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Abstract

Background

The optic disc (OD) center and boundary are important landmarks in retinal images and are

essential for automating the calculation of health biomarkers related with some prevalent systemic

disorders, such as diabetes, hypertension, cerebovascular and cardiovascular diseases.

Methods

This paper presents an automatic approach for OD segmentation using a multiresolution sliding

band filter (SBF). After the preprocessing phase, a low-resolution SBF is applied on a downsampled

retinal image and the locations of maximal filter response are used to focus the analysis on a reduced

region of interest (ROI). A high-resolution SBF is applied to obtain a set of pixels associated with

the maximum response of the SBF, giving a coarse estimation of the OD boundary, which is

regularized using a smoothing algorithm.

Results

Our results are compared with manually extracted boundaries from public databases (ONHSD,

MESSIDOR and INSPIRE-AVR datasets) outperforming recent approaches for OD segmentation.

For the ONHSD, 44% of the results are classified as Excellent, while the remaining images are

distributed between the Good (47%) and Fair (9%) categories. An average overlapping area of

83%, 89% and 85% is achieved for the images in ONHSD, MESSIDOR and INSPIR-AVR datasets,

respectively, when comparing with the manually delineated OD regions.

Discussion
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The evaluation results on the images of three datasets demonstrate the better performance of

the proposed method compared to recently published OD segmentation approaches and prove the

independence of this method from changes in image characteristics such as size, quality and camera

field of view.

Keywords: Optic disc segmentation, retinal images, sliding band filter.

1. Introduction

The optic disc (OD) is one of the main structures in a retinal image and its shape and appearance

are important for the detection of glaucoma and assessment of white lesions related with diabetic

retinopathy. The OD is also a landmark for other retinal features, such as the distance between the

OD and the fovea, which is often used for estimating the location of the macula [1]. In addition, OD

segmentation is an important stage for the calculation of indexes related to vascular changes, such

as the Arteriolar-to-Venular Ratio (AVR) [2] as the estimation of this index requires a previous

OD segmentation in order to determine the region of interest [3].

There are several works on the automatic segmentation of OD in retinal images which can

mainly be grouped into four categories, namely template-based methods [4, 5, 6, 7], deformable

model methods [8, 9, 10, 11, 12, 13], morphological-based approaches [14, 15, 16], and pixel classifi-

cation methods [17, 18]. Within the first category, Aquino et al. [4] follow a voting-type algorithm

to locate a pixel within the OD as initial information to define a starting sub-image. Then mor-

phological and edge detection algorithms are applied on the sub-image to segment the OD in the

red and green channels separately. In both channels, the OD boundaries are approximated using

the Circular Hough Transform (CHT) and finally the one with higher score in the CHT is selected.

The method proposed by Wong et al. [5] uses a level-set approach to obtain the OD boundary,

that is afterwards smoothed by fitting an ellipse. A general energy function proposed by Zheng et

al. [6], which integrates priors on the boundaries of the optic disc and optic cup, as well as on the

minimum rim thickness. The optic cup and disc are segmented by using an energy function in a

global optimization framework with a graph cut technique. Recently, Giachetti et al. [7] proposed

a multiresolution ellipse fitting method which combines a radial symmetry detector and a vessel

density map to detect the OD in low-resolution image. Afterwards, the OD boundary is deter-
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mined using refined elliptic contours on the mid-resolution and high-resolution images. The final

segmented contour is improved with a snake-based refinement algorithm.

Regarding the deformable model approaches, Lowell et al. [8] determine the OD location by

finding the maximum of a correlation filter using a specialized template. Afterwards, the OD

is segmented by means of a deformable contour based on a global elliptical model and on local

deformation. In the snake model proposed by Xu et al. [9], after each snake deformation, an unsu-

pervised approach labels the contour points as edge- or uncertain-points. Then the classification

result is used to refine the OD boundary before repeating the contour deformation. Li and Chutat-

ape [10] proposed a method which extracts a point distribution model from the training set using

several landmarks on OD boundaries and on main vessels inside the OD. Then this model is used

by an iterative matching algorithm to locate the OD. Joshi et al. [11] modified a region-based active

contour model. They improved the Chan–Vese model by using local red channel intensities and

two texture feature spaces in the neighborhood of the pixels under analysis. The method proposed

in [12] uses template matching and a directional matched filter to localize the OD. For OD segmen-

tation, the authors first remove the blood vessels and bright regions using alternating sequential

filtering and morphological operations. Then a fast and hybrid level set segmentation method with

optimized parameters is used for extracting the OD boundary. In the method proposed by Hsiao

et al. [13], the Canny edge detector and the Hough transform are used for obtaining the edge map.

Afterwards, the edge map is used as an initial contour in supervised gradient vector flow snake

which consists of a snake deformation stage and a contour supervised classification stage.

In the group of mathematical morphology algorithms for OD segmentation, Reza et al. [14]

threshold the green component in order to obtain a binary image with isolated bright parts. Then,

morphological opening is used to detect the connected components and to remove the small ones.

Afterwards, extended maxima operator and minima imposition are used for extracting the OD and

exudate boundaries. In [15], an adaptive mathematical morphology approach is used in two stages.

In the first stage a coarse detection of OD boundary is obtained and in the second stage the results

are improved. The method described in [16] uses principal component analysis in the first stage

to obtain a grey image with an improved representation of the OD. After removing the vessels, a
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variant of watershed and stochastic watershed are applied. Finally, a geodesic transformation is

used to discriminate the watershed regions as OD or non-OD regions.

In the pixel-based classification category, Abràmoff et al. [17] use feature selection and a k-

nearest neighbor classifier. The final step is the classification of each pixel into rim, cup, or

background. Recently, Cheng et al. [18] proposed a method which classifies each superpixel as disc

or non-disc region using histograms with enhanced contrast and texture features. Superpixels are

local and coherent regions that provide local image information. Superpixel classification is used

for initialization of the disc boundary followed by a deformable model for getting the final contour.

Since the intensity inside OD is variable and the OD region can be degraded by different

types of retinal lesions, OD segmentation is challenging and still an open task mainly for reducing

the processing time and, in pathological images, for improving the performance. In this paper, we

propose a new method for OD segmentation that can be classified as a template-based solution. Our

main motivation was the development of a fully automatic method that is able to produce useful

results even in the presence of severe pathological conditions and showing a great independence

from image acquisition settings. In this method the response of a filter suitable for the enhancement

of bright circular regions, the sliding band filter (SBF), is used for estimating both the OD center

and the OD boundary. For high resolution images, the sliding band filter (SBF) is used twice. The

first SBF is applied on downsampled images to estimate the optic disc center (ODC) that is then

used for defining a region of interest where the second SBF is afterwards applied for fine boundary

extraction. The parameters of the second SBF are set adaptively based on the image size and

camera field of view (FOV). This OD segmentation approach is evaluated on the images of three

public datasets.

The proposed method is a fully automatic algorithm which segments the optic disc indepen-

dently of image characteristics such as size and camera field of view. our contribution is robust

to variations of contrast and illumination, the presence of exudates and peripapillary atrophy

caused by diabetic retinopathy, risk of macular edema, and the blurredness of images due to severe

cataracts. From now on we shortly call this approach the SBF-based OD segmentation, or simply

SBF-based method.
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This paper is organized as follows. Section II presents our approach for OD segmentation. The

results in images of three different datasets are presented in Section III, where a comparison with

the manual segmentation is also included. Finally, Section IV summarizes the conclusions.

2. Methods

Figure 1 depicts the block diagram of the SBF-based method for OD segmentation. The main

phases are: 1) preprocessing, for vessel removal; 2) low-resolution ODC estimation, for obtaining

an approximated location of the ODC on downsampled images; 3) OD segmentation, for extracting

the OD boundary on high-resolution images.

In the preprocessing phase, for decreasing the interference of vessels in the OD segmentation,

the method starts by segmenting the vascular tree, followed by the replacement of the vessel pixels

with an estimation of neighbouring background. In the next phase, an initial location for ODC

is obtained aiming at defining a region of interest where, for reducing the computation time, a

low-resolution SBF is applied to a downsampled image. As a result, a new candidate for the ODC

location is selected from the filter response. In the third phase, the high-resolution SBF, with a

higher number of support region lines, is applied to the region around the new ODC candidate on

the original image. The parameters of this filter are automatically adapted to the image size and

the camera field of view. The OD segmentation is finalized by detecting the maximum response

of the SBF and applying a smoothing algorithm to the extracted boundary. In the following

subsections, detailed descriptions of each phase of the proposed method are presented.

2.1. Preprocessing

Since the OD region is usually a yellowish bright region, it shows high contrast in both red and

green components of image. Therefore the original color image is converted to a gray-scale one

(IRG), where the pixel values are obtained from the red (IR) and green (IG) components of the

RGB image using the equation

IRG(x, y) = (IR(x, y)
2 + IG(x, y)

2)
1

2 (1)
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The OD segmentation process can be negatively influenced by the presence of the retinal vessels.

In order to decrease this influence, the vessels are segmented and then replaced by an estimate of

their neighbouring background in the image IRG. For vessel segmentation, we have used a method

developed in our research group by Mendonça et al. [19, 20]. Figure 2(b) shows the segmented

vascular tree for the original image of Figure 2(a).

The background is estimated by gray-level morphological closing applied to IRG after removing

the vessel pixels using a non-flat, ball-shaped structuring element defined by

B(i, j) =
1

r

(

r2 −min(r2, i2 + j2)
)0.5

,−r ≤ (i, j) ≤ r (2)

We used a simple and efficient method for vessel caliber measurement. A distance transform

is applied to the segmented vascular tree and the result of this operation is the labelling of each

vessel pixel (p) with its distance to the closest boundary point, dp. After that, After that, the

vessel caliber for each vessel centerline pixel, vc(p), is estimated by vc(p) = 2dp − 1. The radius of

the structuring element, r, is given by r = 1
2 max(vc(p)). Figure 2(c) shows the final image after

replacement of the vessel pixels with local background estimates.

2.2. Sliding Band Filter

The SBF is a member of the convergence index (CI) filter class, whose output is a measure

of the convergence degree of the gradient vectors calculated for the pixels belonging to the filter

support region [21, 22, 23]. For each pixel with spatial coordinates (x, y), the convergence index

(C) is defined by

C(x, y) =
1

M

∑

(k,l)∈R

cos θi(k, l) (3)

where θi(k, l) is the orientation angle of the gradient vector at point (k, l) with respect to the line,

with direction i, that connects (k, l) to (x, y). M is the number of points in the filter support

region R.

Distinct members of CI filters use different definitions for the support region, R. The support

region of the coin filter (CF) is a circle with variable radius [24], while the support region of the
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iris filter (IF) can change in each direction [25]. A ring shaped region with varying radius and fixed

width is the support region of the adaptive ring filter (ARF) [26]. The support region of the SBF is

a fixed width band whose position in each direction changes for maximizing the convergence index

value in each point [21, 22]. For all these filters, the support region is usually restricted to a set of

radial lines emerging from the point where the filter is being applied to, and equally distributed

over a circular region centered at this point.

The SBF has a more generic formulation in comparison with other CI filters, which is desirable

for OD segmentation due to the fact that the shape of OD differs from an exact rounded area [27].

The SBF can also be parameterized to use a narrow band and ignore the gradient information at

the center of the OD, thus reducing the interference of vessels.

The SBF response at a pixel of interest P (x, y) is defined by (4) and (5)

SBF (x, y) =
1

N

N−1
∑

i=0

Cmax(i) (4)

Cmax(i) = max
Rmin≤n≤Rmax

(

1

d

n+d
∑

m=n

cos θi,m

)

(5)

where N is the number of support region lines, θi,m represents the angle of the gradient vector at

the point m pixels away from P in direction i, d corresponds to the width of the band, and Rmin

and Rmax represent, respectively, the inner and outer sliding limits of the band. The number of

support region lines (N) controls the resolution and computational cost of the SBF. The high-

resolution SBF uses a higher number of support region lines, making the computation more time

consuming while increasing the sensitivity of the filter to neighbouring changes; the low-resolution

SBF uses a smaller number of support region lines which reduces the computation time as well

as filter accuracy. Figure 3 presents a schematic representation of the SBF concept where the

search region is defined by the inner (Rmin) and outer (Rmax) circles and the set of d points

corresponding to maximal convergence is shown in gray; in this example only 8 support region

lines are considered.
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2.3. Low-resolution ODC Estimation

As a first step, an initial ODC location is estimated and used for defining the ROI where the

SBF is applied. In this phase, both a SBF with a small number of support region lines and a

downsampled image are used for reducing the computation time. The filter response gives a more

accurate location for the ODC to be used in the next phase.

2.3.1. Initial Optic Disc Center Localization

Regarding the computational complexity of the SBF, the OD segmentation can be speed up

by focusing the SBF on a limited region of interest (ROI). For this purpose, an initial ODC is

estimated using the approach based on the entropy of vascular directions by Mendonça et al. [28],

using the vessel segmented image obtained in the preprocessing phase. The initial ODC, Oinit, is

the center of this ROI (Figure 2(d)).

2.3.2. Image downsampling

The SBF filter is computationally expensive and its application to a high-resolution image takes

a lot of time. In order to reduce the computational time, we have used the SBF twice. The first

SBF is applied on a large ROI of a downsampled image in order to obtain a coarse ODC location,

whose position is used for establishing a smaller ROI on the original size image for applying the

second SBF. To downsample an image to a common size, we have used as reference an image with

the resolution of 760×570 pixels and 45◦ camera field of view (FOV). The images are downsampled

according to the size and FOV of the reference image using the scale factor (α) that is computed

by multiplying the image size scale factor (S1) and the FOV scale factor (S2). S1 is defined as the

quotient between the diameter of retinal image mask (d2) and the diameter of the reference image

mask (d1).

S2 is defined by S2 = D1

D2

, whereD1 andD2 represent, respectively, the diagonal of the reference

image plane and the diagonal of the actual image plane. The diagonal field of view can be calculated

using

tan

(

φi

2

)

=
Di

2fi
(6)
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where φi is the field of view, Di represents the diagonal of the image plane, and fi is the camera

focal length.

Using (6) and assuming that the focal length of cameras are similar (f1 ≈ f2), the FOV scale

factor is estimated by

S2 =
D1

D2
=

f1 tan (φ1/2)

f2 tan (φ2/2)

f1≈f2
→ S2 =

tan (φ1/2)

tan (φ2/2)
(7)

where φ1 represents the reference image FOV and φ2 is the FOV of the image being processed.

Finally, the scale factor for image downsampling is calculated by

α = S1S2 =
d2 tan (φ1/2)

d1 tan (φ2/2)
(8)

2.3.3. Low-resolution SBF

The image is downsampled using α, and afterwards, the SBF is applied to the ROI. The ROI

is considered as a w × w square window centred at Oinit. Figure 4(b) shows the SBF result on

the ROI of Figure 4(a). In order to find a new candidate for ODC (Ol1), the locations of K

candidate points with highest filter response are listed, Q = {(xi, yi), i = 1, 2...,K}. These points

are represented by the dots in Figure 4(c). The outliers of this set are excluded based on two

criteria: 1) the relation of its value with the highest value of the filter response; 2) distance to the

centroid of the K point set. The criteria for excluding outliers are defined by (9) and (10).

SBF (xi, yi) < (1− β) max
1≤i≤K

(SBF (xi, yi)) (9)

(

(xi − xm)2 + (yi − ym)2
)0.5

> γ (10)

where SBF (xi, yi) is the filter response at point (xi, yi) using (4), and xm and ym represent the

centroid of the K points. After excluding the outliers, the new centroid of the remaining points

in set Q is the new candidate for ODC (Ol1), that will be the center of the new ROI to apply the

high-resolution SBF in the next phase. The new ODC is shown with a gray cross in Figure 4(d).
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2.4. OD segmentation

In this phase, a high-resolution SBF is applied to the original image. By high-resolution SBF,

we mean a filter with a higher number of support region lines, N . The ROI for applying the SBF

is a square region around the new ODC that was calculated in the previous phase. Unlike the

low-resolution version of the filter, all SBF parameters in this phase are computed using the scale

factor α.

2.4.1. High-resolution SBF

For reducing the computation time, we have used a smaller region for the ROI when compared

with the ROI used in the previous phase. For ROI determination, a default value of wh pixels

for the window size is then multiplied by the scale factor obtained from (8). The values for SBF

parameters (Rmin, Rmax and d) depend on image size, so for each particular image they are

obtained multiplying the low-resolution SBF ones by α.

As illustrated in Figure 5, the number of support region lines (N) is calculated using (11).

sin (θ/2) =
h

2αRavg

θ=2π/N
−−−−−→ N =

π

sin−1(h/2αRavg)
(11)

If x ≪ 1, sin−1 (x) ≈ x, equation (11) can be simplified to

N =
2παRavg

h
(12)

where Ravg is an average value for OD radius in the reference image as mentioned in 2.3.2, and h

is the distance between endpoints of the support region lines.

2.4.2. Boundary extraction

After applying the SBF to the new defined ROI, the location of the point with the maximum

value of filter response, (xc, yc), is selected as the final ODC. Given the detected ODC coordinates,

the OD shape can be estimated using the position of the band that maximizes the convergence

index response in each direction of the support region lines. To estimate the OD shape, we find the

positions of the sliding band points (band support points) that contributed to maximum response.
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The coordinates of the band support points (X,Y ) are obtained using (13) and (14).

X(θi) = xc + rmax(i)× cos(θi) (13)

Y (θi) = yc + rmax(i)× sin(θi) (14)

where rmax(i) corresponds to the radius in direction i, which is obtained using

rmax(i) = argmax
Rmin≤n≤Rmax

(

1

d

n+d
∑

m=n

cos θi,m

)

(15)

The band support points that represent the OD boundary are shown on the original size and

cropped images, respectively, in Figure 6(a) and Figure 6(b).

2.4.3. Boundary smoothing

In order to finalize the OD shape, a robust local regression algorithm is used for smoothing

the boundary [29]. First the distances between boundary points and the final ODC are obtained

(dop(i)), and afterwards a locally weighted smoothing method is applied to the set of dop(i). The

smoothing process is considered local as it smooths each value by using a subset of neighbouring

data points. A robust regression weight function is defined for the data points contained within

the subset, which makes the process resistant to outliers.

The local regression smoothing process starts by computing the regression weights for each

data point in the subset. The number of data points in the subset is set equal to N/4, and the

symmetric weight function is defined by

w1(j) =

(

1−

∣

∣

∣

∣

1−
2j

(N/4)

∣

∣

∣

∣

3
)3

, j =

{

1, 2, 3, ...,
N

4

}

(16)

where w1(j) is the weight for the j
th data point within the subset, andN is the number of boundary

points. Afterwards, a second-degree polynomial is employed for the weighted linear least square

regression of dop(i).
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For preventing the distortion introduced by outliers, the distances dop(i) are smoothed again

using robust weights. The computation of robust weights requires the computation of the residuals

obtained in a previous smoothing step. The robust weights are given by

w2(j) =



















(

1− (ej/6M)
2
)2

, |ej < 6M |

0, |ej ≥ 6M |

(17)

where ej is the residual of the jth data point produced by the previous regression smoothing

algorithm, and M is the median of absolute deviation of the residuals.

Further smoothing is obtained using a second-degree polynomial and the robust weights. The

smoothing result is shown with a solid line in Figure 6(c). The final boundary points are spec-

ified using the smoothed distances from the ODC. Figure 6(d) presents the final OD boundary

overlapped on the original RGB image.

3. Results

The automatic OD segmentation method described in the previous sections was evaluated in

the images of three public datasets, ONHSD [8], MESSIDOR [30], and INSPIRE-AVR [31]. The

ONHSD contains 99 images with resolution of 760 × 570 pixels and 8 bits per color plane. The

images were captured using a Canon CR6 45MNf fundus camera, with a field angle lens of 45◦.

The standard reference for this dataset was provided by experts at the University of Lincoln [32].

The ODC has been marked up by a clinician and four clinicians marked the OD boundary on

the radial spokes (at 15 degree angles) radiating from the nominated centre. The MESSIDOR

dataset contains 1200 eye fundus color images acquired using a Topcon TRC NW6 non-mydriatic

retinograph with a 45◦ FOV. 800 of these images were captured with pupil dilation and 400 without

dilation. The images are 1440× 960, 2240× 1488, or 2304× 1536 pixels in size and 8 bits per color

plane. The OD boundary was manually delimited by experts at the University of Huelva [33], and

used as a gold standard for the evaluation.

The 40 high resolution images of the INSPIRE-AVR dataset have resolution of 2392 × 2048

pixels and are OD-centered. All images were obtained using a 30◦ Zeiss fundus camera. The
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OD boundary of each image was approximated by an ellipse fitted to 16 points marked up by

an expert. The manual OD segmentation for this dataset is available for download from the

RetinaCAD website [34]. Using these three datasets we are able to analyse the performance of

our approach on images with different resolution (ranging from 760× 570 to 2392× 2048 pixels),

acquired using various fundus cameras and distinct FOVs (30◦, 45◦).

3.1. Settings

The image and FOV sizes in the ONHSD were considered as reference values for parameter

setting. Table 1 shows the values of the parameters that were established using the images of the

ONHSD, and afterwards applied to the two other datasets.

The second column of Table 2 shows the values for the parameters of the low-resolution SBF,

and the third column of Table 2 represents the formulas to obtain the parameters for the high-

resolution SBF. Table 3 presents the scale factors for the different datasets calculated using (8).

The SBF parameters for the MESSIDOR and INSPIRE-AVR datasets, calculated using (α), are

shown in Table 4.

3.2. ONHSD

The original ONHSD dataset has 99 images. Similarly to [8] and [4], we excluded the images

with no discernible OD or with severe enough cataracts to prevent meaningful segmentation, leaving

a final set of 90 images for assessing the SBF method. The size of the images in this dataset is

equal to the reference size. Therefore the scale factor for ONHSD images is equal to 1 and there

is no need to apply the high-resolution SBF. For this reason, after getting the result from the

low-resolution SBF, the boundary was extracted as mentioned in 2.4.2. After finalizing the OD

shape using the smoothing algorithm, the results were compared with those of the Circular Hough

Transform (CHT) [4], Morphology-based method (MBM) [16], Temporal Lock, Simple and DV-

Hough methods [8].

In this dataset four clinicians marked 24 boundary points (at 15◦ angles), and the mean and

the radial standard deviations of these values were calculated. For comparing our result with those

of the other methods, we have used the same subjective evaluation method defined by Lowell et
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al. [8]. The discrepancy, δj on image j is defined by

δj =
∑

i

∣

∣

∣
mj

i − µj
i

∣

∣

∣

σj
i + ǫ

(18)

where µj
i and σj

i are, respectively, the mean and standard deviation of values obtained by four

clinicians on spoke i of image j, mj
i is the location of the boundary using the segmentation method

on spoke i of image j, and ǫ is a small factor to prevent division by zero when the clinicians are in

exact agreement and was set equal to 0.5.

Lowell et al. also classified each image based on the discrepancy value as Excellent (δj < 1),

Good (δj < 2), Fair (δj < 5), and Poor (δj ≥ 5). The segmentation methods are assessed

considering the percentage of OD segmentations classified in those four categories. Table 5 shows

the percentage of images per subjective category for different methods. The results of the proposed

method are included in the first row and the second row presents the results of the Circular Hough

Transform method [4]. The MBM [16], Temporal Lock, Simple and DV-Hough methods [8] are

also included in this table.

In order to be able to compare with other published works, other measures were calculated:

Dice’s coefficient (DC) which describes the similarity degree between two regions; Accuracy (ACC)

which is calculated by the sum of correctly detected OD pixels and non-OD pixels divided by the

total number of pixels; true positive fraction (TPF) is obtained by dividing the number of correctly

detected OD pixels by the total number of OD pixels in the reference image; false positive fraction

(FPF) which is the ratio between the number of wrong detected OD pixels and the total number

of non-OD pixels in the reference image; the mean absolute distance (MAD) which measures the

accuracy of the OD boundary; and finally, Matthews correlation coefficient (MCC) which shows

the quality of binary classifications by considering the different cardinalities of the two classes.

Table 6 compares the result of our method with the results of MBM [16] on the ONHSD.

As we can see in Table 5 and Table 6, the proposed method outperforms all the others,

thus demonstrating that the method is adequate for low-resolution images. This gives us some

confidence in evaluating our approach in two other independent datasets, the MESSIDOR and
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INSPIRE-AVR datasets. Some results of the proposed OD segmentation method on images of

ONHSD dataset are shown in Figure 7.

3.3. MESSIDOR dataset

The proposed method was used for segmenting the OD in the 1200 images of the MESSIDOR

dataset. The parameters of the high-resolution SBF that were set based on the calculated scale

factor (α) are shown in the first three rows of Table 4. In order to compare our result with those

of the methods [4], [12] and [18], we use the overlapping score (S) that measures the common area

between the OD region obtained using the automatic method (A) and the region delimited by

experts (E) in [33], being defined by

S =
Area (A ∩ E)

Area (A ∪ E)
(19)

The percentage of images for different intervals of the overlapping score, and the average of

overlapping for all 1200 images are shown in Table 7. The table includes the values for the SBF-

based method, the multiresolution ellipse fitting (MEF) [7], the superpixel classification (SPC)

approach proposed by Cheng et al. [18] and the CHT method [4]. The last row in this table

presents the average overlapping score for the the fast and hybrid level set model (F-HLSM)

method proposed by Yu et al. [12]. As shown in this table, the overlapping between the manually

segmented OD region and SBF-based method is always higher than the ones for the other methods,

reaching an average overlapping score of 0.89 for the whole set of images in this dataset. Figure 8

shows some segmentation samples obtained with the proposed methodology.

The comparison between the result of our method and the results of MBM [16] on the MESSI-

DOR dataset is shown in Table 8. The ratio between MAD and the estimated OD radius (rOD)

is used by Yu et al. [12] for evaluating the F-HLSM method. In order to measure this ratio, the

authors estimated the OD radii equal to 70, 100 and 110 pixels for the images of MESSIDOR

datasets with different sizes. Table 9 shows the percentage of images in four subjective categories

(Excellent, Good, Moderate and Fair), which are defined based on the ratio between MAD and

estimated OD radius. As we can see in the second row of this table, the MAD value is not larger
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than one-tenth of the OD radius for 76% of 1200 images. The average of MAD is 8% of the OD

radius, which is less than 10.1% reported by [12].

In the MESSIDOR datasets, there are several images from patients affected by diabetic retinopa-

thy (DR) and macular edema (ME). These conditions can cause exudates with intensity similar

to OD and peripapillary atrophy which can distort the result of OD segmentation. This dataset

contains information regarding DR and risk of ME grading. The retinopathy grades (Normal,

D1, D2 and D3) are obtained based on the number of microaneurysms, hemorrhages and neovas-

cularization. The risk of macular edema is graded as Normal and two risk levels measuring the

shortest distance between macula and hard exudates. The shortest distance between macula and

hard exudates have been used to grade the risk of macular edema as Normal, R1 and R2. Table 10

shows the average and the standard deviation of the overlapping score (S) for the images with

different DR and ME grades. As we can see in this table, there is no significant difference between

the average of overlapping scores, which demonstrates the robustness of the SBF-based method

in the presence of diabetic retinopathy and risk of macular edema. Figure 9 shows examples the

SBF-based results in the mentioned pathological conditions.

The good performance of the proposed method on the large number of images with different

characteristics of the MESSIDOR dataset demonstrates the robustness of this method to illumina-

tion and contrast variations. Figure 10 shows the results of OD segmentation in different contrast

and illumination conditions.

It should be noted that the initial OD detection method, described in section 2.2, failed in three

images of the MESSIDOR dataset where the OD was located outside of the OD boundary in the

standard reference as shown in Figure 11. In two of these images, the proposed algorithm failed

to segment the OD correctly since the initial OD location is far from the actual ODC (Figures

11(a) and 11(b)). In the third image, the algorithm overcame the initial OD localization failure

and segmented the OD correctly (Figure 11(c)).

In this dataset, the success rate of initial OD localization was 99.75% while we have now

achieved a success rate of 99.83% for the OD detection in both low-resolution and high-resolution

phases. This success rate is similar to the one for the MEF method and is higher than the ones
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for F-HLSM and CHT methods which are 99.08% and 98.83%, respectively.

The proposed algorithm was implemented in MATLAB on an Intel CPU i7-2600k, 3.40 GHz, 8

GB RAM computer. The average running time was 10.6 s per image in the MESSIDOR dataset,

while the running times for the CHT, MEF, SPC and F-HLSM methods on the same dataset were

7.36 s, 8 s, 10.9 s and 11.3 s, respectively.

3.4. INSPIRE-AVR dataset

In order to evaluate the performance of our approach on high resolution images and different

FOV (30◦), the proposed method was also evaluated on the 40 images of INSPIRE-AVR dataset.

For segmenting the OD, the parameters of the high-resolution SBF were set based on the last row

of Table 4. The performance of the SBF-based method is in Table 11. An average overlapping

score of 85% was achieved for the whole dataset, while the mean MAD value was less than 9% of

the OD radius. Some images depicting the manual ground-truth and the result of the SBF-based

segmentation are shown in Figure 12.

4. Conclusion

The segmentation of the optic disc in retinal images is essential for the automated assessment

of vascular changes. In previous sections, we have described a new automatic methodology for

OD segmentation that is distinct from previous approaches. This method uses the SBF in two

different phases. In the first one, a low-resolution SBF is applied to the downsampled images in

order to obtain an initial estimation of the ODC location, whose position is used for establishing

the ROI for the high-resolution SBF in the following phase. The parameters of high-resolution

SBF are adapted to the image size and camera field of view. The maximum response of the SBF

gives the band support points that are used for an initial delineation of the OD boundary, which

is afterwards smoothed using a robust local regression algorithm.

The proposed method outperforms recently published approaches for OD segmentation. The

promising results on the images of three different datasets prove the independence of this approach

from changes in image characteristics such as size, quality and camera field of view.
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Table 1: Parameters setting defined using ONHSD

Parameter Value Description

d1 530 px Diameter of reference image mask

φ1 45◦ FOV of reference image

Rave 40 px Average of OD radius in reference image

h 4 px Distance between endpoints of support region lines

K 10 Number of selected points with highest filter response

β 0.03 Parameter of (9) for excluding outliers

γ 8 Parameter of (10) for excluding outliers

px: pixel

Table 2: Parameters setting for low-resolution SBF and high-resolution SBF

Parameter Value

(low res.)

Value

(high res.)

Description

N 64 64α Number of support region lines

Rmin 20 20α Inner sliding band limit

Rmax 60 60α Outer sliding band limit

d 7 7α Width of the band

w 91 αwh Window size for ROI

wh − 11 Default value for window size

Table 3: Scale factors for different datasets

Dataset Image size FOV Mask
diameter

S1 S2 Scale
factor (α)

ONHSD 760 × 570 45◦ 530 1 1 1

MESSIDOR

1440 × 960 45◦ 900 1.7 1 1.7

2240×1488 45◦ 1357 2.6 1 2.6

2304×1536 45◦ 1440 2.7 1 2.7

INSPIRE-AVR 2392×2048 30◦ 2045 3.9 1.5 5.8

Table 4: Parameter settings for high-resolution SBF for MESSIDOR and INSPIRE-AVR datasets

Dataset Image size α N Rmin Rmax d w subset
size

MESSIDOR

1440 × 960 1.7 109 34 102 12 19 27

2240 × 1488 2.6 166 52 156 18 29 41

2304 × 1536 2.7 173 54 162 19 31 43

INSPIRE-AVR 2392 × 2048 5.8 371 116 348 41 63 92

Table 5: Comparison between proposed SBF-based method and four other methods in terms of percentage images
per subjective category (ONHSD)

Method Excellent Good Fair Poor Excellent-
Fair

SBF-based 44% 47% 9% 0 100%

CHT [4] 40% 39% 18% 3% 97%

MBM [16] 28% 36% 31% 6% 94%

Temporal Lock [8] 42% 31% 10% 17% 83%

DV-Hough [8] 39% 22% 20% 19% 81%

Simple [8] 9% 8% 30% 53% 47%
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Table 6: Comparison of the average and standard deviation of different measures between proposed method and
MBM [16] on ONHSD dataset

S̄ DC ACC TPF FPF MAD MCC

SBF-based
Average 0.8341 0.9173 0.9968 0.9435 0.0012 2.4218 0.9133

SD 0.0912 0.0634 0.0027 0.0791 0.0027 3.0727 -

MBM [16]
Average 0.8045 0.8867 0.9941 0.9310 0.0043 3.2753 0.7941

SD 0.1175 0.0776 0.0042 0.1046 0.0042 3.0407 -

Table 7: Comparison between the SBF-based method and other methods in terms of percentage of images per
overlapping interval and average overlapping of the whole set(MESSIDOR dataset)

Method S
≥

0.
95

S
≥

0.
90

S
≥

0.
85

S
≥

0.
80

S
≥

0.
75

S
≥

0.
70

S̄

SBF-based 23% 66% 81% 87% 92% 94% 0.89

MEF [7] 13% 59% 82% 88% 92% 94% 0.88

SPC [18] 8% 51% 76% 86% 92% - 0.88

CHT [4] 7% 46% 73% 84% 90% 93% 0.86

F-HLSM [12] - - - - - - 0.84

Table 8: Comparison of the average and standard deviation (SD) of different measures between proposed method
and MBM [16] on MESSIDOR dataset

S̄ DC ACC TPF FPF MAD MCC

SBF-based
Average 0.8859 0.9373 0.9987 0.9481 0.0008 3.1598 0.9339

SD 0.0818 0.0509 0.0012 0.0459 0.0010 4.0178 -

MBM [16]
Average 0.8228 0.8950 0.9949 0.9300 0.0035 4.0759 0.8185

SD 0.1384 0.1056 0.0050 0.1239 0.0041 6.0909 -

Table 9: Comparison between SBF-based method and F-HLSM method in terms of percentage images per subjective
category based on the ratio between MAD and estimated OD radius (MESSIDOR dataset)

Categories MAD/rOD SBF-based F-HLSM [12]

Excellent 6 (1/20) 42% 33%

Good 6 (1/10) 76% 68%

Moderate 6 (1/5) 91% 89%

Fair 6 (1/3) 98% 97%

Table 10: The average (standard deviation) of overlapping score (S) for the images of MESSIDOR dataset with
different DR and ME grades.

Diabetic retinopathy Risk of macular edema

All Normal D1 D2 D3 Normal R1 R2

Number 1200 540 153 247 260 971 75 154

S
0.8859 0.8885 0.8865 0.8805 0.8850 0.8853 0.8776 0.8939

(0.0818) (0.0788) (0.0633) (0.0907) (0.0835) (0.0801) (0.0945) (0.0765)

Table 11: The average and standard deviation of different measures on INSPIRE-AVR dataset

S̄ DC ACC TPF FPF MCC MAD/rOD

Average 0.8505 0.9168 0.9958 0.9144 0.0020 0.9163 0.0897

Standard deviation 0.0864 0.0527 0.0030 0.0592 0.0025 0.0526 0.0600
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Vessel segmentation

(approach in [18])

Background estimation

for vessel removal

Input Image

Fig. 2(a)

Preprocessing 

Boundary extraction

(high-resolution SBF)

Boundary smoothing

(robust local regression)

Initial ODC localization

(approach in [24])

Refined ODC localization 

(low-resolution SBF) 

Result

Fig. 6(d)OD segmentation 
Low-resolution 
ODC estimation 

Fig. 2(b) Fig. 2(c)

Fig. 2(d) Fig. 6(a)

Fig. 4(d)

Figure 1: Block diagram of SBF-based for optic disc segmentation.

(a) (b)

(c) (d)

Figure 2: (a) Original image; (b) Vessel segmentation image; (c) The result of vessel pixels elimination; (f) IRG

image with the initial ODC (black cross).

Figure 3: Schematics of the sliding band filter with only 8 support region lines (dashed lines), where a simplified
support region is depicted with the segment lines. The gray region specifies a denser support region using a higher
number of radial lines.
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(a) (b)

(c) (d)

Figure 4: (a) IRG image with the ROI for the low-resolution SBF (square); (b) Low-resolution SBF response on
ROI; (c) 10 highest values of filter response (dots) and mean value coordinates (star); (d) Initial ODC (black cross)
and new ODC candidate (gray cross).

Figure 5: Geometric representation for calculating the number of support region lines.
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(a) (b)

(c) (d)

Figure 6: (a) Maximum value of high-resolution SBF response (star) and the obtained band support points (dots);
(b) Band support points in cropped image round OD; (c) Polar plot of smoothing result (solid line) on the band
support points (dots); (d) OD boundary after smoothing on the original RGB image.

(a) (b) (c)

Figure 7: Samples of OD segmentation in the ONHSD (solid line: results of proposed method, dots: mean of
clinician boundaries). (a) Excellent (δ = 0.5); (b) Good (δ = 1.4); (c) Fair (δ = 2.3).

(a) (b) (c)

Figure 8: Samples of OD segmentation in MESSIDOR dataset (Dashed line: results of proposed method, Solid line:
manually extracted boundaries by experts). (a) S = 0.97; (b) S = 0.86; (c) S = 0.78.
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(a) (b) (c)

Figure 9: Samples of OD segmentation in the presence of exudates, peripapillary atrophy and blurredness;(a) DR :
D3 and ME : R2; (b) DR : D3 and ME : R1; (c) DR : D3 and ME : Normal.

(a) (b) (c) (d)
Figure 10: Samples of OD segmentation in different conditions of contrast and illumination.

(a) (b) (c)
Figure 11: OD segmentation in MESSIDOR dataset where the initial OD detection (black cross) failed with the
low-resolution ODC location (gray cross) and final ODC location (white cross); (a and b) the method failed to
detect and segment the OD (S = 0); (c) the method overcame the initial OD localization failure and segmented the
OD correctly (S = 0.90).

(a) (b) (c)
Figure 12: Samples of OD segmentation in INSPIRE-AVR dataset (Dashed line: results of proposed method, Solid
line: manually extracted boundaries by an expert). (a) S = 0.97; (b) S = 0.86; (c) S = 0.75.
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