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Embedded WENO: a design strategy to improve

existing WENO schemes

Bart S. van Litha,1, Jan H.M. ten Thije Boonkkampa, Wilbert L.
IJzermana,b

aDepartment of Mathematics and Computer Science, Eindhoven University of
Technology - P. O. Box 513, NL-5600 MB Eindhoven, The Netherlands.

bPhilips Lighting - High Tech Campus 44, 5656 AE, Eindhoven, The Netherlands.

Abstract

Embedded WENO methods utilize all adjacent smooth substencils to con-
struct a desirable interpolation. Conventional WENO schemes under-use this
possibility close to large gradients or discontinuities. We develop a general
approach for constructing embedded versions of existing WENO schemes.
Embedded methods based on the WENO schemes of Jiang and Shu [1] and on
the WENO-Z scheme of Borges et al. [2] are explicitly constructed. Several
possible choices are presented that result in either better spectral properties
or a higher order of convergence for sufficiently smooth solutions. However,
these improvements carry over to discontinuous solutions. The embedded
methods are demonstrated to be indeed improvements over their standard
counterparts by several numerical examples. All the embedded methods
presented have no added computational effort compared to their standard
counterparts.

Keywords: Essentially non-oscillatory, WENO, high-resolution scheme,
hyperbolic conservation laws, nonlinear interpolation, spectral analysis.

1. Introduction

In a seminal paper in 1987, Harten and Osher introduced the essentially
non-oscillatory (ENO) reconstruction technique [3]. The basic idea of ENO
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is to construct several different candidate polynomial interpolations and to
choose the smoothest approximation to work with. The choice is facilitated
by means of smoothness indicators, which become larger as the interpolation
varies more rapidly.

Building on the ENO scheme, Liu, Osher and Chan introduced the weighted
essentially non-oscillatory (WENO) reconstruction technique in 1994 [4]. The
WENO technique comes from the realization that the three approximations
of ENO can be combined to construct a higher-order approximation. Instead
of the logical statements inherent in the ENO scheme, the WENO scheme
weighs every lower-order approximation according to its smoothness indica-
tor. Thus, in smooth regions, WENO gives a better approximation, while
reducing to ENO near discontinuities.

WENO schemes are ubiquitous in science and engineering, with appli-
cations in fluid dynamics, astrophysics, or any other application involving
convection-dominated dynamics [5, 6]. The technique is mainly applied in
the context of hyperbolic and convection-dominated parabolic PDEs. How-
ever, since it is a highly advanced interpolation technique, it also has appli-
cations in fields that do not use it as part of a PDE solver, such as computer
vision and image processing [7, 8].

The standard WENO scheme as it is most commonly used today was
devised by Jiang and Shu [1], and is sometimes referred to as the WENO-JS
scheme. Recently, several variants of the WENO scheme have appeared that
improve the order of accuracy near points where the first derivative vanishes.
Examples include the WENO-M [9, 10], WENO-Z [2, 11, 12] and WENO-
NS [13] schemes. For a comparison of the performance of these schemes, see
Zhao et al. [14]. Other efforts have focused on creating energy-stable WENO
schemes such as those constructed by Yamaleev et al. [15, 16], or decreasing
numerical dissipation by using central discretisations such as considered by
Hu et al. [17].

The most common implementations of WENO schemes use a five-point
stencil, which can be subdivided into three three-point stencils. WENO
schemes switch seamlessly between the third- and fifth-order reconstructions
that are possible on the five-point stencil. The idea is straightforward: when
all three smoothness indicators are roughly equal, a WENO scheme switches
to the fifth-order mode. When one or more smoothness indicators are large,
a WENO scheme switches to the third-order mode.

In this formulation, it seems obvious that information is discarded when
only one out of three smoothness indicators is large. When this happens, the
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two smooth approximations could still be used to obtain better accuracy. The
current WENO methods do not allow for control over the numerical solution
in this situation. However, one very recent scheme which does feature this
type of functionality is the targeted ENO scheme of Fu et al. [18]. Their
approach is completely novel and uses a combination of ideas from ENO and
WENO schemes. In our work, we propose a design strategy that aims to
adapt existing WENO schemes such that they utilise the maximum number
of grid points that form a smooth substencil. Moreover, we shall explicitly
construct variants of two existing WENO schemes that exhibit this property.

Apart from the order of convergence, one can also analyse a WENO
scheme in terms of its spectral properties [19]. WENO schemes switch non-
linearly between linear modes of operation and as such, it is possible to inves-
tigate the spectral properties by analysing the underlying linear schemes [20].
We will also show that our method allows for tuning of spectral properties
such as dispersion and dissipation.

This paper is arranged in the following way: in Section 2 we give a short
recap of WENO methods, in Section 3 we introduce the embedding method,
which is implemented in Section 4. In Section 5 we look at the spectral prop-
erties of the embedded schemes and in Section 6 we show results of several
numerical experiments. Finally, we present our conclusions and outlook in
Section 7.

2. The classical WENO scheme

The WENO method is an advanced interpolation technique that aims
to suppress spurious oscillations. It is commonly used as part of a high-
resolution scheme for hyperbolic conservation laws, e.g.,

∂u

∂t
+

∂

∂x
f(u) = 0, (1)

where f is the flux function. To obtain numerical solutions, we introduce
a grid, {xj}Nj=1, with grid size ∆x. With each point xj, we associate a cell
centred on xj of width ∆x, i.e., the interval (xj− 1

2
, xj+ 1

2
). Taking the average

of the conservation law over cell j, we find

duj
dt

+
1

∆x

(
f(u(xj+ 1

2
, t))− f(u(xj− 1

2
, t))
)

= 0, (2)

where uj is the average value of u over cell j. Note that this ODE for the
average value uj is exact as long as we know the exact value of u on the cell
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Figure 1: The five-point stencil S, with substencils S0, S1 and S2. Note that the stencil
is asymmetric around the interpolation point.

boundaries. We shall, in the following, suppress the explicit time dependence
of u, as we interpolate u in space for fixed time. In a numerical scheme, we
introduce a numerical flux function to represent the fluxes on the cell edges.
Regardless of the choice of numerical flux, we require the value of u at the cell
interfaces xj± 1

2
, i.e. u(xj± 1

2
). However, if u is discontinuous and we would

naively use polynomial interpolation, we inadvertently introduce spurious
oscillations. A (W)ENO scheme is a more advanced interpolation technique
that is designed to suppress these oscillations.

The classical WENO scheme, or WENO-JS, can be constructed by con-
sidering a five-point stencil around xj, i.e., S = {xj−2, xj−1, xj, xj+1, xj+2}.
The large stencil can be divided into three smaller substencils, viz., S0 =
{xj−2, xj−1, xj}, S1 = {xj−1, xj, xj+1} and S2 = {xj, xj+1, xj+2}; see Figure 1.

On each of these substencils, Sk with k = 0, 1, 2, we can approximate
u(xj+ 1

2
) by constructing a second-degree polynomial pk that has the same

cell averages as u, i.e.,

1

∆x

x
j+1

2∫
x
j− 1

2

pk(x) dx = uj. (3)

Introducing the auxiliary vector v = (uj−2, uj−1, uj, uj+1, uj+2)T representing
the averages on the large stencil S, the three lower-order approximations of
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u(xj+ 1
2
) can be represented as

uj+ 1
2

= Cv, (4)

with C a 3 × 5 matrix. It is straightforward to show that one can obtain a
fifth-order approximation by taking a linear combination of the third-order
approximations in (4). The fifth-order upwind approximation is therefore
given by

u
(UW5)

j+ 1
2

= γTCv, (5)

with γ being a column vector. The matrix C and the linear, also called
optimal, weights γ, can be represented in a tableau inspired by Butcher
Tableaux [21],

C γ . (6)

Organised this way, it contains all the coefficients involved in a WENO
scheme, thus giving a concise overview of the underlying linear method. The
tableau for the five-point WENO scheme looks as follows [1],

2
6
−7

6
11
6

1
10

−1
6

5
6

2
6

6
10

2
6

5
6
−1

6
3
10
.

(7)

The previous discussion shows how a fifth-order linear approximation can
be constructed from three third-order underlying approximations. However,
whenever there is a discontinuity on the stencil, the fifth-order approximation
incurs spurious oscillations and a third-order approximation might actually
be better in some sense. Thus, a set of nonlinear weights are needed that
take into account the smoothness of each third-order approximation.

This idea can be realized by introducing smoothness indicators βk, k =
0, 1, 2. There are several smoothness indicators available in the literature
[22, 23], each one exhibiting some desirable property. A very popular set of
indicators, however, was introduced by Jiang and Shu [1] and is given by

βk :=

x
j+1

2∫
x
j− 1

2

(p′′k(x))
2

∆x3 + (p′k(x))
2

∆x dx. (8)
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A lengthy but straightforward calculus exercise shows that

β0 =
13

12
(uj−2 − 2uj−1 + uj)

2 +
1

4
(uj−2 − 4uj−1 + 3uj)

2, (9a)

β1 =
13

12
(uj−1 − 2uj + uj+1)2 +

1

4
(uj−1 − uj+1)2, (9b)

β2 =
13

12
(uj − 2uj+1 + uj+2)2 +

1

4
(3uj − 4uj+1 + uj+2)2, (9c)

where one can recognise undivided finite differences. Provided that u is
sufficiently smooth, a Taylor expansion reveals that βk = O(∆x2), where the
coefficients of the expansion contain various derivatives of u, either squared
or multiplied with higher order derivatives, i.e.,

β0 = (u′j)
2∆x2 +

(
13
12

(u′′j )
2 − 2

3
u′ju

′′′
j

)
∆x4 −

(
13
6
u′′ju

′′′
j − 1

2
u′ju

′′′′
j

)
∆x5 +O(∆x6),

(10a)

β1 = (u′j)
2∆x2 +

(
13
12

(u′′j )
2 + 1

3
u′ju

′′′
j

)
∆x4 +O(∆x6), (10b)

β2 = (u′j)
2∆x2 +

(
13
12

(u′′j )
2 − 2

3
u′ju

′′′
j

)
∆x4 +

(
13
6
u′′ju

′′′
j + 1

2
u′ju

′′′′
j

)
∆x5 +O(∆x6),

(10c)

where u′j is shorthand for ∂xu(xj), etc. Whereas an ENO scheme uses a logical
statement to select the interpolation with the lowest smoothness indicator,
a WENO scheme proposes to use a convex combination of the third-order
interpolations, much like (5). To this end, the nonlinear weights ωk are
introduced, which are functions of the smoothness indicators. Collecting the
nonlinear weights into a column vector ω, a WENO scheme uses a linear
combination of the form

u
(WENO)

j+ 1
2

= ωTCv. (11)

Consistency requires that the nonlinear weights ωk (k = 0, 1, 2) sum to unity.
Hence, to construct nonlinear weights that satisfy the requirements discussed
earlier, we first compute the unnormalized nonlinear JS weights, indicated
with a superscript JS, as

ω̃JS
k =

γk
(βk + ε)p

, (12)

with ε > 0 a small number to avoid division by zero and p > 0. Typical
values are ε = 10−6 and p = 2. In any WENO scheme the unnormalized
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weights are subsequently normalised to obtain the nonlinear weights

ωk =
ω̃k
2∑
l=0

ω̃l

. (13)

The WENO-JS scheme gives fifth-order accuracy whenever u is smooth, i.e.,
u′j = O(1) and consequently βk = O(∆x2), or if ε is sufficiently large com-
pared to the second-order terms in the expansions (10), otherwise only third-
order is attained [9]. At the same time, it gives third-order accuracy whenever
a substencil contains a discontinuity, since then the corresponding smooth-
ness indicator becomes large. By choosing instead to use only one of the
smooth substencils, oscillations are suppressed.

A modern incarnation of the WENO scheme is given by the WENO-Z
scheme of Borges et al. [2], who showed that a sufficient condition for fifth-
order accuracy is

ωk = γk +O(∆x3). (14)

The WENO-JS scheme attains ωk = γk + O(∆x2), however it does satisfy
a more complicated condition ensuring fifth-order accuracy. Unfortunately,
near critical points, the WENO-JS scheme only provides third-order accu-
racy as pointed out by Henrick et al. [9]. WENO-Z was designed to satisfy
(14) and thereby restore optimal convergence near critical points. The un-
normalised weights, indicated with a superscript Z, are given by

ω̃Zk = γk

(
1 +

(
τ

βk + ε

)p)
, (15)

where τ = |β2−β0| is called the global smoothness indicator. Using (10), one
can show that τ = O(∆x5) and so WENO-Z satisfies the sufficient condition
(14) for any p ≥ 1.

WENO schemes are commonly employed in a method of lines (MOL)
approach, where one leaves time continuous while discretising space. This
approach then turns a PDE into a large number of coupled ODEs, resulting
in a system of equations

du

dt
= L(u), (16)

where L is the result of the application of the WENO scheme. After the
spatial discretisation, one discretises time by setting time levels tn = n∆t,
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n = 0, 1, . . .. The time integrators of choice are the strong stability preserv-
ing Runge-Kutta methods (SSPRK) [24, 25]. These are explicit Runge-Kutta
methods that have a high order of accuracy and do not incur spurious os-
cillations due to time integration. Throughout this paper, we shall use the
fairly standard SSPRK(3,3) method, one time step of this method is given
by

u(1) = un + ∆tL(un), (17a)

u(2) = 3
4
un + 1

4
u(1) + 1

4
∆tL(u(1)), (17b)

un+1 = 1
3
un + 2

3
u(2) + 2

3
∆tL(u(2)), (17c)

where u(1) and u(2) are the intermediate stages. This method exhibits the
strong stability preserving property and provides a third-order accuracy in
time. Moreover, Wang and Rong [26] have shown that this method is linearly
stable when combined with a five-point WENO scheme.

3. Embedded WENO

We now pose the question of what happens when the solution on two
adjacent substencils is smooth with no critical points and the third one con-
tains a discontinuity. Specifically, either the solution is smooth on S0 and S1

and not smooth on S2, or the solution is smooth on S1 and S2 and not on
S0. The answer is that the WENO-JS scheme provides third-order accuracy
while suppressing oscillations. However, the scheme generates a linear com-
bination of the two smooth substencils that is forced by the fifth-order mode,
i.e., the user cannot choose the resulting weights. Being able to choose the
resulting weights results in direct control over the truncation error and the
numerical dissipation and dispersion.

As a shorthand whenever the solution is smooth on a substencil Sk, we call
the substencil smooth. Let us examine the normalised JS weights, indicated
with the superscript JS, from the definition (12) - (13) we find that

ωJS
k

ωJS
l

=
ω̃JS
k

ω̃JS
l

=
γk
γl

(
βl
βk

)p
, (18)

where we have assumed ε is negligible compared to the smoothness indicators.
Thus, the proportions of the nonlinear weights only depend on the local
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smoothness of Sk and Sl, as one has for k 6= l,

βl
βk

=

{
1 +O(∆x3) if k = 0, l = 2 or k = 2, l = 0,

1 +O(∆x2) otherwise,
(19)

which follows from the Taylor expansions of the smoothness indicators (10)
provided Sk and Sl are smooth with no critical points. Therefore, the ratios
of the nonlinear weights satisfy

ωJS
k

ωJS
l

=
γk
γl

(1 +O (∆xs)) , (20)

with s ≥ 2, provided ε is much smaller than βk and βl.
A similar computation for the WENO-Z weights, indicated with a super-

script Z, shows that this relation also holds, i.e.,

ωZk
ωZl

=
γk

(
1 + ( τ

βk
)p
)

γl

(
1 + ( τ

βl
)p
) =

γk

(
βpl + τ p( βl

βk
)p
)

γl (β
p
l + τ p)

. (21)

Again using (19), we find that now independent of the value of τ ,

ωZk
ωZl

=
γk
γl

(1 +O (∆xs)) , (22)

with s ≥ 2 again with Sk and Sl smooth with no critical points. Once more,
this relation only depends on the local smoothness of Sk and Sl. Note that
when the entire stencil S is smooth, the lower bound is increased to s ≥ 3p.

Now consider S0 and S1 being smooth with no critical points, but S2

contains a discontinuity. In this case, both JS and Z schemes will result in
ω0

ω1
= γ0

γ1
+ O(∆x2). This leads to ω0 ≈ 1

7
and ω1 ≈ 6

7
for both JS and Z

schemes, from which the WENO approximation becomes

u
(WENO)

j+ 1
2

− u(xj+ 1
2
) = 1

28
u

(3)
j ∆x3 +O(∆x4), (23)

by a Taylor expansion of the third-order approximations. However, this
may not be the optimal choice of weights, as it leads to a third-order linear
combination while, for instance, a fourth-order combination is possible if
ω0 ≈ 1

4
and ω1 ≈ 3

4
for this situation.
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Relations (20) and (22) therefore show the flaw that is addressed by this
work: when the large stencil S is not smooth, WENO-JS and WENO-Z
immediately revert to lowest-order modes, even when there are multiple ad-
jacent smooth substencils. In such cases, being able to choose the resulting
linear combination has some advantages. If anything, it allows for more con-
trol over the numerical solution. More control over the numerical solution in
this case means reducing dissipation and increasing resolution.

We propose a technique that allows for a choice of the resulting nonlinear
weights in the situation when either β0 = O(1) or β2 = O(1) and the other
substencils are smooth. Consequently, this allows for direct control over the
truncation error of the numerical solution in these situations. We call this
new type of scheme an embedded WENO scheme. Similarly to conventional
WENO schemes, fifth-order accuracy is demanded whenever the numerical
solution is smooth on the entire stencil S. Moreover, it should reduce to an
ENO scheme when two out of three substencils contain a discontinuity.

Let us set the question of how to achieve this aside for the moment and
first introduce some terminology. The overall third-to-fifth-order accurate
scheme is called the outer scheme. The resulting scheme when there are only
two adjacent smooth substencils is called the inner scheme, see Figure 2. For
instance, an obvious choice is a fourth-order inner scheme in combination
with WENO-JS as the outer scheme.

Examining Figure 2 more closely, it becomes clear that if S2 contains
the discontinuity and S0 and S1 are smooth, then the discontinuity must
lie in the interval (xj+1, xj+2). Consequently, there are four grid points on
which there is a smooth solution to interpolate. From the two remaining
substencils, a four-point stencil can be constructed where the inner scheme is
defined. When S2 contains the discontinuity, the available four-point stencil
is S0,1 := S0 ∪ S1. When S0 contains the discontinuity, the four-point stencil
is S1,2 := S1 ∪ S2 to use for the inner scheme.

Even though a higher formal order of convergence may be obtained, Banks
et al. [27] have pointed out that one often obtains sublinear convergence
near linearly degenerate discontinuities, such as the contact waves of the
Euler equations. They estimate that the convergence rate becomes m

m+1
for

a scheme with formal convergence rate m. In our case, this suggests the
convergence rate is increased from 3

4
to 4

5
. Thus, the benefits might be less

great as a naive estimate would suggest. However, aside from the increased
convergence rate, we will also show how embedded schemes can be used to
improve spectral properties.
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Figure 2: The five-point stencil S, with substencils S0, S1 and S2, and inner scheme
stencils S0,1 and S1,2.

With the terminology in place we can turn to the basic question: how to
embed one WENO scheme into another. Thus, we would like the nonlinear
weights to converge to the inner scheme whenever there are two adjacent
smooth substencils and the third one is not smooth. Otherwise, they should
remain approximately equal to the nonlinear weights of the outer scheme.
This suggests that we multiply the unnormalised weights ω̃k of the outer
scheme by a correction that is ordinarily close to unity, but activates when
either β0 or β2 becomes O(1). The correction is constructed such that it
adjusts the proportions found in (20) and (22).

Suppose the inner scheme is given by the linear weights α
(2)
0 , α

(2)
1 , α

(0)
1

and α
(0)
2 . We write the stencils containing a discontinuity in parenthesis in

the superscript and the substencil index in the subscript. The desired convex
combination then becomes

u
(0,1)

j+ 1
2

:= α
(2)
0 u

(0)

j+ 1
2

+ α
(2)
1 u

(1)

j+ 1
2

, (24a)

u
(1,2)

j+ 1
2

:= α
(0)
1 u

(1)

j+ 1
2

+ α
(0)
2 u

(2)

j+ 1
2

. (24b)

We consider two possible choices for the linear weights of the inner scheme,
see Table 1. The first is the fourth-order linear combination which is pos-
sible on the four-point stencil. The second choice consists of placing the
superfluous weight onto the middle substencil, i.e., using the approximation
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u
(k)

j+ 1
2

≈ u
(1)

j+ 1
2

for k = 0, 2. The fourth-order choice is motivated from an

order-of-convergence perspective, while the third-order choice comes from a
spectral point of view, see Section 5.

Table 1: Possible choices for the inner scheme.

4th 3rd

α
(2)
0

1
4

1
10

α
(2)
1

3
4

9
10

α
(0)
1

1
2

7
10

α
(0)
2

1
2

3
10

The nonlinear weights must at all times sum to unity to ensure consis-
tency. Thus, any correction we introduce must be incorporated into the
unnormalised nonlinear weights and still work after normalisation.

Furthermore, what is happening in substencil S2 must influence both
substencils S0 and S1 and mutatis mutandis substencil S0 must influence
both S1 and S2. It follows that the corrections must be functions of multiple
smoothness indicators and thus enforce that the resulting WENO scheme is
nonlocal. As a final note, we have seen from (20) and (22) that the nonlinear
weights are simply a redistribution of the linear weights. We therefore have
to influence the proportions of the linear weights, hence the linear weights
should be multiplied with some relative proportions c2 and c0. The role of
the relative proportions will become clear later, they are defined as

α
(2)
0 : α

(2)
1 = c2γ0 : γ1, (25a)

α
(0)
1 : α

(0)
2 = γ1 : c0γ2. (25b)

The naming convention is again to label the relative proportions with the
index of the substencil that is not smooth. We can thus compute the relative
proportions using the inner weights suggested in Table 1, see Table 2.

We shall now briefly summarize the conditions that should be satisfied
by an embedding correction.

1. (Implementation) The unnormalised nonlinear weights must be multi-
plied with a correction.

12



Table 2: Relative proportions for the 4th order and 3rd order inner schemes. The 3rd
order inner scheme places the superfluous weight on the middle stencil.

4th 3rd

c2 2 2
3

c0 2 6
7

2. (Nonlocality) The corrections cannot be functions of only the local
smoothness indicators.

3. (Consistency) Wherever the solution is smooth on the full stencil, the
embedded scheme must reproduce the original scheme.

4. (Embedding) When there is a discontinuity present, the scheme must
produce the inner weights on the smooth substencils.

3.1. General framework

Here, we construct a general framework for embedded WENO schemes.
The implementation and consistency conditions suggest that our correction
is ordinarily close to a constant, while according to the nonlocality condition
it may not be a function of a single smoothness indicator. Therefore, we
propose using a general starting point given by

ω̃
(E)
k = ω̃

(O)
k

(
akk +

∑
l 6=k

aklβl
βk + ε

)
, (26)

where the outer scheme is denoted with superscript (O) and the embedded
scheme with (E). This is probably the simplest possible nonlocal correction:
a linear combination of ratios. Here, akl (k and l in the range 0, 1, 2) are a col-
lection of undetermined coefficients and ε is small constant to avoid division
by zero. We shall refer to (26) as the general form of an embedded WENO
scheme and the term in parenthesis as the general form of a correction.

The consistency condition will give us a set of equations that has to be
satisfied by the coefficients akl. It tells us that when the solution is smooth all
corrections must be close to 1. Let us assume that the outer scheme satisfies,
whenever the solution is smooth with no critical points, ω

(O)
i = γi +O(∆xq),

then the corrections must satisfy

akk +
∑
l 6=k

aklβl
βk + ε

= 1 +O(∆xq), (27)

13



which must hold for all k = 0, 1, 2. Using (19), and assuming βk = O(∆x2)
for all k = 0, . . . , r − 1, where r is the number of substencils, this yields

r−1∑
l=0

akl = 1, k = 0, 1, . . . , r − 1. (28)

If q = 2, this is sufficient to satisfy the consistency condition. If q > 2, for
instance for WENO-Z, the coefficients akl must also provide linear combina-
tions of smoothness indicators that cancel out the lower order terms in the
Taylor expansions (10).

To achieve this, the general form (26) is adjusted. In this case, at least
the first term in the error expansion of (27) must vanish. The constant term
in the correction must still equal 1, which suggests we adjust the general
form to read

ω̃
(E)
k = ω̃

(O)
k

(
1 +

(∣∣∑r−1
l=0 aklβl

∣∣
βk + ε

)p)
, (29)

where r is again the number of substencils, p ≥ 1 and ε is a small constant to
avoid division by 0. We shall refer to (29) as the second general form. Setting

ω̃
(O)
k = γk, it becomes clear this form can be considered as a generalisation

of the WENO-Z weights (15). Here, at least the lowest-order term from the
smoothness indicators (10) must vanish, leading to

r−1∑
l=0

akl = 0, k = 0, 1, . . . , r − 1. (30)

Regardless of which general form is chosen, (26) or (29), further conditions
on the coefficients akl are obtained by the embedding condition. These can
be derived by examining the possible positions of a discontinuity and setting
the resulting weights equal to the inner weights.

Although throughout this work we have restricted ourselves to five-point
WENO schemes, the conditions (28) and (30) holds for any number of sub-
stencils r. In deriving the embedding equations, we shall also take a more
general view.

Theorem 1. (Embedding equations) Let ω̃k be the unnormalised nonlinear
weights of a WENO scheme that has r substencils and satisfies ω̃k

ω̃l
→ γk

γl
as

14



∆x → 0 whenever Sk and Sl are smooth. Let the unnormalised embedded
WENO weights be given by

ω̃
(E)
k = ω̃kgk, gk = akk +

∑
l 6=k

aklβl
βk + ε

, k = 0, 1, 2, . . . , r − 1, (31)

where gk is the correction factor from the first general form (26). Let K be
the set of indices such that βn = O(1) for n ∈ K, i.e. Sn is not smooth, and
let βk ↓ 0 for k 6∈ K as ∆x→ 0. Then, the embedding equations are given by

γk

α
(K)
k

∑
m∈K

akm =
γl

α
(K)
l

∑
n∈K

aln, (32)

with k, l 6∈ K, n,m ∈ K. Here α
(K)
k are the desired inner weights and γk the

linear weights.

Proof. 1. Fix some set K and assume that ε is so small it may be ignored
in the analysis. Let k, l 6∈ K, then the ratio of two embedded weights is given
by

ω
(E)
k

ω
(E)
l

=
ω̃

(E)
k

ω̃
(E)
l

=
ω̃k
ω̃l

gk
gl
. (∗)

2. For k 6∈ K, the correction becomes

gk =
∑
n6∈K

akn +
∑
n∈K

akn
βn
βk

+O(∆xs),

where s ≥ 2 from (19). Next, we use that βn = O(1) for n ∈ K, so that we
obtain

gk =
C

∆x2

∑
n∈K

akn +O(1), (?)

where C is a constant.
3. Next, (?) is substituted into (∗) leading to

ω̃
(E)
k

ω̃
(E)
l

=
ω̃k
ω̃l

∑
n∈K akn +O(∆x2)∑
m∈K alm +O(∆x2)

.

We let ∆x ↓ 0 so that ω̃k

ω̃l
→ γk

γl
, therefore

ω
(E)
k

ω
(E)
l

=
γk
γl

∑
n∈K akn∑
m∈K alm

.
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This ratio has to be equal to the ratio of inner weights, so that

α
(K)
k

α
(K)
l

=
γk
γl

∑
n∈K akn∑
m∈K alm

,

which can be simplified to (32). �

Remark 1. The assumption that the outer weights should satisfy ω̃k

ω̃l
→ γk

γl
as ∆x → 0 includes the choices of JS weights, Z weights and simply using
the linear weights ω̃k = γk.

Theorem 2. Under the same assumptions as Theorem 1 and using the sec-
ond general form (29), the embedding equations are given by(

γk

α
(K)
k

) 1
p ∑
m∈K

akm = ±
(

γl

α
(K)
l

) 1
p ∑
n∈K

aln, (33)

Proof. 1. Repeating the steps of the previous proof with k 6∈ K, the
correction for the second form now equals

gk = 1 +

∣∣∣∣∣ C∆x2

∑
n∈K

akn +
∑
n6∈K

akn
(
1 +O(∆x2)

)∣∣∣∣∣
p

,

so that
gk
gl

=
|∑n∈K akn +O(∆x2)|p
|∑m∈K alm +O(∆x2)|p .

2. Passing to the limit ∆x ↓ 0, we find

ω
(E)
k

ω
(E)
l

=
γk
γl

∣∣∣∣ ∑n∈K akn∑
m∈K alm

∣∣∣∣p .
Setting the left-hand side equal to

α
(K)
k

α
(K)
l

, this yields

(
γk

α
(K)
k

) 1
p
∣∣∣∣∣∑
n∈K

akn

∣∣∣∣∣ =

(
γl

α
(K)
l

) 1
p
∣∣∣∣∣∑
m∈K

alm

∣∣∣∣∣ .
Thus, if the coefficients satisfy (33), the embedded weights will converge to
the inner weights. �
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Remark 2. There is a freedom in the choice of sign of the coefficients for
the second form (29). Interpreting the coefficients as elements of a matrix
A, any row may be multiplied with −1 with impunity. From here on out, we
use the positive sign in (33).

The embedding equations are a set of linear equations for the coefficients
akl, since the inner weights are given or rather chosen by the user. The
embedding equations relate the weights of the inner scheme to the linear
weights. Together with the equations coming from the consistency condition,
this will provide a number of linear equations for the coefficients akl. For five-
point WENO schemes, we find that K can be either {0} or {2}, the other
cases being already included in the WENO weights. In each case for K
there are only two remaining smooth substencils. We thus end up with two
equations (

γ0

α
(2)
0

) 1
p

a02 =

(
γ1

α
(2)
1

) 1
p

a12, (34a)

(
γ2

α
(0)
2

) 1
p

a20 =

(
γ1

α
(0)
1

) 1
p

a10, (34b)

where the p = 1 equations also apply to the first form (26). These may be
simplified using our earlier definition of the relative proportions c0 and c2

(25), i.e.,

a02

a12

= (c2)
1
p , (35a)

a20

a10

= (c0)
1
p , (35b)

where once again, the p = 1 equations apply to both forms provided c2 > 0
and c0 > 0, for the second form one can use p > 1.

4. Implementation

4.1. Embedded WENO-JS

We will now show how to construct embedded WENO schemes using the
WENO-JS scheme as an outer scheme. We will assume the inner weights
α

(2)
0 , α

(2)
1 , α

(0)
1 and α

(0)
2 are given, e.g., chosen from Table 1. From the inner
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weights, we can find their relative proportions as measured against the outer
weights by (25), see Table 2. We shall use the general form (26) as a template.
Furthermore, we have that q = 2, so that (28) provides three equations that
are sufficient to ensure that the scheme is unaltered when the solution is
smooth. The two embedding equations for a five-point WENO scheme are
given by (35). Hence, we have five equations for nine coefficients that can be
solved to yield a four-parameter family of embedded schemes, given by

a00 = 1− a01 − a02, (36a)

a11 = 1− a20

c0

− a02

c2

, (36b)

a22 = 1− a20 − a21, (36c)

a12 =
a02

c2

, (36d)

a10 =
a20

c0

, (36e)

where a01, a02, a20 and a21 can be chosen freely. We have experimented
with a number of possible choices, all seemed to provide improvements over
the WENO-JS scheme. However, different choices resulted in schemes with
different behaviour, much like choosing a different flux limiter in a TVD
scheme.

We shall continue with the embedded scheme that appears to have the
best all-round performance, it can be constructed using the choices a01 =
a21 = 0, a20 = c0

3
and a02 = c2

3
. For this particular choice of embedded

WENO, we may even choose the linear weights as the outer scheme, such
that we obtain

ω̃0 = 1
3
γ0

(
3− c2 + c2

β2

β0 + ε

)
, (37a)

ω̃1 = 1
3
γ1

(
1 +

β2

β1 + ε
+

β0

β1 + ε

)
, (37b)

ω̃2 = 1
3
γ2

(
3− c0 + c0

β0

β2 + ε

)
. (37c)

This scheme yields a convex combination when all weights are positive, thus
we must have c0 < 3 and c2 < 3, which includes the choices presented in
Table 2.
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To show that we may use this choice, we apply a Taylor expansion to
the normalised weights, under the assumption of smooth solutions without
critical points. A lengthy computation or symbolic calculation will show that
the weights from (37) satisfy

ωk − γk = 1
3

(
ωJS
k − γk

)
+O(∆x3), (38)

regardless of the values of c0 and c2. Therefore, the embedded WENO scheme
(37) also provides fifth-order convergence. Under the assumption that only
one substencil is smooth, the weights (37) also provide the proper behaviour.
Indeed, fix k and set βk = O(∆x2) and βl = O(1) with l 6= k, then we
find that ω̃k = O( 1

∆x2
) and ω̃l = O(1). Therefore, with only one smooth

substencil, we find ωk = 1 +O(∆x2) and ωl = O(∆x2).
We conclude that the embedded WENO scheme given by (37) is equiva-

lent to the standard WENO-JS scheme for smooth solutions without critical
points or having only a single smooth substencil. When there are two adja-
cent smooth substencils and the third one is not smooth, we obtain the inner
scheme.

To verify that the embedded schemes have the same order of convergence
for smooth functions, a short test is performed. In [2], it is shown that the
conservative difference in (2) can be interpreted as a differentiation operator
if applied to the original function instead of its averages. WENO-JS only
features optimal convergence for smooth functions without critical points,
therefore the first test consists of applying WENO differentiation to a test
function given by

u1(x) = tanh (10x) . (39)

The boundary conditions are supplied exactly using fictitious grid points.
For functions featuring first-order critical points, WENO-JS provides fourth-
order accuracy. Therefore, the second test function is given by

u2(x) = sin

(
πx− sin(πx)

π

)
. (40)

In both tests, the error is computed using the scaled absolute sum

e =
N∑
j=1

∣∣Duj − u′(x)
∣∣∆x, (41)

where D is the WENO differentiation operator. The parameter ε is set to
10−40 and c2 = c0 = 2 in this example. The number of grid points N
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Table 3: Convergence test for the embedded WENO-JS scheme using (39) with c2 = c0 = 2
and ε = 10−40.

N error1 order1 error2 order2

101 2.0 · 10−4 1.6 · 10−6

201 7.1 · 10−6 4.8 7.2 · 10−8 4.5

401 2.3 · 10−7 4.9 3.8 · 10−9 4.2

801 7.3 · 10−9 5.0 2.1 · 10−10 4.2

1601 2.3 · 10−10 5.0 1.3 · 10−11 4.0

are chosen such that the grid size ∆x is halved each time. The results are
given in Table 3 and clearly demonstrate optimal convergence for smooth
functions with no critical points and fourth-order convergence for smooth
functions with first-order critical points. Thus, the embedded WENO-JS
scheme provides the same or similar performance as the original scheme for
smooth functions.

4.2. Embedded WENO-Z

A more contemporary version of WENO schemes is represented by the
WENO-Z scheme of Borges et al. [2]. As mentioned earlier, the WENO-
JS scheme has the property that ωk = γk + O(∆x2) for smooth solutions,
whereas the WENO-Z weights satisfy ωZ

k = γk +O(∆x3p), with p the power
parameter. Consequently, at critical points, the WENO-Z scheme avoids
loss of convergence. A side-effect of the new weights is faster convergence to
the linear weights in smooth regions. This also results in sharper resolution
of discontinuities. The unnormalissed weights for the WENO-Z scheme are
defined as in (15).

Embedding an inner scheme into the WENO-Z scheme is somewhat easier,
since the second general form (29) is a generalisation of WENO-Z. In the
context of our framework, we have to satisfy the consistency conditions (30),
i.e.,

∑
l akl = 0 for k = 0, 1, 2. At the same time, we can obtain extra

equations from (10), where we find the fourth-order term must cancel out as
well, i.e.,

ak0 − 1
2
ak1 + ak2 = 0, k = 0, 1, 2. (42)

By Theorem 2, the two embedding equations are now given by (35). Thus,
for an embedded version of WENO-Z, we have six equations from consistency
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and two embedding equations to solve for nine coefficients, yielding a one-
parameter family of schemes, given by

ω̃0 = γ0

(
1 + µc2

(
τ

β0 + ε

)p)
, (43a)

ω̃1 = γ1

(
1 + µ

(
τ

β1 + ε

)p)
, (43b)

ω̃2 = γ2

(
1 + µc0

(
τ

β2 + ε

)p)
, (43c)

where µ is the free parameter, set to 1
4

unless mentioned otherwise, and again
τ = |β0−β2|. The scheme given by (43) is stable for µ > 0, c0 > 0 and c2 > 0,
which includes the options presented in Table 2. The power parameter is set
to p = 2 throughout the rest of this work.

As earlier, we perform a convergence test to verify that the embedded
WENO-Z scheme has the same order of convergence as its standard counter-
part for smooth functions. The details can be found in the previous subsec-
tion as the test procedure is exactly the same. WENO-Z with p = 2 attains
optimal convergence for smooth functions that may have first-order critical
points. Only third-order accuracy is attained when the order of the critical
points is higher. Therefore, only the second test is performed with initial
condition (40), which features two first-order critical points. We furthermore
set c2 = c0 = 2 and ε = 10−40. The results are given in Table 4 and once
again show optimal convergence.

Table 4: Convergence test for the embedded WENO-Z scheme using (40) with c2 = c0 = 2
and ε = 10−40.

N error2 order2

101 6.0 · 10−7

201 1.8 · 10−8 5.1

401 5.9 · 10−10 5.0

801 1.8 · 10−11 5.0

1601 6.0 · 10−13 5.0

4.3. Notation of embedded schemes

As indicated earlier, the relative proportions c2 and c0 can be chosen in-
dependently. Thus, we may choose a fourth-order inner scheme on S1,2, while
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on S0,2 we may place the superfluous weight on the middle stencil. To clarify
which scheme is being used at a particular time, we propose the following
notation. We shall write the outer scheme with the relative proportions in
parenthesis: WENO-JS(c2, c0) and WENO-Z(c2, c0). We write c2 first since
it affects the interpolation on the left when the discontinuity is on the right.
In special cases, we shall explicitly name a scheme, such as the WENO-JS
scheme with fourth-order inner scheme WENO-45 := WENO-JS(2,2).

The tableau notation of (7) can be extended to include the matrix A with
elements akl, i.e.

C γ A . (44)

A tableau together with a form, (26) or (29), completely specifies an embed-
ded WENO scheme. As such, the embedded WENO-JS scheme (37) has a
tableau given by

2
6
−7

6
11
6

1
10

3− c2 0 c2

−1
6

5
6

2
6

6
10

1 1 1
2
6

5
6
−1

6
3
10

c0 0 3− c0 .

(45)

The embedded WENO-Z scheme (with p = 2) has a tableau

2
6
−7

6
11
6

1
10

√
c2
2

0 −
√
c2
2

−1
6

5
6

2
6

6
10

1
2

0 −1
2

2
6

5
6
−1

6
3
10

√
c0
2

0 −
√
c0
2

.

(46)

5. Spectral properties

The embedded WENO schemes may be investigated by analysing their
spectral properties. The inner scheme activates whenever β0 or β2 become
significantly larger than the other two smoothness indicators. In terms of
sinusoidal functions, one would expect this to happen in the medium-range
of wave numbers. Thus, the spectral properties of a WENO scheme in this
regime can be improved by embedding an inner scheme.

As an example, we will show that we can reduce the dissipation of a
WENO scheme by embedding an inner scheme. This is particularly useful
when working with smooth solutions. On the other hand, when working
with sharply varying or even discontinuous solutions, it may be desirable to
increase dissipation to obtain greater stability.
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One can investigate the spectral properties of a WENO scheme by analysing
the underlying linear schemes [20]. We can interpret the WENO schemes as
a linear combination of the underlying third-order upwind schemes, where
the weights vary with the wave numbers. This way, we may find upper and
lower bounds for the spectral curves. We consider here plane wave solutions
to the linear advection equation,

∂u

∂t
+
∂u

∂x
= 0. (47)

We can relate the numerical solution obtained by the underlying linear schemes
to a plane wave solution u(x, t) = exp(i(κx−ωt)). After some manipulation,
we find the modified wave number κ∗, which is a complex quantity related to
the spectral properties of the scheme. The imaginary value of κ? determines
the dissipation, Im(κ∗) = 0 being a nondissipative scheme. The real part of
κ∗ determines the phase error in the numerical approximation, thus relating
to dispersion.

Let us first investigate the basic spectral properties of the three possible
third-order approximations and the fifth-order linear combination, see Fig-
ure 3. A WENO scheme will give a fifth-order approximation for smooth
solutions, while a third-order approximation for rapidly varying solutions.
Thus, we expect the WENO scheme to follow the fifth-order curves for low
wave numbers and the third-order curves for high wave numbers. These
considerations give us a qualitative understanding of WENO methods. The
embedded methods will switch to their inner scheme for mid-range wave
numbers.

Let us now study the inner schemes, which are four-point linear schemes
given by (24), completed by Table 1. The resulting dispersion and dissipation
curves are presented in Figure 4. An important thing to note is that all inner
schemes do not support parasitic wave modes, since Im(ϕ∗) ≤ 0 across the
whole range.

What becomes clear from the curves is that one can certainly influence
the spectral properties of the scheme. Also, it should be noted that the curve
corresponding to c2 = 2

3
gives a dispersion curve which is equal to the fifth-

order dispersion curve. Therefore, this justifies this particular choice, as it
reduces the phase difference near discontinuities.

The influence of inner schemes is demonstrated by some numerical exam-
ples. We solve the linear advection equation (47) using several variants of
WENO schemes on a periodic domain with the initial condition a complex
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Figure 3: Dissipation (left) and dispersion (right) curves for the underlying linear schemes
integrated with SSPRK(3,3). UW5 indicates the fifth-order upwind approximation. The
label in parenthesis for the UW3 schemes indicate on what stencil it works, thus UW3(i)
works on Si. The dispersion curves for UW3(1) and UW3(2) are equal.

exponential plane wave. We pick as the wave number κ = 10π, thus the
initial condition is given by

u0(x) = ei10πx, (48)

with the computational domain −1 ≤ x ≤ 1. As the initial condition is
smooth, we shall use the inner scheme to reduce dissipation. Hence, we
shall compare the standard WENO-JS and WENO-Z schemes to the WENO-
JS(2

3
,2) and WENO-Z(2

3
,2) variants. For the embedded WENO-Z scheme, we

set the free parameter µ = 1
4

in (43). The advection equation is integrated for
64 time units using the SSPRK(3,3) method and examine the amplitude of
the numerical solutions, see Figure 5. For all these computations, ε = 10−12.

All the WENO schemes are, in this case, still solving with fifth-order ac-
curacy in most of the domain. For this wave number, dispersive effects are at
a minimum for all schemes. Dissipative effects are noticeable, though small,
with WENO-JS being the most dissipative. Embedded WENO-JS(2

3
,2) clearly

has less dissipation as intended. WENO-Z and its embedded version have
the same amount of dissipation, being both the least dissipative of the four
presented schemes.

We will now investigate a higher wave number. We use the initial condi-
tion

u0(x) = ei20πx, (49)

The results are plotted in Figure 6. Now, the dissipative effects are more
pronounced, with WENO-JS having damped out the wave significantly. The
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Figure 4: Dissipation (left) and dispersion (right) curves for the inner scheme. The blue
curves are the fifth-order curves, the red curves are schemes working on S0 ∪ S1 and the
green curves work on S1 ∪ S2. The solid curves represent c0 = c2 = 1, the dashed curves
represent (c2, c0) = (2

3 ,
6
7 ) and the dotted curves represent c0 = c2 = 2.

embedded WENO-JS(2
3
,2) scheme clearly has less dissipation than its stan-

dard counterpart. For WENO-Z, nonlinear effects are starting to become
clear, as different parts of the domain are affected differently. For the em-
bedded version, the wave has kept its form much better, i.e., there is less
dissipation and the dispersion error is smaller.

6. Numerical experiments

As a final demonstration of the embedded WENO methods, we will per-
form some numerical experiments. An example of a scalar hyperbolic equa-
tion and an example of a hyperbolic system are presented. First, we shall
take the linear advection equation with constant velocity field. Second, sev-
eral cases of the Euler equations are numerically solved. In all examples
we compare the embedded methods to their original counterparts. In all
examples, we have used ε = 10−12.

6.1. Linear advection equation

We consider the linear advection equation, i.e.,

∂u

∂t
+
∂u

∂x
= 0, (50)

on x ∈ [−1, 1] with final time t = 2. We use periodic boundary conditions,
such that the initial condition is transported for one period and ends up
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Figure 5: Real part of the complex exponential plane wave with wave number κ = 10π at
t = 8 on a periodic domain with 201 grid points and a CFL number of 0.5, resulting in
800 time steps.The WENO-Z solution is equal to the embedded WENO-Z solution.

where it started. Thus, the final state is equal to the initial condition, i.e.,
u(x, 2) = u0(x). As an initial condition, we take the fairly standard test
which uses a Gaussian, a square, a triangle and half an ellipse. This setup
is sometimes referred to as the Shu linear test, introduced in [1]. The initial
condition is given by

u0(x) =



1
6

(G(x; β, z − ε) +G(x; β, z + ε) +G(x; β, z)) −0.8 ≤ x ≤ −0.6,

1 −0.4 ≤ x ≤ −0.2,

1− |10(x− 0.1)| 0 ≤ x ≤ 0.2,
1
6

(F (x;α, a− ε) + F (x;α, a+ ε) + 4F (x;α, a)) 0.4 ≤ x ≤ 0.6,

0 otherwise,

(51a)
where G and F are given by

G(x; β, z) := exp
(
− β(x− z)2

)
, (51b)

F (x;α, z) :=
√

max
(
1− α2(x− a)2, 0

)
. (51c)
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Figure 6: Real part of the complex exponential plane wave with wave number κ = 20π at
t = 4 on a periodic domain with 201 grid points and a CFL number of 0.5, resulting in
800 time steps.

The parameters are as follows: z = −0.7, a = 0.5, α = 10, ε = 1
200

, and
β = ln 2

36ε2
. One of the pervasive features of this test is the compact support

of the initial condition. In fact, the shapes have non-overlapping supports.
Thus, we need the numerical solutions to converge to zero as quickly as pos-
sible in between each shape. Thus, the third-order choice where the superflu-
ous weight is shifted to the middle stencil offers the best choice heuristically.
However, this will also provide more dissipation compared to the other op-
tions.

Let us start with the embedded schemes that use WENO-JS as its outer
scheme, we expect to see better performance near discontinuities. Moreover,
we also expect discontinuities in the first derivative to be captured better.
The Shu linear test has both types of discontinuities, as well as smooth
transitions. The embedded schemes switch to their inner schemes close to
the edge of the support of each shape, and hence are able to capture it better,
see Figure 7.

It becomes clear from Figure 7 that the embedded WENO schemes per-
form better in almost every part of the domain. However, it should be noted
that the WENO-45 scheme seems to perform best within each smoothly
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Figure 7: Results for the linear advection equation (top) and errors (bottom). Shown
are WENO-JS (green) and its embedded variants, WENO-45 (blue) and WENO-JS( 2

3 , 67 )
(red). Solutions were computed on a periodic domain at t = 2, using 201 grid points and
a CFL number of 0.5, resulting in 400 time steps.

varying region, whereas the WENO-JS(2
3
,6
7
) scheme captures the compact

support of each shape the best. That is, the WENO-JS(2
3
,6
7
) scheme seems

to decay to zero the fastest in between each shape. However, the WENO-45
scheme has less dissipation and captures the maxima better in general. In-
terestingly, the WENO-JS scheme give the best representation of the peak
of the triangle. However, in all other parts of the triangle, the embedded
schemes provide a smaller error.

Next, we shall examine the performance of embedded schemes with the
WENO-Z scheme as the outer scheme. By the same argument as presented
previously, we expect the embedded schemes to perform better near disconti-
nuities in the solution and its derivative. The results are plotted in Figure 8.
The figures show how the WENO-Z(2

3
,6
7
) captures the compact support of

the shapes the best. Again, this variant decays the fastest to zero in the
space between the shapes.
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Figure 8: Results for the linear advection equation (top) and errors (bottom). Shown
are WENO-Z (green) and its embedded variants, WENO-Z45 (blue) and WENO-Z( 2

3 , 67 )
(red). Solutions were computed on a periodic domain at t = 2, using 200 grid points and
a CFL number of 0.5.

6.2. Euler equations

Finally, we consider the one-dimensional Euler equations for ideal gases,
i.e.,

∂

∂t

 ρ

ρu

E

+
∂

∂x

 ρu

ρu2 + p

u(E + p)

 = 0, (52)

with ρ the density, u the fluid velocity, E the total energy and p the pressure.
We furthermore use the ideal caloric equation of state

E = 1
2
ρu2 +

p

γ − 1
, (53)

where γ is the ratio of specific heats, which we fixed to γ = 1.4 throughout.
We employ the global Lax-Friedrichs flux splitting to construct the numerical
flux and use the total variation diminishing Runge-Kutta time integrator
from (17). We shall first consider a collection of Riemann problems such as
Sod’s test, Lax’s test and the 123-problem. We shall furthermore consider an
interacting blast-wave problem of Woodward and Collela [29] and the Mach-3
density-wave shock interaction problem of Shu and Osher [30].

In all examples of the Euler equations, at the beginning of every time step
the maximum absolute eigenvalue of the Jacobian of the flux is computed

29



and used to compute the time step size. This enforces that throughout the
whole computation, the CFL number is kept at 0.4. The WENO schemes
were applied characteristic-wise to find the values on the cell edges. The
Jacobian on the cell edge is computed using the arithmetic mean.

We have compared the standard WENO-JS and WENO-Z schemes to
their embedded variants WENO-JS(2

3
,6
7
) and WENO-Z(2

3
,6
7
) respectively, as

these variants seemed to perform better for discontinuous solutions. As all
the examples we cover contain discontinuities or sharp gradients of some
kind, this is a natural choice.

6.2.1. Riemann problems

We consider here the Riemann problems of Sod’s test, Lax’s test and the
123-problem. A Riemann problem features a discontinuous initial condition
with two states, i.e.,

(ρ, u, p) =

{
(ρl, ul, pl) if x < 0,

(ρr, ur, pr) if x > 0.
(54)

This is the simplest possible non-trivial type of initial condition and for the
Euler equations these types of problems can be solved exactly. Shock tube
problems are a special type of Riemann problem with zero fluid velocity u
everywhere. All the Riemann problems are solved with 201 grid points such
that the initial discontinuity is exactly on a cell edge.

Sod’s test is a shock tube problem with initial condition

(ρ, u, p) =

{
(1, 0, 1) if x < 0,

(0.125, 0, 0.1) if x > 0,
(55)

with a final time of t = 0.4. We use as computational domain x ∈ [−1, 1],
and so we use non-reflective boundaries at the edges of the domain. Sod’s
test is a very mild test, the exact solution consists of a left rarefaction wave,
a contact discontinuity and a right shock.

Figure 9 shows that the embedded WENO schemes give a solution which
is globally similar, as intended. However, zooming in on smaller features,
the differences become clear. The embedded schemes give a slightly sharper
gradient near the contact discontinuity as compared to their standard coun-
terparts.
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Figure 9: The solution of Sod’s test (left) and the result zoomed in on the contact discon-
tinuity (right). The top figures show WENO-JS and WENO-JS( 2

3 , 67 ) while the bottom
figures show WENO-Z and WENO-Z( 2

3 , 67 ). The numerical solutions were computed using
201 grid points and a CFL number of 0.4. The left-side plots are plotted with half the
grid points for clarity.

Lax’s test has initial conditions

(ρ, u, p) =

{
(0.445, 0.689, 3.528) if x < 0,

(0.5, 0, 0.5710) if x > 0,
(56)

with a final time of t = 0.25. The exact solution again consists of a left
rarefaction wave, a contact and a right shock. However, unlike Sod’s test,
the contact discontinuity has a rather large jump.

Also here, Figure 10 shows how globally the embedded schemes give a
similar solution. As Lax’s test features a rather large jump in the contact
discontinuity, we will zoom in on that part of the solution. Again, we see that
both embedded schemes give a better representation of the discontinuity.

The 123-problem has initial conditions

(ρ, u, p) =

{
(1.0,−2.0, 0.4) if x < 0,

(1.0, 2.0, 0.4) if x > 0,
(57)
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Figure 10: The solution of Lax’s test (left) and the result zoomed in on the contact dis-
continuity (right). The top figures show WENO-JS and WENO-JS( 2

3 , 67 ) while the bottom
figures show WENO-Z and WENO-Z( 2

3 , 67 ). The numerical solutions were computed using
201 grid points and a CFL number of 0.4. The left-side plots are plotted with half the
grid points for clarity.

with a final time of t = 0.25. The solution consists of two strong rarefactions
with a trivial stationary contact, the pressure in between the two rarefaction
waves is very low. As the exact solution consists of two rarefaction waves, the
solution is rather smooth and hence the schemes perform roughly the same.
The embedded schemes capture the transition between rarefaction wave and
left or right state slightly better, see Figure 11.

6.2.2. Interacting blast-waves

Here we consider a problem featuring two interacting blast-waves pro-
posed by Woodward and Colella [29]. The computational domain is now
x ∈ [0, 1] with reflective boundaries. The initial conditions have unit density
and zero velocity in the entire domain. The pressure is set at 0.01 except for
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Figure 11: The solution of the 123-problem (left) and the result zoomed in on the rarefac-
tion wave (right). The top figures show WENO-JS and WENO-JS( 2

3 , 67 ) while the bottom
figures show WENO-Z and WENO-Z( 2

3 , 67 ). The numerical solutions were computed using
201 grid points and a CFL number of 0.4. The left-side plots are plotted with half the
grid points for clarity.

two small regions, where a very high pressure is present, i.e.,

(ρ, u, p) =


(1.0, 0.0, 1000) if 0 ≤ x ≤ 0.1,

(1.0, 0.0, 100) if 0.9 ≤ x ≤ 1,

(1.0, 0.0, 0.01) otherwise.

(58)

The final time is set to t = 0.038. Both high pressure regions create blast-
waves travelling outwards, which are reflected at the boundaries and imme-
diately directed inwards. Complicated shapes in the density form before the
blast-waves meet and interact. As there is no exact solution to this particular
problem, we employed Godunov’s method with 2 · 104 grid points and 105

time steps to compute the reference solution.
In this example, it is natural to focus attention on the region where

the two blast-waves interact, see Figure 12. In both cases, we see that the
embedded schemes have higher peaks and lower valleys, and are thus closer
to the reference solution.
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Figure 12: The solution of the interacting blast-waves problem (left) and the result zoomed
in on the interaction region (right). The top figures show WENO-JS and WENO-JS( 2

3 , 67 )
while the bottom figures show WENO-Z and WENO-Z( 2

3 , 67 ). The numerical solutions
were computed using 400 grid points and a CFL number of 0.4. The left-side plots are
plotted with half the grid points for clarity.

6.2.3. Mach-3 shock density-wave interaction

The final problem under consideration is the Mach-3 shock density-wave
interaction proposed by Shu and Osher [30]. The initial conditions are given
by

(ρ, u, p) =

{
(3.857, 2.629, 10.333) if x < 0,

(1 + ε sin(5x), 0, 1.0) if x > 0.
(59)

The integration time is t = 1.8. If ε is set to zero, this is a Riemann problem
with the solution being a pure Mach-3 shock wave travelling to the right.
However, ε is set to 0.2, resulting in the right state being a regular density
wave. Again, no exact solution is available, hence we use a numerical solution
computed on a very fine grid, in this case the WENO-JS scheme with 2000
grid points.

In this final example, presented in Figure 13, we again see how the embed-
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Figure 13: The solution of the Mach-3 shock density-wave interaction test (left) and
the result zoomed in on the interaction region (right). The top figures show WENO-JS
and WENO-JS(2

3 , 67 ) while the bottom figures show WENO-Z and WENO-Z( 2
3 , 67 ). The

numerical solutions were computed using 201 grid points and a CFL number of 0.4. The
left-side plots are plotted with half the grid points for clarity.

ded schemes provide an improvement over their more standard-issue coun-
terparts. With the WENO-JS scheme, the high-frequency density waves
close to the shock are hardly captured, whereas the embedded scheme shows
some more detail. Furthermore, the embedded scheme does a better job of
capturing the low-frequency waves more to the left of the shock.

Similar things may be said about WENO-Z and its embedded version.
Naturally WENO-Z shows more detail than WENO-JS, while the WENO-
Z(2

3
,6
7
) shows even more detail in the high-frequency region and less flattening

in the low-frequency region.

7. Conclusion and future work

We have introduced a design strategy for improving existing WENO
weights and with it a new type of WENO methods, which we have named
the embedded WENO methods. We have outlined a general approach that
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allows one to adapt the nonlinear weights of an existing WENO method. The
overall, original, WENO method was called the outer method, while the ad-
justment was dubbed the inner method. The inner method takes over when
several adjacent substencils are smooth while there is a discontinuity present
in the larger stencil. In such regions, conventional WENO schemes, such as
WENO-JS and WENO-Z, revert to their lower-order mode. This is slightly
overzealous, as one has more than one smooth substencil to work with. The
embedded WENO schemes switch to their inner scheme in these cases. This
allows more control over the numerical solution, for instance by attaining a
higher order of convergence.

A framework was presented along with four conditions that we dubbed
the implementation, nonlocality, consistency and embedding conditions. The
implementation and nonlocality conditions led us to the general forms. The
consistency and embedding conditions provide equations for the coefficients
of the correction when dealing with a particular WENO scheme. In this
manner, we have explicitly constructed embedded schemes based on the five-
point WENO-JS and the WENO-Z method.

We have demonstrated through spectral analysis and several numerical
experiments the benefits of the embedded WENO schemes over their corre-
sponding standard methods. All numerical examples show the same proper-
ties: equal or better performance in smooth regions and better performance
near discontinuities in the solution and its derivative. We have also demon-
strated that the spectral properties of a WENO scheme can be improved by
converting it to an embedded version.

Whereas here we have applied our embedding strategy to the WENO-JS
and WENO-Z schemes, we expect similar results when it is applied to other
schemes. Our framework was presented in the context of five-point WENO
schemes, but the consistency equations are easily generalised and the em-
bedding equations were derived in a more general setting. In fact, we have
constructed and demonstrated seven-point embedded WENO schemes else-
where [31]. Therefore, we foresee no significant obstructions when applying
the embedding strategy to other schemes.
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