in choosing relevant attributes.

No matter which event(s) and which of their attributes are included in context
of a skipped event, we should be aware that the possible associations we find
between these context data and the the specific violation are actually between
the violation and attributes of the relevant event(s).

Computing relevance of an association rule.

An alignment A = (L, R, M, <M) yields the compliance element collection € (M) =

{ce(m)|m € M}. We take the intersection of move sets used for the problem lists,

and then compute compliance elements of these moves. Each third-level prob-

lem statement, such as “activity a was skipped n times when x = v”, gives rise to a

possible association rule over compliance elements, such as R = (a, not allowed) —
(x,v) or (x,v) — (a,not allowed). To test whether a rule X — Y holds over align-

ment A, we check different measures.

258

Compliance Diagnostics

A1={a,b,d}
A, ={a,b,c,d}
Az ={b,d,f}
A4 :{b,C,d,f}
As ={a,f}

As ={d,f}

A; ={a,b,e}
Ag ={c,f}

Ag ={e,f}

Ay ={a,b,c,d,e}

Table 7.4: Sets of compliance elements in compliance element collection €.

Support.

For a compliance element collection ¢ < 2! and a set of compliance elements A< I,
the support of a € I is the fraction of sets in ¢ containing a: supp(a) = %

For instance if I = {a, b, c, d,e,f} and € = {Al,Ag,Ag,A4,A5,A6,A7,A8,A9,A10},
with Table 7.4 showing compliance elements in different sets in ¢, then supp(a) =
2, and supp(b) = .

Similarly the support of a rule of the form a — b is the fraction of sets in the
compliance element collection ¥ containing both a and b, i.e., supp(a — b) =
W. In the example of Table 7.4: supp(a — b) = 0.4.

As support counts the occurrences of an association rule, it is often called
a frequency constraint. We can say a rule with a support greater than a spec-
ified minimum support threshold is a frequent rule, hence can be considered
important. The disadvantage of support is the so called rare item problem. If the
antecedent and the consequent of a rule are infrequent, they will be pruned,
although they may produce potentially valuable rules. In addition, support is

not directed, i.e., supp(a — b)= supp(b — a).

Confidence.

Confidence is defined as the probability of seeing a rule’s consequent under
the condition that the dataset (¥€) also contains the antecedent. For instance,

_ suppla—b) _ 0.4 _
COTlf(d—’b)— W = E_OS

Association rules need to satisfy a minimum confidence constraint to be con-
sidered important. Unlike support, confidence is directed and gives different

7.5 Identifying and Ranking Problems

259

values for the rules a — b and b — a. Confidence is sensitive to the frequency
of the consequent in ¥. In particular consequents with higher support will
automatically produce higher confidence as well. For instance a resource that
executed most of the activities will be found guilty for violating ones as well.

Lift.

Lift of an association rule is the ratio between the confidence of the rule and
the support of its consequent. For instance, in Table 7.4 lift(a — b) = % =1.3.
Lift measures how many times more often antecedent, and consequent occur
together than expected if they were statistically independent. Lift is not di-

rected, i.e., lift(a — b) =lift(b — a).

Conditional probability increment ratio.

Wau et al. have proposed the conditional probability increment ratio (CPIR) [152]
that assesses whether two entities (in our case two compliance elements) are
positively or negatively related.

For instance, in Table 7.4 CPIR(a — b) = 2 Tﬁ;}féﬁf’;ﬁ;‘g%’;p(b) = 064.15:*(?1'%(.]6?) =
0.5.

If supp(rule)> supp(consequent)supp (antecedent), then consequent and an-
tecedent are positively dependent and they occur more often than expected if
they were statistically independent and in case CPIR is larger than a user set
threshold the relation is considered important.

If supp(rule)< supp(consequent)supp(antecedent), then the consequent and
the antecedent are negatively dependent. Negative associations may be inter-
esting, for instance if we find out that a certain violation seldom occurs for a
specific material or absence of a specific resource usually implies that a particu-
lar violation does not hold.

In our example of Table 7.4, CPIR(a — f) = % = —1. In this case a
and f are negatively dependent, or a and —f are positively dependent, then
a— —f indicates that whenever a is present we expect f to be absent.

Although negative associations can reveal important information, the inter-
pretation of negative associations are more difficult than positive associations
domain and conclude whether they convey a meaningful business insight (event
for domain experts). Hence, we are more interested in finding association rules
with positive CPIR.

Positive associations with a CPIR more than a fixed upper threshold, and
negative associations smaller than a fixed lower threshold are kept to guide

260

Compliance Diagnostics

users to focus on more important violations.

Unlike lift, CPIR is a directed measure, since it also uses the information of
the absence of the consequent. As we mentioned earlier, this is important if
we want to use association rules with higher CPIR value for predicting possible
violations in the future.

In essence we can use any of the interest measures discussed above such
as support , confidence, Lift, and many more including all-confidence [89],
collective strength [11], or conviction [22], however we utilized CPIR in our
approach. In addition to the direction of an association, utilizing CPIR, we can
also find infrequent and unexpected rules.

We use alignment moves to build compliance element collections. Given an
alignment A = (L,R,M,>™) and the compliance element collection € (M), we
test the relevance of a rule of the form a — b over € (M) using its CPIR value:

supp(a — b, € (M)) — supp(a, € (M)) supp(b, € (M))
supp(a, € (M))(1 — supp(b, € (M)))

CPIR(a — b,€(M)) =

Filtering Association Rules

Recall that we aim at presenting the user a list of relevant compliance violations.
In Sect 7.5.1, we produced lists of hierarchical problem statements, where the
third level problem statements combine a particular kind of violation with a
context attribute. To give the user only relevant problem statements, we pri-
oritize and filter this list as follows. For each third level problem statement
“violation V occurred K times when C” we generate rules “context — violation”
(in short C — V) and “violation — context” (in short V — C) and compute their
CPIR values over all compliance elements of the alignment. If the CPIR value
is below a user-chosen threshold, we remove the problem statement in the list.
The remaining problem statements can further be ordered by their CPIR value
to show stronger rules more prominently.

Table 7.5 shows the associations we found between violation activity check
off-site was skipped and attribute inventory level together with their computed
CPIR value and direction. As can be seen each of the problem statements have
two CPIR values depending on the direction of the association.

In the problem list we obtained for our procurement example, in total we
found 380 positive associations. If we increase the minimum CPIR for positive
associations from 0 to 0.5, then we will obtain about 45 associations. In our
example we found several negative associations. However, we could not give

7.6 Investigating Specific Problems

261

Violation Frequency ‘ CPIR ‘ Direction
Activity Che. was skipped when IL is above threshold | 1412 0962 | V-C
Activity Che. was skipped when IL is above threshold | 1412 0.048 | C—-V
Activity Che. was skipped when IL is threshold 5 0423 | V-C
Activity Che. was skipped when IL is threshold 5 0.029 | C—-V
Activity Che. was skipped when IL is Urgent 30 0.242 | V-C
Activity Che. was skipped when IL is Urgent 30 0.026 | C—V

Table 7.5: CPIR value and direction of some of the associations between ‘activity check
off-site was skipped’ and its context.

a meaningful business interpretation for them. Therefore, we only considered
positive associations and discarded the negative ones.

7.6 Investigating Specific Problems

In Sect. 7.5, we used the CPIR values of association rules “context — violation”
or “violation — context” to rank problems in their importance. The context in-
formation was limited to concrete (attribute,value) pairs. However, the context
of a violation may be larger and include multiple values for the same attribute
(e.g. price or age) and also comprise multiple attributes (e.g. product and re-
source). To identify such richer context of violations, we translate the problem
of root-cause analysis of a specific deviation to the problem of building a deci-
sion tree [134] to find out how compliant and non-compliant events differ from
each other w.r.t. the information available in the event log.

7.6.1 Decision Trees for Compliance Violations

In decision tree learning [134], we choose one response variable and some pre-
dictor variables and classify instances of data to possible values of the response
variable. In our example, we choose the deviation skipped check off-site ware-
houses as the response variable and some other attributes available in the event
log such as material and inventory level as predictor variables. Figure 7.12 il-
lustrates a possible decision tree. The tree describes under which values for

262

Compliance Diagnostics

material and inventory level, the activity check off-site warehouses faces a vio-
lation.

Each non-leaf value (also the root value) is labeled with a predictor variable.
The outgoing arcs are labeled with values (singleton values or intervals) of the
predictor variable. Each path from the root node to a leaf node describes a com-
plete assignment of values to all predictor variables. Each leaf node describes
the value of the response variable under the chosen assignment of the predictor.
In Fig. 7.12, activity check off-site warehouses is skipped when inventory level =
above threshold and material = copper or material = glass; activity check off-site
warehouses is not skipped for all other assignments to the predictor variables.

In the context of classifying moves of an assignment, the tree can also be
read differently. The root node of the tree of Fig. 7.12 represents all the 3714
moves involving activity check off-site warehouses. The outgoing arcs of any
non-leaf node partition this set of moves based on the value of the predictor

Predictor variable

Inventory level, material

Values:
e Inventory level: urgent, threshold, above threshold
e material: aluminum, glass, copper, steel

Response variable

Execution of activity ‘check off off-site warehouses’.
Values:
® Activity ‘check off-site warehouses’ is skipped.
e Activity ‘check off-site warehouses’ is not skipped.

“Inventory
level

Inventory level

Inventory level
Inventory level = threshold =urgent
= above threshold

Activity - Activity Activity
‘check off-site warehouses * material material ‘check off-site warehouses’ || ‘check off-site warehouses’
is skipped. = copper is not skipped. is not skipped.
Non-compliant: 482 Compliant: 860 Compliant: 246
Confidence: 66.1% (482/729) Confidence= 99.4% (860/865)| | Confidence=89% (246/276)

Material
= steel plate

material
= glass

Material material

= = aluminum
Activity rubbe Activity
‘check off-site warehouses * Activity Activity ‘check off-site warehouses’
is SkipFEd‘ ‘check off-site warehouses” ‘check off-site warehouses’ e .sklpped.
Non-compliant: 583 is not skipped. is not skipped. Compliant: 222
Confidence: 70.3% (583/829) Compliant: 233 Compliant: 213 Confidence: 62.5% (222/355)
Confidence: 63.7% (233/366) Confidence: 72.4% (213/294)

Figure 7.12: A decision tree classifying moves to those skipped check off-site warehouses
and those did not, considering inventory level and material as predictor
variables.

7.6 Investigating Specific Problems

263

variable of the non-leaf node. For instance in Fig. 7.12, the edges leaving the
node “inventory level” partition the 3714 moves into 276 moves where inven-
tory level was urgent, 865 moves where the inventory level was threshold, and
2573 moves with inventory level above threshold that are further partitioned by
the material variable.

7.6.2 Building Decision Trees from a Problem Statement

The decision tree explained in Sect. 7.6.1 provides context conditions that dis-
tinguish whether moves that involve activity check off-site warehouses have been
skipped or not. Next, we discuss how to build such a decision tree for any of
the problem statements in the problem list of Sect. 7.5.

Each problem statement refers to violations in a particular class M, of moves
characterized by either (1) a particular activity M., (2) a particular attribute-
value combination My xaur, Or (3) both Mg e N Myxanr. Where the problem
statement identifies only the violating moves in M, the decision tree shall con-
sider and distinguish all compliance statuses (executed, skipped, not allowed,
violating attribute) of all moves in M.

Thus, we build the decision tree learning problem as follows. The compliance
status is the response variable x;, the user chooses the predictor variable(s)
X1,..., X from the available attributes in the log. Each move m € M,; defines an
observation instance oi(m) = (v1,..., U, ¢) Where (x;, v;) € ce(m),i =1,..., k are the
values of the context attributes of move m, and ¢ the compliance status of m
derived as follows:
or My =M% nM"

act attr

* c=skipped if (a, skipped) € ce(m) and M¢; = M5,

¢ ¢ = not allowed if (a, not allowed) € ce(m) and M, = M%

y act
Mattr

or M, =M% n

act

or My =M% nM"Y

* ¢ = violating if (x, violating) € ce(m) and M. = M, anMy

attr

¢ ¢ = executed otherwise.

The set 0i(M) = {0i(m)|m € M} of all observation instances can be encoded
as a table and given as input to a decision tree learning algorithm. Various
algorithms exist to build a decision tree that best describes the values of re-
sponse variables (compliance of a move) based on values of predictor variables
(context attributes). The most popular listed also in [151] include CHAID [62],

264

Compliance Diagnostics

ID3 [94], CART [21], and C4.5 [95]. In our approach, we use C4.5 [95] to
build decision trees but this could be replaced by any other method.

This way, the user can simply click on a problem statement in the list and
learn a decision tree for a chosen set of context variables. The choice of variables
for building a decision tree is discussed in the next section. In case the problem
statement refers to both an activity and an attribute-value combination, we au-
tomatically compute decision trees for all three move classes M%, N M7, M2,
and M. as the tree for most restrictive class only M2, N M,;, may not give
enough insights.

In case the user chooses a timestamped attribute z as context attribute, the
absolute time value v, of z might not produce enough discriminative power. In
these cases, we allow to pick an anchor activity a in the log whose timestamp
value v, is then used to produce the relative timestamp v, — v, as value for z in
the observation instance, see [54] and [130].

The learned decision tree usually gives an approximation of the classifica-
tion as the predictor variables typically do not capture the complete context of
the response variable in the given data. The reliability of the classification is in-
dicated by confidence values in each leaf node and is computed as follows. For
classifying moves to a value of response variable (i.e., violating or compliant),
the classification technique employed divides the data into a training set and a
test set. The decision tree is learned using the training dataset. Then, the data
in the test set is used to check how precise the trained tree can predict to which
value of response variable, an observation is assigned based on the values of
its predictor variables. The ratio between the correctly classified moves and the
moves that are wrongly classified represents how precise a trained decision tree
is. For example, in Fig. 7.12, from the 276 moves with inventory level being
urgent, 246 were classified correctly as compliant and (276-246) were wrongly
classified. Consequently the confidence measure is 89% for this leaf node. Simi-
larly, the confidence measure for other leaf nodes is computed.

7.6.3 Using Decision Trees to Analyze the Cause of a Viola-
tion

The resulting decision tree reveals patterns (i.e., combination of values of pre-
dictor variables) under which a particular violation holds or does not hold.
These patterns not only can be used for predicting future violations but we
can use them to understand violations better. Next, we showcase the steps that
can be taken to first of all detect possible compliant and violating patterns and

7.6 Investigating Specific Problems 265

also to analyze them further to better understand cause(s) of violations.

Choosing variables

The choice of predictor variables influences whether one is able to get insights
about violations. In practise we may have many context attributes for a violation
and consequently many combination of attributes can be chosen to learn a deci-
sion tree. An option would be to use a feature selection technique [45,90,154]
to choose groups of attributes which are dependent. However, domain knowl-
edge should also be considered as an important source of information for choos-
ing interesting combination of predictor variables.

Even in absence of domain knowledge we can use the important and un-
expected associations identified in the problem list (see Sect. 7.5) for choosing
a set of predictor variables. For instance in the problem statements listed for
activity check off-site warehouses (shown in Sect. 7.5), we found interesting as-
sociations between activity check off-site warehouses is skipped and attributes
inventory level, and material. Therefore, we used these two attributes as predic-
tor variables in the decision tree shown in Fig. 7.12. As is shown in this figure,
activity check off-site warehouses is skipped when inventory level is above thresh-
old and material is glass or copper and this activity is not skipped for other
values of material and inventory level. Such violating and compliant patterns
can be used for predicting possible future violations and the conditions that a
particular violation most probably will hold or not.

Use insights and combine it with other knowledge.

The insights obtained from this decision tree could then be used for further
analysis. Suppose the analyst knows that the company always orders copper and
glass from the same supplier. Given that variables primarily coincide with these
two materials, one could investigate the relation of the supplier with violations
in another decision tree analysis.

In general, results of one analysis may trigger a “creative process” for do-
ing further analyses. The follow-up step can be another decision tree analysis
with choice of new predictor variables or other types analysis. For instance,
another way to help collecting/gaining insights is to compare compliant and
non-compliant behavior.

266

Compliance Diagnostics

urgent
receive requests for inventory level drops to ‘urgent’ approval
goods purchase

'
v choose supplier formulate .
skipped check off-site warehouses purchase requisition evaluate

purchase requisition

Figure 7.13: Part of the process model discovered from violating cases with inventory
level above threshold.

Comparing compliant and violating patterns.

After detecting the violating and compliant patterns (learned by a decision tree),
we can filter them and analyze them further. For instance we can filter out all
the cases that contain a violating pattern and discover the process model that
describes their behavior best using any of the process mining algorithms [23,56,
70,148]. Similarly we can mine the process model that describes the compliant
pattern. Comparing the two models helps us understand how violating and
compliant patterns differ in behavior.

Based on the decision tree shown in Fig. 7.12 of our example, we can filter
out cases that have a violation of type “skipped check off-site warehouses” and
have an “inventory level=above threshold”. This allows to discover the process
model that describes these cases for example using the Inductive visual Miner
technique [70]. Suppose the resulting model (partially shown in Fig. 7.13)
shows us that activity urgent approval has been executed in 901 cases of the
1412 violating cases with ‘inventory level=above threshold’.

In contrast to the case attribute “inventory level = above threshold”, execution
of activity urgent approval implies that ‘inventory level’ has the value urgent at
the time this activity is executed (assuming all of these cases are compliant with
compliance rule 4). This observation would suggest that the value of attribute
‘inventory level’ changed in each of those cases and dropped to urgent level
somewhere between check off-site warehouses and formulate purchase requisition
(illustrated in Fig. 7.13), where the decision for following an urgent approval
procedure is taken. Knowing that urgent approval procedure is risky and it
must be followed only in critical situations, this observation gives us a concrete
point in the process that needs to be improved to make it compliant.

‘Get Problem Insight’ component of the Compliance Framework (Fig. 7.3),
enables us to do the type of analysis we showcased above for the procurement
example. The results of this type of analysis in our approach are presented as

7.7 Implementation and Case Study Results

267

a decision tree or a Venn diagram. Providing these diagnostics help auditors
to hypothesize about deviations. Note that obtaining these diagnostics is not
possible by solely using current techniques in compliance checking [24, 33, 85,
97,109,111,130,135].

7.7 Implementation and Case Study Results

The presented technique has been implemented in the form of two plugins of
the ComplianceFramework package in ProM 6.6. The “Compliance Dashboard”
plugin (see Fig.7.15 for a screenshot) takes a log and a process model as input,
it checks compliance of the event log w.r.t. the model, and it returns statistics
tables, bar charts and the problem list. The statistics tables provide the possibility
to get information about deviations from different perspectives and as a whole.
The bar charts gives a detailed view on deviations and the problem list highlights
important deviations and their relation with the context information.

By running the second plugin “Get problem insight”, the user can pick a spe-
cific violation for a deeper analysis by choosing the respective problem statement
from the problem list. Based on the selected problem statement, the user needs
to choose different attributes available in the event log for further analysis. The
result of this analysis is a decision tree as described in Sect. 7.6.1 together with
a Venn diagram elaborating on the conditions that lead to a specific deviation.
Several figures in this section illustrate the output of each plugin.

7.7.1 Setup of the Experiment

We have applied our technique and its implementation to several real life event
logs with the goal to test its functionality in detecting dependencies between
contextual information of a violation and the violation and its usability for busi-
ness users. Here, we focus on a case study we did in collaboration with Price-
waterhouseCoopers (PwC) for checking compliance of a purchase process in a
manufacturing company. Our results shows that we are able to detect viola-
tions of different types and find several associations between these violations
and their contextual information. Our analysis also reveals patterns that dif-
ferentiate violating activities and compliant ones w.r.t. different violations. In
addition our analysis shows that business users are able to read and interpret
the root-cause analysis results as intended.

We collected an event log of 77004 cases containing 1036865 events for this
process. Each case contains the events related to a purchase entry. In this event

268

Compliance Diagnostics

Purchase
requisition

IGoods return I Credit note I

receipt

Purchase
requisition
release

Purchase
requisition
entry

Invoice
release

I Clear credit :
Clear debit

Figure 7.14: The compliant procurement process analyzed for experimental results.

Invoice update
1.

Purchase Purchase
order entry order release

00
(9]

Invoice 0
receipt }’

Outgoing
payment

P

update

log, executions of this process between Jan. 2012 to Jan. 2013 are recorded. We
modelled this process and relevant compliance rules in terms of a data-aware
Petri net. To ease the presentation, a simplified model (in BPMN) describing
this process is shown in Fig. 7.14.

The process starts with a purchase requisition entry, which may be updated
several times. After the purchase requisition entry, a purchase order is created
based on it. A purchase order can be updated multiple times as well. When a
purchase order is released, it is considered to be approved. Goods receipt and
invoice receipt may be executed in parallel. Each purchase order must have at
least one goods receipt and invoice receipt. After invoice receipt, clearing the
balance sheet should be done eventually by executing clearing debit and clearing
credit. If some of the goods are returned due to quality issues, activity credit
note is executed to fix some possible errors in invoices and goods receipt. The
process should end with the outgoing payment. We checked the control-flow of
this process as presented in Fig. 7.14.

269

7.7 Implementation and Case Study Results

g 199J100Ul uEJO&M u junowe AJjus al _% |elojew we ur:._cra
sanow paddiis payuemun syoadse ||y 1094400U] 199.4400U] 109.400U]
%0 %E %0 %0 %0 %0

%46
juswihed BuioBing = Ay

%L6
Y

%.6 %L6

R sonow]

108.4400U 1031100 SP3ASe ||V 01091107 Anua joauioy Q143SN393LI0) [BLISIEW 310D gnouoiypuks IsiAul
" IIIIII *

68177
8IECZ

S9AOW [e10] SAAOW paddiyS SSAOW PAJUBMUN SSAOW 3031109 || JUNOWE Od 393140)

-G6€99 GHE e

... 8YT6S.

y86YE

3BT €€976 £€976 ££976 £8976 €
2818
188

CEL8
188

eLVLT
09Tt

CEL8 CEL8 CEL8
7188 - 7188 7188

junowe A1jus 393140) | Jasn 193440) [BHSIRW 33110D)

8HT65€E—— ZIUBWAREBUIOSIND

z 1d19231 spoon

Ayagoy

SaAOW |e10] W
sanow paddiys &
SaAOW PIIUBMUN @

WRELYI Pe0Ul £

SaAOW 193110 ||y

Junowe Qd 1991100 @
Junoure Anu3 131400 &

: 1 43sn 13110 ®
[eH23eW 105100y

sarow apgisi

z Kunnoy

Figure 7.15: Activity deviations statistics table of experimental result.

270

Compliance Diagnostics

7.7.2 Obtained Diagnostics

After checking compliance of the event log w.r.t. the model of Fig. 7.14. We visu-
alized the resulting alignment in the compliance dashboard. Figure 7.15 shows
the statistics overview showing activity deviations and details of the statistics
related to activity outgoing payment.

The combo box in Fig. 7.15 (indicated with red rectangle 1) shows the at-
tribute for which the statistics are presented. We have chosen attribute Activity,
hence the statistics table is computed for every activity. If the user chooses a
different attribute X, the table will show statistics related to attribute X. We can
choose the violating and non-violating attributes (in red rectangle 2) that we
would like to see in the statistics table (rectangle 3). Several attributes are
selected including: correct material, correct user ID, correct entry amount, cor-
rect PO (purchase order), and amount (See Fig. 7.15 rectangle 2) . In addition
we chose to see some move types. Here, we selected violation types unwanted
moves, and skipped moves to be shown in the table. With this configuration
of the dashboard shown in Fig. 7.15, the activity names are shown in the left
side of the statistics table and every row contains numbers of different violation
types related to each activity.

Observations related to activity outgoing payment. The statistics table in
Fig. 7.15 (rectangle 3), shows that activity outgoing payment (marked with yel-
low arrows)3, was executed 1069 times where it was not allowed and it was
skipped 17,756 times. The lower part of Fig 7.15 (rectangle 4) shows detailed
statistics for activity outgoing payment. Some of the skipped payments are due
to unfinished cases and some because they occurred earlier in the process than
they were supposed to.

The compliance dashboard allows us to filter cases having a specific vio-
lation. We filtered cases containing both type of violations (unallowed outgo-
ing payments and skipped outgoing payments). The filtered cases can be ex-
ported into an event log and then be analyzed on their own. For instance using
ProM Fuzzy Miner [56], we obtain a model containing the fragment shown in
Fig. 7.16. As can be seen, outgoing payment has occurred before activities pur-
chase order change, goods receipt, and invoice change (indicated by numbered
red edges). These sequences (i.e., occurrence of outgoing payment before these
activities) are not allowed based on the specified behavior.

Observations related to activity goods receipt. Activity goods receipt (marked
with white arrows in Fig 7.15 rectangle 3) was executed 2188 times where it

Sexecutions of activity outgoing payment is divided into two parts

7.7 Implementation and Case Study Results

271

puchase order

Invoice change

G
complase

0

Figure 7.16: Parts of the model describing cases containing violating activity outgoing
payment.

was not allowed and the activity was skipped 10,609 times®. If we filter traces
containing unallowed executions of goods receipt, then we see the violating pat-
tern shown in Fig. 7.17. This pattern reveals the occurrence of activity credit
note before goods receipt (the edges lead to execution of activity goods receipt
are numbered and colored in red). However, activity credit note should be exe-
cuted to correct the purchase order after some parts of the purchased good are
returned to supplier due to quality reasons. This is an interesting violation to
look into, because it shows that the purchase order value changed before goods
receipt.

Observations related to activities clearing credit and clearing debit. An-
other observation from the statistics table in Fig.7.15 is related to the activities
clearing debit and clearing credit (marked with blue arrows). They were exe-
cuted respectively 12,602, and 12,473 times while not allowed and they were
skipped 902, and 984 times. When we filtered violating cases with skipped
clearing credit, we observed that this activity was never executed for these cases
whereas clearing debit was executed for some of them. Clearing credit and clear-
ing debit are executed to balance accounts receivables and accounts payable
after activity invoice receipt. These two activities must occur together. There-
fore, the occurrence of one without the other one is not allowed and requires

“4Executions of activity goods receipt is shown in two parts in the table.

272

Compliance Diagnostics

Credit note
Credit Note
G
0,146

Outgoing Invoice Goods
payment _release return

Involce Releass 6 Gaads Retum
complete
0,077

Qutgeing Paymant
complets

complete
0011

Goods
reciept

Goods Faceipt
complsts
0.249

Figure 7.17: Part of the model describing cases containing unallowed executions of ac-
tivity goods receipt.

further investigation.

For those cases that contained unallowed occurrences of clearing credit and
clearing debit, we observed that these activities have occurred before invoice
receipt (sequences that were not allowed). This pattern can be seen in Fig 7.18
(numbered red edges show the incorrect sequence of activities in the detected
pattern).

Observations related to resources using problem list. This analysis also re-
sulted in a long problem list of violations shown partially in Fig. 7.19. The list
shows that in total 13,457 violations were observed for activity clearing credit.
Out of all violations observed for this activity, 984 times activity clearing credit
was skipped. The problem list raises the hypothesis that purchase order amount
may be related to the observed violation; because we can see that most of the
violations of this type occurred for values less than 120,000.

We know from the process that 552 different resources participated in exe-
cuting the process under analysis. According to the problem list shown partially
in Fig. 7.20, it seems that from the total number of resources (552), some spe-
cific resources are frequently linked to violations.

Focused analysis on resources using Get Problem Insight. We continued our
analysis by investigating the resources that were involved in violations related
to activities clearing debit, clearing credit, and outgoing payment. The results
of the decision tree learning are shown shown in Fig. 7.21 (left). We found
with a relatively good confidence that Resource 14 and Resource 37 have been
present in considerable number of violations where execution of activity clearing
debit was not allowed. In this analysis we classified violating and compliant
executions of activity clearing debit based on attribute resource. That is, the

7.8 Improving the Compliance Framework Based on User feedback

273

Clearing debit

Clearing: Debit
complete

Credit note

Credit Note
complete
0,356

Other Cleafing: Credi}
complete
0,843

Invoice"Receipt
complete
0,740

Figure 7.18: Part of the model describing violating cases where activities clearing credit
and clearing debit occurred before invoice receipt.

chosen response variable is the execution of activity clearing debit, the target
classes are execution of clearing debit was not allowed, and execution of clearing
debit is allowed, and the predictor variable is resource.

The same analysis for unallowed executions of activity clearing credit shown
in Fig. 7.21 (right), reveals that resource 37 is present in large number of vi-
olations of this type as well. Furthermore we can see that many compliant
executions of both activities are done by Resource 6. Our root-cause analysis
for activity outgoing payment did not show meaningful connections between
violating executions of this activity and a specific resource.

7.8 Improving the Compliance Framework Based
on User feedback

We have tested the functionality of Compliance Framework several times and
improved it based on the results of these tests using both real-life logs and
artificial event logs where we had a priori knowledge about violations and cor-
relations between violations and contextual information available in the logs.
For details of these evaluations, see [54]. The functionalities of the Framework
include finding violations of different types, providing statistics about them,
and enabling root-cause analysis on violations. Besides the functionalities of
the Framework, one of the main goals in this chapter is addressing the needs of

274

Compliance Diagnostics

n 2400000 -

MOLINNin 0.0- 1200000 (922

ed, whan PO_AMOLUNT in 12000000~ 240000.0 (52
Creditis skipped, when PO_AMOUNT in 240000.0 - 360000.0 (2
5 slapped, when PO_AMOUNT in 3600000 - 480000 0 (5

&n PO_AMOLINT in 450000.0- 500000.0 (2

Figure 7.19: Part of the problem list obtained for the example log in our case study.

business analysts and auditors. Therefore, together with four of the compliance
experts from PwC working in assurance and forensic sections, we did a survey to
check if the output visualization of plugins was understandable and clear. This
study consisted of several workshops in participation with compliance experts
from PwC, and process mining researchers at TU/e.

In these workshops we first provided a business process model together with
several compliance rules specified in that model that we wanted to analyze. Fur-
thermore, we gave a short (about 15 minutes) introduction to the plugins and
our approach. The participants were provided with an event log related to the
process, the model, and a set of questions about the details of the diagnostics
that can be obtained after applying the two plugins. These diagnostics were
related to details of the compliance status of the process that could not be an-
swered simple inspection of the log, but could be answered using the techniques
presented in this chapter. Participants were unfamiliar with the event log and
the technique prior to the workshop and no further details about the log or the
process were provided.

7.8 Improving the Compliance Framework Based on User feedback

275

L2 ProM UlTepia

Broll

Attribute filter (WSERID.....%
@ » Purchase order Change 1 (11449 violations)
= » Goods Receipt 1 (10609 violations)
@ » Activity Goods Receipt 1 is skipped (10809 violations)
@ » Purchase order Unrelease (10413 violations)

@ » Purchase order Release Step 1 (7276 violations)
@ » Purchase requisition Entry Update 1 (5313 violations)
@ B When USER_ID = Resource14 (9363 violations)
B When USER_ID = Resource3? violations)
@ & When USER_ID = Resource17 violations)
@ & When USER_ID = Resourced4 violations)
& When USER_ID = Resource69 violations)
@ B When USER_ID = Resource6 (4- iolations)

& When USER_ID = Resource4d (4404 violations)
» Goods Receipt (: violations)

i ¥ Invoice release (2113 violations)

Figure 7.20: Resources frequently linked to violations.

We prepared a questionnaire with 10 questions. Each question was asking
about a specific piece of diagnostics generated by the tools. In the following we
present some of the questions listed in the questionnaire:

* List the violating activities.
* Which material is likely to have connection with the identified violations?

e What are the common attributes and their values present in violations
related to both Rule 1 and Rule 2?

e List the resources that executed activities with a violating amount at-
tribute.

* In your opinion which of the attributes purchase order amount and entry
amount has a stronger relation to violations of Rule 3?

We asked the participants to do the analysis and answer the above question-
naire based on their findings. The event log contained three fraud scenarios and
the questions were designed to test if the diagnostics offered by the techniques
is clear enough to be understood by our participants. Participants needed to run
both “Get Compliance Dashboard” and “Get Problem Insight” plug-ins to answer
the questions.

Compliance Diagnostics

276

Answers Questions
QL |02 |3 |04 |05 |Q Eq |08 Qo |0t
correct | 100% | 1 oQ | 82% | 73% | 100% | E 5% | 100% | 1 oo\ | 64% | 73%
partly correct 7 7 7 18% 7 7 7 7 7 7 7
incorrect | | | | 9% | | 27.3% | | | 36.4% | 27.3%
no answer 7 7 7 7 18% 7 7 18% 7 7 7 7

Table 7.6: Result of the survey on the visualization of the results in the Compliance Framework.

7.8 Improving the Compliance Framework Based on User feedback

277

Table 7.6 shows how participants answered each question. The full report
of the survey and its results are available in [54].

All participants answered 5 out of 10 questions correctly. For the third ques-
tion, 9 out of 11 participants provided correct answer. 18% of the participants
did not answer questions four and six. 3 out of 11 gave an incorrect answer
to questions ten and six. 18% participants gave answers to the question three
which were partially correct.

In addition to the questionnaire, we asked the participants to give us sug-
gestions for improving the presentation of the results. Some of the participants
criticized the data representation. This included the way numerical ranges were
expressed and the color scheme used for their representation. Another obser-
vation in the feedback was related to the interface. It was claimed that there

T2 FroM Ulfopia [= T3 FroM UlTopi (===

. Events with activitv Clearina: Debit- - -Events with activity Clearing: Credit
. A . i e 2 " .) Lo . o . y ~
occur where they should occur where they shounldn't occur where they should occur where they shouldn't
® USER_ID=Resources : ® USER_ID= Resourceld @ USER, ID=Resourceld] o USER, [D= Resourced?
« Frequency. 318, confidence 74.5% Frequency. 3632, confidence 69.4% o Frequency: 11; confidence; 100% o W71 confidence: 70.5%
OR R oR, OR,
‘® USER,_[D= not applicable ® USER_ID= Resource37 @ USFR_[D= Resources @ USFR_ID= Resourced13
@ Frequency. I; confidence: 1003 @ Frequency. 3509, confidence 70 0% @ Frequancy: 204; Confidence 74 9% Frequancy: 59, confidence: 64.3%
ok O R ok
 USER_ID=Resource30 @ USER,_ID= Resaurced |3 SRR T
@ Ereiioy: % collinie 1066 S ey 8 ey Y 1% o Frequency: 12, confidence: 100% ® Frequency. 785, confidence: 65.6%
o oR OR oR
@ USER_[D= Resourcel 37 @ USER_ID= Resourcel0 @ USER_[D= Resties50 « USER, I= Resouaceld
‘» Frequency: 1; confidence: 100% @ Frequency. 563, confidence: 61.7% Frequency 9, copfidence: 100% » Frequency 567, confidence 61 %%
b Gr OR OR
® USER_ID= Resource233 ® USER_ID= Resourceds @ USER, [D=Resciureedl « USER, ID= Resouree?ds
#Fregleacy: |, confidence: 100% & Freqiency: 891, confidence: 62.2% » Frequency 1; confidence: 100% « Frequency: 35; confidence: 67, %
o8)) oR . OR
i D= Resourced # USER_ID=Resource20 i @ USER_ID= Resciurced @ USER_ID= Resourceld
 Frequency: 2570, confidence: g ® Freqiency: 282, confidence: 66.7% @ Frequency. 2560, confidence 74.4% @ Frequency. 3632, confidence: 68.0%
bl 3 : A oI : 4 i OR p OR.
- USER,_[D= Resouicel 75 @ USER,_ID= Rezoucel3t o USER_ID= Resowreel46 o T
@ Frequency: 35, confidence: 53.8% @ Frequency: 110; confidence: 36.6% @ Frequency 11, confidence 100% @ Frequency: 33; confidence: 52.4%
=3 oR ok e
USER_[D= NULL @ USER_ID=Resourced ‘@ USER_[D= Resource3l @ USER,_[D=Resourced
- Frequency: 3; confidence: 100% ® Frequency. 1480, confidence: 65.6% @ Frequency. 1049, confidence: 65.3% » Frequency: 220; confidence: 61.1%
OR orR R oR
® USER_[D= Resource3l @ USER_ID= Resource226 @ USER, D= Resoureedl « USER, [D= Resoureedd
@ Frequency: 045, confideace: 67.6% @ Frequency. 139, confidence: 67.5% a Frequency: 237, confidence: 66 3% o Frequency: 252 confidence 66.5%
U U

Figure 7.21: Root-cause analysis of unallowed executions of activities clearing debit and
clearing credit wrt attribute resource.

278

Compliance Diagnostics

was too much information on each screen and that it was difficult to choose the
correct attributes for the ’Get problem insight’ plugin. The feedback was used to
improve the data representation and the interface. Such improvements include
changing the way to express numerical ranges or showing IDs of the cases for
each item in the problem list. Another improvement was to extend the user’s
capabilities in refining the list by adding a filter that allows them to keep only
assignments of the selected attribute. The revised version of the plugins are
available now in ProM 6.5.1.

7.9 Related Work

Our approach is based on a joint effort with PwC [54] and has three main com-
ponents: (1) compliance checking and analysis, (2) providing statistics about
deviations in different abstraction levels and from different process perspec-
tives, and (3) guiding users in reasoning about the deviations by identifying
relations between violations and their underlying context information.

Related work on compliance checking and analysis has been discussed in-
tensively in Chapters 4, 5, and 6.

Regarding the second component of this paper, i.e., providing diagnostics for
compliance checking, fewer works are available [104,122]; mostly in the area of
Service Oriented Architecture (SOA). They introduce Key Compliance Indicators
(KCI) and report about compliance status of business services computing these
indicators.

In order to enable root-cause analysis of deviations (third component), we
advocate the idea of discovering relations between violations and their under-
lying context. This creates the need (1) to measure the strength of the rela-
tionship between a violation and the underlying context, and (2) to find a way
to discover what distinguishes violating events from non-violating ones. Both
problems are solved using data-mining approaches. The approach proposed
in [104] also uses decision trees to identify the root cause of problems, but
it classifies process instances, while the approach in this paper classifies align-
ment moves. Also [104] does not employ any way of discovering association
rules to measure the strength of the relationship between a violation and the
underlying context; to this end we leveraged the approach in [152]. Regarding
reporting on diagnostics, [104] displays list of activities for each compliance
rule that can be drilled further down to the context level. At the bottom level,
a user can observe various context data regarding the violation. Our approach
allows the user to explore not only violations related to a specific activity, but

7.10 Concluding Remarks

279

also violations related to specific values of context attributes. This allows a user
to discover common context patterns across different violations and hence get
better understanding of the observed problems.

In [59] a technique to get insights into context-related information of event
logs is proposed. Although, the proposed approach allows a user to get useful
context information, it does not focus on violations. Instead it aims to present
the context data of an event log in general. There are more papers on the
visualization of process related information. For example, [32, 58] focus on
visualizing the execution of event logs but providing few diagnostics.

7.10 Concluding Remarks

In this chapter we provided an approach to quantify compliance levels of a busi-
ness process recorded in execution logs, provide diagnostics about violations
and guide users to reason about the root-cause(s) of deviations.

The technique in this chapter is based on the assumption that the enriched
event log contains diagnostic information about all compliance rules of interest
that should be considered together by creating a composite compliance model.
We checked the compliance of an event log against the composite model us-
ing data-aware alignments. The violation data were aggregated from different
process perspectives to give an overview about the process compliance. A set
of statistic tables, bar charts, and a problem list were used to report on vio-
lations in different abstraction levels. The problem list provided a means for
non-technical users to focus on important violations. We discussed how to rank
violations based on their negative impact and based on their context relevance.
We discussed several metrics for quantifying the relation between a violation
and its contextual information using CPIR metric. To analyze a specific viola-
tion, we used decision learning techniques and classify violating and compliant
patterns w.r.t. a particular violation.

We have implemented our approach using ProM. The software has been
tested and applied on real-life data. Moreover, we studied the understandabil-
ity of the diagnostics. The results are encouraging. We were able to uncover
various deviations and reason over the root-cause(s) of the deviations.

The next chapter addresses the situation where compliance constraints are
formalized as several atomic compliance rules into one enriched event log which
then can be analyzed with the techniques of this chapter.

Chapter 8

Integrating Compliance Results
for a Precise Analysis

As is shown in our compliance analysis approach in Fig. 8.1, the last step in
compliance checking is enriching the original event log with the diagnostics
obtained during compliance checking. The enriched event log then can be used
to analyze the root-causes of violations and obtain deep diagnostics about non-
compliance. This information can be used for compliance improvement and
taking corrective measures to reduce the negative impact of non-compliance.
Chapters 4, 5, and 6 discussed various approaches for checking compliance
rules from different perspectives. When modelling a set of compliance con-

Classified events

Statistics

-
— Allgnment

Prepared log
- =)

Compliance checking 1 & l

Detect compliance Enrich event Iog Provide
Erspaie Iog violations

with dnagnostlcs

Compliance
constraint ‘
- Elicit& formalize
compliance rules

,,—% 7 M Association rules
e =

Violating/compliant
s

Figure 8.1: Compliance Analysis Overview.

282 Integrating Compliance Results for a Precise Analysis

Alignment contains control-
flow, temporal, data, and
resource violations

Detect CF,T,D/R events
violations '’ -
Project %ﬁ
s | EL
Figure 8.2: Generating an enriched event log with diagnostics based on one alignment
result.

straints as a composite compliance model, the result of compliance checking
includes violations related to all these constraints in a single alignment. Chap-
ter 7 showed how to use the diagnostics obtained by such an overall alignment
to analyze the violations further for root-cause analysis.

EL _____ = - —— -ﬁnsertalssmg‘ “

events - N — — — 1
| — — — JN, —

- ! ! gEL;k
(:F\ Detect CF Project | |m

&R violations
7T\ Detect T

L violations ‘
(/,77&\ Detect D/R || <

\) violations

NG
I

Combine

dlagnostlcs ‘T‘
alignments

J

| E|_ B Nlultlple enriched logs
obtained from

checking compliance
rules separately

Insert missing

events
Project /—‘Eiif

diagnostics EL Chapters 4&5&6

Enriched log with

combined diagnostics
Chapter 8

Figure 8.3: Generating an enriched event log with diagnostics obtained from several
alignments.

When formalizing compliance rules as separate atomic patterns, the com-
pliance checking results are distributed over several alignments obtained from
checking each rule individually. Therefore, we need to integrate diagnostics
from different alignments to get the complete picture of compliance in a pro-
cess. Figures 8.2 and 8.3 illustrate the differences between the two approaches.
Figure 8.2 shows how a single alignment contains all diagnostics after checking,
when a set of compliance rules are modelled using a single composite compli-
ance model. Figure 8.3, on the other hand, visualizes an extra step for com-

283

bining alignments during the log enrichment when a set of compliance rules
are modelled as a set of atomic patterns. We discussed in Chapters 4, 5 and 6,
how to generate an enriched log from the result of checking an atomic rule in-
dividually. In this chapter we discuss how to combine several checking results
in one single enriched log. The reasoning over when a set of rules should be
modelled as a composite model or as a set of atomic patterns has been discussed
in chapters 3, 4, 5, and 6.

To combine the diagnostics obtained from different checking results, we col-
lect all the obtained diagnostics in a database called compliance database (com-
pliance DB). This chapter discusses how we collect and combine compliance data
in the compliance database. This database not only provides us with a platform
for collecting and combining compliance data: it also enhances the flexibility to
explore and query data to build various (even complex) filters based on multiple
criteria. In addition, we have the possibility to view data from different dimen-
sions such as compliance rules, violations, processes, process instances, events,
and attributes. These various subsets of data then can be used for analyzing the
root-causes of violations, detecting violating and compliant patterns, comparing
different patterns, and produce various statistical reports on compliance data.

Figure 8.4 illustrates how the content of this chapter is organized in different
sections. Various sources of compliance data that must be integrated, and the
compliance database structure and its components are discussed in Sect. 8.1.
Exploring compliance data from various perspectives and some sample queries
are explained in Sect. 8.2. Section 8.3 describes our approach for combining
compliance diagnostics into an enriched event log. In Sect. 8.4, we propose a
framework of tools to populate the compliance database and export data from
it. Section 8.6 concludes this chapter.

——

Integrating Compliance Results for a Precise Analysis
LHOISNI

284

susaned Jojneyaq

jueldwod/3unejoin _J
/]
8" _ _|ulessuod
€8 1995 — i
Jusawus P
AJMW 7’8 195 v P aoueldwo)
aagoos $9|NJ UOIIRIIOSSY
aa
- 2oueldwo) A|.¥ Jiomawiely
[] — = I JuleIISU0d
- 9oueldwo;
nsneis wawudlly - 1| o)
o 1871995 <« & -
'8 1095 z

-

@ JUBWYILUD

SIUIAD palIsse|) 307

sishjeue asnes-jo0y \ /

uoinaelep 7 uonesedaud

-—

uone|oin 807

[Suppayd ouedWOd MOJ}-|0J3U0D
T
* Suayd aoueldwod _m‘_ouEmL

T

* Bupjoayo aduel|dwod 32inosal pue mumn;

Figure 8.4: Thesis road map gives the mapping of the sections in Chap. 8 on to our
compliance analysis approach.

8.1 Integrating Compliance Data Using Compliance Database 285

8.1 Integrating Compliance Data Using Compliance
Database

The compliance DB should provide a platform to integrate all compliance re-
lated data. Furthermore, the data model of compliance DB should connect dif-
ferent sources of compliance data so that we can explore data from different
angles. Figure 8.5 visualizes different sources of compliance data. Compliance
rules and event data are the inputs of our compliance analysis approach and
the result of checking is stored in alignments. Recall from previous chapters
that during compliance checking, the event log usually goes through a lot of
preparation steps depending on the rule and the particular checking technique
employed (details of log preparation steps are explained in chapters 4, 5, and 6).
Hence, the prepared event log is also another source of compliance data. The
compliance database collects and combines all these data sources and defines
the connections between them. The information stored in this database is the
input for generating an enriched log with combined diagnostics. We can query
the information we need to be shown in the enriched log from the database and
start the log enrichment process.

Next, we first describe compliance data sources. Later we explain the data
model of compliance database and discuss its components by example.

8.1.1 Sources of Compliance Data

As is shown in Fig. 8.5, compliance rules profile, event log, prepared log!, and
results of compliance checking of different rules (enriched log) are integrated in
the compliance database. A compliance rule profile contains information about
a rule that is checked. This information includes the compliance constraint that
a rule originates from, rule name, rule description and its type. Each of these
data sources gives rise to several entities in the relational model of the database
structure. Before we go into details of the relational data model, we first dis-
cuss the entities of each data source and how they are related to each other.
Figure 8.6 shows all entities in our data model grouped by the different data

INote that we include prepared log into compliance DB as one of the sources because such logs
may contain information that is not present in alignments or original logs. Recall from Chap-
ters. 4, 5, and 6 that during preparation of event logs, we may shorten original logs. In this case,
the positions of abstracted events are kept in the prepared log. We may even insert artificial events
during log preparation (e.g. when aligning of enriched event log obtained from control-flow align-
ment with the generic temporal pattern). Such events can have attributes that are not present in
the original log.

286 Integrating Compliance Results for a Precise Analysis

/ Detect
\ violations

\ ((D/R ///—- from different
/

perspectives

[S— _— = .
log Prepared/Enriched log

% Enriched log with inserted events for model-only moves

Control flow (CF) alignment
Temporal (T) alignment
Data/resource (D/R) alignment

Compliance rules profile including:
@ e Control flow (CF) rule
e Temporal (T) rule

e Data/resource (D/R) rule

Figure 8.5: Sources of compliance data.

sources. Each cluster in this graph holds data of one of the four data sources.
The nodes corresponds to data entities in the data model of the compliance
database and the arcs indicate relations between theses entities.

First, we give an overview on the general structure of the data model and
its elements. In Sect. 8.1.2, we will describe the entities and relations in more
detail and reason how this structure allows us to integrate all data in a way that
allows for meaningful queries supporting root-cause analysis.

The main data entities in the ‘event data’ cluster includes log, trace, and

8.1 Integrating Compliance Data Using Compliance Database

287

event. Note, attribute node is in between ‘prepared log’, and ‘event data’ clus-
ters and involves both. This entity contains all different attributes used in an
event log or prepared log. The attribute values in log and prepared log are
stored in separate entities including: log-attribute value, trace-attribute value,
event-attribute value, prepared log-attribute value, prepared trace-attribute value,
and prepared event-attribute value. > The attribute node also connects compli-
ance rule profile cluster to other clusters. The compliance rule profile cluster
includes all entities related to rules including: the compliance rule and the com-
pliance constraint that a compliance rule originates from. Every compliance rule
measures the compliance of some process property. For example a rule may con-
fine attribute time, resource, etc. The rule may be related to different attributes
in different processes. Therefore, the entity rule-attribute relates the compliance
rule profile to the attribute in the log that is confined by the rule.

The ‘compliance checking result’ cluster, consists of the entities alignment,
move, and violation. This cluster is connected to other clusters via move node.
The compliance checking result cluster is connected to the compliance rule pro-
file via the relation between move node and compliance rule instance, and be-
tween move, and compliance rule.

2Note, attributes usually do not overlap between the aforementioned entities. For example trace
level attributes are different than log level attributes. Therefore separate their values in different
entities but the attribute entity which contains only attribute IDs stays the same.

Integrating Compliance Results for a Precise Analysis

288

(2uand pue ‘a3exy ‘Soj) pasedaud
JO sanjen ainquule

anjeA”oynqupe JuaAd paredaid

oAOW

anjeA”dinquye” doexn” patedard

uawusije

ajuejsul a|na

(3uans pue asex ‘Soj)
pasedaad

JuoAd paredard

2suerdwod

Soueisui o[ni oouerdwod

Anqupe” s

a1 souerjdwod

a1 g3y dwod sanqlipe-snd

Jurensuoo souerdwoo

3|youd 3|ny ddueldwo)

JU3AD pue ‘@deu ‘So|
40 san|eA ainquile

anqupne

aden

/ ejeq Juangj

80|

Figure 8.6: Different clusters of compliance data.

8.1 Integrating Compliance Data Using Compliance Database 289

8.1.2 Compliance Database and Its Components

Figure 8.7 shows a simplified relational data model for the compliance DB. In
this section, we explain the important entities and their relations. The model is
based on the clusters introduced in Fig. 8.6. Figures 8.8, 8.10, 8.12, and 8.14
that follows throughout next chapters, zoom into different parts of Fig. 8.6.

] classifier > e — e T event >
Tl I T T I 3
] classifier_attribute > o :Eg l » +—— <7 prepared_log >
T I 1 |
] log_attribute_value > l] trace_attribute_value >
T] prepared_log_attribute_value > 1 I J\
"] prepared_trace_attribute_value > >t — 3 pimmes
i L L]

] attribute > W] event_attribute_value >
_rule > p

. w5 i
i
— i A
] rule_type > J&] prepared_event_attribute_value >
Ll »_rule_instance >
S] _—

_] rule_attribute > "I move > + O] event >

_] violation »>

Figure 8.7: Relational data model of the compliance database.

Compliance rule profile. Figure 8.8 shows the data entities related to com-
pliance rule profile and their relations. Compliance_rule, rule_type and compli-
ance_constraint (marked in red) are the three entities in the compliance rule
profile cluster, other entities shown are part of other clusters that are related to
the compliance rule profile. As is shown in Fig. 8.8, a compliance constraint can
have one-to-many compliance rules.

Assume the accounting rule two-way match. > This rule originates from
Sarbanes-Oxley Act (SOX 2002) (as its respective compliance constraint) and
confines process data and is of type data-aware. Note that a process may be

3See Chap. 6 Table 6.1.

290

Integrating Compliance Results for a Precise Analysis

checked against many of such rules. Therefore, when integrating and com-
bining different compliance sources, it is necessary to be able to track back to
understand the rule that has been checked.

I
| !
] alignment » 5“‘1—"'- | compliance_rule »

I
Lo—

! I rule_atiribute > move » +——O+ _| prepared_event

************* o

| violation »

Figure 8.8: Parts of Fig. 8.7 are chsen that show data entities and their relations related
to compliance rule profile.

Suppose, there are two compliance constraints that a process must comply
to. Each of these constraints is divided into two compliance rules. As we dis-
cussed in Chap. 4 and Chap. 3, compliance constraints may be decomposed to
several compliance rules. The tables shown in Fig. 8.9 store the information
related to these constraints according to the data model of compliance DB.

As can be seen, a compliance constraint may have one or more rules (see
the multiplicity one-to-many shown in Fig. 8.9 on the association between com-
pliance_constraint and the compliance_rule). Each rule has a type, a description,
and refers to the constraint that it originates from. Rule types are recorded in
another table (rule type). There are six different rule types. As mentioned ear-
lier, each rule has exactly one rule type. This is indicated by the multiplicity on
association between compliance_rule and rule_type. Each rule confines a process
property. The relation between a rule and the attribute describing that process
property is captured in a separate table called rule_attribute. For example, rule_-
1 is confining the control-flow of the process. Hence, this rule is paired with the

>

8.1 Integrating Compliance Data Using Compliance Database

291

Figure 8.9: An example compliance profile populated with two constraints and their

rule_type

id rule type description
ruleType_1[combined data and control-flow
ruleType_2 [data-aware
ruleType_3 [control-flow
ruleType_4|temporal
ruleType_5 [resource-aware
ruleType_6 |combined resource and control-flow

compliance_constraint

id

constraint source

cons_01 [guideline-I

cons_02 [internal policy

rules.

compliance_rule
id rule_type |[rule description constraint_id
rule_1|ruleType_3 |activity A must be followed by B cons_01
rule_2 [ruleType_2 |activity C must not be excuted for gold customers cons_01
rule_3 [ruleType_5 [only resource 'Amir' is allowed to executed activity B cons_02
rule_4|ruleType_4 |activity D can only be executed on beginning of each month |cons_02
rule_attribute
pliance rule_id |attribute_id
rule_1 attr_01 <
rule_2 attr_04 ot—+<
rule_3 attr_03
rule_4 attr_02

one-to-one
one-to-many

zero/one-to-many

attr_01 which records the activity names. Figure 8.11 indicates that in table at-

tribute, attribute attr_01 is the activity name). Similarly, rule_2 reasons on client

category, rule_3 confines resource, and rule_4 constrains date.

"] dassifier * +——+< | classifier-atiribute *
|3

Figure 8.10: Data entities and their relations related to event data.

292

Integrating Compliance Results for a Precise Analysis

Event data. As mentioned before, the event log (as the input of compliance
checking) and related entities form another cluster in the data model of the
compliance DB. We may record several event logs from the same business pro-
cess but each event appears in just one trace and log. For example, event logs
referring to executions of a business process in different periods of time, or dif-
ferent regions. When analyzing violations, it is necessary to be able to track
back to the event log (e.g. the period of time or region) a violation is referring
to. Log attributes and their values are stored in event_attribute_value entity. We
can track back from traces to the log they belong and from there query logs
with specific attribute values. The data entities and their relations related to the
event data cluster in the data structure of the compliance database are shown
in Fig. 8.10.

Suppose we checked an event log against the compliance rule profile shown
in Fig. 8.11. The log table records information about the log. Each log has one
or more traces. The association between the two tables log and trace allows
to track back each trace to the log it originates from. Similarly, the relation
between the trace table and event allows to track back events to their traces. In
our example, we have populated the tables with seven events distributed over
two traces. trace 1 has four events, i.e., trace_1: (event 1, event 2, event 3,
event_4) and trace_2: (event_5, event_6, event_7).

Client category (attr_4) is a trace level attribute and its value is gold at trace_-
1. This attribute has value silver at trace_2. The events also have several at-
tributes: activity name, date (attr_1), and resource (attr_3). All these attributes
are stored in the attribute table. The value of attributes at each trace or event
are stored in separate tables trace-attribute value, and event-attribute value. For
instance, from table event-attribute value, we can see that event 1 indicates the
execution of activity A on 15-Jan-11 by Amir. Similarly, the information related
to other events are recorded in this table.

Prepared log. When we check different compliance rules individually, the log
preparation is also done for each rule individually. Figure 8.12 shows the data
entities and their relations of the prepared log cluster in the data model of com-
pliance DB. Each prepared log refers to exactly one log, but a log may have
zero or more prepared logs (see the multiplicity on the association connection
between log, and prepared log tables). Each prepared log has one or more pre-
pared traces and similarly each prepared trace has one or more prepared events.
Prepared trace, and prepared event are related to trace, and event tables. For
instance every trace has zero or more prepared traces and every prepared trace
refers to exactly one trace. Similarly an event has zero or more prepared events.

8.1 Integrating Compliance Data Using Compliance Database 293

i !

trace_attribute_value attribute
trace_id |attribute_id |value id name
trace_1 [attr_4 gold attr_1|activity name
trace_2 |attr 4 silver attr_2 |date
attr_3|resource
trace log attr_4 |client category
id log_id p+ H-{id system |process name | |attr_5|checking
trace_1|log_1 log_1|System_1 |sales process
trace_2|log_1
event-attribute value
"event_id [attribute_id [value
event_1 |attr_1 A
- event — event_1 |attr 2 15-Jan-11
id order |trace_id event 1 |attr 3 Amir
event_1 1ltrace_1 event 2 |attr 1 B
event 2 2jtrace 1 event 2 |attr 2 18-Jan-11
event 3 3trace 1 event_2 |attr_3 Sara
event_4 4ftrace_1 event 3 |attr 1 C
event_> Ljtrace_2 event 3 |attr 2 20-Jan-11
event 6 2|trace 2 event_3 |attr_3 Sara
event_7 3|trace_2 = =
= = event_4 |attr_1 D
event_4 |attr_2 2-Feb-11
event_4 |attr_3 Sara
event_5 |attr_1 A
event_5 |attr 2 1-Feb-11
event_5 |attr_3 Amir
event_6 |attr_1 C
—+—+# one-to-one event 6 [attr 2 20-Feb-11
¢ one-to-many event_6 [attr_3 Chloe
o——< zero/one-to-many event 7 lattr 1 o
event_6 |attr_2 1-Mar-11
event_7 |attr_3 Chloe

Figure 8.11: Event data tables populated with an example log, two traces, and their
events.

However, a prepared event does not necessarily refer to an event. An example of
such a prepared event can be the artificial events created for model-only moves
during log preparations of temporal compliance checking to mark rule instances
(for details on log preparation in temporal compliance checking, see Chap. 5.1).

Figure 8.13 shows parts of the information related to prepared log of our

294

Integrating Compliance Results for a Precise Analysis

e |

T —

I] prepared_event_atiribute_value *» >——= | prepared_event * -IOI— I move »
L 4

Figure 8.12: Data entities and their relations related to prepared log.

example. As it is indicated in the prepared log table, four instances of prepared
log are stored for the four rules that ‘log 1’ is checked against. The foreign
key log id in prepared log table shows that all the instances of prepared log
originate from ‘log 1. In total eight instances of prepared trace are stored in
table prepared trace. The foreign key ‘trace_id’ in table prepared trace indicates
to which trace each instance of prepared trace is referring to. For example
‘prepared trace_11’ and ‘prepared trace 12’ are the result of the log preparation
for ‘rule_1’. ‘Prepared trace_21’, and ‘prepared trace 22’ are the result of the log
preparation w.r.t. ‘rule_2’. Note, in Fig 8.7 each move is related to a compliance
rule and at the same time to a prepared event. Hence, we can trace back to the
rule that a prepared log is built for.

8.1 Integrating Compliance Data Using Compliance Database

295

prepared_event_attribute_value
prepared event_id attribute_id| value
prepEvent_11 attr_5 A r:irepared_log -
prepEvent_22 attr 5 B i loglid
prepEvent_33 attr 5 Q preplog 1 log_1
prepEvent_45 attr_5 A preplog 2 log_1
prepEvent_56 attr 5 Q preptog 3 log_1
prepEvent_60 attr_5 Start prepLog:4 log_1
prepEvent_71 attr_5 Q]
prepEvent_80 attr_5 It |
prepEvent_93 attr_5 C prepared_trace
prepEvent 93 attr 4 gold id prepared log_id trace_id
prepEvent_100 atir 5 lemp prepTrace_11 prepLog_1 trace_1
prepEvent 114 attr 5 Q prepTrace_12 preplog_1 trace_2
prepEvent 120 attr 5 End prepTrace_21 preplog_2 trace_1
prepEvent_130 attr_5 Start prepTrace 22 preplog 2 trace_2
prepEvent_145 attr 5 Q prepTrace_31 preplog_3 trace_1
prepEvent_150 attr_5 st prepTrace_32 preplLog_3 trace_2
prepEvent_166 attr_5 c prepTrace_41 prepLog_4 trace_1
prepEvent_166 attr_4 silver prepTrace_42 preplog_4 trace_2
prepEvent_170 attr 5 lemp F
prepEvent_187 attr_5 Q
prepEvent_190 attr 5 End
prepared_event
H id order prepared trace_id event_id
prepEvent_11 1 prepTrace_11 event_1
prepEvent_22 2 prepTrace_11 event_2
prepEvent_33 3 prepTrace_11 event_3
prepEvent_45 1 prepTrace_12 event_5
prepEvent_56 2 prepTrace_12 event_6
prepEvent_60 1 prepTrace_21 -
prepEvent_71 2 prepTrace_21 event_1
prepEvent_80 3 prepTrace_21 -
prepEvent_93 4 prepTrace_21 event_3
prepEvent_100 5 prepTrace_21 -
prepEvent_114 6 prepTrace_21 event_4
prepEvent_120 7 prepTrace_21 -
prepEvent_130 1 prepTrace_22 -
prepEvent_145 2 prepTrace_22 event 5
prepEvent_150 3 prepTrace_22 -
prepEvent_166 4 prepTrace_22 event_6
—+—+# one-to-one prepEvent_170 5 prepTrace_22 -
+#+—< one-to-many prepEvent_187 6 prepTrace_22 event_7
zerofone-to-many prepEvent_190 7 prepTrace_22 -

Figure 8.13: Entities and their relations of an example prepared log cluster populated
with four prepared logs, eight prepared traces, and their prepared events.

296 Integrating Compliance Results for a Precise Analysis

Similarly the prepared event table contains the instances of prepared events.
For example, ‘prepTrace 11’ has three prepared events: ‘prepEvent 11, prepEvent -
22’; and ‘prepEvent 33’. Note that this trace has one event less compared to
original trace ‘trace_1’, because during the log preparation, the trace is short-
ened. However sometimes a prepared trace has more events compared to
the original trace it is derived from. For example ‘prepTrace 21’ has seven
prepared events: prepTrace 21: (prepEvent 60, prepEvent 71, prepEvent 80,
prepEvent 93, prepEvent 100, prepEvent 114, prepEvent 120). From these pre-
pared events, prepEvent 60, prepEvent 80, prepEvent 100, prepEvent 120 do
not refer to an original event (the ‘event id’ in the table prepared event is empty
for these prepared events). During the log preparation for checking ‘rule_2’, the
original log is enriched with some artificial events to mark the rule instances
(see Sect. 6.3 and Sect. 6.4 for how to mark rule instances in a log).

Similar to original traces and events, prepared traces and prepared events
have attributes. The value of these attributes at each prepared trace and each
prepared event is captured in tables prepared trace-attribute value and prepared
event-attribute value. For example all the prepared events have a value for at-
tribute attr 5 (checking) and values of this attribute at each prepared event are
shown in table prepared event-attribute value.

Compliance checking result. As explained before, the compliance checking
result cluster in the data model has entities that store diagnostic information in
alignments. The execution of an event in an event log may be checked against
different rules. Therefore, to get a complete picture about the compliance of
this activity we need to combine the individual diagnostics obtained in each
checking procedure. For example, we would like to be able to query against

“llog >

r— - - — 1

|] alignment » >+] rule > + >

| "] violation Fﬁ—léjnWVeFH—'—H—:lpmparedhamF

K

] prepared_event »

Figure 8.14: Data entities and their relations related to compliance checking result cluster.

8.1 Integrating Compliance Data Using Compliance Database

297

how many rules the execution of an activity has been checked, and how many
violations of which type and from which rules are observed for that specific
activity. Therefore, it is necessary to be able to track back to the exact checking
result that each diagnostic is produced from. Our data model realizes this as
follows.

Figure 8.14 shows the entities and their relations of this cluster. Each align-
ment indicates the result of checking a log against a rule. Hence, the ‘log_id’,
and ‘rule_id’ (as foreign keys) record this information for each alignment. Each
alignment has one or more moves and each move refers to exactly one alignment.
A move has an attribute order that reflects the order of moves in an alignment.
It is indicated in each move whether it is inside a rule instance or not. The ‘rule
instance_id’ refers to various activations of a rule. A move therefore refers to
zero or one rule instance, however, a rule instance has one or more moves. It
is also indicated in each move whether it is violating or not. This information
is recorded for each move in ‘violation_id’ column. Each move refers to exactly
one violation type, including “no violation (compliant)” and each violation may
be connected to zero or more moves. Furthermore, each move may refer to a
prepared event or not. Synchronous moves and log-only moves refer to exactly
one prepared event and model moves have no prepared event. Hence, each
prepared event is connected to exactly one move.

298

Integrating Compliance Results for a Precise Analysis

violation
id violation type
violation_1 skipped event
violation_2 unallowed event
violation_3 skipped event (false postive)
violation_4 unallowed event (false positive)
violation_5 incorrect time
violation_6 incorrect data
violation_7 incorrect resource
violation_8 incorrect activity and data combination
violation_9 | incorrect activity and resource combination
violation_10 no violation (compliant)
move
id |order|compliant value|rule i e_id [violation_id li rule_id | ali _id | prepared event_id | prepared trace_id
m_01| 1 Start - violation_3 rule_1 alignment_1 - prepTrace_11
m_02| 2 [rulelnstance_1 | violation_3 rule_1 alignment_1 - prepTrace_11
m_03| 3 A rulelnstance_1 |violation_10 rule_1 alignment_1 prepEvent_11 prepTrace_11
m_04| 4 B rulelnstance_1 |violation_10 rule_1 alignment_1 prepEvent_22 prepTrace_11
m_05| 5 lemp rulelnstance_1 | violation_3 rule_1 alignment_1 - prepTrace_11
m_06| 6 Q - violation_10 rule_1 alignment_1 prepEvent_33 prepTrace_11
m_07| 7 End - violation_3 rule_1 alignment_1 - prepTrace_11
m_08| 1 Start - violation_3 rule_1 alignment_1 - prepTrace_12
m_09| 2 [rulelnstance_2 | violation_3 rule_1 alignment_1 - prepTrace_12
m_10| 3 A rulelnstance_2 |violation_10 rule_1 alignment_1 prepEvent_45 prepTrace_12
m_11| 4 B rulelnstance_2 | violation_1 rule_1 alignment_1 - prepTrace_12
m_12| 5 lemp rulelnstance_2 | violation_3 rule_1 alignment_1 - prepTrace_12
m_13| 6 Q - violation_10 rule_1 alignment_1 prepEvent_56 prepTrace_12
m_14| 7 End - violation_3 rule_1 alignment_1 - prepTrace_12
rule_instance li
id compliance rule_id id rule_id| log_id
rulelnstance_1 rule_1 alignment_1| rule_1| log_1
one-to-one rulelnstance_2 rule_1 aIignment_Z rule_2| log_1
one-to-many rulelnstance_3 rule_2 alignment_3| rule_3 | log_1
rulelnstance_4 rule_2 alignment_4| rule_4 | log_1
o< zero/one-to-many

Figure 8.15: Example entities and their relations related to a compliance checking result.
Figure above shows four alignments, ten types of violations, parts of move
table, and parts of rule_instance table.

8.2 Querying Information from the Compliance Database

299

Figure 8.15 shows the entities of compliance checking result cluster popu-
lated with our example. Suppose we checked the event log against the example
compliance rule profile, the alignment table records four different alignments,
each as a result of one checking procedure. As explained before, each align-
ment is referring to a rule, and a log. For example ‘alignment 1’ is the result of
checking log 1 against rule_1. The moves related to this alignment are shown
partially in table move. The sequence of moves (m_01, m_02, m_03, m_04,
m_05, m_06, m_07) refers to checking ‘prepTrace 11’ against ‘rule 1’ and the
moves are ordered accordingly. The first move ‘m_ 01’ denotes the start of the
trace and ‘m_07’ denotes the end of the trace. Similarly ‘m_02’ and ‘m_05’ de-
note the start and completion of ‘rule instance_1’. ‘Rule 1’ checks whether the
execution of activity A is followed by B and therefore moves ‘m_03’, and ‘m_-
04’ have ‘no violation’. Note, the moves m_01, m_02, m_05, and m_07 have
violations of type skipped event because these moves are not referring to any
prepared event. However, these violations are no violations but only technical
steps introduced by the compliance patterns, since the moves are not referring
to real business activities. The compliant value column records the compliant
value of the attribute that was expected to occur according to the rule. There-
fore, in our example for the moves m_01, m_02, m_05, and m_07, referring
to violation of type skipped event, the compliant (compensation) value refers to
values Start, Iy, I.mp, and End.

Table rule instance shows that ‘rule_1’has been activated twice, therefore we
have ‘rule instance_1’, and ‘rule instance_2’ both pointing to ‘rule_1’. Similarly
other rule instances are listed.

In this section, we discussed in detail the structure of the compliance data
model. This data model allows us to integrate all compliance data. In addition,
it gives us the flexibility to explore and query data for various reporting purposes
and follow up root-cause analysis.

8.2 Querying Information from the Compliance Database

The design of the data model of compliance DB allows us to query and view
compliance data from different perspectives including compliance rule profiles,
event logs, and compliance checking results. The relations between different
data clusters give us the flexibility to query and analyze data regarding complex
criteria. Furthermore, this analysis can be done on different levels such as:
compliant versusviolating, move or alignment level, event and process instance
level, constraint, compliance rule and rule instance level.

300 Integrating Compliance Results for a Precise Analysis

Snippets Querylsgl » Query2.sgl

SE1ECT CR.id, CR.description FROM
compliance_rule AS CR,
alignment AS A,
log AS L

WHERE

L.process_name = "p" AND
L.id = A.log_id AND

1
2
3
4
5
6
7
8
9
5] A.compliance_rule id = CR.id;

1

Figure 8.16: An example query in SQL requesting all the compliance rule that a process
p is checked against.

8.2.1 Exploring Compliance Data

In the following we list some example queries in textual form (and two example
in SQL) to elaborate on the different dimensions of the analysis that is possible
to do using compliance database:

* What are the compliance rules that a process p is checked against?

— Tables involved: compliance rule (number and description of rules),
alignment (to choose a log and link the log to the rule that is checked),
and log (for the choice of an analyzed process). Figure 8.16 visual-
izes this query in SQL.

* How is the compliance of process p in the time period [t1, f,] with respect to
all the compliance rules that it has been checked against?

— Tables involved: compliance rule (for the choice of rules and their
description), alignment (to choose a log and link the log to the rules),
move (violating versuscompliant moves), prepared_event, event and
event_attribute_value (to select events that occurred during a specific
period of time), and log (choice of a specific process). Figure 8.17
visualizes this query in SQL.

* How is the compliance of process p w.r.t. to rule r in different months of
year y?

— Tables involved: compliance_rule (for the choice of a rule), alignment
(for the choice of checking results), move (violating versuscompli-

8.2 Querying Information from the Compliance Database 301

ant moves), event and event_attribute_value (for the choice of a time
period), and log (for the choice of a specific process).

* How do violating and non-violating events w.r.t. rule r differ in values of
attribute x?

— Tables involved: compliance rule (for the choice of a rule), align-

Snippets Queryl.zql Query2.sqgl

1 SELECT M.id, V.id, V.violation_type, CR.id, CR.description FROM
2

3 log A5 L,

a4 alignment AS A,

5 compliance_rule AS CR,

6 move AS M,

7 violation AS V,

Sl (

g SELECT M.preparedTrace_id AS pt_id, MIN(M.order) AS min, MAX{M.order) AS max
18 FROM move as M

11 WHERE

12 M.preparedTrace_id IN

13 = (SELECT trace.id

14 WHERE

15 event_attribute walue.value <= t_2 AND

16 event_attribute_value.value »= t_1 AND

17 event_attribute_value.event_id = event.id AND
18 event_attribute_value.attribute name = "time"
19 GROUP BY trace_id

28 ORDER BY event_id

21 4

22 GROUP BY M.preparedTrace_id

23 ORDER BY M.order

24 b) AS SQ

25

26 WHERE

27 L.process_name = "p" AND

28 A.log id = L.id AND

29 CR.id = A.compliance_rule id AND

38 M.violation_id = V.id AND

3 M.preparedTrace_id = SQ.pt_id AND

32 M.order »>= SQ.min AND

33 M.order <= 5Q.max;

34

Figure 8.17: An example query in SQL requesting all the moves within time period [#1, f2]
w.r.t. all relevant compliance rules that a process p is checked against.

302

Integrating Compliance Results for a Precise Analysis

ment the (choice of a checking result), move (violating versuscompli-
ant moves), prepared_event, event, and event_attribute_value (for the
choice of events having attribute x).

How many violations and non-violations are observed w.r.t. rule r?

— Tables involved: compliance_rule (for the choice of a rule), alignment
(for the choice of a checking result), and move (violating versuscom-
pliant moves).

Query all the events having a violation of type “incorrect activity and data
combination” in process p?

— Tables involved: log (for the choice of a process and a log), alignment
(for the choice of a checking result), move (violating versuscompliant
moves), violation (for the choice of violation type), prepared event
and event (for the choice of events).

Query all the events related to log [while specifying their violations type.

— Tables involved: log (for the choice of log), alignment (for the choice
of a checking result), move (violating versuscompliant moves), vio-
lation (for the choice of a violation type), prepared_event, and event
(for the choice of events).

Query all the events related to log I while specifying their violations type and
the compliance rule they violate.

— Tables involved: log (for the choice of a log), compliance rule (for
the choice of a rule), alignment (for the choice of a checking result),
move (violating versuscompliant moves), violation (for the choice of
a violation type), prepared_event and event (for the choice of events).

Query all violating and non-violating moves related to compliance rule r.

— Tables involved: compliance rule (choice of rule), alignment (choice
of checking results), move (violating versuscompliant moves).

Query all violations of rule r; that are violating rule r, as well.

— Tables involved: compliance_rule (choice of rules), alignment (choice
of checking results), move (violating versuscompliant moves).

8.2 Querying Information from the Compliance Database

303

* Query all the violations w.r.t. rule r that occurred in month m of year y.

— Tables involved: compliance_rule (for the choice of a rule), alignment
(for the choice of a checking result), move (violating versuscompliant
moves), prepared_event, and event, and event_attribute_value (for the
choice of events).

* Query all violating and compliant process instances of process p that are
violating rule r while marking the violating vs. non-violating.

— Tables involved: log (choice of process and log), trace (choice of
traces), compliance rule (choice of rule), alignment (choice of check-
ing result), move (violating versuscompliant moves), prepared events,
and events (choice of events).

* Query all process instances of process p that share the trace attribute x = val
while specifying the rules they violate.

— Tables involved: log (for the choice of a process), trace, and trace_ -
attribute_value (for the choice of traces), alignment (for the choice of
checking results), move (violating versuscompliant moves).

* etc.

As implied by the above mentioned queries, we can report on compliance
data from different views and different abstraction levels. The result of these
queries is usually a set of events or moves. We can compute various statistics
over these subsets of data. The events or moves chosen can refer to a group
of dependent events (i.e., all the events related to a process can be chosen) or
they may be independent (events can be distributed over various processes and
logs). We can conduct various analysis depending on the data subsets that is
queried.

8.2.2 Analyzing Sets of Independent Events/Moves

The event/moves in the independent data subsets are typically selected because
they have common characteristics e.g. they all have a common violation type,
they all violate a specific rule or group of rules, they all share a common at-
tribute value, etc. That is regardless of the traces and logs they originate from.
For example a query stating: “all events and their attribute values that are
violating both rule x and y”. In this case only events are chosen that are violat-
ing the two rule. Such group of events/moves can be used for various statistical

304

Integrating Compliance Results for a Precise Analysis

analyses e.g. calculating distribution of violations in different periods, calculat-
ing percentages of violations among different groups of interest, etc In addition
these groups of moves or events can be input for several data analysis tech-
niques such as correlation analysis, or classification (such analyses have been
discussed extensively in Sect. 7.5).

8.2.3 Analyzing Sets of Dependent Events/Moves

The events/moves in the dependent subsets of data are typically used to build
sub-logs. Therefore, we do not only choose events but a complete trace that
contains an event with characteristics of interest. Consequently, it is possible to
create a sub-log from dependent subsets. Such sub-logs can be used for detect-
ing behavioral patterns using various process mining techniques e.g. mining the
behavior of traces violating a rule versusthe compliant ones. The detected pat-
terns can be compared for differences. In addition, we can enrich these sub-logs
with diagnostics obtained and analyze the enriched logs further. The log enrich-
ment is very similar to the log enrichment step we explained in Chapters 4, 5,
and 6. However, at this phase the moves used for building an enriched event log
are not derived from a single alignment but from multiple alignments. The chal-
lenge then is to combine all the diagnostics obtained from different alignments
in one enriched event log. In the next section, we will explain our approach for
extracting an enriched event log by integrating moves from several alignments.

8.3 Generating Enriched Event Logs

In this section, we first briefly review the extraction of an enriched event log
built as a result checking one atomic compliance rule (discussed in chapters 4, 5,
and 6). Next, we explain how we build and enriched event log by integrating
results of checking several atomic rules (the case visualized in Fig. 8.3).

Figure 8.18 illustrates an example enriched event log that was discussed in
Sect. 5.2. The original log has been checked against a control-flow rule and a
temporal rule. The log shown in Fig. 8.18 is enriched with diagnostics about
both of the rules (the diagnostics related to control-flow rule are hachured in
pink and the diagnostics related to temporal rule checking are shaded in blue).
As can be seen, new attributes are added to the enriched event log that store
the diagnostics including the compliance rule checked, the rule instance that an
event refers to, whether the event is violating or not, in case of violation the
type of violation and the compliant value are recorded. In addition, we also

8.3 Generating Enriched Event Logs

305

add artificial events related to model-only moves (see event e?). This event
is added in between the events e}, and el and indicates that occurrence of e5
was expected at that position but it was skipped. Note, all this information was
obtained from one alignment. Therefore, we exactly know where the model-
only move is located and we can say exactly where the artificial event related to
this 'missing event’ must be added.

306

Integrating Compliance Results for a Precise Analysis

. EL (Enriched log with control-flow and temporal violations)

L
— #aa(e) =B
Hime(€"1)= 1
#ouea(€')(rule;)= control-flow-3 iterations of A
- L o
H#rule1.compliance state(€1)= compliant
L # yieLnstance(€'1)= OUtside rule instance
#Mez(eLl): temporal-delay between two A
L ’
—— Hrule2.compliance state(€ 1)= compliant
L #,e2unstance(€"1)= OUtside rule instance
—#(eh) =A
Hime(e")= 2
#yuer(e")= control-flow-3 iterations of A
L 4
— Hrule1 compliance state(€ 2)= compliant
L H#ruerinstance(€2)= 1% activation
#,u|ez(eL2)= temporal-delay between two A

. L of
Hrule2.compliance state(€ 2)= compliant
L st 5 g
— Huleznstance(€ 2)= 1°" activation

— #(e4)=A

#ime(€"3)= 30

#.ue1(€'3)(rule;)= control-flow-3 iterations of A
—— Hrulet.compliance state(€'3)= compliant

L #uetinstancel€3)= 1 activation

Huea(es)= temporal-delay between two A
—— Hrulez.compliance state(€3) = Violating

—— ez stance(€'3)= 1% activation

#uie2 Compliant value (€'3)= 26

Hrule2.violation type(€'3)= temporal

—#(e) =A

Hime(e"s)= 54

#ruer(€'a)(rule;)= control-flow-3 iterations of A
— #ruiet.compliance stare(€"4)= compliant

L #aiet nsance(€4)= 1 activation

#m|ez(eL4)= temporal-delay between two A
— #ruies.compliance state(€"2)= compliant

—— Hruierinstance(€4)= 1" activation

— thale's) = A

Hime(es)= 100

#oue(e's)(rule;)= control-flow-3 iterations of A
— Hrutet compliance state(€'s)= compliant

L Hyetinstance(€'s)= 2™ activation

#,u|ez(eL5)= temporal-delay between two A

L <
Hiile2.compliance state(€75)= compliant
L nd 5 ;
— Hrieznstance(€ 5)= 27 activation

€%

ey

ey

€3

—#(e%)=C

Hume(e'e)= 123

#ruier(€'6)(rule;)= control-flow-3 iterations of A
—— #ruie1.compliance state(eL6)= compliant

L #ruiernsance(€'6)= 2™ activation

#m.ez(eLG)= temporal-delay between two A

B L %
Hrule2.compliance state(€)= compliant
L nd b b,
— Huleznstance(€76)= 2™ activation

—#(e*) =A
Hime(€%7)= 123
#,ue1(€%)(rule;)= control-flow-3 iterations of A
— #ule1.compliance «ate(€7)= violating
d . .
— #nesmstance(€*7)= 2" activation

S \=
#rule1.Compliant value(€77)= A

S e
Hrule1violation type(€7)= Missing event

#uie2(€>)= temporal-delay between two A
S . &
— #rule2.compliance state(€7)= Violating
S d N .
—— #uiezinstance(€77)= 2™ activation
S
#Hrule2.compliant value(€77)= 124

s
#rule2.violation type(€77)= temporal

—#e5) =A

Hime(e'7)= 162

#.uea(e")(rules)= control-flow-3 iterations of A
—— #rulet compliance state(€'7)= compliant

L #ieninstance(e'7)= 2™ activation

#m|e2(eL7)= temporal-delay between two A
[===Hriies compliance sutel€7)= violating

L Hryieamstance(€7)= 2™ activation

Hrule2.Compliant waive(€')= 148

#ruie2 viotation type(€7)= temporal

—#(e's) =D

Hime(e's)= 173

#,ue1(e's)(rule;)= control-flow-3 iterations of A

L .
Hrule1.compliance state(€ 8)= compliant
L . £
L— #ruletinstance(€)= outside rule instance

#m.ez(eLg)= temporal-delay between two A

L 7
Hrule2.compliance state(€ 8)= compliant
L . ¢
Hrulez.instance(€ 8)= outside rule instance

Figure 8.18: The enriched event log with control-flow and temporal diagnostics.

8.3 Generating Enriched Event Logs

307

When we check a log against several individual compliance rules (shown in
Fig. 8.3), the diagnostics are distributed over several alignments. To build an
enriched event log in this case, we need to perform the following steps:

1.
2.

10.

Query the rules that a log has been checked against.

Query all the alignments that involve the specified log and the chosen
rules.

. Query moves related selected to the alignments.
. Retrieve all the original events related to the selected moves.

. Introduce artificial events related to model-only moves (i.e., moves that

do not have a corresponding original event).

. Assign all the moves referring to an event to that event.

. Enriching events by translating each move to a new attribute of the re-

trieved/artificial event containing the diagnostics recorded in that move.
For example if a move is referring to a control-flow rule r , we create a
new attribute named rule r where we store the rule type, the rule instance,
and whether it was violating or not and in case of violation, the compliant
value.

. Group enriched events in each trace.

. Sort enriched events according to the order of the retrieved event in its

trace.

Insert enriched events that are artificial in each trace according to the
location of model-only moves.

Sorting enriched events that are artificial (i.e., artificial events related to
model-only moves) however is not straightforward. Suppose three different
model moves m;y, my, ms are detected in three different alignments. All these
moves are detected to be in between event e, and e, of the original event log.
The detected moves need to be translated into three artificial events ey, ,em,,
and e;,. In this case in the enriched event log, the events e, ,e;,, and e, are
partially ordered between events e;, and e,. By partially ordering these events
we make explicit that no ordering exist between these events.

308

Integrating Compliance Results for a Precise Analysis

Compliance
checker

Compliance
checking result
exporter

Compliance info
object builder

Compliance profile
builder

Event log importer

Compliance DB

>

compliance rule profile
related tables -
S
event log related tables
prepared log related tables { @/
compliance checking result
related tables

w

Figure 8.19: Proposed framework for populating compliance database.

8.4 Populating the Compliance Database with Relevant Data

309

8.4 Populating the Compliance Database with Rel-
evant Data

In this section we discuss the machinery that is required for populating the
compliance DB with different sources of compliance data. Figure 8.19 sketches
a framework of tools required for populating the compliance DB.

The first step in populating the compliance DB is (1) the insertion of com-
pliance rule profile. For this, the component compliance rule profile creator is
required to fill in relevant tables in compliance DB with information about the
rules to be checked, their type and description and the constraints they originate
from.

Next, (2) the log importer component load an event log in XES format into
the log related tables within the compliance DB. The component compliance
info object builder takes an event log and the rule information to be checked
from the compliance DB. In this component the connection between the chosen
compliance rule to be checked and the event log is created. The output of this
component is the event log that contains a “special” attribute that should be
checked for the chosen compliance rule. The event log with special attribute to-
gether with the formalized compliance rule are inputs of the compliance checker
component. The compliance checker then writes the result of checking in an
alignment and produces the prepared log. The compliance checking result ex-
porter component then (3) loads the alignment and the prepared log back to
the compliance DB. This process can be repeated for each checking procedure.
Note that compliance pattern is separate from the compliance DB, because the
information about the pattern is irrelevant for the analyses we would like to
do afterwards with the data queried from compliance DB. Hence, we do not
include information related to the pattern in the database.

8.5 Proof of Concept

As a proof of concept, we have realized all the components of the framework
shown in Fig. 8.19 by implementing over 30 separate scripts in SQL, Java and
R. In this proof of concept, the process of invoking the different scripts is not
automated, though invoking these scripts in the right order demonstrates the
feasibility of our approach. Table 8.1 gives a summary about number of scripts
per component.

In addition, we have populated the compliance DB with a small artificial

310

Integrating Compliance Results for a Precise Analysis

Component # of scripts
Event log importer 10
Compliance rule profile builder 3
Compliance info object builder 4
Compliance checking result exporter 14

Building enriched log 4

Table 8.1: Number of scripts developed per component.

dataset. We recorded two event logs and five compliance rules of different types
in the compliance DB. These rules are derived from two compliance constraints.
Each of the event logs have two traces, so in total four traces. These traces have
together 35 events. We have recorded in total 293 attribute values and 49 distinct
attribute values including all the event attributes values, and trace attribute val-
ues for this log. One of the logs was checked against the five compliance rules
and resulted in five alignments and 19 compliance rule instances. The alignments
have in total 202 number of moves. Table 8.2 summarizes the dataset used as
proof of concept.

of logs 2

of traces 4

of events 35
of attributes 12
of attribute values 293
of distinct attribute values 49
of alignments 5

of rule instances 19
of moves 202

Table 8.2: Summary of the dataset used as proof of concept.

Twelve queries were generated to extract subsets of events and moves from
the compliance DB. In addition we created an enriched event log with all the
diagnostics obtained from checking the five rules.

The dataset was quite small, but allowed us to check whether it is possible
to seamlessly integrate data and extract diagnostics. We could integrate data
generated from different components of the framework and derive detailed di-

8.6 Concluding Remarks

311

agnostics and explore data from different perspectives. The complete imple-
mentation of the framework and an evaluation using bigger datasets and real
life logs is a topic of future research.

8.6 Concluding Remarks

In this chapter we discussed the necessity for integrating various checking re-
sults to obtain a complete picture about the compliance status of a process and
enable the root-cause analysis of violations. We detected three clusters of com-
pliance data including compliance rule profile, event log, and compliance checking
result. The compliance DB collects and integrates various sources of compliance
data. The compliance DB is designed such that we can analyze violations from
different dimensions and abstraction levels. In addition, we can track back each
violation to the rule and the event log that is checked.

We can query the compliance data based on even complex criteria. The
result of these queries are subset of moves or events. These subsets of data can
be used to build different reports and statistics, for root-cause analysis, and to
build sub-logs.

Chapter @

Case Study within UWV

uwy werken aan perspectief

In this chapter we present the results of a case study where the concepts and
techniques developed in this thesis have been applied.

This case study demonstrates the feasibility of our compliance analysis ap-
proach and applicability of its techniques and findings for improving compliance
in a real business case. Furthermore, it has been chosen to illustrate some of
the challenges in analyzing compliance for large scale event logs.

The case study involves the processing applications for unemployment ben-
efits received in Dutch national Employee Insurance Agency (UWV) ! that is
part of the Ministry of Social Affairs and Employment to implement employee
insurances and provide labor market and data services. We conducted this anal-
ysis in three business units located in different regions in the Netherlands and
compared the results. Later, we informed one of the units about the results of
our analysis and did the analysis in all three units again to check how diagnos-
tics results we offered improved the process compliance of the office that was
informed about the results.

11n Dutch “Uitvoeringsinstituut Werknemersverzekeringen (UWV)”.

314

Case Study within UWV

As described above, the case study was conducted using A/B testing. To-
gether with UWV, we chose a set of compliance rules and checked them in all
the three business units. One of the business units (A group) was informed about
the results of our analysis and we did not distribute the results to the other two
units (B group). The case study continued with a follow-up study. We monitored
and compared the changes in compliance level of different business units. The
results of the analysis show that using our approach, we can provide detailed
diagnostics and enable root-cause analysis to improve compliance. The compli-
ance level w.r.t. some of the compliance rules showed up to 23% improvement in
A group, the same effect was not observed in other business units. We received
positive feedback from domain experts about the applicability of the approach
and UWV is planning to incorporate our approach of compliance analysis in its
daily operations.

The process that we analyzed in this case study is explained in Sect. 9.1.
The design and scope of the case study will be discussed in Sect. 9.2. The pilot
analysis including definition of the compliance rules, the techniques we used
for our analysis, data collection and data preparation steps are elaborated in
Sect. 9.3. We show the results of the first study and the feedback we received
about the results in Sect. 9.4. In Sect. 9.5, we discuss the details of our root-
cause analysis. The results and the improvements we obtained in the follow-up
study are discussed in Sect. 9.6. We conclude our report with lessens learned
in Sect. 9.8. In Sect. 9.7, we review some relevant case studies reported in the
literature.

9.1 Process Description

In this case study, we aim at analyzing the compliance of the “handling un-
employment benefits” process in UWV. If an employee looses his/her job and
working is not possible or not immediately possible for him/her, UWV arranges
a temporary income for the person. People place applications in UWV for un-
employment benefits and annually on average 1.4 million Dutch citizens and
their families depend on UWV for their income. Unemployment benefits is a
rule-driven process and it is important for UWV to monitor if its operations
adhere to relevant compliance rules or not. In addition UWV set several inter-
nal policies to keep its clients satisfied with the service they receive from UWV
especially because of the impact this process has on people’s lives. Each appli-
cation for unemployment benefits received by UWV goes though several phases
as shown in Fig. 9.1.

http://www.uwv.nl/overuwv/pers/nieuwsberichten/2015/uwv-viermaandenverslag--meer-ww-ers-vonden-werk.aspx
http://www.uwv.nl/overuwv/pers/nieuwsberichten/2015/uwv-viermaandenverslag--meer-ww-ers-vonden-werk.aspx

9.1 Process Description

315

Orientation Claim Continuation After closure
2 months 1 month 1 to 3 months. 2 months
\ 4 \ 4 A 4 \ 4 \ 4
Start of the process Application Application accepted End of service Process
placement closure

After rejection
2 months

\J

-

w
Application rejected Process closure

Figure 9.1: Life cycle of an unemployment application in UWV.

Usually before applicants place an unemployment benefits application, UWV
supports them by providing precise information regarding their eligibility for
unemployment benefits and the procedure they need to follow. Therefore, a
client case starts in UWV roughly two months before the placement of an appli-
cation where UWV sends different forms and information to its clients (orien-
tation phase). After submission of an application, the claim phase starts where
UWV officially announces its decision to clients whether they are eligible to re-
ceive unemployment benefit or not and if they are eligible what the amount of
the benefits will be. This phase may take at most one month. If the application
is accepted, the continuation phase will start, during which the applicant will
receive unemployment benefits. In this phase, UWV supports its clients to find a
new job or go back to work. This phase usually takes about one to three months.
When unemployment benefits end, still the client case will be open in UWV for
another two months, while the case is in after closure phase. In this period, UWV
monitors cases for possible follow-ups. If an application gets rejected during the
claim phase, after rejection phase starts, where UWV monitors rejected cases for
possible objections and follow-ups.

Next we will discuss several compliance constraints and specific rules we
derived from each constraint that unemployment process must adhere to. For
this, we employed the Compliance Constraint Framework discussed in Sect. 3.1
to decompose the compliance constraints to specific rules each restricting one
perspective of the unemployment process.

Call clients before high impact decisions requirement.

The first compliance constraint is taken from internal policies of UWV. This
requirement aims at improving customer satisfaction. Based on a customer

316

Case Study within UWV

satisfaction survey, UWV decided to inform its clients via the phone about its
decisions. This is highly appreciated by clients. Especially clients whose ap-
plications were rejected for some reason and the rejection decision had been
communicated with them before its official announcement, accepted the rejec-
tion decision better than those who had not been informed via phone about the
decision prior to its official announcement. Even for accepted applications, ap-
plicants did object more often when the decision had not been communicated
in advance via phone.

Furthermore UWV has asked explicitly its clients in the same survey if they
would like to be contacted via phone about the decisions made for their applica-
tions. The answers have been mostly positive. Hence, UWV has set the policy
to inform clients about the decisions that have high impact on their appli-
cations before the official announcement of the decisions via mail. In short,
a decision is considered high impact when it influences the payment of benefits,
the amount and the procedure of payment. This policy requires employees to
call clients at most one day before the official announcement of a high impact
decision. Together with domain experts in UWV, we decomposed this constraint
to four specific compliance rules:

* Rule (1): There must be a call before a high impact decision is announced
to a client.

* Rule (2): The time between the call, and the announcement of a high
impact decision must not exceed one day.

* Rule (3): The calls given to clients before high-impact decisions must be
registered as high impact in the UWV system.

* Rule (4): Every call registered as high impact must be followed by a high
impact decision. That is, regular calls to clients must not be registered as
high impact.

Violations of the first two rules (Rules (1), and (2)) may lead to unsatisfied
clients. Violations of the third and fourth rules (Rules (3), and (4)) make it
difficult for UWV to monitor its operation and will lead to an inefficient process.

Decisions must be taken in correct application phase and must be an-
nounced correctly.

The second compliance requirement focuses on the decisions made for an ap-
plication in different phases. As mentioned earlier, each application will go

9.1 Process Description

317

through different phases.

The Dutch national law requires that in each of these phases, certain deci-
sions are allowed to be taken about the application of a client. In addition it
is required that letters sent to clients to announce the decisions taken in each
phase match the content of the decision. This seems to be trivial at the first
glance, but this requirement is very important because it enforces that deci-
sions to be made in the correct phase. Moreover, decisions must be announced
correctly to the clients to avoid possible confusion.

Although this requirement seems straightforward, nevertheless complying
to this requirement is not always easy. Correct phrasing of a decision to be
announced to a client such that it prevents any possible confusion for an ap-
plicant and considers all the legal consequences may be difficult in some cases.
Therefore, to avoid confusion for clients, legal experts in UWV have prepared
standard letters for each type of decisions to phrase the decision as precise and
clear as possible. These letters are predefined and categorized based on the type
of decision message that they contain.

We decompose this compliance requirement to two specific compliance rules
as following:

* Rule (5): Every letter announcing a decision that is taken about an appli-
cation must match the application phase.

* Rule (6): Every letter announcing a decision must be sent corresponding
to the decision category it belongs to.

Apart from legal consequences, violation of this rule can lead to extra work
in UWV and consequently higher costs.

Ending of “weekly benefits” on Mondays.

This compliance requirement restricts the closure of some benefits to be done
only on Mondays. UWV pays unemployment benefits every four weeks to its
clients. However, some benefits (for simplicity here we call them “weekly bene-
fits”) are calculated on a weekly basis. These benefit may only end on Mondays.
We derive one compliance rule from this requirement stating:

* Rule (7): Every closure of “weekly benefits” may only occur on a Monday.

This compliance rule is enforced in the business operation by the underlying
information systems. That is, the underlying information systems do not allow
for ending of “weekly benefits” on any day rather than Mondays. Violations of
this rule may have legal consequences.

318

Case Study within UWV

Unemployment applications of clients with multiple applications in UWV
must be handled by a specific team.

Sometimes clients of UWV apply for different kinds of benefits including unem-
ployment benefits. These cases can be subject of different regulations and they
need a careful processing. Hence UWV assigns these cases to a specific team (in
this paper we call it team T) to process them. Employees in this team have the
expertise to process these applications. We derived the following compliance
rule from this requirement, stating:

* Rule (8): Client cases with multiple applications must be processed by team
T.

Summary of rules.

Table 9.1 lists the compliance rule types that we derived from the constraints.
These rules confine different perspectives of a business process including control-
flow, process data, process resource and process time. This impacts the specifi-
cation of these constraints together with the technique we use to check them.

As can be seen in this table Rule (1) specifies the sequence of activities.
Rules (2), and (7) specify when certain activities must be executed. Rules (3),
(4), (5), and (6) put constraints on data attributes of unemployment benefits
process, and Rule (8) specifies the resource (team) that is allowed to process
specific cases.

Compliance Rule Rule Type
Rule (1) Control-flow
Rule (2) Temporal
Rule (3) Data-aware
Rule (4) Data-aware
Rule (5) Data-aware
Rule (6) Data-aware
Rule (7) Temporal

Rule (8) Resource-aware

Table 9.1: Compliance rule types to be checked.

9.2 Design of the Case Study

319

_________________________________ Business Unit 3 (Group B)

|

|

|

)

pilot Stud | Data Collection Compliance Root-Cause Dissemination
Y | & Preparation Checking Analysis of Results

Compare
Results

| .
Data Collection —» Copliapes

|
Checking :
|

Follow-up Study |
L o o e |

Figure 9.2: Split testing (A versusB) design of the case study including three business
units and steps taken for each business unit.

9.2 Design of the Case Study

UWV has several business units in the Netherlands. We chose three business
units to run our case study. We conducted the case study using split (A/B)
testing. These units were divided into two groups with Business Unit 1 being in
the A group and Business Unit 2, and 3 in the B group. We did two rounds of
analysis including first study, and follow-up study for both A and B groups.

For this, we first conducted a pilot analysis to refine the compliance rules
and define our data requirements for the analysis. During the first analysis we
collected a data set for the three business units and checked the compliance of
the unemployment benefit process against the specified rules in the three busi-
ness units. Further on we did a root-cause analysis for all the units as well. We
disseminated the results and findings of our analysis only to Business Unit 1 (A
group) to measure the impact of the diagnostics provided using our techniques.
These results include overall statistics on violation of different compliance rules,
detailed diagnostics about violations of each compliance rule, example of vio-
lating and non-violating cases. In addition, we share our root-cause analysis
results including patterns that differentiate violations from compliant cases. Af-
ter about two months, we repeated the analysis for the three business units in
the follow-up study and monitored the changes in both groups. Figure 9.2 illus-
trates different steps we took in each study. In the following sections, we will
discuss these steps in detail.

Business Unit 2 (Group B)
Business Unit 1 (Group A)

—> Reporting

320

Case Study within UWV

9.2.1 Setup

Here we discuss the techniques that we used in different steps of our case study
including compliance rule elicitation, compliance checking and root-cause anal-
ysis.

Compliance rule elicitation and specification.

We used the elicitation technique presented in Chap. 4 for formalizing the
control-flow of the rules listed in Table 9.1. We modelled the first four rules
together as a composite compliance model because they were overlapping in
activities. Although the elicitation technique presented in Chap. 4 focus on for-
malizing compliance rules in separate patterns, we could also use it for formal-
izing the control-flow perspective of the composite model. From configurable
rule repository presented in Appendix C, we configured the pattern shown in
Fig. C.6 for the control-flow of the composite compliance model.

We could use the pattern shown in Fig. C.1 for formalizing the control-flow
of Rule (5) and Rule (6) if we would check different category of letters sepa-
rately. However, we did the checking combined and built two Petri net models
for Rule (5) and Rule (6). However, the pattern shown in Fig. C.1 was config-
ured and used as the control-flow of the Rule (7) and Rule (8).

The data-aware Petri nets related to data-aware and resource-aware rule
were built manually and for the temporal rules we used the technique in Chap. 5.

Compliance Checking.

We used compliance checking techniques presented in chapters 4, 5, and 6 for
different rule types including control-flow, temporal, data-aware, and resource-
aware compliance rules. By employing these techniques, we detected violations
Ww.r.t. executions of activities and their sequence, the time they were executed,
the data related to executions of these activities (e.g. application type, applica-
tion phase, etc.) and the resources (team, business unit, etc.) that executed
them.

Root-cause analysis.

We used the techniques presented in Chap. 7 to analyze the root-causes of iden-
tified violations and detect patterns that differentiated violations from compli-
ant executions of activities.

9.3 Pilot Study

321

Note that the technique presented in Chap. 7 is based on the result of check-
ing a composite compliance model. However, we can use the same techniques
for analyzing the result of checking atomic rules as well. As mentioned before
we combined the first four rules in one composite model and the other four as
separate atomic rules. For all of them, we use the techniques of Chap. 7 to do
root-cause analysis.

9.2.2 Case Study Scope

As we discussed earlier, the case study was conducted for three business units.
The compliance Rules (1) to (7) were analyzed for all the three business units
and Rule (8) was specific for Business Unit 1 and therefore was analyzed only in
this unit.

From the eight compliance rules considered in this case study, the first three
rules were of utmost importance for UWV because they were connected to the
improving customer satisfaction project they have started earlier in the organiza-
tion. Therefore, throughout the whole project more emphasis was put on these
rules.

We did the pilot and the first study over the data taken from a two-month
period including November and December 2014. The follow-up study is done
over the data of June and July 2015. Figure 9.3 illustrates roughly the timing
we spent on each project phase.

We disseminated results of our first study in two parts. First during a meeting
where we discussed our results with the management team and domain experts
in Business Unit 1. We discussed the various statistics we obtained about the
violations during this meeting and discussed each in detail. Accordingly, we
wanted to refine the compliance rules and our dataset. Consequently, we re-
peated the analysis. We continued with the root-cause analysis. We distributed
the results of root-cause analysis with management team and domain experts
in Business Unit 1 in form of a workshop where we analyzed the results and
received feedback about them.

Later we did the follow-up study with a new dataset and monitored the
changes in each business unit w.r.t. different compliance rules.

9.3 Pilot Study

Pilot analysis of our project included the precise elicitation of the compliance
rules, definition of data requirements, collection of pilot data set and transforming

322

Case Study within UWV

e
& F & NI
& & NN Q RS I
SV &P S &L L O D S
& N 0 &\ © Sy Q
2 o\\ > 2§ > S S
XS & &Q}’Z’ & L £ &
] 0& & & on NI <<o\\
- <—X> -—> l& -
o @ @ @ . 4 @ @ @ @
o Ny 9 3 RN Y ¥ 4 v v
3 & N & S N & S S o X
S Q N < < Y@ J S v 2
O
[& & |
_\00 Q'b
Data set taken for ,\Q&K\K‘;‘ Data set taken for
the first study {:,e‘(\\g»‘“' the follow-up study
Q‘\ Q,"’

: Pilot Study : | FirstStudy |

| |
I Iy I
ar— o . .			
EI	C	Fat	on of Deflqnng Data Data CollectAlon Cor.npllance -
Compliance Rules Requirements & Preparation Checking Analysis			

Figure 9.4: Different steps executed during the pilot study.

the data set to the format of an event log in XES structure, and compliance checking
analysis. Figure 9.4 shows different steps we went through during the pilot
study.

Compliance rules elicitation and specification.

The first, and the most challenging part of the pilot study was the elicitation
of the compliance rules. The elicitation of the rules was not straight forward.
Due to the abstract definition of the rules in company guidelines, there was
room for various interpretations about them. For instance, regarding the first
two compliance rules stating: there must be a call at most one day before a high
impact decision is announced to a client, the guideline did not specify what sort
of decisions considered being high impact. Consequently together with domain
experts in Business Unit 1 we iterated over the specification of compliance rules.
Even after showing the first analysis results, where we shared our results with a
larger group than in the pilot study, we needed to change the definition of some
compliance rules and repeat the first analysis.

9.3 Pilot Study

323

Defining data requirements, data collection and preparation.

Corresponding to the compliance rules we defined our data requirements. The
required data included all the client cases that were relevant for the analy-
sis, i.e., all the clients whose their unemployment benefits applications were
received and processed during November and December 2014 in all the three
business units. We included all the events that were relevant for the compli-
ance rules in question including the calls given to clients, all the letters that
were sent to clients, start of the benefits, closure of benefits, and other relevant
events. However, we did not include events that would not be needed to check
the compliance of one of the eight chosen compliance rules. In addition, to-
gether with experts from UWV, we chose all the attributes of the process and
clients that we thought could be relevant for our analysis. Table 9.2 shows the
list of process and client related attributes that we included in our dataset.

Client related attributes H Process related attributes
Age Type of submission
Average working ours per week Application phase
Entitled for additional allowance Call registration
Number of contracts from previous jobs || Department contacted the client
Type of contract from the previous job Letter title
Business sector of the previous job Decision category
Reasons of unemployment Day when a benefit was ended
daily wages of the previous job Team
Living area Business unit
Time
Simultaneous multiple applications

Table 9.2: Two groups of data attributes (process and client related) that we included in
case study dataset.

The process related attributes include information about how an unemploy-
ment application is processed in UWV such as the business unit and the team
that processed each application, the title of different letters that were sent to
each client and the respective decision category, phase of an application, the
office that contacted each client, and some more. The client related data at-
tributes contain information about each application from the client perspective
such as the age of the client, the business sector the client was working before
unemployment, the number of hours per week the client used to work before,

324

Case Study within UWV

the type of previous working contract, the previous salary, and some more. The
client related attributes are defined on the process instance level, therefore they
are global for a case and their values do not change. In contrast, most of the
process related attributes are event specific and may change during the lifetime
of a case. That is, they may be present in some events but not in others and
their value may differ from one event to another within a case. We later used
this information for root-cause analysis of violations. We would like to check
if possible violations are related to client attributes or process attributes. This
categorization is important. In case we would find process related attributes to
be connected to a specific violation, the focus in compliance improvement will
be on changing the process such that it supports the employees to be compliant
in their operation. Whereas if we would find client related attributes to be con-
nected to a specific violation, the focus in compliance improvement would be
on changing the work culture in UWV.

Based on defined data requirements we chose the data sources that store
our required data. We collected data from various systems including:

* WWO as the primary system for unemployment benefits. It includes event
tables (activity executions in the unemployment process), event dimen-
sion tables, session table, and population table.

* GCU as the UWV standardized letters system. For the official announce-
ments of decisions, there are templates available in this system that can
be adjusted according to the message sent to clients.

* K3CR as the call center registration system. The date, and details of all
the incoming calls from clients and all the outgoing calls from employees
to clients are registered in this system.

Next to data from these systems, several other data sources were combined
to derive whether a client receives other benefits than unemployment benefits
or not. Figure 9.5 illustrates a simplified overview of our data collection pro-
cess. In total we collected data from 6 different information systems and dozens
of tables were used. The data from different source systems of UWV were ex-
tracted and stored in a Microsoft SQL Server database environment. The raw
data, that is supplied monthly, goes through an ETL (Extract Transfer Load)
process and ends up in data marts. After choosing the data sources we built the
required data marts from the data warehouse. In total we connected 12 data
marts and 5 tables containing master data. The data marts contain event data
(e.g. decisions taken for clients in each phase, start of benefits, and closure of

9.3 Pilot Study

325

benefits), the application phase of clients, detailed information about different
unemployment benefits, the unemployment benefits each client are entitled to
receive and many more process specific information.

Finally, we queried our analysis sets first for Business Unit 1 during the data
collection step of the pilot study and later for the three business units during the
data collection step of the first study. We used the technique in [43] to prepare
and transfer the data set to the format of an event log compatible with XES
structure [57].

Compliance checking.

After data preparation, we checked the compliance of the data set against all
the eight compliance rules in question. We checked compliance in the pilot
analysis only for Business Unit 1. We used the technique presented in 4 for
checking the control-flow compliance rule (Rule (1)), the technique presented
in 5 for compliance checking of the temporal rules (Rule (2), and (7)), and the
technique presented in 6 for data-aware and resource-aware compliance rules
(Rules (3), (4), (5), (6), and (8)).

After we obtained the results we discussed them in form of some presenta-
tions and using the Compliance Dashboard (see Sect. 7.5) with the management
team of Business Unit 1 and iterated over the process several times until we
refined the compliance rules to an acceptable extent and prepared data accord-
ingly. We still observed some disagreement among the management team of
Business Unit 1 regarding the boundaries of what is considered to be compliant
or violating for some compliance rules, yet the specification was good enough
to continue the analysis with them.

Source Systems - Data Warehouse - Data Marts ‘ Business Access Layer

| ‘ Analysis ~ ProM 6.5.1
== — -
= =) ELeei\l |
—

Figure 9.5: Collecting data from different data sources.

| (g
=||
ITE)
[
)

<

326

Case Study within UWV

9.4 Results and Observations of the First Study

After establishing the correct compliance patterns for the eight rules and defin-
ing the correct data extraction, we conducted the first analysis. We extracted
data from period of two months for each of the three business units (see Fig. 9.3).

Table 9.3 shows the number of cases together with the number of events
that we analyzed in the first study for each business unit. Please note that we
only included events in our data set that were relevant for the compliance rules.
Hence, the number of events are not that large compared to the number of cases
we analyzed.

Business Units || # Cases | # Events
BU1 24077 | 91602

BU 2 32269 113565
BU3 35182 136461

Table 9.3: The volume of cases and events in datasets for each business unit.

Next we will discuss our findings for each business Unit separately. We will
also discuss the feedback we received from domain experts after sharing our
results in Business Unit 1.

9.4.1 Results of the First Study: Business Unit 1

Table 9.4 contains the total number of rule instances and the violation frequency
of each rule that are observed during the months of November and December
for the three business units. In this section we focus on the results of Business
Unit 1.

Violations of compliance Rule (1). In 58% of all 3527 situations where it was
required that UWV calls a client in Business Unit 1, there was no call. Hence,
there were (0.58 * 3527 = 2046) violations of Rule (1). For this rule, we checked
whether activity send letter for letters that contain a high impact decision were
proceeded by activity call or not. The (100% —58% = 42%) compliant executions
of the sequence (call,...,send letter), do not reveal much information because
activity call could have been executed long before activity send letter for other
reasons rather than informing the client about the high impact decision, but
the violation percentage (i.e., 58%) reveals important information about the
number of missing calls.

327

9.4 Results and Observations of the First Study

“JIUN SSUIST] oBa 10] 3[n1 adueldwod 1ad Aouanbaij uone[ola a3 pue sadUBISUI SN JO JoqUINU [BI0], 6 d[qBL

¥10€6 6L€€ 90911 S9€91 0108 008 0108 [e10L ¢ ng
%E %0T %81 %C %8¢ %99 %S UONE[OIA
S8Y€ 6LLE 0cI18 9848 18¢¥y I8¢t 18¢¥y [el0L z N
%¢C %8 %ST %EC %cc %EY %cE UOHB[OIA
8I¢CI | 8744 0€6¢T 94¥9 1989 LTSE VA4S LTSE [eI0L 04
%ceE %¢C %8 %ST %0T %EC %99 %8S UOHE[OIA
(8)3md (L)Pmd (9)PMd (9FMd (PP (€)M (2)™m (1)3Y

328 Case Study within UWV

Violations of compliance Rule (2). The violation percentage of the second rule
shows that 66% of the calls were given to clients longer than one day before
a high impact decision was officially announced to them. Since we checked
the delay between the occurrence of activity call and activity send letter that
contained a high impact decision, we were able to compute the distribution of
violations for different category of letters that were sent. Table 9.5 shows for
all the three business units the absolute number of letters sent to clients in each
letter category and the violation frequency per letter category. The letters of
categories (A), (B), (C), and (D) are sent to clients to announce different high
impact decisions. The results suggest that by improving compliance especially
in the second category (letter B), the overall compliance w.r.t. Rule (2) will
improve dramatically.

BU1 BU2 BU 3
Activity H Total | Violations || Total | Violations || Total | Violations
Send letter category (A) 1441 | 40% 1658 | 22% 2845 | 29%
Send letter category (B) 2029 | 84% 2529 | 54% 5121 | 86%
Send letter category (C) 15 93% 30 80% 11 100%
Send letter category (D) || 42 85% 64 78% 63 86%

Table 9.5: Total number of letters per category and distribution of violations w.r.t. com-
pliance Rule 2 over letter categories.

The first column shows the distribution of violations of Rule (2) in Business
Unit 1 over the four different letter categories. For instance, in total 1441 let-
ters of category (A) were sent to clients in Business Unit 1, of which 40% were
violating Rule (2).

Violations of compliance Rules (3), and (4). Table 9.4 shows that the fraction
of violations for Rule (3) in Business Unit 1 is 23%. In these cases the calls given
to clients prior to a high impact decision were not registered as high impact.
Moreover, we observe that 10% of regular calls given to clients (i.e., the calls
that were not followed by a high impact decision) were registered as high impact
(violations of Rule (4)).

The first four compliance rules are derived from the same constraint and
they are related. As we discussed earlier, compliance or violations of these
rules (especially the first two rules) are perceived to influence the customer
satisfaction in UWV. Therefore, improving the compliance of these rules has a
high priority for UWV.

We discussed these results intensively with the management team in Business

9.4 Results and Observations of the First Study

329

Unit 1 and they speculated upon various reasons that could explain the high
number of violations for these rules. These reasons were as following:

¢ Although the guideline on calling a client prior to a high impact decision is
not new in UWV, it is only recently that its influence on customer satisfac-
tion has been revealed and hence got priority in the organization. There-
fore, this guideline is not yet fully incorporated in the daily operations of
UWV.

* Unfortunately the guideline is not clear enough and does not concretely
specify what is considered to be a high impact decision. Hence, the em-
ployees themselves should judge whether they need to call clients or not.

* The underlying information systems used for instance for registering calls
is not very intuitive. Consequently some employees do not exactly know
how they should register calls properly (subject of Rule (3), and (4)).

Violations of compliance Rule (5). In Table 9.4, we observe 15% violations
for compliance Rule (5) in Business Unit 1. This value shows that 15% of the
letters that were sent to clients to announce a decision, were not sent in the
correct application phase. As we discussed earlier, different categories of letters
are sent to clients. Table 9.6 shows the absolute number and the distribution of
violation frequency per letter category.

BU1 BU2 BU 3
Activity Total | Violations || Total | Violations || Total | Violations
Send letter category (A) 1441 | 20% 1658 | 18% 2845 | 41%
Send letter category (A-2) 9 33% 13 54% 19 63%
Send letter category (B) 2029 | 23% 2529 | 24% 5121 | 11%
Send letter category (B-2) 67 45% 141 52% 242 35%
Send letter category (C) 15 7% 30 17% 11 9%
Send letter category (D) 42 26% 64 19% 63 5%
Send letter category (E) 2794 | 5% 3577 | 5% 3165 | 7%
Send letter category (E-2) 79 35% 108 39% 140 36%

Table 9.6: The total number of letters per category and distribution of violations
w.r.t. compliance Rule 5 over letter categories.

We discussed these violations with domain experts in Business Unit 1. They
believe a portion of these violations could be related to the fact that it is not
always easy to draw a line between different phases that an application goes

330 Case Study within UWV

through. Consequently, sometimes an application has moved to the next phase,
yet some steps needed to be taken that corresponds to the previous phase.
Therefore, although it is good to decrease the number of violations for this
rule, domain experts did not find the 15% violations a high number or severe
and they believe a large portion of these violations are false positives.

BU1 BU2 BU 3
Activity Total | Violations || Total | Violations || Total | Violations
Send letter category (C) 15 20% 30 13% 11 27%
Send letter category (D) 42 12% 64 16% 63 11%
Send letter category (E) 2794 | 8% 3577 | 7% 3165 | 10%
Send letter category (E-2) 79 15% 108 15% 140 11%

Table 9.7: The total number of letters per category and distribution of violations fre-
quency w.r.t. compliance Rule 6 per letter category.

Violations of compliance Rule (6). The 8% of violations shown in Table 9.4 for
the compliance Rule (6) in Business Unit 1 are related to letters that contain a
decision announcement but they were not sent according to an appropriate de-
cision category. Similar to previous rules, Table 9.7 shows the absolute number
and the distribution of violations for the compliance Rule (6) per letter category.

Violations of compliance Rule (7). The 2% violations for the compliance
Rule (7) in Business Unit 1 (Table 9.4), although is not high, were perceived
to be interesting by the management team in this unit. For checking this com-
pliance rule, we analyzed activity benefit closure for all “weekly benefits” and
checked if they occurred on a Monday or not. Note that, this compliance rule is
enforced by the system, i.e., the underlying information system should not al-
low to end “weekly benefit" on days other than Mondays. Hence, “no violations”
were expected for this rule.

Violations of compliance Rule (8). The 32% violations observed for compli-
ance Rule (8) shown in Table 9.4 in Business Unit 1 are related to clients that
have multiple applications running simultaneously in different departments of
UWV. We discussed this result with domain experts in Business Unit 1. They be-
lieve to reduce violations of this rule, more system support is required. Several
systems have been developed within UWV to handle different types of applica-
tions. These systems are not always well integrated. Hence, sometimes it is not
easy for employees in one department to be aware of other applications of the
same client being processed simultaneously in other systems.

9.4 Results and Observations of the First Study

331

9.4.2 Results of the First Study for Business Unit 2 and Busi-
ness Unit 3

During the first analysis, we also checked compliance Rules (1) to (7) in Busi-
ness Unit 2 and Business Unit 3. Table 9.4 shows the violation frequencies and
the absolute number of rule instances observed for these units. Note that we
checked the compliance Rule (8) only for Business Unit 1 because we did not
have the required data for checking this rule in other business units.

Figure 9.6 compares the share of violations of business units per compliance
rule. As can be seen, the different business units widely vary w.r.t. the compli-
ance of Rules (1), (2), (3), and (4) but the difference gets lower for the last
three compliance rules.

Our results show that less violations are observed for Business Unit 2 espe-
cially for the first three compliance rules which are the focus of UWV in this
case study. As explained previously in Sect.9.2, we did not distribute the results
of the analysis within the group B (Business Unit 2 and 3). However, we dis-
cussed the results with the management team and domain experts of Business
Unit 1. They believe that the differences relate to the initiatives that Business
Unit 2 took earlier than all other units to execute the guideline about ‘call clients
before high impact decisions’. Therefore, employees in this unit had more time to
get acquainted with this compliance requirement and its execution within their
operations.

100
90
80
70
60
50
40
30
20
10

0+ — — — — — — \

Rule (1) Rule(2) Rule(3) Rule(4) Rule(5) Rule(6) Rule(7)

Percentages of violations

Business Unit 1 Business Unit 2 Business Unit 3

Figure 9.6: Comparing compliance results obtained during the first study for different
business units.

332

Case Study within UWV

Another interesting observation in Fig. 9.6 refers to the compliance Rules (3),
and (4) that are both about the registration of calls. One rule (Rule (3)) specifies
that important calls must be registered as such and the other rule (Rule (4))
specifies that regular calls should not be registered as high impact. It seems
that Business Unit 2 put too much emphasis on compliance Rule (3). Hence,
although they show the lowest number of violations for other rules compared
to other units (the yellow bar in Fig. 9.6 has the lowest percentage in all rules
except Rule 4), they tend to register most of the calls given to clients as high
impact which led to higher number of violations for Rule (4).

9.5 Root-Cause Analysis and Dissemination of Re-
sults
In Sect. 9.4, we discussed the violations detected by the compliance checking

approach described. We did a general root-cause analysis for all the rules and vi-
olations detected independent from specific observations explained in Sect. 9.4.

BU1 | BU2 | BU3

Association rules 7254 | 7103 | 6801
Filtered association rules-Process related 54 45 88
Filtered association rules-Client related 30 31 37

Table 9.8: Association rules mined for different business units between violations and
their contextual data.

As we explained earlier in Sect. 9.2, we enriched our dataset with two
groups of data attributes including process related attributes and client related
attributes. We used this contextual data to analyze the detected compliance vi-
olations further. For this we mined all the association rules between values for
these two groups of data attributes and different types of violations using the
technique presented in Chap. 7. Table 9.8 shows the large number of associa-
tion rules we obtained for each business unit. In total we found 7254 association
rules in Business Unit 1 distributed over different violations. We filtered these
rules based on their frequency and significance. We evaluated the significance of
an association rule using a strength metric accepting a value between [0—1] (for
details about this metric (CPIR) please read Sect. 7.5.2). We filtered the associa-
tion rules and kept only those that have a frequency higher than 40, and strength

9.5 Root-Cause Analysis and Dissemination of Results

333

metric more than 0.3. After trying several filtering configurations together with
a domain expert, we found this balance between the frequency, and strength
metric most suitable. We found out that a frequency higher than 40, is high
enough to filter out less important association rules and low enough to contain
the interesting ones. Similarly we also found that 0.3 for strength metric filters
out many less important association rules and keeps the interesting ones. We
divided the filtered association rule into two groups of client related attributes
and process related attributes. For instance Table 9.8, shows 54 association rules
in Business Unit 1 indicating a correlation between different violation types and
process related attributes that remained after filtering.

Next we will discuss our observations related to two groups of associations.
The detailed analysis of the remaining association rules can be found in Ap-
pendix D.

9.5.1 Analyzing Process Related Information

Figure 9.7 depicts the association rules (after filtering) that we mined between
different violations and process related attributes in Business Unit 1. The brown
ellipses in the middle, titled with the compliance rule numbers, show the viola-
tions of respective compliance rules. The other nodes refer to values of different
attributes and they are grouped based on their attribute.

The association rules that we have found are directed. The direction of rules
are specified by their color. The blue dashed lines show an association rule of

decision category attribute submission type attribute letter title attribute

n time
late °

cion
submission submissio

33333
/”
-
-
/”
/”
Rule (2)-

? Rule (4) @B Rule(3) @ Rule(8) @ Rule(5)-LC(E) @TRule (5)-LC(A) .R"'E(S)-Lc’(il,.. Rule (1)
—
\ Lc (B),/
1)
\

high impact call telephone team 12Y claim
notification
team attribute
application phase attribute
call registration attribute

Figure 9.7: Filtered association rules mined between different violations and process re-
lated attributes in Business Unit 1.

Rule (5)- /" LC(B) .~ "Rule (7)

334

Case Study within UWV

type attribute value — violation (i.e., attribute value implies the violation) and
the solid lines colored in orange show an association rule of type violation —
attribute value (i.e., violation implies an attribute value). The association rules
in principle do not show causality between the two nodes of the rule. However,
we think the possibility that we can predict a violation is higher if the direction
of the association is from the attribute value towards the violation. For instance,
if a specific attribute-value assignment implies a violation, we can predict that
future executions of activities with that attribute-value assignment are probably
violating.

The width of the line between two nodes represents the frequency of the
association rule observed, the thicker the more frequent. The numbers written
over the lines indicate the value of the association rule strength metric, a value
between [0,1] with 1 showing a strong association and 0 no connection. Note
that the associations shown in Fig. 9.7 have at least frequency of 40, and value
of 0.3 for the strength metric.

For instance, the second right ellipse titled Rule (2)-LC (B) shows a group
of letters from category (B) that were sent to clients without a prior on time
call. These violations are associated with a group of letter titles and attribute
continuation application phase. The orange line between application phase =
continuation and Rule (2)-LC (B) shows that: ‘violation type Rule (2)-LC (B)
implies application phase = continuation’. That is, we can say usually when
we see a violation of type Rule (2)-LC (B), we expect it to have occurred in
continuation phase of an application. Similarly the association rule between
Rule (2)-LC (B) and letter title = IBO1 shows that ‘letter title = IBO1 implies
violation of type Rule (2)-LC (B)’. We can say usually when we see a letter title
to be IBO1, we expect the violation of type Rule (2)-LC (B) to have occurred.
Next, we will discuss some of the interesting association rules that we observed.

Associations between violations of Rule (2), and different letter titles. As
can be seen in Fig. 9.7, violations of Rule (2) related to either letter category
(A), or (B) are connected with a specific group of letter titles. We discussed
in detail these letters in a workshop with domain experts. They believed they
knew that their operation is violating especially Rule (2) but the detailed data
they received on the level of letter titles helps them get insight and make the
assumptions concrete and measurable. It was interesting for them to know
which letter titles are connected to violations of Rule (2) and where they need
to focus to improve the compliance w.r.t. Rule (2).

Domain experts in Business Unit 1 speculate that some of these letters may
not be interpreted by employees as high impact. Hence, the employees did not

9.5 Root-Cause Analysis and Dissemination of Results

335

feel the necessity to inform the clients one day before the letter sent but the call
may have happened a week before or even more.

We discussed the possibility to improve this situation. It seems first of all
improving the guideline, to make it concrete and clear about the letters that are
considered high impact, is necessary for improving the compliance of Rule (2).
In addition, raising awareness among employees and constant emphasis of man-
agement on the importance of complying with Rule (2) is required. Especially
for the latter, after we discussed our results of the first study, UWV has started
a regular report to be distributed monthly throughout the whole organization
to show the process compliance of the organization within each period. This
report is accessible by all employees active in the unemployment process in the
three business units.

We checked other business units if we find common patterns between vi-
olations of Rule (2) and attribute letter titles. We checked whether in other
business units, the violations are connected to the same letter titles that we
found in Business Unit (1) or different ones. For this, we mined the associa-
tion rules between different violations and different attribute values for other
business units as well. Similar to Business Unit 1, we filtered the association
rules for those with a frequency more than 40 and strength metric value more
than 0.3. Figure 9.8 shows the result of our comparison of the association rules
in three business units between violations of compliance Rule (2) and different
letter titles.

1600
1400

1200

ions

-2 1000

1038
800

Number of violat

Figure 9.8:

600

400

200

348

149

13

1B14

147
169
145

1807

Letter titles connected to violations of Rule (2) in each business unit.

1199

&, &0 a2 391 o 162 160

0 105 9 56 12 149

B @ B s [s B9 B I g ;; sa 8 74 4 B w4
1BO8 1802 1BOS 1BO3 IBO1 1BO6 IB10 IB17 1B11 IBOS 1BO4 1B24 IB25 1B23 1B26 IB27 1B28 IB15 IB16 1B22

Letter titles

Business Unit 1 Business Unit 2 Business Unit 3

336

Case Study within UWV

As can be seen in this histogram, there are several letter titles in relation
with violations of compliance Rule (2) that are common between all three dif-
ferent business units. These include IB14, IBO7, IB0S8, IB02, IB09, and IB0O3. We
also found some letters that are common between Business unit (1), and (2).
Similarly the letter title IB24 is common between Business unit (2), and (3).
Some of the letter titles are specific to one business unit. Domain experts in
Business unit (1) believe that the interpretation of letters containing high impact
decision seems to differ not only among employees of one unit but also there
are differences among the way business units have categorized letters as high
impact.

This observation once more urges the necessity to improve guidelines and
make the concepts of letters with high impact decisions clear and concrete for
the employees in all units. For instance in total 406, 346, and 1103 letters with
title IBO1 were sent respectively in Business Unit 1, 2, and 3 from which 391
in Business Unit 1, and 1038 in Business Unit 3 were violating. As can be seen
this letter title was not considered to have high impact decision according to
interpretation of Business Unit 1, and 3 whereas it was considered to be a letter
with high impact decision in Business Unit 2.

We also see that the letter title IB25 is strongly connected with the violations
of Rule (2) in Business Unit 3. From the total number of 1237 number of letters
sent to clients with IB25 title, 1199 violated Rule (2) with the strength metric
value of 0.429. However, this letter title is not a very good example for com-
paring the three business units because it was sent seldom (with frequency less
than 10) in the other two business units. However, it is interesting to see that
this letter is not considered to contain a high impact decision in Business Unit 3.

Associations between team 12Y, and different violation types. Another in-
teresting observation in Fig. 9.7 is related to the associations between team 12Y
and violations of Rule (1), Rule (2)-LC (A), Rule (5)-LC (B), Rule (5)-LC (A),
Rule (5)-LC (E), and Rule (8). Particulary the association rule between Rule (8)
and team 12Y reveals that in most of the times when we expected that a client
case with multiple applications to be processed by team T, it is processed by
team 12Y. We discussed this finding with domain experts. They speculate that
this observation is related to the point in the process when cases are assigned to
teams and in these cases instead of team T, they have been assigned to team 12Y.
Note that each team processes cases with distinct characteristics. Team 12Y have
members that are not trained for specific cases, but they are skilled to be able
to handle various types of cases. Hence, team 12Y is responsible for cases that
usually cannot be assigned to other teams. Consequently it seems that most of

9.5 Root-Cause Analysis and Dissemination of Results

337

the complex cases that were not clear to which team they should be assigned to,
were assigned to team team I2Y. For instance, usually cases where clients move
from one city to another are more complex due to some information loss. In
general conditions of a case may change during the processing that changes the
way it should be processed. In such cases other teams prefer these cases to be
assigned to team I2Y that have general skills to handel cases of different types.
Consequently different violations are observed in connection with this team.
We discussed possible changes in the process to improve compliance w.r.t. this
observation. It seems that better system support is required that ensures all
the information of a case is available and assigns cases more precisely to teams
based on their characteristics.

We checked the association rules in other business units to see if we can
find the same pattern or not. For this, we checked whether teams with the
same functionality as team tean I2Y in other business units are connected to
different violations. Table 9.9 shows the associations of different violations with
team I2Y together with the direction of associations in different business units.
Note that V—A indicates that violation (V) implies the attribute value (A), and
A—V indicates that attribute value (A) implies the violation (V). Business Unit 2,
and 3 are common in associations between this team and violations of Rule (7)
and Business Unit 1, and 3 are common in associations between this team and
violations of Rules (2), and (5). Note that Rule (8) is checked only in Business
Unit 1.

Violations | BU1 | BU2 | BU3
Rule (1) A-V

Rule (2) V—A V—A
Rule (5) V—-A V—A
Rule (7) V—A | V-A

Rule (8) V—A

Table 9.9: Filtered associations between different violations and team I2Y in the three
business units.

338

Case Study within UWV

9.5.2 Analyzing Combination of Process Related Attribute Val-
ues with Occurrences of Different Violations

Association rule mining helps us find out whether a particular attribute value
assignment is connected with a violation. We use contextual data of violations
(i.e., process and client related attributes) further to detect conditions (i.e., com-
bination of attributes and their values) under which a certain violation may oc-
cur. For this, we choose a combination of attributes and check w.r.t. a specific
rule, how compliant and violating activities differ from each other. We detect
these patterns using the classification techniques presented in Chap. 7. We have
21 data attributes including process related and data related attributes which
force us to consider 22! — 1 combinations of attributes. Classifying violations
and non-violations of a compliance rule with each of these combinations is te-
dious. In addition, we would like to combine attributes such that we would
have the most information gain. An option would be to use a feature selection
technique [45, 90, 154] to choose groups of attributes which are dependent.
However, we used two sources of information for choosing appropriate combi-
nation of attributes. We used domain expert knowledge and also the association
rules we mined previously. Using this information, we chose six different-sized
groups of attributes to check whether violations and non-violations of a com-
pliance rule differ from each other w.r.t. these combination of attributes. The
grouping of attributes is shown in Table 9.10.

From these six groups of combined attributes, we only checked some for
each rule. Because some of the data attributes are local for specific activities. For
instance the attribute call registration which stores how employees registered a
phone call with a client, is local to the activity call. Hence, it is useless to classify
violations and non-violations of activity call (for instance w.r.t. Rule (8)) based
on this attribute value.

After classifying violations w.r.t. different combination of attribute values,
we found very few violating and compliant patterns between the combination
of process related attribute values and different violations. We found also many
situations where compliant and violating activities could not be classified based
on a combination of attribute values. Next we will discuss some of our findings.

We classified violations and non-violations of Rule (1) with the combina-
tion of attributes ‘submission type, application phase, and Team’. We filtered out
detected patterns that had frequency lower than 40, and confidence measure
lower than 50%. Figures 9.9, 9.10, and 9.11 respectively show the violating and
compliant patterns w.r.t. Rule (1) for Business Unit 1, 2, and 3.

As can be seen in Fig. 9.9, the combination of ‘late submission and claim

9.5 Root-Cause Analysis and Dissemination of Results 339

Attribute names \ Grouping

daily wages

working hours/week 1

number of contracts
type of contracts 2
reasons for unemployment

daily wages

working hours/week

number of contracts

type of contracts

reasons for unemployment
entitled for additional allowance

letter title
decision category

submission type
application phase
call registration
team

letter title
decision category
submission type
application phase
team

call registration

Table 9.10: Grouping of attributes for classifying violations versusnon-violations.

340

Case Study within UWV

phase’ together with different teams reveals a compliant pattern in Business
Unit 1. Similarly, we can consider the combination of ‘team I2Y and contin-
uation phase’ as a violating pattern. Note that this result conforms with the
association rules we found for violations of Rule (1) that is shown in Fig.9.7.
However, we can not conclude the same for a specific type of submission as it
seems violations are happening in all three types of it.

Figure 9.10 illustrates the classification of violations and non-violations of
Rule (1) based on the same set of attributes namely: submission type, team and
application phase in Business Unit 2. As can be seen: the information gain in this
tree is very low. Apart from connecting non-violations to late submissions, we
cannot conclude much. The information gain is even lower in Business Unit 3.

gituations where a cam
is required
Compliant-Rule (1) Violating-Rule (1)

Submission type: Late submission Submission type: Early submission
Team: T5 Team: 12Y
Application phase: Claim Application phase: Continuation
Submission type: Late submission Submission type: On time submission
Team: T3 Application phase: Continuation
Application phase: Claim

— — Submission type: Late submission
Submission type: Late submission Application phase: Continuation
Team: T1

Application phase: Claim

Team: 12Y
Application phase: Claim

Submission type: Late submission
Team: T4
Application phase: Claim

Submission type: Late submission
Team: T2
Application phase: Claim

Figure 9.9: Violating patterns that distinguish compliant and violating activities
w.r.t. compliance Rule (1) in Business Unit 1.

9.5 Root-Cause Analysis and Dissemination of Results 341

This result is shown in Fig. 9.11 for classifying violations and non-violations
of Rule (1) with the same set of attributes. However, we can predict that most
probably, after closure and continuation phases are more prone to have violations
of Rule (1). We expect applications in after rejection and claim phases to be
compliant with Rule (1).

We checked if we can differentiate compliant and violating activities w.r.t. com-
pliance Rule (2) and combination of attributes letter title and decision category.

Situations where a call
is required

Compliant-Rule (1) Violating-Rule (1)
Submission type: Late submission Submission type: Early submission
Team: 12Y Team: [2Y
Application phase: Continuation Application phase: Continuation

Submission type: On time submission
Team: 12Y
Application phase: Continuation

Figure 9.10: Violating patterns that distinguish compliant and violating activities
w.r.t. compliance Rule (1) in Business Unit 2.

@tuations where a cal\lx‘

\\ is required /

Compliant-Rule (1) Violating-Rule (1)
Application phase: After Rejection Application phase: After closure
Application phase: Claim Application phase: Continuation
AN AN

Figure 9.11: Violating patterns that distinguish compliant and violating activities
w.r.t. compliance Rule (1) in Business Unit 3.

342

Case Study within UWV

This information helps us understand conditions under which we expect a vi-
olation of Rule (2) to occur. We could detect some patterns that differentiated
violations from non-violations of Rule (2) in Business Unit 1. However, after
filtering for those patterns that have frequency higher than 40 and confidence
measure more than 50%, only one interesting pattern for violations remained.
The decision tree shown in Fig. 9.12 indicates in Business Unit 1 the condition
i.e., combination of ‘etter title: IB17 and decision category: (GU) NIET WERK.
IVM GEEN URENVERL. CQ LOONVERL, under which we expect violations of
Rule (2) to occur. This information can be used for prediction purposes and
improving compliance.

An interesting observation can be made w.r.t. letter title: IB14. This infor-
mation at the first glance seems to be contradictory with the association rules
we mined that connect violations of Rule (2) and letter title: IB14 (Please see
this association rule in Fig. 9.7). This “contradiction” can be explained by the
direction of the association rule that connects violations of Rule (2) with letter
title: IB14. This association is directed towards the value IB14 for letter title
attribute, meaning that violations of type Rule (2) implies that letter title will be
IB14. Therefore, we expect that whenever we observe a violation of Rule (2),
letter title IB14 to be present. The reverse direction may not hold (shown in the
respective decision tree in Fig. 9.12).

We checked other business units as well to see if we can detect distinguishing
patterns between violations and non-violations of Rule 2. We could not detect
any interesting pattern in Business Units 2 and 3.

“/Letters containing a \‘
\fllgh impact deasmy"

Compliant-Rule (2) Violating-Rule (2)
s l N l N
Letter title: 1B20 Letter title: IB17
- Decision category: (GU) NIET WERK.
Letter title: IB21 IVM GEEN URENVERL. CQ LOONVERL
Letter title: 1B14 \
\ J

Figure 9.12: Violating patterns that distinguish compliant and violating activities
w.r.t. compliance Rule (2) in Business Unit 1.

9.5 Root-Cause Analysis and Dissemination of Results

343

9.5.3 Analyzing Client Related Information

Similar to process related attributes, we used client related contextual data to
analyze detected compliance violations further. Hence, we mined all the as-
sociation rules between different values of client related data attributes and
different type of violations. We used the same filtering procedure as before to
keep important association rules (i.e., association rules with frequency higher
than 40 and strength metric more than 0.3). As shown in Table 9.8, the resulting
association rules mined after filtering are 30, 31, and 37 respectively for Business
Unit 1, 2, and 3.

Figure 9.13 depicts the association rules that we mined between different
violations and client related attributes in Business Unit 1. As explained earlier,
the brown ellipses in the middle titled with the compliance rule numbers, show
the violations of different compliance rules. The other nodes refer to values of
different attribute values and they are grouped based on different attributes.

From nine client related attributes we found connections between violations
and six of these attributes in Business Unit 1. In general we can say that we did
not find strong relations between characteristics of clients and different viola-
tions. This suggests that violations are almost independent from client profiles.
This message was positively received by UWV since it shows that employees
are not biased towards specific clients. Therefore, improvement in compliance
will be achievable by taking corrective measures in the underlying business pro-
cesses and providing better information system support. The details of associa-

working hours/week

no value

» >
7 SR Pl
i DTS -~ |
7 SOSS 7 /1
o o 3 % e 2 S E %
. S/
-~ NN \7/' !
s Rule (2)- Rule (5)- -< . X 1
Rule (3 - LN X
Rul;” ule (3) @’ B (c(a) _Wic(E) .{‘”'(e“”' - Rule (5)- .’::';)‘5’ /ﬂxule(l)*‘ @Rule (8)
[o{8) _ Rule (2)-
Lc (B)
o 04g 5 0% F & o 2 :
L]
. ==
) -\ [Z |
[J - N

0-24 project closure-

daily wages contract not extended

reasons of unemployement

Figure 9.13: Association rules mined between different violations and client related at-
tributes in Business Unit 1.

344 Case Study within UWV

tions mined are discussed in Appendix D.

9.5.4 Analyzing Combinations of Client Related Attribute Val-
ues with Occurrences of Different Violations

We checked different combination of attribute values to see if we can find vio-
lating patterns that distinguish compliant and violating activities w.r.t. a specific
compliance rule. Next, we will discuss a few of these combinations that were
more interesting than others.

For instance we checked if we can differentiate compliant and violating ac-
tivities w.r.t. compliance Rule (1) and combination of attributes ‘average working
hours per week, number of contracts, type of contact, and business sector’. This
information helps us understand conditions under which we expect a violation
of Rule (1) to occur.

The classification of violation versusnon-violations shown in Fig. 9.14 indi-
cates for Business Unit 1, the conditions (i.e., combinations of attribute values)
where violating and compliant activities w.r.t. Rule (1) are distinguished.

As can be seen in Fig.9.14, cases that were compliant with compliance
Rule (1) have typically ‘average working hours: [0—3]" and ‘business sector:
J.Uitzend’. The information on their type of contract was missing. We also found
some violating patters among cases that were violating compliance Rule (1). For
instance, we can expect cases having ‘(40 —43]” average working hours per week
in financial services with regular employment contract’ to violate Rule (1).

The same analysis for Business Unit 2 did not yield interesting results. Fig-
ure 9.15 illustrates for Business Unit 3, violating and compliant patterns w.r.t. com-
pliance Rule (1) and discussed combination of client attributes.

As is shown in this classification, one of the interesting violating patterns is
related to the combination of ‘[75—99]" for daily wages, ‘(36 —39]’ for average
working hours per week, ‘project closure-contract not extended’ for reasons of
unemployment and ‘regular employment contract’ for type of contracts.

9.5.5 Summary of Observations from the First Study

Conducting the first study, we got many insights about the violations and their
possible reasons. We conducted several workshops with domain experts in Busi-
ness Unit 1 to discuss the results. During these discussions the management of
Business Unitl was present. The presence of domain experts varied depend-
ing on their work load. The interesting result is that, the presence of domain

9.5 Root-Cause Analysis and Dissemination of Results

345

experts in workshops is reflected in the results of the follow-up study. Within
these workshops discussions were mostly focused on the results we obtained in
Business Unit 1. Nevertheless, we discussed the results of other business units
with Business Unit 1 as well.

Domain experts also found that violations are more dependent to the pro-
cess of ‘handling unemployment benefits’ itself rather than client characteristics.
We received positive feedbacks from domain experts and management team in
UWV such as: “compliance checking make our assumptions concrete and mea-
surable”, or “compliance checking provides us with a lot of detailed information
that we can act upon”, or “we knew we are not always calling our clients on
time, but we did not know how compliant or violating we are” or, “in addi-
tion to the interesting insights that compliance checking provided us with, the
project started a big discussion inside the organization about the definition of
letters containing high impact decisions”.

UWV started some measures to improve compliance based on the results of

(Situations where a cam
\sreared)
Compliant-Rule (1) Violating-Rule (1)
Avg. working hours per week:0-3 Avg. working hours per week: no value
Type of contract: no value Number of contracts: 1
Business sector: J.Uitzend Business sector: retail and whole sale

Avg. working hours per week: no value
Number of contracts: 1
Business sector: financial services

Avg. working hours per week: no value
Number of contracts: no value

Type of contract: no value

Business sector: J.Uitzend

Avg. working hours per week: 40-43
Business sector: financial services
Type of contract: regular employment contract

Figure 9.14: Violating patterns that distinguish compliant and violating activities
w.r.t. compliance Rule (1) in Business Unit 1.

346

Case Study within UWV

our first study. Some of these measures have been implemented improvement
yet. Several ideas and proposals are still being discussed at different layers
of the organization to get approved and executed. Nevertheless, the results
have been acted upon by UWV. In the following we will discuss some of these
measures.

UWV launched a regular report on compliance for the first four compliance
rules. This report gets distributed monthly in all business units throughout the
whole country to raise awareness about the importance of these rules and help
different units to observe and monitor their compliance status. This report pro-
vides detailed statistics about the violations of the first four compliance rules.
In addition UWV has started an internal discussion to improve the guideline on
‘call clients before high impact decisions’. The management of Business Unit 1
set target KPIs within the organization to improve compliance w.r.t. first four
rules and the performance of teams are subject of job evaluations. Several ideas
and proposals also discussed to improve information systems to support em-

e
(Situations where a ca“

\\ is required /

Compliant-Rule (1) Violating-Rule (1)
Business sector: J.Uitzend Avg. working hours per week: no value
Reasons for unemployement: no value Reasons for unemployement: no value
Daily wages: 50-74 Daily wages: 25-49

Avg. working hours oer week: 0-3 Avg. working hours per week: 36-39

Reasons for unemployment: no value Reasons for unemployment: project closure-
Daily wages: 0-24 contract not extended

Daily wages: 75-99

Type of contract: regular employment contract

Avg. working hours per week: no value
Business sector: J. Uitzend

Reasons for unemployment: no value
Daily wages: 75-99

Type of contract: no value

Figure 9.15: Violating patterns that distinguish compliant and violating activities
w.r.t. compliance Rule (1) for Business Unit 3.

9.6 Follow-Up Analysis

347

ployees better for assigning cases to appropriate teams and registration of the
calls. In addition, initial ideas for a project to bring compliance checking in an
online setting in UWV is discussed among higher management of UWV. UWV be-
lieves that such a system can warn the employees during the execution of cases
whether some compliance rule is getting violated. Hence, employees would be
able to take preventive or corrective measures earlier.

9.6 Follow-Up Analysis

After sharing our analysis results with domain experts in Business Unit 1, we
repeated the analysis for the data of June and July 2015. We set up the case
study as we did for the first study. We checked the same compliance rules for
the three business units as in the first analysis. Clearly an impact of the analysis
is shown in the results of the follow-up study. We saw a remarkable improve-
ment in compliance related to Rule (1), (2), (3), and (8) in Business Unit 1. The
compliance w.r.t. Rule 5 showed a small improvement. The compliance related
Rule (4), (6), and (7) decreased for interesting reasons. The improvements are
not seen in other business units in the follow-up study. Either they did not im-
prove or the compliance deteriorated. Next, we will discuss our observations
from the follow-up study and will elaborate on the reasons caused the observa-
tions as such.

Business Units | # Cases | # Events

BU1 27650 94979
BU 2 34210 116031
BU 3 33614 128289

Table 9.11: Number of cases and events in datasets of each business unit

We extracted the case study data sets of the follow-up study for all the three
business units as we did for the first study. Table 9.11 shows the number of cases
together with the number of events that we analyzed in the follow-up study for
each business unit.

Table 9.12 summarizes the result of the follow-up analysis for the three
business units. The Total column shows the total number of rule instances of
each rule and Violations shows the frequency of violations per compliance rule.
Change indicates the change in the frequency of violations, with (-) indicating

Case Study within UWV

348

0@ 0@/ Q\@ 0@ G/An.u/ 0@ Q\f\l/.J @@
I N P O P A
Violation 51% 59% 12% 27% 14% 13% 29% 9%
BU 1 | Total 3846 3846 3846 6850 6944 3064 3409 678
Change - 7% - 7% -11% +17% -1% + 5% +27% -23%
Violation 46% 54% 22% 17% 15% 12% 32%
BU 2 | Total 4640 4640 4640 7081 8888 4198 4416
Change +14% +11% 0% - 6% 0% + 4% + 30%
Violation 57% 68% 34% 4% 16% 15% 31%
BU 3 | Total 7621 7621 7621 13667 11233 3509 3582
Change + 3% + 2% - 4% + 2% -2% + 5% + 28%

Table 9.12: Follow-up study, summary of violations per compliance rule in three business units.

9.6 Follow-Up Analysis

349

decrease in violations and improvement in the compliance level and (+) show-
ing an increase in violations.

Comparing results of the first analysis and the follow up analysis for com-
pliance Rule (1).

As can be seen in Table 9.12, the result of our analysis w.r.t. first compli-
ance Rule (1) shows 7% improvement of compliance in Business Unit 1 as the
A group in our case study. We see an increase of 14% and 3% in violations
respectively for Business Unit 2 and Business Unit 3.

We expected an improvement for Business Unit 1, however, we did not ex-
pect an increase in violations of other units. That is, we expected ‘no change’
or ‘a slight change’ in other units. We discussed our observations with domain
experts in Business Unit 1. They informed us about the enforcement of a new
national law in the unemployment process that caused business units to focus on
the introduction and enforcement of this new law in their operations. As a re-
sult, many employees in all the business units over the country are participating
in several training and are busy with adjusting their daily operation with the
implementation of the new law. Consequently, the rule “call before high impact
decision requirement” got less priority during this period. The increase in vio-
lations of other business units may be related to being less attentive about this
requirement during this period.

Note that, the new law is introduced in all the three business units including
Business Unit 1. Despite the distraction caused by the introduction of a new law,
we see a strong improvement in compliance level of the Business Unit 1 due to
the compliance analysis project.

Comparing results of the first analysis and follow up analysis for compli-
ance Rule (2).

Similar to compliance Rule (1), we observe an improvement in compliance re-
lated to Rule (2) in Business Unit 1 as the A group in our case study (See Ta-
ble 9.12). In other business units, we see an increase in the percentage of viola-
tions; 11% and 2% respectively for Business Unit 2 and 3. Again we expected ‘no
change’ or ‘a slight change’ in these business units. However, as we explained
earlier, we speculate that the introduction of the new law in the organization
has caused Business Unit 2 and 3 to mobilize their resources and attention to
implementation of the new law.

350

Case Study within UWV

Comparing results of the first analysis and follow-up analysis for compli-
ance Rule (3).

Table 9.12 also compares for each business unit the result of our analysis from
the first study and the follow-up study w.r.t. compliance Rule (3). As can be seen
the result of our analysis shows an 11% improvement in Business Unit 1 as the A
group in our case study. We see no or a slight change in other units. This result
is in line with the fact that we only shared the results of analysis with A group.

Comparing results of the first study and follow up study for compliance
Rule (4).

As can be seen in Table 9.12, our analysis showed a 17% increase in violations
related to Rule (4) in Business Unit 1. We did not expect this result for the A
group in our case study, rather we expected an improvement. We found out that
the increase in number of violations of Rule (4) is related to the definition of this
rule and Rule (3). Rule (3) states that “the calls before high-impact decisions
must be registered as high impact.” This rule encourages the employees to
register the calls as high impact. Whereas Rule (4) states: “regular calls must
not be registered as high impact.” This rule encourages the employees not to
register calls as high impact wherever it is not necessary. Note that, Rule (4) has
less priority for UWV than Rule (3). Consequently we observe that employees
are overdoing Rule (3) and register calls as high impact even when it is not really
necessary. This led to a dramatic increase in violations of Rule (4) in Business
Unit 1 compared to other units that were not aware of the case study.

Comparing results of the first study and follow up study for compliance
Rule (5).

Table 9.12 also compares for each business unit the result of our analysis from
the first study and the follow-up study w.r.t. compliance Rule (5). As can be seen,
we observe only a slight improvement (1%) in compliance related to Business
Unit 1 as the A group in our case study. We knew that compliance Rules (4), (5),
(6), (7), and (8) had less priority in our case study compared to the first three
rules. Therefore, except for the first three rules and Rule (8), we did not discuss
their results in detail during the dissemination of the results. Consequently, we
did not detect a major improvement w.r.t. these rules.

Table 9.12 shows no change or slight improvement in the result of other
business units.

9.6 Follow-Up Analysis

351

Comparing results of the first study and follow up study for compliance
Rule (6).

Similar to previous rules, the comparison of results from the first and follow-up
study w.r.t. compliance Rule (6) is shown in Table 9.12 for each business unit.
We observed almost 5% increase in the number of violations related to this rule
in all business units. We discuss these results with domain experts in Business
Unit 1. They speculated the increase in violations of Rule (6) also refers to the
introduction of the new law in UWV. However no concrete conclusion was made
on these results.

Comparing results of the first study and follow up study for compliance
Rule (7).

Table 9.12 shows for all the three business units a drastic increase (between
27% to 30%) in the number of violations related to Rule (7). We discussed
these results with domain experts in Business Unit 1. They could not recall any
specific change in the organization that may have caused this result. Note that,
this compliance rule is enforced by the system. Hence, in general no violation
is expected for this rule.

To find out what could have caused this drastic change, we analyzed the
history of the compliance related to this rule. The result of this analysis from
1% January 2014 until 15'August 2015 is shown in Fig. 9.16. As can be seen, all

1318 1410 1514 1614 1720 1814 1916 11018 1118 11214 1115 1215 1315 1415 1535 1615 1715 1815

| S 4
first study follow- up study
Business Unit 1
Business Unit 2
Business Unit 3

Figure 9.16: History of violations of Rule (7) in three business units.

352

Case Study within UWV

the three business units follow the same pattern. The violations show a sudden
increase from last week of December to first week of January and from last week
of June to first week of July. This pattern is repeated for all the three units. We
indicate in this figure, the periods where the data of the first study and the
follow-up study is taken. As you can see, the data of the follow-up study falls in
the period where there is a sudden increase of violations. Hence, the average
of violations for Rule (7) is much higher in the follow-up study compared to the
first study.

We discussed the detected pattern with domain experts in Business Unit 1.
We could not find a concrete reason why these sudden changes are observed.
However, we speculate that these changes are related to accounting reference
periods, therefore some weekly benefits have ended in days other than a Mon-
day.

Comparing results of the first study and the follow up study for compliance
Rule (8).

As mentioned earlier, the results of the root-cause analysis of Rule (8) were
discussed in detail with domain experts. As a result, we see 23% improvement
in compliance related to Rule (8).

9.7 Related Work

For this chapter, we reviewed case studies that were conducted in three main
domains: compliance checking and improvement, business process improve-
ment, and analyzing and improving business processes using process mining
techniques.

Most of the case studies we found in compliance, focus on introducing new
regimens and incorporating controlling tasks and procedures within business
processes to restrict the executions of non-compliant behavior.

The paper in [125] reports on a case study that aims at improving com-
pliance of a warranty billing business process of a car dealing company using
Six-Sigma DMAIC 2 approach. In this project available metrics to measure com-
pliance of the process are reviewed and redefined to better evaluate relevant
compliance constraints. Data were collected based on the new metrics and in-
clude stored data and interviews with respective people in charge. Based on the

2DMAIC stands for: Define, Measure, Analyze, Improve, and Control.

9.7 Related Work

353

analyzed data, new controlling tasks were introduced in the process. Finally,
the improvement of compliance based on new metrics is analyzed. The project
included structural changes in the process together with several training to in-
troduce changes and new ways of working to employees. Although a generic
and structured approach (Six-Sigma) is followed in this project for compliance
improvement, the root-cause analysis of the study is specific to the underlying
warranty process and must be redesigned for a different process. In addition
this analysis is not automated and can only be done by domain experts familiar
with the process.

The paper in [72] reports a compliance improvement project in health care
domain. The authors sought to improve compliance by constructing a central-
ized database of guidelines. The authors evaluate the project successful, how-
ever, keeping the database up to date remains a difficult task. The improvement
of compliance using the centralized guideline is not quantified in this paper.

In [100], a case study is documented that evaluates compliance measures
placed by authorities of Marine Protected Area management (MPA) in New
South Wales. Measuring the “level of compliance” is considered as an impor-
tant key performance indicators of success in MPA management. Authorities,
placed several compliance improvement strategies. A study based on data anal-
ysis conducted to demonstrate the effectiveness of the compliance improvement
strategies. The data analyzed include the number of enforcement actions (made
up of written warning notices, penalty infringement notices and prosecutions)
during a financial year for each marine park. For the purposes of this study,
enforcement action types were pooled such that they included all offence types
(e.g. fishing in a marine sanctuary, undersize fish, or illegal gear use) and ac-
tions taken (warning and infringement notices and prosecutions). Patrol effort
was recorded in 0.5 hours slots per patrol type per day and was spatially recor-
ded.

Five measures were defined for compliance, quantified based on the number
of attacks and surveillance efforts required in an effective MPA management. To
demonstrate the value of enforcement data in effective MPA management, more
than 5000 enforcement actions from 2007 to 2013 from five New South Wales
Marine parks were analyzed. The paper concludes that one of these compliance
measures is not satisfactory. The analyzed data also revealed large differences
in compliance rates among different age groups.

The authors provide the findings from compliance monitoring into compli-
ance planning to improve MPA performance. Differences in the number of of-
fences were compared among marine parks using a repeated-measures general
linear model followed by Bonferroni-corrected LSD pair-wise post-hoc tests. An-

354 Case Study within UWV

alyzing this data, the age demographic of offenders was understood. This in-
formation were used to adjust compliance strategies such as training and other
forms of education with age-cohort behavioural patterns. The analysis resulted
in changing of some of the compliance measures as well. The authors conclude
that there was no consensus on the best way of measuring the success of a
compliance program. However, their results show that evaluation of enforce-
ment data can provide useful insights that can enhance compliance programs
necessary for conservation of biodiversity in MPAs.

The paper in [61] discusses two strategies (namely control-based and commitment-
based) to enforce traveling compliance in corporate companies. The study was
done by comparing compliance results and costs and benefits of each strategy
in several companies. The data for this study were obtained from several inter-
views and records of financial transactions. The study concludes that a combi-
nation of strategies scores better in all these criteria. This study does not follow
a generic compliance checking approach and is not automated.

The business process improvement projects differ from each other either on
their principles and techniques, or on the target area on which the improve-
ments are focused.

A business process improvement framework is introduced in [35]. This
framework extends business process management lifestyle on its evaluation
phase. The integrated approach enables contagious improvement of business
processes by analyzing executions of processes w.r.t. a set of KPI-like metrics.
The metrics cover the devil’s quadrangle including time, cost, quality and flexi-
bility. The feasibility of this approach is showcased in a case study. The authors
report on improvement points their approach can detect by analyzing the ex-
ecutions of business processes. The report does not contain the results after
improvement.

The paper in [6] reports a case study to improve maintenance management
procedures in an airport. This case study leveraged the ITIL-based 3 five stages
improvement process. The project included identification of maintenance man-
agement sub processes, definition of KPIs to measure the process performance,
collecting data, analyzing data and suggesting improvement actions. The paper
unfortunately does not report on the improvement achieved after the case study.

A business process improvement technique (Tabular Application Develop-
ment (TAD)) is introduced in [28]. The approach focuses on identification of
business processes and modelling them using a UML-like activity diagram. The
diagram leverages swim lanes to assign activities to specific organizational units.

SInformation Technology Infrastructure Library

9.7 Related Work

355

Some meta information about the activities such as estimated duration and cost
are documented for activities in a separate table. Finally, an object model is
created based on the modelled activities and is used for implementation. TAD
framework aims at improving business processes by systematic identification,
design and implementation of the model. However, the authors do not show-
case whether using this approach led to an actual improvement in a real busi-
ness scenario.

The authors of [71] propose a decision model that enables the selection
and evaluation of a BPM road map. BPM road map is a portfolio of scheduled
projects with different effects on business processes. This decision model helps
companies to decide about execution and priority of business process improve-
ment projects and projects that target developing of BPM capability (i.e., the
skills to employ BPM methods and tools for business process change). In essence
this model can be used to evaluate the impact of a compliance improvement
project in a portfolio of business process improvement projects. However, the
assumptions on the setting of the framework has simplified real world projects
to great extent. For instance, it is assumed only one project to be implemented
per period in a company which is far from reality especially in large organiza-
tions. Second, the authors assume limited set of parameters to define a project
in their framework. These parameters are project quality, time, and sale’s price
of the project output, all estimated as a single value.

Several case studies are conducted to showcase the applicability of process
mining techniques in analysing and understanding processes. One of the first
case studies is reported in [139]. Here, the authors employ process mining tech-
niques to understand control-flow, organization, and case perspective of provin-
cial offices of the Dutch national public work department. In [124], authors
focus on understanding the organization perspective of a process in a Dutch
municipality.

To analyze process time, two cases studies are reported in [140]. The au-
thors introduce a novel approach for predicting the completion time of running
cases. In this approach the data is divided into a learning set and a test set and
the focus is on the quality of predictions.

A case study paper in [51] studies the applicability of process mining tech-
niques in real-life event log taken from telecom industry. The event log repre-
sents a highly flexible process. The authors compare the applicability of various
techniques w.r.t. several criteria such as accuracy (i.e., the extent to which the
induced model fits the behavior in the event log and can be generalized towards
unseen behavior), comprehensibility (i.e., the extent to which an induced model
is comprehensible to end-users), and justifiability (i.e., the extent to which an

356

Case Study within UWV

induced model is aligned with the existing domain knowledge).

The authors of [128] developed a technique to discover interaction in an
email-driven business process. Analysis of the discovered interactions provides
insights about the interactions structure and resources involved in each interac-
tion. They can detect active and passive participants, duration of interactions
and message size of each interaction. These insights can be used to improve the
underling business process. The authors validate the feasibility of their tech-
nique in a case study. However, the paper does not report whether the insights
obtained using this technique led to an actual improvement in the analyzed
business process. In addition the technique is only beneficial for organizations
where email is (one of) the most important communication media for human
collaborations.

Unlike many case studies mentioned before, the authors of [110] analyze
highly unstructured event data. This paper reports on a case study that was
conducted on the testing process of manufacturing wafer scanners*. The au-
thors employ various process mining techniques to analyze this process and
suggest improvement measures.

The paper in [129] reports on a case study conducted in health care. The
authors analyze and compare a process for which event logs are obtained from
four hospitals. There exists some common grounds with our work in the sense
that they analyze the differences and commonalities between different hospi-
tals. The authors also discuss the challenges they faced during the analysis and
suggest strategies to overcome some of the challenges. In [63], a case study in
health care domain is showcased. The authors first list a set of questions usu-
ally posed by medical professionals. By means of a spectrum, different types of
event data found in health care information systems are discussed to elaborate
what type of event data allows for answering the questions posed earlier.

In [20] a six-step methodology for analyzing and understanding processes
was introduced. This methodology includes log preparation, log inspection,
control-flow analysis, performance analysis, role analysis, and transferring re-
sults. The methodology is employed in a case study in public sector. Various
process mining techniques are used for each step in this study.

A process mining success model was introduced in [82]. The model consists
of success factors in three main categories; project specific factors, information
systems related factors, and process mining related factors. The model also
includes success measures to evaluate a process mining project. The success

4ASML is the world-leading manufacturer and world largest supplier in the semiconductor in-
dustry.

9.7 Related Work

357

measures include: model quality, process impact, and project efficiency. Note
that model quality refers to the output of a process discovery project, whereas
if we consider various process mining projects such as conformance checking
or process performance analysis and enhancement, this measure will refer to
evaluating the quality of outputs of such projects as well.

The authors of [127] discovered an invoice verification process of SAP in a
company using Causal Net Miner. The authors are able to analyze the mined
model w.r.t. the finding frequent patterns and paths in the process, the pro-
cess paths that took the longest time versusthose took the least time, and pro-
cess paths where essential controlling activities were missing for them. Their
findings are provided to process owners for improving the analyzed process.
However, the case study does not report any follow up study to check whether
process improvements achieved based on these finings or not.

Among the case studies that analyzed process execution data of business
processes, only few focus on improvement of process compliance. Most aim at
improving business processes in general. The compliance checking technique
using constraint-behavioral profile conformance metrics introduced in [146] is
an exception. However, in this approach contextual data available in the process
are not considered for root-cause analysis of detected violations. Understanding
the deviations in this technique heavily depends on the knowledge about a con-
crete process. The authors tested the feasibility of the technique in a case study.
The paper reports on compliance analysis of a process using proposed metrics.
The analysis was not followed with a second study to measure the impact of
the diagnostics provided by this approach in compliance improvement of the
underlying business process.

Many of the compliance and business process improvement projects dis-
cussed in this section were designed and tailored towards a specific project.
Our compliance analysis approach is generic and was not developed specific for
UWV. Therefore, we can apply our compliance approach also to other organi-
zations and processes. In addition, in some of the case studies discussed above
(especially those used process mining techniques for improving processes), the
analysis was focused on detecting bottlenecks and compliance problems. How-
ever, this analysis was never followed by any second analysis to report on actual
improvements after recommending changes (this was done in our case study).

358

Case Study within UWV

9.8 Conclusions and Lessons Learned

This chapter aimed to provide a deeper understanding of the benefits and chal-
lenges of a compliance improvement project in a highly rule-driven business
process. We collected and specified eight compliance rules for unemployment
handling business process. We designed a split test (A/B) to measure the im-
pact of our approach in compliance improvement in three business units. We
collected a data set for each business unit and analyzed these against the speci-
fied compliance rules. Within the bounds of this case study, our analysis results
show using our compliance elicitation technique:

* we are able to specify different compliance rules precisely,
* we are able to check compliance rules of different types,

* we can provide detailed diagnostics about violations of each rule and an
overview about overall compliance, and

* our root-cause analysis approach guides end users to hypothesize about
the causes of different violations and helps them direct their compliance
improvement initiatives.

We discussed the results of our first study with domain experts and manage-
ment of business Unit 1. We repeated the same study with a new dataset for
each business unit after some time. Our results show remarkable improvements
in compliance results of the rules that were discussed in detail with domain
experts and were of a high importance for the management.

The most challenging part of this study was the specification of the relevant
compliance rules. Although we had good expertise for specifying them, compli-
ance rules in many situations are subject to several exceptions and interpreta-
tions that make it difficult even for business owners to agree on a definition for
a rule. Yet, the precise specification of these rules is very important for differ-
entiating what is compliant or violating. Even more important, it helps domain
experts to adhere to the rules.

The impact of the precise definition of compliance rules does not end here,
but data requirements should be defined accordingly as well. This process can
go through several iterations and it may lead to redefinition of rules as well.
The choice of data attributes that need to be included in the datasets are very
important. There are several data attributes that are mandatory to include in
the dataset as they are used for checking the rules. When definition of rules

9.8 Conclusions and Lessons Learned

359

changes, new attributes may become relevant for the analysis. In addition, we
need to select carefully other contextual data to include for root-cause anal-
ysis. Note that sometimes causes for violations lie outside the process being
analyzed. Therefore, it is necessary to collect relevant data as much as possi-
ble and enrich the event log accordingly. The more data the richer the analysis
will be. However, there is a trade-off. If the additional data attributes are not
chosen carefully, the technique may find relations between data attributes and
violations that do not provide much business insight.

In our analysis, apart from technical challenges of handling a large event
log, too much data may lead to many results. Consequently we needed to
spend enormous time and energy to analyze the results from business perspec-
tive to be able to extract important information from them. So far, we used
specific data analysis techniques (association rule mining and classification) for
our root-cause analysis approach. An option to tackle too many results could be
using a group of techniques for the same type of analysis and concluding based
on the combination of outcomes. For instance, for evaluating the strength of
association rules, currently we are using Conditional probability Increment Ra-
tio (CPIR) [152] metric. However, computing a combination of metrics such
as support, confidence [12], and lift (interest) [22] together with CPIR would
provide us the possibility to filter out association rules better and focus only on
those that are scored high by all the metrics.

Another challenging part of a data analysis project is to provide a more tai-
lored visualization of the results for domain experts. Interpretation of analysis
results by domain experts adds valuable insight to any data analysis project and
is very important. Therefore, it is crucial to visualize results of the analysis such
that it is easier for domain experts to comprehend and discuss them. We used
several ways to show our results and discuss them with domain experts. These
initiatives include reporting to domain experts using tables, bar charts, differ-
ent types of graphs, and textual format of results. However, we found out that
organizing workshops and discussing the results together with domain experts
has been more efficient than expected. Domain experts have problems reading
graphs, tables, and charts on their own. Discussing the results in workshops
opened up new perspectives and gave us and domain experts more insights
about them. For instance, for discussing the important associations between
violations and their contextual data, we found simpler and more compact visu-
alization of analysis results. For example, the graphical representation we used
in Fig. 9.7 together with complementary bar charts (see an example in Fig. 9.8)
provided a good basis to discuss the results in a workshop.

We observed that organizations are dynamic ecosystems that are under con-

360

Case Study within UWV

stant change. Hence, it is of utmost importance to choose right timing for a
business process improvement project and target right people to minimize the
impact of these changes on the result. Moreover we understood that changing a
complex process (e.g. handling unemployment benefits), is time consuming and
requires support of different levels in an organization.

Chapter 10

Conclusions and Future Work

This final chapter concludes the thesis. In Sect. 10.1, we summarize the main
contribution of our compliance analysis approach. Section 10.2 discusses the
limitations and open problems. Finally, we sketch our ideas for future research
in Sect. 10.3.

10.1 Contributions of the Thesis

In this thesis we introduced an approach for analyzing compliance of a business
process. Our approach covers different phases of the compliance management
life cycle introduced in Sect. 1.3. First of all, we advocated the idea of managing
compliance separately from business process management. Hence, the changes
in each of them (BPM or CM), will not impact the other and thereby increases
the maintainability.

We have developed various techniques in our proposed compliance analysis
solution. Figure 10.1 highlights the main contributions.

Conclusions and Future Work

LHOISNI

uolieziwidQ 3dUBWIOId

g Suppay) sdueldwo) uoned||3 ddueldwod

susaned Joireyaq

Jueldwod/3une|oIn _J
3 I uleJ}Suod
uawusi -
! 1 P 2oueldwo)
umss $3|NJ UOIIe1DOSSY j
aa —
T - 2oueldwo) A|.¥ suomawiely
o [} — T JUleIISUOD
>
- 2oueldwo;
nsieIs uawusy e 1| o)

-
-

~

ejeq aouejjdwo)
@ Sunessau JuaWYILUD
807

SIUAAD paIsse)

362

Juawanosdw] sishleue asnea-j00y \ /

2oueldwo) uanold uon9lep

uone|oIn

uonesedaud
807

7

sisAjeuy asne)-100y

7 Bunppayd soueldwod mojy-|os3uo)

T
i Bupjoay 2o ue|dwod jesodwa |

T
7 Bunjoayo adueljdwod 32inosal pue mumoi

Figure 10.1: The main contribution of this work are highlighted in the thesis road map.

10.1 Contributions of the Thesis

363

Compliance Elicitation and Specification

The compliance constraint framework presented in Sect. 3.1 helps us to decom-
pose complex compliance constraints to several individual rules each confining
a perspective of a business process. We offered three collections of compliance
rules for modelling control-flow, temporal, resource and data-aware compliance
rules. We did an extensive literature study to include various rules from liter-
ature and practice in the rule repositories. We introduced a semi-automated
technique for formalizing each control-flow and temporal compliance rule as
a compliance pattern that can be directly used for compliance checking. This
technique is supported by a tool and enables business users to formalize rules
without being exposed to the technicalities of the formalization language used.
Furthermore, we discussed the situations where a set of compliance rules should
be modelled as a set of atomic compliance patterns or a as a composite compli-
ance model and explained in details the advantages and disadvantages. Either
way, the impact on other phases of the compliance analysis solution is explained.

Compliance Checking

Our approach includes dedicated techniques for checking compliance of control-
flow, temporal, resource and data-aware compliance rules. Yet, all the tech-
niques follow the same procedure including: log preparation, violation detec-
tion and log enrichment. However, the sequence of these steps and their repe-
tition are customized in each checking technique to cover the requirements of
checking rules from different process perspectives. Using these checking tech-
niques, we can detect all violations from different process perspectives. The
diagnostics we get include the exact location of violations, and the compensa-
tion value for a violation while the impact of the proposed value is considered
on the compliance of the process globally. That is, the compensation value is
proposed such that it minimizes the total number of violations and the amount
of deviations globally. All the proposed checking techniques have been imple-
mented and were evaluated on real life event logs.

Compliance Checking in Large Event Logs

During the development of the checking techniques, their applicability on big
data have been considered. The alignment technique which our compliance
checking procedure approach is based on, requires solving optimization prob-
lems (e.g. an ILP problem). As the number of distinct activities and the average

364

Conclusions and Future Work

trace length increases in large event logs, the complexity of these problems
increases and thereby performance issues can arise. Our approach makes it
possible to focus on a subset of activities and attributes that are confined by a
compliance rule and abstract from all other information in the log. Typically,
compliance patterns have only a few number of distinct activities and usually
have a very simple structure. Furthermore, we shorten the traces during log
preparation wherever the presence of events are not necessary for checking
a rule. These optimization measures make our compliance analysis approach
suitable to be applied in large datasets. For instance checking compliance of
the dataset of one of the business units we used for case study (presented in
Chap. 9) with over 100000 cases and over 35 attributes did not take longer
than a few seconds.

Integrating Compliance Data in Compliance Database

Checking compliance rules one by one will lead to several checking results that
needs to be combined to get a complete picture of compliance of a business
process. We introduce a framework to integrate compliance data from different
sources in the ‘compliance database’. Compliance database gives us the flex-
ibility to explore compliance data from different dimensions and on different
abstraction levels. We can query compliance data based on even complex cri-
teria. The result of these queries are subsets of events/move that can be used
for further analysis including: (1) producing various statistics and reports, (2)
root-cause analysis, and (3) generating enriched sublogs with diagnostics.

Providing Insights about Non-Compliance

The last phase of our compliance analysis approach leverages various data an-
alytic techniques to do root-cause analysis on detected violations. Association
rule mining is applied to detect meaningful relations between violations and
their context. These relations are shown to business users as list of problems
in textual format. This list is ranked based on the importance of violations and
the significance of the relation detected between a violation and its context. In
addition, we apply classification techniques to detect patterns that differentiate
violating and compliant patterns. This helps us understand the commonalities
between violations (i.e., the conditions that are present when a certain viola-
tion occurs) and similarly the commonalities between non-violations (i.e., the
conditions that are present when no violation occurs). This information has

10.2 Limitations

365

predictive value and can help us to predict when a certain violation occurs. Fur-
thermore, we provide descriptive statistics describing the severity of violations
on different abstraction levels. The family of root-cause analysis techniques are
implemented and evaluated on real life event logs.

Proved Impact on Compliance Improvement

We have evaluated each component of our compliance analysis approach on
real life event logs. We did this for each component separately, but also used the
complete solution in a large case study. This experiment was designed to check
the feasibility of our approach and applicability of its findings for improving
compliance in a real business case. We did the experiment in collaboration with
Dutch Employee Insurance Agency (UWV). The experiment was conducted in
three business units of UWV using A/B testing. A set of compliance rules (of
various types) was chosen and each rule was checked in all the three business
units. One of the business units (A group) was informed about the results of
our analysis and we did not distribute the results to the other two units (B
group). The case study continued with a follow-up study using new datasets.
We monitored and compared the changes in the compliance state of different
business units. The results of the analysis showed that using our approach,
we can provide detailed diagnostics and enable root-cause analysis to improve
compliance. The compliance state w.r.t. some of the compliance rules showed
up to 28% improvement in A group, the same effect was not observed in other
business units. We received positive feedback from domain experts about the
applicability of the approach and UWV is planning to incorporate our approach
of compliance analysis in its daily operations.

10.2 Limitations

In this thesis, not all the problems and open questions w.r.t. compliance man-
agement have been fully addressed. In this section, we discuss problems that
when solved, would make our compliance analysis approach more complete.

Compliance elicitation and formalization. Although the compliance elicita-
tion component of our approach enable business users to specify and formalize
informal compliance constraints to great extent, formalizing informal text of
compliance constraints still remains a challenge. The compliance rule collec-
tions (chapters 4, 5, and 6) include comprehensive lists of compliance rules,

366

Conclusions and Future Work

however, in practice new rules or combination of rules may be used that cannot
be foreseen. Yet, the repositories are extendible. The elicitation technique dis-
cussed in Chap. 4, is based on the collection of compliance rules in the control-
flow compliance rules repository and may need to be extended accordingly.
However, the maintainability of this technique is not straightforward. The con-
figurable patterns that are used for specifying a concrete compliance rule can
be extended easily, however, the questionnaire for selecting a specific config-
urable pattern and its configuration options should be updated for each new
pattern and configuration option added to the repository. Furthermore, we did
not validate this approach with end-users.

Compliance checking. The compliance checking techniques we employed in
our approach aim at explaining the most probable scenario of non-compliance.
For this, the techniques solve an optimization problem based on various costs
that are assigned to violations. Tuning this cost function can lead to different
solutions. Hence, sometimes domain knowledge is required to understand the
best explanation for a violation. This problem has been discussed extensively in
sections 4.1.1, 5.6, and 6.5.

Root-cause analysis. In our root-cause analysis approach, we use contextual
data of violations, i.e., other data attributes and their values present at a violat-
ing event or its neighbouring events. We leverage association rule mining and
classification techniques to detect possible meaningful relations between viola-
tions and their context. Such a root-cause analysis technique works best when
we have a high number of rule instances (i.e., activations of the rules analyzed).
In contrast, when applied on small dataset or a dataset with few violations, the
insights maybe of less value.

On the other hand, when the the number of attributes at events increases,
we may end up with relations and patterns that although score high by the
metrics employed, they do not indicate an important finding from a business
point of view. Therefore, to make a precise conclusion, domain knowledge is
required to select the relations that have higher business value. Checking all the
detected relations and patterns (when many of them are detected) with domain
experts can be a tedious task. For this challenge, we propose two solutions: (1)
in case of association rule mining, we propose to use a combination of metrics
for evaluating detected relations. Relations that score high on all metrics are
more probable to indicate an important relation, (2) in case of classification
techniques, we propose to filter the attributes that are less likely to be relevant
for the analysis using domain knowledge. If no domain knowledge is available,
we can leverage from feature selection techniques to choose groups of attributes

10.3 Open Problems

367

which are dependent. Details of this problems and possible solutions for them
have been discussed in sections 9.5.1, 9.5.3, and 9.8.

Note that in many situations violations occur for reasons that are outside the
context of the violations. For example a violation may occur due to an activity
that was executed at the beginning of a process or it can be related to some
external factors that are not even available in the recorded dataset. In such
cases it is very difficult to detect causalities merely by analyzing the dataset
and more domain knowledge is required to enrich the dataset with relevant
contextual data.

10.3 Open Problems

This final section sketches ideas for further research in compliance analysis
that extend beyond the scope of this thesis. All ideas relate to the ultimate
goal of systematic understanding of non-compliance including detecting non-
compliance and its root-cause analysis.

In this thesis, we covered analysis of compliance rules confining control-flow,
temporal, resource and data perspectives of a business process. However, we de-
tected two more dimensions in the compliance constraint framework (Sect. 3.1)
that we did not discuss in this thesis. A compliance constraint may prescribe
properties of a single case or of multiple cases (e.g. “20% of all the applica-
tions require a detailed check”). Such constraints are typical in Service Level
Agreements (SLAs). We did not dedicate a specific part of the thesis to this
dimension, however, compliance of such rules can be computed over the result
of checking each case individually. The other dimension of compliance rules
includes rules that prescribe properties of process design. An extensive body of
literature is available about the modelling and analysis of such constraints. We
briefly discussed these works in Sect. 1.3. However, compliance verification of
process models during design time of business processes is outside the scope of
this thesis.

The focus of this thesis has been on compliance auditing, i.e., post-mortem
analysis of event logs. Enabling our approach of compliance analysis in a real
time setting is an interesting extension of this work. For this, we propose a spe-
cialized engine for compliance management that communicates with an existing
information system. A more concrete proposal about the compliance engine has
been discussed in [98]. Figure 10.2 sketches the architecture of the proposed
engine that is coupled with an existing information system. The relevant com-
pliance rules for a process and their formalization are stored in a repository. The

368

Conclusions and Future Work

process definition repository in Fig. 10.2 includes the information about the ac-
tivities in a process and their order. Business data definition represents process
data as a data model consisting of a set of entity types and their relationships
between these entity types. The actual data of a process is given by a number
of entities for each type. Each entity assigns a value to its attributes and is asso-
ciated to other entities according to the relationships. Activities are associated
with entity types defining which attributes the activities are allowed to read,
write or update. The organization definition repository defines the association
of activities to roles and assignment of agents to roles.

The repository of runtime data comprises all information on process execu-
tions. For instance, the events that have occurred, their order and duration, the
values that were written by a particular event, the authorizations to access data
granted to specific roles, or the role assignments given to specific agents. The
compliance checker takes an instantiated compliance rule, in context of a spe-
cific process, and runtime data as input and detect violations or signal possible
violations. The engine is allowed to control the information systems by a risk
interrupter. The risk interrupter takes as input the discovered deviations and
assesses based on its history of violations recorded in compliance database how
severe the violation of a compliance rule would turn out in the future. In case of
a severe risk, it can interrupt the process execution in the information system.

Compliance DB

X

N
e N e N
l v 3
[Dejure models
O< Risk interrupter
Process Business ((Organization|Compliance|
definition data structure rule
Rule promoter \-" Risks
Runtime dat: —
—D<— untime data Conformance Deviations /
checker Exceptions
Information System Compliance Engine
\. J \. J

Figure 10.2: Proposed compliance engine for real time compliance management.

Appendix A

Repository of Control-Flow
Compliance Rules

This appendix presents a repository of Petri net patterns modeling a collection of
control-flow compliance rules. Table A.1 (also discussed in Chap. 2 and Chap. 4)
gives the collection of control-flow compliance rules. These rules are distributed
over ten categories. Each category includes several compliance rules. Categories
are formed based on the type of constraints they include.

All the Petri net patterns discussed in this repository are created in a sys-
tematic manner that will be explained throughout this appendix. The basic
principles for designing the control-flow compliance rules and modelling ele-
ments and constructs used in the patterns are discussed in Sect. 4.1.5. In all the
patterns discussed in this appendix, the attribute act of run events is mapped to
the transition label of the respective pattern. (See Sect. 2.3.3.

Compliance patterns are generic and can be instantiated in context of any
compliance requirement and business process. For each pattern, we specify a
set of instantiation parameters. A user can instantiate a pattern in context of a
specific event log by setting these parameters during the alignment.

370

Repository of Control-Flow Compliance Rules

Category (Rules)

Description

Existence (2)

Limits occurrence or absence of an activity. [142], [14,
38], [55], [117], [118]

Bounded Existence (6)

Limits the number of times an activity must or must not occur.

[38], [42]

Dependent Existence (6)

Limits the presence or absence of an activity with respect to
existence or absence of another activity. [42]

Bounded Sequence (3)

Limits the number of times a sequence of activities must or
must not occur. [38], [42]

Parallel (2)

Limits the occurrence of a specific set of activities in parallel.
[117]

Precedence (10)

Limits the occurrence of an activity in precedence over another
activity. [42], [38], [117], [118], [14], [49], [55]

Chain Precedence (4)

Limits the occurrence of a sequence of activities in precedence
over another sequence of activities. [42], [38], [55]

Response (10)

Limits the occurrence of an activity in response to another ac-
tivity. [117], [42], [55], [38], [119], [14], [49]

Chain Response (4)

Limits the occurrence of a sequence of activities in response to
another sequence of activities. [42]

Between (7)

Limits the occurrence of an activity within (between) a sequence
of activities. [38]

Table A.1: Categorization of the 54 control-flow compliance rules.

A.1 Existence Category

371

Pattern parameters:
o #..(e) = transition label
T

l (]

Initial@—»D—»O—»D—»O—»D—»O—»D—vg—DD—»O Final
Start ke A lemp i End
L] L]
Q Q

Figure A.1: Existence. Activity Universality compliance rule

A.1 Existence Category

This category contains compliance rules which limit the occurrence or absence
of an activity within a chosen scope!.

Existence. Activity Universality

Description: Activity A must occur within a chosen scope. The compliance rule
is violated if event A does not occur within the specified scope (e.g. a process
instance). An instance of this compliance rule includes one time occurrence of
A, i.e., if it occurs once, this compliance rule is satisfied. Figure A.1 shows the
Petri net pattern that formalizes this rule.

After the pattern started, any event may occur. The rule instance is trigged as
soon as A is executed. With the execution of A, the corresponding compliance
rule of this pattern is satisfied and the rule instance is completed. After com-
pletion of the rule instance, any event may occur. In this situation the pattern
may terminate. The transition End models that the end of the trace has been
reached, i.e., it occurs after all events of the trace occurred.

Pattern instantiation parameters:

e A

¢ Q=2 \{A}

1The scope can refer to a process instance (one specific case), a group of process instances, or a
time line.

372

Repository of Control-Flow Compliance Rules

Pattern parameters:
o #..(e) > transition label

PP Ny
st @=L SO OB FO-L O e

Figure A.2: Existence. Activity Absence compliance rule

Existence. Activity Absence

Description: Activity A must not occur within a chosen scope. The rule is violated
if activity A occurs within the specified scope. An instance of this compliance
rule includes occurrence of any activity except A. That is, as long as A does
not occur, this compliance rule is satisfied but if A occurs this rule is violated.
Fig. A.2 shows the Petri net pattern that formalizes this rule.

The pattern specifies that any event but A may occur. Therefore, by construc-
tion in every instance of this pattern only the Q-labeled transition is enabled. If
an A occurs a deviation is captured. The transition End models that the end of
the trace has been reached, i.e., it occurs after all events of the trace occurred.
Pattern instantiation parameters:

c A
e O=2\{A

A.2 Dependent Existence Category

This category of compliance rules limits the presence or absence of an activity
with respect to existence or absence of another activity.

Dependent Existence. Exclusive

Description: Presence of activity A mandates the absence of activity B within a
chosen scope. This rule is violated if within the specified scope, both activities
A and B would be present. An instance of this compliance rule includes all
occurrences of activity A or all occurrences of activity B. The Petri net pattern
illustrated in Fig. A.3 formalizes this rule.

A.2 Dependent Existence Category

373

Pattern parameters:
o #,.(e) > transition label

Q

Initial @»D» Cmp
Start D—'Q

End1 F|na| Endz

Figure A.3: Dependent Existence. Exclusive compliance rule

After the pattern started, any activity may occur. The rule instance is acti-
vated as soon as the first A or B occurs. If A occurs, place P; is marked. At this
marking, B is not enabled anymore, thereby ensuring that A and B cannot be
present together. Symmetrically when the first B occurs, place P, is marked. At
this marking, A is not enabled anymore, thereby ensuring that A and B cannot
be present together.

The pattern may terminate at any point in time by firing one of the transi-
tions End.

Pattern instantiation parameters:

* AB

e O=2;\{A B}

Dependent Existence. Mutual Exclusive

Description: Within a chosen scope, either activity A or activity B must exist
but not none of them or both. This rule is violated if both events A and B
occur together or be absent together within the specified scope. An instance of
this compliance rule includes all occurrences of activity A or all occurrences of
activity B. The Petri net pattern illustrated in Fig. A.4 formalizes this rule.

The behavior of this pattern is similar to the pattern described in Fig. A.3;
with the difference that in the pattern illustrated in Fig. A.4 absence of both

374

Repository of Control-Flow Compliance Rules

Pattern parameters:
e #,.(e) = transition label
Q A
DHQ—>
@O ™ SO—-{10
Start End Final
lemp
B Q

Figure A.4: Dependent Existence. Mutual Exclusive compliance rule

events A and B is a violation. Therefore, the pattern enforces that one of the
events A or B must occur. The pattern cannot terminate unless the rule instance
is completed, i.e., only after the occurrence of one of the events A or B. After the
condition of the rule is satisfied, the pattern may terminate by firing transition
End.

Pattern instantiation parameters:

* AB

e Q=Z2;\{A B}

Dependent Existence. Prerequisite

Description: Absence of activity A mandates that activity B is also absent within a
chosen scope. This rule is violated if within the specified scope, activity B occurs
without any occurrence of activity A. This compliance category consists of one
compliance rule. An instance of this compliance rule includes occurrences of
both activities A and B. The Petri net pattern illustrated in Fig. A.5 formalizes
this rule.

The occurrence of any activity triggers the rule instance. If A occurs, it may be
followed by B or not. In both cases, the behavior is compliant, i.e., the presence
of A does not create an obligation. The rule instance can complete and the
pattern may terminate in this situation if no event is to be executed. However,
as soon as B occurs the structure of the pattern must ensure that A also occurs at
least once. Therefore, the occurrence of B requires occurrence of B. Note that,
the sequence of occurrences of A and B does not matter but if B occurs, A must

A.2 Dependent Existence Category

375

Pattern para meters:
o #,.(e) > transition label
A
[] @
& 1 A
Initial @~ p-O—
Start lse cmp
O— F»©<D
D-’O Final
&o—»[/
cmp
A

Figure A.5: Dependent Existence. Prerequisite compliance rule

have occurred at least once before it or it must eventually occur after it. The
next occurrences of B (even if they are not followed by A) are still compliant as
A has already occurred once and the rule is satisfied. Please note that absence
of both activities is allowed based on the rule. When the condition of the rule is
satisfied, the rule instance is completed and the pattern may terminate by firing
the transition End.

Pattern instantiation parameters:

* AB

* O=%;\{A B}

Dependent Existence. Inclusive

Description: Presence of activity A mandates that activity B is also present within
a chosen scope. This rule is violated if within the specified scope, activity A oc-
curs without any occurrence of activity B. This compliance category consists
of one compliance rule. An instance of this compliance rule includes all oc-
currences of activities A and B. The Petri net pattern illustrated in Fig. A.6
formalizes this rule.

376

Repository of Control-Flow Compliance Rules

Pattern parameters:
o #.4(e) 2 transition label
A
D Q
Al
O~
Initial @—»\:}—»
Start lst |cmp
O
s g
Q D Q D—>O Final
%‘ B End
O—
||jﬂ¢ P [
st cmp
O
B

Figure A.6: ‘Dependent Existence. Inclusive’ compliance rule

The pattern described in Fig. A.6 is similar to the pattern described in Fig. A.5;
with the difference in adjacent transitions to the place P in Fig. A.6.

Occurrence of any activity triggers the rule instance. If B occurs, it may be
followed by B or not. In both cases, the behavior is compliant, i.e., the presence
of B does not create an obligation.

As soon as the first A occurs, the structure of the pattern must ensure that
B also occurs at least once. Next occurrences of A (even without a following B)
will be still compliant as B has already occurred once. When the condition of the
rule is satisfied, the rule instance completes. This is the situation that the pattern
can terminate by firing the transition End, if no activity is to be executed. Please
note that it is possible that B occurs without occurrence of A or none of A or B
occurs.
Pattern instantiation parameters:

* AB

e QO=Z2;\{A B}

A.2 Dependent Existence Category

377

Pattern parameters:
o #.,.(e) = transition label

Figure A.7: Dependent Existence. Substitute compliance rule

Dependent Existence. Substitute

Description: Activity B substitutes the absence of activity A within a chosen
scope. This rule is basically the logical OR between occurrences of two activities
A and B. This rule is violated if within the specified scope, none of the activities
A or B occurs (i.e., both be absent). This compliance category consists of one
compliance rule. An instance of this compliance rule includes all occurrences
of activities A and B. The Petri net pattern illustrated in Fig. A.7 formalizes this
rule.

An occurrence of any activity triggers the rule instance. The rule instance
cannot complete unless at least one of the activities A or B occur. The occurrence
of A does not create an obligation for the occurrence or non-occurrence of B,
however its absence obliges the occurrence of B. When the condition of the
rule is satisfied, the pattern may terminate by firing the transition End. Pattern
instantiation parameters:

* AB

e O=2;\{A B}

Dependent Existence. Co-requisite

Description: Within a chosen scope, either activities A and B should exist to-
gether or be absent together. This rule is violated if within the specified scope,
only one of the activities A or B occurs. This compliance category consists of one
compliance rule. An instance of this compliance rule includes all occurrences of

378

Repository of Control-Flow Compliance Rules

Pattern parameters: A
o #.,.(e) > transition label D Q
A]
O~
Initial ®—>D—>O—>
Start Ise

[O nitial
End

[i Icmp
[Ja

Figure A.8: Dependent Existence. Co-requisite compliance rule

A and B if they occur. The Petri-net pattern illustrated in Fig. A.8 formalizes this
rule.

The pattern described in Fig. A.8 is similar to the pattern described in Fig. A.5,
with the difference in adjacent transitions to the place P.

An occurrence of any activity triggers the rule instance. As soon as activity
A occurs, the structure of the pattern must ensure that B also occurs. The next
occurrences of A (even if they are not followed by B) are still compliant as B has
occurred once and the rule is satisfied. Symmetrically if activity B occurs, the
structure of the pattern must ensure that A also occurs. The next occurrences
of B (even if they are not followed by A) are still compliant as A has occurred
once and the rule is satisfied. Please note that absence of both activities A and
B is also compliant. When the condition of the rule is satisfied, the rule instance
completes and the pattern may terminate by firing the transition End.
Pattern instantiation parameters:

* AB

e O=21\{A B}

A.3 Bounded Existence Category

379

Pattern parameters:
o #..(e) > transition label

Py (k=2)
Initial ? Count End Final
@»DXOHD» SO0
Start [A |
I%

cmp

Q

Figure A.9: Bounded Existence of an Activity. Exactly k Times compliance rule

A.3 Bounded Existence Category

This category includes compliance rules that limit the number of times an activ-
ity must or must not occur.

Bounded Existence of an Activity. Exactly k Times

Description: Activity A must occur exactly k times within a chosen scope. The
rule is violated if A occurs less than or more than k times within the specified
scope. An instance of this compliance rule includes k occurrences of activity A.
That is, as soon as A occurs k times, this rule is satisfied. Figure A.9 shows the
Petri net pattern that formalizes this rule for the case k=2.

After the pattern started any event may occur. The first occurrence of A
triggers the rule instance. The pre-place Py of A is initially marked with k tokens.
The k tokens in place Py assure that activity A can occur at most k times, as each
occurrence of A decrements the number of tokens in P; and increments the
number of tokens in place Count. Place Count counts the occurrences of A. After
k occurrences of A, P;. is empty and Count contains k tokens. In this situation
transition A is not enabled anymore. The compliance rule is satisfied and the
rule instance is completed. The pattern can terminate only if the rule instance is
completed implying that the condition of the rule is satisfied. The transition End
models that the end of the trace has been reached. Please note that Q-labeled
transition is enabled throughout the whole pattern and may occur at any point
in time.

380

Repository of Control-Flow Compliance Rules

Pattern instantiation parameters:
e A
e Q=2 \{A

* k

Bounded Existence of an Activity. At Least k Times

Description: Activity A must occur at least k times within a chosen scope. If
A occurs less than k times within the specified scope, the rule is violated. An
instance of this compliance rule includes k occurrences of activity A. That is, as
soon as A occurs k times, this rule is satisfied. In addition, the rule also allows
for more occurrences of A. Fig. A.10 shows the Petri net pattern that formalizes
this rule for the case k= 2.

Pattern parameters:
o #,.(e) > transition label

1 End Final
o Po—[HD»O@»%O*D*
Start le A lomp]
g
Q

Figure A.10: Bounded Existence of an Activity. At Least k Times compliance rule

The basic structure of the pattern in Fig. A.10 is similar to the pattern de-
scribed in Fig. A.9. The first occurrence of A activates the rule instance. The k
tokens in place Py limits the occurrence of the very left A-labeled transition to k
times. After k occurrences of A the condition of the rule is satisfied, hence the
rule instance is completed. The rule specifies that A must occur at least k times;
therefore after k occurrences of A, further occurrences of A are possible. The
Q-labeled transition is always enabled. The transition End models that the end
of the trace has been reached.

Pattern instantiation parameters:

A.3 Bounded Existence Category

381

e A
e O=2;\{A}
sk

Bounded Existence of an Activity. At Most k Times

Description: Activity A must occur at most k times within a chosen scope. If A
occurs more than k times within the specified scope, the rule is violated. An
instance of this compliance rule includes at most k occurrences of activity A.
That is, if A occurs less than k+1 times, this rule is satisfied. Figure A.11 shows
the Petri net pattern that formalizes this rule for the case k= 2.

Pattern parameters:
o #,.(e) = transition label
Q
Initial 1 End Final
O~ PO >0~ O~ O
Start ot I lemp
A Py (k=2)

Figure A.11: Bounded Existence of an Activity. At Most k Times compliance rule

The basic structure of this pattern is similar to the pattern showed in Fig. A.9.
However, in contrast with the pattern described in Fig. A.9, this rule allows for
fewer k+1 occurrences of A. The occurrence of any activity activates the rule
instance of this rule even if it is not an A; because the condition of this rule
is satisfied even if A does not occur at all. The pre-place Py of A is initially
marked with k tokens which limits the occurrences of A to at most k times.
After k occurrences of A, the A-labeled transition is not enabled anymore. The
rule instance is completed when there is no activity to happen even if there are
tokens left in place Py (k, less than k or zero tokens). When the rule instance
completes, it removes all tokens left in place Py by the reset arc connecting place
Py to I (represented as a two arrow headed line). For detailed description of
reset arcs, see Sect. 4.1.5. The transition End models that the end of the trace
has been reached.

Pattern instantiation parameters:

382

Repository of Control-Flow Compliance Rules

A
* Q=2 \{4

* k

Bounded Existence of an Activity. Exactly k Times in a Row

Description: Activity A must occur exactly k times in a row (directly one after
the other) within a chosen scope. The rule is violated if the sequence (4,..., A)
k
does not occur within the specified scope. An instance of this compliance rule
includes k occurrences of activity A in a row. That is, if A occurs exactly k times
without any other activities occurring between occurrences of A, this rule is
satisfied. Fig. A.12 shows the Petri net pattern that formalizes this rule for the
case k=2.

Pattern parameters:
o #,.(e) = transition label

Start End
o-() [0
Initial A (k2) d‘) Final
R oun lemp
ST
Q « (k=2) Q

Figure A.12: Bounded Existence of an Activity. Exactly k Times in a Row compliance rule

After the pattern started, any event may occur. The first occurrence of A
activates the rule instance. After the start of the rule instance, no Q-labeled
transition is enabled anymore until A occurs k times in a row. The k tokens
in pre-place P; of A limit the number of occurrences of A to k times (similar
to the structure described in Fig. A.9). The place Count counts the number
of occurrences of A. The rule instance completes only if there are k tokens in
place Count, implying that the condition of the rule is satisfied. In this situation
the rule instance completes and any non-A event may occur (captured by the
Q-labeled transition) or the pattern may terminate by firing the transition End.
Pattern instantiation parameters:

A.3 Bounded Existence Category

383

A
¢ Q=2 \{A}

* k

Bounded Existence of an Activity. At Least k Times in a Row

Description: Activity A must occur at least k times in a row (directly one after
the other) within a chosen scope. This rule is violated if (4,..., A does not
N——

k
occur within the chosen scope. An instance of this compliance rule includes k
occurrences of activity A in a row. That is, as soon as A occurs exactly k times
without any other activities occurring between occurrences of A, this rule is
satisfied. Fig. A.13 shows the Petri net pattern that formalizes this rule for the

case k=2.
Pattern parameters:
o #..(e) = transition label
Initial Final A g
I
Start End &4—(){—54—0
T 1
st
Q >] E\
ALl
k-1
A P,
D (k=k2)
Pia
(a) (k=2)

lemp

Figure A.13: Bounded Existence of an Activity. At Least k Times in a Row compliance rule

After the pattern started, any activity may occur including A. As soon as the
first activity A occurs, we distinguish two scenarios: Scenario 1 is that (k) A’s
occur in a row; Scenario 2 is that an Q occurs after less than (k) A’s in a row.

384

Repository of Control-Flow Compliance Rules

In case of Scenario 1, as soon as the first A occurs the rule instance is activated
(please see the shadowed subnet labeled (b)) and no Q-labeled transition is
enabled any more until the rule instance completes. The k tokens in the place
Py limits the number of occurrences of A to k in the rule instance. The rule
instance completes only if the subsequence (A4,..., A) occurs; implying that the

k
condition of the rule is satisfied. The inhibitor arcs connecting the place Py to
the transition I.,,, assures that the I, can fire only if the place Py is empty.
The compliance rule specifies that more than k occurrences of A in a row is
allowed; hence after the compliance rule is satisfied any arbitrary occurrences
of A or Q is possible. In this situation the pattern may terminate by firing the
transition End.

The left part of the pattern (please see the shadowed subnet labeled (a))
models the Scenario 2. That is, A may occur k—1 times in a row. The k—1 tokens
in the place Py_; limits the occurrences of A directly one after the other to k—1
in the subnet (a). Please note that A may occur arbitrary number of times in
the subnet (a) as long as, the sequence of A’s is interrupted by an Q-labeled
activity before the sequence (4,..., A) occurs. The pattern may only terminate

k
if the condition of the rule is satisfied implying that the rule instance must be
executed.
Pattern instantiation parameters:

e A
e O=2;\{A}

s k

Bounded Existence of an Activity. At most k Times in a Row

Description: Activity A must not occur more than k times in a row (directly one
after the other) within a chosen scope. This rule is violated if (A4, ..., A) occurs
——

>k
within the specified scope. An instance of this compliance rule includes all
occurrences of activity A. Fig. A.14 shows the Petri net pattern that formalizes
this rule for the case k= 2.
After the pattern started, the place P is marked. At this marking, any activity
may occur. Based on this rule, less than k occurrences of A or exactly k occur-
rences of A in a row are considered as compliant behavior. Therefore, at the

A.3 Bounded Existence Category

385

Pattern parameters:
o #,+(e) > transition label

F|naIO<—D

End,

Endl

In|t|a| cmp Q

g T

Pk (k=2)

Figure A.14: Bounded Existence of an Activity. At Most k Times in a Row compliance rule

marking where the place P is marked (no A has occurred yet), the pattern may
terminate by firing the transition End, .

The rule instance is triggered as soon as the first A occurs. Firing the transi-
tion I;; produces k tokens in the place Py; implying that A may occur at most k
times in a row in every instance of the pattern. Please note that the compliance
rule allows for less than k occurrences of A in a row, hence the rule instance can
complete even if there are tokens left in the place Py, (less than k or zero tokens).
The reset arc connecting the place Py to the transition I, removes all the re-
maining tokens in the place P. After the rule instance completes, the pattern
may terminate (by firing the transition End;,) because the condition of the rule
is satisfied so far. However if an Q-labeled activity occurs, the pattern returns to
the marking where the place P is marked. At this marking an Q-labeled activity
may occur, another instance of the pattern may be triggered or the pattern may
terminate.

Pattern instantiation parameters:

A
¢ Q=2 \{A}
* k

386

Repository of Control-Flow Compliance Rules

Pattern parameters:
o #,4(e) = transition label

Start D

Init|al

D—»O—»

Final Count lemp
(k= 2)

Figure A.15: Bounded Existence of an Activity. Bursts of k Occurrences compliance rule

Bounded Existence of an Activity. Bursts of k Occurrences

Description: Activity A must occur in bursts of k occurrences within a chosen
scope. This rule is violated if A does not occur in bursts of k occurrences within
the specified scope. An instance of this compliance rule includes k occurrences
of A. Fig. A.15 shows the Petri net pattern that formalizes this rule.

After the pattern started, any activity may occur. The rule instance is trig-
gered as soon as the first A occurs. Start of the rule instance produces k tokens
in place Py, which restricts the number of occurrences of A in every rule instance
to at most k times. Occurrence of each A decrements the number of tokens in P
and increases the number of tokens in Count. The rule instance may complete
only if there are k tokens in place Count. When the rule instance is completed,
the pattern returns to the marking where there is a token in place P.

The pattern structure in Fig. A.15 is modeled such thatit models a cyclic
behavior of occurrences of A. That is, A may occur any arbitrary number as long
as it occurs in bursts of k times. Therefore, after completion of every instance of
the pattern, the next rule instance may start, an Q-labeled activity may occur or
the pattern may terminate (by firing the transition End) because the condition
of the rule is satisfied. Please note that every occurrence of A is captured in a
rule instance, i.e., A may not occur outside of the rule instance.

Pattern instantiation parameters:

e A
e O=2;\{A}

e k

A.3 Bounded Existence Category

387

Pattern parameters:
o #,.(e) = transition label

b o g
ount T
A i (k) " K
Final O+«

End

lemp

Figure A.16: Bounded Existence of an Activity. n Bursts of k Occurrences compliance rule

Bounded Existence of an Activity. n Bursts of k Occurrences

Description: Activity A must occur in n bursts of k occurrences within a chosen
scope. This rule is violated if A does not occur in n bursts of k occurrences within
the specified scope. An instance of this compliance rule includes all occurrences
of A. Figure A.16 shows the pattern of this rule for k=2 and n=3.

After the pattern started, any activity may occur. The rule instance is trig-
gered as soon as first A occurs. The k tokens in the place Py assures that in each
burst, A occurs exactly k times. Every occurrence of A decrements a token from
Py and increments the number of tokens in place Count. Firing the transition t
represents the completion of one burst. The completion of each burst empties
the place Count; implying that A occurred exactly k times and returns the pat-
tern to the marking where the next burst can be executed by producing k tokens
in place Py. In addition, the completion of each burst decrements a token from
place P,,. The n number of tokens in place P,, limits the execution of bursts to n
number. The rule instance may complete only if the place P, is empty; implying
that n bursts were executed. Please note that Q-labeled transition is always en-
abled and it may occur between occurrences of A’s. After the completion of the
rule instance, the pattern may terminate by firing the transition End.

Pattern instantiation parameters:

. A
e O=3,\{A

* kn

388

Repository of Control-Flow Compliance Rules

Pattern parameters:
o #,q(€) > transition label
O]
AL B
Start
Initial
[O~
. | I
Final st cmp
End D D_’O_’
B ¢ A
’ 0
Q

Figure A.17: Bounded Sequence of Activities. One to One Coexistence compliance rule

A.4 Bounded Sequence Category

This category includes compliance rules that limit the number of times a se-
quence of activities must or must not occur within a chosen scope.

Bounded Sequence of Activities. One to One Coexistence

Description: For every activity A, there should exist one activity B and for every
activity B there should exist one activity A. If A and B do not occur in form
of a pair, the rule is violated. An instance of this compliance rule includes one
occurrence of the pair (A,B) in any order. Figure A.17 shows the Petri net pattern
that formalizes this rule.

After the pattern started, any activity may occur. The occurrence of first A
or B triggers the rule instance. If the pattern starts with an A, B must follow
it eventually. Symmetrically occurrence of the first B requires that A follows it
eventually, otherwise the rule instance cannot complete. At this situation the
pattern may terminate by firing the transition End.

Pattern instantiation parameters:

* AB

e O=2;\{A B}

A.4 Bounded Sequence Category

389

Pattern parameters:
o #..(e) > transition label

Initial

Figure A.18: Bounded Sequence of Activities. Coexistence compliance rule

Bounded Sequence of Activities. Coexistence

Description: For any given number of activities A, there should exist the same
number of activities B within a chosen scope. This rule is violated if the number
of occurrences of A is not equal to the number of occurrences of B. An instance
of this compliance rule includes all occurrences of activities A and B. Fig. A.18
shows the Petri net pattern that formalizes this rule.

After the pattern started, any activity may occur. The first occurrence of A or
B triggers the rule instance. In the upper subnet illustrated in the rule instance,
place P; counts occurrences of A. Each occurrence of activity A increments the
number of tokens in P;, and each occurrence of activity B decrements the num-
ber of tokens in P;. This construction ensures that for each occurrence of activity
B, A must have occurred earlier. Therefore, place P; becomes empty only if B
occurs as many times as A has occurred.

Symmetrically in the lower subnet of the rule instance, place P, counts oc-
currences of B. Each occurrence of B increments the number of tokens in P,,
and each occurrence of A decrements the number of tokens in P,. This con-
struction ensures that for each occurrence of activity A, B must have occurred
earlier. Therefore, place P, becomes empty only if A occurs as many times as B
has occurred.

The rule instance can complete only if the places P; and P, are empty, imply-
ing that A and B occurred the same number. The inhibitor arcs connecting P
and P, to the transition I,,, ensure that the rule instance can complete only if
P; and P, are both empty. After the completion of the rule instance, the pattern
may terminate by firing the transition End.

Pattern instantiation parameters:

390

Repository of Control-Flow Compliance Rules

* AB

e QO=Z2;\{A B}

Bounded Sequence of Activities. Exactly k Times

Description: The sequence of activities (Aj,..., A,) must occur exactly k times
within a chosen scope. The compliance rule is violated if (Aj,..., A,) does not
occur in the specified sequence or not k times. An instance of this compliance
rule includes k occurrences of the sequence (Aj,..., Ay). Figure A.17 shows the
Petri net pattern that formalizes this rule for the case k= 2.

After the pattern started, any event may occur. The rule instance starts as
soon as the first activity in the sequence (Aj,..., A,) occurs. An occurrence of
A; decrements a token from the pre-place P of A;. After the first occurrence
of A;, any event may occur but eventually A, must occur. A; may be executed
only after the first sequence of (Aj,..., A,) completes. The rule instance can
complete only if the places named Py are empty, implying that every element of
the sequence (Aj,..., A;) occurred exactly k times. The inhibitor arcs connecting
the places named Py to the transition I, assure that I.,,, may only fire if the
places named P;. are empty. After the rule instance completed any activity may
occur or the pattern may terminate by firing the transition End.

Pattern parameters:
o #,.(e) = transition label

Initial

Figure A.19: Bounded Sequence of Activities. Exactly k Times compliance rule

Pattern instantiation parameters:

* Aj..., A,

A.5 Parallel Category 391

¢ Q=2 \{A},...,Au}

*n

A.5 Parallel Category

This category includes compliance rules that limit the occurrence of an activity
in parallel with or during another activity.

Parallel. Simultaneous

Description: Activity A must always occur in parallel with activity B within a
chosen scope. The compliance rule is violated if A and B does not occur simul-
taneously. The instance of this compliance rule includes start and completion of
both activities A and B. Figure A.20 shows the Petri net pattern that formalizes
this rule.

Pattern parameters:
o #,.(e) > transition label

Start

Initial (&) O_’\A:'_' |:|_>

Acmp
Final O ¢ Ist |:|_> T D—> lemp
End \;‘ By Bemp

;
L]

Q

Figure A.20: Parallel. Simultaneous compliance rule

As it was mentioned earlier, some compliance rules require to model the
start and completion of activities in the Petri net pattern. This compliance rule
requires the activity A to be represented by two events A-start (As;) and A-
complete (A¢mp) indicating the start and completion of A. Likewise activity B is
represented by two events B-start (By;) and B-complete (B¢,p). After the pattern
started, any event may occur. The rule instance is triggered as soon as activity A
or B starts.

392

Repository of Control-Flow Compliance Rules

If A starts, B should also start, i.e., activity A cannot complete unless B has
already started. Similarly, if start of the activity B activates the rule instance, it
is required that activity A also starts. The pattern enforces by construction that
the activities A and B must complete together otherwise the rule instance cannot
complete, hence the pattern may not terminate. Note that, Q-labeled activity
may occur independently from occurrences of A and B throughout the pattern.
The transition End models that the end of the trace has been reached.

Pattern instantiation parameters:

* ASZ’)ACmpr BSI’ chp

* Q=2 \{As, Acmp, By, chp}

Parallel. During

Description: Activity B must be executed during activity A within a chosen scope.
The compliance rule is violated if B does not occur within execution of A. The
instance of this compliance rule includes start and completion of both activities
A and B. Fig. A.21 shows the Petri net pattern that formalizes this rule.

Pattern parameters:
o #.,.(e) = transition label

Final O«{ | } . A T Acmp lemp
End ,:]
Q
:
O
Q

Figure A.21: ‘Parallel. During’ compliance rule

After the pattern started, any activity may occur. The rule instance is trig-
gered as soon as activity A starts. Activity B may start only after A has started
and B must complete before A completes. The pattern enforces by construc-
tion that if B occur, it must be executed during the execution of A. Please note
that Q-labeled activity may occur independently from occurrences of A and B

A.6 Precedence Category 393

throughout the pattern. The transition End models that the end of the trace has
been reached.
Pattern instantiation parameters:

° AstrAcmp’ B, chp

* O=Zp\ {Ast;AcmprBst, chp}

A.6 Precedence Category

This category includes compliance rules that limit the occurrence of a one activ-
ity in precedence over other activities.

Precedence. Simultaneous or Before

Description: Activity A must always occur before or simultaneously with activity
B within a chosen scope. This rule is violated if activity A occurs after activity
B within the specified scope. An instance of this compliance rule includes start
and completion of both activities A and B. The Petri net pattern illustrated in
Fig. A.22 formalizes this rule.

Pattern parameters:
o #.,.(e) = transition label

s j O*I:}*
Initial @—>D\ Ae Aamp
Final O4—D PO\ {Icmp
O—{

End

Bst Bemp

Figure A.22: Precedence. Simultaneous or Before compliance rule

The start of activity B or the start of activity A which will be followed by
B triggers the rule instance. This pattern models two options (specified in the
rule) for occurrences of A and B.

The case where activities A and B are executed simultaneously, requires that
as soon as A starts activity B must be executed as well, i.e., B cannot complete

394

Repository of Control-Flow Compliance Rules

unless A has already started. This is specified by the pre-place P of B,,. The
rule instance may only terminate if both activities A and B complete.

The case where A completes directly before B starts, is also described in the
main cycle of the rule instance. After the rule instance started, A starts and com-
pletes and directly after that B starts and completes. In this case also completion
of both activities A and B is required such that rule instance can complete, hence
the pattern may terminate by firing the transition End.

There is no part of the pattern that permits the execution of activity B with-
out a preceding or simultaneous A. If there is no B or if A just occurred, the rule
instance is not activated and any event but By, and B.,,, may occur. This is also
the situation when the pattern may terminate by firing the transition End.
Pattern instantiation parameters:

* Ast’Acmp» By, chp

* Q=% \{Agx, Acmp’ By, chp}

Precedence. Direct

Pattern parameters:
o #,.(e) > transition label

Q

Start

Initial (&) 3 O]
lemp B \O
Final) ﬁ Q*O*Q/

A

nd

Figure A.23: Precedence. Direct compliance rule

Description: Every activity B must be preceded by activity A within a chosen
scope. If B occurs without a directly preceding A within the specified scope,
the rule is violated. An instance of this compliance rule includes execution of
activity B and its preceding A. The Petri net pattern illustrated in Fig. A.23
formalizes this rule.

The rule instance is triggered as soon as an A occurs which is followed by
B. The rule instance describes a cycle of A and B, such that B can only occur if
A has directly preceded it. In this situation the rule instance can complete and

A.6 Precedence Category 395

the pattern may terminate. If there is no B or A just occurred, any activity may
occur. This is also the situation when the pattern may terminate by firing the
transition End.

Pattern instantiation parameters:

* AB

e QO=2;\{A B}

Precedence. Direct or Indirect

Description: Every activity B must be preceded (directly or indirectly) by activity
A within a chosen scope. If A does not occur before B within the specified scope,
the rule is violated. An instance of this compliance rule includes execution
of activity B and its preceding A. The Petri net pattern illustrated in Fig. A.24
formalizes this rule.

Pattern parameters:
o #..(e) > transition label

Q

Start

Initial (&) B /D‘_O‘_D
SO-@
Final O) 3 D»O*D/'

End D Ist
A

Figure A.24: Precedence. Direct or Indirect compliance rule

The pattern described in Fig. A.24 is similar to the pattern described in
Fig. A.23; with the difference that the adjacent Q-labeled transition to place
P in Fig. A.24, allows the indirect precedence of B with A.

Pattern instantiation parameters:

* AB

* Q=2 \{A B}

Precedence. At Least Once

Description: Every activity B must be preceded by activity A at least once within
a chosen scope. If A does not precede B at least for one time within the spec-

396

Repository of Control-Flow Compliance Rules

Pattern parameters:
o #..(e) = transition label

Q
Start Q

Initial®—> ¢
lemp B f
Final O I%] D—’O—‘_’?PQ\‘D
End [A B

Figure A.25: Precedence. At Least Once compliance rule

ified scope, the rule is violated. An instance of this compliance rule includes
execution of all B activities and a preceding A. The Petri net pattern illustrated
in Fig. A.25 formalizes this rule.

After the pattern started any activity including A may occur. As soon as an
activity A occurs which is followed by first B, the rule instance starts. The rule
instance structure describes that B can only occur if before it at least one time
A has occurred. As soon as A occurs, place P is marked. At this marking, B
may occur an arbitrary number of times; because the condition of the rule is
satisfied. After the rule instance is completed, the pattern may terminate by
firing the transition End.

The pattern described in Fig. A.25 is similar to the pattern described in
Fig. A.24; with the difference that the adjacent B transition to place P in Fig. A.25,
allows arbitrary number of occurrences of B.

Pattern instantiation parameters:

* AB

e O=21\{A B}

Precedence. Direct Multiple Activities

Description: Every activity B must be preceded directly by another execution of
activity B or execution of activity A within a chosen scope. If directly before B
one of the activities B or A does not occur within the specified scope, the rule is
violated. An instance of this compliance rule includes all occurrences of B and
a preceding A. The Petri net pattern illustrated in Fig. A.26 formalizes this rule.

After the pattern started any activity including A but B may occur; because
before the first B at least once A must have occurred. As soon as an activity A

A.6 Precedence Category

397

Pattern parameters:
o #..(e) > transition label

Start A

Initial @»D\

Final O<—D 1 It
End D

Q

[PO

A

Si

Figure A.26: Precedence. Direct Multiple Activities compliance rule

occurs which is followed by the first B, the rule instance starts. After the first
occurrence of A, place P is marked. An this marking, B can occur an arbitrary
number of times and still the condition of the rule is satisfied. That is, the
pattern structure describes that B can only occur if directly before it any of the
activities A or B was executed. After the rule instance is completed, the pattern
may terminate by firing the transition End.

Pattern instantiation parameters:
* AB

e QO=2;\{A B}

Precedence. Direct or Indirect Multiple Activities

Pattern parameters:
o #,.(e) > transition label

Figure A.27: Precedence. Direct or Indirect Multiple Activities compliance rule

398

Repository of Control-Flow Compliance Rules

Description: Every activity B must be preceded by another execution of activity
B or the execution of activity A within a chosen scope. If before B an activity
different from B or A occurs, within the specified scope, the rule is violated. An
instance of this compliance rule includes all occurrences of B and a preceding
A. The Petri net pattern illustrated in Fig. A.27 formalizes this rule.

The pattern in Fig. A.27 is similar to the pattern described in Fig. A.26;
with the difference that as long as B is preceded (even indirectly) by any of the
activities A or B, the condition of the rule is satisfied. The adjacent Q-labeled
transition to place P, allows for indirect precedence of B by A or B. The transition
End models that the end of the trace has been reached.

Pattern instantiation parameters:

* AB

e QO=2;\{A B

Precedence. Direct Multiple Different Activities

Description: Every activity B must be directly preceded by activity C or A within a
chosen scope. If within the specified scope, directly before B one of the activities
A or C does not occur, the rule is violated. An instance of this compliance rule
includes activity B and its preceding A or C. The Petri net pattern illustrated in
Fig. A.28 formalizes this rule.

Pattern parameters:
o #,4(e) = transition label

@fﬁ\ﬁ ; o g
Initial 1 lemp Q\é
Final ()«] 1 ?KW

End D a

C

Figure A.28: Precedence. Direct Multiple Different Activities compliance rule

Being in the initial marking, any activity but B may occur. The rule instance
starts as soon as an activity A or C occurs which is followed by B. The structure
of the pattern is such that B may occur only if A or C has already occurred before

A.6 Precedence Category 399

it. After the condition of the rule is satisfied, the rule instance may terminate.
The transition End models that the end of the trace has been reached.
Pattern instantiation parameters:

* ABC

e O=2;\{A,B(C}

Precedence. Direct or Indirect Multiple Different Activities

Pattern parameters:
o #..(e) > transition label

Figure A.29: Precedence. Direct or Indirect Multiple Different Activities compliance rule

Description: Every activity B must be preceded at least once by activity C or A
within a chosen scope. If within the specified scope, before B one of the activities
A or C does not occur, the rule is violated. An instance of this compliance rule
includes activity B and its preceding A or C. The Petri net pattern illustrated in
Fig. A.29 formalizes this rule.

The pattern in Fig. A.29 is similar to the pattern described in Fig. A.28;
with the difference that as long as B is preceded (even indirectly) by any of the
activities A or C, the condition of the rule is satisfied. The adjacent Q-labeled
transition to place P allows for indirect precedence of B by A or C. The transition
End models that the end of the trace has been reached. Pattern instantiation
parameters:

e ABC

e O=2;\{AB(}

400

Repository of Control-Flow Compliance Rules

Pattern parameters:
o #,.(e) > transition label

Final

Figure A.30: Precedence. Never Direct compliance rule

Precedence. Never Direct

Description: No activity B must be preceded directly by A within a chosen scope.
If A occurs directly before B within the specified scope, the rule is violated. An
instance of this compliance rule includes occurrence of all activities A and B and
those Q-labeled activities which occur between occurrences of pair (A,B). The
Petri net pattern illustrated in Fig. A.30 formalizes this rule.

After the pattern started, any activity may occur. The rule instance triggers as
soon as soon as activity A or B occurs. The structure of the pattern should ensure
that B cannot occur directly after A. Therefore, as soon as first A occurs, place
P is marked and B is not enabled anymore. B may occur only after occurrence
of an Q. When the condition of the rule is satisfied, the rule instance completes
and the pattern may terminate by firing any of the transitions End.

Pattern instantiation parameters:

* AB

* O=2;\{A B}

Precedence. Never

Description: Every activity B must never be preceded by A within a chosen scope.
If A occurs before B within the specified scope, the rule is violated. An instance

A.7 Chain Precedence Category

401

Pattern parameters:
o #,.(e) > transition label

T an o
%*?H Ot
Starté DQT

Initial l[|—>é<_|j

cmp cmp

|
End

Final

Figure A.31: Precedence. Never compliance rule

of this compliance rule includes occurrence of all activities A and B. The Petri
net pattern illustrated in Fig. A.31 formalizes this rule. After the pattern started,
any activity may be executed. The rule instance triggers as soon as is triggered
as soon as first A or B occurs. After occurrence of the first A, the structure of the
pattern should ensure that B cannot occur anymore. Therefore after A occurred,
place P is marked and B is not enabled anymore. When the condition of the rule
is satisfied, the rule instance completes and the pattern may terminate firing the
transition End, if no event is to be executed.

Pattern instantiation parameters:

* AB
e O=2;\{A B}

A.7 Chain Precedence Category

This category of compliance rules limits occurrence of a sequence of activities
in precedence over another sequence of activities.
Chain Precedence. Direct

Description: Every sequence of activities (B, By, ..., B;;) must be preceded di-
rectly by the sequence of activities (Aj, Ay, ..., A,) within a chosen scope. This

402

Repository of Control-Flow Compliance Rules

rule is violated if within the specified scope, directly before the sequence (Bj,
By, ..., By), the sequence (Aj, A, ..., A,) does not occur. The Petri net pattern
illustrated in Fig. A.32 formalizes this rule.

This pattern describes the allowed behaviors specified in the rule in two
cycles. The rule instance is triggered as soon as first A; occurs which later leads
to the occurrence of the sequence (A}, Ay, ..., Ap) and is followed directly by the
sequence (By, By, ..., By).

The main cycle of the pattern (please see the shadowed subnet labeled (a)),
includes the rule instance. The rule instance is highlighted in the shadowed
subnet labeled (b). When the rule instance is trigged, it is specified that the
sequence (Bj, By, ..., By,) can only occur if the sequence (Aj, Ay, ..., Ap) has oc-
curred directly before it. If the condition of the rule is satisfied, the rule instance
completes and the pattern return to the marking where place P is marked. At
this marking, other events may occur, another instance of the pattern may start,
or the pattern may terminate by firing transition End.

However, in the main cycle (subnet labeled (a)) if the rule instance is not
triggered, from any place where any of the sequences (A, Ay, ..., Ap) or (B, By,
..., Bm) does not complete, it is possible to return to the marking where place
P is marked or terminate the pattern if no other event occurs. The return paths
are indicated by the smaller cycles inside the main cycle of the pattern.

Being at the marking where there is a token in place P, an occurrence of any
sequence over the set of events Xy \ {A;, B;} is possible and the pattern can also
terminate in this situation if it reaches its end. However as soon as A; occurs,
its occurrence is captured in the main cycle of the pattern in order to provide
the possibility to detect the behavior if (A, Ay, ..., A,) completes.

Likewise, as soon as B; occurs, the left cycle (please see the shadowed subnet
labeled (c)) in the pattern is followed, in order to avoid the completion of the
sequence (Bj, By, ..., B;y). In this cycle, at most the occurrence of the sequence
(By, Ba, ..., Bjy—1) is possible. From any place in this cycle where the sequence
(By, B, ..., By—1) does not complete, it is possible to return to the marking
where there is a token in place P or terminate the pattern.

Pattern instantiation parameters:

© Ay, ..., Ap, By, ..., Bm
s O=3;\{Ay, ..., Ay, By, ..., By}

403

A.7 Chain Precedence Category

(a)

{“g\'z L

q)
ﬁDéfDTm -EC
el

{'ahz D

-l

{"vA\'z E

{whAz

(e)

O

1 {“a\'z
pu3
L=

D H‘Em

.H ‘e)

|2qe| uonisues} & (3)°°H e
:si919weled uialed

Figure A.32: Chain Precedence. Direct compliance rule

404

Repo