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Abstract
The simplest infinite sequences that are not ultimately periodic are pure morphic sequences:
fixed points of particular morphisms mapping single symbols to strings of symbols. A basic way
to visualize a sequence is by a turtle curve: for every alphabet symbol fix an angle, and then
consecutively for all sequence elements draw a unit segment and turn the drawing direction by
the corresponding angle. This paper investigates turtle curves of pure morphic sequences. In
particular, criteria are given for turtle curves being finite (consisting of finitely many segments),
and for being fractal or self-similar: it contains an up-scaled copy of itself. Also space-filling
turtle curves are considered, and a turtle curve that is dense in the plane. As a particular result
we give an exact relationship between the Koch curve and a turtle curve for the Thue–Morse
sequence, where until now for such a result only approximations were known.
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1. INTRODUCTION

Infinite sequences, shortly called sequences, are
the simplest possible infinite objects. The simplest
sequences are periodic, up to an initial part. The
next simplest are morphic sequences: fixed points
of particular morphisms mapping single symbols to
strings of symbols. A typical example is the fixed
point starting in 0 of the morphism φ defined by
φ(0) = 01, φ(1) = 10, yielding

φ(0) = 01, φ2(0) = 0110, φ3(0) = 01101001,

φ4(0) = 0110100110010110, . . .

As φn(0) is a prefix of φn+1(0) for every n, the limit
of this process yields the unique fixed point of φ
starting in 0: the Thue–Morse sequence.

A sequence can be visualized by a turtle curve:
for every alphabet symbol fix an angle. Then the
turtle curve is obtained by drawing a unit seg-
ment for every sequence element, and adjust the
drawing direction by the corresponding angle. In
this paper, we investigate turtle curves of morphic
sequences. Arbitrarily choosing simple morphisms
and angles typically yield turtle curves hardly show-
ing any structure. However, sometimes the turtle
curve is finite, that is, it consists of finitely many
segments that are drawn over and over again, or
shows up fractal or self-similar behavior: it con-
tains an up-scaled copy of itself. When browsing
through this paper you will see several examples of
turtle curves showing some regular repeating pat-
tern, either finite or indicated by self-similarity.
The main goal of this paper is to investigate the
criteria for obtaining finite or self-similar turtle
curves.

One of the most well-known fractal curves is the
Koch curve, going back to Ref. 1, and one of the
most well-known morphic sequences is the Thue–
Morse sequence as defined above. It was known
before that particular variants of turtle curves for
the Thue–Morse sequence approximate the Koch
curve in the Hausdorff metric, see Ref. 2. In this
paper, we go a step further: we show that when con-
necting particular mid points of segments in a tur-
tle curve for the Thue–Morse sequence, one exactly
obtains the Koch turtle curve, rather than only
approximating it.

The reason for studying turtle curves of
sequences is not only in generating nice pictures.
A turtle curve visualizes a sequence, and patterns
showing up in the visualization may hint toward

properties of the structure of the sequence and help
in understanding them.

We restrict to the very simplest version of tur-
tle curves, fully defined by choosing an angle for
every alphabet symbol, since the drawing algo-
rithm only draws unit segments in a direction
determined by these angles. Obvious generaliza-
tions include variants allowing drawing segments of
non-fixed lengths, or drawing other shapes rather
than segments. Finite initial parts of both mor-
phic sequences and turtle curves can be described
by L-systems, Ref. 3, in particular D0L-systems
(deterministic L-systems with 0 context symbols)
being a particular kind of context free grammars for
which the productions are applied in parallel, and
for which drawing instructions are coupled to the
terminals. A first approach to draw turtle curves of
D0L-systems, including some experimental observa-
tions on grid filling and fractal behavior, was pre-
sented in Ref. 4.

Other related work includes recurrent sets from
Ref. 5. There the sequence generation is similar to
L-systems and morphic sequences, but an essen-
tial difference is in the way of drawing: there every
symbol has a fixed drawing direction, where in our
turtle curves the drawing direction is the accumu-
lation of the angles of all symbols inspected before.
By extending the alphabet to all drawing directions
occurring in the turtle curve, the turtle curve is
closely related to a recurrent set over a more com-
plicated sequence over this extended (possibly infi-
nite) alphabet. Another essential difference is that
recurrent sets are compact sets obtained as a limit
into the small, while our turtle curves are unions of
infinitely many unit segments, going to infinity in
case of unboundedness.

This paper is organized as follows. In Sec. 2, we
introduce morphic sequences; in Sec. 3 we describe
turtle curves. In Sec. 4, we give criteria for turtle
curves to be finite, illustrated by several examples.
In Sec. 5, we introduce self-similarity, and give crite-
ria for self-similarity for point sets of turtle curves,
together with a number of examples. In Sec. 6, we
give our results relating the Thue–Morse sequence
and the Koch turtle curve. Exploiting some results
from Sec. 6, in Sec. 7 we give a modified criterion
for point sets of turtle curves to be self-similar. In
Sec. 8, we give examples of turtle curves that are
space-filling in several senses: they meet every grid
point exactly once, or every grid segment exactly
once, or are dense in the plane. We conclude in
Sec. 9.
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2. MORPHIC SEQUENCES

Let A be a finite alphabet. As usual, we write A∗
for the set of finite strings over A, ε for the empty
string and A+ = A∗\{ε}. We write |u| for the length
of a string u, and |A| for the size of a finite set A.

A sequence over A is defined to be a map σ :
N → A, where N consists of the natural numbers
0, 1, 2, . . . . We write Aω for the set of sequences
over A.

For n ∈ N the string σ↓n = σ(0)σ(1) · · · σ(n− 1)
∈ An is called the prefix of length n of σ. We write
Pref(σ) for the set of all prefixes of the sequence σ.

For u = u0u2 · · · un−1 ∈ A∗ and σ ∈ Aω the
sequence uσ is defined by (uσ)(i) = ui for i < n
and (uσ)(i) = σ(n − i) for i ≥ n.

For n ∈ N and σ ∈ Aω the sequence σ(n) is
defined by σ(n)(i) = σ(i + n) for i ∈ N. So for
all n ∈ N we have σ = (σ↓n)σ(n).

A sequence σ is called periodic with period n
if σ(i + n) = σ(i) for all i ∈ N, or, equivalently,
σ = σ(n). We write σ = uω for u = σ↓n if σ is peri-
odic with period n. A sequence σ is called ultimately
periodic if σ(m) is periodic for some m ∈ N.

A morphism is a map φ : A → B∗; we will only
consider morphisms φ : A→ B+ to ensure that infi-
nite sequences will be mapped to infinite sequences.
Morphisms are extended to φ : A∗ → B∗ by defin-
ing φ(a1a2 · · · an) = φ(a1)φ(a2) · · ·φ(an) and to
φ : Aω → Bω by defining φ(aσ) = φ(a)φ(σ).

If A = B and one particular a ∈ A satisfies
φ(a) = ax for x ∈ A+, this gives rise to the pure
morphic sequence (Ref. 6)

φω(a) = axφ(x)φ2(x)φ3(x)φ4(x) · · · .
It is easily shown that this is the only sequence
starting in a that is a fixed point of φ, i.e. φ(σ) = σ.
A morphic sequence over A is defined to be a
sequence of the form τ(σ) for some pure morphic
sequence σ over B and some morphism τ : B →
A. In the literature, the sequence a, φ(a), φ2(a), . . .
is often called a D0L-sequence and the sequence
τ(a), τ(φ(a)), τ(φ2(a)), . . . is then called a CD0L-
sequence, see e.g. Ref. 6.

The following simple example shows that not
every morphic sequence is purely morphic. Define
the sequence square = 1100100 · · · over {0, 1}
by square(n) = 1 if and only if n is a
square. This is not pure morphic over {0, 1} since
limn→∞ |square↓n|1/n = 0, where |u|1 denotes the
number of 1’s occurring in u, and this can only be
achieved for square = φω(1) if φ(0) = 0k for k > 0,

which yields a contradiction by some case analysis.
However, square is morphic since square = τ(φω(2))
for τ, φ defined by φ(0) = 0, φ(1) = 001, φ(2) = 21,
τ(0) = 0, τ(1) = 1, τ(2) = 1.

Three famous morphic sequences are the Thue–
Morse sequence t, the period-doubling sequence pd
and the Fibonacci sequence fib. They are defined by
t = φω(0) for φ(0) = 01, φ(1) = 10, pd = φω(0) for
φ(0) = 01, φ(1) = 00, and fib = φω(0) for φ(0) = 01,
φ(1) = 0. In fact up to swapping symbols these are
the only three pure morphic sequences over {0, 1}
with |φ(a)| ≤ 2 for a = 0, 1 that are not ultimately
periodic.

3. TURTLE CURVES

Let for every a ∈ A an angle α(a) ∈ R be given.
Then for a sequence σ over A its turtle curve
C(σ, α) ⊆ R2 is described as follows. Start in (0, 0)
and draw a segment of unit length in the direction
α(σ(0)), by which the current direction is α(σ(0)).
Next for i = 1, 2, 3, . . . continue by adding α(σ(i))
to the current direction and draw a segment (start-
ing in the end point of the last drawn segment) in
the direction of this current direction. In this paper,
we investigate the resulting turtle curves for various
sequences and various α : A → R. Following the
above description we now give a formal definition.

Definition 1. Let σ be a sequence over A and α :
A→ R.

• α : A→ R is extended to α : A∗ → R by defining
α(ε) = 0 and α(a1, a2, . . . , an) =

∑n
i=1 α(ai).

• For u ∈ A∗ its position P (u, α) ∈ R2 is defined
inductively by P (ε, α) = (0, 0) and

P (ua, α) = P (u, α) + (cos(α(ua)), sin(α(ua)))

for u ∈ A∗ and a ∈ A.
• The turtle curve point set P (σ, α) is defined by

P (σ, α) =
⋃

u∈Pref(σ)

{P (u, α)}.

• The turtle curve C(σ, α) is defined to consist of
the union of all subsequent segments between the
points in P (σ, α):

C(σ, α) =
⋃

ua∈Pref(σ)

{λP (u, α)+ (1− λ)P (ua, α) |λ∈ [0, 1]}.
Note that this definition of a turtle curve is the
very simplest possible one. It allows several obvi-
ous extensions, for instance by drawing segments of
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other lengths than only unit length, or even other
objects. In Sec. 6, we will use a variant with two
angles: one for turning before and one for turning
after drawing the segment. But our basic definition
only uses one angle per symbol: in every step first
turn this angle and then draw the unit segment.

As a first example consider the constant zero
sequence σ = 0ω defined by σ(i) = 0 for all
i ∈ N, and choose α(0) = π/2. Then the tur-
tle curve consists of a square, and P (σ, α) =
{(0, 0), (0, 1), (−1, 1), (−1, 0)} since P (ε, α) = (0, 0),
P (0, α) = (0, 1), P (00, α) = (−1, 1), P (000, α) =
(−1, 0) and P (0i, α) = P (0i−4, α) for i ≥ 4.

For the same sequence σ = 0ω we obtain

• if α(0) = 0 then P (σ, α) = {(i, 0) | i ∈ N},
• if α(0) = π for n ≥ 3 then P (σ, α) =
{(0, 0), (−1, 0)},

• if α(0) = 2π/n for n ≥ 3 then P (σ, α) consists of
the nodes of a regular n-gon,

• if α(0) = xπ for an irrational number x, then
P (σ, α) consists of infinitely many points on a
circle.

By definition the distance between two consecu-
tive elements of P (σ, α) is 1, so P (σ, α) contains
at least two points for every σ, α. The above exam-
ples already show that it can be finite or infinite; if
it is finite then |P (σ, α)| may be any number ≥ 2,
and if it is infinite then it may be either bounded
or unbounded.

More general, the same three types of turtle
curves occur for arbitrary periodic sequences σ =
uω. If α(u) = 0 and P (u, α) �= (0, 0) then P (σ, α) =
S + N · P (u, α) for a finite set S ⊆ R2, by which
P (σ, α) is unbounded. Otherwise, if α(u) = xπ for
a rational number x then P (σ, α) is finite. In the
remaining case P (σ, α) is bounded and infinite.

If σ is periodic and P (σ, α) is unbounded then
it is easily shown that P (σ, α) is contained in a
strip. For non-periodic sequences this is not the
case: Figure 1 shows a fragment of the infinitely spi-
raling turtle curve obtained by choosing α(0) = 0
and α(1) = π/2 and the sequence square as intro-
duced before.

Earlier results on unboundedness include Ref. 7,
in particular proving that P (fib, α) is unbounded for
α(0) = 0 and α(1) = π/2, and even more, contains
every grid point in a full quadrant of the plane.

Every turtle curve of any morphic sequence τ(σ)
is also a turtle curve of the pure morphic sequence σ
by choosing α(a) = α(τ(a)) for every a; this justifies
omitting “pure” in the title of this paper.

Fig. 1

We end this section by a lemma that we will
often use: to obtain P (uv, α) from P (u, α) one adds
a rotated version of P (v, α). For an angle θ its
rotation Rθ : R2 → R2 is defined by Rθ(x, y) =
(x cos θ − y sin θ, x sin θ + y cos θ). We use + and −
for addition and subtraction of vectors in R2.

Lemma 2. Let u, v ∈ A∗. Then P (uv, α) =
P (u, α) +Rα(u)(P (v, α)).

Proof. Induction on |v|. For |v| = 0 it holds by def-
inition. Using Rα(cos β, sin β) = (cos(α+β), sin(α+
β)), and using the induction hypothesis on P (uv, α)
we obtain

P (uva, α) = P (uv, α) + (cos(α(uva)), sin(α(uva)))

= P (u, α) +Rα(u)(P (v, α))

+ (cos(α(uva)), sin(α(uva)))

= P (u, α) +Rα(u,α)(P (v, α))

+Rα(u)(cos(α(va)), sin(α(va)))

= P (u, α) +Rα(u)(P (v, α)

+ (cos(α(va)), sin(α(va))))

= P (u, α) +Rα(u)(P (va, α)).

Note that Lemma 2 implies that P (uv, α) =
P (u, α) + P (v, α) if α(u) = 0 and P (uv, α) =
P (u, α) − P (v, α) if α(u) = π.

4. FINITE TURTLE CURVES

A turtle curve C(σ, α) is called finite if it consists of
finitely many segments; this is equivalent to finite-
ness of the set P (σ, α).

In this section, we give some criteria and exam-
ples for finite turtle curves. In Ref. 8, an analysis is
given for finiteness of the degenerated class of turtle
curves over two symbols only having angles 0 and
π, by which the turtle curve is a subset of a line.
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The next theorem provides a fruitful criterion for
P (σ, α) being finite. For a set L ⊆ A+ of non-empty
strings we define Lω to consist of all sequences that
can be written as u1u2u3 · · · for ui ∈ L for all i.

Theorem 3. Let σ ∈{u1, . . . , un}ω for u1, . . . , un ∈
A+, n ≥ 2. Assume that α(ui) is a multiple of 2π
and P (ui, α) = (0, 0) for i = 1, . . . , n. Then P (σ, α)
is finite and |P (σ, α)| ≤ 1 +

∑n
i=1(|ui| − 1).

Proof. Let u ∈ Pref(σ). Then u = v1v2 · · · vk for
vi ∈ {u1, . . . , un} for i = 0, . . . , k − 1, and vk is a
prefix of ui for some i = 1, . . . , n, vk �= ui. Then
by repeatedly applying Lemma 2 for vj for j =
1, 2, . . . , satisfying P (vj , α) = (0, 0) and α(vj) = 0,
we obtain P (u, α) = P (vk, α). As the total num-
ber of proper non-empty prefixes of ui is |ui| − 1
we obtain |P (σ, α)\{(0, 0)}| ≤ ∑n

i=1(|ui| − 1), so
|P (σ, α)| ≤ 1+

∑n
i=1(|ui|−1), proving the theorem.

Theorem 3 admits several variants; for instance
by omitting the requirement of all α(ui) being a
multiple of 2π, we can conclude boundedness of the
turtle curve, and weakening being a multiple of 2π
to being a rational number times π, we can con-
clude finiteness, but with a higher bound |P (σ, α)|
depending on the denominators of the rational
numbers.

Now we apply Theorem 3 for the Thue–Morse
sequence t, exploiting its special structure.

Theorem 4. Let α(0) + α(1) = kπ/2n for k odd.
Then P (t, α) is finite and |P (t, α)| ≤ 2n+4.

Proof. Let φ(0) = 01, φ(1) = 10, so t = φ(t).
Let u = φn+1(0) and v = φn+1(1). Since both
u and v consists of 2n 0’s and 2n 1’s, we obtain
α(u) = α(v) = kπ and α(uvv) = 3kπ. Observe that
Rkπ(P ) = −P for every P ∈ R2 and k odd. Apply-
ing Lemma 2 three times yields

P (uvvu, α) = P (uvv, α) − P (u, α),

P (uvv, α) = P (u, α) − P (vv, α),

P (vv, α) = P (v, α) − P (v, α) = 0,

together yielding P (uvvu, α) = (0, 0), and simi-
larly P (vuuv, α) = (0, 0). We obtain α(uvvu) =
α(vuuv) = 4kπ. Since t = φn+3(t), φn+3(0) = uvvu
and φn+3(1) = vuuv we obtain t ∈ {uvvu, vuuv}ω .
Now by Theorem 3 we conclude that P (t, α) is finite
and |P (t, α)| ≤ |uvvu| + |vuuv| = 2n+4.

The following three pictures show finite turtle
curves of t for which Theorem 4 applies. The param-
eters of Fig. 2 are α(0) = 0 and α(1) = π/2; of
Fig. 3 they are α(0) = π/16 and α(1) = 3π/4; and
of Fig. 4 they are α(0) = π/8 and α(1) = 63π/64.
The corresponding sets P (σ, α) consist of 20, 250
and 1018 points, respectively, all being close to the
bounds 32, 256 and 1024 given by Theorem 4.

Next we give a theorem by which finiteness of
P (σ, α) can be concluded similar to Theorem 3, but
with weaker conditions: relaxing the condition on
α(u1) and even removing the condition on P (u1, α).

Theorem 5. Let σ ∈ {u1, . . . , un}ω for which α(ui)
is a multiple of 2π and P (ui, α) = (0, 0) for i =
2, . . . , n, and α(u1) = qπ, where q is rational and
not a multiple of 2. Then P (σ, α) is finite.

Fig. 2

Fig. 3

Fig. 4
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Proof. Let P = {P ((uk
1 , α)) | k ∈ N}. From

α(u1) = qπ and q is rational and not a multiple of 2
it follows that P is finite. Let u ∈ Pref(σ). Then u =
v1v2 · · · vk for vi ∈ {u1, . . . , un} for i = 0, . . . , k − 1,
and vk is a prefix of ui for some i = 1, . . . , n.
Then by repeatedly applying Lemma 2 for vj for
j = 1, 2, . . . , we obtain P (v1v2 . . . vk−1, α) ∈ P .
So P (u, α) = p + Rα(u1)m(P (vk, α)) for p ∈ P and
m ∈ N. Since P is finite, vk is one of the finitely
many prefixes of ui for some i, and α(u1) is rational,
there are only finitely many such points.

We give a few examples of finite turtle curves of
the sequence σ = φω(1) for φ defined by φ(0) = 00
and φ(1) = 101, and α(0) = kπ/2n for some k, n.
Then φn+1(0) = 02n+1

, by which the turtle curve
of φn+1(0) is a regular 2n+1-gon or 2n+1-star, yield-
ing α(φn+1(0)) = 2kπ and P (φn+1(0), α) = (0, 0).
Further observe that σ ∈ {φn+1(1), φn+1(0)}ω , by
which Theorem 5 applies for proving finiteness of
P (σ, α) if α(φn+1(1)) satisfies the rationality con-
dition. Figure 5 is obtained by choosing α(0) =
π/16, α(1) = 3π/4, Fig. 6 is obtained by choos-
ing α(0) = π/32, α(1) = −2π/3, Fig. 7 is obtained
by choosing α(0) = π/4, α(1) = −17π/18, and
Fig. 8 is obtained by choosing α(0) = 5π/16, α(1) =
−29π/60.

The next example also applies Theorem 5, but
in a more hidden way. Define σ = φω(0) for φ
defined by φ(0) = 0010 and φ(1) = 1010; this
is the sequence yielding Koch’s curve as we will
see in Sec. 5. Now we choose α(0) = 2π/5 and
α(1) = −π/5. Then one checks that P (φ(00), α) =
P (φ(10), α) = (0, 0), α(φ(00)) = 2π and α(φ(10)) =
7π/5. Since σ ∈ {φ(10), φ(00)}ω , we obtain by

Fig. 5

Fig. 6

Fig. 7

Fig. 8

1650009-6
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Fig. 9

Theorem 5 that P (σ, α) is finite; its turtle curve
is shown in Fig. 9.

Many finite turtle curves of the sequence σ =
φω(0) for φ defined by φ(0) = 011 and φ(1) =
0, called rosettes, are presented in Ref. 9. Finite-
ness of them can be proved by Theorem 5 as fol-
lows. The requirement for the angles in rosettes
is aα(0) + bα(1) = π, up to a multiple of 2π, in
which a and b are the numbers of 0s and 1s, respec-
tively, in φk(0) for some k. For instance, for k = 2
we have a = 3 and b = 2. Choosing α in this
way yields α(φk(0)) = π, from which we conclude
α(φk(00)) = 2π and P (φk(00), α) = (0, 0). Since
1 only occurs in groups of two in φ(0) and φ(1),
we obtain σ ∈ {0, 11}ω . Since σ is a fixed point of
φk+1, we obtain σ ∈ {φk+1(0), φk+1(11)}ω . Since

Fig. 10

φk+1(11) = φk(00), for applying Theorem 5 the
only remaining requirement is a rationality require-
ment for α(φk+1(0)), which holds for all rosettes.
In Fig. 10, we show a typical rosette from Ref. 9
for α(0) = 7π/9, α(1) = −2π/9, which satisfies the
above criteria for k = 7, a = 85, b = 86.

5. SELF-SIMILAR TURTLE
CURVES

Roughly speaking, a set P ⊆ R2 is called frac-
tal or self-similar if it contains a copy of itself
when zooming in or out. As in our turtle curves
all drawing steps have unit length, it is most nat-
ural to focus on zooming out, leading to the fol-
lowing definition. As before we use the notation
c(x, y) = (cx, cy) for scalar vector multiplication
and Rθ(x, y) = (x cos θ− y sin θ, x sin θ+ y cos θ) for
rotation over θ.

Definition 6. A set P ⊆ R2 is called self-similar
if there exists (x0, y0) ∈ R2, a rotation angle θ and
a scaling factor c > 1 such that

(x0, y0) + cRθ(x, y) ∈ P

for all (x, y) ∈ P .
A turtle curve C(σ, α) is called self-similar if

P (σ, α) is self-similar.

A self-similar set containing two distinct elements
is always unbounded and hence infinite, since for
every (x, y) �= (x′, y′) ∈ P two points (x0, y0) +
cRθ(x, y) and (x0, y0) + cRθ(x′, y′) in P can be
obtained of which the distance is increased by a
factor c > 1.

Theorem 7. Let σ ∈ Aω satisfy σ = φ(σ) for
some φ : A → A+ satisfying α(φ(a)) = α(a) and
P (φ(a), α) = cRθ(P (a, α)) for all a ∈ A, for some
scaling factor c > 1 and some rotation angle θ.

Then P (σ, α) is self-similar.

Proof. First we prove the following claim by
induction on |u|.
Claim: α(φ(u)) = α(u) and P (φ(u), α) = cRθ

(P (u, α)) for all u ∈ A+.
For |u| = 1 this is given. For the induction step

we prove the claim for ua, assuming that it holds
for u. We have

α(φ(ua)) = α(φ(u)φ(a)) = α(φ(u)) + α(φ(a))

= α(u) + α(a) = α(ua),

1650009-7
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Fig. 11

and

P (φ(ua), α)

= P (φ(u)φ(a), α)

= P (φ(u), α) +Rα(φ(u)(P (φ(a), α))

(by Lemma 2)

= P (φ(u), α) +Rα(u)(P (φ(a), α))

(induction hypothesis)

= cRθ(P (u, α)) +Rα(u)(cRθ(P (a, α)))

(given, induction hypothesis)

= cRθ(P (u, α)) + cRα(u)(Rθ(P (a, α)))

= cRθ(P (u, α)) + cRθ(Rα(u)(P (a, α)))

(rotations commute)

= cRθ(P (u, α) +Rα(u)(P (a, α)))

= cRθ(P (ua, α) by Lemma 2,

proving the claim.
We prove that P (σ, α) is self-similar by proving

that cRθ(x, y) ∈ P (σ, α) for all (x, y) ∈ P (σ, α).
Let (x, y) ∈ P (σ, α), then (x, y) = P (u, α) for some
prefix u of σ. According to the claim we obtain
cRθ(x, y) = cRθ(P (u, α)) = P (φ(u), α) Since u is
a prefix of σ, we obtain that φ(u) is a prefix of
φ(σ) = σ, so P (φ(u), α) ∈ P (σ, α), concluding the
proof.

As the first application of a self-similar turtle
curve in Fig. 11 we show a fragment of C(σ, α)
for σ = φω(1), for φ(0) = 111100, φ(1) = 10, and
α(0) = 0, α(1) = π/2:

Indeed, Theorem 7 applies, since α(111100) =
α(0) = 0, α(10) = α(1) = π/2, P (111100, α) =
(2, 0) = 2P (1, α) and P (10, α) = (0, 2) = 2P (1, α),
satisfying the requirements for c = 2 and θ = 0.

As the second example we consider the well-
known Koch curve: start by a single segment, and
replace it by the four segments shown in Fig. 12.

The standard Koch curve is obtained by repeat-
ing this for every created new segment, where the
length of every new segment is one third of the
length of its ancestor, and then take the limit. Apart
from the scaling, this can be described in turtle
graphics by first doing a unit step in the same direc-
tion as before, next turn π/3 to the right, then do
a unit step, next turn 2π/3 to the left and do a
unit step, and finally turn π/3 to the right and do
a unit step. Taking the limit to the infinite rather
than to the finite, this is described as C(koch, α)
for koch = φω(0), φ(0) = 0010, φ(1) = 1010, α(0) =
π/3, α(1) = −2π/3, to which Theorem 7 applies for
c = 3 and θ = 0. Hence we call C(koch, α) the Koch
turtle curve. Figure 13 shows a fragment.

By choosing the same sequence, but choos-
ing another value for α(0), and choosing α(1) =
−2α(0), still Theorem 7 applies for θ = 0, yield-
ing another scaling factor c. For instance, taking
α(0) = 17π/36 and α(1) = −17π/18 yields c =
2 + 2arccos 17π/36, and Fig. 14 as a fragment of
C(σ, α), sometimes called Cesaro fractal.

Fig. 12

Fig. 13
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Fig. 14

Theorem 7 also applies for θ being non-zero.
As an example consider σ = φω(1), φ(0) = 001,
φ(1) = 1010000, α(0) = π/2, α(1) = −π/2. Then
P (0, α) = (0, 1), P (1, α) = (0,−1), P (φ(0), α) =
(−1, 2), P (φ(1), α) = (1,−2), α(φ(0)) = α(0) =
π/2 and α(φ(1)) = α(1) = −π/2. So Theorem 7
applies for c =

√
5 and θ = arctan 1/2. Figure 15

shows a fragment in which the starting point (0, 0)

Fig. 15

Fig. 16

is on the top left, and in every iteration the picture
is simultaneously magnified by a factor c =

√
5 and

rotated by an angle θ = arctan 1/2.
In Fig. 16, we see a fragment of the well-known

Sierpiński triangle, obtained as C(σ, α) for σ =
φω(1), φ(0) = 00, φ(1) = 11110, α(0) = 0, α(1) =
2π/3, for which Theorem 7 applies for c = 2 and
θ = 0.

6. THUE–MORSE MEETS KOCH

In earlier work, e.g. Refs. 2 and 10, it has been
shown that particular turtle curves for the Thue–
Morse sequence t converge to the Koch curve in the
Hausdorff metric. Related work includes Ref. 11,
where it is investigated why and to which extent
the sum of binary digits of multiples of 3 is more
often even than odd. It is well known that the sum
of binary digits of n is even if and only if t(n) = 0.
Essentially, Ref. 11 considers the turtle curve of t
in which for both 0 and 1 the direction turns π/3,
but the unit segment is only drawn at every 1, and
for every 0 nothing is drawn. Its analysis is based
on “the classical fractal scheme”, essentially being
the Koch curve.

But in all this work the focus is on approximation
and convergence. Here we go a step further: we show
that the point set of the Koch curve is a subset of
a turtle curve for the Thue–Morse sequence. More
precisely, by choosing δ(0) = π/3 and δ(1) = π,
we prove that the points (P (u, δ) + P (ua, δ))/2 ∈
C(t, δ) for ua being prefixes of t of length divisible
by 4, exactly form the point set P (koch, β) of the
Koch turtle curve, defined by koch = ψω(0), ψ(0) =
0010, ψ(1) = 1010, β(0) = π/3, β(1) = −2π/3, up
to some scaling and rotation.

In Fig. 17, we show a fragment of C(t, δ) from
which the relationship with the Koch curve clearly
appears.

In order to give the proof, first we extend the
notion of turtle curve to two angles α,α′ for every
symbol, rather than only one single angle α. Until
now steps in a turtle curve when reading a symbol a
were defined by first turning around the angle α(a)

Fig. 17
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and then drawing a unit segment. In the extended
variant, this is replaced by: first turn around the
angle α(a), then draw a unit segment, and then
turn around the angle α′(a). More precisely, for
u ∈ A∗ its position P (u, α, α′) ∈ R2 and angle
α(u) is defined inductively by P (ε, α, α′) = (0, 0),
α(ε) = 0, and

P (ua, α, α′) = P (u, α, α′)

+ (cos(α(u) + α(a)), sin(α(u) + α(a))),

α(ua) = α(u) + α(a) + α′(a),

for u ∈ A∗ and a ∈ A. Now for a sequence σ over A
the set P (σ, α, α′) is defined by

P (σ, α, α′) =
⋃

u∈Pref(σ)

{P (u, α, α′)}.

For α′(a) = 0 for all a ∈ A this definition coin-
cides with the earlier definition of P (σ, α). Con-
versely, the following lemma shows that the point
set P (σ, α, α′) of a turtle curve in this extended
set coincides with the point set of a turtle curve
in the basic setting. For a sequence σ over A define
the sequence pair(σ) over A × A by pair(σ)(i) =
(σ(i), σ(i + 1)) for i ≥ 0.

Lemma 8. Let σ be a sequence over A and
let α,α′ : A → R. Then P (σ↓k+1, α, α

′) =
(cos(α(σ(0)), sin(α(σ(0))) + Rα(σ(0))(P (pair(σ)↓k,
γ))) for all k ≥ 0, for γ defined by γ(a, b) =
α′(a) + α(b) for a, b ∈ A.

Proof. Induction on k. For k = 0 it holds by def-
inition, and the induction steps follows since the
drawing instructions coincide.

The points (P (u, δ) + P (ua, δ))/2 ∈ C(t, δ) rep-
resent midpoints between two consecutive points
in the turtle curve point set P (t, δ). Up to scaling
and translation, they can also be obtained as points
in P (t+, δ), where t+ = 20212120 · · · is defined by
t+(2i) = 2 and t+(2i + 1) = t(i) for i ≥ 0, and for
which the definition of δ is extended to {0, 1, 2} by
defining δ(2) = 0. Next define α(0) = α′(0) = π/3
and α(1) = α′(1) = −2π/3. The next lemma is the
key to the relation between Koch and Thue–Morse.

Lemma 9. Let k ≥ 0, and let u = t+↓8k and let
v = t↓k. Then P (u, δ) = 3P (v, α, α′).

Proof. We extend the claim to be proved by
δ(u) = α(v) and do this by induction on k. For

k = 0 we have P (u, δ) = (0, 0) = 3P (v, α, β) and
δ(u) = 0 = α(v).

For the induction step assume δ(u) = α(v) and
P (u, δ) = 3P (v, α, α′). We extend v by one element
a ∈ {0, 1}.

In case of a = 0 we have to prove δ(u20212120) =
α(v0) and P (u20212120, δ) = 3P (v0, α, α′). Since
δ(u) = α(v) and δ(20212120) = 2π/3 = α(0) +
α′(0) we conclude δ(u20212120) = α(v0). Let
A = P (u, δ), and we turn the picture in such a
way that the direction δ(u) = α(v) is horizon-
tal from left to right. Then starting in A, the
eight symbols 20212120 cause the turtle to move to
B,C,D,C,B,C,D,E, successively. The total effect
is a move from A to E, which is also obtained by
moving 3 unit steps in the direction of α(0) = π/3.
So P (u20212120, δ) = 3P (v0, α, α′).

�
�
�
�
�
�

��

A B

C

D

E

�
�

�
�

�
�
�
�
�
�

V

U

T

S

R
P Q

In case of a = 1 we have to prove δ(u21202021) =
α(v1) and P (u21202021, δ) = 3P (v1, α, α′). The
former holds since δ(u) = α(v) and δ(21202021) =
2π/3 = α(1)+α′(1), up to 2π. Let P = P (u, δ), and
we turn the picture in such a way that the direction
δ(u) = α(v) is horizontal from left to right. Then
starting in P , the eight symbols 21202021 cause the
turtle to move to Q,P,R, S, T, U, V, U , successively.
The total effect is a move from P to U , which is also
obtained by moving 3 unit steps in the direction of
α(1) = −2π/3. So P (u21202021, δ) = 3P (v1, α, α′),
concluding the proof.

Recall that the period-doubling sequence pd is
defined by pd = φω(0) for φ(0) = 01, φ(1) = 00.
The next lemma states that it is obtained from koch
by only removing the first element, and is closely
related to t.

Lemma 10. pd(i) = koch(i+ 1) = τ(pair(t)(i)) for
all i ∈ N, for τ defined by τ(0, 0) = τ(1, 1) = 1,
τ(0, 1) = τ(1, 0) = 0.

Proof. We apply induction on i; we have pd(0) =
0 = koch(1) = τ(pair(t)(0)). Recall that koch =
ψω(0), ψ(0) = 0010, ψ(1) = 1010, and observe pd =
(φ2)ω(0) where φ2(0) = 0100 and φ2(1) = 0101.

1650009-10
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Fig. 18

Since pd = φ2(pd) and koch = ψ(koch), from this
we conclude pd(i) = 0 = koch(i + 1) for i even,
and pd(i) = 1 = koch(i + 1) for i ≡ 1mod 4, and
koch(4j) = koch(j) and pd(4j+3) = pd(j) for j ≥ 0.
So for i �≡ 3mod 4 the claim follows directly, and
for i = 4j + 3 we conclude pd(i) = pd(4j + 3) =
pd(j) = koch(j + 1) = koch(4j + 4) = koch(i + 1)
by the induction hypothesis.

Since t ∈ {0110, 1001}ω we obtain τ(pair(t)(i)) =
0 = pd(i) for i even, and τ(pair(t)(i)) = 1 = pd(i)
for i ≡ 1mod 4, and t(4k + 3) = t(4k) for all k.
Combined with t(2k) = t(k) for all k, for i = 4j + 3
we obtain

τ(pair(t)(i)) = τ(pair(t)(4j + 3))

= τ(t(4j + 3), t(4j + 4))

= τ(t(4j), t(4j + 4))

= τ(t(j), t(j + 1))

= τ(pair(t)(j))

= pd(j) = pd(4j + 3) = pd(i),

using the induction hypothesis, concluding the
proof.

As a side remark, pd(i) = koch(i+1) follows from
the more general statement that can be proved in
a similar way: if ψ(0) = 0u, ψ(1) = 1u, φ(0) = u0,
φ(1) = u1 for any u starting with 0, then φω(0)(i) =
ψω(0)(i + 1) for all i ∈ N.

Now we arrive at the main theorem.

Theorem 11. Let δ(0) = π/3 and δ(1) = π, then
connecting the points (P (t↓4k+3, δ)+P (t↓4k+4, δ))/2
on C(t, δ) for k = 0, 1, 2, . . . exactly yields the Koch
turtle curve, scaled up by a factor 3/2.

Proof. Up to a translation, these points are
exactly the points 1

2P (t+↓8k, δ) for k = 1, 2, . . . .
According to Lemma 9, these are equal to
3
2P (t↓k, α, α

′). According to Lemma 8, after remov-
ing the first one, up to a rotation and translation

these are equal to 3
2P (pair(t)↓k, γ), for γ defined

by γ(a, b) = α′(a) + α(b) for a, b ∈ {0, 1}. Since
α(0) = α′(0) = π/3 and α(1) = α′(1) = −2π/3,
we obtain (up to 2π) γ(0, 0) = γ(1, 1) = 2π/3
and γ(0, 1) = γ(1, 0) = −π/3. So these points
are equal to 3

2P (τ(pair(t)↓k), β) for β(0) = −π/3
and β(1) = 2π/3. Since the sequences koch and
τ(pair(t)) coincide by Lemma 10 up to removing
a first element, these points are exactly the points
on (a mirrored version of) the Koch turtle curve,
multiplied by 3/2.

In Theorem 11, we worked out the relationship of
the Koch turtle curve with the turtle curve C(t, α)
for the particular angles α(0) = π/6 and α(1) =
π. A similar relationship appears for other choices.
Figure 18 shows a fragment of C(t, α) for α(0) =
2π/3 and α(1) = π, showing in bold an initial part
of the underlying Koch curve, again scaled up by a
factor 3/2.

Fig. 19
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Fig. 20

Experiments show that C(t, α) converges to the
Koch curve if α(0) + α(1) = kπ/(3 ∗ 2n) for k not
divisible by 2, 3, where in Theorem 4 we showed
that without the 3 in the denominator a finite turtle
curve is obtained. For instance, by choosing α(0) =
11π/12 and α(1) = π/6 we obtain the infinite Koch
like turtle curve of which a fragment is shown in
Fig. 19, and from which a detail is shown in Fig. 20.

7. MORE SELF-SIMILAR
TURTLE CURVES

In this section, we prove a variant of Theorem 7 for
proving turtle curves to be self-similar, yielding a
number of surprising examples.

Theorem 12. Let σ ∈ Aω satisfy σ = φ(σ) for
φ : A → A+, and there is (x, y) ∈ R2 with (x +
1)2 + y2 > 1 such that for all a ∈ A the following
holds:

• α(φ(a)) = α(a), and
• P (ua, α) = (x, y) for ua obtained from φ(a) by

removing its last element.

Then P (σ, α) is self-similar.

Proof. We use turtle curves with two angles as
introduced in Sec. 6, in which P (u, α, 0) = P (u, α)
is the point obtained after proceeding u where
for every symbol first a turn is made and then a
unit segment is drawn, while P (u, 0, α) is the point

obtained after proceeding u where for every sym-
bol first a unit segment is drawn and then a turn is
made.

Choose c > 1 and θ such that cRθ(1, 0) =
(x+ 1, y); this is possible due to (x+ 1)2 + y2 > 1.
In computing P (φ(a), 0, α) first the segment from
(0, 0) to (1, 0) is drawn, followed by unit segments
in the directions α(u) for the consecutive prefixes u
of φ(a). So

P (φ(a), 0, α) = (1, 0) + P (ua, α) = (x+ 1, y)

= cRθ(1, 0) = cRθP (a, 0, α),

very similar to the condition of Theorem 7. Using
this property, the following claim is proved in
exactly the same way as the claim in the proof of
Theorem 7, where instead of Lemma 2 its variant
P (uv, 0, α) = P (u, α) + Rα(u)(P (v, 0, α)) is used,
allowing a similar proof as for Lemma 2.

Claim: α(φ(u)) = α(u) and P (φ(u), 0, α) =
cRθ(P (u, 0, α)) for all u ∈ A+.

We prove that P (σ, α) is self-similar by proving
that cRθ(1, 0) − (1, 0) + cRθ(x, y) ∈ P (σ, α) for all
(x, y) ∈ P (σ, α). Let (x, y) ∈ P (σ, α), then (x, y) =
P (u, α) for some prefix u of σ. By the construction
of P we have P (ua, 0, α) = (1, 0)+P (u, α) for every
u ∈ A∗, a ∈ A. So (x + 1, y) ∈ P (σ, 0, α). Using
the claim we conclude cRθ(x + 1, y) = P (v, 0, α)
for some non-empty prefix v of σ. Again using
P (ua, 0, α) = (1, 0) + P (u, α), we conclude that
cRθ(1, 0)−(1, 0)+cRθ (x, y) = cRθ(x+1, y)−(1, 0) ∈
P (σ, α), concluding the proof.

In case φ(0) = u0, φ(1) = u1, for some string u
starting in 0, for σ = φω(0) Theorem 12 applies
if α(u) = 0 and P (u, α) = (x, y) satisfies (x +
1)2 + y2 > 1. This is the case for u = 00110 and
α(0) = 7π/18, α(1) = −7π/12, yielding a self-
similar turtle curve with an initial fragment starting
at the bottom left is shown in Fig. 21.

From Lemma 10, we know that the period-
doubling sequence pd is obtained from koch by
removing the first element. Since koch yields a self-
similar curve for α(1) = −2α(0) for arccos(α(0)) >
−1/2, we expect the same for pd. This can be proved
directly by Theorem 12: pd is a fixed point of φ
defined by φ(0) = 01, φ(1) = 00, so also of φ2 sat-
isfying φ2(0) = 0100, φ2(1) = 0101, being of the
above pattern for which the requirements of Theo-
rem 12 are easily checked.

In case α(a) = 2π/k for some a ∈ A, k > 1,
we may plug in ak in the definition of φ(b) for
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Fig. 21

Fig. 22

Fig. 23

any b ∈ A, without affecting the requirements for
Theorem 12, since in the turtle ak draws a regular
k-gon, ending in the same point and direction where
started. Applying this for pd for k = 6 by choosing
φ(0) = 01111111 = 017, φ(1) = 00, α(0) = π/12,

α(1) = −π/6 yields a self-similar turtle curve for
φω(0) of which Fig. 22 shows the initial fragment,
starting at the top.

Figure 23 shows an initial part of C(φω(0), α) for
φ, α defined by φ(0) = 0111111 = 016, φ(1) = 00,
α(0) = 2π/5, α(1) = −4π/5. Again this is a self-
similar turtle curve since φω(0) is a fixed point of φ2,
and φ2, α satisfy the requirements of Theorem 12.

8. SPACE-FILLING CURVES

A turtle curve can be space-filling in several
senses:

• It contains every edge in a grid (or half or one
quarter of it) at least once or exactly once.

• It contains every node in a grid (or half or one
quarter of it) at least once or exactly once.

• It is dense in the whole plane.

In this section, we prove that these three phenom-
ena all occur for turtle curves of morphic sequences.
First we focus on the rectangular grid of which the
nodes are (x, y) for integers x, y, and the edges are
of the shape {λ(x, y) + (1− λ)(x+ 1, y) |λ ∈ [0, 1]},
or {λ(x, y)+(1−λ)(x, y+1) |λ ∈ [0, 1]}, for integers
x, y. A result from Ref. 7 states that C(fib, α) for
α(0) = 0 and α(1) = π/2 contains every edge in a
full quadrant of this grid. This is “at least once” in
the above setting; the next theorem states “exactly
once”.

Theorem 13. Let α(0) = π/2 and α(1) = −π/2.
Define φ(0) = 010001110 and φ(1) = 110001110.
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Then C(φω(0), α) contains every edge in the quarter
plane {(x, y) |x < y ∧ x > −y} exactly once.

Proof. For a string v write Pref(v) for the set of
strings u for which w exists such that uw = v, and

C(v, α) =
⋃

ua∈Pref(v)

{λP (u, α) + (1 − λ)P (ua, α) |λ ∈ [0, 1]}.
It is easily proved by induction on n that
C(φn(0), α) consists of all 9n grid edge in the square
bounded by the four points (0, 0), (3n/2, 3n/2),
(0, 3n), (−3n/2, 3n/2), all occurring exactly once. So
C(φω(0), α) contains every edge in the quarter plane
{(x, y) |x < y ∧ x > −y} exactly once.

Showing the turtle curve indicated in Theorem 13
only shows the filled grid quarter; more information
is obtained by Fig. 24 showing C(φ3(0), α) in which
the corners are rounded off. The starting point (0, 0)
is at the bottom.

In this example, every grid edge in the quar-
ter plane is passed exactly once, so all grid points
are passed exactly twice, except for the points
on the border that are passed once. A similar
curve, but then filling 1/8 of the plane, is obtained
by a sequence obtained from the Rudin–Shapiro
sequence, see Ref. 6.

More interesting and slightly harder is the sec-
ond variant: all grid points are passed exactly once.
In the literature and wikipedia, many examples of
such curves are given, including the Hilbert curve,
the Peano curve and the Moore curve. Typically,
they can be presented as L-systems, but not in our

Fig. 24

more basic format of turtle curves. To obtain a
turtle curve passing every grid point exactly once
we consider the turtle curve from Theorem 13, but
instead of drawing the full edges, only the midpoints
of the edges are drawn, and every two consecu-
tive midpoints are connected by a segment. Since
all angles in the original turtle curve from Theo-
rem 13 are π/2 or −π/2, this yields a rectangular
grid again, but then turned over π/4. The result-
ing curve can be obtained as the turtle curve of the
sequence pair(φω(0)), where φ is from Theorem 13
and pair is defined by pair(σ)(i) = (σ(i), σ(i + 1))
for i ≥ 0, just like in Sec. 6. The angles in this tur-
tle curve are as follows: α(0, 0) = π/2, α(0, 1) =
α(1, 0) = 0, α(1, 1) = −π/2. Next we observe that
this sequence pair(φω(0)) is pure morphic: writing
a, b, c, d for (0, 0), (0, 1), (1, 0), (1, 1), respectively, it
is easily proved to be a fixed point of ψ defined by

ψ(a) = bcaabddca, ψ(b) = bcaabddcb,

ψ(c) = dcaabddca, ψ(d) = dcaabddcb.

Hence pair(φω(0)) = ψω(b). This is the proof sketch
of the following theorem.

Theorem 14. Let α(a)= π/2, α(b)=α(c)= 0 and
α(d) = −π/2. Define ψ as above. Then P (ψω(b), α)
contains every grid point in the quarter plane
{(x, y) |x ≥ 0 ∧ y ≥ 0} exactly once.

An initial part of the corresponding turtle curve
C(ψω(b), α) starting at the bottom left is given in
Fig. 25.

This section is concluded by the observation that
a particular turtle curve of a morphic sequence is

Fig. 25
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dense in the full plane, that is, for every point p ∈
R2 and every ε > 0 the point set of the turtle curve
contains a point that is closer than ε to p.

The example and the idea of the proof was sug-
gested by Tonny Hurkens.

Theorem 15. Let σ = φω(0) for φ defined by

φ(0) = 011111, φ(1) = 100000,

and let α(0) = 2π/5 and α(1) = −2π/5. Then
P (σ, α) is dense in R2.

Write pk = (cos(2πi/5), sin(2πi/5)) for k =
0, 1, 2, 3, 4 and let P be the set of points that can
be written as

∑4
i=0 aipi for integers a0, a1, a2, a3, a4.

It is well known that P is dense in R2; we will
prove that P (σ, α) = P . Since α(0) = 2π/5 and
α(1) = −2π/5 we obtain P (u, α) ∈ P for all
u ∈ {0, 1}∗, so P (σ, α) ⊆ P . For the converse we
first observe that due to p0+p1+p2+p3+p4 = (0, 0)
we may restrict to ai ≥ 0:

P =

{
4∑

i=0

aipi | a0, a1, a2, a3, a4 ∈ N

}
.

For the remaining proof obligation P ⊆ P (σ, α) we
have to prove that for every a0, a1, a2, a3, a4 ∈ N
the point

∑4
i=0 aipi is in P (σ, α). This follows by

induction on a0+a1+a2+a3+a4 using the following
lemma.

Lemma 16. Let p ∈ P (σ, α). Then p+pk ∈ P (σ, α)
for k = 0, 1, 2, 3, 4.

Proof. Write P (i) = P (σ↓i, α) and α(i) = α(σ↓i)
for i ∈ N. Then p ∈ P (σ, α) means that p = P (n)
for some n ∈ N. Since α(n) is a multiple of 2π/5
we conclude that P (n + 1) = p + pi for some
i ∈ {0, 1, 2, 3, 4}. So for this particular k = i we
have p + pk ∈ P (σ, α), we have to prove that this
also holds for the other k. Since P (σ, α) is self-
similar with scaling factor 1 and rotation angle 0 by
Theorem 7, and |φ(u)| = 6|u| for all u, we obtain
P (6n) = P (n) and α(6n) = α(n). If the last ele-
ment of σ↓n is 1 we replace n by 6n, keeping the
same P (n) and α(n), but replacing the last element
by 0. So we assume that the last element of σ↓n

is 0. Then φ(σ↓n) ends in 011111, by which the
last 5 steps in its turtle curve is a regular pen-
tagon. Hence P (6n − 5) = P (6n) = P (n) and
α(6n − 5) = α(6n) = α(n). Doing the same obser-
vation on the 1-step from P (6n − 4) to P (6n − 5)
we obtain φ(σ↓6n−4) ending in 100,000 by which the
last 5 steps in its turtle curve is a regular pentagon

Fig. 26

in the other direction. This yields P (6(6n−4)−6) =
P (n) and α(6(6n − 4) − 6) = α(n) + 6π/5. Hence
P (6(6n− 4)− 5) = p+ pk ∈ P (σ, α) for k = (i+ 3)
mod 5. This argument is repeated until for all five
values of k the point p + pk has been proved to be
in P (σ, α).

This concludes the proof of both the lemma and
Theorem 15.

Showing a fragment of the full turtle curve indi-
cated in Theorem 15 would give a fully black pic-
ture. Instead in Fig. 26 we show C(φ7(0), α).

9. CONCLUSIONS

Ultimately periodic sequences yield boring turtle
curves. Morphic sequences still have very simple
definitions, but typically are not ultimately peri-
odic. When randomly generating morphic sequences
and arbitrarily choosing angles, the resulting turtle
curves typically show up a mess in which no struc-
ture is recognized. In this paper, we developed crite-
ria for morphic sequences and angles yielding turtle
curves with a special structure. One special struc-
ture is finiteness, meaning that only finitely many
distinct segments are drawn. Since the sequence
is infinite, these finitely many segments are drawn
over and over again. A second special structure is
self-similarity: the set of end points of the segments
contain an up-scaled copy of itself. Surprisingly,
both for finiteness and self-similarity the resulting
turtle curves typically look nice and well-structured,
for which we gave several examples. For all our crite-
ria we gave rigorous proofs. We also gave examples
of space-filling turtle curves and dense turtle curves.
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