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Spatially persisting patterns form during the downstream evolution of passive scalars in three-
dimensional (3D) spatially periodic flows due to the coupled effect of stretching and folding mech-
anisms of the flow field. This has been investigated in many computational and theoretical studies
of 2D time-periodic and 3D spatially periodic flow fields. However, experimental studies, to date,
have mainly focused on flow visualization with streaks of dye rather than fully 3D scalar field mea-
surements. Our study employs 3D particle tracking velocimetry and 3D laser-induced fluorescence to
analyze the evolution of 3D flow and scalar fields and the correlation between the coherent flow/scalar
field structures in a representative inline mixer, the Quatro static mixer. For this purpose an exper-
imental setup that consists of an optically accessible test section with transparent internal elements
accommodating a pressure-driven pipe flow has been built. The flow and scalar fields clearly underline
the complementarity of the experimental results with numerical simulations and provide validation
of the periodicity assumption needed in numerical studies. The experimental procedure employed in
this investigation, which allows studying the scalar transport in the advective limit, demonstrates the
suitability of the present method for exploratory mixing studies of a variety of mixing devices, beyond
the Quatro static mixer. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4973327]

I. INTRODUCTION

Advective-diffusive scalar transport in periodic laminar
flows is of practical relevance to various industrial thermo-
fluid processes that employ the inline mixing principle. Two
important practical categories are blending of highly viscous
fluids (e.g., polymers and food)1,2 and micro-fluidics (e.g., lab-
on-a-chip technologies and bio-medical devices).3,4 Today’s
technology in inline mixing systems is based on empirical
knowledge, yet further advancement requires deeper insight
into transport mechanisms. In the past few decades, the funda-
mentals and applications of mass/scalar transport in spatially
periodic laminar flows have been studied in numerous theoreti-
cal and numerical investigations.5–12 Nevertheless, a complete
understanding is not achieved yet. Particularly, experimen-
tal studies are limited, i.e., restricted to highly idealized flow
geometries or allowing only partial access to the flow domain
with (optical) diagnostic tools.5,13–16 The work presented here
aims to bridge this gap via laboratory experiments in a real
mixer geometry.

This study adopts the Quatro mixer (Primix BV, Mij-
drecht, The Netherlands) shown in Fig. 1 as a representative
inline mixer for an in-depth analysis of advective-diffusive
transport of scalars in industrial processes and the analysis
expands on the work by Jilisen et al.17 The Quatro mixer
geometry is composed of a cylinder that holds mixing elements
consisting of chevron-shaped central plates with perpendicu-
lar elliptical parts extending to the inner wall of the cylinder.
Each mixing element is a reflected and rotated (by 90◦) version
of the preceding one. Sequential placement of the reoriented

elements inside the cylinder yields a downstream periodic
repetition of element pairs, where two elements form one
period. This results in a spatially periodic flow field inside the
mixer.9

The main objective of the current study is to investigate
scalar transport under the action of a spatially periodic lami-
nar flow field. The study employs a combined experimental-
numerical analysis for the investigation of only-advective and
of advective-diffusive scalar transport in the Quatro mixer.
For the experimental analysis, a setup, which mimics realistic
(industrial) flow conditions, is developed. The flow and con-
centration fields are measured by three-dimensional particle
tracking velocimetry (3D PTV) and three-dimensional laser-
induced fluorescence (3D LIF) techniques, respectively. For
the numerical analysis, a finite-element method is employed.
Studying scalar transport numerically in the advective limit,
where diffusion is either absent or very weak compared to
advective transport, is very challenging due to artificial dif-
fusion introduced by the numerical discretization. In this
respect, the experimental analysis is essential as it enables
the investigation of the scalar transport in the advective
limit.

II. MODELLING FLOW AND SCALAR TRANSPORT

The configuration is a steady, laminar, incompressible
flow field and its related steady advective-diffusive scalar field
inside the 3D mixer geometry, an element of which has a
diameter D and a length L (see Fig. 1) with, in our case,
D = L. The governing non-dimensional mass and momentum
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FIG. 1. A schematic of the Quatro mixer. The left panel shows the geometry of the Quatro mixer with the chevron-shaped central plates, perpendicular elliptical
parts extending to the cylinder wall and the axial throughflow. The right panel shows the periodic segment of the mixer, the definition of the cylindrical coordinate
system, the cylinder diameter, and the element width D and the element length L. In the current study D = L.

equations are

∇ · u = 0, Re u · ∇u = −∇P + ∇2u, (1)

where u is the fluid velocity and P the pressure. The scalar
field C is made dimensionless according to

C =
C −min C0(x)

max C0(x) −min C0(x)
(2)

with C being the dimensionful scalar, min C0(x) and max C0(x)
the minimum and maximum values of the initial scalar field
C0(x), respectively. The non-dimensional steady advection–
diffusion equation reads

u · ∇C =
1
Pe
∇

2C. (3)

These equations are also supplemented with no-slip and zero-
flux conditions at the walls. Poiseuille flow is prescribed at
the inlet, whereas a constant pressure boundary condition is
set at the outlet. Moreover, a heterogeneous concentration is
prescribed at the inlet z = 0,

C |z=0 =

{
1, if y ≥ 0
0, if y < 0

. (4)

The 3D coordinate system is defined in such a way that the
(x,y)-plane corresponds to the transverse direction, whereas the
z-direction corresponds to the axial (and downstream) direc-
tion, see Fig. 1. In Eqs. (1) and (3), Re and Pe are the Reynolds
and Péclet number, respectively, defined as

Re =
UD
ν

, Pe =
UD
α

, (5)

where U and D are the characteristic velocity of the flow field
(i.e., mean velocity Umean) and the diameter of the domain,
respectively, ν is the kinematic viscosity, and α the mate-
rial diffusivity. The flow is laminar (low Re regime) and the
scalar transport is dominated by advection (high Pe case) in
the current investigation.

The scalar field analysis focuses on purely advective trans-
port (where Pe is extremely high). The experimental methods
used in the current study are perfectly capable of analyzing
such advective transport phenomena, also in the Quatro mixer
which is representative of more generic cases. However, from
a practical point of view, the numerical model can accurately
be solved only up to about Pe = 1000 due to the restriction
imposed by the numerical resolution.

III. METHODOLOGY
A. Numerical simulations

The finite element package Comsol Multiphysics 4.3b is
used to solve 3D mass and momentum equations (Eq. (1))
and the advection–diffusion equation (Eq. (3)). A mixer model
with 10 periods (20 mixing elements) is built in Comsol, and
an unstructured tetrahedral grid is constructed with approx-
imately 30 × 106 elements. The numerical convergence and
accuracy are verified by standard grid refinement tests. Integra-
tions are performed with a second-order backward-difference
scheme. A relative tolerance of 10�3 is prescribed for the veloc-
ity components of the steady flow field and the steady scalar
field in the solver.

B. Experimental facilities

Two separate laboratory setups have been constructed for
experimental analyses of the Quatro mixer shown in Fig. 1.
The first setup is for measurement of flow, streamlines, and
Lagrangian transport by way of 3D PTV, and the second setup
is for visualization and measurement of scalar transport by
way of 3D LIF. The basic structure and the working principle
of both facilities are the same. The main difference is that they
are equipped with different data acquisition systems.

The 3D PTV facility, a detailed description of which is
given by Jilisen et al.,17 is shown in Fig. 2 (left panel). In
Ref. 17 water was used as the working fluid (with a flow rate
Q̇ = 80 l/h and a mean axial velocity Umean = 9 mm/s), which
results in a Reynolds number Re = UmeanD/ν = 505 (kine-
matic viscosity νwater = 10−6 m2/s). The current investigation
employs silicone oil (with a density ρ = 970 kg/m3 and a
kinematic viscosity ν = 10−4 m2/s), lowering the Reynolds
number to 3.5 (Q̇ = 56 l/h and Umean = 6.3 mm/s). Note that
silicone oils having viscosities lower than ν = 10−3 m2/s show
Newtonian behavior.18

The second Quatro mixer facility, shown in Fig. 2 (right),
is designed for 3D LIF measurements. It is an open-loop
system that uses both plain and fluorescent silicone oils
(with a density ρ = 970 kg/m3 and a kinematic viscosity
ν = 10−4 m2/s) as the working fluid. It has two top reser-
voirs, which hold plain oil and fluorescent oil, and a bottom
reservoir which accumulates the mixed oil. The top reservoirs
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FIG. 2. A schematic sketch of the Qua-
tro mixer facilities: the left and the right
figures show the setups used for 3D PTV
and 3D LIF measurements, respectively.
Both facilities accommodate a transpar-
ent test section with a pressure-driven
flow inside reservoirs and connecting
tubes.

are divided into two parts to keep the flow rate constant inside
the facility and the test section is made of the same materi-
als as in Ref. 17 (the viewing box and the tube with an inner
diameter D = 56 mm and a thickness a = 2 mm are glass and
the mixing elements are Perspex with a thickness of 1.5 mm).
However, it is longer (1 m) than the one in the 3D PTV facil-
ity so as to accommodate more mixing elements and narrower
(the cross-sectional area of the viewing box is a square with a
side length of 100 mm). Having a narrower viewing box does
not affect the optical quality but significantly decreases the
amount of liquid it holds. The mean velocity in the concen-
tration field experiments is Umean = 0.001 m/s, resulting in a
Reynolds number Re = 0.5, which is different compared to the
Reynolds number in the flow field measurements (due to the
restrictions imposed by practical issues).

The concentration field experiments are conducted at
extremely high Pe (assuming the material diffusivity α is very
weak). However, from a practical point of view, the numerical
simulations of such mixing experiments can only be conducted
accurately for Péclet numbers up to about Pe = 1000, above
which the influence of numerical diffusion becomes substan-
tial for the current numerical configuration (for Péclet numbers
up to about Pe = 1000, the condition Pecell < 2 is satisfied in
the current numerical configuration).19 Increasing mesh reso-
lution, on the other hand, enables us to simulate the cases with
higher Péclet numbers accurately, yet it is limited by the com-
putational resources. Experiments and simulations are thus to
a certain extent complementary as numerical simulations pro-
vide full detail of the mixing process, but for Pe . 1000,
while experiments enable us to investigate mixing up to very
high Péclet numbers at the expense of global access to tracer
distributions. Therefore, any comparative analysis between the

experiments and the numerical simulations should focus on
the features that can be accessed in both cases (e.g., larger-
scale structures and general correlation with the flow field)
rather than one-to-one comparison between experiments and
simulations.

C. Measurement techniques
1. 3D particle tracking velocimetry

For 3D PTV experiments, the Quatro mixer facility is
equipped with the same setup as in Ref. 17. Two arrays of
light-emitting diodes (LEDs, LUXEON Rebel Color, Philips,
The Netherlands) with an intensity peak at 530 nm wave-
length are used for the illumination of the flow with fluo-
rescent seeding particles [polymethylmethacrylate (PMMA)
hollow sphere particles doped with Rhodamine-B; dp = 50 µm,
ρp = 1190 kg/m3; Microparticles GmbH, Germany]. The par-
ticles have an absorption and an emission peak at λab

= 560 nm (green) and λem = 585 nm (red), respectively. This
enables the elimination of the reflections due to fluid–wall
interfaces and small air bubbles, which deteriorates the image
quality otherwise, by two-step optical filtering: cyan dichroic
filters are mounted on the collimator lenses of the LEDs to
exclude the LED contributions above λ = 570 nm that may
interfere with the fluorescence and 590 nm high-pass filters
(type OG-590, Schott Glass, Germany) are mounted on cam-
era lenses to remove the reflections (around the LED peak)
from the test section. The slight mismatch between the emis-
sion wavelength of the particles and the cut-off wavelength
of the high-pass filter does not cause significant reduction
in light intensity due to broad emission wavelength of the
particles.
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The typical response time of the particles to changes in
velocity field is estimated as Tp = d2

p ρp/(18ρν) = 1.7 µs,
which is negligible compared to the typical flow time scale
T a, where T a = D/Umean = 8.9 s.20 In other words, the particle
Stokes number is St = Tp/Ta � 1, meaning that the tracer
particles are passively advected by the flow. The drift veloc-
ity due to buoyancy Up = |ρ − ρp |gd2

p/(18ρν) = 3.1 µm/s
is much less than the fluid velocity Umean = 6.3 mm/s and
yields a typical deviation in a particle trajectory, i.e., ∆xp

≡ UpTa ∼ 0.2 mm, during its residence within the test section.
This is also considered negligible.

Four synchronized 12 bit CCD cameras (with a res-
olution of 1600× 1200 pixels; MegaPlus ES2020, Kodak,
United Kingdom) equipped with 50 mm lenses (type NMV-
50M1, Navitar, USA) are positioned and aligned in such a
way that each camera views the test section from a different
perspective. This configuration enables an efficient match-
ing performance for the 3D PTV algorithm. Camera control,
synchronization and data storage are achieved by a data acqui-
sition system (DVCR5000, Iris Vision, The Netherlands).17

The non-commercial 3D PTV algorithm developed at ETH
Zurich, Switzerland,21,22 which is capable of performing par-
ticle matching and trajectory construction based on a four cam-
era configuration, is used in the current study. The calibration
procedure is explained in Section III C 2.

In the study by Jilisen et al.17 the error in measurements is
found to be around 10%–15%. In the present study, the
error is reduced significantly by a new method comprising
(i) a correction procedure in post-processing of data where
a low-pass filtering is employed for particle trajectories via
fitting cubic spline to the segments of the trajectories (for
details see Ref. 22) and (ii) a modified calibration procedure
(Section III C 2).

2. Modification in 3D PTV calibration

The current study employs the 3D PTV algorithm devel-
oped at ETH Zurich for the determination of 3D particle

coordinates and the reconstruction of the trajectories of the
particles. This algorithm performs calibration and position
calculations taking into account two flat interfaces between
media with different refractive indices. It models only the
presence of the cubic box (i.e., air-glass, glass-silicone oil) of
the test section and ignores the cylinder walls (see Fig. 3(a)).
This cylindrical wall causes further refraction of the light
rays (see Fig. 3(b)). This additional optical effect should be
taken into account in the calibration process for more accurate
reconstruction of the particle positions and trajectories.

The modified calibration procedure is accomplished in
three steps: (i) initial calibration by use of the original 3D PTV
algorithm, (ii) production of synthetic calibration images, and
(iii) compensation for the error that arises from the presence of
the cylinder. In the first step the system is calibrated in order to
obtain the mapping function between the camera coordinates
and the physical coordinates. To this end, a calibration body
(for details, see Ref. 17) is placed inside the test section that is
filled with the working fluid in order to mimic the actual fluid
conditions. The images of the calibration body are processed
by the ETH algorithm to acquire the calibration matrix albeit
with an error due to the missing cylindrical wall in the optical
model. Therefore, in the second step artificial images of the cal-
ibration body are generated based on the optical configuration
shown in Fig. 3(b). The calculations are made with the camera
position and orientation information as estimated in the first
step by the ETH algorithm. These initial values are then varied
with fine steps iteratively in the new model with the objec-
tive of minimizing the disparity between the actual camera
images and the artificial images of the calibration body. Con-
sequently, a good match is achieved with an average disparity
of two pixels in the marker positions. Subsequently, a correc-
tion factor is introduced to the particle positions to compensate
for the calibration error. This is done by generating images
of 5000 synthetic particles at known positions by the use of
the improved model acquired in the second step. The ETH
algorithm is then used with the artificial images to reconstruct

FIG. 3. (a) Optical configuration modeled by the ETH 3D PTV algorithm; (b) optical configuration of the actual experimental setup (note that this configuration
is used in the artificial calibration image generation).
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FIG. 4. The distribution of the error in the x (blue), y
(black), and z (red) coordinates of synthetic particles
reconstructed by the ETH algorithm as a function of the
y positions of the particles before (first row) and after
(second row) correction.

the 3D particle positions. The error is calculated as the differ-
ence between the reconstructed and real positions of the syn-
thetic particles in x-, y-, and z-directions, i.e., ε = ε (εx, εy, ε z).
The ETH algorithm with incomplete optical model (i.e., the
optical configuration without the inner cylinder) performs well
in the calculation of the x and z components of the particle posi-
tions; however, there is a significant systematic error in the
calculation of the y-component, displaying an almost linear
trend in the y direction (depth direction of the camera con-
figuration), as shown in Fig. 4. The relation between the y
position of the particles and the y component of the error is
used to derive an empirical correction factor for the corrected
y positions of the particles,

ycor =



y
(
1 − 1

R

)
, for y ≥ 0

y
(
1 − 0.68 1

R

)
, for y < 0

, (6)

where R is the dimensionful radius of the tube (R = 28 mm)
and ycor is the y-component of the corrected particle positions.
As a result of this correction, the overall error is decreased sig-
nificantly showing random variations with respect to particle
positions (similar as those for the x- and z-direction) and no
systematic deviation. This improves the calculation of the par-
ticle positions compared to the work of Jilisen et al.,17 and the
effect of the correction on the processed data (i.e., velocities)
is discussed further in Section IV.

3. 3D laser-induced fluorescence

The 3D laser induced fluorescence (3D LIF) measure-
ments are performed in a cylindrical volume with diameter
D = 56 mm and a height of 800 mm, in which 14 mixing
elements (i.e., 7 mixing periods) are held. The measurement
volume is illuminated by a continuous argon–ion laser (Sta-
bilite 2016, Spectra Physics, USA) at a wavelength of 488 nm

and a laser sheet scanner (LaVision, Germany) (see Fig. 5).
The fluorescent oil is a mixture of an oil-soluble fluorescent
dye (Sudan Orange 183 by BASF AG, Ludwigshafen, Ger-
many) and silicone oil with a dye concentration of 40 µg/l
and a fluorescence wave length of 580 nm. This allows the
visualization of the concentration field after filtering the laser
wavelength by use of a 570 nm high-pass optical filter (Thor-
labs, Germany). The images of the concentration fields are
recorded using a high speed 12 bit CMOS camera (with a res-
olution of 1024 × 1024 pixels; HighSpeedStar 5.1, LaVision,
Germany) with its optical axis perpendicular to the laser sheet.
The camera is equipped with a lens (AF Nikkor 28–70 mm,
Nikon, Japan) at a focal length of 70 mm. The aperture of
the camera lens is set to the f-number f # = 5.6. An increase
in f-number results in an increase in the depth of field while
causing a decrease in the amount of light recorded, which
results in a decrease in the signal-to-noise ratio of the mea-
surements. In order to acquire in-focus images of the scalar
patterns at a relatively high signal-to-noise ratio, the measure-
ments are repeated by focusing the camera at two different
planes along the diameter of the tube. The focal plane is posi-
tioned in the middle of the near half-diameter in the first run
and then it is moved to the middle of the far half-diameter for
the second run. The field of view of the camera in the center
plane of the tube is approximately 65× 65 mm and in order to
acquire the concentration field throughout the test section the
image acquisition is repeated at 23 positions in the axial direc-
tion. This is facilitated by a manually operated transversing
device.

The synchronization between the illumination system and
high-speed imaging system is performed by a signal genera-
tor (Stanford, USA) and a high-speed controller (LaVision,
Germany). The signal generator produces a TTL signal at
a frequency of 0.05 Hz that is input to the laser sheet scanner,

FIG. 5. A schematic sketch of the 3D
LIF data-acquisition system. The sys-
tem is composed of a continuous laser
equipped with a laser sheet scanner
device, a high-speed camera with a mul-
tifocal lens on which a high-pass fil-
ter is mounted, a signal generator by
which the laser sheet scanner is acti-
vated, and a high speed controller for
the synchronization of these devices.
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which results in a scanning period of 20 s. The high-speed cam-
era is configured to capture images at a recording frequency
of 50 Hz. The image acquisition is started by a trigger signal
that is generated by the laser sheet scanner and received by the
high-speed controller. This configuration brings in a total of
1000 images captured during one turn-around time of the laser
scanner. Image acquisition and preprocessing are performed
by the commercial software package Davis 7.2 (LaVision,
Germany).

a. Calibration and corrections. The experiments aim at the
(qualitative) investigation of the scalar patterns rather than a
quantitative analysis of the concentration distribution. Hence,
the scalar field is examined in terms of the recorded fluores-
cence intensity with the assumption that the camera has a linear
response to fluorescence intensity. Nonetheless, for a better
image quality, several corrections are applied. First, to improve
the contrast in the concentration field, dark image calibration is
performed by subtracting the dark images taken in a dark room
(when the camera lens is covered) from the raw images. Sec-
ond, the correction images captured at uniform concentration
values (by running only the fluorescent oil in the test section)
are analyzed to check the effect of the attenuation of the laser
on the camera readings. The data analysis shows that the atten-
uation due to absorption of the dye is negligible. Finally, all
images are resized to fit onto the same circular cross section
according to their distance to the sensor. By use of the resized
2D images, the 3D concentration field is constructed and the
downstream cross-sectional evolution of the scalar patterns is
investigated.

D. Data processing and analysis

Data processing and analysis of scalar transport is based
on the dynamic mode decomposition (DMD). This algorithm
enables recovery of the eigenmode decomposition (Eq. (A1))
from data at discrete temporal/spatial levels. It assumes that
the subsequent levels relate via a mapping,

cn+1 = Acn, (7)

where cn denotes the scalar field in discrete partitions in the
domain at level zn = n∆z and A is a linear operator that maps a
scalar field cn to the consecutive one cn+1. The eigenfunction–
eigenvalue pairs of the mapping matrix A are the approxi-
mations for the eigenfunction-eigenvalue pairs {ϕk , µk } of the
advection–diffusion operator L. The details of the algorithm
can be found in Refs. 23 and 24.

IV. PERFORMANCE ANALYSIS OF THE MODIFIED
3D PTV PROCEDURE

In order to quantify the error in 3D PTV experiments,
a comparative analysis between experimental and numerical
velocity fields is performed for velocity components u, v and
4, and magnitude ‖u‖, for which more than 18 000 data points
are taken into account. The positions are taken from the exper-
imental data set, and to obtain the corresponding numerical
values a cubic interpolation fit is employed on the simulated
data. The deviations in the experimental data are quantified
via ε(u) ≡ |un − ue |/|un,max | where u can be u, 3, 4 or ‖u ‖

(n and e stand for numerical and experimental data, respec-
tively). The associated statistics of the error analysis, i.e., the
mean µ, median M, and standard deviation σ of the error, are
given in Table I, where the numbers are given in percentage.
In spite of the correction applied to the y positions of the par-
ticles, the maximum error is still observed for the velocity
component in the y-direction. This is mainly due to increased
refraction effects around the mid-plane of the cylinder close
to the walls (i.e., y ≈ 0 and x = ±R), where the curvature with
respect to the viewing direction increases considerably, result-
ing in elevated error values at these locations. These localized
high errors result in relatively high standard deviation and
mean error values for the v component of the velocity. Over-
all, the error is found to be between 3% and 7% (which was
around 10%–15% for the old algorithm17) which implies that
the modified calibration procedure and the low-pass filtering
in the particle tracks result in an improvement in post-
processing; hence, there is an overall good agreement between
the numerical and the experimental results.

Figure 6 shows a sample of experimental and numerical
trajectories, passing through the same position at the inlet of
the mixer. The deviation between the trajectories is quantified

by ε2(t) =
√

(∆x(t))2 + (∆y(t))2 + (∆z(t))2, where ∆ indicates
the difference between experimental and numerical positions.
Further analysis shows that the deviation increases in time
and the maximum deviation is found to be 0.89 mm. This is
likely due to the imperfect alignment and positioning of the
mixing elements. Nevertheless, the trajectories show a very
good qualitative agreement.

V. VELOCITY FIELD ANALYSIS
A. Periodicity of the flow field

In fluid processing industries, inline mixers constitute a
part of a piping system and can be placed at any location
regardless of local flow conditions. This alters the inlet condi-
tions of the flow field inside the mixer (i.e., they deviate from
Poiseuille flow). However, the flow quickly settles on a peri-
odic state, regardless of inlet conditions, which is demonstrated
below.

In order to determine the earliest mixing element in which
the flow has become periodic again, independent of inlet con-
ditions, a comparative analysis is conducted. A mixer with
2 elements (1 period) is simulated with periodic boundary
conditions at the inlet/outlet at Re = 3.5 and this case is set
as the benchmark case for comparison. Moreover, a mixer

TABLE I. Statistics of the error analysis for velocity components u, 3, 4, and
magnitude ‖u‖. The error is quantified via ε (u) ≡ |un − ue |/ |un,max | where
u can be u, 3, 4, or ‖u‖ (n and e stand for numerical and experimental data,
respectively). The numbers are in percentage.

Velocity components σε µε Mε

and magnitude (Standard deviation) (Mean) (Median)

u 3.34 0.18 0.16
3 6.76 1.21 0.24
4 3.69 0.13 0.17
‖u‖ 6.50 1.06 0.27
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FIG. 6. Comparison of experimental
(blue) and numerical (red) particle tra-
jectories. From left to right: side view
(normal to xz-plane), top view (normal
to xy-plane), and isometric view.

with 8 elements (4 periods) is simulated with three different
inlet conditions, i.e., (i) open inlet with Poiseuille flow, (ii)
partly blocked inlet (square blockage in center), and (iii) partly
blocked inlet with a quarter circle blockage. A pressure bound-
ary condition is applied at the outlet, and the mean flow (thus
pressure gradient) is chosen such that once again Re = 3.5. For
the benchmark case, an arbitrary axial line segment connecting
the points rp,initial = (15,15,0) (in mm) and rp,final = (15,15,112)
(in mm), the length of which is equal to the length of one period,
is defined as a line probe. The velocity magnitude distribution
on this line is set as the benchmark for the comparison. Then,
a similar line (this time the line segment is connecting the
points rp,initial = (15,15,0) and rp,final = (15,15,336), the length
of which is equal to the length of three periods) is defined as
a line probe for the cases with non-periodic boundary condi-
tions. The velocity magnitude distributions of all cases, i.e.,
the benchmark and the non-periodic cases, on these lines are
plotted in Fig. 7 (left), which shows that any disturbance at
the inlet vanishes within the second element and all cases
converge to the benchmark case. Therefore, it is plausible to
conclude that the flow field at Re = 3.5 is basically independent
of inlet conditions—an important fundamental characteristic
of the flow—and quickly settles for one and the same periodic
state. Here, this happens already within the second element of
the first period, meaning that the periodic flow can be assumed
from the second period onwards.

In order to quantify the global error, now sampling a
volume instead of evaluating the velocity along a line segment,

in the non-periodic cases described above (this time there are
two more cases which are acquired experimentally: open inlet
with Poiseuille flow and partly blocked inlet with a square
in the center), a comparative analysis is performed between
the benchmark case (the numerical case with periodic bound-
ary conditions) and the non-periodic cases (experimental and
numerical). Only the second periods of the non-periodic cases
are used in the analysis. The analysis is performed on 18 000
data points per case, where the positions of the data points are
taken from the experimental data set. The corresponding data
for the numerical simulations are calculated by a cubic inter-
polation. The error is quantified via ε(u) ≡ |ub − uc |/|ub,max |

where u can be the velocity components u, 3, 4 and magnitude
‖u‖. Here, b and c stand for the benchmark case and any other
case, respectively. Figure 7 (right) shows the standard devia-
tion of the error distribution for the above-mentioned cases.
The deviations in the numerical cases are below 0.1% which
is equivalent to the relative tolerance of the flow solver (see
Section III A). Moreover, the experimental statistics are con-
sistent with the error estimated for 3D PTV in Section III C 1
and errors are typically less than 7%. This analysis supports
the periodic flow assumption from the second period onwards
and reveals the agreement between the experiments and the
numerical simulations.

B. Velocity field

This section analyzes the flow field of the Quatro mixer at
Re = 3.5 experimentally and numerically. A similar analysis is

FIG. 7. (Left) The velocity magnitude distributions on an arbitrarily chosen line (x = 0.015 m, y = 0.015 m line) for the cases with different boundary conditions:
(i) quarter circle blockage, (ii) square blockage, (iii) Poiseuille flow conditions at the inlet and pressure boundary condition at the outlet, and (iv) periodic
boundary conditions at the inlet/outlet. Only the numerical simulations are shown. For all cases Re = 3.5. (Right) The standard deviation of the error in u, 3, and
4 components of the velocity and the velocity magnitude ‖u‖. Filled markers: experiments, open markers: numerical simulations. The values are in percentage.
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FIG. 8. Cross-sectional evolution of numerical dimensionless velocity magnitude along a period (which is composed of two mixing elements) of the Quatro
mixer at Re = 3.5: (left) 2D plots of non-dimensional velocity magnitude at five axial positions (z = 0, L/2, L, 3L/2, 2L) along the mixer, (middle) 3D isosurface
for the non-dimensional velocity magnitude ‖u‖ = 0.75, and (right) the orientation of the blades. All values are non-dimensionalized with the maximum of
velocity magnitude ‖u‖max = 0.022 m/s.

given in Ref. 17. The main difference between the two studies
is the flow regime (see Section III B).

In order to illustrate the flow in the mixing elements, 2D
plots of non-dimensional velocity magnitude at five axial posi-
tions along a periodic segment of the mixer, a 3D isosurface
of the velocity magnitude, and the orientation of the mixing
elements are shown in Fig. 8. As mentioned earlier, the second
element of a periodic segment is the reflected and rotated ver-
sion of the first one. The effect of this configuration is clearly
visible in the cross-sectional flow fields. The flow field pattern
at z = L is essentially a mirrored version of that at z = 0, while
the pattern at z = 3L/2 is a rotated form of the flow field at z
= L/2. The velocity pattern repeats itself at z = 2L in accor-
dance with the periodic configuration of the geometry. The 3D
isosurface also has a repeating pattern. Each segment of the
isosurface (the length of a segment is L/2) is a reflected version
of the preceding one.

Figure 9 shows 2D plots of the velocity components u,
3, and 4 with the transversal velocity vectors ut = (u, 3) at
five axial locations. The effect of the mixer configuration is
also visible in the plots of velocity components. In general,
the axial flow component is dominant, whereas the transver-
sal flow components u and 3 are marginal, particularly at the

inlet/outlet regions. Stronger transversal velocity components
at the mid-plane (compared to the inlet/outlet planes) indicate
that the flow has a higher circulation in this region.

Figure 10 shows the contour plots of the velocity magni-
tude at the inlet and the mid-plane of the first element obtained
via 3D PTV experiments and computed numerically. Despite
the quantitative differences, similar flow structures emerge in
both cases. There are two main reasons for the poorer data qual-
ity in experimental plots: the optical obstruction by the edges
of the mixing elements and very few particle tracks near the
walls. The effect of the former is well visible in Fig. 10(a). As
the cameras are positioned in the region where y > 0 (less opti-
cal obstruction in this region), the top half of the plot (y > 0)
shows a better agreement compared to the bottom half (y < 0)
of the plot. The effect of the latter (limited number of particle
tracks near the walls) can also be clearly seen in the experi-
mental results. Hence, the determination of the velocity field
in these regions is possible only by the interpolation of the
neighboring data points. This explains why the zero-velocity
regions do not appear in the results even though they physically
exist in the experiments. However, overall, the comparison
reveals a good agreement between the experiments and the
simulations.

FIG. 9. Cross-sectional evolution of numerical dimensionless velocity field components at five axial positions (z = 0, L/2, L, 3L/2, 2L) along the Quatro mixer
(which is composed of two mixing elements) at Re = 3.5: (left) u component, (middle) 3 component, and (right) 4 component with the transversal velocity
vectors ut = (u, 3). All values are non-dimensionalized with the maximum of velocity magnitude ‖u‖max = 0.022 m/s.
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FIG. 10. Dimensionless velocity magnitude at the inlet ((a) and (b)) and the mid-plane ((c) and (d)) acquired experimentally ((a) and (c)) and numerically ((b)
and (d)) at Re = 3.5. Color code: blue (0)–green (0.5)–red (1).

C. Streamlines and Poincaré section

This section addresses the investigation of the transport
properties of the Quatro mixer flow from a Lagrangian point
of view, which enables the identification of coherent struc-
tures that form in the 3D streamline portrait as shown in
Fig. 11. The streamlines in Fig. 11(a) are obtained experimen-
tally by 3D PTV. In order to illustrate the mixing principle of
the Quatro mixer, the streamlines are colored differently based
on their location with respect to the first element of the seg-
ment: streamlines that enter via one (i.e., the upper) side of
the element are colored in green, whereas those that enter via
the other (lower) side are in red. These green and red streams
are divided into two by the leading edge of the second mixing
element. Concurrently, green and red streams merge on both
sides of the second element. This process repeats itself in the
subsequent mixing segments and is thus intended to lead to
mixing of incoming fluid streams.

The streamline clusters in Fig. 11(a) demonstrate only
the mixing principle (i.e., division and confluence of the
flow stream by the internal elements) of the Quatro mixer.
However, this is itself not a guarantee for efficient mixing. The
mixing characteristics can be determined from the Lagrangian
topology of the flow field, which enables isolation of mix-
ing and non-mixing regions. To this end long-time behavior
of fluid parcel trajectories should be obtained. In the cur-
rent study, this can only be achieved numerically since an
experimental facility with a large number of segments is not
feasible. In this context, the long-time behavior of the fluid par-
cel trajectories, which are acquired numerically, are analyzed
via Poincaré sectioning, where intersections of the initially

tagged fluid parcel trajectories with cross-sectional planes
(which are perpendicular to the z-axis and positioned in a
way that axial distance between any two consecutive planes is
2L, i.e., the axial length of a periodic segment of the Quatro
mixer) are collected in a single cross-sectional plane. This
Poincaré sectioning is a common technique for examining
inline mixers.6,9,11,13–15

The Poincaré section of the Quatro mixer under cur-
rent flow conditions (and Re = 0.5) is obtained by introduc-
ing 40 randomly distributed tracer particles at the mid-plane
of the second mixing element of a periodic segment of the
Quatro mixer. This is for consistency with the scalar field
analysis in Section VI. Thisparticular axial position is chosen
for practical reasons discussed in Section VI and does not have
any influence on the interpretation of the topological struc-
ture of the flow field. These particles are tracked numerically
by using the volume-preserving integration scheme following
Ref. 11, which yields the Poincaré section shown in Fig. 11(b).
The Poincaré section reveals globally chaotic advection with-
out the emergence of any non-mixed regions, conclusively
demonstrating good mixing by the Quatro mixer. Note that
the Reynolds number of the flow field used for Poincaré sec-
tioning is Re = 0.5 for consistency with the scalar field analysis
given below.

VI. ADVECTIVE-DIFFUSIVE SCALAR
TRANSPORT ANALYSIS

This section presents a comparative analysis between
experimental observations and numerical simulations on the

FIG. 11. (a) Measured 3-D streamlines in a segment
(with three mixing elements) of the Quatro mixer for Re
= 3.5, (b) the Poincaré section of the numerical Quatro
mixer flow for Re = 0.5. The axial position of the cross
section is z = 3L/2 and the vertical lines represent the
central chevron-shaped blade of the Quatro mixer.
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cross-sectional evolution of the 3D scalar field in the Quatro
mixer, the configuration of which is given in Section II. The
experiments concern the scalar transport in the advective limit
where Péclet number is extremely high (yet not infinite). How-
ever, in the numerical simulations accurate computations are
possible only up to Pe = 1000 due to the restriction imposed
by the numerical resolution. We have discussed in Ref. 25 that
the diffusion becomes relevant only for spatial features below
a certain minimum length scale, i.e., the universal minimum
length scale δ which is determined by the diffusion coefficient
of the scalar, whereas for the features above δ diffusion is
irrelevant. Hence, despite difference in Pe, we can nonetheless
perform a comparative analysis for larger features in the scalar
patterns, which correspond to the patterns in the earlier cross
sections of the evolution.

A. Eigenmode analysis

In this section, the advective-diffusive scalar transport
in the Quatro mixer is investigated by an eigenmode analy-
sis (the Appendix), and DMD (Section III D) is applied on
the numerical scalar field data to reveal the scalar distribu-
tion that dominates the downstream evolution. The numeri-
cal model of the mixer consists of 10 periodic segments. In

experimental data processing, the 2D cross-sectional scalar
distributions representing the downstream evolution are
extracted from the 3D data set at the mid-plane of every second
mixer element rather than the inlet/outlet planes of the peri-
odic elements. This is due to the fact that in the experiments
the edges of the mixer elements deteriorate the image quality,
and the selected cross sections are the ones which suffer the
least from the disturbance by the edges of the elements. The
same procedure is also applied to the numerical scalar fields
to be consistent.

Figure 12 shows the numerical (top, color) and experimen-
tal (bottom, gray scale) downstream evolution of an initially
non-uniform scalar field in the Quatro mixer. The inflow is
composed of two scalar concentration levels (i.e., C |inlet = 1
for y > 0 and C |inlet = 0 for y < 0). As the flow passes through
the mixing elements, initially segregated concentration fields
break into smaller-scale structures by the effect of stretching
and cutting processes. Diffusion, in the case of Pe = 1000,
smoothes the high-gradient regions. Here, the downstream
evolution is dynamically similar to the temporal evolution
in 2D time-periodic systems: the initially segregated concen-
tration field transforms into persistent patterns and evolves
self-similarly with decreasing variance, as shown in Fig. 12.
Comparison between experimental and numerical scalar fields

FIG. 12. Cross-sectional contour plots
of numerical (colored) and experimen-
tal (gray scale) scalar distributions. The
color range from 0 to 1 (dimensionless
scalar field) is indicated from blue to
red in the numerical results and black
to white in the experimental results.
The patterns are plotted for the dimen-
sionless periods from 0 to 5. Re = 0.5
and Pe = 1000 in the numerical sim-
ulations whereas Re = 0.5 and Pe ≈
∞ in the experiments. The red dashed
line on the leftmost figure indicates the
cross-sectional plane that the data are
extracted.
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reveals that the overall patterns (especially for the earlier peri-
ods) agree well despite significant difference in Pe. This is due
to the fact that diffusion is negligible at these length scales, i.e.,
larger structures are insensitive to diffusion. The primary dif-
ference between experimental and numerical evolutions is that
the experimental evolution continues to develop into ever finer
structures while the simulated evolution very quickly becomes
(nearly) homogeneous. This is due to the substantial difference
in Pe and thus the far greater dominance of advection in the
experimental case. Moreover, the experimental pattern clearly
reveals a continuous process of stretching and cutting of mate-
rial, which is an experimental evidence of chaotic advection.
Thus, the pattern gradually outlines the unstable manifold that
determines the chaotic advection. Finer structures emerging
in the experiments also indicate that the experiments in fact
outperform the simulations by revealing far greater detail.

On the basis of symmetry in the geometry and the flow
field, there exists a clear anti-symmetry in cross-sectional
scalar patterns, which is shown in Fig. 13. This anti-symmetry
is very accurately present in the numerical results, yet it is
less pronounced in the experiments due to imperfections in

the facility. The symmetry comparison is only shown for the
first two patterns of the evolution, since for higher n values the
comparisons are not very clear anymore due to the very fine
structures in the experimental scalar fields.

The normalized numerical scalar fields in Fig. 14 reveal
period-2 behavior, implying that the evolution is dominated
by period-2 eigenmodes ϕ1(x, y) and ϕ2(x, y). The correspond-
ing eigenvalues are of the form λj+1 = |λ |e2πij/p, where j = 0,1
and the periodicity p is 2. Here, the magnitude of the expo-
nential decay rate |λ | = eσ with σ =σ1 =σ2 < 0. This leads
to period-2 eigenvalues which can be written as µ1 =σ and
µ2 =σ + iπ and implies that both eigenmodes ϕ1(x, y) and
ϕ2(x, y) decay with the same rate eσ . The imaginary com-
ponent of µ2, that is ω2 = π, acts as an identity operator for
ϕ2(x, y) for time spans of 2 periods (i.e., eπin = (−1)n). Hence,
the evolution of the concentration field can be approximated
by the reduced expansion

C(x, y, nZ) =
2∑

k=1

γkϕk(x, y)eµknZ + C∞, (8)

where C∞ = 0.5 is the homogeneous final state.

FIG. 13. Anti-symmetry in the scalar
field for the first two patterns of the
evolution, where n = 1, 2. First two
rows: experiments, bottom two rows:
numerical results.
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FIG. 14. The normalized evolution of
the numerical concentration field (each
contour plot is normalized by its own
maximum and minimum values). The
color range from 0 to 1 (dimension-
less scalar field) is indicated from blue
to red. The patterns are plotted for the
dimensionless periods from 0 to 8. Re
= 0.5 and Pe = 1000. The red dashed
line on the leftmost figure indicates the
cross-sectional plane that the data are
extracted.

FIG. 15. The first three dominant
eigenmodes of concentration field
evolution of the numerical simulation
for the case Pe = 1000 and Re = 0.5.
DMD is applied on the numerical data
set to obtain the dominant eigenmodes.

Eigenmode decomposition (Eq. (8)) is verified by per-
formance of DMD on simulated data. This gives the decom-
position as shown in Fig. 15. The eigenvalues calculated
by DMD are in accordance with the theory: the real part
of the eigenvalues is the same (i.e., σ1 =σ2 =σ ≈ − 0.55)
and the imaginary parts are w1 = 0 and w2 = π as given
above.

The evolution is dominated by the eigenmodes shown in
Fig. 15 meaning that the linear combination of these two eigen-
modes gives the repeating patterns of the evolution (Fig. 14):
for even values of n, the repeating pattern is given by ϕ1 + ϕ2

(Fig. 16, left) and for odd values of n, the pattern is calculated
as ϕ1 − ϕ2 (Fig. 16, right).

B. 3D Lagrangian transport

In addition to the eigenmode analysis, experimental 2D
cross-sectional scalar fields are analyzed to investigate the
behavior of material fluid regions and the scalar quantities

FIG. 16. Linear combination of the dominant eigenmodes: ϕ1 + ϕ2 (left),
ϕ1 − ϕ2 (right).

they contain under the effect of stretching and folding mecha-
nisms. The results presented in this section are obtained from
3D LIF measurements. In order to enhance the contrast in the
scalar fields and facilitate easier interpretation of the results,
the images are processed by sharpening the interface lines
between white and black fluids and eliminating artifacts due
to refractions and reflections.
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FIG. 17. Cross-sectional evolution of experimental scalar fields at 10 axial positions (z = 0, L/2, 5L/8, 13L/14, 15L/14, 5L/4, 3L/2, 11L/7, 27L/14, and 2L) along
the first periodic segment of the Quatro mixer (which is composed of two mixing elements) at Re = 0.5. The circles in color (yellow, pink, blue, and purple) are
used to tag the evolving regions for a better understanding of the scalar evolution.

Figure 17 displays the evolution of the initially segre-
gated scalar field from the Quatro mixer inlet to the outlet of
the first periodic segment. The 2D cross sections are taken at
several axial locations that are selected primarily on the basis
of the image quality. At the inlet of the first mixing element
(z = 0), the scalar field is comprised of four regions denoted by
blue, pink, yellow, and purple circles. During the first quarter
period, i.e., 0 < z/L < L/2, the scalar fields are stretched in
the y-direction, resulting in an increased interface between the
white and black regions, thus enhancing mixing by molecular
diffusion. The stretching occurs in the x-direction during the
subsequent quarter of the period, i.e., L/2 < z/L < L, which
can be seen from the cross section at z = 13L/14. At the inlet of
the second mixing element, i.e., z = L, the leading edge cuts the
scalar field into two and thus produces eight segregated regions
(z = 15L/14). This cutting process is succeeded by stretch-
ing until the end of the second element (z = 27L/14), further
increasing interface lengths between white and black regions
and thus further enhancing molecular diffusion. The stretch-
ing and cutting procedure continues in the subsequent mixing
elements and thus paves the way to an ever greater number
of ever smaller scalar regions. This continuously increases the

interfacial area between white and black regions and thereby
promotes molecular diffusion. This progressive subdivision
into ever smaller segments is clearly shown in Fig. 18, where
2D scalar fields are plotted at the axial positions of z = L/2,
5L/2, and 9L/2. In addition to the stretching and cutting,
merging also occurs after the onset of the third period (see
blue-yellow circles at z = 9L/2). This might be due to the strong
deformation and high concentration gradients in the region of
the merger. If, e.g., two black regions are separated by a nar-
row band of white fluid, then diffusion in fact causes black
fluid to cross over between the black regions, thus merging
them. Note that this is not in conflict with the assumption that
the experiments concern the advective limit. Diffusion at some
point always comes into play if the concentration gradients are
high enough.

The progression of the scalar field shown in Fig. 12 as
well as in Figs. 17 and 18 reveals that material fluid regions
basically are continuously cut in half in a way similar to the
well-known baker’s map. This suggests exponential interface
stretching and thus is a strong indication of chaotic advec-
tion.5 Hence, the measured scalar fields provide experimental
evidence in support of the earlier claim based on the Poincaré

FIG. 18. Cross-sectional evolution of experimental
scalar fields at 3 axial positions (z = L/2, 5L/2, and
9L/2) which corresponds to the mid planes of the first
elements of 1st, 2nd, and 3rd periodic segments of the
Quatro mixer. The circles in color (yellow, pink, blue,
and purple) are used to tag the evolving regions for a
better understanding of the scalar evolution. Right half of
the rightmost image is enhanced by using anti-symmetry.
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FIG. 19. Logarithmic decay of intensity of segregation for the cross-sectional
evolution of the numerical concentration field at Pe = 1000 and Re = 0.5.

section in Fig. 11(b) that the Quatro mixer indeed accomplishes
chaotic advection and, as a consequence, efficient mixing.

C. Quantification of mixing efficiency

The intensity of segregation Is
26 is a statistical tool that

quantifies the homogeneity of an initially segregated mixture,
and it has already been employed in Refs. 27 and 25. The
intensity of segregation is defined by

Is =
〈(I − 〈I〉)2〉

〈I〉 (1 − 〈I〉)
, (9)

where I is the normalized corrected intensity of the scalar field
(0 ≤ I ≤ 1) and 〈〉 the linear averaging operator. The intensity
of segregation refers to the variation of the intensities in the
mixture, and it tends to zero for perfect mixing.

The intensity of segregation, in this study, is calculated at
the cross sections used for the eigenmode analysis. Figure 19
shows that the intensity of segregation decays exponentially
similar to the decay of eigenmodes albeit at a different rate.
The eigenmodes decay at a rate σ = −0.55, whereas the decay
in the intensity of segregation is 2σ = −1.10. This is due to the
square term in the definition of intensity of segregation (see
Eq. (9)). The oscillatory behavior of the decay in the intensity
of segregation also confirms the alternating behavior of the
system between two repeating patterns.

VII. CONCLUSION

This paper has shown that the application of an advanced
calibration procedure together with a moving-average low-
pass filter improved the accuracy of the 3D PTV measurements
by decreasing the uncertainty in the measurement of parti-
cle positions from 10% to 15%17 to the range of 3%–7%.
Moreover, this study has confirmed that the periodic flow
assumption holds true for the flows inside spatially periodic
inline mixers at low-Re.

The comparison between the numerical and experimental
results shows that CFD modeling of 3D mixing is not yet pow-
erful enough to reveal fine-scale structures in high-Pe trans-
port. To this end, 3D experimental analysis as we demonstrate
with the Quatro mixer study is required. The level of detail
obtained experimentally exceeds that accessible for a reason-
able computational effort. The comparison, on the other hand,
revealed that CFD studies nonetheless adequately capture the

larger-scale features of the scalar transport, as demonstrated
by the close agreement between the dominant eigenmodes of
the scalar evolution found numerically and experimentally.

Our study clearly shows that both 3D PTV and 3D LIF are
reliable and valuable tools for exploring regimes and features
in 3D realistic mixing flows that are numerically inaccessi-
ble. Hence, laboratory setups as those employed here may
serve as a prototype for industrial test facilities for detailed
experimental exploration and examination of important design
parameters of inline mixers, e.g., duct shapes and element
geometries in a wide range of flow regimes. In this way, the
effects of flow geometry, Re and Pe numbers, on the flow and
scalar patterns can be studied thoroughly which may allow us
to assess the dominance of these design parameters. Moreover,
allowing for unsteady effects in the scalar transport and inves-
tigating this for different values of Re and Pe is an interesting
and relevant further topic for future studies.
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APPENDIX: EIGENMODE STRUCTURE
OF SCALAR FIELDS

In 3D spatially periodic flow fields, assuming that the axial
flow component is unidirectional, the downstream evolution of
the scalar field is dynamically similar to an evolution in time
in a 2D time-periodic flow field. The scalar field C(x,y,nZ),
where Z is the non-dimensional period length (Z = 2L) and nZ
the integer multiples of Z, can then be approximated as a sum
of eigenmodes according to

C(x, y, nZ) =
K∑

k=0

γkϕk(x, y)λn
k , λk = eµkZ , (A1)

where γk are the expansion coefficients based on initial con-
ditions, Hk(x, y, nZ) = ϕk(x, y)λn

k the Floquet modes, and

µk = σk + iωk the Floquet exponents with i =
√
−1. Sets

{ϕk , µk } represent the corresponding eigenfunction-eigenvalue
pairs governed by the eigenvalue problem

Lϕk − µkϕk = 0, (A2)

where L is the advection–diffusion operator.
In the case of finite-Pe, the real part of the eigenvalues

satisfies σk < 0, which means that these modes all decay
exponentially in time. Ordering the eigenvalues by their real
parts following . . . < σ2 < σ1 < σ0 = 0 reveals that
k = 0 is a trivial mode and k = 1 is the slowest non-trivial mode.
The latter is the dominant mode that causes the evolution to
quickly become governed by the reduced expansion

C(x, y, nZ) = γ1ϕ1(x, y)eµ1nZ + C∞, (A3)
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where C∞ = ϕ0 is the trivial homogeneous eigenmode that
corresponds to µ0 = 0.

In the limit of infinite-Pe, the transport is equal to the pas-
sive advection of a scalar. The fundamental difference with
the finite-Pe case is that now only purely imaginary eigenval-
ues (i.e., µk = iωk) occur for all eigenmodes, meaning that
none of the eigenmodes will decay. This has the fundamental
implication that the evolution becomes of the form

C(x, y, nZ) =
∑

k

γkϕk(x, y)eiωknZ + C∞, (A4)

where the eigenmodes become intimately related to the period-
icity and multiplicity of the coherent structures in the Poincaré
section. Periodic eigenmodes (i.e., ωk = 2πj/Z) with “low”
periodicity (i.e., j = 1, 2) dominate the behavior and in that
sense act as the dominant eigenmodes.28,29 The reason for
this dominance of lower-order eigenmodes is that higher-
order structures are always embedded in lower-order struc-
tures. Lower-order structures therefore correspond to (global)
larger-scale features, while higher-order structures correspond
to (local) smaller-scale features.29
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