

Serious games for learning : a model and a reference
architecture for efficient game development
Citation for published version (APA):
Carvalho, M. B. (2017). Serious games for learning : a model and a reference architecture for efficient game
development. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Industrial Design, University of Geneva].
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/02/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/a62e61d9-6346-49d6-9d7f-f6c80b9410d4

Serious Games for Learning
A model and a reference architecture for eʟcient game development

Mʴʼ˅ʴ B˅ʴˁʷʴ˂ Cʴ˅ˉʴʿʻ˂

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-4203-1

Carvalho, Maira Brandao.
Serious Games for Learning: A model and a reference architecture for eʱcient game
development
Proefschrift Technische Universiteit Eindhoven
Keywords: serious games / serious games development / serious games analysis /
reference architecture / service oriented architecture / software architecture
NUR: 964

Typeset with LATEX
Cover design: Maira Brandao Carvalho
Cover images: © Kuanchong Ng | Dreamstime.com
Printed by proefschriftmaken.nl, The Netherlands

© 2017 – Maira Brandao Carvalho

Serious Games for Learning
A model and a reference architecture for eʟcient game development

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de rector magniʯcus prof.dr.ir. F.P.T. Baaijens,
voor een commissie aangewezen door het College voor Promoties, in het
openbaar te verdedigen op woensdag 1 februari 2017 om 16.00 uur

door

Maira Brandao Carvalho

geboren te Brasilia, Brazilië

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de pro-
motiecommissie is als volgt:

voorzitter: prof. dr. ir. A.C. Brombacher
1e promotor: prof. dr. A. De Gloria (Università Degli Studi di Genova)
2e promotor: prof. dr. G.W.M. Rauterberg
1e copromotor: dr. J. Hu
2e copromotor: dr. F. Bellotti (Università Degli Studi di Genova)
leden: dr. P.H.M. Spronck (Tilburg Universiteit)

prof. dr. B.A.M. Schouten
prof. dr. D. Beijaard

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Thework in this dissertation has been carried out under the auspices of ErasmusMundus
Doctorate Program in Interactive and Cognitive Environments (ICE). This work was
conducted towards a joint double PhD degree aʱliated with the following partner uni-
versities:

UNIVERSITÀ DEGLI STUDI DI GENOVA

TECHNISCHE UNIVERSITEIT EINDHOVEN

Acknowledgments

This PhD Thesis has been developed in the framework of, and according to, the rules
of the Erasmus Mundus Joint Doctorate on Interactive and Cognitive Environments
EMJD ICE [FPA no 2010-0012] with the cooperation of the following Universities:

Alpen-Adria-Universität Klagenfurt – AAU

Queen Mary, University of London – QMUL

Technische Universiteit Eindhoven – TU/e

Università degli Studi di Genova – UNIGE

Universitat Politècnica de Catalunya – UPC

According to ICE regulations, the Italian PhD title has also been awarded by the Uni-
versità degli Studi di Genova.

To my family, whom I love like friends.
To my friends, whom like family I love.
To my love, my family and friend.

Serious Games for Learning
A model and a reference architecture for eʱcient game development

Summary

Digital Serious Games (SGs) are gaining increasing importance as educational and train-
ing tools. However, there is still a long way to make them widely deployed. On the one
hand, balancing fun and educational elements in a SG is not trivial and requires under-
standing how these games can be designed to support eʮective and eʱcient learning. On
the other hand, actual development can be costly and time-consuming, involving large
teams of people from diʮerent backgrounds, who often do not share common vocabu-
laries and work processes.

The objective of this research is, thus, to support the design and development of digital
educational SGs, by helping reduce the costs associated with SG development, while
fulʯlling the game’s educational and entertainment goals.

For that end, both the conceptual and the technical complexities of producing educa-
tional SGs are addressed.

A theoretical analysis is performed to determine how a game realizes its educational and
entertainment objectives through its concrete mechanics. A conceptual model, called
Activity Theory-based Model for Serious Games (ATMSG), is presented. The model
aims to support a systematic and detailed representation of educational SGs, depicting
the ways that game elements are connected to each other throughout the game, and
how these elements contribute to the achievement of the game’s desired pedagogical
goals. The ATMSG ʯlls a gap that previous models, frameworks and methodologies for
SG analysis and design do not cover, namely the understanding of how high-level game
requirements, concerning both educational and entertainment goals, can be concretely
satisʯed in a SG, down to the game mechanics level.

The ATMSGmodel is used as a starting point in the deʯnition of a software reference ar-
chitecture called Service-OrientedReferenceArchitecture for SeriousGames (SORASG),
based on the architectural pattern of Service-Oriented Architecture (SOA). The architec-
ture provides a template solution to support SG software development, deʯning com-
mon elements among diʮerent SGs of diʮerent genres and topics that can be incorpo-
rated in a modular fashion into game architectures. The reference architecture is evalu-
ated in two ways: by employing the Architecture Trade-oʮ Analysis Method (ATAM);
and through the development of an example implementation, demonstrating how game-
independent services can be integrated in existing games in a relatively short time, while
meeting the desired educational and entertainment goals.

The results suggest that the proposedmethodology and tools (i.e., ATMSG identiʯcation
of components, and their implementation and integration as services) can oʮer a valuable
solution to reduce costs and foment quality SG development.

ix

Contents

List of Figures xv

List of Tables xvii

Acronyms xix

A note on style xxi

1 Introduction 1
1.1 Issues in SG design and development . 2
1.2 Research questions . 3
1.3 Thesis outline . 5

2 Literature review 7
2.1 Analysing serious games . 7
2.2 Assessment, feedback and adaptivity in SGs 9

2.2.1 Learning assessment in SGs . 9
2.2.2 Engagement assessment in SGs . 13
2.2.3 Adaptivity . 13

2.3 Activity Theory . 15
2.4 Chapter summary . 17

3 Activity Theory-based Model for Serious Games (ATMSG) 19
3.1 Elaborating the model . 20
3.2 The model . 20
3.3 Taxonomy . 23

3.3.1 Gaming components . 23
3.3.2 Learning components . 24
3.3.3 Instructional components . 26

3.4 Application of the model . 29
3.4.1 ATMSG for serious game analysis 30
3.4.2 ATMSG for serious game design 33
3.4.3 Example analysis . 34

3.5 Evaluation . 37
3.5.1 Participants . 37

xi

Contents

3.5.2 Setup . 37
3.5.3 Qualitative data processing . 39
3.5.4 Results . 40

3.6 Discussion . 42

4 Software development and serious games 45
4.1 Software architectures and reference architectures 45

4.1.1 Types of reference architectures . 46
4.1.2 Design and evaluation . 47

4.2 Reusability in SG design and development 48
4.3 Service-oriented architectures . 49

4.3.1 SOA and SG development . 50
4.3.2 Open Group SOA Reference Architecture 52

5 Service-Oriented Reference Architecture for SGs (SORASG) 55
5.1 Relevance . 55
5.2 Architecture deʯnition process . 57

5.2.1 Requirements deʯnition . 57
5.2.2 Design iterations . 59
5.2.3 Stakeholders involvement . 60
5.2.4 Implementation . 65
5.2.5 Evaluation . 65

5.3 Requirements . 66
5.3.1 Analysis of business domain . 67
5.3.2 Functional requirements . 69
5.3.3 Quality requirements . 72
5.3.4 Constraints . 78

5.4 Reference architecture . 78
5.4.1 Classiʯcation . 79
5.4.2 Architectural approaches . 80
5.4.3 Roles and use cases . 82
5.4.4 Architectural views . 83

5.5 Example implementation . 101
5.6 Evaluation . 107

5.6.1 Functional completeness . 107
5.6.2 Analysis of architectural approaches 108
5.6.3 Risks, non-risks, sensitivity points, and trade-oʮ points 113
5.6.4 Buildability . 115

5.7 Discussion . 116
5.7.1 Quality and applicability of the architecture 116
5.7.2 Connecting ATMSG and SORASG 117

6 Concluding remarks 119
6.1 Research conclusions . 119
6.2 Limitations and future work . 125

xii

Contents

Appendices 129
A Interview summaries 131
Group interviews . 131
Individual interviews . 132

B Online questionnaire 133

C Requirements from stakeholders 139

D Quality attributes deʝnitions 141

E Scenarios 143

Bibliography 147

Acknowledgement 163

Publications 165

Curriculum Vitae 167

xiii

List of Figures

2.1 The CbKST model . 12
2.2 Engeström’s Activity System . 16
2.3 Engeström’s Activity System Network 16
2.4 The hierarchical structure of activity 17

3.1 The Activity Theory-based Model for Serious Games 21
3.2 Sequences of actions form each activity 23
3.3 ATMSG four-step approach . 30
3.4 A puzzle in the game DragonBox Algebra 5+ 34
3.5 DragonBox Algebra 5+ sequence and components 36
3.6 ATMSG diagram ʯlled as expected . 41
3.7 ATMSG diagram ʯlled unexpectedly . 41
3.8 Some participants circled items in taxonomy 42

4.1 Layers of the Open Group SOA Reference Architecture 53
4.2 Service components . 53
4.3 Choreography versus orchestration . 54

5.1 Steps for elaborating the SORASG . 57
5.2 Timeline for elaborating the SORASG 58
5.3 Ranked order of importance of QAs . 64
5.4 Distinction between game personalization and adaptivity 71
5.5 Roles and use cases of the SORASG . 83
5.6 Layered representation of the modules and their dependencies 84
5.7 Structural model of the entities and relationships of the architecture . . . 86
5.8 Components and ports involved in Client authentication and authorization 89
5.9 Components and ports that request and provide access to User data . . . 90
5.10 Components and ports that request and provide Sessions 90
5.11 Components and ports involved in system conʯguration 91
5.12 Components and ports for interaction with the game 92
5.13 Components that interact with the Events Logger component 93
5.14 Components that interact with the User Proʯle component 94
5.15 Components that interact with the Assessment and Adaptation component 95
5.16 The assessment and adaptation cycle . 95
5.17 Components that interact with the Learning Analytics component . . . 96

xv

List of Figures

5.18 Components that interact with the Dashboard component 97
5.19 Initializing a Game session . 99
5.20 During gameplay . 100
5.21 Ending the game . 101
5.22 Lix game puzzle interface . 102
5.23 Components of the altered version of the game Lix 103
5.24 Future implementation of Lix to conform to the SORASG 106

xvi

List of Tables

3.1 Gaming actions . 24
3.2 Gaming tools . 25
3.3 Gaming tools . 26
3.4 Learning actions . 27
3.5 Learning tools . 28
3.6 Learning goals . 28
3.7 Instructional actions . 29
3.8 Instructional tools . 29
3.9 Instructional goals . 30
3.10 Guiding questions to describe activities 31
3.11 Guiding questions to identify actions, tools and goals 33
3.12 Description of activities in DragonBox Algebra 5+ 35
3.13 Description of the implementation of DragonBox Algebra 5+ 38
3.14 Participants by familiarity with games and with serious games (SGs) . . . 39

5.1 Stakeholders consulted, by stage of participation and background 60
5.2 Game goals mentioned by participants in free text questions 62
5.3 Quality attribute ranks . 63
5.4 Quality attribute weights . 64
5.5 Activity Theory-basedModel for SeriousGames (ATMSG) elements grouped

by functional domains . 70
5.6 Sources of quality attributes (QAs) . 76
5.7 SORASG utility tree . 77
5.8 SORASG dimensions and values . 80
5.9 Example of game events recorded . 104
5.10 Functional requirements implemented by the Service-Oriented Refer-

ence Architecture for Serious Games (SORASG) 107

C.1 Functionalities mentioned by participants in free text questions. 139

E.1 Scenarios created by participants . 145

xvii

Acronyms

ADD Attribute Driven Design

AI artiʯcial intelligence

ASR architecturally signiʯcant requirement

ATAM Architecture Trade-oʮ Analysis Method

ATMSG Activity Theory-based Model for Serious Games

CAI computer-assisted instruction

CbKST Competence-based Knowledge Space Theory

COTS commercial oʮ-the-shelf

CSV Comma-Separated Values

ECD evidence-centered assessment design

EEG electroencephalography

GBL game-based learning

GOM Game Object Model

GOM II Game Object Model II

GOP Game Ontology Project

HABS Hierarchical Activity-Based Scenario

HCI human-computer interaction

HTTP Hypertext Transfer Protocol

xix

Acronyms

ITS intelligent tutoring system

KST Knowledge Space Theory

LM-GM Learning Mechanics–Game Mechanics

LMS learning management system

LRS Learning Record Store

MARL Mobile Augmented Reality Learning

MDA Model, Dynamics, Mechanics

OLM open learner model

QA quality attribute

REST Representation State Transfer

RETAIN Relevance, Embedding, Transfer, Adaption, Immersion and Naturalisation

SCORM Sharable Content Object Reference Model

SG serious game

SGM Serious Game Mechanic

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SORASG Service-Oriented Reference Architecture for Serious Games

TEL technology-enhanced education

TiE Travel in Europe

UML Uniʯed Modeling Language

xAPI Experience API

xx

A note on style

In this thesis, I use both “I” and “we” as the ʯrst person pronoun, using the following
rationale.

I use “I” when I present decisions and choices I made and insights that are my own. I
also use “I” when outlining the organization of the text (“In Chapter 2, I discuss the
foundations of the work that has been developed in this thesis…”).

I use “we” to indicate work that was carried out in collaboration with colleagues, par-
ticularly work that has been published as joint research papers. I indicate, as a footnote
in the beginning of a chapter, the reference to published article(s), whenever relevant.
Sometimes I also use “we” in explanatory discourse. In these cases, “we” stands for the
reader and me (“[…] in the corresponding cell […], we can read a more thorough descrip-
tion…”).

xxi

Chapter 1

Introduction

Research indicates that video game playing can enhance performance in a wide variety
of tasks and cognitive skills (Boot, Kramer, Simons, Fabiani, & Gratton, 2008), e.g. al-
location of attentional resources (Green, Li, & Bavelier, 2010), task-switching (Oei &
Patterson, 2014), creativity (Jackson et al., 2012), problem-solving (Shute, Ventura, &
Ke, 2015), and spatial skills (Green & Bavelier, 2007; Shute et al., 2015), in addition to
other non-cognitive skills such as persistence (Shute et al., 2015) and openness to experi-
ences (Ventura, Shute, & Kim, 2012). Such a wide variety of eʮects caused a justiʯable
interest in exploiting games for purposes other than to just entertain.

Such is the interest in the application of games for non-entertainment purposes that they
have earned a special name: serious games (SGs) (Susi, Johannesson, & Backlund, 2007;
Djaouti, Alvarez, Jessel, & Rampnoux, 2011). The term started to gain popularity in
2002, with the publication of a white paper by Sawyer and Rejeski (2002) in which the
authors highlighted the advantages of using knowledge from the entertainment industry
to improve the area of public policy, and the coincidental release of the game “America’s
Army”, considered as the ʯrst commercially successful SG (Djaouti et al., 2011).

Of particular interest in the ʯeld of SG studies is the application of games in education,
or game-based learning (GBL) (Eck, 2006; Blunt, 2009; Bellotti, Berta, & De Gloria,
2010). There is growing evidence that supports the use of games as tools to complement
or enhance traditional education. Games can make learning more engaging and satis-
fying (Eck, 2006; Kickmeier-Rust & Albert, 2012b). They also oʮer the possibility to
expose learners to experiences that would be impossible, unsafe or at least impractical
to reproduce in the real world (Susi et al., 2007; Knight et al., 2010; Oliveira, Coelho,
Guimarães, & Rebelo, 2012). Several studies comparing games to more common teach-
ing methods point to the fact that games can provide an enhanced experience (Bellotti
et al., 2010; Knight et al., 2010; Kebritchi, Hirumi, & Bai, 2010; Guillén-Nieto &
Aleson-Carbonell, 2012; Kickmeier-Rust & Albert, 2012b; Erhel & Jamet, 2013). A
relatively recent meta-analysis of the ʯeld conʯrmed that training with SGs is more eʮec-

1

Chapter 1. Introduction

tive than training with conventional instructional methods, particularly due to improved
retention (Wouters, Nimwegen, Oostendorp, & Spek, 2013).

With many evidences in its favor, but still with a long road ahead towards widespread
adoption, the ʯeld of SG design and development oʮers a promising avenue for improved
application of technology for education.

Before continuing, a clariʯcation regarding terminology is needed. Among the many
possible applications of SGs, arguably the use of games for education occupies the most
prominent place. In fact, the term serious game is often used to refer speciʯcally to the
class of digital games intentionally created for teaching some skills, knowledge, compe-
tence, or promoting a speciʯc attitude towards a topic, as an instructional tool in itself,
or as part of a larger curriculum of activities. To conform to this understanding, in
this thesis I use the term serious game (SG) to refer speciʯcally to digital games created
for educational purposes. To avoid confusion, when referring to other classes of SGs
(e.g. persuasive games for marketing or advertising (Bogost, 2007), games for health care,
games for scientiʯc discovery), I follow the terminology proposed by R. Schmidt, Em-
merich, and Schmidt (2015) and use the term applied games instead.

1.1 Issues in SG design and development

Despite the increasing interest in SGs (Cheng, Chen, Chu, & Chen, 2015; Riedel, Feng,
Hauge, Hansen, & Tasuya, 2015), the deployment of SGs in real educational settings
is still low. In the industry, companies appear not completely convinced of the ben-
eʯts of SGs for corporate training, possibly due to a risk-averse attitude towards new
technologies (Azadegan, Riedel, & Baalsrud Hauge, 2012), or due to the perception that
using such tools can be costly (Batko, 2016). In schools, barriers to adoption include not
only negative perceptions towards the educational value of games but also the diʱculty
of providing good enough games to keep students interested (Egenfeldt-Nielsen, 2006;
Rice, 2007).

Indeed, developing quality games for learning can be a complex, challenging and costly
process (Boyle et al., 2016), from both a conceptual and a technical standpoints.

SG design is challenging because the principles of learning and gameplay are diʮerent
and frequently conʰicting (Arnab et al., 2015). The term serious game itself evokes this
conʰict, since, by deʯnition, play is a voluntary and unproductive activity that brings joy
and amusement (Huizinga, 1949; Caillois, 1961); thus, trying to combine seriousness
with play brings not only technical, but especially conceptual concerns. A particular
challenge is linking pedagogical practices to concrete gaming aspects that can realize those
practices (Arnab et al., 2015). Communication between the multidisciplinary teams that
are involved in the design and development of SGs can also be problematic, due to a lack
of common vocabularies that facilitate cooperation (Marne,Wisdom, Huynh-Kim-Bang,
& Labat, 2012).

2

1.2. Research questions

Technically, game development is also a daunting task, for which there is little guidance
from the software architectural and development aspects (Scacchi & Cooper, 2015). Al-
though there are many libraries and game engines for commercial game development,
this environment is very heterogeneous and can present challenges in deciding how to
best combine components and sub-system architectures (Scacchi & Cooper, 2015).

Furthermore, due to their speciʯc learning requirements, SGs are typically conceived
as one-of-a-kind products, fully tailored to the clients’ requirements. As a consequence,
these games have low reusability of the ʯnal product and of its components (Stanescu
et al., 2014). Coupled with high production costs and challenging and time-consuming
production processes, it is not diʱcult to see why adoption is still low.

1.2 Research questions

The current state of the SG development ʯeld causes a high barrier to SG adoption by
schools and the industry. Development costs are high, but there is no straightforward
way to enable an economy of scale in SG development because each game has unique
entertainment and educational requirements – and trying to force a one-size-ʯts-all solu-
tion can seriously compromise the quality of the SG. Which bring us to the central issue
of this thesis, formulated in the following problem statement (PS):

PS How can we reduce costs associated with SG development, while fulʝlling the game’s
educational and entertainment goals?

The term “cost”, in this context, refers to the eʮort required to develop or maintain
software. It can be understood as hours of work per person and/or amount of money
required to carry out the project (Heemstra, 1992).

I deʯne three research questions (RQ) to help solve that problem.

RQ1 How does a game realize its educational and entertainment objectives through its con-
crete mechanics?

This question aims to reconcile educational theory with game development, helping us
understand how concrete components of a SG can be deʯned, used and combined to sup-
port eʱcient learning. In this way, the proposed technological solutions for reducing
development costs would still reʰect the theoretical knowledge that has been accumu-
lated about the subject so far.

To answer this question, I present the investigation of how a game realizes its educational
and entertainment objectives through its mechanics, to uncover how the practice of game

3

Chapter 1. Introduction

and SG design is linked to the theories behind it. It is an eʮort to investigate SGs from
the inside, classifying their inner components to ʯnd out how they relate to each other
and to the educational and entertainment objectives of the game.

The result of this investigation is a new model that connects a game’s educational and
entertainment high-level objectives with low-level in-game components, and links indi-
vidual gaming and pedagogical components as the game unfolds. The model I propose,
named Activity Theory-based Model for Serious Games (ATMSG), is based on concepts
of activity theory, a line of research in the social sciences that studies diʮerent forms of
human practices and development processes (Jonassen & Rohrer-Murphy, 1999). Using
activity theory allows us to consider the game not as an isolated tool, but as part of
a complex system that also includes human actors (players or learners, instructors and
game designers) and the motives driving their interactions with the game. The ATMSG
model includes a SG components taxonomy, which is based on established taxonomies
of learning, of instructional design, and of game components.

RQ2 To which extent can SG development be simpliʝed by reusing existing technological
solutions, even the ones that were not created speciʝcally for SGs?

TheATMSGmodel provides a starting point to try to identify common elements among
diʮerent SGs of diʮerent genres and topics. Could these elements be incorporated in a
modular fashion into game architectures, thus allowing developers to reuse components?

The rationale for suggesting the reuse of technology is not only to speed up game de-
velopment, but also to provide the SG developer with access to quality and up-to-date
components, created and maintained by experts in the ʯeld. These components may ap-
ply particular theories or optimizations that are too specialized to develop from scratch.
The SG developer may thus better focus on speciʯc features and pedagogical aspects of
the game itself.

RQ3 How can SG developers incorporate reusable components into their software develop-
ment projects?

Assuming that it is possible to identify components that can be reused across diʮerent
games, SG designers and developers would still need guidance on how to incorporate
them into their projects. The answer to this challenge is the proposition of a software
reference architecture called Service-Oriented Reference Architecture for Serious Games
(SORASG), based on the Service-Oriented Architecture (SOA) pattern. A reference ar-
chitecture is a template solution for a system architecture in a particular domain. There
are examples of reference architectures in several domains, ranging from purely technical
industry-wide architectures (OATH, 2007) to applied systems such as adaptive hyperme-
dia (Wu, 2002) and simulations (Kuhl, Weatherly, & Dahmann, 1999); however, the
examples in the ʯeld of SG software development are scarce. The SORASG ʯlls this
gap.

4

1.3. Thesis outline

The SORASG has an additional goal of promoting the use of open standards and tech-
nology-independent solutions in the development of SGs. The use of open standards
facilitates competition among suppliers by reducing barriers to entering the market,
which in turn encourages the spread of the technology and stimulates further innova-
tion (Maxwell, 2006). The SG industry is still relatively new; consequently, there is still
room for more and better solutions to support eʮective learning through games.

In the literature on software engineering, business goals are seen as the expression of
the reasons that an organization has for developing a system. Business goals establish
the connection between the software artifact and an organization’s missions and ambi-
tions. Often such concerns are related to making proʯts, but they can also refer to other
goals such as increasing number of customers, enhancing customer satisfaction, reduc-
ing operation costs, and so on. It is important to have clearly deʯned business goals at
the beginning of any software-related project, as these goals establish a starting point for
deʯning requirements and a clear reference to measure the results (Bass, Clements, &
Kazman, 2012).

Thus, I summarize the three main business goals (BG) guiding the elaboration of the
SORASG as follows:

BG1 Reduce the costs associated with the development of SGs, while maintain-
ing the quality of the games developed.

BG2 Allow the reuse of existing technological solutions, even the ones that were
not created speciʝcally for SGs.

BG3 Promote the use of open standards and technology-independent solutions.

1.3 Thesis outline

In this introduction, I give a brief overview of the current state of the use of games for
educational purposes. I describe one of the main issues that aʮects the adoption of SGs
by educators and by the industry: the high complexity (and consequently high cost) of
SG development. Given this scenario, I outline my research objectives in the form of
three research questions that I answer throughout the thesis.

In Chapter 2, I discuss the foundations of the work that has been developed in this thesis.
I review existing models, frameworks, and methodologies for the analysis and design
of SGs and explain why they do not answer RQ1. Then, I discuss the importance of
assessment, feedback, and adaptation in the context of SGs. Subsequently, I present the
fundamental ideas of activity theory, a line of research in the social sciences that served
as basis for the theoretical model proposed in this work.

In Chapter 3, I describe in detail my response to RQ1: a model for SG analysis and design
calledActivity Theory-basedModel for SeriousGames (ATMSG), and a taxonomy of SG

5

Chapter 1. Introduction

elements. The ATMSG model connects a game’s educational and entertainment high-
level objectives with low-level in-game components on the one hand, and links individual
gaming and pedagogical components as the game unfolds on the other.

Chapter 4 moves to technical considerations on SG software development. I focus, in
particular, on the role of a game’s software architecture in the development process. I
introduce concepts of software engineering that are necessary to understand the reference
architecture proposed later in the thesis.

Chapter 5 delineates the Service-Oriented Reference Architecture for Serious Games
(SORASG), which is a reference architecture for SGs proposed as my answer to RQ3. I
also answer RQ2 in Subsection 5.3.1, showing how the ATMSG model serves as the ba-
sis for identifying common elements among diʮerent SGs of diʮerent genres and topics
that can be incorporated by game developers as pieces that can be reused. I evaluate the
SORASG against its objectives and discuss its quality and applicability. Furthermore, I
discuss how the twomain outcomes of this thesis – the ATMSGmodel and the SORASG
– relate to each other.

In Chapter 6, I present my concluding remarks. I summarize the work and implications
of the research in relation to the problem statement and research questions. Finally, I
oʮer a brief discussion of the limitations of the work and pointers for future research on
the topic.

6

Chapter 2

Literature review

This chapter discusses the foundations of the work that has been developed in this thesis.

First of all, I discuss models, frameworks, and methodologies that have been created so
far as attempts to analyze educational serious games (SGs). I also explain why the existing
works do not provide a satisfactory answer to RQ1.

Subsequently, I discuss the role of assessment, adaptation and feedback in SGs, high-
lighting their importance in the educational eʮectiveness of games for education and
why they occupy an important role in answering RQ2.

Finally, I present the fundamental ideas of activity theory, a line of research in the social
sciences that provided the basis for the investigation on how concrete components of a
SG are deʯned, used and combined to support eʱcient learning, resulting in the model
presented in Chapter 3.

2.1 Analysing serious games

In an attempt to uncover the reasons behind the success or failures of educational SGs,
researchers have developed models, frameworks and methodologies to investigate and
analyze games (Amory, 2007; Arnab et al., 2015; Bellotti, Berta, De Gloria, & Pri-
mavera, 2010; Freitas & Oliver, 2006; Gunter, Kenny, & Vick, 2006; Staalduinen &
Freitas, 2011). The most prominent works were examined, in order to evaluate how
well they could support the understanding of the deeper relationships between diʮerent
components in educational SGs.
Parts of this chapter were published previously in Carvalho, Bellotti, Berta, Gloria, Sedano, et al. (2015).

7

Chapter 2. Literature review

The Model, Dynamics, Mechanics (MDA) framework (Hunicke, Leblanc, & Zubek,
2004) proposes three perspectives from which to understand and design games: the ac-
tual implementation of the game (Mechanics), the overarching design goals (Dynamics)
and the resulting player’s experience (Aesthetics). MDA is aimed at games in general;
consequently, it does not explicitly support reasoning about the educational elements
in a SG. Salen and Zimmerman (2004) use the concept of systems and elements (ob-
jects, attributes, relationships and environment) and deʯne three framing levels for gam-
ing systems (formal, experiential and cultural) to help game designers focus on speciʯc
problems without losing sight of the whole. The Hierarchical Activity-Based Scenario
(HABS) framework (Marsh, 2006; Marsh, 2010) also examines games using a layered
perspective, but from the viewpoint of the game’s narrative and players’ experiences and
behaviors. HABS uses activity theory to help designers in deʯning levels of the user
experience when modeling game scenarios and narratives. Marsh and Nardi (2014) later
expanded the framework to account for user engagement and entertainment including
interactions that extend beyond the game world. HABS provides valuable support for
developing a high-level set of ideas and concepts for gameplay (Marsh, 2010). Nonethe-
less, it does not account explicitly for the interaction between gaming and learning, nor
does it represent speciʯc elements that compose the SG.

While MDA and HABS deal with the relationships between diʮerent layers of imple-
mentation of the game, other frameworks and models focus on the description of low-
level components. Koster (2005a) and Bura (2006) attempted to deʯne a compact visual
language for communicating underlying principles of games. Inspired by their work,
Djaouti, Alvarez, Jessel, and Methel (2007) created a diagram language to deconstruct
formally video games into “game bricks”. The frameworkMachinations (Adams &Dor-
mans, 2012) describes a dynamic graphical notation representing games as rule-based sys-
tems (Dormans, 2009). The Game Ontology Project (GOP) (Zagal, Mateas, Fernández-
Vara, Hochhalter, & Lichti, 2005) deʯnes a hierarchical representation of the important
structural elements of games in an attempt to establish a common vocabulary to the ʯeld.
All these works complement each other and contribute to the eʮort of creating formal,
precise, and scalable descriptions of games and gameplay (Sicart, 2008). However, they
are limited to describing games in general, without incorporating educational elements.

Some of the models we reviewed speciʯcally look at the educational value of SGs. The
Four-Dimensional Framework (Freitas & Oliver, 2006) postulates four dimensions of
learning processes that need to be considered: learner modeling and proʯling, the role
of pedagogic approaches for supporting learning, the representation of the game, and the
context in which learning takes place. The Relevance, Embedding, Transfer, Adaption,
Immersion and Naturalisation (RETAIN) model (Gunter et al., 2006) aims at determin-
ing whether a SG is appropriate for educational purposes, how well the pedagogical
content is embedded in the game’s narrative and how it promotes knowledge transfer.
The Experiential Gaming Model proposed by Kiili (2005) assigns central importance to
linking experiential learning and gameplay theory, since this connection facilitates the
ʰow experience and has positive impact on learning. The Game-based Learning Frame-
work (Staalduinen & Freitas, 2011) also focuses on immersive learning experiences, with

8

2.2. Assessment, feedback and adaptivity in SGs

a structure that resembles Kolb’s experiential learning cycle (Kolb, 1984). These give a
general understanding of a SG, facilitate the comparison with other similar games, and
possibly help us determine how well the SG ʯts an educator’s needs. The main limita-
tion of the frameworks above is that none of them investigates the actual elements of the
game, but rather focused on high-level aspects.

However, there are works that investigate SGs in a more ʯne-grainedmanner. The Game
Object Model II (GOM II) (Amory, 2007), an updated version of the original GOM
model (Amory, Naicker, Vincent, & Adams, 1999), describes the relationships between
game and pedagogical elements using the metaphor of interfaces in the Object Oriented
Programming paradigm: abstract interfaces represent the theoretical constructs and the
pedagogical goals of the game; concrete interfaces represent the design elements that
realize the goals. However, GOM II does not represent how the relationship between
game elements develops over time, and its diagram can become complex and diʱcult to
understand. The Learning Mechanics–Game Mechanics (LM-GM) model (Arnab et al.,
2015) provides a graphical representation of the game ʰow as the basis for establishing
the relationships between the components that translate pedagogical practices (“learning
mechanics”) into concrete game mechanics. The authors call “Serious Game Mechanics
(SGMs)” the identiʯable abstract patterns that can be replicated across SGs. LM-GM
features a clear graphical representation of the game ʰow and a predeʯned list of elements
to support the analysis. A limitation of LM-GM is that it does not expose the connection
between concrete mechanics and the high-level educational objectives that the game is
supposed to attain.

Still with the objective of supporting SG design, some authors compiled libraries of com-
monly reoccurring patterns (Kiili, 2010; Games Enhanced Learning, 2010; Marne et al.,
2012). However, these libraries neither oʮer the classiʯcation of individual components
nor take into account the relationship between them.

In summary, after examining the works mentioned above, the conclusion is that they
provide interpretations of the possibilities and limitations oʮered by SGs and explain,
at a high-level, why games are motivating tools for learning. However, they do not fully
answer the question of how the concrete components of the game have to be structured
to support the high-level learning and entertainment goals. This question is addressed
in Chapter 3.

2.2 Assessment, feedback and adaptivity in SGs

2.2.1 Learning assessment in SGs

Assessment in the education ʯeld, in a broad sense, is understood as a measurement of
how much a formal educational program or institution has an impact on its students’
learning (Terenzini, 1989). However, to understand the real nature of the assessment it

9

Chapter 2. Literature review

is necessary to consider who is being assessed (an individual or a group), what is being
assessed (knowledge, skills, attitudes and values, or behaviors), and with what purpose
(enhancing teaching or accountability) (Terenzini, 1989).

As any empirical measurement, assessment in learning has two important properties:
reliability and validity. Reliability refers to the amount of error in a test, or the extent
that the assessment yields the same results on repeated trials; validity concerns the ex-
tent that the assessment measures what it is intended to measure (Carmines & Zeller,
1979). There is no shortage of policies, practices and theories trying to help educators
in achieving reliability and validity in assessment (Gardner, 2012b).

Educational researchers typically distinguish between two main types of assessment, de-
pending on their timing and main purpose: formative and summative assessment (Gard-
ner, 2012b). Summative assessment refers to assessments at the end of units or the end of
a course with the purpose of attributing grades, issuing certiʯcations, evaluating progress
or assessing the eʮectiveness of a curriculum; formative assessment, conversely, refers to
evaluation of a student’s learning throughout the learning process as a tool in teaching
(Harlen & James, 1997; Wiliam & Black, 1996). These two concepts are discussed in
more detail in the context of SGs below.

Summative assessment in SGs

To support the adoption of SGs in education, there must be a manner of objectively
establishing a student’s progress within the context of the given objectives of the game
(Loh, 2012; Bellotti, Kapralos, Lee, Moreno-Ger, & Berta, 2013). For this reason, per-
forming summative assessment in SGs occupies an important role in research on game-
based learning (GBL). It gives us tools to review games, evaluate their eʮectiveness and
eventually improve them, particularly when aggregating results from groups of students
to extract an assessment of the SG itself (and not of the learner).

Summative assessment of SGs involves evaluating, at the end of one or more gaming
sessions, how the game supported the player in achieving the game’s educational goals.
One typical way of doing this is establishing the students’ knowledge on a certain topic
with the use of external assessment tools (tests, questionnaires, debrieʯng interviews,
knowledge maps, causal diagrams or other types of teacher assessment) (Ifenthaler, Es-
eryel, & Ge, 2012; Bellotti et al., 2013). These tools can be applied as pre- and post-tests
before and after playing the SG, to identify how the student progressed in his or her un-
derstanding of the topic (Bellotti et al., 2013). In some cases, the performance of students
instructed with the help of a SG is compared with an alternative instructional technique
(e.g. traditional expository class, instructional video, reading a text) to try to establish
which method gives better results. Such setup is not without problems, particularly be-
cause of diʱculties in achieving a truly randomized setting; furthermore, controlling for
the inʰuence of the pre-test itself in the post-test results is practically impossible (Loh,
2012; Bellotti et al., 2013).

10

2.2. Assessment, feedback and adaptivity in SGs

Some researchers have argued for the use of in-game indicators for making inferences
about what the student can do at any point in the game (Ifenthaler et al., 2012; Shute &
Ke, 2012; Loh, 2012). However, particularly when using these indicators for summative
purposes, there is the issue of the validity and generalizability of the assessment (Mislevy,
Behrens, Dicerbo, Frezzo, & West, 2012): how can we know if the student learned
anything else than to succeed in the game? In GBL, SG designers need to be aware that
their decisions have a great impact on the reliability and validity of the assessment that
can be extracted from gameplay (Mislevy et al., 2012).

Formative assessment and feedback in SGs

As mentioned previously, the main diʮerence between formative and summative assess-
ment is theirmain purpose. Formative assessment is a tool to support learning, as opposed
to simply being an assessment of learning (Gardner, 2012a). It can provide the instructor
with information that can help plan the next steps, to achieve the best results. Moreover,
it has a role in shaping and improving the student’s competence as a self-regulated learner,
who is able to set goals, deʯne strategies to achieve those goals, manage resources and
react to feedback, instead of relying simply on the ineʱcient process of trial-and-error
learning (Sadler, 1989; Nicol & Macfarlane-Dick, 2006).

A crucial component of formative assessment is feedback (Wiliam& Black, 1996). While
there is compelling evidence on the positive eʮects of formative feedback in learning in
general (Leahy & Wiliam, 2012), it is widely accepted that the quality of the feedback is
critical in producing those eʮects (Sadler, 1998; Shute, 2008). Good feedback is not only
technically accurate, contextualized and timely (close to the act of learning production),
but it also presents explicitly what is expected of the student; it facilitates self-reʰection;
it is motivating; and it provides opportunities to close the gap between current and de-
sired performance (Sadler, 1998; Yorke, 2001; Nicol & Macfarlane-Dick, 2006). Also,
students should be trained in interpreting and using the feedback to improve their work
(Sadler, 1998). At the department of Industrial Design in the Eindhoven University of
Technology, formative assessment is actively practiced with extensive feedback and ex-
plicit self-reʰection, which has been observed as being eʮective (Hummels, Vinke, Frens,
& Hu, 2011).

Embedding formative assessment in SGs is not straightforward. Simply incorporating
traditional assessment (for example questions and answers) in games is highly disturbing
to players’ engagement (Prensky, 2001; Bente & Breuer, 2009). To avoid interrupting
immersion and ʰow, and to reduce test anxiety, researchers have argued in favor of stealth
assessment, that is, a type of assessment that is made invisible in the learning environ-
ment (Shute, Ventura, Bauer, & Zapata-Rivera, 2009; Shute & Ke, 2012; Shute & Kim,
2013). This is made possible by the application of what is called evidence-centered as-
sessment design (ECD), in which a learner’s performance data is continuously collected
from the game, and machine-based reasoning techniques are used to make inferences
about the learner’s competences across a network of competences and skills (Mislevy,
Steinberg, & Almond, 2003; Shute et al., 2009; Shute & Kim, 2013), resulting in a

11

Chapter 2. Literature review

learner model. It is argued that stealth assessment and ECD are able to assess not only
content-speciʯc learning but also general abilities, dispositions and beliefs, thus being
more adequate to assess the so-called 21st century competences (problem-solving skills,
persistence, creativity, etc.) than traditional assessment methods (Shute & Ke, 2012).

One approach that has been employed to implement in-game assessment using ECD
in SGs is the use of the Competence-based Knowledge Space Theory (CbKST). CbKST
comes from the non-numerical and non-linear approach of the Knowledge Space Theory
(KST) (Kickmeier-Rust &Albert, 2012a). Its main idea is to assume a ʯnite set of roughly
atomic competences – that is, well-deʯned, small scale descriptions of aptitude, ability,
knowledge, or skill – and a prerequisite relation between those competences, which de-
ʯnes the competence model of the domain. The structural model of the theory focuses
on unobservable competences, making hypotheses about the brain’s black box. By uti-
lizing interpretation and representation functions, these unobservable competences (or,
in other words, what is “in the brain”) are mapped to evidence or indicators, relevant for
a given domain. Such indicators can be all sorts of performance or behavior, and not only
test items. The interpretation function (p, in Figure 2.1) assigns a set of competences re-
quired to solve a task to each of the indicators. Conversely, by utilizing a representation
function (q), a set of indicators is assigned to each competence state. This assignment in-
duces a performance structure, which is the collection of all possible performance states.
Due to these functions, unobservable competences and observable performance can be
linked in a broad form where no one-to-one correspondence is required. This means
that an entire series of indicators can be linked to underlying competence states.

Figure 2.1: The CbKST model makes inferences about the brain’s competence state using observable
evidence (Kickmeier-Rust & Albert, 2012a).

As is the case with assessment, incorporating feedback in SGs also needs to be done
in a way that does not disrupt gameplay or prevent ʰow and engagement (Dunwell &
Freitas, 2011). Designing feedback in SGs implies deciding not only the content and the
timing, but also the format and the type that is adequate to the learning requirements,
the learner’s characteristics and the learning context (Dunwell & Freitas, 2011).

Another way of providing feedback to learners in SGs is the use of open learner models
(OLMs), that is, making the learner model available to the learner himself or herself, to
support and encourage metacognition and self-reʰection on learning (Bull & Kay, 2007;

12

2.2. Assessment, feedback and adaptivity in SGs

Bull & Kay, 2013; Bull et al., 2013). In this case, choosing the format of presentation
of the model to the learner is important to enable the learner to understand and use the
information in his or her self-reʰection on learning (Law, Grundy, Cain, & Vasa, 2015).

In addition to explicit formative feedback as described above, SGs can also implement
a type of implicit feedback, in which the game world adapts to the learner’s actions.
Adaptivity as a response to in-game assessment is further discussed at the end of this
chapter.

2.2.2 Engagement assessment in SGs

SGs exist in a balance between learning and entertainment objectives. Consequently,
learning is not the only relevant aspect in SG assessment. The extent to which a game
can engage and motivate the learner is also important, especially because engagement is
positively associated with learning outcomes (Carini, Kuh, & Klein, 2006).

Questionnaires have been developed to assess ʰow, engagement, motivation and social
presence in games (Sweetser &Wyeth, 2005; W. IJsselsteijn, De Kort, Poels, Jurgelionis,
& Bellotti, 2007; Jennett et al., 2008; Brockmyer et al., 2009; Wiebe, Lamb, Hardy, &
Sharek, 2014) and in SGs (Fu, Su, & Yu, 2009). These questionnaires are not appropri-
ate to track variations throughout the game, as asking questions during the game would
likely disrupt the player; furthermore, these questionnaires rely on the player’s recollec-
tions of the experience and, as such, are limited in their ability to pinpoint particular
responses (Kivikangas, Nacke, & Ravaja, 2011).

To overcome the limitations of self-reports to assess engagement in games and SGs, re-
searchers started to measure physiological signals such as heart rate, muscle activity, elec-
trodermal activity and measurements of electrical activity along the scalp (or electroen-
cephalography (EEG)) to try to assess players’ gaming experiences and aʮective state
(e.g. engagement, frustration, boredom) (Mandryk, Inkpen, & Calvert, 2006; Kivikan-
gas et al., 2011). Research on the topic is still ongoing, but some researchers have ex-
pressed their hopes that real-time monitoring of players’ aʮective state could soon be-
come a common feature in computing systems, including games and SGs (Berta, Bellotti,
De Gloria, Pranantha, & Schatten, 2013). This type of assessment could be used to en-
able games and SGs to respond accordingly, in an attempt to optimize experience (Tijs,
Brokken, & IJsselsteijn, 2008) and learning (Sabourin & Lester, 2014; Bosch et al., 2015;
Shute et al., 2015).

2.2.3 Adaptivity

Adaptivity in general refers to the ability or tendency to change one’s own characteristics
to ʯt a purpose or situation. In computer science, it refers to systems that can adapt their
behavior based on information about the user or the environment (Ahn et al., 2014).

13

Chapter 2. Literature review

It has been shown that average students tutored one-to-one, with techniques that en-
sure mastery of one topic before moving to the next, perform much better than average
students instructed with conventional methods (Bloom, 1984). In technology-enhanced
education (TEL) research, the search for methods to automatically adapt instruction to
the individual needs of the student was a major driver for research on computer-assisted
instruction (CAI) and intelligent tutoring systems (ITS), in an eʮort that continues to
this date (Haynes, Underwood, Pokorny, & Spinrad, 2014). The objective is to try to
make group instruction (e.g. traditional classrooms) achieve the same eʮects as individual
tutoring.

In a similar fashion, delivering the right amount of challenge according to each user’s
skills is crucial to creating enjoyment in games, so that the game is neither too easy
(causing boredom) nor too hard (causing frustration) (Koster, 2005b; Schell, 2008). In
other words, being able to adapt to the player is a necessary condition for the success
of the game. Techniques to create balanced games vary from static ones that have been
used in video games for decades (e.g. increasing diʱculty with each success, allowing the
player to select the desired diʱculty at the start or during the game or provide layers
of challenges (Schell, 2008)) to new artiʯcial intelligence (AI) techniques that allow the
game to learn during a gaming session and adapt to the player’s changing tactics (Spronck,
Ponsen, Sprinkhuizen-Kuyper, & Postma, 2006).

Since SGs incorporate both educational and entertainment features, adaptivity in the
context of SGs can refer to adaptive behavior not only to the user’s game performance
(as in entertainment games), but also to the user’s learning progress (Steiner, Kickmeier-
Rust, Mattheiss, Göbel, & Albert, 2012).

(Kickmeier-Rust et al., 2007) propose the distinction between macroadaptivity and mi-
croadaptivity in educational games. The authors compare adaptivity at a macro level
with existing approaches in adaptive e-Learning and adaptive hypermedia (Brusilovsky
& Peylo, 2003), in which the system must select suitable learning objects to present to
the learner at any given time. In educational games, this level of adaptivity would be
comparable to providing branched storylines and personalized storytelling. Microadap-
tivity, in its turn, refers to adaptive presentation and problem-solving support within a
learning object (Kickmeier-Rust et al., 2007; Kickmeier-Rust & Albert, 2007).

Adaptivity, particularly to educational aspects, seems to be an important factor in the ef-
fectiveness of SGs (Kickmeier-Rust, Marte, Linek, Lalonde, & Albert, 2008; Kickmeier-
Rust & Albert, 2012b). Kickmeier-Rust and Albert (2012b) performed a (yet unpub-
lished) meta-review of more than 300 scientiʯc articles on the educational eʱcacy of
computer games; the review indicated that the vast majority (90%) of the games that
reported non-trivial educational results displayed some form of educational adaptation
or personalization.

Typically, a game or SG already has at least one type of player assessment that can be suc-
cessfully used to perform in-game adaptations: the score (Oostendorp, Spek, & Linssen,
2014). However, research on stealth assessment can arguably provide even better mod-

14

2.3. Activity Theory

els of player’s performance, thus enabling more accurate and useful adaptations in SGs
(Adcock & Eck, 2012; Ifenthaler et al., 2012).

2.3 Activity Theory

To help us relate the structural elements of a SG – including assessment, feedback and
adaptivity – to its learning and entertainment objectives, we resorted to the theoretical
framework provided by activity theory.

Activity theory is the line of research initiated in the 1920s and 1930s by a group of
Russian psychologists, notably Vygotsky and Leont’ev (Engeström, 1987). It studies
diʮerent forms of human practices and development processes, providing a model of
human activities in their social and organizational context (Hasan, 1999). Despite the
popularity of activity theory in the ʯelds of learning and instructional design, only a
few studies apply the most prominent elements of the theory to the study of games
and SGs directly (Marsh, 2006; Zaphiris, Wilson, & Ang, 2010; Peachey, 2010; Islas
Sedano, 2012). Related concepts, such as that of Zone of Proximal Development, by
Vygotsky, are more commonly applied in SG studies, often combined with the Flow
theory (Csikszentmihalyi, 1990).

In activity theory, the basic unit of analysis of all human endeavors is activity: a pur-
poseful interaction between subject and object, in a process in which mutual transforma-
tions are accomplished. This interaction is usually mediated by physical tools (knives,
hammers, computers) or mental tools (notations, maps), which shape the way humans
interact with the world (Kaptelinin & Nardi, 2006).

Engeström (1987) extended the original model of activity proposed by Leont’ev (1978),
describing the activity as a collective phenomenon. The model, called Activity System,
is depicted as a triangle (Figure 2.2) in which the sides represent the main components of
the system (subject–object–community) and the corners represent themediation artifacts
to those relationships (tools–social rules–labor division). The activity is directed at the
object and results in an outcome. Years later, Engeström (2001) extended the model
to represent multiple perspectives and dialogs between several interacting systems, and
how the interaction between the objects of diʮerent activities can result in a shared,
jointly constructed new object (Figure 2.3). This second model is called Activity System
Network (Engeström, 2001; Guy, 2005).

According to activity theory, an activity happens simultaneously at three levels, in a
hierarchical structure (Figure 2.4) (Leont’ev, 1978). At the topmost level, the activity is
directed at a motive; in other words, the motive is the object that the subject ultimately
wants or needs to attain. Typically, the activity is realized by a sequence of actions,
each of which may not be directly related to the motive (Kaptelinin & Nardi, 2006;
Devane & Squire, 2012). Each action is also directed at an object: the goal. Subjects
are typically aware of their goals, but maybe not consciously aware of their motives.

15

Chapter 2. Literature review

Figure 2.2: The Activity System (Engeström, 1987)

Figure 2.3: The Activity System Network (Engeström, 2001)

16

2.4. Chapter summary

On its turn, an action is also composed of lower-level units, called operations, which are
performed unconsciously, according to given conditions. Understanding the breakdown
of activities in diʮerent levels can provide a valuable tool for modeling learning, training
and decision-making, particularly in the context of human interaction with complex
systems (Rauterberg & Felix, 1996).

Figure 2.4: The hierarchical structure of activity, or levels of activity, and their transformations, as defined
in activity theory (Kuutti, 1995)

The activity is not a static entity. Constant transformations happen between the levels,
according to changes in the environment or the subject’s motivations or skills (Kuutti,
1995; Peachey, 2010). Furthermore, it is possible to realize the same activity by diʮerent
sets of actions and operations, and the same actions can be part of diʮerent activities
simultaneously (Hasan, 1999).

2.4 Chapter summary

From the analysis of the related work, it was identiʯed that existing models, methodolo-
gies and frameworks for SGs analysis and design are either focused only on high-level
aspects of SGs, or they oʮer a way to investigate the inner components of the game
but without providing a clear connection between the concrete mechanics and the high-
level objectives of the game. There is a gap between the theoretical understanding of
what constitutes an eʮective SG and the actual, practical way in which this is achieved at
a low level. In other words, current literature on the topic does not provide a satisfactory
answer to RQ1.

Formative assessment, feedback, and adaptivity are three important and closely related
topics in educational research, including GBL, due to their crucial role in the educational
eʮectiveness of SGs. As such, they deserve special consideration in this work. Forma-
tive assessment of the learner, associated with the provision of quality feedback, is seen
as one of the most eʮective tools to support learning. Current developments point to
the use of stealth assessment and implicit feedback in the form of adaptivity and/or per-
sonalization to improve the eʮectiveness of SGs. These concepts occupy an important

17

Chapter 2. Literature review

place as functional requirements in the development of the software architecture of SGs,
which is presented in Chapter 5.

To be able to reconcile educational theory – including the role of assessment, feedback
and adaptivity in learning – and game development, I have used activity theory as the un-
derlying theoretical framework of the Activity Theory-based Model for Serious Games
(ATMSG) (Chapter 3). Activity theory provides a hierarchical and comprehensive un-
derstanding of human practices and development processes within the social context.
Concepts of activity theory have been used successfully before to support the design of
educational games (Paraskeva, Mysirlaki, & Papagianni, 2010; Marsh, 2010), serving as
evidence of their applicability in the SG domain.

18

Chapter 3

Activity Theory-based Model for
Serious Games (ATMSG)

This chapter presents a model for serious game (SG) analysis and design called Activ-
ity Theory-based Model for Serious Games (ATMSG) and a taxonomy of SG elements.
The ATMSG is one of the main contributions of this thesis, and my response to RQ1
(Section 1.2).

The ATMSG model connects a game’s educational and entertainment high-level objec-
tives with low-level in-game components on one hand, and links individual gaming and
pedagogical components as the game unfolds on the other. It can be used mainly for SG
analysis, but may also be used as a tool for the conceptual design of SGs. Being applied
at early stages of prototyping, the model helps SG designers in assessing if the envisioned
game structure is able to support the desired pedagogical goals.

In this work, I address this issue by proposing a modiʯcation of the LearningMechanics–
Game Mechanics (LM-GM) model, expanding it to incorporate high-level aspects of the
SG into the model, using concepts of activity theory.

The ATMSGmodel includes a SG components taxonomy, which is based on established
taxonomies of learning, of instructional design and of game components. The taxon-
omy, used in conjunction with the model, supports the analysis of SGs by providing an
extensive list of commonly found structures. This list can be referred to when trying to
identify the various components that constitute SGs.

This model is targeted at two main user groups. First and foremost, to those involved
directly in the study and creation of games for learning, namely SG researchers and
Parts of this chapter were published previously in Carvalho, Bellotti, Berta, Gloria, Sedano, et al. (2015).

19

Chapter 3. Activity Theory-based Model for Serious Games (ATMSG)

SG designers, who possess a high level of knowledge on the topic. The second group
consists of non-expert users involved in SG design or evaluation projects, and who ʯnd
themselves in need of understanding SGs in more depth, e.g. entertainment game design-
ers, educators, or people with knowledge on the topic addressed in the project (domain
experts).

3.1 Elaborating the model

To elaborate the ATMSG and the taxonomy of SG components, we performed an itera-
tive process that alternated between literature review and practical testing of the concepts
to identify points for reʯnement.

The survey onmethods, methodologies, and frameworks for game and SGdesign showed
the missing links and gaps that should be addressed, as discussed in Section 2.1.

We used activity theory to understand the context of use of educational SGs, by identify-
ing the relevant network of activities (as proposed by Engeström (2001), see Section 2.3).
We investigated ʯve games of diʮerent genres and diʮerent learning domains (Darfur is
Dying, DragonBox Algebra 5+, GoVenture CEO, IBM City One and Playing History:
The Plague). From this step, we derived the ATMSG model, presented in Section 3.2.

A new literature search was performed to ʯnd reference frames to help users in identi-
fying game components according to activity theory. Since we could not ʯnd a uniʯed
taxonomy with the format we needed, we combined existing taxonomies of games, of
learning objectives, and of instructional design theories into a new structure. The result
of this step is described in Section 3.3.

Subsequently, we produced a ʯrst set of guidelines on how to apply the ATMSG model
and the taxonomy for analyzing SGs. In a user-centered design approach, these guide-
lines have been iteratively improved during its elaboration, through a set of user tests,
described in Section 3.5. The objective was to assess both the usability and the function-
ality of the model, particularly its capability to support the evaluation of the educational
quality and eʮectiveness of SGs. We identiʯed weak and strong points of ATMSG and
used the results to simplify the model, resulting in the version described in Section 3.2.

3.2 The model

In this section, our conceptual model derived from an activity-theoretical view of educa-
tional SGs, called ATMSG, is described. This model utilizes the conceptual framework
of activity theory to understand the structure of educational SGs, providing a way to
reason about the relationships between SGs components and the educational goals of
the game.

20

3.2. The model

In the ATMSG model, we do not consider the game as an isolated artifact. Instead, we
propose that the SG and those using it to learn or to teach something are seen as part of
a complex, dynamic system. From this perspective, educational SGs are typically used
in the context of at least three activities: the gaming activity, the learning activity and
the instructional activity (Figure 3.1).

Figure 3.1: The ATMSG model, with its three main activities

There are three main activities involved in the use of SGs for education. This ʯgure
represents the highest level of the activity system involved.

Figure 3.1 depicts the three main activities and the relationships between people and ar-
tifacts in this system. It is possible to see that the gaming and the learning activities share
the same subject (the player/learner) and tool (the SG), but they have diʮerent driving
motives. For example, the motive driving the gaming activity might be simply to have
fun, while the motive driving the learning activity might be to fulʯll a course require-
ment. The instructional activity also shares the same tool but has a diʮerent subject (the
instructor and/or the game designer) and motive. A motive for the instructor might be,
for example, to use the SG to raise the learner’s interest in the topic.

The diʮerence between the learning and the instructional activities is important: while
the learning activity corresponds to the point of view of the learner, the instructional
activity depicts the side of the instructor(s). Acknowledging this distinction allows us to
identify possible conʰicts inmotives driving the activities whichmight aʮect the learning
outcomes of the game. It can also help in evaluating to which extent the instructional
components of the SG support the stated learning outcomes.

21

Chapter 3. Activity Theory-based Model for Serious Games (ATMSG)

Some educational SGs can be used by a learner on his or her own while other games
may also count on complementary activities led by an instructor. The ATMSG model
explicitly accounts for this distinction, to clarify the role of the teacher/instructor in the
game. For this reason, the instructional activity is divided into two activities: intrinsic in-
struction, and extrinsic instruction. The intrinsic instructional activity takes place solely
inside the game. It involves how the game itself supports learning (e.g. via tips, help
messages, automatic assessments, in-game adaptive features). The extrinsic instructional
activity, conversely, is performed outside by the teacher/instructor before, during or af-
ter the playing session, in the context of the overall learning setting (e.g. class, workshop,
course).

In the intrinsic instructional activity, the subject is the game designer or producer, who
“acts” in the SG through design decisions made when creating the game, or via in-game
assessment and feedback mechanisms. An analysis of this activity can be performed
without necessarily considering a speciʯc context of use. An analysis of the extrinsic
instruction of a game, conversely, is heavily dependent on how the instructor uses the
game. Consequently, such analysis cannot be carried out without explicit reference to a
concrete usage setting.

The hierarchical structure of the activity, as deʯned in activity theory, gives us the ability
to change the focus of the analysis to diʮerent levels of detail. This approach has been
used previously by the Hierarchical Activity-Based Scenario (HABS) framework in the
study of games and SGs (Marsh, 2006; Marsh, 2010; Marsh & Nardi, 2014), providing
a useful and ʰexible tool to analyze and design interaction and gameplay. It provides
a way to reason about the player/learner’s engagement, by looking at how much the
motives that drive all three activities match each other or not, and how much these
motives coincide with the goals of the actions (Marsh & Nardi, 2014). In ATMSG, we
expand this hierarchical analysis: we also divide the activities into actions, and we divide
the game itself into its smaller pieces. Speciʯcally, each activity is broken down into
a sequence of actions mediated by tools with speciʯc goals. Similarly to the activity,
actions can also be depicted as triangles, as shown in Figure 3.2.

We call the items that form these smaller triangles “SG components”. SG components
are the concrete pieces of a SG, e.g. characters, tokens, tips, help messages. They can
be classiʯed as gaming, learning or instructional components, according to the activity
they support. The triangles can be represented in an alternative way: ʰattened, as nine
(or twelve, if considering the extrinsic instruction activity) layers of components that
interact over time during gameplay (see Figure 3.5 for an example of these layers). This
representation shows the relationships between the components of the diʮerent activities
over time. There can be overlaps, as one component can support actions from any of
the activities simultaneously. For example, a puzzle-type challenge can play a role as a
game component, as a learning tool and as an instructional tool at the same time.

Actions can also be broken down into their constituent operations. At this level, a SG
is seen as a combination of its low-level components (e.g. buttons, graphics, sounds,

22

3.3. Taxonomy

Figure 3.2: Each activity is formed by a sequence of actions. These actions mirror the triangle of activity:
they are also mediated by tools, with specific goals

menus), which mediate operations performed unconsciously by the subject (e.g. reading
a text, clicking a button). The ATMSG model does not explicitly consider this level
of analysis since there are no signiʯcant diʮerences on how digital SGs and other soft-
ware are constituted at this level. Hence, existing frameworks for applying activity the-
ory in human-computer interaction (HCI) research (Kuutti, 1995) and usability studies
(Kaptelinin, 1996) can also be used to analyze SGs at this level of detail.

3.3 Taxonomy

We used the ATMSG model to reorganize existing taxonomies of learning, instruction,
games and SGs into a uniʯed vocabulary that can be easily consulted when needed. It
aims to aid in the identiʯcation and classiʯcation of components according to their char-
acteristics and roles in the game.

The taxonomy is organized in a tree structure in which items are classiʯed according to
the activity to which they belong. Within the activity, they are classiʯed as actions, tools
or goals. For easier referencing, the elements are further divided into categories. Details
of this classiʯcation are given below.

3.3.1 Gaming components

The list of gaming components incorporates terms described by previous works on game
mechanics (Adams & Dormans, 2012; Djaouti et al., 2007; Koster, 2011; Schell, 2008;
Zagal et al., 2005), in addition to the game mechanics identiʯed in the LM–GM model

23

Chapter 3. Activity Theory-based Model for Serious Games (ATMSG)

(Arnab et al., 2015) and the game components of the Game Object Model II (GOM II)
model (Amory, 2007).

There are a number of diʮerent deʯnitions of “game mechanics” (Sicart, 2008). To avoid
confusion with existing terminology and inconsistencies in the deʯnitions, we do not
use this term. Instead, we classify gaming components according to the three layers of
the gaming activity, i.e. actions, tools, and goals. These are roughly equivalent to what
has typically been deʯned as game mechanics by game researchers and designers.

The components classiʯed as gaming actions (Table 3.1) describe, from the player’s point
of view, the actions that can be performed in the game at any given point. They have
been grouped in categories that express similar types of player’s interaction with the
game.

Gaming actions
Category Elements
Entity
Manipulation

Capture, Collect, Create, Customize, Design, Destroy, Edit, Elim-
inate, Exchange, Generate, Manage resources, Manipulate gravity
(physics), Match, Own, Plan / Strategy, Remove, Select, Tactical ma-
neuver, Trade virtual items

Movement Avoid, Collide, Move, Evade, Rotate, Shoot, Target, Teleport, Tra-
verse, Visit

Time-related Manipulate time, Start/ Stop time, Advance game period
Information Ask questions, Answer questions / trivia, Obtain help, See perfor-

mance evaluation, Watch / Listen to / Read information, Watch /
Listen to / Read story

Table 3.1: Gaming actions

While gaming actions describe what a player does, gaming tools (Table 3.2) are the com-
ponents that make actions possible, i.e. the components that the player manipulates or
with which he or she interacts. They can also be the rules or characteristics of gameplay
that deʯne how actions can be taken in the game.

Gaming goals (Table 3.3) describe, in general terms, the types of goals and sub-goals typi-
cally found in games. Gaming goals complete the activity system triangle (see Section 2.3)
at this level of analysis: every gaming action is performed using one or more gaming
tools, to achieve at least one gaming goal.

3.3.2 Learning components

The list of learning components is mostly based on Bloom’s Updated Taxonomy (An-
derson, Krathwohl, & Bloom, 2001), which is arguably the most commonly used frame-
work to describe learning goals. Two other taxonomies are used to complement Bloom’s

24

3.3. Taxonomy

Gaming tools
Category Elements
Objects 2D/3D space, Avatars, Cards, Gifts, Goods, Grids, Information,

Modiʯers, Non-playing characters (NPCs), Tiles, Tokens, Virtual
money

Attributes Lives, Position in space, Roles, Secrets, Virtual skills
Time Chronometer, Time pressure
Feedback Achievements, Leaderboards, Penalties, Performance meters, Perfor-

mance record, Points, Progress bars, Rewards, Status levels
Help Advice and assistance, Guide character, Checklists/ Task lists, Tips,

Tutorial, Warning messages
Chance /
Randomness

Dice, Lottery, Random appearances, Randomizers

Narrative (aesthetics) Cut scenes, Role play, Story (text)
Rules Complete information, Incomplete information, Competition,

Game modes, Game master / referee, Multiplayer, Zero-sum / Non-
zero-sum

Segmentation of
gameplay

Alternating turns, Challenges, Checkpoints, Game Period, Inʯnite
gameplay, Levels, Meta-game, Puzzles, Quest / Problem, Time

Goal metrics Achievement, Performance record, Score, Success level, Time
Score Video Game Score, Cash Score, Social Network Score, Composite

Metrics, Experience Points, Redeemable Points, Karma Points

Table 3.2: Gaming tools

25

Chapter 3. Activity Theory-based Model for Serious Games (ATMSG)

Gaming goals
Category Elements
Score Maximize performance, Maximize score
Tasks Collect resources, Collect information, Solve puzzle
Narrative Complete quest, Complete side quests, Form/discover goal, Get ac-

quainted with story, Reach narrative end
Competition Be the ʯrst to reach the end, Be the last player standing
Other goals Conʯgure game, Learn to use interface, Perform task within allotted

time, Reach resources end

Table 3.3: Gaming tools

Updated Taxonomy: Kolb’s Experiential Learning Cycle (Kolb, 1984) and Fink’s Tax-
onomy of Signiʯcant Learning (Fink, 2003). Kolb’s Cycle incorporates a constructivist
perspective while Fink’s Taxonomy includes learning goals that are less curricular and
more focused on transferable skills such as critical thinking, creativity, problem-solving,
among others.

Learning actions (Table 3.4) are the actions that the player/learner performs in the game
while learning tools (Table 3.5) are the in-game artifacts that support one or more actions.
To generate the list of actions and tools, we combined the original learning mechanics of
the LM-GMwith a list of illustrative action verbs based on Bloom’s Updated Taxonomy
(Almerico & Baker, 2004; Illinois Central College, 2011).

The learning goals list (Table 3.6) is a direct reproduction of Bloom’s Updated Taxonomy
(cognitive, aʮective and psychomotor domains) (Anderson et al., 2001), Kolb’s Experi-
ential Learning Cycle (Kolb, 1984), and Fink’s Taxonomy (Fink, 2003).

3.3.3 Instructional components

The instructional activity has a diʮerent subject than the other two activities: the per-
son(s) teaching something using the SG. There is a conceptual overlap between the in-
structional activity and the learning activity, as they are complementary ways of analyz-
ing the same process. The instructional activity depicts how instructors and/or game
designers act to facilitate the learning process, particularly by providing adequate condi-
tions for it to occur.

The taxonomy does not distinguish between intrinsic and extrinsic instructional com-
ponents since the distinction between the two depends solely on where the components
are used: if inside the game, they correspond to intrinsic instruction; if outside of it,
they are related to extrinsic instruction.

Just as in the case of learning actions and tools, instructional actions (Table 3.7) are the

26

3.3. Taxonomy

Learning actions
Category Elements
Remembering Deʯne, Describe, Draw, Find, Identify, Imitate, Label, List, Locate,

Match, Memorize, Name, Observe, Read, Recall, Recite, Recognize,
Relate, Reproduce, Select, State, Write, Tell

Understanding Compare, Convert, Demonstrate, Describe, Discuss, Distinguish,
Explain, Explore, Find more information about, Generalize, Inter-
pret, Objectify, Outline, Paraphrase, Predict, Put into own words,
Relate, Restate, Summarize, Translate, Visualize

Applying Apply, Calculate, Change, Choose, Classify, Complete goal, Com-
plete, Construct, Examine, Experiment, Illustrate, Interpret, Make,
Manipulate, Modify, Perform action/task, Produce, Put into prac-
tice, Put together, Show, Solve, Translate, Use

Analyzing Advertise, Analyze, Categorize, Compare, Contrast, Deduce, Dif-
ferentiate, Discover, Distinguish, Examine, Explain, Identify, Inves-
tigate, Separate, Subdivide, Take apart

Evaluating Argue, Assess, Choose, Critique, Debate, Decide, Defend, Deter-
mine, Discuss, Estimate, Evaluate, Judge, Justify, Prioritize, Rate,
Recommend, Review, Select, Value, Verify, Weigh

Creating Add to, Build model, Combine, Compose, Construct, Create, De-
sign, Devise, Forecast, Form goal, Formulate, Hypothesize, Imagine,
Invent, Originate, Plan, Predict, Propose

Table 3.4: Learning actions, based on Almerico and Baker (2004) and Illinois Central College (2011)

27

Chapter 3. Activity Theory-based Model for Serious Games (ATMSG)

Learning tools
Category Elements
Dramatizing Dramas, Dramatizations
Graphical
information

Art, Cartoons, Diagrams, Displays, Graphed information, Graphics,
Graphs, Illustrations

Interaction Court trials, Debates, Demonstrations, Experiments, Group discussions,
Questionnaires, Simulator, Speculations, Surveys, Tests

Multimedia Animation, Films, Media presentations, Recordings, Songs, Speech, Tele-
vision programs, Videos

Problem-solving Problems, Puzzles
Textual
information

Analogies, Arguments, Bulletin boards, Classiʯcations, Conclusions,
Deʯnitions, Editorials, Forecasts, Information, Magazine articles, Mod-
els, Newspapers, Organizations, Outlines, Poems, Posters, Recommen-
dations, Reports, Routines, Rules, Standards, Story, Student diary, Sum-
maries, Task list/checklist, Tasks, Textbooks, Texts, Tips

Other Challenge, Creations, Events, Inventions, Sculptures, Self-evaluations,
Systems, Values

Table 3.5: Learning tools, based on Almerico and Baker (2004) and Illinois Central College (2011)

Learning goals
Category Elements
Bloom’s Taxonomy –
Cognitive domain

Remembering, Understanding, Analyzing, Applying, Evaluating,
Creating

Bloom’s Taxonomy –
Aʮective domain

Receiving phenomena, Responding to phenomena, Valuing, Organi-
zation, Internalizing values

Bloom’s Taxonomy –
Psychomotor domain

Perception (awareness), Set, Guided response, Mechanism (basic pro-
ʯciency), Complex overt response, Adaptation, Origination

Kolb’s experiential
learning cycle

Concrete experience, Active experimentation, Reʰective observa-
tion, Abstract conceptualization

Fink’s Taxonomy Foundational knowledge, Application, Integration, Human dimen-
sion, Caring, Learning how to learn

Table 3.6: Learning goals

28

3.4. Application of the model

actions that the game and/or the instructor perform during the game with the objective
of stimulating learning actions and facilitating learning goals.

Instructional actions
Category Elements
Assessment Qualitatively assess performance, Quantitatively assess performance
Feedback Reward good performance, Sanction bad performance, Suggest improve-

ments, Support recovery from errors
Information pre-
sentation

Demonstrate, Present material, Present problem, Present quiz, Repeti-
tion, Review lesson, Scaʮold, Show similar problems, Stress importance,
Tell story

Table 3.7: Instructional actions

Instructional tools (Table 3.8) are components present in the game that support instruc-
tional actions, providing help and feedback to learners and assessing their performance.
There may be overlaps between learning tools and instructional tools.

Instructional tools
Category Elements
Behavior elicita-
tion

Challenge, Deadlines, Limited set of choices, Multiple chances

Feedback Penalties, Performance measures, Rewards
Information Checklists, Help text, Story, Tips / assistance, Warning messages
Interaction Discussion, Questions & answers
Practice Practice tests, Simulators

Table 3.8: Instructional tools

Each instructional action has one or more instructional goals (Table 3.9). Two theories
widely employed in instructional design were used as a reference to identify the goals
of instructional actions: Gagné’s Nine Events of Instruction (Gagné, 1985) and Keller’s
ARCS Model of Motivational Design (Keller, 1987). The events of instruction are exter-
nal events that the instructor can elicit, in sequence, to provide an adequate environment
for eʮective learning. The ARCS model, on the other hand, lists four steps that can pro-
mote and sustain motivation during the learning process.

3.4 Application of the model

In this section, we propose a four-step approach that progressively guides the user in
applying the ATMSG model for game analysis (Subsection 3.4.1). The same approach

29

Chapter 3. Activity Theory-based Model for Serious Games (ATMSG)

Instructional goals
Category Elements
Gagné’s Nine Events
of Instruction

Gain attention, Inform learner of objective, Stimulate recall of prior
learning, Present the stimulus, Provide learning guidance, Elicit per-
formance, Provide feedback, Assess performance, Enhance retention
and transfer

ARCS Model of
Motivational Design

Attention, Relevance, Conʯdence, Satisfaction

Table 3.9: Instructional goals

can also be used as a tool for SG design, with small modiʯcations that are explained in
Subsection 3.4.2. To illustrate the application of the model, we present an example of
game analysis in Subsection 3.4.3.

3.4.1 ATMSG for serious game analysis

The ATMSG four-step approach for SGs analysis aims to help the user (i.e. the person
analyzing a game) gain a better understanding of how learning takes place in the game.
These steps take the user from a high-level understanding of the activities to the concrete
components that implement those activities. The user identiʯes game components with
the help of the taxonomy of SG components (described in Section 3.3).

Figure 3.3 outlines the four steps of the approach. Each step is described below.

Phase 1 - Analyze activities (high level)

Phase 2 - Analyze actions (intermediate level)

Step 1 - Identify and describe activities
in the activity network

Step 2 - Represent game sequence

Step 3 - Identify actions, tools and objectives

Step 4 - Provide description of the implementations

Figure 3.3: The four-step approach for applying the ATMSG to the analysis of educational serious games

Step 1: Describe the activities

In the ʯrst step, the user describes the main activities involved in the activity system and
identiʯes their subjects and corresponding motives (Table 3.10). Each description shifts

30

3.4. Application of the model

the user’s understanding of the game and highlights the main aspects of each activity,
encouraging the user to observe the game from diʮerent but complementary aspects.

Activity Subject Description
Gaming activity Who is the player? Why is the subject playing? What are

the general objectives of the game?
Learning activity Who is the learner? Why is the subject engaging with the

game? What are the learning objectives
of the game?

Intrinsic instructional
activity

Who designed/
produced the game?

Why was the game produced? How is
the game trying to convey its learning
contents?

Extrinsic instructional
activity

Who is using the game
to teach something?

Why is the subject using the game?
How is the game used to teach
something? Are there any other tools
used in conjunction with the game to
achieve the learning objectives?

Table 3.10: Guiding questions to describe activities

Filling in the ʯelds for the extrinsic instructional activity is not necessary when the
analysis is not related to a speciʯc usage context.

It is not always possible to give a precise description of what are the motives driving the
activities, as motives are highly personal and variable. In these cases, the motives have to
be presumed by the person performing the analysis. Nevertheless, even mere presump-
tions are valuable, as they can help detect inconsistencies and contradictions between the
high-level motives driving the activities and the concrete actions chosen to implement
that activity, indicating possible problematic points for the player’s engagement with the
game.

Step 2: Represent the game sequence

To help in the identiʯcation of the components of the SG, the user produces a diagram
that represents the game sequence in a rough timeline. The purpose of this diagram is to
establish a reference point that helps uncover how the components of the activity system,
which will be identiʯed in Step 3, are connected throughout the game. It also facilitates
a visual comparison between multiple games, even if they belong to completely diʮerent
genres. The game sequence visually describes the overall structure of the game, marking
points in which choices or evaluations of the game state are made and loops that indicate
the repetition of similar arrangements in the game.

The game sequence representation follows the Uniʯed Modeling Language (UML) activ-
ity diagrams notation, which uses shapes connected by arrows to represent the ʰow of
the activities (see Figure 3.5). UML was chosen for its status as de facto standard in the

31

Chapter 3. Activity Theory-based Model for Serious Games (ATMSG)

software engineering ʯeld (C.-H. Kim, Weston, Hodgson, & Lee, 2003).

Step 3: Identify actions, tools and goals

In this step, the user proceeds to identify components related to each node of the game
sequence. At this level of the analysis, each event in the game is decomposed into its
actions, tools and goals. Together, the components answer, for each step of the game,
the question: “what is the subject doing, how, and why”.

The user chooses the relevant component directly from the taxonomy of SG compo-
nents. The graphical representation of these relationships consists of a layered table in
which the components are placed, matching vertically the node of the game sequence
to which they are related (see Figure 3.5 for an example). For each activity involved
(gaming, learning, intrinsic instruction and the optional extrinsic instruction), there are
three layers to be ʯlled (actions, tools, and goals), totaling nine (or twelve, if considering
the extrinsic instruction) layers.

Table 3.11 presents guiding questions that can help the user when mapping SG compo-
nents.

Not all nodes of the game sequence will have actions of all the activities happening at
the same time. Similarly, more than one action can happen at the same time within
the same activity. Some components of the taxonomy may be relevant to the game as a
whole (e.g. certain rules of play, whether the game is a 3D space), and should be indicated
at the beginning of the table, before the start of the game sequence representation.

The result of this step is a blueprint of the game structure that reʰects the essential form
of the SG components (Figure 3.5).

Step 4: Description of the implementation

In this step, the user groups each set of actions, tools and goals that are from the same
type of activity and that are related to the same node of the game sequence. For each
of those blocks, the user provides a more thorough description of their implementa-
tion, explaining what is being done at that point in the game, using which tools, and
with which purpose. In this description, the user can complement the description of the
component with more speciʯc details of its implementation (e.g. how a score is calcu-
lated, or the characteristics of a non-player character) and explain how the usage of such
components and characteristics support the achievement of the entertainment and/or
pedagogical goals of the game. This step is done separately for each type of activity
(Table 3.12).

When combined, the four steps described above provide a comprehensive view of the
structure of the game, from its high-level purposes and general characteristics to its con-
crete implementation.

32

3.4. Application of the model

Gaming
activity

Learning
activity

Intrinsic
instruction
activity

Extrinsic
instruction
activity

Actions How does the
game unfold?
Which actions
does the subject
perform in the
game?

What tasks does
the subject do in
the game that are
directed towards
the learning goal?

What happens in
the game that
supports the
learner to achieve
the learning goals
(assessment,
feedback)?

What happens,
during the game
but outside of it,
that supports the
learner to achieve
the learning
goals?

Tools Which elements
are involved/
used in the
gaming actions?

Which elements
are involved/
used in the
learning actions?

Which elements
are involved/
used in the game
to support the
instructional
actions?

Which elements
are
involved/used,
outside the game,
to support the
instructional
actions?

Goals What does the
subject have to
achieve in the
game at this
point?

Which
knowledge or
skills is the
learner expected
to acquire with
the learning
actions?

What are the
instructional
goals of the game
at this point?

What are the
instructional
goals driving the
actions described
above?

Table 3.11: Guiding questions to identify actions, tools and goals

3.4.2 ATMSG for serious game design

The ATMSG model can be used as a tool to support the SG design process. The model
can be applied during the design phase in the iterative analysis of game prototypes –
preferably, but not limited to, low-ʯdelity ones (e.g. sketches, storyboards, game dia-
grams). In addition, it can serve as inspiration to designers by oʮering a comprehensive
list of SG elements to choose from, according to their educational goals. Furthermore,
SG designers can use analyses of other SGs to help them understand characteristics and
patterns of other successful (or unsuccessful) games.

When applying the ATMSG for SG design, Step 1 (in Phase 1) of the application guide
(Subsection 3.4.1) remains the same, as it focuses on high-level characteristics of the SG
that should be deʯned in the very beginning of the project. The diʮerence lies in Steps
2–4 (in Phase 2), which should be applied in conjunction with prototyping techniques.

Starting from the description of the activities, the designer produces a ʯrst version of the
game prototype, using his or her preferredmethod. This prototype is analyzed according
to Steps 2–4 described in Subsection 3.4.1. The resulting evaluation provides insights

33

Chapter 3. Activity Theory-based Model for Serious Games (ATMSG)

on the level of integration of the gaming and learning components, shedding light on
possible weak points in the design. The designer adjusts the prototype accordingly, and
subsequently repeats the steps until a satisfactory structure has been achieved.

3.4.3 Example analysis

This section presents an ATMSG analysis of DragonBox Algebra 5+ (WeWantToKnow,
2012), a critically acclaimed and commercially successful video game for teaching algebra
concepts to young children (J. H. Liu, 2012). In the game, the child manipulates colorful
cards according to certain rules that are demonstrated with interface tips. The goal of
each puzzle is to isolate the DragonBox on one side of the game board. As the game
progresses, the pictures in the cards are replaced with numbers and variables: the puzzles
are in fact algebraic equations that must be solved for an unknown variable, represented
by the DragonBox (Figure 3.4).

Figure 3.4: An early puzzle in the game DragonBox Algebra 5+. Image credit: WeWantToKnow

The analysis considers a child playing on his or her own, outside of any classroom activ-
ities and without the help of a parent; thus, it includes only the intrinsic instructional
activity.

Table 3.12 shows the descriptions of the activities of the game (Step 1). Note that these
descriptions are related to the same event (the child playing the DragonBox game), but
from three diʮerent standpoints (e.g. the fun aspect for the child; the learning aspect,
also for the child; and the game’s point of view).

Figure 3.5 represents the game sequence (Step 2) with the related game components de-
picted in layers (Step 3). The game sequence visually describes the overall structure of
the game, which in this case is a repetition of the sequence “Interface tip”, “Puzzle” and
“Rewards”, and constant evaluations about the state of the game (“is this a new skill to

34

3.4. Application of the model

Activity Subject Description
Gaming Children aged 5–

12
The objective of the game is feed the dragon and
watch it grow. To pass each level, the player must
solve a series of puzzles, manipulating tiles until the
DragonBox is alone in one side of the game board.
Graphics, music and rewards follow the same general
style of apps and games typically targeted at the same
age group, keeping it familiar and fun.

Learning Children aged 5–
12

The puzzles are in fact algebraic equations that must
be solved for an unknown variable, represented by
the DragonBox. Graphical icons are progressively re-
placed by numbers and variables. Typically, there is
no conscious motivation for the learning activity.

Intrinsic in-
struction

WeWantTo-
Know

The game aims to introduce basic concepts of alge-
bra in a fun way. It tries to remove the negativity
surrounding the topic by making it as simple as pos-
sible to understand.

Table 3.12: Description of activities in DragonBox Algebra 5+

the player?”, “are there more puzzles in this chapter?”). The game is split into chap-
ters, but the chapters do not diʮer in their structure – they only mark the progression
through the topics. Vertically aligned to the nodes in the game sequence are the layers
of SG components. Only nodes 3, 4 and 5 contain components in the layers related to
the learning and instructional activities while nodes 1 and 2 are related to customiza-
tion, learning the interface and getting the player involved in the game. This analysis
allows us to identify where the core of the learning experience is and which components
characterize it (e.g. the tips, the challenges, the rewards, the scaʮolding of challenges, the
ability to recover from errors).

There is a clear overlap between the motivations driving the gaming and the learning
activities, to the point that the learner typically will not be consciously aware of the
learning goals (see Table 3.12). For the target audience, this is likely to be a positive
characteristic to promote engagement. Also, the designers of Dragonbox tried to make
the gaming motives compelling enough to its audience, by using appealing and familiar
graphics, music and rewards. Furthermore, the main gaming goals (“solve puzzles”,
“maximize performance”) are directly related to the gaming motive (“feeding the dragon
to watch it grow”), indicating that the player will be engaged in the concrete actions
performed in the game so that the driving motive is fulʯlled.

Table 3.13 provides more details on the implementation of the gaming components (Step
4). For example, in Figure 3.5 it is shown graphically that node 4 (“Puzzle”) has the fol-
lowing learning components: the actions “Repetition”, “Imitating”, “Experimenting”,
the tool “Challenge” and the goal “Remembering”. Conversely, in Table 3.13, in the
corresponding cell (i.e. in the “Puzzle” row, “Learning” column), we can read a more

35

Chapter 3. Activity Theory-based Model for Serious Games (ATMSG)

F
igu

re
3

.5
:G

am
e

seq
u

en
ce

an
d

SG
co

m
p

o
n

en
ts

in
D

rago
n

B
ox

A
lgeb

ra
5

+

36

3.5. Evaluation

thorough description of how these components are connected.

3.5 Evaluation

We performed three preliminary evaluation studies of ATMSG in which we investigated
the users’ perception of the usability and usefulness of the model. The goal was to obtain
early user feedback to address issues, particularly on usability, before proceeding with
more extensive user testing. The ʯrst study evaluated ATMSG on its own while the
subsequent ones compared it with the LM-GM model (Arnab et al., 2015). For a short
description of the LM-GM model, see Section 2.1.

The data set supporting the results of this evaluation is available in the DANS repository
(Carvalho, 2015a). A complete report of the studies and replication ʯles are also available
(Carvalho, 2015b).

3.5.1 Participants

We recruited, in total, 32 participants aged 19–44 (M = 23.34, SD = 4.78). Participants
of Study 1 (N = 13) were students of a Masters-level course on Entrepreneurship using
SGs in the University of Genoa, Italy. Participants of Study 2 (N = 15) were industrial
engineering students of an undergraduate course at the University of Bremen, Germany.
For Study 3, we recruited, via specialized mailing lists and social media, a group of self-
identiʯed SG experts (N = 4), who were oʮered a small monetary compensation for
their time.

Table 3.14 lists the participants’ self-reported level of familiarity with digital games and
with SGs on a 1–5 scale.

3.5.2 Setup

The general structure of the three studies was the same, with the diʮerence that, while
in Study 1 the participants evaluated only the ATMSG model, in the subsequent studies
they evaluated both ATMSG and LM-GM.

Study 1 Participants used the ATMSG model to analyze the game Marketplace Live, a
business simulation SG, which they had been playing for 8 weeks as part of the
normal activities of the course.

Study 2 Participants evaluated bothATMSG and LM-GMover the course of twoweeks.
The games used in the evaluations were Playing History: Vikings, an adventure
game to teach history for children, and Senior PMGame, a simple simulation game
to teach project management to university students. Participants were split into

37

Chapter 3. Activity Theory-based Model for Serious Games (ATMSG)

Game sequence
node

Gaming Learning Intrinsic Instruction

1. Choose
avatar

The player chooses a char-
acter as his or her avatar.
The avatar is not used any-
where else in the game.

- -

2. Introduction A short animation ex-
plains the basic objectives
and rules of the game.

- -

3. Interface tip If a new skill (“power”) is
needed to solve the puz-
zle, the game shows an an-
imation explaining the al-
lowed movements.

The game conveys the
rules of algebra by demon-
strating the allowed move-
ments.

No verbose explanations
are given. Simple tips
provide the guidance the
player needs to solve the
puzzles.

4. Puzzle The player has to move
and combine tiles to iso-
late the DragonBox in one
side, using as few move-
ments as possible. The
interface forces the player
to follow the rules. The
player can play the same
puzzle as many times as
she wants.

Puzzle after puzzle, the
player has to repeat the
same patterns until they
become automatic. Ex-
perimenting with the
rules is encouraged, as the
interface forces the user
to balance the equations
correctly.

Puzzle complexity in-
creases very gradually.
Skills are accumulated
over several levels. The
interface prevents the
player from making
mistakes, which avoids
frustration and increases
the player’s conʯdence.

5. Rewards After completing the puz-
zle, the player earns stars
for each possible achieve-
ment. Extra points are
given when the puzzle
is solved in fewer move-
ments and when no ex-
tra elements are left in the
board.

It is not possible to give
wrong answers, but the
player can earn extra
points for eliminating
extra pieces and for using
fewer movements. The
player can repeat the level
to achieve a better score
with no penalties.

Assessment of player’s
performance gives feed-
back on which rules were
not completely followed
and elicits the player to
try again.

6. End of chap-
ter

A screen showing the full-
grown dragon marks the
end of the level. A
player can share his or her
achievements in diʮerent
social networks.

- -

7. End screen When all levels have been
completed, the player is
invited to play the bonus
stages, which feature alge-
braic equations in proper
mathematical notation.

- -

Table 3.13: Description of the implementation of DragonBox Algebra 5+

38

3.5. Evaluation

Familiarity With games With SGs
None . .
Played once or twice . 17
Played a few times 14 10
Plays now and then 3 1
Plays frequently 15 4
Sum 32 32

Table 3.14: Participants by familiarity with games and with SGs

two groups to alternate which model was used ʯrst. Three participants did not
participate in the second day of the evaluation. Their responses were discarded
in the comparisons between the two models (since they did not have a matching
sample), but were kept to compute average usability scores.

Study 3 Participants were asked to evaluate one single game (Senior PM Game) using
both ATMSG and LM-GM. The order in which the models were presented to each
participant was assigned at random. The study was conducted using an online
survey tool.

In all cases, participants ʯrst received an explanation of the model. Subsequently, they
were asked to apply the model to analyze a SG, using either paper or digital templates.
The templates included the complete tables of the taxonomy of serious games elements
Section 3.3. After completing the analysis, participants were asked if the model had
contributed to any change in their perception of the game and if they had any suggestions
to improve the model. In the cases where participants evaluated both ATMSG and LM-
GM, we also asked them to compare the models.

We asked the participants about their experience with the model using an adapted ver-
sion of the System Usability Scale (SUS) questionnaire (Brooke, 1996). SUS is a simple,
ten-item attitude Likert scale giving a global view of subjective assessments of usability,
which yields a single usability score on a scale of 0–100.

3.5.3 Qualitative data processing

In addition to the usability scores, we also collected qualitative data on the participants’
experiences with the models: the open-ended questions on how the model aʮected their
perception of the game, the comparisons between ATMSG and LM-GM, the game dia-
grams and tables (Figure 3.6 and Figure 3.71) and written observations made on the days
of the studies.
1Figure 3.6 and Figure 3.7 show only the Gaming actions, tools and goals layers (with a slightly diʮerent no-
tation, reʰecting an earlier version of the table template). For simplicity, the six layers representing Learning
and Instructional actions, tools, and goals have been omitted.

39

Chapter 3. Activity Theory-based Model for Serious Games (ATMSG)

To process the participants’ comments, we ʯrst discarded empty answers, and answers
in which the participant misunderstood the question (e.g. they provided feedback about
the game itself and not about the model). We were left with feedback from 25 partic-
ipants. These answers were coded to identify general statements about both models.
Each answer could have one or more general statements. These general statements were
grouped, and the results are presented subsequently.

3.5.4 Results

We could identify usability issues with the ATMSG model, both in the qualitative data
and in the scores obtained with the SUS questionnaire. Results from the three studies
indicate that the ATMSG model has a steep learning curve: six participants (19%) men-
tioned that the application of the ATMSG model could be simpliʯed, and, in four cases
(12%), the participants stated that they needed detailed instruction and examples to be
able to perform the analysis. This feedback was consistent with the average usability
score of the ATMSG model obtained from the SUS questionnaires, which was 58.83
(N = 30, SD = 17.5), in a scale of 0–100.

Nevertheless, in general, participants considered that using either model helped them
better understand the characteristics of the game. LM-GM was positively evaluated by
a large number of participants: among the 18 participants who used LM-GM, 13 (72%)
mentioned that LM-GM was helpful for them. Conversely, 14 participants (47% out of
30) said the same about the ATMSG model.

To make direct comparisons between ATMSG and LM-GM, we only considered data
from participants who used both models, discarding three responses that did not have a
matching sample. We were left with a sample of 32 questionnaires from 16 participants.
Thirteen participants (81%) stated that ATMSG is more complete and detailed than LM-
GM, and two participants (12%) considered that the ATMSG game diagram is easier to
draw. LM-GM, on the other hand, was considered simpler or easier to grasp by nine
participants (56%), seven of them non-gamers. One participant commented that maybe
they would have been more comfortable with ATMSG if they had been exposed to LM-
GM ʯrst.

The diʮerence in perception between the two models noted in the qualitative data was
also apparent in the SUS usability scores, although the sample size is too small to draw
deʯnitive conclusions. For the non-gamers group (N = 8), the average usability score
for ATMSG was 42.8, while for LM-GM it was 57.5. For the gamers group (N = 8),
the average usability score for ATMSG was 74.4 and for LM-GM it was 65.6. A mixed
between-within subjects ANOVA was conducted to compare the usability scores given
by participants for each of the two models and to identify if the scores varied with fa-
miliarity with games. There was a signiʯcant eʮect of the diʮerent levels of familiarity
in the usability scores, F (1, 14) = 14.87, p = .002, η2G = 0.32, but no eʮect due to the
model used, F (1, 14) = 0.37, p = 0.55, η2G = 0.007.

40

3.5. Evaluation

Figure 3.6: ATMSG diagram layers filled as expected, with proper vertical alignments

Figure 3.7: ATMSG diagram layers filled in an unexpected way

41

Chapter 3. Activity Theory-based Model for Serious Games (ATMSG)

We also considered in the qualitative analysis our observations of the participants’ be-
havior and the documents they delivered at the end of the studies. We noticed that
some participants using ATMSG relied heavily on the taxonomy to perform their anal-
yses, particularly in making the distinction between items from gaming and learning
activities. Furthermore, some participants did not produce the game diagram with the
components in a vertically matching position (Figure 3.7), simply preferring to circle the
relevant items in the taxonomy reference tables (Figure 3.8). Finally, in many instances
during the studies, participants asked for clariʯcations on the entries of the taxonomy
of SG components, being unsure of the meaning of certain terms.

Figure 3.8: Some participants preferred to circle items in the taxonomy reference tables

3.6 Discussion

The ATMSG model has the objective of supporting the analysis and design of SGs
for two user groups: experts in SGs, and non-experts who are involved in SGs related
projects, such as teachers and application domain experts (e.g. trainers, advertisers, man-
agers). Our preliminary evaluation indicates that the structured analysis supported by
ATMSG is helpful to users in understanding in depth the roles of each piece in each ac-
tion that happens inside the game. The decomposition of components is more detailed
than that provided by the LM-GMmodel, which only speciʯes two main sets of compo-
nents, namely “game mechanics” and “learning mechanics”, with no other distinctions
on the nature of these components. For example, an LM-GM analysis of the game Drag-
onBox Algebra 5+ is able to identify that the component tutorial is present as a “learning
mechanism”. An ATMSG analysis of the same game, conversely, allows the user to be
more precise and describe that the player’s action of observing the tips exposes him to
the mathematical concepts that have to be remembered. Those same tips are used by the
game when demonstrating allowed moves, thus providing learning guidance to the player.
Furthermore, the ATMSG model also provides a more extensive list of components (al-
most 400 items classiʯed in 36 categories, versus LM-GM’s list of 38 game mechanics and

42

3.6. Discussion

31 learning mechanics), which also contributes to the precision of the identiʯcation of
components in the game.

The increased level of detail provided by ATMSG, nevertheless, results in a steeper learn-
ing curve, particularly to non-expert users or to thosewho are less acquaintedwith digital
games. To this group of users, LM-GM’s simpler analysis was already enough to provide
useful insights on the game structure and educational purposes. This fact suggests that
LM-GM provides a good understanding of the game when only a general idea of the
game’s learning mechanisms is needed, such as when several diʮerent games need to be
quickly evaluated by non-SGs experts, e.g. teachers selecting a game for a class. ATMSG,
conversely, is more suitable for situations in which a more profound understanding of
the components is necessary, for example when adapting games for use in speciʯc learn-
ing settings, when detailing the analysis to identify and catalog learning patterns or when
evaluating game prototypes during the design process – in other words, when a thorough
understanding of the characteristics of the game is needed.

The evaluation study highlighted a few usability problems of the application of the
ATMSG model. Some of these issues, such as the need to simplify the ATMSG model
and to clarify the tables, have already been addressed. Nevertheless, a few other points
still need improvement, such as the fact that the taxonomy entries should be expanded
to include descriptions and examples as well. A complementary textual description may
provide details on typical characteristics of the item while examples would be useful to
illustrate the actual usage of the item in a game. Additionally, the application of the
taxonomy to a wider variety of SG genres could favor the expansion or reʯnement of
the entries by incorporating eventually missing components and removing those that
are not relevant. Finally, we identiʯed the need to provide a more appropriate medium
for the application of ATMSG, such as a computer application, a set of cards or similar
tools that can be easily moved around while performing the analysis.

In summary, the ATMSG model provides a comprehensive way to investigate, in detail,
how a serious game is structured, using activity theory as the theoretical background.
It can be useful not only for SG analysis, but also as a tool for SG design. Compared
to other models, methodologies and frameworks currently available, ATMSG oʮers a
more precise model for the analysis of the educational and gaming aspects of a game,
allowing the user to perform a more exhaustive decomposition of components as the
game unfolds, and to link these components to the overall learning objectives. It oʮers a
detailed graphical and textual representation of the SG that facilitates comparing diʮerent
games. Users with familiarity with digital games weremore comfortable with themodel.
For non-gamers, ATMSG seems to have a somewhat steep learning curve, although this
user group still recognizes beneʯts from applying the model in the analysis of serious
games.

ATMSG provides a more detailed analysis of serious games but is also more complex.
Consequently, the application of the method requires more time and a better under-
standing of game components. Thus, if only a general idea of pedagogical aspects of a

43

Chapter 3. Activity Theory-based Model for Serious Games (ATMSG)

game is needed, other tools (e.g. Four-Dimensional Framework, Relevance, Embedding,
Transfer, Adaption, Immersion andNaturalisation (RETAIN)model, LM-GM) aremost
likely more appropriate. LM-GM, which was the other model evaluated in this work,
also provides users with valuable insights into the structure of a serious game, but the
description of the inner components of the serious games are not as detailed as ATMSG.

❧

Up to this point, I focused on theoretical aspects of the design of SGs. The next two
chapters of this thesis move to technical considerations about SG software development.
In Chapter 4, I focus on the role of a game’s software architecture in the development
process. Subsequently, in Chapter 5, I present the second main contribution of this
thesis, the Service-Oriented Reference Architecture for Serious Games (SORASG).

44

Chapter 4

Software development and serious
games

In this chapter, I ʯrst brieʰy introduce software architectures and reference architectures,
also discussing their design and evaluation. Next, I present a review of architectural
strategies that have been employed so far in games and serious games (SGs) for reducing
development costs. Finally, one architectural approach – Service-Oriented Architecture
(SOA) – is further analyzed as an underused but potentially beneʯcial approach to SG
development.

4.1 Software architectures and reference architectures

A software architecture is an abstract representation of a system, which purposely hides
internal information that has no ramiʯcation outside of an element with the objective of
reducing the amount of complexity that has to be dealt with at a given time (Bass et al.,
2012)2.

The main beneʯt of taking the time to design an appropriate software architecture is that
it allows important decisions about the system’s characteristics to be deʯned early in the
project. Early decisions allow for better communication with stakeholders and more
precise estimates of a system’s development schedule, costs, and qualities. The alternative

Parts of this chapter were published previously in Carvalho, Bellotti, Berta, Gloria, Gazzarata, et al. (2015).
2Much of the literature in software engineering refers to a related, but broader concept: enterprise architec-
tures. Enterprise architectures include not only software architectures as described in this chapter, but also
how the software is used by humans to perform business processes, and the whole computational environ-
ment in which the software is going to be used (The Open Group, 2011; Bass et al., 2012).

45

Chapter 4. Software development and serious games

– letting the architecture “emerge” during the coding phase – does not give the team any
way to deal with potential problems (e.g. conʰicting requirements, unforeseen costs)
before they arise, possibly bringing unexpected diʱculties later on that can signiʯcantly
increase development costs. As mentioned in Chapter 1, software development costs
indicate the eʮort required to develop or maintain software, expressed in hours of work
per person and/or amount of money required to carry out the project (Heemstra, 1992).

Well-deʯned software architectures also facilitate the practice of evolutionary prototyp-
ing, in which the software is quickly implemented as a skeletal system: parts of the
infrastructure and components are realized by third-party components that are plugged
into the architecture, conforming to the deʯned communication ʰows. In this way, the
system is executable early in its lifecycle, facilitating prompt detection of potential prob-
lems in the overall structure and the user interface. When the architecture has been con-
solidated, the prototyped or surrogate parts can be substituted by complete, improved
versions as the development progresses (Bass et al., 2012). Evolutionary prototyping can
be used not only to speed up development, but also to increase overall system quality.
Furthermore, early detection of problems contributes to lower development costs, since
generally it takes less eʮort to ʯx problems in earlier phases of the project.

Nevertheless, creating adequate software architectures can be diʱcult and time-consum-
ing, requiring many iterations to get a satisfactory solution. For this reason, reference
architectures are used as template solutions for a determined domain, providing ma-
jor guidelines for the speciʯcation of the architecture of one class of systems (Angelov,
Trienekens, & Grefen, 2008). Reference architectures can also function as generaliza-
tions of a set of solutions, often based on existing projects, with the objective of estab-
lishing standards for future projects (Reed, 2002). They are similar to design patterns, but
have a broader scope, targeting whole systems instead of just speciʯc software develop-
ment problems. Reference architectures can be used by software architects as a starting
point to support the deʯnition of architectures for particular projects according to best
practices, thus facilitating decision-making in the early phases of a project (Reed, 2002).
They can also help promote reusability and interoperability of the software produced
(Angelov, Trienekens, & Kusters, 2013), which, once again, can contribute to reducing
development costs through component reuse.

4.1.1 Types of reference architectures

Usually, a reference software architecture is deʯned as a list of components, functions, in-
terfaces, interactions between internal and external components, common vocabularies,
and so on. Examples of reference architectures include the Reference Architecture for
Adaptive Hypermedia (AHA) (Wu, 2002), the High Level Architecture for simulations
(HLA) (Kuhl et al., 1999), and the OATH Reference Architecture (OATH, 2007).

Reference architectures can have diʮerent characteristics, depending on their goals, con-
text of application, and design. A taxonomy of reference architectures presented by
Angelov, Grefen, and Greefhorst (2012) deʯnes a total of ʯve main types of reference

46

4.1. Software architectures and reference architectures

architectures and several variants. It classiʯes the architectures according to a series of
criteria, such as where they will be used, who creates them, if they describe existing or
future systems, their goals (standardization of existing systems or facilitation of devel-
opment of future systems), which elements are described and at which level of detail,
abstraction, and formality. The taxonomy aims to help the architect in designing a ref-
erence architecture with characteristics that match the context and goal, or, in other
words, that are “congruent”. According to the authors, architectures that are congruent
have a higher chance of acceptance by the target user group.

4.1.2 Design and evaluation

To design a software architecture, be it a “concrete” architecture or a generic reference
architecture, the crucial ʯrst step is collecting the architecturally signiʯcant requirements
(ASRs), that is, the requirements that have a direct impact on the architecture. ASRs
emerge not only from the functional requirements of a system but also from its quality
attributes (QAs) and constraints (Bass et al., 2012).

Functional requirements deʯne what the system is supposed to achieve. QAs, or non-
functional requirements, conversely, indicate how well the system achieves it, in relation
to some dimension of interest to the stakeholder (Bass et al., 2012). Common QAs for
software are reliability, availability, usability, testability, modiʯability, among others.
QAs can be further characterized by using quality attribute scenarios, which have the
beneʯt of making a QA more speciʯc and consequently unambiguous and testable (Bass
et al., 2012). Scenarios are an important asset for system architects and occupy a central
role in many methods for architecture development and evaluation.

Once the requirements have been deʯned, the architect can proceed to propose the ar-
chitecture design. One methodology for the design of reference architectures is the
Attribute Driven Design (ADD) methodology (Bass et al., 2012). This methodology
features a set of speciʯc steps that an architect must follow to develop a software ar-
chitecture. It recommends that the architect focus on smaller parts of the system at a
time, selecting only the requirements relevant at that stage, proposing a design, evalu-
ating the design against the requirements and making adjustments or proposing alter-
native designs. It is a highly iterative process, because each interaction must include a
re-evaluation of how the parts aʮect the overall requirements of the system.

Software architectures should be evaluated in the context of their explicitly stated goals.
The extent to which a software architecture achieves those goals (or requirements) is used
to judge the quality of the architecture. Consequently, the process of evaluating a soft-
ware architecture is typically carried out by systematically matching the characteristics
of the architecture to its previously deʯned requirements (Bass et al., 2012). Among the
manymethods dedicated to evaluating the quality of software architectures, Architecture
Trade-oʮ Analysis Method (ATAM) has established itself as one of the preferred meth-
ods, notably because of its easy integration with the design process (Ionita, Hammer,
& Obbink, 2002). ATAM is a scenario-based method for assessing the quality of sys-

47

Chapter 4. Software development and serious games

tem architectures, which provides a structured way to identify risks, sensitivity points,
and trade-oʮ points in the system. ATAM is especially suited for evaluating systems in
relatively early design stages and prototypes, serving as a valuable way for discovering
weak spots that can be addressed in subsequent iterations of the development (Kazman,
Klein, & Clements, 2000). ATAM relies strongly on the concept of scenarios, which
are explicit descriptions of the possibly ambiguous requirement statements into more
concrete, measurable scenarios of use.

Although many characteristics of the design and evaluation of reference architectures are
similar to those of “concrete” architectures, there are some important diʮerences. Since
reference architectures have a more generic nature, methods aimed at concrete software
architectures are not necessarily able to deal with these speciʯc characteristics (Angelov
et al., 2008). In particular, an ATAM evaluation of a reference architecture cannot be
performed without some adaptations, due to the lack of a clear group of stakeholders to
deʯne the desired requirements, and the very generic nature of reference architecture,
which makes it diʱcult to generate concrete scenarios. To address the shortcomings of
ATAM for evaluating reference architectures, Angelov et al. (2008) propose adaptations
to the ATAMmethod. In short, the authors propose that, instead of asking stakeholders
about generic scenarios for the reference architecture, the architect tries to elicit from
stakeholders a variety of concrete scenarios (i.e. scenarios that are speciʯc to a concrete
system, and not to a class of systems), which are easier to generate and to attribute mea-
surable qualities to. With a representative list of concrete scenarios, the architect can
then combine them into generic attributes and scenarios that are relevant to the refer-
ence architecture.

4.2 Reusability in SG design and development

In the entertainment game industry, because of the increasing costs of ever more real-
istic games, developers started looking for ways to optimize development. One of the
main strategies is reusing game components, speciʯcally through the use of game en-
gines. Game engines are collections of modules that handle input, output and generic
physics or dynamics of the game world, general enough to be reused in diʮerent games
(Lewis & Jacobson, 2002). Incorporating such components is expected to reduce devel-
opment time and cost (as buying components is usually cheaper than developing them
from scratch) and ensure quality (since the components are tested and used in diʮer-
ent environments); furthermore, it allows game developers to focus their eʮorts in one
single area, thus allowing advances at faster rates (Folmer, 2007). Nevertheless, inte-
grating components and managing the complexity of the resulting architecture are still
challenges that need to be overcome (Folmer, 2007).

BinSubaih andMaddock (2007) present an architecture that aims to enable game portabil-
ity across diʮerent game engines, with the objective of removing the strict dependency of
a game to the engine underneath it. The work highlights well the beneʯts of separation

48

4.3. Service-oriented architectures

of concepts and reusability in game design.

Speciʯcally for SGs, similar strategies have been proposed to reduce development costs.

Bellotti, Berta, De Gloria, and Primavera (2009) suggest that decoupling the content of
the SG from the underlying gaming software is a way of facilitating the extensibility
of SGs and to support domain experts in the creation of content, which can then hap-
pen independently of the development of the game itself. The project Travel in Europe
(TiE) is an example, in which an architecture style that supports both code reuse and
consistent interaction modalities across games is proposed (Bellotti, Berta, De Gloria, &
Zappi, 2008; Bellotti et al., 2010; Bellotti, Berta, De Gloria, D’Ursi, & Fiore, 2012).
The MetaVals Serious Game, a game for practicing basic ʯnance concepts, also imple-
ments decoupling between content and game: it consists of a modular database and an
independent graphic interface, with a management interface that facilitates conʯguring
the game to diʮerent contexts (Popescu, Romero, & Usart, 2012).

The use of authoring platforms is another strategy aiming at reducing the complexity of
game development. The eAdventure game platform serves as an authoring platform for
educational point-and-click adventure games, executing games deʯned in a specialized
markup language (Moreno-Ger, Sierra, Martínez-Ortiz, & Fernández-Manjón, 2007;
Torrente, Blanco, Moreno-Ger, Martínez-Ortiz, & Fernández-Manjón, 2009). The au-
thoring tool Puzzle-it divides the process of developing games into content authoring
and core engine development, making it possible for instructors to create content for
the games via the authoring tool without needing to be concerned about engine behind
the games (Pranantha, Bellotti, Berta, & De Gloria, 2012).

The Horizon-2020 Programme RAGE project, initiated in early 2015, has the objec-
tive of creating software modules for SGs and making them available as software assets
to facilitate SG development (Vegt, Westera, Nyamsuren, Georgiev, & Martínez-Ortiz,
2016). The architecture deʯnes assets as the software modules that can be linked or in-
tegrated with the game. These assets can be incorporated locally in the game engine
(client-side assets) or remotely via network calls (server-side assets). The project is still in
its early phases, and the architecture deʯned so far deʯnes in general terms the general
structure of the client-side components that are going to be developed throughout the
project.

4.3 Service-oriented architectures

SOA is a software architectural pattern (Bass et al., 2012) that “implements business pro-
cesses or services by using a set of loosely coupled, black-box components orchestrated
to deliver a well-deʯned level of service” (Hurwitz, Bloor, Baroudi, & Kaufman, 2006).
It is a set of ideas, recommendations, policies and practices for architectural design. One
of its goals is to employ modularization and compositionality to achieve ʰexibility and
to enable the reuse of software parts, in an attempt to manage the complexity of large

49

Chapter 4. Software development and serious games

systems (Sprott & Wilkes, 2004; Aalst, Beisiegel, Hee, Konig, & Stahl, 2007).

4.3.1 SOA and SG development

SOA architectures are already widely and successfully employed in several areas of soft-
ware engineering, including game development. One reason is that core principles of
SOA, such as modularization and compositionality, can help achieve ʰexibility in the de-
velopment and enable reuse of software parts. Unlike the case of traditional library reuse,
which requires replication of code, SOA supports reuse of the services themselves, which
provides a signiʯcant beneʯt regarding having up-to-date components without concerns
about maintenance of the code. Also, it supports such a level of abstraction that multi-
ple services can oʮer the same functionalities, potentially giving the developer a wider
choice of providers from which to obtain the service needed. Furthermore, SOA estab-
lishes standardized contracts between endpoints, placing formal obligations between the
consumer and the provider of the service and largely increasing reusability and inter-
operability. An implementation that complies with known web service standards (e.g.
Representation State Transfer (REST) or Simple Object Access Protocol (SOAP)) has ad-
ditional beneʯts, such as standardization, technology/platform neutrality and automatic
discovery and use (Sprott & Wilkes, 2004). The automatic binding of services removes
compile-time dependencies; the interface deʯnition happens in runtime, removing the
need to alter the code whenever there is a change in the service provider. This provides
ʰexibility in the development and improves maintainability (Stevens, 2005; Erl, 2005).

There are, nevertheless, challenges in adopting SOA. Quality assurance and testing mod-
ule integration tend to be more diʱcult when developing SOA applications (Hurwitz
et al., 2006). Also, a service can be practically unusable if its interfaces lack clarity or are
badly documented. Finally, extra attention has to be given to service descriptions, as they
are the way to advertise the capabilities, interfaces, behavior and quality of a service, pro-
viding the required information for discovery, selection, binding and composition with
other components (Papazoglou, Traverso, Dustdar, & Leymann, 2007).

The use of SOA in entertainment games is not uncommon. Houten and Jacobs (2004)
present an SOA architecture for distributed multiplayer simulation games that can be
used for training and learning purposes. Shaikh, Sahu, Rosu, Shea, and Saha (2006)
describe the design of an on-demand service platform to enable sharing resources across
online games, particularly targeted to solving problems of scaling the infrastructure in
response to players’ demand in massively multiplayer online games.

In addition, there is an increasing availability of service-based tools for game development
that make the choice of employing SOA in game development a particularly appealing
alternative. Such services include cloud-based infrastructure for building, deployment
and distribution (Amazon Web Services, 2014), platforms providing social connectivity
to games (Facebook, 2014) and services that provide generic gaming features such as
achievements, leaderboards and cloud saving (Lumos, 2014; Hartrell, 2013).

50

4.3. Service-oriented architectures

Tools created speciʯcally for SGs are less common in comparison to tools for entertain-
ment games. For example, the Serious Games Web Services Catalog (Serious Games
Society, 2013a) is a repository of web services that acts as a showcase for services for SG
development; nevertheless, as of the writing of this thesis, it contains only seven services
available, with two of them in prototype stage.

The SOA approach can enhance SG quality, particularly by enabling the incorporation
of features that are still rare in SGs, such as adaptation techniques, learning analytics, and
social media integration. It can also bring the potential beneʯt of decreased interdepen-
dencies and usage-dependent payment models (Arslan, 2012). Furthermore, it facilitates
dealing with scalability issues, which is particularly relevant to online games in which
several thousand players interact among themselves in a common platform, as the in-
creased load on the servers may bring performance concerns (Arslan, 2012). SOA also
makes it possible to access games from simple devices, eliminating the dependency on
the quality of gaming hardware. Also, providing pervasive gaming experiences becomes
easier, as support for diʮerent platforms is highly simpliʯed if the core of the gaming
experience is provided via a service on a centralized server (Hassan et al., 2012).

Despite the suggested beneʯts of the application of SOA to SG development, there are
very few examples of SOA-based SGs.

While the game itself has not been developed, a Service-Oriented Architecture was the
approach of choice for an envisioned gaming platform based on mobile augmented re-
ality, called Mobile Augmented Reality Learning (MARL). In this system, on-demand
location-based instruction would be delivered through a head-mount display by a vir-
tual instructor. The complete MARL game service would be composed of subsystems
that would provide visual, human computer interface, and training services, allowing
for the lower level objects to be encapsulated by the higher level interfaces, making it
easier for improvements in the algorithms to be incorporated into the service (Doswell
& Harmeyer, 2007).

The Rashi Intelligent Tutoring System teaches human anatomy through a problem-based
environment. Rashi is built with a web service architecture that supports on-demand
requests for small chunks of speciʯc knowledge, instead of requests for an entire case
speciʯcation at once, giving developers the ʰexibility to develop lightweight inquiry
tutors that run eʱciently over the web (Floryan & Woolf, 2011). On top of the same
existing service structure for the original (2D) inquiry system, the researchers built a 3D
game in which the student is a doctor who must diagnose a patient in a virtual hospital.

The Journey is a SG that teaches basic concepts of probability theory to high school
and entry-level university students. We developed the game as a prototype implementa-
tion of a service-based adaptive SG, employing the Competence-based Knowledge Space
Theory (CbKST) service to implement basic adaptation features for learning (Carvalho,
Bellotti, Berta, Gloria, Gazzarata, et al., 2015). Using our experience in the develop-
ment of The Journey and the subsequent evaluation of the architecture, we argue that
the application of SOA in the development of SGs can result in shorter development

51

Chapter 4. Software development and serious games

times, and more focus and ʰexibility in the development. The most immediate bene-
ʯt is the possibility to reuse services, as it directly impacts development times and the
ability of development teams to focus their eʮorts on other aspects of game develop-
ment (e.g. graphics, questions, game ʰow). Nevertheless, points of attention were also
identiʯed, particularly related to the performance of the game in case of unexpected net-
work/service unavailability, failure or slowdowns.

4.3.2 Open Group SOA Reference Architecture

While there are many beneʯts in adopting SOA, there can also be many challenges, par-
ticularly at the enterprise level. Achieving consistent architectures that meet the desired
objectives is important, but the learning curve to obtain those results is high, particularly
due to the signiʯcant shift in thinking that switching to a services paradigm requires.

For that reason, a framework has been created to provide guidelines and options for
making architectural, design, and implementation decisions in SOA solutions. The
Open Group SOA Reference Architecture (The Open Group, 2011) is intended to be a
blueprint for creating or evaluating service-based enterprise architectures. It has a two-
dimensional view with nine layers representing key clusters of considerations and re-
sponsibilities that typically emerge in the process of designing an SOA solution or deʯn-
ing an enterprise architecture standard (see Figure 4.1).

The horizontal layers (i.e. Consumer interfaces, Business processes, Services, Service
components and Operational systems layers) are functional layers. The lower layers
(Services, Service component, and Operational systems) are concerns for the provider,
and the upper ones (Services, Business processes, and Consumer) are concerns for the
consumer. The vertical layers (i.e. Integration, Quality of service, Information, and
Governance) represent cross-cutting concerns of a more supporting (non-functional or
supplemental) nature.

The services in the services layer can be sourced by an individual component, or by a
composition of services (Figure 4.2). In other words, the relationship does not have to
be one to one. One service can be implemented by more than one component (Service
1 in the ʯgure exposes functionalities from both Component 1 and Component 2), and
multiple services can expose functionalities oʮered by one single component (Services
2 and 3 expose functionalities provided by Component 3). It is also possible that the
service itself provides functionalities, without any component behind it (Service 4 in the
ʯgure).

There are two main ways of establishing compositions of services, that is, deʯning the
sequence of activities that allows services to achieve a common goal: choreography and
orchestration.

A choreography model captures the interactions in which the participating services en-
gage and the dependencies between these interactions, and it includes causal and/or

52

4.3. Service-oriented architectures

Figure 4.1: Layers of the Open Group SOA Reference Architecture (The Open Group, 2011)

Figure 4.2: Service components

53

Chapter 4. Software development and serious games

control-ʰow dependencies, exclusion dependencies, data-ʰow dependencies, interaction
correlation, time constraints, transactional dependencies, among others (Barros, Dumas,
& Oaks, 2006). It is decentralized, so there is no central entity controlling the ʰow of
messages and agreed rules of interaction between the services (left side of Figure 4.3).

Figure 4.3: Choreography versus orchestration

An orchestration model, conversely, represents a process that is controlled by one party,
in an executable business process (or orchestration engine) that coordinates the services,
invoking and combining them (Peltz, 2003). The right side of Figure 4.3 illustrates the
orchestration model.

In the Open Group SOA Reference Architecture, the Business Process layer represents
the parts of a system that are responsible for managing the ʰow of the activities of the
services. In other words, it is responsible for orchestrating services in the Services Layer.

❧

This chapter discussed concepts of software engineering that are important to understand
and evaluate the reference architecture proposed in Chapter 5 as the response to RQ3. It
also showed how the SOA architectural strategy, on which the Service-Oriented Refer-
ence Architecture for Serious Games (SORASG) (Chapter 5) is based, can bring beneʯts
for SG development, particularly in reducing development cost while maintaining soft-
ware quality.

54

Chapter 5

Service-Oriented Reference
Architecture for SGs (SORASG)

In Chapter 3, I described the Activity Theory-basedModel for Serious Games (ATMSG),
which is a tool that allows us to analyze serious games (SGs) of diʮerent genres and
topics, identifying their underlying structure and most important components. In this
chapter, I propose a software reference architecture called Service-Oriented Reference
Architecture for Serious Games (SORASG), based on the Service-Oriented Architecture
(SOA) architectural pattern. The SORASG used the ATMSG model as a starting point
to identify requirements for the architecture.

In the next sections, I ʯrst outline the relevance of the SORASG, highlighting how it
relates to the overall objectives of this thesis (Section 1.2). Subsequently, I describe the
process used in deʯning the architecture (Section 5.2). In Section 5.3, I list the require-
ments that guided the elaboration of the SORASG, including how the ATMSG model
guided the beginning of the process and how the quality attributes of the architecture ad-
dress the business goals, also presented in Section 1.2. Then, in Section 5.4, I describe the
reference architecture in detail. An example implementation of the SORASG is brieʰy
described in Section 5.5, demonstrating the buildability of the reference architecture.
Finally, in Section 5.6, I report the results of an evaluation of the SORASG.

5.1 Relevance

As mentioned previously, one of the research questions of this thesis is stated as: RQ3:
how can SG developers incorporate reusable components into their software development

Parts of this chapter appeared previously in Carvalho, Bellotti, Hu, et al. (2015).

55

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

projects? This question comes as a consequence of the following business goals: the ne-
cessity of reducing costs associated with the development of SGs, while maintaining the
quality of the games developed (BG1); allowing the reuse of existing technological so-
lutions (BG2), thus providing the SG developer with access to quality and up-to-date
components; and promoting the use of open standards and technology-independent so-
lutions (BG3). These business goals were presented and discussed in Section 1.2.

The SORASG was built to address directly the three business goals listed above. The in-
depth discussion of how these goals are achieved is presented in Subsection 5.3.3. Here
is a summary:

Firstly, the SORASG can be used as a starting point for development by oʮering estab-
lished solutions to typical problems encountered in the ʯeld. In this way, it can reduce
the complexity of the process at the beginning of the project, when decisions tend to be
more critical and have greater eʮects in its future phases.

Secondly, the SORASG oʮers a way for developers to reason about the system early in
the process, particularly for uncovering how the structure of the software is related to
the desired requirements and quality attributes (QAs). Making critical decisions early
reduces the probability of rework, by ensuring from the beginning that the system is
built according to the requirements. This way, late-stage changes, which are usually
much more costly than earlier in the process, are avoided.

Finally, the SORASG can facilitate consistency based on best practices, and guide de-
velopers on which aspects, building blocks, and layers of an SOA-based SGs should be
consideredwhen designing solutions or evaluating a game architecture. At the same time,
this consistency provides a common understanding of SGs elements, requirements and
typical solutions, which in turn can improve communication within teams and within
the industry/research groups through common vocabulary and concepts.

The points listed above are common to all reference architectures, and software architec-
tures in general. Nevertheless, currently there are not any other reference architectures
aimed speciʯcally at educational SGs, nor any signiʯcant eʮort in employing SOA in
the development of SGs, as discussed in Subsection 4.3.1.

There is one more beneʯt of the SORASG, which is particular to the work that I present
in this thesis. The SORASG aims speciʯcally at promoting the reuse of pieces of software
for SGs that are common among SGs of diʮerent genres and diʮerent learning topics.
Reuse of software is associated with reduced development time. In this case, I promote
speciʯcally the implementation of games in an SOA architecture, to take advantage of
its high emphasis on the use of decoupled interfaces, and to facilitate the production of
more readily integrated systems (see Subsection 4.3.1).

The SORASG can beneʯt SG developers, SG designers, and researchers in the ʯeld di-
rectly, as is argued in Section 5.6. It is also expected that the SORASGwill aid vendors in
providing software products that are more likely to support the needs of SG developers.

56

5.2. Architecture deʯnition process

5.2 Architecture deʝnition process

The SORASG was the result of an iterative process in which design and consultation
with stakeholders (and consequently evaluation) were constantly intermingled. In this
chapter, I give an overview of the process andmethods that were followed. I also describe
the involvement of stakeholders in the process.

Figure 5.1 illustrates the diʮerent phases of this work and how they inʰuenced each
other. The arrows indicate when the outcome of a certain phase was used as input for
another phase. Chronologically, the process happened as illustrated in Figure 5.2. Each
relevant aspect of the process is detailed in the following sections.

Figure 5.1: Relationships of each step in elaborating the SORASG

5.2.1 Requirements deʝnition

The ʯrst step in the process of designing the SORASG was to deʯne a series of func-
tional requirements that would be relevant for the whole ʯeld of the development of

57

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

F
igu

re
5

.2
:T

im
elin

e
fo

r
elab

o
ratin

g
th

e
SO

R
A

SG

58

5.2. Architecture deʯnition process

educational SGs. For that end, we made a qualitative analysis of the ʯeld to identify
functional areas, subsystems, and desired goals. The ATMSG model was the starting
point for this analysis. Subsection 5.3.1 expands this investigation and details how the
ATMSG model was used to identify the functional requirements for the reference archi-
tecture.

We also created a list of QAs, collected from the business goals of the architecture and the
analysis of the domain. At this point, we compiled an initial list of possible constraints
for the architecture.

The functional requirements and QAs were validated and complemented with the feed-
back obtained from stakeholders, particularly in the individual interviews and the online
questionnaire.

The updated QAs, functional requirements and constraints served as input to generate
the list of architecturally signiʯcant requirements (ASRs) and its related scenarios in a
utility tree. The ASRs are important input artifacts in the design of software architec-
tures, for example when applying the Attribute Driven Design (ADD) methodology,
and in the formal evaluation of software architectures and reference architectures. The
ASRs and scenarios are described in Section 5.3.

5.2.2 Design iterations

Once the ASRs were deʯned, the process of designing the reference architecture started.

The ʯrst version of the reference architecture contemplated mostly the required modules
and connections between them, without details on the interfaces. The focus of this
iteration was to establish the division of modules and functionalities and the general
pattern of interaction between them.

The ʯrst phase of consultations with stakeholders (group evaluation and individual inter-
views, see Subsection 5.2.3) informed smaller updates in the reference architecture. The
feedback helped in identifying weak and unclear points in the description that needed to
be addressed. At the same time, the development of the reference implementation also
helped identify other necessary modules and reʯne details of the interaction between
modules. This step marked the second version of the reference architecture.

After the feedback was collected and consolidated into ASRs, these requirements and
their scenarios were used to update the reference architecture once again. The SORASG
was also further reʯned to include the level of detail and necessary views that would be
consistent with its purpose and audience (Angelov et al., 2012; Bass et al., 2012).

In total, the architecture was deʯned in three iterations (see Figure 5.2). The consolidated
version of the SORASG is described in Section 5.4.

59

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

5.2.3 Stakeholders involvement

The design and evaluation of reference architectures is a slightly diʮerent process than
that of software architectures (see Subsection 4.1.2). While involving stakeholders re-
mains one of the main strategies, some adaptations in the process are needed to be able
to collect knowledge and experience from the stakeholders and to use that knowledge
in deʯning a relevant set of QAs and functional requirements to inform the design and
evaluation.

We gathered a group of people that we considered representative of the stakeholders for
the SORASG. A total of 18 people, divided into three groups, were consulted in three
diʮerent stages: one group discussion, a set of individual interviews, and participation
in online questionnaires. Table 5.1 summarizes the background of the participants in-
terviewed and lists the stage in which they participated. Each stage is discussed in more
detail in the following subsections.

Stage Game/SG
developers

Game/SG
re-

searchers

Others Total

Group discussion 2 . 1 3
Individual interview . 2 . 2
Online survey 6 2 5 13
Total 8 4 6 18

Table 5.1: Stakeholders consulted, by stage of participation and background

Group discussion

The group discussion happened during a tutorial on SOA development for SGs, oʮered
as part of the 14th IFIP International Conference on Entertainment Computing (ICEC),
held in Trondheim, Norway, in 2015 (Carvalho, Hu, Bellotti, De Gloria, & Rauterberg,
2015). The target audience of the conference consisted of practitioners, academics, artists
and researchers involved or interested in the creation, development and use of digital
entertainment in general. The conference oʮered a track on entertainment for purpose
and persuasion, including games for learning and SGs. Participation in the tutorial was
open to any registered participants in the conference. The tutorial was advertised as an
introduction to the beneʯts of applying an SOA approach to SG development, including
a practical session in which a preliminary version of the reference architecture would be
used to rethink existing SGs or game ideas into services. Participants could then expect
to learn about current service technologies that could be useful in their daily practice,
while we, as the organizers of the tutorial, would obtain their feedback on our work in
the reference architecture.

Three participants remained in the tutorial for the discussion and evaluation of the ref-
erence architecture. In the discussion, the explicit objective was to deʯne QAs which

60

5.2. Architecture deʯnition process

would be relevant to the deʯnition of a reference architecture for SGs. Two of the par-
ticipants were game developers while one participant was a secondary school teacher.

A more detailed discussion of the data collected during the group discussions is available
in Appendix A.

Individual interviews

The second stage of the consultation with stakeholders happened as individual inter-
views. We consulted two academic researchers on game design: one full professor and
one PhD student. The interviews followed the procedure: ʯrst, we explained to the par-
ticipants, in general terms, the objective of the research. They were shown a preliminary
version of the reference architecture, and the goals of the architecture were presented.
They were asked to give their free impressions on the reference architecture, particularly
focusing on if they believed the reference architecture would be useful in their daily prac-
tice. Finally, they were asked to mention how they thought the reference architecture
could be improved. The whole procedure lasted 60–90 minutes.

A more detailed discussion of the data collected during the individual interviews is also
available in Appendix A.

Online questionnaire

The last stage of consultation with stakeholders took the form of an online question-
naire. A total of 13 participants – including game and SG developers and researchers
(see Table 5.1) – ʯlled in the questionnaire. The participants were recruited online, via
direct e-mail messages and social media posts. Participants were requested to forward
the invitation to their contacts. The questionnaire was anonymous. Participants would
only be asked to inform their email addresses if they agreed to participate in an eventual
follow up on the questions. The questionnaire was expected to take 25–30 minutes. No
compensation was oʮered. The questionnaire is available in Appendix B.

While the techniques for collecting QAs and scenarios from stakeholders, particularly in
the context of architectural evaluation using the Architecture Trade-oʮ Analysis Method
(ATAM)method, are typically performed in synchronous co-locatedmeetings, this is not
a requirement of the method (Bass et al., 2012). Distributed and asynchronous methods
can be more cost-eʮective because they are easier to organize, particularly when it is
diʱcult to get all participants together for a full day event.

The main objective of the questionnaire was to collect desired QAs, scenarios of use
and, most importantly, to prioritize the attributes. We also wanted to validate our list
of functional requirements, which so far had been obtained solely from a theoretical
analysis of the domain.

We followed the suggestion proposed by Angelov et al. (2008) of trying to obtain con-
crete QAs from the stakeholders, instead of abstract attributes from imagined situations

61

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

(see Subsection 4.1.2). For this reason, we asked the participants to select, from a pre-
deʯned list of QAs, those attributes that were relevant to one project of SG design or
development in which they were directly or indirectly involved in the past, or at least
with which they were familiar3. Subsequently, we asked the participants to rank those
QAs and write scenarios illustrating them.

To have an estimation of the variety of projects that were used to select the QAs and
generate scenarios, we asked the participants to list the three most important educational
and entertainment goals of their project. We labeled the answers, combining similar
responses. Table 5.2 lists the labels that were mentioned by the participants, in order
of frequency. From this table, we can see that the responses illustrate a wide variety of
gaming and learning goals, ranging from games that aim to provide information about
a topic or teach a particular skill, to simulations and games used to extract user proʯles
from interactions with the game.

Item Occurrences
1 Provide information about certain content 8
2 Teach a particular skill 7
3 Engagement and motivation 5
4 User proʯling and stealth assessment 4
5 Promote creative thinking 3
6 Simulate a certain real-world situation 3
7 Allow for practicing a particular skill 2
8 Persuade about certain topic 2
9 Data logging 1
10 Provide real-life examples 1

Table 5.2: Game goals mentioned by participants in free text questions

We also collected desired functional requirements. We asked participants to list three
main functionalities that they think are relevant for educational SGs in general, inde-
pendently of their topic or learning objectives. Participants were asked to inform this
as free text answers. However, some responses were not functional requirements, but
rather quality attributes (QAs). We coded all answers, grouping similar responses, and
subsequently excluded the answers that were not functional requirements.

To obtain an ordered list of the most important QAs, according to the participants, we
asked them to select and rank a list of QAs that they considered relevant for the SG
project in which they were involved. We attributed weights to occurrences of items in
the ranking, in which a weight of 7 was attributed to the items ranked in the 1st position,
and a weight of 1 was attributed to items in the 7th position. Items ranked lower than

3The full list and descriptions of quality attributes presented to the participants are available in Appendix D.

62

5.2. Architecture deʯnition process

the 7th position, if any, were not considered. We calculated a normalized weight (x̄) for
each attribute according to (1):

(1)

x̄attribute = 10×

7∑

i=1

wini

7P

(wj)
k
j=1

= 8− j

where i is the rank position, wi is the weight for position i, ni is the number of oc-
currences of the attribute in position i, and P is the total number of participants who
provided ratings. The maximum position in the rank we consider, and also maximum
weight that can be given to an attribute, is 7. The weights were multiplied by 10 to ʯt a
1–10 scale. The attributes were sorted in descending order of their normalized weights.

The original rankings are listed in Table 5.3. The ordered list of attributes is shown in
Table 5.4 and illustrated in Figure 5.3. In the free-text questions, participants also men-
tioned the followingQAs: functional correctness, data security, responsiveness, reusabil-
ity of components and use of industry standards.

Rank position
Attribute 1 2 3 4 5 6 7 Count

1 Availability . . 1 . . 1 . 2
2 Deployability . 3 1 1 1 . 1 7
3 Development

distributability
. . . 1 . 1 . 2

4 Interoperability . 1 1
5 Mobility 2 1 1 4
6 Modiʯability 2 . 1 1 . . . 4
7 Monitorability
8 Performance 1 1 1 . . 1 . 4
9 Portability . . 2 1 . . . 3
10 Safety 1 . 1 . 1 . . 3
11 Scalability
12 Security
13 Testability 2 . . . 1 . . 3
14 Usability 2 4 . 1 . . . 7
15 Variability 1 . . 1 . . 1 3

Count 11 10 8 6 3 3 2 43

Table 5.3: Ranks attributed to each quality attribute

63

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Attribute N Total weight Norm. weight
(0-10)

1 Usability 7 42 5.45
2 Deployability 7 31 4.03
3 Mobility 4 25 3.25
4 Modiʯability 4 23 2.99
5 Performance 4 20 2.60
6 Testability 3 17 2.21
7 Safety 3 15 1.95
8 Portability 3 14 1.82
9 Variability 3 12 1.56
10 Availability 2 7 0.91
11 Interoperability 1 6 0.78
12 Development distributability 2 6 0.78
13 Security 0 0 0.00
14 Scalability 0 0 0.00
15 Monitorability 0 0 0.00

Table 5.4: Normalized weights of each quality attribute

Figure 5.3: Ranked order of importance of QAs

64

5.2. Architecture deʯnition process

Finally, we asked participants to write scenarios illustrating the top three QAs that they
selected and ranked for their project. These scenarios served as input for us to write
our consolidated scenarios for the QAs included in the ASRs. The original scenarios
described by the participants for each attribute are listed in Appendix E.

5.2.4 Implementation

Parallel to the updating of QAs and reʯnement of the second version of the reference
architecture, we started developing a prototype that has been implemented following the
reference architecture. The objective of this eʮort was mainly to use the development
process itself as input to reʯne the deʯnition of the reference architecture, as it allowed
for more concrete deʯnitions of interfaces and practical issues in connecting the modules
proposed in the architecture.

We chose to update an existing open source puzzle game called Lix (Naarmann, 2011) and
integrate some of the identiʯed SG functionalities to it, namely assessment and learning
analytics capabilities, and simple adaptation. By altering an existing game, we could focus
on aspects of the implementation of the architecture, without the overhead of developing
a whole game from scratch. Conclusions and lessons learned from the development
process were taken into consideration in the second version of the reference architecture.

In addition to helping us elaborate the details of the reference architecture, the reference
implementation also played a role in complementing the evaluation of the architecture.
It served as a partial evaluation of the buildability of the reference architecture, using
it to survey existing technologies that support the functionalities deʯned in the refer-
ence architecture and how much work would be needed to include external pieces in
the architecture. We could also evaluate how useful the architecture is when trying to
incorporate new educationally-relevant features to existing games.

The conclusions and lessons learned from the development of the example implementa-
tion are discussed in Section 5.5.

5.2.5 Evaluation

Since architectural design choices have a direct impact on the system to be designed,
the evaluation of a software architecture (or reference architecture) is an important step
to be performed before the beginning of any system development, to allow for timely
discovery and resolution of potential problems (Angelov et al., 2008).

To evaluate the architecture, we followed a two-step approach. First, we evaluated the
functional completeness of the SORASG, comparing the desired functions to the func-
tions that the architecture supports. Then, we evaluated the quality of the architecture
by employing an adapted ATAM evaluation (Angelov et al., 2008), which checks if the
reference architecture supports the desired quality attributes of the system. Addition-

65

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

ally, we complemented the analytical evaluation of the architecture by examining the
experience of building the example implementation of the SORASG.

The ATAM evaluation gives us a straightforward way to enlist the expected beneʯts and
drawbacks of the reference architecture, comparing its characteristics to the requirements
that the design should fulʯll. This type of analysis is important because it can be done
early in the development process, before any line of code is written. Since software
development is expensive, the possibility of avoiding future errors is preferable and cost
saving (Bass et al., 2012; Angelov et al., 2008). The procedure of the ATAM method is
described in detail by Kazman et al. (2000). The adaptations suggested by Angelov et al.
(2008) are described in Subsection 4.1.2.

A complete ATAM report includes a series of information that can be used to give us a
complete picture of the architecture, its goals and the result of the evaluation (Kazman
et al., 2000). In this thesis, the typical parts of an ATAM evaluation are presented in
diʮerent parts of the document, namely:

• The business drivers of the architecture are described in Section 1.2;
• The description of the architecture is given in full in Section 5.4, and the summary
of the architectural approaches is available in Subsection 5.4.2;

• The prioritized quality attribute tree is given in Subsection 5.3.3;
• The tables with the full analysis of the architectural approaches are available in
Subsection 5.6.2;

• The summary of the results of the analysis is presented in Subsection 5.6.3.

The results of the ATAM evaluation and the lessons learned from the development of a
reference implementation are described in Section 5.6. The characteristics of the game
and the conclusions that were drawn from the experience of developing a reference im-
plementation are discussed in Section 5.5.

Nevertheless, an analytical evaluation of a reference architecture can only go so far. Once
the reference architecture is completed and published, more concrete evaluation metrics
can be applied, particularly acceptance by the development community, quality of the
resulting systems and the architecture’s eʮects in the development process.

5.3 Requirements

As mentioned in Subsection 4.1.2, the design of software architectures (including refer-
ence architectures, which are a special type of software architectures) is highly dependent
on well-deʯned architecturally signiʯcant requirement (ASR). These requirements serve
as starting point for the design and as a reference for constant evaluations, as recom-
mended by the ADD methodology.

66

5.3. Requirements

In this chapter, I ʯrst provide a decomposition of the business domain that is based on
the theoretical model proposed in this work (the ATMSG, see Section 3.2).

This decomposition is followed by an analysis that identiʯes the functional requirements
that the reference architecture must support. In particular, I provide an analysis of the
common characteristics of SGs, that is, characteristics that are shared between games of
diʮerent domains and diʮerent learning topics.

Subsequently, I describe the list of QAs that are relevant for the reference architecture.
The QAs have been extracted primarily from the business goals (see Section 1.2), but
complemented with characteristics extracted from the domain analysis, and later vali-
dated and expanded from the consultations with the stakeholders.

5.3.1 Analysis of business domain

A crucial initial step to determine the functional requirements of a system is decom-
posing the business domain into its functional areas, subsystems, and desired goals, to
identify processes and high-level business use cases. Then, these processes are selected as
possible candidates for system functionalities or modules. This step is common among
several methodologies for system development (Ning, 1996; Ricordel & Demazeau,
2000; Papazoglou & Heuvel, 2006; Erradi, Anand, & Kulkarni, 2006; Arsanjani et
al., 2008). In this section, we, therefore, provide such an initial analysis of the business
domain.

The motivation behind this analysis was to identify explicitly which learning elements
exist independently of game genre and topic, and can be incorporated in a modular fash-
ion into game architectures. In other words, we wanted to identify which elements
would be useful in achieving the two main business goals identiʯed previously, namely
to reduce costs of SG development and to promote reusability. However, there is a legit-
imate concern that reusing generic software pieces in game development could result in
generic solutions that do not meet the desired educational and entertainment goals. For
this reason, it is also important that there is an explicit link between theory and prac-
tice. The ATMSG model and its associated taxonomy of game elements (see Chapter 3)
served as this link, helping us reʰect upon which SG components are relevant in a wide
variety of situations.

The ATMSG taxonomy provides an overview of a large number of commonly found
elements of SGs. Among these, we collected a number of relevant items for our pur-
pose. The criteria for the selection were (a) relevance for the eʮectiveness of educational
SGs, and (b) possibility of reuse across diʮerent games and learning domains, at least
within the same game genre. These items are discussed below, grouped by the activities
according to the ATMSG model.

67

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Game activity

Game engines (such as Unity) have been successfully used to abstract gaming elements,
for example to speed up the creation of 3D game worlds and characters. Nevertheless,
evenwhen game engines are used, games are typically still built as black boxes, that is, in a
way that conceals the game’s inner workings. On the one hand, this signiʯcantly reduces
the complexity of game development; on the other hand, it hinders the possibility of
implementing functionalities that are not directly available in the game engine. To be
able to enhance games with external functionalities, it is thus necessary to create a way
to expose what happens inside the game (in-game events such as players’ actions, scores,
achievements, level progression, and so on) to external modules in a reusable manner,
translating those events into information that will be useful to these modules.

Because the majority of gaming elements are highly related to game genre and topic, we
did not specify gaming elements as candidate functionalities, but instead we treated most
of the gaming actions as events that can be listened by external modules. One exception:
actions that are related to obtaining information are also game- and genre-independent,
and thus they represent excellent candidates for abstraction.

Among gaming tools, elements that are independent of genre are those related to goal
metrics and feedback on the goals, such as achievements, performance scores, and leader-
boards. Moreover, in a related fashion, among gaming goals, the elements related to com-
petition based on performance can be abstracted, particularly if existing social networks
are used to connect players to their peers.

Learning activity

Learning activity elements are highly dependent on the context of the SG, particularly
on game genre.

Dependency on the context is especially true in the case of learning actions. For example,
actions such as memorizing, locating, classifying or assessing have particular implemen-
tations depending on both the topic and the game itself. Consequently, no reusable
elements were selected from this list for inclusion as candidate services.

Among learning tools, however, some elements were considered general enough to be
useful for a subset of game genres, even if they are not relevant to all kind of games
at all times. In particular, surveys and questionnaires – similarly to knowledge bases –
are tools that can be easily abstracted and implemented separately from the game. We
also identiʯed that stand-alone modules to store and display media (e.g. audio, video,
pictures) can be developed. Finally, student diaries can also be implemented in a way
that can be game- and topic-independent.

Lastly, among learning goals, themost genre- and topic- independent element is “learning
how to learn”, or self-reʰection on learning. A module to provide students with an
overview of their progress is another good candidate for a reusable service for SGs.

68

5.3. Requirements

Instructional activity

Intrinsic instructional activity The following intrinsic instructional actionswere selected
as candidate services: scaʮolding, repetition, show similar problems and supporting re-
covery from errors. These elements are related to adapting the level of challenge to the
player’s current capabilities, which is an important factor for the eʱcacy of educational
mediums (Kickmeier-Rust & Albert, 2012b).

Among intrinsic instructional tools, we highlighted quantitative assessment of perfor-
mance, either using simplemetrics (e.g. goal achievement, scores) ormore complexmeth-
ods such as the Competence-based Knowledge Space Theory (CbKST) (Kickmeier-Rust
& Albert, 2012b).

From the list of intrinsic instructional goals, several items were selected: presenting the
stimulus, providing feedback, assessing the performance, fostering conʯdence and pro-
viding satisfaction to the player. The items above relate to in-game assessment, feedback,
and automatic adjustment of instruction (adaptivity).

Extrinsic instructional activity Some elements in the extrinsic instruction list are similar
to the ones already described in the intrinsic instructional activity. Here, however, the
focus is on elements that a service-based reference architecture could still incorporate to
support the instructor in assessing and giving feedback to the student via the game.

Qualitative assessment of performance is an action that is both important and poten-
tially relevant across SG genres. It is the only item selected among the list of extrinsic
instructional actions, since the other actions happen, by deʯnition, outside of the game.

Among tools and goals, the selected items are also featured in the intrinsic instruction
activity: performance measures, performance assessment, and feedback. These elements
were selected as candidates because they can be used to inform instructors about learners’
performance, then provide a way to incorporate the instructor’s input back into the
game.

In this section, I described our analysis of the educational SG domain, in which ele-
ments that were considered both relevant and with high potential for reuse were selected.
Table 5.5 summarizes the elements according to the activity to which they belong.

5.3.2 Functional requirements

Once the relevant educational SG components described in the ATMSG taxonomy were
identiʯed and collected, we regrouped them according to their functional domains. In
this way, we could identify the clusters of components particularly suited for reusability,
which would form the base for the functional requirements of the reference architecture.
The result of this grouping is shown in the column “Functional domains” of Table 5.5.

69

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Activity Element type Items Functional domains FR

Actions Events listener Game connectors FR4
Gaming Watch/Listen to/Read

information
Information storage and
retrieval

-

Ask questions Information storage and
retrieval

-

Tools Social network score Between-players interaction -

Leaderboards Between-players interaction -

Goals Competition Between-players interaction -

Actions - - -
Learning Tools Surveys, questionnaires Student-instructor interaction -

Student diary Student-instructor interaction -

Media assets (audios, ʯlms,
graphics, etc.)

Information storage and
retrieval

-

Goals Reʰective observation Feedback FR1
Learning how to learn Feedback FR1

Actions Quantitative assessment Assessment FR2

Intrinsic Scaʮolding Personalization and adaptivity FR3

instruction Show similar
problems

Personalization and adaptivity FR3

Support recovery
from errors

Personalization and adaptivity FR3

Tools Performance measurements Assessment FR2
Goals Assess performance Assessment FR2

Provide feedback Feedback FR1
Conʯdence Assessment, Personalization

and adaptivity
FR2,
FR3

Satisfaction Assessment, Personalization
and adaptivity

FR2,
FR3

Actions Qualitative assessment Assessment FR2

Extrinsic Tools Performance measures Assessment FR2
instruction Goals Assess performance Assessment FR2

Provide feedback Feedback FR1

Table 5.5: ATMSG elements grouped by functional domains, with their associated functional require-
ments (FR)

70

5.3. Requirements

From the list of functional domains, we selected the functional requirements for the ref-
erence architecture, based on their potential applicability in diʮerent games of diʮerent
domains and learning topics. The functional requirements are numbered FR1–FR6 for
later reference, and further described below.

[FR1] Feedback Feedback functionalities provide a way to send assessment results to
the player, to support his or her self-reʰection on learning. The term feedback, as
used here, refers to information explicitly disclosed to the player, directly inside
the game or indirectly via other means. It can also be provided during gameplay,
immediately after, or at a later stage (e.g. debrieʯng sessions, test results).

[FR2] Assessment Assessment functionalities can include modules for quantitative (au-
tomatic) and qualitative (instructor-provided) assessment, in addition to usage data
that can help in identifying patterns of usage (learning analytics). It can also in-
clude modules for assessment of player/learner’s engagement, conʯdence, and sat-
isfaction.

[FR3] Personalization and adaptivity Adaptivity functionalities are responsible for en-
abling the game to respond diʮerently to diʮerent players, according to their pro-
ʯles or preferences (personalization), or to their in-game performance (adaptivity),
as illustrated in Figure 5.4. Personalization occurs once, at the beginning of the
game, and the user proʯle is updated at the end of a gaming session. Adaptivity
occurs throughout the game, in a constant exchange of messages between the game
and the module providing adaptivity functionalities.
Adaptivity is distinguished from Feedback in which the former is implicit, and
often the player will not be consciously aware of the game’s reactions to his or her
performance while the latter is explicitly displayed to the player.

Figure 5.4: Distinction between game personalization and adaptivity

[FR4] Game connectors Game connectors provide adapter modules and data models
that link external services to the game. These connectors are possibly a game en-
gine plug-in responsible for implementing trigger managers that detect important

71

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

in-game events and forward messages to the other modules or services connected
to the game. These connectors will most likely be game- or at least genre-speciʯc.

[FR5] User proʝling Although not directly derived from the taxonomy, a common
user proʯle functionality is required to enable interaction, synchronization and
persistent features across diʮerent games and learning settings. User proʯling is
also necessary to make it possible to personalize the game according to user’s pro-
ʯle or preferences.

[FR6] Data logging A data logging module is responsible for collecting relevant game
data from the game and exposing it to the other services, and, whenever needed,
storing the data for further processing. This functional requirement was collected
from stakeholders via an online questionnaire (see Appendix C).

As can be seen in Table 5.10, three other functional domains were identiʯed as suited
for reusability, but were not mapped as functional requirements. These domains, albeit
generic, are not universally relevant for all games, nor homogeneous enough for inclu-
sion in the scope of an overarching reference architecture for SGs. For this reason, we
decided to not include them as functional requirements for the SORASG. These domains
are described below.

Between-players interaction These are functionalities to collect, display and compare
scores, such as social leaderboards. They do not include multiplayer capabilities
inside the game.

Student-instructor interaction These are functionalities to allow instructors to query
players/students, prompting for answers to questions or surveys, or for reʰections
in their learning process (student diaries).

Information storage and retrieval These are functionalities to allow the management
and use of information about topics in the game (i.e. non-playing characters’ knowl-
edge about the game world) or about the learning domain itself. These function-
alities can be especially useful when dealing with topics potentially relevant for
diʮerent games or learning applications. If these functionalities include descrip-
tive metadata, it can be much easier to implement resource discovery, and also to
reuse those resources in diʮerent games. Functions that can connect to knowledge
databases and convert their data to other formats are also included in this category
(e.g. adapters for natural language interaction, automatic generators of question
and answers, and so on).

5.3.3 Quality requirements

Previously, I listed the main functionalities that the reference architecture should con-
template. In this section, I describe the QAs, or non-functional requirements, that the
reference architecture must meet.

72

5.3. Requirements

In the software architecture life cycle, gatheringQAs is an important step, and sometimes
not a straightforward one. In many cases, the QAs will not be found in oʱcial, written
requirement documents, but instead they must be uncovered through interviews with
stakeholders and analysis of the organization’s business goals (Bass et al., 2012).

In the case of the SORASG, the QAs have been identiʯed from two sources: the archi-
tecture’s business goals and from the feedback from stakeholders. From the three busi-
ness goals (BG1–BG3) (described in Section 1.2), we extracted the related QAs. From the
feedback from stakeholders (Subsection 5.2.3), we collected the highest ranked attributes
and analyzed them according to their relevance to the SORASG. In the prioritization of
the QAs, the business goals were given the highest importance, given that they reʰect
the overall objectives of the reference architecture and of this research. The attributes
mentioned and ranked by the stakeholders were considered according to their relevance
to diʮerent types of SGs. The results of this analysis are presented below. For each QA,
a scenario that characterizes and further deʯnes the attribute is provided.

[QA1] Development distributability Development distributability represents the abil-
ity of the software of supporting distributed software development. This attribute
is elicited mainly by the goal “reduce development costs while maintaining qual-
ity” (BG1), because if parts of the game development can be reused from existing
components, the cost associated with including those functionalities is reduced.
At the same time, the quality of the implementation depends on how well the
diʮerent pieces that have been developed by diʮerent teams, and sometimes with
diʮerent purposes than those needed by the game, can connect to each other while
still realizing the desired business requirements of the software. In our case, the
business requirements are the learning and entertainment goals of the SG.
The goal “allow reuse of technological solutions” (BG2) also elicits the QA devel-
opment distributability. Asmentioned in Section 1.2, the access of up-to-date com-
ponents, created and maintained by experts in the ʯeld, requires that the software
be ʯt for development by independent groups. The architecture must support
this structure to allow for reuse of parts that have been developed by completely
diverse teams, often from diʮerent companies or project groups, and sometimes
from completely diʮerent ʯelds.
The scenarios that illustrate this attribute are:

• [S1] Diʮerent coding teams can work in diʮerent parts of the system at the
same time, with minimal coordination.

• [S2] It is possible to reuse existing components in the game, even if developed
by third parties.

[QA2] Modiʝability Modiʯability is the ability to change the software easily. The busi-
ness goal of reducing development costs also elicits the QA modiʯability, since it
opens the possibility of recycling existing games into other games with similar
game mechanics and pedagogical approaches but in diʮerent learning domains. It

73

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

also gives instructors some degree of ʰexibility to customize the game according
to their needs. Furthermore, modiʯability is also desirable when developing soft-
ware in an iterative way, as being able to modify the software between the multiple
iterations reduces the cost of development while keeping the quality.
Usability was the highest ranked attribute by the stakeholders we consulted. Nev-
ertheless, we do not include usability directly as a QA for the reference architec-
ture, since this requirement depends on the characteristics of each system. How-
ever, given that one of the techniques to design usable interfaces is testing several
development iterations with users, we consider modiʯability as a proxy require-
ment for usability, as modiʯability facilitates evolutionary prototyping.
The scenarios that illustrate this attribute are:

• [S3] The system can be easily reconʯgured for use with alternative compo-
nents providing similar functionalities.

• [S4] Related games, with similar characteristics or content, can be created
with minimal eʮort.

• [S5] The game can be changed to incorporate new content or tasks.

[QA3] Interoperability Interoperability accounts for the software’s ability to exchange
meaningful information via interfaces. The goal “allow reuse of technological so-
lutions” (BG2) implies the QA interoperability, as it is obviously an attribute that
is desirable when trying to reuse software developed by third parties.
The goal “promote the use of open standards and technology-independent solu-
tions” (BG3) is also directly related to the QA interoperability.
Interoperability can be considered closely related to the QA mobility, which was
ranked as a highly relevant attribute by the stakeholders. Interoperability is needed
to support a number of distributed components running on diʮerent platforms in
an SOA architecture. We do not include mobility directly as a QA in our list of
ASR, as the SORASG is not meant to target speciʯcally mobile platforms. How-
ever, as discussed in Subsection 4.3.1, the architectural pattern of SOA is consid-
ered one possible solution for accessing games from devices with limited comput-
ing power, and interoperability is a crucial attribute for SOA.
The scenarios that illustrate this attribute are:

• [S6] The game is capable of exchanging information with connected compo-
nents, and the data is automatically interpreted.

• [S7] Game components can run on diʮerent platforms.
• [S8] Player’s data is stored in an open standard format. The data can eventu-
ally be imported and interpreted by third-party tools (e.g. learning manage-
ment systems (LMS)).

[QA4] Privacy and security Privacy and security issues were mentioned by partici-
pants as important points. Of particular notice were the implications of storing

74

5.3. Requirements

user data in servers in diʮerent countries, which can also bring diʱculties for de-
velopers to work in accordance with privacy laws of diʮerent countries.
While privacy and security are two diʮerent issues, we consider them together as,
from the viewpoint of the user, the desired eʮect is the same: that user data is
protected from unauthorized access.
The scenarios that illustrate this attribute are:

• [S9] Players’ personal data is not disclosed to third parties. Storage and trans-
fer of players’ personal data are minimized.

• [S10]No personal data is disclosed without users’ explicit consent. Users can
revoke rights to their data at any time.

[QA5] Performance Performance was mentioned by group interview participants and
questionnaire respondents as a relevant QA. Particularly for games, the system
must be responsive enough as not to interfere with the gaming experience. More-
over, in the case of systems that make extensive use of network calls, it is important
to make sure that the gaming experience is not negatively aʮected by eventual de-
lays.
The scenario that illustrates this attribute is:

• [S11]The player’s gaming experience is not aʮected by the software response
times.

While theQAdeployabilitywas considered important by stakeholders (because installing
games often needs to be done by users with little or no familiarity with computers,
e.g. children, teachers, doctors), it is an attribute that is highly dependent on each soft-
ware’s requirements. As such, it was not considered general enough for inclusion as an
attribute in the reference architecture.

Table 5.6 relates each QA to its source (business goal or feedback from stakeholders).

Utility tree and scenario prioritization

A utility tree is a visual representation of the desired attributes of a software architecture,
as the expression of the “goodness” of a system (Kazman et al., 2000; Bass et al., 2012). It
gives us a compact representation of the desired QAs, in a format that is easy to reference
during the design and evaluation of the architecture.

As its name implies, the utility tree deʯnes a tree structure, with levels that depict further
reʯnements of the collected attributes of the system. The ʯrst level of the utility tree
lists the relevant QAs. These QAs are quite generic, however, and must be further
reʯned. The second level of the tree presents a decomposition of the attributes, reʯning
the attributes into a more detailed description. Each reʯnement is then represented in
the form of scenarios, which help concretize vague qualities into speciʯc examples of

75

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Quality attributes Source of attribute
[QA1] Development
distributability

- Business goal ”Reduce costs while maintaining quality”
- Business goal ”Reuse of technological solutions”

[QA2] Modiʯability - Business goal ”Reduce costs while maintaining quality”
- Individual interviews
- Questionnaires, to support evolutionary prototyping, which in
turns supports usability

[QA3] Interoperability - Business goal ”Reuse of technological solutions”
- Business goal ”Open standards and technology-indepence”
- Questionnaires, particularly to eventually support mobility

[QA4] Privacy and
security

- Group interviews

[QA5] Performance - Group interviews
- Questionnaires

Table 5.6: Sources of quality attributes (QAs)

current and future use cases of a system (Kazman et al., 2000). Finally, each scenario is
evaluated according to its business value and the potential impact on the architecture.
Each scenario is assigned a priority level (H–High, M–Medium, L–Low), according to
how important the attribute is to the success of the system, i.e. business value (P1), and
the related risk for achieving the attribute, i.e. impact on the architecture (P2).

In the process of designing regular software architectures, scenario prioritization hap-
pens over working sessions involving stakeholders. However, as it was explained in
Subsection 4.1.2, in the case of reference architectures, both the lack of a clearly deʯned
group of stakeholders and the generic nature of the architecture make it very diʱcult
to involve stakeholders directly in this phase. For this reason, the prioritization of sce-
narios and deʯnition of the utility tree was performed by the researcher, based on the
business goals and the feedback given by the stakeholders (Subsection 5.2.3).

Table 5.7 shows the utility tree of the SORASG, including the prioritization of the sce-
narios (columns P1 and P2).

As can be seen in Table 5.7, the highest priority scenarios from the business goals view-
point (i.e. where column P1 is marked as “H”) relate to development distributability,
interoperability, security of user data and performance. Of these high priority qualities,
three of them are also marked as high-risk decisions (i.e. column P2 is marked as “H”):

• The reuse of components developed by third parties is a high priority scenario
since the main business goals of the SORASG refer to the possibility of reusing
existing technological solutions. It has high impact on the development, as devel-
opers would depend on the quality of published interfaces from third parties. It
is possible that extra work is needed to incorporate components if they do not

76

5.3. Requirements

Quality
attribute

Attribute
reʝnement

Scenario P1 P2

[QA1]
Development
distributability

Coordination
among teams

[S1] Diʮerent coding teams can work at
diʮerent parts of the system at the same
time, with minimal coordination.

H L

Reuse of
components

[S2] It is possible to reuse existing
components in the game, even if developed
by third parties.

H H

[QA2]
Modiʯability

Service recon-
ʯguration

[S3] The system can be easily reconʯgured
for use with alternative components
providing similar functionalities.

L H

Variability [S4] Related games, with similar
characteristics or content, can be created
with minimal eʮort.

M M

New
educational
requirements

[S5] The game can be changed in order to
incorporate new content or tasks.

M H

[QA3] Inter-
operability

Data exchange [S6] The game is capable of exchanging
information with connected components,
and the data is automatically interpreted.

H L

Distributed
components

[S7] Game components can run in diʮerent
platforms.

H L

Use of
standards

[S8] Player’s data is stored in an open
standard format. The data can eventually be
imported and interpreted by third-party
tools (e.g. LMS).

H L

[QA4]
Security

Personal data
security

[S9] Players’ personal data is not disclosed to
third parties. Storage and transfer of players’
personal data is minimized.

H H

User controls
data

[S10] No personal data is disclosed without
users’ explicit consent. Users can revoke
rights to their data at any time.

H M

[QA5]
Performance

Response time [S11] The player’s gaming experience is not
aʮected by the software response time.

H H

Table 5.7: Utility tree of the Service-Oriented Reference Architecture for Serious Games (SORASG)

77

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

conform to the existing code.
• Security of personal data is a high priority because this is a legal requirement in
many countries. It is also high risk because the use of third-party components
brings the possibility of using services that cannot be trusted.

• Game performance is important because one cannot disregard the main objective
of the game: to provide a pleasant user experience. Nevertheless, this is a high-
risk decision, since the use of third-party components, particularly when accessed
through the network, brings the possibility of bad network connections and poor
quality of service.

The three high-importance–high-risk scenarios discussed above are considered, then,
the ASRs that deserve most consideration in the development and evaluation of the
SORASG.

5.3.4 Constraints

As described in Section 1.2, one of the driving business goals of the reference archi-
tecture is to promote the use of open standards and technology-independent solutions.
Consequently, one strong recommendation of the architecture is the use of existing open
standards to represent data, whenever such standards exist. This recommendation is con-
sidered here as a constraint because it restricts our freedom of choice in deʯning the ways
in which the modules can interact.

The Experience API (xAPI), formerly Tin Can API, is establishing itself as a standard for
the learning community, used for collecting both formal and informal learning activities
from diʮerent sources (Kevan & Ryan, 2016). It is considered the successor of Sharable
Content Object Reference Model (SCORM), which has been the dominant standard in
the e-Learning industry for the past decade (Foreman, 2013). The ʯrst version of the
xAPI was released in 2013 (Advanced Distributed Learning, 2015), and it continues to
be updated with the involvement of a community of developers and businesses. Given
its growing adoption both by the industry (Rustici Software, 2016) and by the research
community (Glahn, 2013; Megliola, De Vito, Sanguini, Wild, & Lefrere, 2014; Hruska,
Long, Amburn, Kilcullen, & Poeppelman, 2014; Streicher & Roller, 2015; Qazdar,
Cherkaoui, Er-Raha, & Mammass, 2015; Kevan & Ryan, 2016; Serrano-Laguna et al.,
2017), the reference architecture should support data exchange using the xAPI standard.

5.4 Reference architecture

So far, I described the overall goals and requirements that drove the design of the SORASG.
In this section, I present the reference architecture in its current version.

The reference architecture consists of a set of documents that, together, communicate

78

5.4. Reference architecture

the design decisions that will serve as instructions for future implementation. This doc-
umentation is reproduced in the following pages, under the following headings:

Classiʝcation The characteristics of the SORASG and its classiʯcation according to a
taxonomy of reference architectures (Subsection 4.1.1).

Architectural approaches The list of architectural approaches and patterns used in the
SORASG.

Roles and use cases The actors that are expected to interact with a system (the SG) that
was built according to the reference architecture and its use cases.

Architectural views The SORASG is a complex architecture that cannot be depicted
by one single dimension. Instead of trying to describe it in one large diagram,
we chose to select a number of diʮerent views that depict diʮerent aspects of the
architecture, one at a time. In this way, we can abstract some aspects while focusing
on others, making the representation simpler and easier to understand. The set of
all the views, together, represent the whole in a more manageable way.

Layered modules view This view documents the sets of responsibilities in the
system, showing which modules implement the core functionalities of the
SORASG (described in Subsection 5.3.2), and their combination into layers
of responsibilities, according to the principles explained in Subsection 5.4.2.

Entities and relationships view This view lists themain entities of the SORASG
and their relationships. Since the reference architecture is abstract and mod-
els the relationships between the components at a high level, only interface
classes have been modeled and included in this view.

Components-and-connectors view This view depicts runtime entities, the com-
ponents, and how they interact with each other via the interfaces described
in the Entities and relationships view.

Behaviors view Shows the sequences of interaction between the components over
gameplay.

5.4.1 Classiʝcation

According to the characteristics and goals of the SORASG, it can be classiʯed as a Type
5.1 reference architecture in the taxonomy deʯned by Angelov et al. (2012). Type 5.1
indicates an architecture that is a “preliminary, facilitation architecture designed to be
implemented in multiple organizations”. The dimensions and values used for the classi-
ʯcation are summarized in Table 5.8.

The SORASG is a Type 5.1 architecture, and as such it has been deʯned with a high level
of abstraction, in which it only speciʯes the functionalities of its elements very generally,
leaving many choices for speciʯc implementations open to the designers. The SORASG

79

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Dimension Value Description
G1: Goal Facilitation The SORASG is an architecture that aims to facilitate the

design of future SGs, by providing guidelines and
inspiration for the design of systems. It does not aim to
establish a standard for the design of SGs.

C1: Where Multiple
organizations

It is aimed at multiple organizations (and not restricted to
a single organization).

C2: Who Research center It was created in a research environment, and not by any
organization in particular.

C3: When Preliminary It is a preliminary architecture, because it suggests how
future SGs could be structured to achieve the beneʯts
proposed by the architecture. It does not aim to represent
a class of existing games – in fact, there are very few
examples of games using Service-Oriented Architectures.

Table 5.8: Dimensions and values used for the classification of the SORASG

includes deʯnitions of its components and connectors, and of the aggregated protocols and
interfaces that represent the general lines of communication between the components.
Furthermore, it is described using semi-formal notation usingUniʯedModeling Language
(UML) 2.5 diagrams (Object Management Group, 2015), which allows for an unambigu-
ous but still abstract representation of the components and their relationships.

5.4.2 Architectural approaches

The following architectural approaches have been employed in the SORASG, with the
objective of achieving its desired QAs (described in Section 5.3). The rationale for the
choice for each approach is explained below. The approaches are numbered A1–A7 for
later reference.

[A1] Modularization and layers Any complex software beneʯts frommodularization,
in which separation of concerns is employed to enable diʮerent parts of a system
to be developed and evolve independently. Modularization facilitates not only de-
velopment but also maintenance and portability. In addition to the separation in
modules, the SORASG follows a layered pattern, in which modules are grouped
into units called layers. Layers establish a cohesion between the modules by creat-
ing constraints in the relationships between the layers, particularly deʯning unidi-
rectional allowed-to-use relationships and enforcing strict ordering relations (Bass
et al., 2012). Typically, modules from a layer are only allowed to use modules
from a lower adjacent layer, and always through exposed (public) interfaces. This
pattern tries to support extra portability since changes in one layer will only aʮect
the next layer and not the rest of the system.
The SORASG implements a layered structure based on a simpliʯed version of
the Open Group SOA Reference Architecture (see Subsection 4.3.2). The ra-

80

5.4. Reference architecture

tionale for the choice of layers in the architecture is presented in more detail in
Subsection 5.4.4.

[A2] Service orientation The choice for an SOA approach aims to give the SORASG
the beneʯt of well-deʯned interfaces as a way to manage software complexity. It
lets us treat multiple diʮerent and highly specialized, “standalone” functionalities
as black boxes. A more thorough discussion of the beneʯts and drawbacks of a
SOA approach to SG development is available in Subsection 4.3.1.

[A3] Choreography The SORASG implements service choreography instead of or-
chestration (see Subsection 4.3.2 and Figure 4.3), resulting in a software architec-
ture in which the communications between modules are pre-conʯgured (at design
time or conʯguration time, but not at runtime). Note that the choice for choreog-
raphy diʮers from the Open Group SOAReference Architecture, which explicitly
depicts the business layer as an orchestration layer (Subsection 4.3.2). We chose
to use choreography instead because a decentralized approach has a lower impact
on performance; is considered a more decoupled and ʰexible solution than an
orchestrated one; and is more suited to the organization of services that employ
asynchronous communications (Newman, 2015).

[A4] Asynchronous messaging The communications between the components, and
particularly between the game and the other components, are performed mostly
via asynchronous messaging (i.e. “ʯre-and-forget” information exchange). This
characteristic reduces the impact of slow networks in game performance. Further-
more, the gamemight need to usemultiple threads, tomake sure that sending game
events to other components does not block the game interface. Time-sensitivemes-
sages (game events and adaptation responses) include timestamps to allow the game
to synchronize its responses, making sure that the suggested adaptations are still
valid (e.g. establishing a maximum acceptable delay for a hint or suggestion to be
considered by the game).

[A5] Limitation of exposure of user data The SORASG uses session IDs to establish
communication and data exchange between components, instead of identiʯers
connected to the user’s personal identity. The only service that contains informa-
tion that links a session ID to a user ID is the User proʯle service. The objective
is to protect users’ personal data.

[A6] Explicit authorization Through a user interface, the player/learner authorizes
which other components have access to his or her data, to ensure that explicit
permission is given to all parties accessing user data. To reduce impact on the gam-
ing experience, authorizations should happen in the beginning of the game and be
valid for a certain duration (deʯned by the developer). Authorizations are always
time-limited and can be revoked at any time.

[A7] Use of xAPI speciʝcation xAPI is a standard for packaging and transmitting the
learner’s actions in the form of “Activity Statements” that consist of a minimum of
three properties: “Actor”, “Verb” and “Object” (Advanced Distributed Learning,

81

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

2015; Kevan & Ryan, 2016). The speciʯcation is designed to support both formal
and informal distributed learning (i.e. learning can happen at diʮerent places, not
only in one single formal setting) (Foreman, 2013). As such, the standard can be
used to represent activities carried out inside a SG in a way that is syntactically
and semantically compatible across games and other learning tools. Furthermore,
the speciʯcation is extensible, so that it can account for unforeseen data collection
needs (Kevan & Ryan, 2016).

[A8] Use of conʝguration ʝles Conʯguration ʯles oʮer a compact way for the devel-
oper to supply a large amount of required instructions to the software at once,
minimizing downtime in case of changes.

5.4.3 Roles and use cases

The SORASG deʯnes three roles of actors who interact with the system, and the use
cases that characterize this interaction (Figure 5.5).

The user (the player/learner) is the person who plays the serious game. One or more
users can interact with the system at the same time (but not with each other, as this
version of the reference architecture does apply to multiplayer games).

The instructor oversees the learning session, both in real-time and after the game session,
through the dashboard and consolidated reports.

The game developer provides the ʯles that conʯgure relevant aspects of the interactions
between the components of the game (e.g. deʯning the mappings between game and
learning elements, deʯning a knowledge map for the game, deʯning an intervention
model).

82

5.4. Reference architecture

Figure 5.5: Roles and use cases of the SORASG

5.4.4 Architectural views

Layered modules views

A module is the static representation of an implementation unit in the system (Bass et
al., 2012). The modules view presented in this section represent the abstract units that
compose the system and how they are organized. It also depicts the general character-
istics of their interaction. Note that the physical architecture of the implementation of
these modules (i.e. the actual machines where the modules would run) is not necessarily
reʰected in this view.

Figure 5.6 shows the SORASG modules and their dependencies (dashed arrows), and
how the modules are organized into layers. These modules largely reʰect the function-
alities identiʯed previously (in Section 5.3 and Table 5.10). As mentioned earlier, this
structure is based on the Open Group SOA Reference Architecture (Subsection 4.3.2).
We implement the layersConsumer interface, Services and Service components (Figure 5.6).
The Consumer interface layer depends on the Services layer, and each service in the Ser-
vices layer depends on speciʯc components from the Service components layer. The
layer Operational System is the infrastructure layer supporting the Service components
layer, but it is not referred explicitly in this documentation. For performance reasons,
the Business process layer is not implemented, being replaced by service choreography (see
the Behaviours view), as explained in the architectural approach A3 (Subsection 5.4.2).

83

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Figure 5.6: Layered representation of the modules and their dependencies

84

5.4. Reference architecture

Furthermore, the cross-cutting layers (Integration, Quality of Service, Information, and
Governance) are not included in the SORASG. This is because while the extra function-
alities added by these layers are important for enterprise-level systems, they are not as
relevant at the level of one single game, and could aʮect negatively game performance.

The Consumer interfaces layer holds the modules that have direct interaction with the
users (green modules in Figure 5.6). The Game and the User Proʝle UI are the main
points of interaction for the user. The Dashboard is the module that gives the instructor
access to real-time monitoring of a gaming session; it also gives access to consolidated
reports, which can be made available to players to enable self-reʰection on his or her
learning process. The Conʝguration UI gives the developer an access point to provide
important conʯguration ʯles for the system.

The SORASG deʯnes four modules in the Services layer (see Figure 5.6). These are
described below.

The Assessment and adaptation module is responsible for interpreting data coming from
the game – and potentially from other sources, such as sensors attached to the player –
with the objective of assessing player’s performance and providing recommendations for
implementing adaptivity in the game. The Assessment and adaptationmodule is realized
by the Learning assessment and Adaptation components.

The User proʝle module holds persistent information about the user, including his or
her emotional state (when relevant). This information is not game-dependent; on the
contrary, it can potentially be used across diʮerent games and even other types of learn-
ing technologies (i.e. non-games). It is connected to the User proʝle UI as the point of
interaction for the users, particularly for them to manage access to their personal data
by other modules. Also, it provides proʯle data for the game at the start of a gaming
session, so that the game can be personalized (i.e. settings changed to the player’s pref-
erences before the game starts). Finally, in the cases when adaptation includes not only
gaming data but also emotional or engagement assessment, the User Proʯle can hold
data about the User’s emotional state.

The Events logger module collects raw game events from the game and processes them to
generate xAPI statements, which record experiential data in the form of “player did this”,
or more generally “actor verb object” (see Section 2.2). These statements are forwarded
to the other modules for further processing.

The Learning analytics module is responsible for collecting, processing and producing
visualizations of user’s data collected during gameplay. While the Assessment and adap-
tation module provides real-time assessment so that the game can perform adaptations,
the Learning analytics module is responsible for the analysis of data after the gaming
session, possibly aggregating the performance in a session with data from other players.
The learning analytics module produces report data that is displayed on the dashboard
to the instructor. The system may also give the user access to the dashboard to enable
richer learning feedback and formative assessment.

85

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

The modules in the Service components layer (blue components in Figure 5.6) are the
backend of the services modules, supplying the actual functionalities that these services
provide. For example, the User proʯle module relies on two diʮerent Service compo-
nents to provide its functionalities to the game: a Session manager to generate andmanage
access to gaming sessions, and a Learning Record Store (LRS), which holds the xAPI state-
ments associated with a user proʯle. For the game developer, it is not important which
implementation of a LRS is used, since the game never interacts with the LRS directly.
The service provider can switch to a diʮerent LRS and the game developer does not need
to change the game – as long as the service’s published interfaces are not altered.

Entities and relationships view

Figure 5.7: Structural model of the entities and relationships of the architecture

The structural model of the SORASG describes the entities of the architecture and their

86

5.4. Reference architecture

relationships. They are the data entities created, read, updated and deleted by the com-
ponents in their collaboration during conʯguration and gameplay. These entities are
illustrated in Figure 5.7.

A Client refers to a running system component that establishes communication with
other components or with the User. Each Client has a unique ID, and it can authenti-
cate (verify the identity) and authorize (verify access permissions) other Clients. These
authorizations are established using the interface ClientAuth, which is the associative
class between Clients that deʯnes the read-write permissions established between them.
Authorization to read-write user data is given directly by the User to each Client that
requests it, via the DataAccessAuth interface.

Some Clients produce Reports, which can be read by other Clients who are authorized
to do so.

At the beginning of a gaming session, the game (Client) must request a Session, which
has a unique Session ID. This Session ID is related to one User. A single User might
have multiple Sessions associated with his or her proʯle although only the User Proʝle
component knows who is the User associated with a Session ID.

A Session has a GameEventsList, which aggregates multiple GameEvents. Each Game-
Event includes a timestamp, in addition to the representation of the event itself.

Each GameEvent is translated into a Statement (an xAPI statement, see Section 2.2) by
the Translator ʯle, which is provided by the Developer at the time that the system is set
up.

The Statements are stored and exchanged between Clients in a StatementsList. There
are two types of StatementsLists: ObfuscatedStatementsList and FullStatementsList. The
User Proʯle includes the FullStatementsList. This version of the list uses the User ID as
the actor identiʯer in each statement, as deʯned in the xAPI speciʯcation. Each User can
have multiple StatementsLists, one per each Session. The full list has an attribute that
indicates to which Session ID the statement belongs. The ObfuscatedStatementsList,
conversely, is aggregated by a Session. It does not include the User ID – instead, it uses
the Session ID as the main identiʯer for the actor. The ObfuscatedStatementsList is the
version of the StatementsList that is exchanged between the Clients during gameplay.

A User has the associated UserPersonalData entity, which includes proʯle data such as
sex, age, personality traits, learning preferences, and so on. The User entity can also
include records of transitional EmotionalStates, when relevant in the system.

Component-and-connectors view

While the layeredmodules view documents the static distribution of the system in logical
modules, the components-and-connectors view documents components. Components
are autonomous, modular runtime units with well-deʯned provided and/or required

87

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

interfaces. They are replaceable within their environment, and can be reused. Their in-
ternal workings are hidden and inaccessible to other components, except to those func-
tionalities exposed by its interfaces (Object Management Group, 2015). The modules of
a system are mapped to their runtime components; sometimes the mapping is one-to-
one, but often one module can correspond to many components, or a single component
can be mapped to many modules.

In the SORASG, the modules listed in Subsection 5.4.4 are mapped in a straightforward
way, with most of the modules corresponding to a component with the same responsi-
bilities. Nevertheless, to facilitate visualizing the relationship between the module and
the components, the ʯgures in this section use the same color coding as depicted in Fig-
ure 5.6. Components that are related to modules in the Consumer interfaces layer are
pictured in green; components that are related to modules in the Services layer are yel-
low, and the components that correspond to the Service components layer are shown in
blue.

To facilitate the understanding of how the components interact with each other, these
interactions are decomposed in many parts below. First, I present the authentication
and authorization interactions, which characterize how the components establish their
initial communications and how they perform their requests to the user to gain access
to his or her personal data, and how the use of a session manager can protect user data.
Subsequently, I focus on one system component at a time, presenting its ports and inter-
faces and depicting the interactions with other components. In the ʯgures that follow,
the components of main interest are presented on the left side, in a color that matches
its representation in the layered modules view (depicted Figure 5.6); the components on
the right are components that establish direct communication with the component of
main interest, and are depicted in gray. In any ʯgure, only the ports that are of current
interest are shown; the other ports are hidden to increase the readability of the diagrams.

Authentication, authorization and session management In the SORASG, sometimes com-
ponents must authenticate and authorize each other, and sometimes a user must autho-
rize a component. For the purpose of authentication and authorization, we use the
termClient to denote a running system component that establishes communicationwith
other components or with the User. A more formal description of the entities depicted
in the SORASG and their relationship can be found in Subsection 5.4.4.

There are two levels of authentications and authorizations in the SORASG. One is the
Client authentication and authorization, in which a Client must be able to verify other
Clients’ identities and access rights. This process will most often happen at design time,
possibly hard-coded or via conʯguration ʯles. Nevertheless, it is also possible to imple-
ment runtime authorization, binding the services using service brokers and contracts
that allow a Client to choose another service and authenticate without any human inter-
vention. All components in the interface must implement the authentication interface
via the clientAuth port as shown in Figure 5.8. The SORASG leaves open to each service
developers the choice as to which authentication protocol to implement in each case.

88

5.4. Reference architecture

Figure 5.8: Components and ports involved in Client authentication and authorization

For example, one possible mechanism of authentication and authorization is the simple
authentication method speciʯed by the Hypertext Transfer Protocol (HTTP) protocol;
another option is the OAuth2 protocol, which establishes the exchange of an authenti-
cation token that is submitted with every request to a service.

The second level of authorization is given by a User to a Client, using the interface
DataAccessAuth (Figure 5.9). It refers to the access to the User’s personal data. Compo-
nents that need to access user proʯle data (username, age, sex, personality, preferences, or
game interaction records) need to ask for users’ permission. Permission is given through
the provAccess port, which requires explicit user intervention through the User Proʯle
UI component. The DataAccessAuth interface establishes an explicit expiration date
(i.e. no indeʯnite time authorizations should be possible), and it can be revoked at any
time by the user.

At the beginning of a gaming session, the Game sends a “Start game” event to all the
connected components. These components then request a Session from the User Pro-
ʯle (Figure 5.10). All subsequent communications between components use a Session
as identiʯer, instead of a User ID or any information identifying the User. The only
component that stores the mapping between a User and its Sessions is the User Proʯle
component. The User Proʯle component holds the information about which Clients
are authorized to access user data, and which clients are authorized to know the User
who created a given Session. This way, clients hold data associated with a Session only,
and that data is not directly associated back with the user.

89

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Figure 5.9: Components and ports that request and provide access to User data

Figure 5.10: Components and ports that request and provide Sessions

90

5.4. Reference architecture

For simplicity, the ports discussed above (clientAuth, provAccess, reqAccessUserData,
provSession and reqSession) will be omitted in the subsequent diagrams.

Figure 5.11: Components and ports involved in system configuration

Conʝguration During the setup of the whole system, it is necessary that the developer
provide three important conʯguration ʯles to the system. The Conʯguration UI com-
ponent provides a graphical user interface for the developer where the conʯguration ʯles
can be uploaded and edited. The Conʯguration UI component then serves these ʯles to
the components via the ports described below.

Via the conʝgTraslator port, the Conʯguration UI serves the Translator ʯle to the Events
Logger component. The Translator is used by the Events Logger component to convert
raw game events into the xAPI statements that can be used by the other components.

The Conʯguration UI sends two conʯguration ʯles to the Assessment and Adaptation
component, the knowledgeMap and the interventionModel. Via the conʝgKnowledgeMap
port, the Conʯguration UI sends the structure of the knowledgeMap to the Assessment
and Adaptation module. The knowledgeMap consists of a tree structure of xAPI state-
ments, establishing a pre-requisite relationship between them. This structure allows the
Assessment and Adaptation module to compare the current performance of the player
to the structure of the domain. The interventionModel, sent via the conʝgIntervention-
Model port, conversely, provides the rules for intervening during gameplay with hints
and/or suggestions of activities based on the completion of certain xAPI statements.

Game Games are treated largely as black boxes with ports that expose game data or
request information from the other components (Figure 5.12).

Through the provGameEvents port, the game exposes raw events to the rest of the archi-
tecture. The events to be exposed can vary according to the game. The recommended
events are the universal traces proposed by Serrano-Laguna, Torrente, Moreno-Ger, and
Fernández-Manjón (2014): game traces (start, quit, ʯnish), phase traces (phase start,

91

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Figure 5.12: Components and ports for interaction with the game

phase end, completion status), meaningful variables (on performance and games state,
such as scores, number of attempts, etc) and input traces (input action, input device, and
associated input data). In addition to universal traces, other variables related to player
performance and interaction with the gamemay be recorded and exposed. The raw game
events always include a timestamp, which can be used to ensure that the components do
not mistakenly react to outdated information.

The reqAdaptation port allows the game to receive processed data from the assessment
and adaptation service, so that it can adjust its characteristics during a gaming session. As
is the case with game events, the adaptation messages also include timestamps to allow
the game to synchronize its responses.

Finally, the reqUserPersonalData port is used by the game to receive personal data from
the User Proʯle, allowing it to personalize the game according to the player’s character-
istics (if relevant).

Events logger The Events Logger component is responsible for collecting raw game
events from the game and translating them into xAPI statements. The standardized
representation of game events in the xAPI format can be used by the other components
when dealing with game data, without the need for game-speciʯc conʯgurations.

As explained earlier, the developer needs to provide a Translator mapping ʯle to the
Events Logger component. This conʯguration ʯle is received by the Events Logger com-
ponent via the conʝgTranslator port, which is connected to the Conʯguration UI. The
Events Logger component receives raw game events from the Game via the reqGame-
Events port. It then provides statements list via the provStatements port to the User
Proʯle component, which stores the statements in an LRS. The statements lists are also

92

5.4. Reference architecture

Figure 5.13: Components that interact with the Events Logger component

provided via the provStatements port directly to the Assessment and Adaptation module
for real-time processing. These ports and connections are illustrated in Figure 5.13.

User proʝle The User Proʯle component is of central importance to the SORASG. In
addition to managing gaming sessions and permissions (explained earlier in this Section),
the User Proʯle component holds a centralized store of user proʯle data and a collection
of past interactions with games in an LRS. If emotional or engagement assessment is
included in the system, the User Proʯle component also holds the User’s emotional
data.

Figure 5.14 illustrates the ports and connections of the User Proʯle component. Via
the provUserPersonalData port, it serves information about the User Proʯle (e.g. age,
sex, playing preferences) to the Game and the components Assessment and Adaptation,
Dashboard, and Learning Analytics, after conʯrming that they have the authorization
to read the data. Via the reqStatements port, the User Proʯle component receives xAPI
statements, converted from raw game traces by the Events Logger component. These
statements are stored in an LRS, and provided to the components Dashboard and Learn-
ing Analytics via the provStatements port.

If the developer wishes to implement emotional monitoring in the system, the req-
EmotionalState port can be connected to an external component that provides this data,
for example measures of physiological signals for detecting players’ aʮective states (see
Subsection 2.2.2). The User Proʯle component receive store and subsequently pro-

93

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Figure 5.14: Components that interact with the User Profile component

vide emotional data to the Assessment and Adaptation component via the port prov-
EmotionalState.

Assessment and Adaptation The Assessment and Adaptation component is responsible
for processing game data in real time and returning recommendations back to the game
so that it can perform adaptations to suit better the User’s current performance.

During system conʯguration, the Assessment and Adaptation component needs to be
conʯgured with the Knowledge Map and the InterventionModel, which provide the ser-
vice with game-speciʯc knowledge about how to interpret and react to game events. This
conʯguration is provided via the knowledgeMap and interventionModel ports, and these
conʯguration ʯles are stored in the component for each game that it serves. The Assess-
ment and Adaptation component needs to collect the User’s personal data at the begin-
ning of a gaming session, received via the reqUserPersonalData port, so that the game’s
adaptation responses can also incorporate general characteristics of the user (e.g. gaming
preferences or learning styles). The ports and connections are illustrated in Figure 5.15.

During gameplay, a constant stream of xAPI statements (processed game events) is re-
ceived by the reqStatements port and constantly processed according to the knowledge-
Map and the interventionModel to produce adaptation suggestions that are sent back to
the game via the provAdapt port. We call this the adaptation cycle (highlighted in Figure

94

5.4. Reference architecture

Figure 5.15: Components that interact with the Assessment and Adaptation component

Figure 5.16: The assessment and adaptation cycle

95

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

5.15 and illustrated in more detail in Figure 5.16). The adaptations suggested by the As-
sessment andAdaptation component can have the format of hints or indications of which
activities should be presented next to the User, and they include a timestamp so that the
Game can evaluate the timeliness of the suggestions. The User plays the game, which
is connected to the Events Logger via the GameEventsList interface. The Events Logger
sends the processed statements via the StatementsList interface to the Assessment and
Adaptation component. The Assessment and Adaptation component sends the state-
ments to the LearningAssessment component, so that it makes inferences about the cur-
rent knowledge of the user. It also sends the statements to the Adaptation component,
for it to generate suggestions or hints to send back to the game via the adaptation in-
terface. If the system implements the emotional assessment (e.g. by means of collecting
physiological signals as described in Subsection 2.2.2), the EmotionalAssessment compo-
nent observes the user while he or she plays the game, and sends the observations to
the User Proʯle component via the EmotionalState interface. The User Proʯle sends the
data to the Assessment and Adaptation component, which directs the emotional data to
the Adaptation component so that the current emotional state of the User is also taken
into consideration when producing the interventions.

Finally, the Assessment and Adaptation component is also responsible for producing re-
ports on the progress of theUser, by comparing theUser’s performance to theKnowledge-
Map. These reports are sent to the Dashboard via the provReports port.

Figure 5.17: Components that interact with the Learning Analytics component

Learning analytics The Learning Analytics module uses general user proʯle data and
the logged data from the user’s activity during a gaming session to analyze game data. It
consolidates data from one or more gaming sessions, from a single user or frommultiple
users, depending on what is provided by the User Proʯle module. Since it does not have
access to User IDs, it can provide individual or consolidated reports without having to
have access to identifying user data. When requested by the Dashboard, it sends reports
that can be consulted by the Instructor or by the User.

The Learning Analytics module receives personal data from the reqUserPersonalData
port and xAPI statements from the User Proʯle module via the reqStatements port. In

96

5.4. Reference architecture

this manner, it does not need to deal with raw game data – which would require extra
conʯguration for processing diʮerent types of raw game events. It serves the report data
to the Dashboard via the provReports port. These ports and connections are illustrated
in Figure 5.17.

The Learning Analytics module receives the statements from the User Proʯle module,
and not from the Events Logger module. Since the Learning Analytics module does
not need to feed data back to the game, it has less strict requirements regarding eventual
network delays. A connectionmade directly to theUser Proʯlemodule has the beneʯt of
allowing for easier control of the data that is provided to the Learning Analytics module.
It also makes it possible that data from previous gaming sessions is also analyzed, giving
a more complete picture of the User’s interactions with the game.

Figure 5.18: Components that interact with the Dashboard component

Dashboard The Dashboard component oʮers a graphical interface through which the
Instructor can follow the User’s performance in the game. It tracks the activities per-
formed in the game (as xAPI statements) in a stream so that the Instructor can see in real
time what the player is doing, and it gives access to consolidated reports generated by the
Assessment and Adaptation and the Learning Analytics components. The consolidated
reports can be accessed after a gaming session has been ʯnalized, and potentially they
can be made available also to the User, to give him or her the possibility to reʰect on his
or her performance.

When the Instructor consults the information displayed in the Dashboard, he or she
will likely need to have access to the User identity, i.e. the Dashboard component needs
to ask the User Proʯle for the User ID associated with a given Session ID. If the User

97

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

allows it, the Dashboard is able to make the connection between a Session ID and a User
ID, disclosing the User’s identity. This connection should not be stored permanently in
the Dashboard, but only kept for the duration that the Instructor needs to have access
to that information. This measure is to reduce the risk of unauthorized access to user’s
data.

The Dashboard makes the request to the User Proʯle component for the User ID associ-
ated with a given Session ID via the reqUserPersonalData port. It also receives the stream
of xAPI statements from the User Proʯle component via the port reqStatements. The
consolidated reports are received from the Assessment and Adaptation and the Learn-
ing Analytics modules through the reqReports port. These ports and connections are
illustrated in Figure 5.18.

Behaviours view

While previously I depicted how the components are connected to each other in the sys-
tem, in this section I show the process of the interaction during gameplay using UML
2.5 sequence diagrams. To make the model easier to read, I separate the process of col-
laboration in three parts: the process of initializing game, the process during gameplay,
and the process of ʯnalizing the game.

When a User starts the Game, the Game requests a SessionID to the User Proʯle compo-
nent. The User Proʯle responds with a SessionID, which is used throughout the whole
interaction between the components. When relevant, a MacroAdaptation can happen at
this point. The Game can request User data from the User Proʯle (e.g. sex, age, learning
preferences, personality traits). The User Proʯle requests the User to authorize sharing
their data. If the user gives authorization, the User Proʯle sends the data to the game,
which can make adjustments before the actual playing starts. The Game sends a no-
tiʯcation indicating that the game started to the relevant components (Events Logger,
Assessment and Adaptation, Learning Analytics and Dashboard). Each component re-
quests a Session ID from theUser Proʯle. In each case, the User Proʯle requests from the
User authorization to share gaming data. The Assessment and Adaptation component
also asks for User’s proʯle data, in addition to the Session ID, since such data can be used
in the Adaptation recommendations as well. These authorizations should happen only
once in the beginning of the game, and should be valid for enough time so that a gaming
session is not interrupted. Furthermore, the user interface of the User Proʯle compo-
nent could request the User for all authorizations at once, to make it less cumbersome
and user-friendly. The starting sequence can be seen in Figure 5.19.

Once the game has initialized, the gameplay can start. The process depicted in Figure
5.20 happens repeatedly until gameplay ends. Each time the player performs a relevant
action in the game, the Game sends a Game Event to the Events Logger component. The
event is translated into an xAPI statement and sent to both the Assessment and Adapta-
tion and the User Proʯle components. In the Assessment and Adaptation component,
the statement is processed, and anAdaptation suggestion is generated and sent back to the

98

5.4. Reference architecture

Figure 5.19: Initializing a Game session

99

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Figure 5.20: During gameplay

game. If there is any Emotional assessment, the User Proʯle component, via an external
component, senses the emotions of the player and sends a the Emotional State represen-
tation to the Assessment and Adaptation component, which in turn incorporates the
data when generating the Adaptation suggestions.

An Instructor can, at any time during gameplay, request access to reports about the on-
going gaming session via the Dashboard (Figure 5.20). When the request is made, the
Dashboard forwards the request to the components that are responsible for generating
those reports, namely the Learning Analytics and the Assessment and Adaptation com-
ponents. The Learning Analytics needs to request the statementsList directly from the
User Proʯle. In other words, the Learning Analytics reports do not produce real-time
reports during gameplay, but when requested, it can make an updated request to the
User Proʯle to receive an up-to-date list of statements, which can then be used to gener-
ate a report on the current state of the gaming session. If authorized to access the User’s
data, the Dashboard receives and displays the requested reports. Real-time monitoring
the user’s performance can be achieved by observing the stream of statements directly
from the User Proʯle component, or through the automatic request of updated reports
from the Learning Analytics component in short time intervals.

Finally, Figure 5.21 illustrates the process of ending the game. When the User ʯnishes
playing, the Game sends an End Game signal to all the components, signaling them to

100

5.5. Example implementation

Figure 5.21: Ending the game

stop communicating with the game and with each other. The User Proʯle component
requests consolidated reports from the Assessment and Adaptation and Learning Analyt-
ics components, which can be used to update User Proʯle data (e.g. updates in learning
styles, gaming preferences, knowledge on certain topics). Any update in the User Proʯle
data needs to be veriʯed and authorized by the User.

5.5 Example implementation

Wedeveloped an example implementation of the SORASG as part of the process of deʯn-
ing and evaluating the architecture, particularly regarding its buildability. As explained
in Section 5.2, we chose to update an existing open source game so that we could focus
on aspects of the implementation of the reference architecture, without the overhead
of developing a whole game from scratch. Since this exercise was part of the iterative
process of deʯning the SORASG (see Section 5.2), the game reʰects an earlier version of
the SORASG.

Our prototype implementation of the SORASG is an altered version of an existing open
source game called Lix4. Lix is inspired by Lemmings, a 1991 digital puzzle game by
4Lix: http://asdfasdf.ethz.ch/~simon/index.php

101

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Figure 5.22: Lix game puzzle interface

DMADesign. Although puzzle games are not necessarily considered SGs, they are com-
monly used for educational purposes (E. Z. F. Liu & Lin, 2009), possibly given its typ-
ical reliance on problem-solving and on logical and mathematical intelligence (Becker,
2005). Lix oʮers an environment of highly constrained interaction, with short and clear
feedback loops with clear success criteria. Furthermore, success in the game is not in-
ʰuenced by the player’s previous knowledge, contrary to what happens in games with
traditional curricular domains. With less interference from external factors in the in-
game assessment, the prototype can oʮer us a simpliʯed environment for the develop-
ment and evaluation of in-game assessment mechanisms, adaptation, learning analytics
and reports. Nevertheless, the system is still close enough to other types of SGs to give
useful insights. For subsequent iterations, the SORASG can be tested in more complex
game scenarios.

Lix consists of many puzzles, with diʮerent levels of diʱculty. In each puzzle, the ob-
jective is to guide a group of simple characters (called “lixes”) to a designated exit. The
player must determine how to assign a limited number of skills to speciʯc lixes, which al-
low the selected lix to alter the landscape, to aʮect the behavior of other lixes, or to clear
obstacles to create a safe passage for the rest of the lixes. The available skills vary between
the puzzles and include skills such as climbing, jumping, digging, building bridges, and
so on. Each puzzle has a minimum amount of lixes that must be saved; in some more
advanced puzzles, a time limit is also enforced. Figure 5.22 shows a screenshot of one
puzzle of the game, with the bottom panel that is used to control the characters.

Our altered version of Lix5 incorporated the following modules of the SORASG: the
Game itself, User Proʯle, Events Logger and a Dashboard. We also implemented an
oʲine Learning Analytics approach using data collected from this setup (Figure 5.23).

5The source code is available at http://github.com/carvalhomb.

102

5.5. Example implementation

Figure 5.23: Components of the altered version of the game Lix

Game Originally, Lix was developed in C++, using the game programming library Al-
legro 46, which supports basic 2D graphics, text input and output, audio output, among
others. The game also has a multiplayer mode; however, in our implementation, we
used only the single player mode.

We added an extra component to the game, called “GameEvents” (see Figure 5.23). This
component receives, in the form of asynchronous notiʯcations, the game events that
must be exposed to the rest of the system. The “GameEvents” component was imple-
mented using the open source library Poco7, which provides tools for parallelization
and networking, among others. The “GameEvents” component runs as a background
process in the game so that the game interface does not stop while waiting for the re-
sponse of its network calls, thus avoiding performance issues. This implementation uses
a Poco Notiʯcation Queue that collects game events and uses multiple worker threads8
to submit notiʯcations to the Events Logger component.

The requests sent by the Game to the Events Logger always include the Session ID to
which the events belong.

The game events recorded during gameplay are of two types: game traces andmeaningful
variable traces (Serrano-Laguna et al., 2014). The game traces indicate timestamps of
6Allegro game programming library: http://liballeg.org/
7POCO C++ Libraries: http://pocoproject.org/
8Three threads were used by default, as testing under normal usage showed this number was enough to handle
the load. If necessary, more threads can be included to deal with a more intense stream of events.

103

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

when the player started the game, started or restarted a puzzle, paused the game and
returned to the menu. The meaningful variable traces consist of a simple record of a
timestamp, a short code describing the skill assigned to a character (lix), an internal
identiʯer of the character to which the skill was assigned and an internal measure of
game time (called “update”). At the end of each attempt at solving the puzzle, a results
entry is recorded, indicating the attempt duration (both in “updates” and in seconds),
the number of skills used, and the number of saved lixes (out of the required number).
Table 5.9 shows an example of the format of the results recorded and sent to the listening
web service.

Timestamp Action Level Upd Lix Lix
req

Lix
saved

Skills
used

Secs

2015-12-10T14:29:19Z STARTLEVEL 14
2015-12-10T14:30:20Z ASSIGN=MINER 14 949 1
2015-12-10T14:31:15Z ASSIGN=CLIMBER 14 1766 9
2015-12-10T14:31:23Z ASSIGN=MINER 14 1890 13
2015-12-10T14:31:41Z ENDLEVEL 14 2133
2015-12-10T14:31:41Z RESULT 14 20 0 13 142
2015-12-10T15:12:24Z STARTLEVEL 14
2015-12-10T15:51:56Z ASSIGN=JUMPER 14 1594 2

Table 5.9: Example of game events recorded and sent to the EventsLogger service

Timestamps are recorded in the standardized format ISO 8601, in the UTC (Coordi-
nated Universal Time) time zone, to avoid confusion between services hosted in diʮerent
places.

As described in Section 5.4, the communications between the Game and the Events
Logger feature a Session ID as unique identiʯer. The Game requests the Session ID from
the User Proʯle component at the start of a gaming session.

User proʝle The interface of the User Proʯle component is implemented as a Represen-
tation State Transfer (REST) web service. It was developed in Python, using an open
source framework called Flask 9.

The current version implements a simple User Proʯle that holds a username, a user
ID, a password and the list of active and inactive gaming sessions associated with that
user. The User Proʯle creates a new gaming session when it receives a request from
the Game. Currently, it does not validate session requests from the other components.
Future development will include complete authorization, to conʯrm that the user has
authorized each component to access to his or her data.

Events logger Like the User Proʯle, the Events Logger component is also a REST web
service developed using Flask.
9Flask web development: http://ʰask.pocoo.org/

104

5.5. Example implementation

When receiving a new request from the Game, the Events Logger checks with the User
Proʯle if the Session ID is valid before it starts to accept game events.

In the current version, the Events Logger service is used to generate a downloadable ʯle
with the list of game events associated with a session, which can be downloaded by the
Developer. It also sends the events directly to the Dashboard, which then displays the
stream of events to the Instructor. This behavior is not in line with the most up-to-
date version of the SORASG, which speciʯes that the Events Logger sends processed
xAPI statements directly only to the Assessment and Adaptation and to the User Pro-
ʯle components. The Dashboard would not display a stream of events, but instead, it
would show reports on the player’s activities. Future development will alter the system
according to the most up-to-date speciʯcations of the reference architecture.

Dashboard The dashboard implemented is a simpliʯed version, which simply lists the
game events associated with a certain session ID.

In a future implementation, the dashboard will be able to receive formatted reports from
the Assessment and Adaptation and the Learning Analytics services, providing visual-
izations of the playing session and graphical representations of the state of the player’s
knowledge map. Possibly, it will be able to display aggregate graphics from a larger
demographic group also.

Offline learning analytics Currently, the learning analytics is performed oʲine, as a
stand-in functionality for a future online learning analytics component. The analysis
uses a Comma-Separated Values (CSV) ʯle containing raw game events. This ʯle is
downloadable from the Events Logger component (see Figure 5.23). The Developer
could process the ʯle to extract meaningful data. Details of the ʯrst learning analytics
approach applied to the data can be found in Vahdat et al. (2016).

Authentication and authorization Clients authenticate each other via exchange of cre-
dentials followed by token authentication. The requesting Client sends its credentials
in a handshake request. If the receiving client recognizes the credentials, it sends back
an authentication token with an expiration time chosen by the developer. The token is
sent as a header in all subsequent requests. If a session continues after the expiration, it is
possible to request a new token to replace the expired one. This procedure is a simpliʯed
method that does not require an authentication server.

The system does not fully implement user control of access to personal data. Instead,
we developed placeholder (stub) functions without actual authentication, which indicate
how the authentication ʰow would happen through the deʯned interfaces. Future ver-
sions would require the implementation of such authorization to conform fully to the
SORASG speciʯcations.

❧

105

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Our alterations on the game Lix were based on an earlier version of the SORASG. In
fact, as explained in Section 5.2, the architecture was updated according to the lessons
learned during the development of the game. Consequently, the connections between
the components depicted in Figure 5.23 do not reʰect the architecture as it is described
in Section 5.4. Namely, the Dashboard and Learning Analytics components should not
be connected directly to the Events Logger, but rather to the User Proʯle component,
which would then send game data to the other components. Also, the current imple-
mentation of the Events Logger does not perform the translation of raw game events
into xAPI statements, which is also a key characteristic of the SORASG.

Figure 5.24 shows how the Lix architecture should be updated to conform to the latest
version of the SORASG.

Figure 5.24: How the components of the altered version of the game Lix should be implemented to con-
form to the SORASG

The game, as it is now, does not include an Assessment and Adaptation component.
While not compulsory, such a component is considered an important addition in SGs
for educational purposes. For this reason, a future version of this game should include
Assessment and Adaptation functionalities, possibly implementing two layers of adap-
tation. One layer would be intra-puzzle, with hints for players depending on their per-
formance; the other layer would be in-between puzzle adaptation, in which the game
would be able to implement a path of diʮerent puzzles to be tried that would always be
in line with a player’s current abilities.

106

5.6. Evaluation

5.6 Evaluation

In this section, I present the results of our evaluations of the SORASG. First, I discuss
the functional completeness of the architecture, comparing the functional requirements
of the architecture (Subsection 5.3.2) with the modules of the SORASG. Subsequently,
I present the architectural analysis phase of the ATAM evaluation. Next, I summarize
the results of the ATAM evaluation in the form of a list of risks, non-risks, sensitivity
points and trade-oʮ points identiʯed in the analysis. Finally, I discuss the buildability of
the SORASG, as demonstrated by the example implementation described in Section 5.5.

5.6.1 Functional completeness

To evaluate the functional completeness of the SORASG, I compare the functional re-
quirements identiʯed in Subsection 5.3.2 with the modules of the SORASG, described
in Subsection 5.4.4. In this way, it is possible to check the architecture’s compliance with
the functional requirements.

Functional requirement Module(s)
[FR1] Between-players interaction -
[FR2] Student-instructor interaction -
[FR3] Information storage and retrieval -
[FR4] Feedback Dashboard;

Assessment and adaptation;
Learning analytics

[FR5] Assessment Assessment and adaptation;
Learning analytics;
User Proʯle

[FR6] Adaptivity Assessment and adaptation
[FR7] Game connectors Game;

Events logger;
Conʯguration UI

[FR8] User proʯling User proʯle/User Proʯle UI
[FR9] Data logging Events logger

Table 5.10: Functional requirements implemented by each module of the SORASG

Table 5.10 shows the mapping between the functional requirements and the modules of
the SORASG.

The mapping between functions User proʯling (FR5) and Data logging (FR6) is straight-
forward, with each of these functionalities being directly supported by one module of
the architecture.

107

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

The function Feedback (FR1) is implemented most directly by the Dashboard module,
via its ability to display reports to the Instructor (who can then use them to give feedback
to the User) or directly to the User. Nevertheless, the Reports displayed by the Dash-
board are generated by the Assessment and Adaptation and Learning Analytics modules,
so they are also listed as providers of the Feedback functionality.

Assessment (FR2) is implemented mainly by the Assessment and Adaptation and the
LearningAnalyticsmodules, which generate reports on the learning progress of theUser.
TheAssessment andAdaptationmodule is formed by internal components, one ofwhich
is responsible for providing learning assessment. This learning assessment component is
used internally in the system that supports adaptation. If the system supports emotional
or engagement assessment, this functionality is attached to the User Proʯle module.

The Assessment and Adaptation module is the provider of the Adaptivity (FR3) func-
tionality, via one of its internal components that contains the adaptation logic (repre-
sented by an InterventionModel).

The Game connectors (FR4) functionality is represented by the components that link
the game and the components providing the system functionalities. The Game module
itself implements part of this link, by exposing its relevant game events to external com-
ponents. The Events Logger has a crucial role in providing this functionality, as it is the
component responsible for translating raw game events into xAPI statements that can
be used by the other components. Finally, the Conʯguration UI module provides a way
for the Developer to provide game-speciʯc conʯguration ʯles, which are important for
linking the components deʯned in the architecture.

The architecture does not include all possible functional domains that a SG could im-
plement. For example, interactions between-players, interactions between the student
and the instructor, and external modules for information storage and retrieval are not
present in the architecture. Nevertheless, the SOA approach encourages that, whenever
relevant, a game makes requests to external auxiliary modules. These modules could be,
for example, databases holding relevant information to the game (e.g. factual informa-
tion databases, exercises databases), modules to help in processing information for the
game (e.g. modules to parse natural language queries), or social networks to retrieve in-
formation about the User’s friends and their performances in the game. The modular,
service-based architecture allows the developer to reuse existing software more easily,
even components that are not explicitly deʯned in the SORASG.

5.6.2 Analysis of architectural approaches

I performed the ATAM analysis of the architecture to evaluate to which extent the
SORASG supports the desired systemQAs. As explained in Subsection 4.1.2, an ATAM
evaluation consists of a systematic analytical comparison between the desired characteris-
tics of the architecture and the architectural approaches that are used in the architecture.

108

5.6. Evaluation

From the QAs and scenarios identiʯed in Subsection 5.3.3 and summarized in the utility
tree (Table 5.7), the QAs identiʯed as high priority were selected to be examined in
detail against the architectural approaches described in Subsection 5.4.2. The results are
described in the tables below. Each table shows the risks (R), non-risks (NR), sensitivity
points (SP) and trade-oʮs points (T) that were identiʯed in the analysis; each item is
explained after the tables. A summary and a discussion of the outcomes of this analysis
are presented in Subsection 5.6.3.

Scenario S1
Description: Diʮerent coding teams can work at diʮerent parts of the system at the same time,
with minimal coordination.
Attribute: Development distributability (QA1)
Environment: Development time
Architectural Decisions R NR SP T
[A1] Modularization and layers - NR1 - -
[A2] Service orientation R1 - - -

Scenario S2
Description: It is possible to reuse existing components in the game, even if developed by third
parties.
Attribute: Development distributability (QA1)
Environment: Development time
Architectural Decisions R NR SP T
[A1] Modularization and layers - NR2 - -
[A2] Service orientation R1, R2 - SP1 -

Scenario S3
Description: The system can be easily reconʯgured for use with alternative components pro-
viding similar functionalities.
Attribute: Modiʯability (QA2)
Environment: Development time
Architectural Decisions R NR SP T
[A2] Service orientation R2 NR2 - -

109

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Scenario S4
Description: Related games, with similar characteristics or content, can be created withminimal
eʮort.
Attribute: Modiʯability (QA2)
Environment: Development time
Architectural Decisions R NR SP T
[A1] Modularization and layers - NR1 - -
[A8] Use of conʯguration ʯles - NR5 - T4

Scenario S5
Description: The game can be changed in order to incorporate new content or tasks.
Attribute: Modiʯability (QA2)
Environment: Development time
Architectural Decisions R NR SP T
[A8] Use of conʯguration ʯles - NR5 - -

Scenario S6
Description: The game is capable of exchanging information with connected components, and
the data is automatically interpreted.
Attribute: Interoperability (QA3)
Environment: Runtime, normal operation
Architectural Decisions R NR SP T
[A2] Service orientation R2 - - -

Scenario S7
Description: Game components can run in diʮerent platforms.
Attribute: Interoperability (QA3)
Environment: Runtime, normal operation
Architectural Decisions R NR SP T
[A2] Service orientation R1 - SP1 -

110

5.6. Evaluation

Scenario S8
Description: Player’s data is stored in an open standard format. The data can eventually be
imported and interpreted by third-party tools (e.g. LMS).
Attribute: Interoperability (QA3)
Environment: Development time
Architectural Decisions R NR SP T
[A7] Use of xAPI speciʯcation - - SP2 -

Scenario S9
Description: Players’ personal data is not disclosed to third parties. Storage and transfer of
players’ personal data is minimized.
Attribute: Privacy and security (QA4)
Environment: Runtime, normal operation
Architectural Decisions R NR SP T
[A5] Limitation of exposure of user data R3 - - T1

Scenario S10
Description: No personal data is disclosed without users’ explicit consent. Users can revoke
rights to their data at any time.
Attribute: Privacy and security (QA4)
Environment: Runtime, normal operation
Architectural Decisions R NR SP T
[A6] Explicit authorization R3 - - T1, T2

Scenario S11
Description: The player’s gaming experience is not aʮected by the software response times.
Attribute: Performance (QA5)
Environment: Runtime, normal operation
Architectural Decisions R NR SP T
[A3] Choreography - NR3 - -
[A4] Asynchronous messaging R4 NR4 SP1, SP3 T3

111

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

Risks

[R1] Degraded performance: With the service layer making the intermediation between
the game and the service components, the possibility of network delays aʮecting the
response is higher than if the component was developed as part of the game, or if the
game accessed it directly.

[R2] Badly deʯned interfaces or poor documentation may hinder reuse of third party
components.

[R3] Malicious service providers may permanently store data that should only be re-
quested when needed (e.g. the connection between session ID and user ID).

[R4] Asynchronous messaging has the risk that the game does not receive adaptation
suggestions on time. When the delays are too big, the adaptation suggestions become
useless.

Non-risks

[NR1] Logical separation of modules with well-deʯned responsibilities facilitates devel-
opment.

[NR2] Logical separation in layers makes it possible to use components even when they
were not developed speciʯcally with games in mind (e.g. third-party LRSs, emotion
recognition components).

[NR3] A choreography conʯguration for service composition is more complex than or-
chestration, and eventual changes in the communication between components might
bring high maintenance cost. Nevertheless, the only module that might require changes
in the sequence of interaction is the Assessment and Adaptation, which has a Controller
class (AssessAdaptController, Figure 5.16) that serves the purpose of concealing changes
and making sure these changes do not need to be reʰected in the rest of the system.

[NR4] A timestamp is included in the Game events and Adaptation messages to enable
the game to judge the timeliness of the suggestions, so that the game is able to ignore
outdated adaptation suggestions.

[NR5] Unforeseen content-types, tasks, and/or adaptation requirements may prevent
the use of the architecture with the current division of modules and layers or currently
deʯned conʯguration ʯles. However, this is a non-risk since the SORASG can evolve to
incorporate unforeseen game conʯgurations and content types.

Sensitivity points

[SP1] Response time is sensitive to the number of clients using a component at the same
time. It is necessary to make sure that the component can provide an acceptable level of

112

5.6. Evaluation

quality of service.

[SP2] The quality of the Translator ʯle (Figure 5.11) that converts raw game events into
xAPI speciʯcation is crucial to ensure a usable ʯle. It is important that the Translator
use predeʯned statements as much as possible.

[SP3] The nature of the game, and particularly the number of calls to the Events Logger,
may aʮect response times.

Trade-oʜ points

[T1] There is a tradeoʮ between not disclosing the key between a session ID and a user
ID to third parties to prevent unauthorized access to user data, and being able to assess
a user for longer periods than just the current gaming session in the dashboard.

[T2] Assessment reports that involve long-term usage of the game are more diʱcult to
generate and depend on user’s explicit authorization (they might require multiple inter-
ventions from the user).

[T3] The number of game events sent at once (combining multiple events or sending
one by one) deʯnes a trade-oʮ between the network load and the responsiveness of the
adaptation (how often the game can adapt). In environments in which network quality
cannot be guaranteed, the game might need to rely on less frequent adaptations, and/or
implement mechanisms to be able to wait for responses without aʮecting the player’s
experience.

[T4] Conʯguration ʯles are more complex than a graphical interface for a developer
to provide the system with required settings. They also have a steeper learning curve.
However, they oʮer the possibility of making many changes at once, minimizing pos-
sible down times. The disadvantages from the usability viewpoint can be reasonably
compensated by providing clear documentation on how to write the conʯguration ʯle.
Another possibility is to create a simple graphical user interface that generates and tests
the conʯguration ʯle before it can be fed into the system.

5.6.3 Risks, non-risks, sensitivity points, and trade-oʜ points

In this section, I summarize the risks, non-risks, sensitivity points and trade-oʮ points
that were identiʯed in the analysis of architectural approaches (Subsection 5.6.2), group-
ing them according to their general themes.

The architecture addresses well three main quality attributes, namely Development Dis-
tributability, Modiʯability and Interoperability. The SOA approach, with its logical
separation of layers and clear interface deʯnitions, was deemed as a facilitator factor for
distributed development and interoperability. The architecture is also favorable when
modifying existing games or creating new ones, due to the layered architecture that com-

113

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

partmentalizes changes to speciʯc components, preventing a ripple eʮect when changes
need to be made. Furthermore, the use of mapping ʯles between game events and state-
ments, knowledge maps and intervention models is intended to provide a way for con-
centrating the conʯgurations that would need to be changed for diʮerent types of games.
Unforeseen content types, tasks, and/or adaptation requirements may prevent the use of
the architecture with the current division ofmodules and layers. However, the SORASG
can always evolve to incorporate unforeseen game conʯgurations and content types.

Conʯguration ʯles oʮer a trade-oʮ between system simplicity and usability for the de-
veloper. Conʯguration ʯles are more complex than a graphical interface for a developer
to provide the system with required settings. They also have a steeper learning curve.
However, they oʮer the possibility of making many changes at once, minimizing pos-
sible down times. The disadvantages from the usability viewpoint can be reasonably
mitigated with clear documentation and possibly graphical user interfaces to generate
and test the conʯguration ʯles.

The quality attribute Performance has been addressed with the application of a choreog-
raphy conʯguration, eliminating a centralizing orchestrator, and thus removing a possi-
ble bottleneck in the interaction. Furthermore, time-stamped asynchronous messaging
prevents synchronization issues that could aʮect the gaming experience. However, the
analysis indicated that there is still the risk of slow network responses due to the com-
munication loops that add extra network and computing demands when compared to
a non-layered architecture. The architecture’s response to this issue prevents that the
regular gaming experience is aʮected. In cases where network delays happen, delayed
messages can be ignored by the game – in which case adaptivity would simply not hap-
pen. The rest of the system setup is unaʮected, which is considered a positive charac-
teristic of the architecture. Nevertheless, this issue highlights the need for developers
who adopt the SORASG to consider the tradeoʮs carefully. They should consider using
techniques to minimize and speed up network traʱc (e.g. combining and compressing
messages before sending). The decision on when and how often adaptation should occur
is also important so that problems with the timing of adaptations are reduced (e.g. per-
forming adaptations between levels or game activities, including animations or pauses
in the game while waiting for responses from the server). Finally, developers need to
choose third-party components that oʮer an acceptable level of quality of service, and
that can deal with the demands of the system.

Finally, the QA of Security of user’s data presents a risk that developers need to be
aware. While using third-party components brings the beneʯts already explained previ-
ously (e.g. reuse of specialized components, always up-to-date, no need for maintenance),
the SORASG highly depends on the quality and trustworthiness of these components.
Quality, because by employing components developed by third-parties, the development
team depends on the quality of the interfaces and documentation, and on the provided
quality of service. Trustworthiness, because while the architecture limits the exposure
of user data and user IDs to third party components by using session IDs as identiʯers
(thus avoiding exposing more information than strictly necessary for processing by the

114

5.6. Evaluation

third-parties), the risk of exposure of user data is not eliminated by this technique. For
the proper functioning of some components of the system, particularly those that are
responsible for generating aggregating reports or displaying information to the user or
the instructor, some user data may have to be shared. For example, the architecture
deʯnes that the Dashboard would not hold the User ID related to a given Session ID,
but only request it once the Instructor needs to access a report. The assumption is that,
once this information is no longer needed, the Dashboard would discard it. A malicious
component could keep this information instead of discarding it, building over time a
complete mapping of session IDs and user IDs. In other words, while the architecture
makes it harder to disclose to whom the playing and learning data belongs, it does not
completely prevent it. Employing the usual security measures, such as using only trust-
worthy components and employing encryption methods in the communication, is still
necessary to ensure user privacy.

5.6.4 Buildability

Building a prototype of a reference architecture is a way to prove its buildability (Angelov
et al., 2008). Although the example implementation described in Section 5.5 refers to
an earlier version of the SORASG, it was a valid exercise in demonstrating how new
and existing games could be altered to conform to the speciʯcations of the reference
architecture.

The example implementation showed that only a small alteration was needed in the orig-
inal game: the development of a new component that runs in the background collecting
relevant game events and sending them to an external component. This simple alteration
made it possible to incorporate two relevant functionalities to the game: an instructor
could follow a player in real-time from another machine, and a developer could perform
analyses on game data to extract interaction patterns. This demonstrates the modiʯabil-
ity (QA2) of the game architecture.

The experience also conʯrmed the expected interoperability (QA3) between compo-
nents, since the game was developed in one programming language (C++) and the other
components were developed in another (Python). The fact that the communication be-
tween them happened through a commonly used and standardized web service interface
(REST) ensured interoperability. It also facilitated development, in which we had no
problems in ʯnding existing open source libraries and frameworks. Being able to use
open source software signiʯcantly sped up the development.

Nevertheless, the example implementation was a simpliʯed version of the architecture,
which did not implement two key aspects of the SORASG. The use of xAPI statements
has not been implemented yet, so we could not evaluate how much the translation from
raw game events would impact the rest of the system regarding processing times. Fur-
thermore, we have not tested the use of xAPI statements in learning analytics to observe
if important game data is lost in the translation. Finally, since we did not implement
the Assessment and Adaptation component, we also could not assess if the format of the

115

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

adaptation messages would be useful for the game, nor if the response times would be
acceptable.

5.7 Discussion

5.7.1 Quality and applicability of the architecture

The evaluation of the SORASG considered three main criteria: functional completeness,
achievement of desired quality attributes, and buildability.

As the SORASG is a preliminary facilitation architecture (Type 5.1, see Subsection 5.4.1),
its goal is to provide guidance and inspiration, not to establish a standard. SG develop-
ers have the choice expand the architecture – and alter it, when needed – to suit their
projects’ characteristics. As such, the functional completeness of the architecture should
be judged according to the functionalities identiʯed in the requirements, even if these
functionalities are a subset of those that will be found in an actual SG implementation.

The SORASG implements all six functionalities identiʯed as relevant during the re-
quirements elicitation phase. Three functionalities were identiʯed in the analysis of the
business domain but were not included in the speciʯcations of the SORASG (Between-
players interaction, Student–instructor interaction and Information Storage andRetrieval).
These functionalities were not considered universally relevant nor homogeneous enough
to be included in the scope of an overarching reference architecture. The functionalities
that were included in the SORASG, conversely, deʯne a general framework for imple-
menting assessment, adaptation, monitoring and feedback in games, independently of
the content and game genre.

Regarding the analysis of quality attributes of the SORASG, our conclusion, based on
the ATAM analysis, is that the reference architecture addresses well the needs of SG de-
velopers. Speciʯcally, it provides structures that: are easier to be developed in teams;
allow for easier reuse of existing parts; and are easier to maintain and modify when
needed. Such ʰexibility, however, comes with two main costs: performance and secu-
rity. While the SORASG provides acceptable solutions to minimize the impact of a
distributed architecture in the game performance and data security, these still represent
risks that need to be evaluated by the stakeholders in face of each project’s technical and
non-technical requirements and available resources.

The SORASG can be regarded by SG developers as a tool to incorporate evolutionary
prototyping in their practices, allowing them to iteratively improve their products with-
out increasing costs. The SORASG facilitates rapid development of games, in which
third-party solutions can be incorporated quickly in the development of prototypes.
These prototypes can be tested with real users in real usage settings. Once the game
matures and reaches a stable version, developers can reassess the quality needs of the
components and, if necessary, replace them with other components that oʮer better

116

5.7. Discussion

quality of service. The replacement of components is facilitated by the SOA approach,
since the interface deʯnitions and standardized protocols ensure that the components
will be able to communicate, independently of where the service provider is deployed.
It is possible to conʯgure components to run locally to ensure performance and security
standards with minimal changes in the deployment conʯgurations.

We managed to develop, within less than two months, with solely one developer, a sim-
ple implementation of the architecture. We were able to use open source libraries to
adapt an existing game to include several functionalities contemplated by the reference
architecture, which attests to the compatibility of the architecture with legacy code.
Although it is not possible to estimate precisely the extent of the workload saved, the
experience satisfactorily illustrates the buildability of the SORASG in a real application
setting.

Despite our eʮorts in evaluating the SORASG systematically, a real assessment can only
be achieved by measuring its impact in the domain – this is true for any preliminary
facilitation (Type 5.1) reference architecture. When other researchers and developers
implement SGs using the SORASG, it will be possible to assess the reference architecture
objectively against its goals (i.e. reduce development costs while maintaining quality,
promote reuse of existing technological solutions, and promoting interoperability via
the use of open standards). Real-world implementations will also allow us to evaluate
the technical quality of implemented games using objective performance and usability
measurements.

5.7.2 Connecting ATMSG and SORASG

The two main contributions presented in this work – the ATMSG and the SORASG
– are targeted mainly at two diʮerent groups. The ATMSG model can be used by SG
designers and instructors to analyze existing SGs or as a tool to support SG design. The
SORASG, conversely, is targeted at game software developers and software engineers,
who may use the reference architecture in their projects directly.

These two contributions are connected in two main ways.

The ʯrst way in which the two contributions are connected has already been described
in Subsection 5.3.2: the ATMSG model served as the conceptual structure that allowed
the deʯnition of a comprehensive taxonomy of SG elements that connects existing gam-
ing, learning, and instructional elements into one. This taxonomy is relevant to a wide
variety of SGs, since there are no assumptions about the nature of the game or its instruc-
tional elements. The taxonomy gave an overview of the elements that can form diʮerent
games, and as such it was a valuable source at the initial stage of the development of the
SORASG.

The second way is the following. Applying the ATMSG model can also help game
developers incorporate the SORASG in their work. The SORASG is still a template

117

Chapter 5. Service-Oriented Reference Architecture for SGs (SORASG)

that needs to be further reʯned, and the ATMSG model can help that process. At the
prototyping stage, an ATMSG analysis can be performed. Using the output table (e.g.
Figure 3.5 on page 36), the SG designer can map the components that are related to
the functionalities provided by the SORASG, using Table 5.5 (page 70) as a guide. This
analysis can help the designer in decidingwhich of the functionalities of the SORASG are
relevant, and then communicate the requirements to the SG developers. Furthermore,
the ATMSG analysis can assist in deʯning which game events are relevant to be exposed
to rest of the architecture, by highlighting which are the educationally relevant parts of
the game and how they are matched to the elements of the gaming activity (again, see
Figure 3.5 on page 36). Such visualization can also be helpful in generating the mapping
between the gaming actions and the xAPI statements.

118

Chapter 6

Concluding remarks

In this chapter, I summarize and discuss the work presented in this thesis, going back
to the original research questions and problem statement posed in the Introduction and
arguing about the implications of the ʯndings for the ʯeld of serious game (SG) design
and development. I also reʰect on the limitations of the research and list pointers for
future work.

6.1 Research conclusions

Current evidence indicates that SGs have a promising role to play in education. How-
ever, SG development costs are still quite high, and producing high-quality and eʮective
games is a diʱcult task. In this work, I have addressed this issue, in an attempt to present
ways to reduce the costs associated with SG development (i.e. eʮort required to develop
or maintain software), while fulʯlling the game’s educational and entertainment goals.

Throughout this thesis I have presented twomain contributions: a theoretical one, in the
form of the Activity Theory-based Model for Serious Games (ATMSG), and a technical
one, the Service-Oriented Reference Architecture for Serious Games (SORASG). Com-
bining theory and practice allowed me to propose a solution for a software engineering
problem (i.e. high SG development costs) that is grounded on what we currently know
about the educational and entertainment aspects of SGs and game-based learning (GBL).

To conclude this thesis, I address each of the research questions formulated earlier sepa-
rately.

RQ1 How does a game realize its educational and entertainment objectives through its con-
crete mechanics?

119

Chapter 6. Concluding remarks

The ʯeld of SG design is undoubtedly advancing. The early days in which researchers
needed to argue that using games for learning is a good idea are gone; the general under-
standing nowadays is that games can indeed be good learning tools. Nevertheless, using
SGs in educational and training settings is, more often than not, a clumsy endeavour.
On the one hand, SGs commonly fail to engage players, as these games still lack the en-
gaging elements that players have come to expect from commercial oʮ-the-shelf (COTS)
games. On the other hand, COTS games are sometimes used to make for captivating
gaming sessions in the classroom; but then, how can educators make sure they fulʯll the
desired educational objectives? In other words, we are still left with questions about how
exactly we can build and use games to support learning.

In this scenario, understanding how a SG realizes its educational and entertainment ob-
jectives through its mechanics is important. It allows us to look inside this “conceptual
black-box” (the serious game) and make sense of what is going on that might explain the
success (or failure) of a game, which in turn can help us build better SGs.

The issue of understanding SGs in more depth has drawn some attention from the re-
search community. Many of the current models, methodologies, and frameworks for
the analysis and design of SG focused on high-level aspects of what makes SG eʮec-
tive, but only a few provided an investigation into the concrete mechanics of the game.
Speciʯcally, they could guide a SG designer on what should be expected of an eʮective
SG, but they would oʮer very limited insights into which mechanics would enable a
game to achieve those goals. Two of these models (i.e. Game Object Model II (GOM II)
and Learning Mechanics–Game Mechanics (LM-GM)) did oʮer a way to look into the
concrete mechanics, but then the link to the high-level aspects was lost.

To ʯll that gap and give a proper answer to RQ1, I proposed the Activity Theory-based
Model for Serious Games (ATMSG) (Chapter 3). The model is built over the concep-
tual framework of activity theory, which is a line of research in the social sciences that
studies diʮerent forms of human practices and development processes. The hierarchical
structure of the activity provides a way to reason about the relationships among the SGs
components and between these components and the educational goals of the game.

One of the main contributions of the ATMSG is identifying the main activities involved
in the use of SGs for education: the gaming activity, the learning activity, and the in-
structional activity that is further decomposed into intrinsic instruction and extrinsic
instruction. While the learning activity corresponds to the viewpoint of the learner, the
instructional activity depicts the side of the instructor. Previous models and frameworks
only distinguish between gaming and learning aspects, but do not provide ʯne-grained
distinctions among educational aspects of SGs. These distinctions clarify diʮerences be-
tween the learner’s and the instructor’s goals, and also which parts of the instruction is
given by the game and which ones require the intervention of the instructor. This is a
richer representation of the SG, in which the game is a tool used by people with diʮerent
objectives and expectations. It allows the observer to think about how these diʮerent
objectives can interact in the game and aʮect its learning and entertainment outcomes.

120

6.1. Research conclusions

Another important contribution to the understanding of the SG objectives through its
mechanics is the extensive taxonomy of SG elements, which uniʯes existing vocabularies
into one single taxonomy, with almost 400 items classiʯed in 36 categories. The taxon-
omy helps identify and classify SG components according to their characteristics and
roles in a SG. It is a valuable tool not only for understanding existing games, but also
as inspiration for SG designers, who can refer to this comprehensive list when deciding
which actions, tools and goals can best support their desired objectives in the game.

The ATMSG model is accompanied by a practical guide for users who want to apply
this theoretical model in practice when evaluating or designing SGs. This thorough
analysis of existing games results in a series of tables and diagrams that show explicitly
the relationship between high-level objectives and concrete game mechanics as the game
unfolds. Despite its complexity, an ATMSG analysis provides detailed insights about a
SG, which can be useful, for example, when adapting games in speciʯc learning settings
or when detailing, identifying and cataloging design patterns. The ATMSG model can
also be used as a tool in SG design, supporting the analysis of low-ʯdelity prototypes at
early stages of development and generally providing reference and inspiration through
the observation of successful patterns in other games.

I conclude, then, that the ATMSG model is a valuable tool to understand how the inner
workings of a SG are articulated to achieve its educational and entertainment goals. It
has the potential to contribute to a better understanding of SGs and to support the
development of games that fulʯll their intended objectives. Nevertheless, it is still a
theorical – and thus somewhat abstract – contribution. Since the overall goal of this work
is to concretely make SG development less costly, with RQ2 I directed my attention to
issues related to software engineering.

RQ2 To which extent can SG development be simpliʝed by reusing existing technological
solutions, even the ones that were not created speciʝcally for SGs?

SG development is a complex and often costly process. In many ʯelds of software en-
gineering, software complexity is managed by ʯnding ways to optimize development,
particularly through component reuse. Reuse strategies have been applied extensively in
the entertainment game industry formore than a decade, mainly through the widespread
use of game engines. In SG development, so far, the eʮort has been concentrated in creat-
ing games that decouple content from underlying software, or creating genre-dependent
authoring platforms. That is, the SG designer must conform to what the platform pro-
vides.

RQ2 expresses the desire to optimize SG development further by trying to revert that
dependency. Instead of conforming the game to the available tools, we look at a way
to incorporate the tools (or reusable assets) into the game. However, it is important
to investigate which components can be successfully reused without sacriʯcing game
quality. Once again, I highlight the importance of linking back to the theory behind

121

Chapter 6. Concluding remarks

GBL, so that the choices made by the developers have higher chances of successfully
supporting the educational and entertainment goals of the game.

Using the taxonomy of SG elements deʯned with the ATMSG model, I extracted the
elements that are common among SGs of diʮerent genres and topics (Subsection 5.3.2).
The elements identiʯed fall into nine functional domains, namely: feedback, assessment,
personalization and adaptivity, game connectors, user proʯling, data logging, between-
players interaction, student-instructor interaction, and information storage and retrieval.
Not all of these domains have the same level of importance for all games, but they repre-
sent functionalities that can potentially be incorporated into SGs in the form of reusable
components. Three of these domains – assessment, feedback, and personalization and
adaptivity – represent crucial characteristics of successful learning environments, as dis-
cussed in the theoretical foundations (Section 2.2). As such, facilitating their inclusion
in SGs is a signiʯcant contribution to increasing the quality of existing games with rela-
tively low impact on the overall cost of the development.

Thus, from a systematic analysis of the domain that used the ATMSGmodel as a starting
point, I conclude that there are elements of SGs that are desirable in diʮerent genres of
games, in diʮerent domains, and that are generic enough that their implementation could
be abstracted from the game and incorporated as external modules. In some cases the
functionalities are so general (e.g. emotional assessment, information retrieval) that it is
reasonable to assume that it would be possible to reuse solutions that were not created
speciʯcally for SGs. Nevertheless, this reuse must be supported by an architecture that
successfully incorporates those solutions in the SG, not only from a technical standpoint,
but also employing those functionalities to support the learning and entertainment goals
of the game. This leads us to the last research question addressed in this work.

RQ3 How can SG developers incorporate reusable components into their software develop-
ment projects?

While the idea of incorporating reusable assets in a SG is appealing, the fact is that it
can be diʱcult for developers to learn new ways of building software. This diʱculty is
particularly true when it involves a signiʯcant shift in the programming paradigm, as is
the case with Service-Oriented Architecture (SOA).

To ease the transition and to guide SG developers on how to better incorporate reusable
assets into their games, I proposed the Service-Oriented Reference Architecture for Se-
rious Games (SORASG) (Chapter 5). A reference architecture is a template solution
for a software domain that provides major guidelines for deʯning the software archi-
tecture of the project, facilitating decision-making early in the development lifecycle.
The SORASG was elaborated in an iterative process that included a systematic analysis
of the ʯeld – represented mainly by the identiʯcation of the functional requirements
with the help of the ATMSG model – and consultation with SG designers, developers,
and researchers. The process also included small-scale evaluations during the design,

122

6.1. Research conclusions

the development of an example implementation, and a complete Architecture Trade-oʮ
Analysis Method (ATAM) evaluation at the end.

The SORASG represents a signiʯcant contribution to the ʯeld in which it identiʯes
important SGs functionalities, and shows, via detailed technical speciʯcations, how to
incorporate them into the development of SGs of diʮerent genres and in diʮerent learn-
ing domains. At the time of this writing, one European project in relatively initial phases
aims to provide a development ecosystem for SGs and applied games in general (RAGE,
2016). In a work published recently by the group, the RAGE Architecture for Reusable
Serious Gaming Technology Components is described (Vegt et al., 2016). This archi-
tecture highlights general architectural aspects of the components themselves, without
describing their functionalities. In other words, it does not describe what each of the
components should do, but only how they should be built to be compatible with other
components in the RAGE ecosystem. The SORASG, in contrast, was created using a
theoretical model as its starting point so that it can provide guidance not only on purely
technical aspects, but also on how to implement desirable SG characteristics such as as-
sessment, adaptation and feedback. To the best of my knowledge, the SORASG is the
ʯrst reference architecture with these characteristics.

The SORASG suggests, but does not prescribe, which components must be incorpo-
rated in the system. In addition, it is not restricted to certain game genres or learning
objectives. It gives freedom to the development team in deʯning the learning and enter-
tainment goals of the game and in deciding whichmechanics will be used to achieve those
goals. At the same time, it facilitates the adoption of key features for eʱcient learning,
namely assessment, feedback, and adaptation.

Moreover, the service-oriented nature of the SORASG allows for the reuse of compo-
nents that have been developed by third-parties, even those that were not developed
speciʯcally for SGs. For example, components created for digital learning environments
(e.g. Learning Record Stores (LRSs), competence assessment services, learning analytics
services) and for engagement detection (e.g. real-timemonitoring of physiological signals)
can be incorporated directly into the architecture. This ʰexibility increases the choices
available to the developer, who canmore easily beneʯt from technological advances in re-
lated ʯelds such as automatic emotion recognition, natural language processing, learning
analytics, among others.

The SORASG takes advantage of the beneʯts of its service-oriented nature while mini-
mizing the potential pitfalls of its reliance on external services. The ATAM evaluation
demonstrated that indeed the SORASG supports the development of ʰexible architec-
tures that are easier to develop in teams, easier to reuse existing parts, easier to maintain
and that can be modiʯed when needed. However, this ʰexibility comes at the potential
cost of performance and security, which are naturally important issues when deploying
SGs in real settings. As a result, I argue that the SORASG is particularly suitable for
developing SG high-ʯdelity prototypes that can later be enhanced towards a ʯnal ver-
sion progressively. By reducing game development time, it is possible to test concepts

123

Chapter 6. Concluding remarks

quickly, enabling an iterative process in which it is possible to test early and often, to
achieve a design that meets both educational and entertainment goals. Furthermore,
the reference architecture can also be used in ʯnal (production) versions of games even
when there are strict performance and security requirements: the components can be de-
ployed on a local server, to mitigate performance and security problems and to comply
with eventual data storage policies and restrictions.

The example implementation presented in this work (Section 5.5), albeit simple, demon-
strated that existing games can also be altered to conform to the speciʯcations of the
reference architecture. The experience conʯrmed that interoperability between compo-
nents is possible, even when developing components in diʮerent programming languages
and deploying them on diʮerent servers. Finally, the example implementation was de-
veloped by relying on existing open source libraries, which can signiʯcantly speed up
development time and potentially reduce costs.

One point to note is that the evaluations of the SORASG provided are still mostly the-
oretical. Given its novelty and its preliminary and facilitation nature, the SORASG can
be more concretely evaluated only later on, after its release to the research and develop-
ment community. Then, it will be possible to assess the SORASG in terms of both its
impact in the research community and the quality of the games that employ it.

The SORASG, then, is a very practical response to RQ3, giving SG developers an exten-
sive guide on how to incorporate reusable components in their SGs. This guide consid-
ers not only purely technical aspects (e.g. the importance of interoperability with other
learning tools and the potentially sensitive nature of the user data exchanged between the
components), but it also takes into consideration issues that are particular to SG devel-
opment, such as the central role of assessment, adaptation and feedback for the learning
objectives of the game, and the importance of involving instructors in the process, at
least by letting them monitor players’ progress and evaluate their performance.

The SORASG is a novel and useful tool that can be used by SG developers as a reference
of best practices in SOA-based game development. It informs companies and research
institutes that may be interested in developing components to be incorporated in such
gaming architectures. It can also support the retroʯtting of educational capabilities in en-
tertainment games, with small changes required in the original game, as was shown in the
example implementation. Indirectly, the SORASG beneʯts also the end user, bringing
the possibility of the increased availability of games that incorporate key functionalities
for more eʱcient learning.

❧

Finally, after having discussed how this work answered the research questions posed in
the Introduction, I return to the original problem statement:

PS How can we reduce costs associated with SG development, while fulʝlling the game’s

124

6.2. Limitations and future work

educational and entertainment goals?

The problem statement above addresses a wide-reaching and long-term problem – the
cost of development of SGs. This problem is composed of diʮerent aspects that range
from the technical and conceptual complexity of SG development to the current matu-
rity of the ʯeld. In this thesis, I have chosen to focus on the technical complexity of the
task, and to explore how to reduce this complexity without sacriʯcing the pedagogical
quality of the SG. The three research questions I posed reʰect this framing, and guide
the exploration of possible solutions that can contribute towards solving the problem.

Investigating how SGs achieve their learning and entertainment objectives through game
mechanics gave me the basis to identify the elements that are common among SGs of dif-
ferent genres and topics. These elements served as input to create a SOA-based reference
architecture that helps reduce SG development costs by providing a starting point for
development and by promoting the reuse of components in the game architecture. Both
main contributions of this work – the ATMSG model and the SORASG – represent
high-level solutions that can be employed in practice by developers who would want to
reduce SG development costs while maintaining quality. The former gives the theoret-
ical understanding that is essential to guide the conceptual design of an eʮective game,
while the latter can serve as a direct cost-saving resource in the SG development cycle.

To be eʮective, the eʮort of reducing the high costs of SG development must be under-
taken by the SG research and development community as a whole. This thesis represents
my contribution towards this goal. But, as any tool proposed for a research and practice
community, it needs to be embraced by it. The challenge now is, then, to implement
the tools proposed here – the modules described by the SORASG in particular – and use
them in real research and business settings, assess the reference architecture for its cost-
saving characteristics, and evaluate games created with it for their gaming and learning
quality. With this, the tools I propose in this work can evolve to reʰect the ever-changing
needs of the SG research and development community.

6.2 Limitations and future work

Evaluation and improvement of the ATMSG model The ATMSG model was evaluated
concerning its perceived usability by the target audience, also in comparison with an-
other model for SG analysis. Further evaluation studies would be needed, with a few
modiʯcations. Firstly, this study focused on the analysis of existing games only, but I
would also like to verify the applicability of the model in the conceptual design of SGs.
Also, in the current study, a usability scale was used for the measurements, since the pur-
pose of the evaluation was to improve the tool itself iteratively. The SUS scale measured
how easy or diʱcult it was to use and understand the model, but it did not allow us
to investigate the model’s usefulness. Future studies should use scales that measure user
satisfaction instead, in addition to collecting open-ended comments and analyzing the

125

Chapter 6. Concluding remarks

quality of the ATMSG analyses produced by the users. Furthermore, considering that
ATMSG seems to be more useful to expert users, the next studies should target speciʯ-
cally this user group, performed preferably in contexts in which there is a real need for
an analysis tool.

Future work on the ATMSGmodel also includes the development of a piece of software
to facilitate the application of the model, oʮering an adequate and usable interface to
generate the diagrams, choose components and put them in the appropriate place in the
game representation. Such a tool could support non-expert users in applying ATMSG,
helping minimize the challenges identiʯed in the evaluation of the model. Furthermore,
the analyses produced by the tool could be stored in an interchangeable format, which
will allow the analyses to be archived in repositories for serious game studies, such as
the Serious Games Studies Database (Serious Games Society, 2013b), and used as input
material for cataloging game-based learning patterns.

Evaluation of the SORASG reference architecture Despite its relative simplicity, the ex-
ample implementation gave indications of the feasibility of implementing the architec-
ture. Future work should include a complete implementation of the SORASG that can
provide enough evidence for the buildability of the architecture when it incorporates
assessment and adaptation elements.

Another limitation of this work is that the evaluation of the architecture was done in a
systematic, but still theoretical way. A ʯnal assessment of the usefulness and buildabil-
ity of the SORASG can only be made when other researchers and developers can use
the work, implement games, and evaluate their performance against objective measure-
ments.

Multiplayer games One of the limitations of this work is that both the ATMSG and the
SORASG refer to single-player games only. Multiplayer games were out of the scope of
this investigation.

The ATMSG model does not contemplate the underlying social structures that mediate
the relationship between the subject and the object with the community. This limitation
reʰects the features oʮered by the vast majority of state-of-the-art SGs, but should be
addressed in the near future. In particular, the ATMSG model should incorporate the
analysis of collaboration and cooperation aspects in a serious game.

The SORASG model also does not support multiplayer aspects. It can be used in the
development of games that can be played simultaneously by many users, and monitored
simultaneously by one or more instructors. However, it does not consider interaction
between gamers explicitly, not inside the game nor in associated social networks. This
is another limitation that should be addressed in the future.

Combining diʜerent types of assessment The assessment and adaptation cycle (Figure 5.16)
foresees the possibility of combining diʮerent types of assessment such as learning as-

126

6.2. Limitations and future work

sessment and engagement assessment coming from real-timemonitoring of physiological
signals, as discussed in Subsection 2.2.2). However, the architecture does not explain how
the inner parts of the Assessment and Adaptation component would achieve this goal.
Such functionality is an interesting avenue for future work, since making a SG able to
respond to multiple dimensions of the user’s gaming/learning experience could signiʯ-
cantly improve learning and engagement outcomes in SGs. However, this is not a trivial
task. Deciding how the factors can be combined is one of the challenges, as it involves
a complex decision model that must take many variables into account, such as player’s
preferences, game genre, learning domain, instructor involvement, and so on. Technical
aspects of such implementation, for example how to conʯgure such service and how to
provide an intervention model to the assessment and adaptation service, should then be
included in future versions of the SORASG.

Format of the conʝguration ʝles The SORASG, as it is currently, does not specify the
format of its conʯguration ʯles, i.e. the Translator ʯle (to convert raw game events into
xAPI statements), the KnowledgeMap (the tree structure that establishes the learning
domain) and the InterventionModel (the model that allows the game to react to the
player’s performance). The format of these ʯles needs to be deʯned and tested in games
of diʮerent genres, to ensure that they can be applicable in a variety of conditions.

127

Appendices

129

Appendix A

Interview summaries

This appendix reports in more detail the data collected during the group and individual
interviews with stakeholders, as described in Subsection 5.2.3.

Group interviews

In the group interviews, participants were asked about the usefulness of the preliminary
version of the reference architecture and the features that theywould like the architecture
to have. However, their feedback focused on characteristics relevant to non-educational
games (marketing, pervasive games). They expressed their desire that the architecture
incorporate external events, which are particularly relevant in pervasive games. This
feedback reʰected the participants’ backgrounds and interests, which were more related
to the use of pervasive games for advertisement and engagement.

Participants indicated elements of the ʯrst reference architecture that were not deʯned
very clearly, particularly a section that was listed as “auxiliary modules”. They suggested
that this section could be described in more detail. This feedback was incorporated into
the second version of the architecture.

When asked speciʯcally about the desired quality attributes (QAs) for a serious game de-
veloped following a service-oriented architecture, the participants listed two main con-
cerns: quality of service, particularly related to possible latency in network communica-
tions; and privacy issues, which have implications according to privacy laws of diʮerent
countries, particularly in Europe. Participants also thought that the discussion of busi-
ness models and return on investment when providing games or game components as
services are important issues to be considered and addressed by a reference architecture.

QAs collected:

131

Appendix A. Interview summaries

• performance
• security
• mobility (for pervasive games)

Individual interviews

From the individual interviews with game developers and game researchers, the feed-
back obtained was more technical. The participants expressed their considerations on
functionalities that should be addressed by the reference architecture.

User proʝling At the heart of a reference architecture for serious games is user proʯl-
ing, which is a topic that is researched intensively without a clear answer. How to
represent a user proʯle and which ʯelds a user proʯle should contain is an impor-
tant topic that needs to be addressed by the reference architecture.

Reʞection on the learning process A reference architecture for serious games should
ideally support self-reʰection on the learning process. In other words, feedback
can occupy an important role, and the user/player’s reactions to the feedback could
also provide interesting and valuable data for the instructors.

Conʝguration One important issue for a reference architecture is the need for easy
conʯguration of game-speciʯc settings, particularly conʯguring how a game can
react diʮerently to the same kinds of signals coming from the game and/or the
learner. Selecting the relevant game events and how external services can interpret
game events is particular to each game and conʯguring it should be supported
by the reference architecture. In other words, an important QA mentioned is
modiʯability.

In summary, then, the interviews conʯrmed the importance of a centralized user proʯle
module that is generic enough to be relevant to several games, but without restricting the
functionalities of the game. They also highlighted the role of learning feedback in the
game. And with regard to non-functional requirements, modiʯability was highlighted
as a desirable QA.

QAs collected:

• modiʯability

Functionalities collected:

• centralized user proʯling
• learning feedback in the game

132

Appendix B

Online questionnaire

Title: Serious games software requirements

Understanding general functional requirements and quality attributes for serious games, especially
games for learning.

Thank you for your availability to help in this study. Your feedback is really appreciated!

In our research, we are developing tools to facilitate serious game design and development.
With this questionnaire, we aim to collect common functional requirements and quality at-
tributes that are relevant to serious games of diʮerent genres and in diʮerent learning do-
mains.

Your responses to this questionnaire are anonymous. At the end of the questionnaire, we
will ask you for a contact email if you agree to help us further in a follow-up interview.

By clicking “Next”, you agree that your anonymized responses may be used in academic
publications (journals, conferences, theses) and open datasets for the research community. In
reports and data sets that may result from this work, no information will be made public that
could identify you.

This questionnaire should take you 25-30 minutes to complete.

❧

Part I – Demographics

1. What is your age? *

2. What is your sex? * [Female / Male]

133

Appendix B. Online questionnaire

3. What is your educational level? Please inform the level (or equivalent) that you are cur-
rently pursuing or the last level that you have completed. Please choose only one of the
following: *

• Primary school
• Secondary school
• Professional/vocational/trade school
• Bachelor’s degree
• Master’s degree
• Doctoral degree
• No formal education
• Other

4. Please inform your current occupation and industry: *

5. What is your country of origin? *

6. What is your country of current residence? *

7. Please indicate your level of familiarity with digital games. Please choose only one of the
following: *

• I have never played digital games
• I have played digital games only once or twice
• I have played digital games a few times
• I play digital games every now and then
• I am a gamer/I play digital games regularly

8. Please indicate your level of familiarity with Serious Games / games for learning. Please
choose only one of the following: *

• I don’t know what Serious Games or games for learning are
• I have played a Serious Game or game for learning only once or twice
• I have played a Serious Game or game for learning a few times
• I play Serious Game or games for learning every now and then
• I play Serious Games regularly -or- I work with Serious Games or games for learning

9. What is your previous experience with software development in practice? (Mark the
bottom-most item that applies.) *

134

• I have never developed software.
• I have developed software on my own.
• I have developed software as a part of a team, as part of a course.
• I have developed software as a part of a team, in industry or open-source project, one
time.

• I have worked on multiple projects in industry or open-source projects
• Other

10. Please explain your answer above, including years of relevant experience. (E.g. “I worked
for 10 years as a programmer in industry”; “I worked on one large project in industry”; “I
developed software as part of a class project”; etc...)

Part II – Requirements and goals in serious games

In software engineering, a functional requirement deʝnes a function of a system and its compo-
nents. The set of functional requirements deʝnes what a system is supposed to accomplish. Examples
of functional requirements are: “send messages to a mailing list automatically”; “allow a user to
edit personal data”; “log all interaction in a database”.

11. In your opinion, which are the three most important functional requirements for serious
games or games for learning? Please think about functionalities that are independent of game
genre or learning topic.

• 11a. Most important functional requirement: *
• 11b. 2nd most important functional requirement:
• 11c. 3rd most important functional requirement:

12. Think about a serious game or game used for learning purposes project that you par-
ticipated recently, directly or indirectly. If you have not participated in any such project,
think about any existing serious game or game for learning that you are familiar with. If you
cannot disclose the name of the project, just add a placeholder name for the project that you
will recognize during this questionnaire. Please write the name of the project or game: *

13. Please list up to three main gaming, learning and/or teaching goals of the project you
informed in question 12. Examples of goals: “helping parents encourage their children to
learn Mathematics”, or “raise awareness about the bad situation for a certain population in
a certain country”, or “collecting data from students to allow teachers to understand their
habits better”.

• 13a. Most important goal: *
• 13b. 2nd most important goal:
• 13c. 3rd most important goal:

135

Appendix B. Online questionnaire

Part III – Evaluating functional requirements and goals

14. In your opinion, how well did the project you selected in question 12 implement the
functional requirements and fulʯll the goals you listed in the previous questions? Please rate
it on a scale from 1 to 7. Rating it “1” means: “the game did not implement this requirement
or did not fulʯll this goal at all”. Rating it “7” means: “the game completely succeeded at
implementing this requirement or fulʯlling this goal”. Please choose the appropriate response
for each item:

• Requirement informed in 11a
• Requirement informed in 11b
• Requirement informed in 11c
• Goal informed in 13a
• Goal informed in 13b
• Goal informed in 13c

15. If you want, you can explain your ratings here:

Part IV – Quality attributes of serious games

A quality attribute is a non-functional requirement that speciʝes criteria that can be used to judge
the operation of a system, rather than speciʝc behaviors. Quality attributes can be used to evaluate
the success of the design and the overall quality of the software application.

16. Which quality attributes do you consider relevant to the project you selected in question
12? Please choose all that apply: *

• Availability (readiness to perform a task when needed)
• Interoperability (ability to exchange meaningful information via interfaces)
• Modiʯability (ability to easily change the software)
• Performance (ability to meet timing requirements)
• Security (ability to protect data and information from unauthorized access)
• Testability (ability to demonstrate software faults through testing)
• Usability (how easy it is for the user to accomplish the desired task)
• Variability (ability to support production of set of variants of the system)
• Portability (ability to run on diʮerent platforms)
• Development distributability (ability to support distributed software development)
• Scalability/ Elasticity (ability to deal with changes in demand during runtime)
• Deployability (how easy it is for the executable software to arrive on a host platform)
• Mobility (ability to support mobile platforms, e.g. phones, tablets, laptops)

136

• Monitorability (ability to monitor the system during execution)
• Safety (ability to avoid entering states that cause or lead to damage, injury or loss of
life)

• Other:

Part V – Ranking quality attributes

17. Consider the quality attributes you selected in the previous question. Please rank them
in order of importance for the project you selected in question 12.

Part VI – Scenarios

Scenarios are often used in the design of software architecture to clarify quality attribute require-
ments. In this context, a scenario is a real world situation which illustrates the desired behavior
of a system. It comprises a related stimulus, an environmental condition, and response (preferably
quantiʝable).

Examples:

• A developer wishes to modify an element of the user interface of a system at design time.
He/she can make the modiʝcation without aʜecting other functionalities of the system, in
less than 20 hours of work.

• An internal component of the system fails. The system can recognize a failure of an internal
component and has strategies to compensate the fault.

18. Please create a scenario for the following quality attributes:

• 18a. The quality attribute you ranked in position 1 in question 17:
• 18b. The quality attribute you ranked in position 2 in question 17:
• 18c. The quality attribute you ranked in position 3 in question 17:

Part VI – Conclusion

19. Would you be available for a follow-up interview (via e-mail or video conference) regard-
ing your answers to this questionnaire? If yes, please inform a contact e-mail address below.
Your e-mail will not be disclosed to third parties. It will only be used for the purpose of
contacting you for a follow-up interview.

20. If you have any comments about this questionnaire or this research, please write them
below.

❧

This is the end of this questionnaire. Thank you very much for your participation!

137

Appendix C

Requirements from stakeholders

From the questionnaires, we collected a list of relevant requirements, in the partici-
pants’ opinion, as described in Subsection 5.2.3. The resulting requirements are shown
in Table C.1.

Item Occurrences
1 Data logging 4
2 Adaptivity to player’s skills 3
3 Provide learning feedback 3
4 Be replayable 2
5 Save state 2
6 Social features 2
7 User can control own data 2
8 User proʯling and stealth assessment 2
9 Interactivity 1
10 Mailing functions 1
11 Model learning content 1
12 Provide information on demand 1

Table C.1: Functionalities mentioned by participants in free text questions.

From this list, data logging was included as a functional requirement for the architecture,
since it was not explicitly contemplated in our list extracted from the analysis of the
domain.

The requirements adaptivity to player’s skills, provide learning feedback, social features,
user proʝling and stealth assessment, andmodel learning contentwere already contemplated

139

Appendix C. Requirements from stakeholders

within our analysis of the domain Subsection 5.3.2. The functionalities be replayable, save
states, interactivity and provide information on demand, while relevant for serious games
(SGs), do not have a direct impact in the game architecture and thus are not included in
the functional requirements of the reference architecture.

140

Appendix D

Quality attributes deʝnitions

Availability The software’s readiness to perform a task when needed.
Deployability How easy it is for the executable software to arrive in a host platform.
Development distributability The software’s ability to support distributed software

development.
Interoperability The software’s ability to exchange meaningful information via inter-

faces.
Mobility The software’s ability to support mobile platforms, e.g. phones, tablets, lap-

tops.
Modiʝability The software’s ability to easily change the software.
Monitorability The software’s ability to monitor the system during execution.
Performance The software’s ability to meet timing requirements.
Portability The software’s ability to run on diʮerent platforms.
Safety The software’s ability to avoid entering states that cause or lead to damage, injury

or loss of life.
Scalability/elasticity The software’s ability to deal with demand changes during run-

time.
Security The software’s ability to protect data from unauthorized access.
Testability The software’s ability to demonstrate software faults through testing.
Usability How easy it is for the user to accomplish the desired task using the software.
Variability The software’s ability to support the production of a set of variants of the

system.

141

Appendix E

Scenarios

As explained in Subsection 5.2.3, we asked participants to write scenarios illustrating
the top three quality attributes (QAs) that they selected and ranked for a project that
they had participated in before. These scenarios served as input for us to write the
consolidated scenarios shown in the Utility Tree (Table 5.7).

Table E.1 below lists the original scenarios described by the participants for the three
most important QAs that they identiʯed in their selected project (rank 1 is the most
important, rank 3 is the least).

Project Ranked Attribute Scenario
Timo’s Adventure 3 availability Once the patients arrived, the game shall be

ready to be played, instead of being set up or
conʯgured in front of the patients.

Timo’s Adventure 2 deployability The target user group is not only the chil-
dren playing the game, but the medical pro-
fessionals to observe and to review the log
data. The system shall be easily deployed and
maintained by these medical professionals in
their professional environment.

LawVille 2 deployability IT infrastructures in Italian schools have
large deʯcits. Game developers have to deal
with old machines, network failures, etc..

Una Aventura por
el Cauca

3 deployability The game is easy to execute. Even a child can
install it and execute it.

Lix 2 interoperability There is a networking game mode. The
game reads/writes line-based text ʯles and
images.

143

Appendix E. Scenarios

Project Ranked Attribute Scenario
Rice game 1 mobility Interface is designed in such away that the

display scales to the device screen, but is
identical on all devices - ie not like the bbc
news site, or facebook, where certain tasks
are confusing or impossible on the mobile
version of the site.

Una Aventura por
el Cauca

2 mobility A teacher or the leader in a playful-centre
wishes to execute the game in the tablets pro-
vided by the school. These are cheaper and
generally more available than desktop PCs

Bosque Interactivo 3 mobility A product needs to support ”x” amount of
devices perfectly and have clearly state the re-
quirements for the best functionality of the
program.

Lix 1 modiʯability The project is released to the public domain.
We use git, C++03, and make, which are
very common tools. All library dependen-
cies are open source. The research team be-
hind this survey was able to build and mod-
ify my game, adapting it to their needs dur-
ing research.

LawVille 1 modiʯability A new teaching requirement arises and the
game storyboard can be changed in order to
meet the new need

Timo’s Adventure 3 modiʯability The game’s parameters must be easy to mod-
ify by a moderator/examiner. The param-
etes will be eʮected when the game restart.

Timo’s Adventure 1 performance The game is to identify the time of the user
playing with certain game elements in reac-
tion, waiting and being focused. The soft-
ware must perform well to lower the time
taken by other system components.

Bosque Interactivo 2 performance Performance of the team: When planning a
project, multiply the plan by x 2.5. Perfor-
mance of the system: Needs a very clear con-
cept design to be able to implement it ideally.

Rice game 3 portability The program should provide the same ex-
perience to the end user on each platform
with the exception of OS speciʯc interac-
tions - e.g. In windows the double-click for
in should be retained, whilst Mac would not
require this. Non-expert users get very con-
fused when their OS doesn’t behave as ex-
pected.

Lix 3 portability The game builds on Windows, all common
Linux distributions, and Mac. I don’t write
platform-dependent code myself, but use a
low-level wrapping library.

144

Project Ranked Attribute Scenario
Timo’s Adventure 1 safety The game shoudl be designed to be free from

violence. And the game must not be placed
within the body space of a player.

Code Red Triage 1 testability User interactions should be predictable or
explainable-after-the-fact based on gathered
data.

Bosque Interactivo 1 usability The challenge I have with the previous ex-
amples given for this step of the question-
naire are: the expertise level of the team and
the expertise of the programmer. In the case
of usability, the task can be divided on two
aspects: a) what the technology allows the
player to do? b) what would be the ideal
behavior of the player within learning game
to achieve the learning goal? According to
where the problem relies we want to have
a concept designer and a programmer work-
ing together to solve the challenge in the best
manner.

Timo’s Adventure 2 usability The game should be designed to be easy
enought to understand by a player. There
were introductions of each sub-games to be
ensure that this requirement was met.

Rice game 2 usability Target user demographic should be able to
complete any given challenge in the game
withou repeating the sequence more than 3
times.

Code Red Triage 2 usability A user should not get stuck and be unsure
what to do for a period longer than three
minutes. Users should have a degree of au-
tonomy, but the game should be structured
in such a way that most users follow the log-
ical path.

Una Aventura por
el Cauca

1 variability A teacher wishes to create new municipali-
ties or add information to the game

Table E.1: Scenarios created by participants

145

Bibliography

Aalst, W. van der, Beisiegel, M., Hee, K. M. V., Konig, D., & Stahl, C. (2007). A SOA-
based architecture framework. International Journal of Business Process Integration
and Management, 2(2), 91. doi:10.1504/IJBPIM.2007.015132

Adams, E. & Dormans, J. (2012). Game mechanics: advanced game design. New Riders.
Adcock, A. & Eck, R. van. (2012). Adaptive game-based learning. In N. M. Seel (Ed.),

Encyclopedia of the sciences of learning. Heidelberg: Springer-Verlag. doi:10.1007/
978-1-4419-1428-6

Advanced Distributed Learning. (2015). xAPI technical speciʯcation. Github repository.
Retrieved April 9, 2016, from https://github.com/adlnet/xAPI-Spec

Ahn, R., Barakova, E., Feijs, L., Funk, M., Hu, J., & Rauterberg, M. (2014). Interfacing
with adaptive systems. Automation, Control and Intelligent Systems, 2(4), 53–61.
doi:10.11648/j.acis.20140204.12

Almerico, G. M. & Baker, R. K. (2004). Bloom’s taxonomy illustrative verbs: develop-
ing a comprehensive list for educator use. Florida Association of Teacher Educators
Journal, 1(4), 1–10.

Amazon Web Services. (2014). AWS game development and operation. Retrieved July
22, 2014, from http://aws.amazon.com/game-hosting/

Amory, A. (2007). Game Object Model version II: a theoretical framework for educa-
tional game development.Educational Technology Research and Development, 55(1),
51–77. doi:10.1007/s11423-006-9001-x

Amory, A., Naicker, K., Vincent, J., & Adams, C. (1999). The use of computer games as
an educational tool: identiʯcation of appropriate game types and game elements.
British Journal of Educational Technology, 30(4), 311–321. doi:10.1111/1467-8535.
00121

Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning,
teaching, and assessing: a revision of Bloom’s taxonomy of educational objectives. Long-
man.

Angelov, S., Grefen, P., & Greefhorst, D. (2012). A framework for analysis and design of
software reference architectures. Information and Software Technology, 54(4), 417–
431. doi:10.1016/j.infsof.2011.11.009

Angelov, S., Trienekens, J. J. M., & Grefen, P. (2008). Towards a method for the evalu-
ation of reference architectures: experiences from a case. In Proceedings of the 2nd

147

https://dx.doi.org/10.1504/IJBPIM.2007.015132
https://dx.doi.org/10.1007/978-1-4419-1428-6
https://dx.doi.org/10.1007/978-1-4419-1428-6
https://github.com/adlnet/xAPI-Spec
https://dx.doi.org/10.11648/j.acis.20140204.12
http://aws.amazon.com/game-hosting/
https://dx.doi.org/10.1007/s11423-006-9001-x
https://dx.doi.org/10.1111/1467-8535.00121
https://dx.doi.org/10.1111/1467-8535.00121
https://dx.doi.org/10.1016/j.infsof.2011.11.009

Bibliography

European Conference on Software Architecture – ECSA 2008 (pp. 225–240). Paphos,
Cyprus: Springer. doi:10.1007/978-3-540-88030-1_17

Angelov, S., Trienekens, J., & Kusters, R. (2013). Software reference architectures – ex-
ploring their usage and design in practice. In Proceedings of the 7th European Con-
ference on Software Architecture – ECSA 2013 (pp. 17–24). Montpellier, France:
Springer. doi:10.1007/978-3-642-39031-9_2

Arnab, S., Lim, T., Carvalho, M. B., Bellotti, F., Freitas, S. de, Louchart, S., Suttie,
N., Berta, R., & De Gloria, A. (2015). Mapping learning and game mechanics for
serious games analysis. British Journal of Educational Technology, 46(2), 391–411.
doi:10.1111/bjet.12113

Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., & Holley, K. (2008).
SOMA: a method for developing service-oriented solutions. IBM Systems Journal,
47(3), 377–396. doi:10.1147/sj.473.0377

Arslan, F. (2012). Towards service oriented architecture (SOA) for massive multiplayer
online games (MMOG). In Proceedings of the International Conference on Computer
Modelling and Simulation – UKSim (pp. 538–543). IEEE. doi:10 . 1109/UKSim.
2012.82

Azadegan, A., Riedel, J. C. K. H., & Baalsrud Hauge, J. (2012). Serious games adoption
in corporate training. In Serious games development and applications (pp. 74–85).
Springer. doi:10.1007/978-3-642-33687-4_6

Barros, A., Dumas, M., & Oaks, P. (2006). Standards for web service choreography and
orchestration: status and perspectives. In Revised selected papers of the business pro-
cess management international workshops – BPM 2005 (pp. 61–74). Nancy, France:
Springer. doi:10.1007/11678564_7

Bass, L., Clements, P., & Kazman, R. (2012). Software architecture in practice (3rd ed.).
SEI Series in Software Engineering. Addison-Wesley.

Batko, M. (2016). Business management simulations – a detailed industry analysis as well
as recommendations for the future. International Journal of Serious Games, 3(2).
doi:10.17083/ijsg.v3i2.99

Becker, K. (2005). How are games educational? learning theories embodied in games.
In Proceedings of the Digital Games Research Association International Conference –
DiGRA 2005: Changing views – worlds in play.

Bellotti, F., Berta, R., & De Gloria, A. (2010). Designing eʮective serious games: oppor-
tunities and challenges for research. International Journal of Emerging Technologies
in Learning (iJET), 5(SI3), 22–35. doi:10.3991/ijet.v5s3.1500

Bellotti, F., Berta, R., De Gloria, A., D’Ursi, A., & Fiore, V. (2012). A serious game
model for cultural heritage. Journal on Computing and Cultural Heritage, 5(4), 1–
27. doi:10.1145/2399180.2399185

Bellotti, F., Berta, R., De Gloria, A., & Primavera, L. (2009). Adaptive experience en-
gine for serious games. IEEE Transactions on Computational Intelligence and AI in
Games, 1(4), 264–280. doi:10.1109/TCIAIG.2009.2035923

Bellotti, F., Berta, R., De Gloria, A., & Primavera, L. (2010). Supporting authors in
the development of task-based learning in serious virtual worlds. British Journal of
Educational Technology, 41(1), 86–107. doi:10.1111/j.1467-8535.2009.01039.x

148

https://dx.doi.org/10.1007/978-3-540-88030-1_17
https://dx.doi.org/10.1007/978-3-642-39031-9_2
https://dx.doi.org/10.1111/bjet.12113
https://dx.doi.org/10.1147/sj.473.0377
https://dx.doi.org/10.1109/UKSim.2012.82
https://dx.doi.org/10.1109/UKSim.2012.82
https://dx.doi.org/10.1007/978-3-642-33687-4_6
https://dx.doi.org/10.1007/11678564_7
https://dx.doi.org/10.17083/ijsg.v3i2.99
https://dx.doi.org/10.3991/ijet.v5s3.1500
https://dx.doi.org/10.1145/2399180.2399185
https://dx.doi.org/10.1109/TCIAIG.2009.2035923
https://dx.doi.org/10.1111/j.1467-8535.2009.01039.x

Bibliography

Bellotti, F., Berta, R., De Gloria, A., & Zappi, V. (2008). Exploring gaming mecha-
nisms to enhance knowledge acquisition in virtual worlds. In Proceedings of the 3rd
International Conference on Digital Interactive Media in Entertainment and Arts
– DIMEA 2008 (pp. 77–84). New York, New York, USA: ACM. doi:10 . 1145 /
1413634.1413653

Bellotti, F., Kapralos, B., Lee, K., Moreno-Ger, P., & Berta, R. (2013). Assessment in and
of serious games: an overview. Advances in Human-Computer Interaction, 2013, 1–
11. doi:10.1155/2013/136864

Bente, G. & Breuer, J. (2009). Making the implicit explicit: embedded measurement in
serious games. In U. Ritterʯeld, M. J. Cody, & P. Vorderer (Eds.), Serious games:
mechanisms and eʜects (pp. 322–343). New York, NY, USA: Routledge.

Berta, R., Bellotti, F., De Gloria, A., Pranantha, D., & Schatten, C. (2013). Electroen-
cephalogram and physiological signal analysis for assessing ʰow in games. IEEE
Transactions on Computational Intelligence and AI in Games, 5(2), 164–175. doi:10.
1109/TCIAIG.2013.2260340

BinSubaih, A. & Maddock, S. (2007). G-factor portability in game development using
game engines. In Proceedings of the 3rd International Conference on Games Research
and Development (pp. 163–170).

Bloom, B. S. (1984). The 2 Sigma problem: the search for methods of group instruction
as eʮective as one-to-one tutoring. Educational Researcher, 13(6), 4–16.

Blunt, R. (2009). Do serious games work? results from three studies. eLearn, 2009(12), 1.
doi:10.1145/1661377.1661378

Bogost, I. (2007). Persuasive games: the expressive power of videogames. MIT Press.
Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The ef-

fects of video game playing on attention, memory, and executive control. Acta
Psychologica, 129(3), 387–398. doi:10.1016/j.actpsy.2008.09.005

Bosch, N., D’Mello, S., Baker, R., Ocumpaugh, J., Shute, V. J., Ventura, M., Wang, L.,
& Zhao, W. (2015). Automatic detection of learning-centered aʮective states in the
wild. In Proceedings of the 20th International Conference on Intelligent User Interfaces
– IUI 2015. Association for Computing Machinery (ACM). doi:10.1145/2678025.
2701397

Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., Lim, T., Ninaus,
M., Ribeiro, C., & Pereira, J. (2016). An update to the systematic literature review
of empirical evidence of the impacts and outcomes of computer games and serious
games. Computers & Education, 94, 178–192. doi:10.1016/j.compedu.2015.11.003

Brockmyer, J.H., Fox, C.M., Curtiss, K. A.,McBroom, E., Burkhart, K.M.,&Pidruzny,
J. N. (2009). The development of the Game Engagement Questionnaire: a measure
of engagement in video game-playing. Journal of Experimental Social Psychology,
45(4), 624–634. doi:10.1016/j.jesp.2009.02.016

Brooke, J. (1996). SUS – a quick and dirty usability scale. In P. W. Jordan, B. Thomas,
B. A. Weerdmeester, & A. L. McClelland (Eds.), Usability evaluation in industry.
London: Taylor & Francis.

149

https://dx.doi.org/10.1145/1413634.1413653
https://dx.doi.org/10.1145/1413634.1413653
https://dx.doi.org/10.1155/2013/136864
https://dx.doi.org/10.1109/TCIAIG.2013.2260340
https://dx.doi.org/10.1109/TCIAIG.2013.2260340
https://dx.doi.org/10.1145/1661377.1661378
https://dx.doi.org/10.1016/j.actpsy.2008.09.005
https://dx.doi.org/10.1145/2678025.2701397
https://dx.doi.org/10.1145/2678025.2701397
https://dx.doi.org/10.1016/j.compedu.2015.11.003
https://dx.doi.org/10.1016/j.jesp.2009.02.016

Bibliography

Brusilovsky, P., Peylo, C. et al. (2003). Adaptive and intelligent web-based educational
systems. International Journal of Artiʝcial Intelligence in Education, 13(2-4), 159–
172.

Bull, S. & Kay, J. (2007). Student models that invite the learner in: the SMILI :) open
learner modelling framework. International Journal of Artiʝcial Intelligence in Ed-
ucation, 17(2), 89–120.

Bull, S. & Kay, J. (2013). Open learner models as drivers for metacognitive processes. In
International handbook of metacognition and learning technologies (pp. 349–365).
Springer. doi:10.1007/978-1-4419-5546-3_23

Bull, S., Kickmeier-Rust, M. D., Vatrapu, R., Johnson, M., Hammermueller, K., Byrne,
W., Hernandez-Munoz, L., Giorgini, F., & Meissl-Egghart, G. (2013). Learning,
learning analytics, activity visualisation and open learner model: confusing? In D.
Hernández-Leo, T. Ley, R. Klamma, & A. Harrer (Eds.), Scaling up learning for
sustained impact SE – 51 (Vol. 8095, pp. 532–535). Lecture Notes in Computer
Science. Springer Berlin Heidelberg. doi:10.1007/978-3-642-40814-4_51

Bura, S. (2006). A game grammar. Retrieved February 14, 2014, from http : //www.
stephanebura.com/diagrams/

Caillois, R. (1961). Man, play, and games. University of Illinois Press.
Carini, R. M., Kuh, G. D., & Klein, S. P. (2006). Student engagement and student learn-

ing: testing the linkages. Research in Higher Education, 47(1), 1–32. doi:10.1007/
s11162-005-8150-9

Carmines, E. & Zeller, R. (1979). Reliability and validity assessment. Quantitative Appli-
cations in the Social Sciences. SAGE Publications.

Carvalho, M. B. (2015a). Comparison of two models for serious games analysis. Dataset.
Retrieved April 1, 2015, from http://persistent- identifier .nl/?identifier=urn:
nbn:nl:ui:13-r5t6-mn

Carvalho, M. B. (2015b). SG Study Github repository. Repository. Retrieved April 1,
2015, from https://github.com/carvalhomb/sgmodels_study

Carvalho,M. B., Bellotti, F., Berta, R., Gloria, A.D., Gazzarata, G.,Hu, J., &Kickmeier-
Rust, M. D. (2015). A case study on Service-Oriented Architecture for serious
games. Entertainment Computing, 6, 1–10. doi:10.1016/j.entcom.2014.11.001

Carvalho, M. B., Bellotti, F., Berta, R., Gloria, A. D., Sedano, C. I., Baalsrud Hauge, J.,
Hu, J., & Rauterberg, M. (2015). An activity theory-based model for serious games
analysis and conceptual design. Computers and Education, 87, 166–181. doi:10 .
1016/j.compedu.2015.03.023

Carvalho, M. B., Bellotti, F., Hu, J., Baalsrud Hauge, J., Berta, R., Gloria, A. D., &
Rauterberg, M. (2015). Towards a Service-Oriented Architecture framework for
educational serious games. In Proceedings of the 15th IEEE International Conference
on Advanced Learning Technologies – ICALT 2015. Hualien, Taiwan.

Carvalho, M. B., Hu, J., Bellotti, F., De Gloria, A., & Rauterberg, M. (2015). Service-
oriented architecture (SOA) development for serious games. In Proceedings of the
14th International Conference on Entertainment Computing – ICEC 2015. Trond-
heim, Norway.

150

https://dx.doi.org/10.1007/978-1-4419-5546-3_23
https://dx.doi.org/10.1007/978-3-642-40814-4_51
http://www.stephanebura.com/diagrams/
http://www.stephanebura.com/diagrams/
https://dx.doi.org/10.1007/s11162-005-8150-9
https://dx.doi.org/10.1007/s11162-005-8150-9
http://persistent-identifier.nl/?identifier=urn:nbn:nl:ui:13-r5t6-mn
http://persistent-identifier.nl/?identifier=urn:nbn:nl:ui:13-r5t6-mn
https://github.com/carvalhomb/sgmodels_study
https://dx.doi.org/10.1016/j.entcom.2014.11.001
https://dx.doi.org/10.1016/j.compedu.2015.03.023
https://dx.doi.org/10.1016/j.compedu.2015.03.023

Bibliography

Cheng, M.-T., Chen, J.-H., Chu, S.-J., & Chen, S.-Y. (2015). The use of serious games
in science education: a review of selected empirical research from 2002 to 2013.
Journal of Computers in Education, 2(3), 353–375. doi:10.1007/s40692-015-0039-9

Csikszentmihalyi, M. (1990). Flow: the psychology of optimal experience. Harper and Row.
Devane, B. & Squire, K. D. (2012). Activity theory in the learning technologies. In D. H.

Jonassen & S. M. Land (Eds.), Theoretical foundations of learning environments
(Chap. 10, pp. 242–267). New York: Routledge.

Djaouti, D., Alvarez, J., Jessel, J.-P., & Methel, G. (2007). Towards a classiʯcation of
video games. In Proceedings of the Artiʝcial and Ambient Intelligence convention
(Artiʝcial Societies for Ambient Intelligence) – AISB (ASAMi) 2007.

Djaouti, D., Alvarez, J., Jessel, J.-P., & Rampnoux, O. (2011). Origins of serious games.
In Serious games and edutainment applications (pp. 25–43). Springer. doi:10.1007/
978-1-4471-2161-9_3

Dormans, J. (2009). Machinations. Retrieved February 25, 2014, from http ://www.
jorisdormans.nl/machinations/

Doswell, J. & Harmeyer, K. (2007). Extending the ‘serious game’ boundary: virtual
instructors in mobile mixed reality learning games. In Proceedings of the Digital
Games Research Association International Conference – DiGRA 2007 (pp. 524–529).

Dunwell, I. & Freitas, S. de. (2011). Four-dimensional consideration of feedback in seri-
ous games. In S. Freitas & P.Maharg (Eds.),Digital games and learning. Continuum
Publishing.

Eck, R. van. (2006). Digital game-based learning: it’s not just the digital natives who are
restless... EDUCAUSE Review, 41(2), 1–16. doi:10.1145/950566.950596

Egenfeldt-Nielsen, S. (2006). Overview of research on the educational use of video games.
Digital Kompetanse, 1(3), 184–213.

Engeström, Y. (1987). Learning by expanding: an activity-theoretical approach to develop-
mental research. Orienta-Konsultit Oy.

Engeström, Y. (2001). Expansive learning at work: toward an activity theoretical recon-
ceptualization. Journal of Education and Work, 14(1), 133–156.

Erhel, S. & Jamet, E. (2013). Digital game-based learning: impact of instructions and
feedback on motivation and learning eʮectiveness. Computers & Education, 67,
156–167. doi:10.1016/j.compedu.2013.02.019

Erl, T. (2005). Service-Oriented Architecture: concepts, technology, and design. Upper Saddle
River, NJ, USA: Prentice Hall PTR.

Erradi, A., Anand, S., & Kulkarni, N. (2006). SOAF: an architectural framework for ser-
vice deʯnition and realization. In Proceedings of the IEEE International Conference
on Services Computing – SCC 2006 (pp. 151–158). IEEE.

Facebook. (2014). Games Developer Center. Retrieved October 20, 2014, from https :
//developers.facebook.com/docs/games/

Fink, L. D. (2003). Creating signiʝcant learning experiences: an integrated approach to de-
signing college courses. John Wiley & Sons.

Floryan, M. &Woolf, B. P. (2011). Optimizing the performance of educational web ser-
vices. In Proceedings of the 11th IEEE International Conference on Advanced Learn-

151

https://dx.doi.org/10.1007/s40692-015-0039-9
https://dx.doi.org/10.1007/978-1-4471-2161-9_3
https://dx.doi.org/10.1007/978-1-4471-2161-9_3
http://www.jorisdormans.nl/machinations/
http://www.jorisdormans.nl/machinations/
https://dx.doi.org/10.1145/950566.950596
https://dx.doi.org/10.1016/j.compedu.2013.02.019
https://developers.facebook.com/docs/games/
https://developers.facebook.com/docs/games/

Bibliography

ing Technologies Advanced Learning Technologies – ICALT 2011 (pp. 399–400). doi:10.
1109/ICALT.2011.126

Folmer, E. (2007). Component based game development – a solution to escalating costs
and expanding deadlines? In Component-based software engineering (pp. 66–73).
Springer. doi:10.1007/978-3-540-73551-9_5

Foreman, S. (2013). The xAPI and the LMS: what does the future hold? Learning Solu-
tions Magazine. Retrieved April 9, 2016, from http://www.learningsolutionsmag.
com/articles/1271/the-xapi-and-the-lms-what-does-the-future-hold

Freitas, S. de &Oliver, M. (2006). How can exploratory learning with games and simula-
tions within the curriculum bemost eʮectively evaluated?Computers & Education,
46(3), 249–264.

Fu, F.-L., Su, R.-C., & Yu, S.-C. (2009). EGameFlow: a scale to measure learners’ enjoy-
ment of e-learning games. Computers & Education, 52(1), 101–112. doi:10.1016/j.
compedu.2008.07.004

Gagné, R. (1985). The conditions of learning and theory of instruction. CBS College Pub-
lishing.

Games Enhanced Learning. (2010). Educational game design patterns. Retrieved Febru-
ary 13, 2014, from http://amc.pori.tut.fi/educational-game-design-patterns/

Gardner, J. (Ed.). (2012a). Assessment and learning (2nd ed.). SAGE Publications.
Gardner, J. (2012b). Assessment and learning: introduction. In J. Gardner (Ed.), Assess-

ment and learning (2nd ed., pp. 1–8). SAGE Publications.
Glahn, C. (2013). Using the ADL experience API for mobile learning, sensing, inform-

ing, encouraging, orchestrating. In Proceedings of the 7th International Conference
on Next Generation Mobile Apps, Services and Technologies. IEEE. doi:10 . 1109 /
ngmast.2013.55

Green, C. S. & Bavelier, D. (2007). Action-video-game experience alters the spatial reso-
lution of vision. Psychological Science, 18(1), 88–94. doi:10.1111/j.1467-9280.2007.
01853.x

Green, C. S., Li, R., & Bavelier, D. (2010). Perceptual learning during action video game
playing. Topics in Cognitive Science, 2(2), 202–216. doi:10.1111/j.1756-8765.2009.
01054.x

Guillén-Nieto, V. & Aleson-Carbonell, M. (2012). Serious games and learning eʮective-
ness: the case of It’s a Deal! Computers & Education, 58(1), 435–448. doi:10.1016/
j.compedu.2011.07.015

Gunter, G. A., Kenny, R. F., &Vick, E.H. (2006). A case for a formal design paradigm for
serious games. The Journal of the International Digital Media and Arts Association,
3(1), 93–105.

Guy, E. S. (2005). From rollout to appropriation: changing practices of development and use
during a groupware project (PhD Thesis, University of Brighton).

Harlen, W. & James, M. (1997). Assessment and learning: diʮerences and relationships
between formative and summative assessment. Assessment in Education: Principles,
Policy & Practice, 4(3), 365–379. doi:10.1080/0969594970040304

152

https://dx.doi.org/10.1109/ICALT.2011.126
https://dx.doi.org/10.1109/ICALT.2011.126
https://dx.doi.org/10.1007/978-3-540-73551-9_5
http://www.learningsolutionsmag.com/articles/1271/the-xapi-and-the-lms-what-does-the-future-hold
http://www.learningsolutionsmag.com/articles/1271/the-xapi-and-the-lms-what-does-the-future-hold
https://dx.doi.org/10.1016/j.compedu.2008.07.004
https://dx.doi.org/10.1016/j.compedu.2008.07.004
http://amc.pori.tut.fi/educational-game-design-patterns/
https://dx.doi.org/10.1109/ngmast.2013.55
https://dx.doi.org/10.1109/ngmast.2013.55
https://dx.doi.org/10.1111/j.1467-9280.2007.01853.x
https://dx.doi.org/10.1111/j.1467-9280.2007.01853.x
https://dx.doi.org/10.1111/j.1756-8765.2009.01054.x
https://dx.doi.org/10.1111/j.1756-8765.2009.01054.x
https://dx.doi.org/10.1016/j.compedu.2011.07.015
https://dx.doi.org/10.1016/j.compedu.2011.07.015
https://dx.doi.org/10.1080/0969594970040304

Bibliography

Hartrell, G. (2013). Introducing Google Play game services. Retrieved July 22, 2014,
from http://googledevelopers.blogspot.com/2013/05/introducing-google-play-
game-services.html

Hasan, H. (1999). Integrating IS and HCI using activity theory as a philosophical and
theoretical basis. Australasian Journal of Information Systems, 6(2), 44–55.

Hassan,M.M.,Hossain,M. S., Alamri, A.,Hossain,M.A., Al-Qurishi,M., Aldukhayyil,
Y., & Ahmed, D. T. (2012). A cloud-based serious games framework for obesity.
In Proceedings of the 1st ACM Multimedia International Workshop on Cloud-based
Multimedia Applications and Services for E-health – CMBAS-EH 2012 (pp. 15–20).
New York, USA: ACM. doi:10.1145/2390906.2390912

Haynes, J. A., Underwood, J. S., Pokorny, R., & Spinrad, A. (2014). What is adaptivity?
Does it improve performance? In Foundations of augmented cognition. Advancing
human performance and decision-making through adaptive systems (pp. 224–235).
Springer. doi:10.1007/978-3-319-07527-3_21

Heemstra, F. (1992). Software cost estimation. Information and Software Technology,
34(10), 627–639. doi:10.1016/0950-5849(92)90068-z

Houten, S.-P. A. van & Jacobs, P. H. M. (2004). An architecture for distributed simula-
tion games. In Proceedings of the 36th Conference on Winter Simulation (pp. 2081–
2086).

Hruska, M., Long, R., Amburn, C., Kilcullen, T., & Poeppelman, T. (2014). Experience
API and team evaluation: evolving interoperable performance assessment. In Pro-
ceedings of the Interservice/Industry Training, Simulation & Education Conference –
I/ITSEC 2014.

Huizinga, J. (1949). Homo ludens. Routledge & Kegan Paul.
Hummels, C., Vinke, D., Frens, J., & Hu, J. (2011). Competency-centered education for

designing interactive and intelligent products. Creation and Design, 13(2), 4–17.
Hunicke, R., Leblanc, M., & Zubek, R. (2004). MDA: a formal approach to game design

and game research. In Proceedings of the Challenges in Games AI Workshop, 19th
National Conference of Artiʝcial Intelligence (pp. 1–5). San Jose, California.

Hurwitz, J., Bloor, R., Baroudi, C., & Kaufman, M. (2006). Service oriented architecture
for dummies. For dummies. Wiley.

Ifenthaler, D., Eseryel, D., & Ge, X. (2012). Assessment for game-based learning. In
Assessment in game-based learning (pp. 1–8). Springer. doi:10.1007/978- 1- 4614-
3546-4_1

IJsselsteijn, W., De Kort, Y., Poels, K., Jurgelionis, A., & Bellotti, F. (2007). Character-
ising and measuring user experiences in digital games. In Proceedings of the Inter-
national Conference on Advances in Computer Entertainment Technology (Vol. 2,
p. 27).

Illinois Central College. (2011). Revised Bloom’s taxonomy. Retrieved July 30, 2014,
from http://www.icc.edu/innovation/PDFS/assessmentEvaluation/RevisedBlo
omsChart_bloomsverbsmatrix.pdf

Ionita, M. T., Hammer, D. K., & Obbink, H. (2002). Scenario-based software architec-
ture evaluation methods: an overview. In Proceedings of the Workshop on Methods

153

http://googledevelopers.blogspot.com/2013/05/introducing-google-play-game-services.html
http://googledevelopers.blogspot.com/2013/05/introducing-google-play-game-services.html
https://dx.doi.org/10.1145/2390906.2390912
https://dx.doi.org/10.1007/978-3-319-07527-3_21
https://dx.doi.org/10.1016/0950-5849(92)90068-z
https://dx.doi.org/10.1007/978-1-4614-3546-4_1
https://dx.doi.org/10.1007/978-1-4614-3546-4_1
http://www.icc.edu/innovation/PDFS/assessmentEvaluation/RevisedBloomsChart_bloomsverbsmatrix.pdf
http://www.icc.edu/innovation/PDFS/assessmentEvaluation/RevisedBloomsChart_bloomsverbsmatrix.pdf

Bibliography

and Techniques for Software Architecture Review and Assessment (SARA) at the Inter-
national Conference on Software Engineering – ICSE 2002. Orlando, Florida, USA.

Islas Sedano, C. (2012). Hypercontextualized games (Doctoral dissertation, University of
Eastern Finland).

Jackson, L. A., Witt, E. A., Games, A. I., Fitzgerald, H. E., Eye, A. von, & Zhao, Y.
(2012). Information technology use and creativity: ʯndings from the children and
technology project. Computers in Human Behavior, 28(2), 370–376. doi:10.1016/j.
chb.2011.10.006

Jennett, C., Cox, A. L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., &Walton, A. (2008).
Measuring and deʯning the experience of immersion in games. International Jour-
nal of Human-Computer Studies, 66(9), 641–661. doi:10.1016/j.ijhcs.2008.04.004

Jonassen, D. H. & Rohrer-Murphy, L. (1999). Activity theory as a framework for de-
signing constructivist learning environments. Educational Technology Research and
Development, 47(1), 61–79. doi:10.1007/BF02299477

Kaptelinin, V. (1996). Context and consciousness: activity theory and human-computer
interaction. In B. A. Nardi (Ed.), (Chap. Activity theory: Implications for human-
computer interaction, pp. 103–116). The MIT Press Cambridge, MA.

Kaptelinin, V. & Nardi, B. A. (2006). Acting with technology: activity theory and interac-
tion design. Cambridge, MA, USA: The MIT Press.

Kazman, R., Klein, M., & Clements, P. (2000). ATAM: method for architecture evaluation
(tech. rep. No. CMU/SEI-2000-TR-004). Product Line Systems. Retrieved from
http://www.sei.cmu.edu/reports/00tr004.pdf

Kebritchi, M., Hirumi, A., & Bai, H. (2010). The eʮects of modern mathematics com-
puter games on mathematics achievement and class motivation. Computers & Ed-
ucation, 55(2), 427–443. doi:10.1016/j.compedu.2010.02.007

Keller, J. M. (1987). Development and use of the ARCS model of instructional design.
Journal of Instructional Development, 10(3), 2–10.

Kevan, J. M. & Ryan, P. R. (2016). Experience API: ʰexible, decentralized and activity-
centric data collection.Technology, Knowledge and Learning, 21(1), 143–149. doi:10.
1007/s10758-015-9260-x

Kickmeier-Rust, M. D. & Albert, D. (2007). The ELEKTRA ontology model: a learner-
centered approach to resource description. In 6th International Conference Ad-
vances in Web Based Learning – ICWL 2007 – revised papers (pp. 78–89). Edinburgh,
UK. doi:10.1007/978-3-540-78139-4_8

Kickmeier-Rust, M. D. & Albert, D. (2012a). An alien’s guide to multi-adaptive educa-
tional computer games (M. D. Kickmeier-Rust & D. Albert, Eds.). Santa Rosa, CA:
Informing Science Press.

Kickmeier-Rust, M. D. & Albert, D. (2012b). Educationally adaptive: balancing serious
games. International Journal of Computer Science in Sport, 11(1), 1–10.

Kickmeier-Rust, M. D., Marte, B., Linek, S. B., Lalonde, T., & Albert, D. (2008). The
eʮects of individualized feedback in digital educational games. In Proceedings of the
2nd European Conference on Games Based Learning – ECGBL 2008 (pp. 227–236).

Kickmeier-Rust, M. D., Peirce, N., Conlan, O., Schwarz, D., Verpoorten, D., & Albert,
D. (2007). Immersive digital games: the interfaces for next-generation e-learning?

154

https://dx.doi.org/10.1016/j.chb.2011.10.006
https://dx.doi.org/10.1016/j.chb.2011.10.006
https://dx.doi.org/10.1016/j.ijhcs.2008.04.004
https://dx.doi.org/10.1007/BF02299477
http://www.sei.cmu.edu/reports/00tr004.pdf
https://dx.doi.org/10.1016/j.compedu.2010.02.007
https://dx.doi.org/10.1007/s10758-015-9260-x
https://dx.doi.org/10.1007/s10758-015-9260-x
https://dx.doi.org/10.1007/978-3-540-78139-4_8

Bibliography

In Proceedings of the 4th International Conference on Universal Access in Human-
Computer Interaction – UAHCI 2007 (pp. 647–656). Beijing, China. doi:10.1007/
978-3-540-73283-9_71

Kiili, K. (2005). Digital game-based learning: towards an experiential gaming model. The
Internet and higher education, 8(1), 13–24.

Kiili, K. (2010). Call for learning-game design patterns. In Educational games: design,
learning, and applications. Nova Publishers.

Kim, C.-H., Weston, R. H., Hodgson, A., & Lee, K.-H. (2003). The complementary use
of IDEF and UML modelling approaches. Computers in Industry, 50(1), 35–56.
doi:10.1016/S0166-3615(02)00145-8

Kivikangas, J. M., Chanel, G., Cowley, B., Ekman, I., Salminen,M., Järvelä, S., &Ravaja,
N. (2011). A review of the use of psychophysiological methods in game research.
Journal of Gaming & Virtual Worlds, 3(3), 181–199. doi:10.1386/jgvw.3.3.181_1

Kivikangas, J. M., Nacke, L., & Ravaja, N. (2011). Developing a triangulation system for
digital game events, observational video, and psychophysiological data to study
emotional responses to a virtual character. Entertainment Computing, 2(1), 11–16.
doi:10.1016/j.entcom.2011.03.006

Knight, J. F., Carley, S., Tregunna, B., Jarvis, S., Smithies, R., Freitas, S. de, Dunwell, I.,
& Mackway-Jones, K. (2010). Serious gaming technology in major incident triage
training: a pragmatic controlled trial. Resuscitation, 81(9), 1175–9. doi:10.1016/j.
resuscitation.2010.03.042

Kolb, D. A. (1984). The process of experiential learning. In Experiential learning: expe-
rience as the source of learning and development (pp. 20–38). Englewood Cliʮs, NJ:
Prentice-Hall. doi:10.1016/B978-0-7506-7223-8.50017-4

Koster, R. (2005a). A grammar of gameplay. Game atoms: can games be diagrammed.
Retrieved January 1, 2014, from http://theoryoffun.com/grammar/gdc2005.htm

Koster, R. (2005b). Theory of fun for game design. Paraglyph Series. O’Reilly Media.
Koster, R. (2011). Social mechanics – the engines behind everything multiplayer. Re-

trieved July 31, 2014, from http://www.raphkoster .com/gaming/gdco2010/
socialmechanics.pdf

Kuhl, F., Weatherly, R., & Dahmann, J. (1999). Creating computer simulation systems: an
introduction to the high level architecture. Prentice Hall PTR.

Kuutti, K. (1995). Activity theory as a potential framework for human-computer inter-
action research. In B. Nardi (Ed.), Context and consciousness: activity theory and
human-computer interaction (pp. 17–44). Cambridge: MIT Press.

Law, C. Y., Grundy, J., Cain, A., & Vasa, R. (2015). A preliminary study of open
learner model representation formats to support formative assessment. In Proceed-
ings of the 39th IEEE Annual Computer Software and Applications Conference. IEEE.
doi:10.1109/compsac.2015.112

Leahy, S. & Wiliam, D. (2012). From teachers to schools: scaling up professional devel-
opment for formative assessment. In Assessment and learning (2nd ed., pp. 49–71).
SAGE Publications.

Leont’ev, A. N. (1978). Activity, consciousness and personality. Englewood Cliʮs, NJ:
Prentice-Hall.

155

https://dx.doi.org/10.1007/978-3-540-73283-9_71
https://dx.doi.org/10.1007/978-3-540-73283-9_71
https://dx.doi.org/10.1016/S0166-3615(02)00145-8
https://dx.doi.org/10.1386/jgvw.3.3.181_1
https://dx.doi.org/10.1016/j.entcom.2011.03.006
https://dx.doi.org/10.1016/j.resuscitation.2010.03.042
https://dx.doi.org/10.1016/j.resuscitation.2010.03.042
https://dx.doi.org/10.1016/B978-0-7506-7223-8.50017-4
http://theoryoffun.com/grammar/gdc2005.htm
http://www.raphkoster.com/gaming/gdco2010/socialmechanics.pdf
http://www.raphkoster.com/gaming/gdco2010/socialmechanics.pdf
https://dx.doi.org/10.1109/compsac.2015.112

Bibliography

Lewis, M. & Jacobson, J. (2002). Games engines in scientiʯc research. Communications
of the ACM, 45(1), 27–31.

Liu, E. Z. F. & Lin, C. H. (2009, January). Developing evaluative indicators for educa-
tional computer games. British Journal of Educational Technology, 40(1), 174–178.
doi:10.1111/j.1467-8535.2008.00852.x

Liu, J. H. (2012). DragonBox: algebra beats Angry Birds. Retrieved July 31, 2014, from
http://archive.wired.com/geekdad/2012/06/dragonbox/

Loh, C. S. (2012). Information trails: in-process assessment of game-based learning. In
D. Ifenthaler, D. Eseryel, & X. Ge (Eds.), Assessment in game-based learning: Foun-
dations, innovations, and perspectives (pp. 123–144). Springer. doi:10.1007/978-1-
4614-3546-4_8

Lumos. (2014). Lumos Powered. Retrieved July 22, 2014, from https://www.lumospo
wered.com

Mandryk, R. L., Inkpen, K. M., & Calvert, T. W. (2006). Using psychophysiological
techniques tomeasure user experience with entertainment technologies. Behaviour
& Information Technology, 25(2), 141–158. doi:10.1080/01449290500331156

Marne, B., Wisdom, J., Huynh-Kim-Bang, B., & Labat, J.-M. (2012). The six facets of
serious game design: a methodology enhanced by our design pattern library. In
Proceedings of 7th European Conference of Technology Enhanced Learning – EC-TEL
2012 (Vol. 7563, pp. 208–221). Saarbrücken, Germany. doi:10.1007/978- 3- 642-
33263-0_17

Marsh, T. (2006). Game development for experience through staying there. In Proceedings
of the ACM SIGGRAPH symposium on videogames – Sandbox 2006 (Vol. 1, 212,
pp. 83–89).

Marsh, T. (2010). Activity-based scenario design, development and assessment in serious
games. Gaming and cognition: Theories and practice from the learning sciences, 213–
225.

Marsh, T. & Nardi, B. A. (2014). Spheres and lenses: activity-based scenario / narrative
approach for design and evaluation of entertainment through engagement. In Pro-
ceedings of the 13th International Conference on Entertainment Computing – ICEC
2014 (pp. 42–51). Springer.

Maxwell, E. (2006). Open standards, open source, and open innovation: harnessing the
beneʯts of openness. Innovations: Technology, Governance, Globalization, 1(3), 119–
176. doi:10.1162/itgg.2006.1.3.119

Megliola, M., De Vito, G., Sanguini, R., Wild, F., & Lefrere, P. (2014). Creating aware-
ness of kinaesthetic learning using the experience API: current practices, emerging
challenges, possible solutions. In Proceedings of the 4th workshop on Awareness and
Reʞection in Technology-Enhanced Learning, in conjunction with the 9th European
Conference on Technology Enhanced Learning – ECTEL 2014) (Vol. 1238, pp. 11–
22). Retrieved from http://oro.open.ac.uk/41697/

Mislevy, R. J., Behrens, J. T., Dicerbo, K. E., Frezzo, D. C., & West, P. (2012). Three
things game designers need to know about assessment. In D. Ifenthaler, D. Eseryel,
& X. Ge (Eds.), Assessment in game-based learning: Foundations, innovations, and
perspectives (pp. 59–81). Springer. doi:10.1007/978-1-4614-3546-4_5

156

https://dx.doi.org/10.1111/j.1467-8535.2008.00852.x
http://archive.wired.com/geekdad/2012/06/dragonbox/
https://dx.doi.org/10.1007/978-1-4614-3546-4_8
https://dx.doi.org/10.1007/978-1-4614-3546-4_8
https://www.lumospowered.com
https://www.lumospowered.com
https://dx.doi.org/10.1080/01449290500331156
https://dx.doi.org/10.1007/978-3-642-33263-0_17
https://dx.doi.org/10.1007/978-3-642-33263-0_17
https://dx.doi.org/10.1162/itgg.2006.1.3.119
http://oro.open.ac.uk/41697/
https://dx.doi.org/10.1007/978-1-4614-3546-4_5

Bibliography

Mislevy, R. J., Steinberg, L. S., & Almond, R. G. (2003). Focus article: on the structure
of educational assessments. Measurement: Interdisciplinary Research & Perspective,
1(1), 3–62. doi:10.1207/s15366359mea0101_02

Moreno-Ger, P., Sierra, J. L., Martínez-Ortiz, I., & Fernández-Manjón, B. (2007). A
documental approach to adventure game development. Science of Computer Pro-
gramming, 67(1), 3–31. doi:10.1016/j.scico.2006.07.003

Naarmann, S. (2011). Lix. https://github.com/SimonN/Lix. GitHub.
Newman, S. (2015). Building microservices. O’Reilly Media.
Nicol, D. J. &Macfarlane-Dick, D. (2006). Formative assessment and self-regulated learn-

ing: a model and seven principles of good feedback practice. Studies in Higher Ed-
ucation, 31(2), 199–218. doi:10.1080/03075070600572090

Ning, J. (1996). A component-based software development model. In Proceedings of the
20th International Computer Software and Applications Conference – COMPSAC
1996. IEEE. doi:10.1109/cmpsac.1996.544597

OATH. (2007). OATH reference architecture, release 2.0. Initiative for Open AuTHenti-
cation.

Object Management Group. (2015). Uniʝed Modeling Language version 2.5 (tech. rep.
No. Formal/15-03-01). Object Management Group (OMG).

Oei, A. C. & Patterson, M. D. (2014). Playing a puzzle video game with changing re-
quirements improves executive functions. Computers in Human Behavior, 37, 216–
228. doi:10.1016/j.chb.2014.04.046

Oliveira, V., Coelho, A., Guimarães, R., & Rebelo, C. (2012). Serious game in security:
a solution for security trainees. Procedia Computer Science, 15, 274–282. doi:10 .
1016/j.procs.2012.10.079

Oostendorp, H. van, Spek, E. D. van der, & Linssen, J. (2014). Adapting the complexity
level of a serious game to the proʯciency of players. EAI Endorsed Transactions on
Game-Based Learning, 1(2), e5. doi:10.4108/sg.1.2.e5

Papazoglou, M. P. & Heuvel, W.-J. van den. (2006). Service-oriented design and develop-
ment methodology. International Journal of Web Engineering and Technology, 2(4),
412–442.

Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-oriented
computing: state of the art and research challenges.Computer, 40(11), 38–45. doi:10.
1109/MC.2007.400

Paraskeva, F., Mysirlaki, S., & Papagianni, A. (2010). Multiplayer online games as ed-
ucational tools: facing new challenges in learning. Computers & Education, 54(2),
498–505. doi:10.1016/j.compedu.2009.09.001

Peachey, P. (2010). The application of ‘activity theory’ in the design of educational sim-
ulation games. In Design and implementation of educational games: theoretical and
practical perspectives (1988, pp. 154–167). IGI Global. doi:10.4018/978-1-61520-
781-7.ch011

Peltz, C. (2003). Web services orchestration and choreography. Computer, 36(10), 46–52.
Popescu,M.M., Romero,M., &Usart,M. (2012). Using serious games in adult education

serious business for serious people-the metavals game case study. In Proceedings of
the 7th International Conference on Virtual Learning – ICVL 2012 (pp. 68–72).

157

https://dx.doi.org/10.1207/s15366359mea0101_02
https://dx.doi.org/10.1016/j.scico.2006.07.003
https://github.com/SimonN/Lix
https://dx.doi.org/10.1080/03075070600572090
https://dx.doi.org/10.1109/cmpsac.1996.544597
https://dx.doi.org/10.1016/j.chb.2014.04.046
https://dx.doi.org/10.1016/j.procs.2012.10.079
https://dx.doi.org/10.1016/j.procs.2012.10.079
https://dx.doi.org/10.4108/sg.1.2.e5
https://dx.doi.org/10.1109/MC.2007.400
https://dx.doi.org/10.1109/MC.2007.400
https://dx.doi.org/10.1016/j.compedu.2009.09.001
https://dx.doi.org/10.4018/978-1-61520-781-7.ch011
https://dx.doi.org/10.4018/978-1-61520-781-7.ch011

Bibliography

Pranantha, D., Bellotti, F., Berta, R., & De Gloria, A. (2012). Puzzle-it: an HTML5
serious games platform for education. In S. Göbel, W. Müller, B. Urban, & J.
Wiemeyer (Eds.), E-learning and games for training, education, health and sports
(Vol. 7516, pp. 134–143). Lecture Notes in Computer Science. Springer Berlin Hei-
delberg. doi:10.1007/978-3-642-33466-5_15

Prensky, M. (2001). Digital game-based learning. New York: McGraw-Hill.
Qazdar, A., Cherkaoui, C., Er-Raha, B., & Mammass, D. (2015). AeLF: mixing adap-

tive learning system with learning management system. International Journal of
Computer Applications, 119(15).

RAGE. (2016). RAGE – realizing an applied gaming ecosystem. Website. Retrieved Au-
gust 1, 2016, from http://rageproject.eu

Rauterberg, M. & Felix, D. (1996). Human errors: disadvantages and advantages. In Pro-
ceedings of the 4th Pan Paciʝc Conference on Occupational Ergonomics – PPCOE 1996
(pp. 25–28). Ergonomics Society Taiwan. Hsinchu.

Reed, P. (2002). Reference architecture: the best of best practices. Retrieved January 28,
2016, from http://www.ibm.com/developerworks/rational/library/2774.html

Rice, J. W. (2007). New media resistance: barriers to implementation of computer video
games in the classroom. Journal of Educational Multimedia and Hypermedia, 16(3),
249.

Ricordel, P.-M. & Demazeau, Y. (2000). From analysis to deployment: a multi-agent
platform survey. In Revised papers of the 1st International Workshop Engineering
Societies in the Agents World – ESAW 2000 (pp. 93–105). Berlin, Germany. doi:10.
1007/3-540-44539-0_7

Riedel, J. C. K. H., Feng, Y., Hauge, J. M. B., Hansen, P. K., & Tasuya, S. (2015). The
adoption and application of serious games in corporate training – the case of man-
ufacturing. In 2015 IEEE International Conference on Engineering, Technology and
Innovation/ International Technology Management Conference (ICE/ITMC). doi:10.
1109/ice.2015.7438684

Rustici Software. (2016). Who’s using the Tin Can API? Webpage. Retrieved April 9,
2016, from http://experienceapi.com/adopters/

Sabourin, J. L. & Lester, J. C. (2014). Aʮect and engagement in Game-Based Learning
environments. IEEE Transactions on Aʜective Computing, 5(1), 45–56. doi:10.1109/
t-affc.2013.27

Sadler, D. R. (1989). Formative assessment and the design of instructional systems. In-
structional Science, 18(2), 119–144. doi:10.1007/bf00117714

Sadler, D. R. (1998). Formative assessment: revisiting the territory. Assessment in Educa-
tion: Principles, Policy & Practice, 5(1), 77–84. doi:10.1080/0969595980050104

Salen, K. & Zimmerman, E. (2004). Rules of play: game design fundamentals. MIT press.
Sawyer, B. & Rejeski, D. (2002). Serious games: improving public policy through game-

based learning and simulation. WoodrowWilson International Center for Scholars.
Washington, DC.

Scacchi, W. & Cooper, K. M. (2015). Research challenges at the intersection of com-
puter games and software engineering. In Proceedings of the conference Foundations
of Digital Games – FDG. Paciʯc Grove, CA.

158

https://dx.doi.org/10.1007/978-3-642-33466-5_15
http://rageproject.eu
http://www.ibm.com/developerworks/rational/library/2774.html
https://dx.doi.org/10.1007/3-540-44539-0_7
https://dx.doi.org/10.1007/3-540-44539-0_7
https://dx.doi.org/10.1109/ice.2015.7438684
https://dx.doi.org/10.1109/ice.2015.7438684
http://experienceapi.com/adopters/
https://dx.doi.org/10.1109/t-affc.2013.27
https://dx.doi.org/10.1109/t-affc.2013.27
https://dx.doi.org/10.1007/bf00117714
https://dx.doi.org/10.1080/0969595980050104

Bibliography

Schell, J. (2008). The art of game design: a book of lenses. Morgan Kaufmann. Morgan
Kaufmann.

Schmidt, R., Emmerich, K., & Schmidt, B. (2015). Applied games – in search of a new
deʯnition. In Proceedings of the 14th International Conference on Entertainment
Computing – ICEC 2015 (pp. 100–111). Trondheim, Norway. doi:10.1007/978-3-
319-24589-8_8

Serious Games Society. (2013a). Serious games web services catalog. Retrieved April 4,
2014, from http://services.seriousgamessociety.org/

Serious Games Society. (2013b). SG knowledge management system. Retrieved July 30,
2014, from http://studies.seriousgamessociety.org/

Serrano-Laguna, Á., Martıńez-Ortiz, I., Haag, J., Regan, D., Johnson, A., & Fernández-
Manjón, B. (2017, February). Applying standards to systematize learning analytics
in serious games. Computer Standards & Interfaces, 50, 116–123. doi:10.1016/j.csi.
2016.09.014

Serrano-Laguna, Á., Torrente, J., Moreno-Ger, P., & Fernández-Manjón, B. (2014). Ap-
plication of learning analytics in educational videogames. Entertainment Comput-
ing, 5(4), 313–322. doi:10.1016/j.entcom.2014.02.003

Shaikh, A., Sahu, S., Rosu, M.-C., Shea, M., & Saha, D. (2006). On demand platform for
online games. IBM Systems Journal, 45(1), 7–19. doi:10.1147/sj.451.0007

Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1),
153–189. doi:10.3102/0034654307313795

Shute, V. J., D’Mello, S., Baker, R., Cho, K., Bosch, N., Ocumpaugh, J., Ventura, M.,
& Almeda, V. (2015). Modeling how incoming knowledge, persistence, aʮective
states, and in-game progress inʰuence student learning from an educational game.
Computers & Education, 86, 224–235. doi:10.1016/j.compedu.2015.08.001

Shute, V. J. &Ke, F. (2012). Games, learning, and assessment. InD. Ifenthaler, D. Eseryel,
& X. Ge (Eds.), Assessment in game-based learning: Foundations, innovations, and
perspectives (pp. 43–58). Springer. doi:10.1007/978-1-4614-3546-4_4

Shute, V. J. & Kim, Y. J. (2013). Formative and stealth assessment. In Handbook of
research on educational communications and technology (pp. 311–321). Springer.
doi:10.1007/978-1-4614-3185-5_25

Shute, V. J., Ventura, M., Bauer, M., & Zapata-Rivera, D. (2009). Melding the power
of serious games and embedded assessment to monitor and foster learning. In Se-
rious games: mechanisms and eʜects (Vol. 2, pp. 295–321). Philadelphia, PA: Rout-
ledge/LEA.

Shute, V. J., Ventura,M.,&Ke, F. (2015, January). The power of play: the eʮects of portal
2 and lumosity on cognitive and noncognitive skills. Computers & Education, 80,
58–67. doi:10.1016/j.compedu.2014.08.013

Sicart, M. (2008). Deʯning game mechanics. Game Studies, 8(2). Retrieved July 31, 2014,
from http://gamestudies.org/0802/articles/sicart

Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., & Postma, E. (2006). Adaptive game
AI with dynamic scripting. Machine Learning, 63(3), 217–248.

Sprott, D. & Wilkes, L. (2004). Understanding service-oriented architecture. The Archi-
tecture Journal, 1(1), 10–17.

159

https://dx.doi.org/10.1007/978-3-319-24589-8_8
https://dx.doi.org/10.1007/978-3-319-24589-8_8
http://services.seriousgamessociety.org/
http://studies.seriousgamessociety.org/
https://dx.doi.org/10.1016/j.csi.2016.09.014
https://dx.doi.org/10.1016/j.csi.2016.09.014
https://dx.doi.org/10.1016/j.entcom.2014.02.003
https://dx.doi.org/10.1147/sj.451.0007
https://dx.doi.org/10.3102/0034654307313795
https://dx.doi.org/10.1016/j.compedu.2015.08.001
https://dx.doi.org/10.1007/978-1-4614-3546-4_4
https://dx.doi.org/10.1007/978-1-4614-3185-5_25
https://dx.doi.org/10.1016/j.compedu.2014.08.013
http://gamestudies.org/0802/articles/sicart

Bibliography

Staalduinen, J.-P. van & Freitas, S. de. (2011). A game-based learning framework: linking
game design and learning. In M. S. Khine (Ed.), Learning to play: exploring the
future of education with video games (pp. 29–54). Peter Lang. doi:10.3726/978-1-
4539-0084-0

Stanescu, I. A., Stanescu, A.M., Moisescu, M., Sacala, I. S., Stefan, A., & BaalsrudHauge,
J. (2014). Enabling interoperability between serious game and virtual engineering
ecosystems. In Proceedings of the ASME international design engineering technical
conferences and computers and information in engineering conference. Buʮalo, New
York, USA. doi:10.1115/DETC2014-35418

Steiner, C. M., Kickmeier-Rust, M. D., Mattheiss, E., Göbel, S., & Albert, D. (2012). Bal-
ancing on a high wire: adaptivity key factor of future learning games. In An alien’s
guide to multi-adaptive educational computer games (p. 43). Informing Science.

Stevens, M. (2005). Understanding Service-Oriented Architecture. Retrieved June 27,
2014, from http://www.developer.com/design/article.php/10925_2207371_3/
Understanding-Service-Oriented-Architecture.htm

Streicher, A. & Roller, W. (2015). Towards an interoperable adaptive tutoring agent for
simulations and serious games. In Proceedings of the 9th Multi Conference on Com-
puter Science and Information Systems – MCCSIS 2015 (pp. 21–24).

Susi, T., Johannesson, M., & Backlund, P. (2007). Serious games – an overview. University
of Skövde, School of Humanities and Informatics. Skövde, Sweden.

Sweetser, P. & Wyeth, P. (2005). Gameʰow: a model for evaluating player enjoyment in
games. Computers in Entertainment (CIE), 3(3), 3–3.

Terenzini, P. T. (1989). Assessment with open eyes: pitfalls in studying student outcomes.
The Journal of Higher Education, 60(6), 644. doi:10.2307/1981946

The Open Group. (2011). TOGAF version 9.1. The Open Group. Retrieved January 26,
2016, from http://www.opengroup.org/architecture/togaf9-doc/arch

Tijs, T. J. W., Brokken, D., & IJsselsteijn, W. A. (2008). Dynamic game balancing by
recognizing aʮect. In Fun and games (pp. 88–93). Springer. doi:10.1007/978-3-540-
88322-7_9

Torrente, J., Blanco, Á. D., Moreno-Ger, P., Martínez-Ortiz, I., & Fernández-Manjón,
B. (2009). Implementing accessibility in educational videogames with <e-adven-
ture>. In Proceedings of the 1st ACM international workshop on Multimedia Tech-
nologies for Distance Learning – MTDL 2009 (pp. 57–66). New York, NY, USA.
doi:10.1145/1631111.1631122

Vahdat, M., Carvalho, M. B., Funk, M., Rauterberg, M., Hu, J., & Anguita, D. (2016).
Learning analytics for a puzzle game to discover the puzzle-solving tactics of play-
ers. In Proceedings of the 11th European Conference on Technology Enhanced Learn-
ing – EC-TEL 2016. Lyon, France.

Vegt, W. van der, Westera, W., Nyamsuren, E., Georgiev, A., & Martínez-Ortiz, I.
(2016). RAGE architecture for reusable serious gaming technology components.
International Journal of Computer Games Technology, 2016, 1–10. doi:10 . 1155 /
2016/5680526

160

https://dx.doi.org/10.3726/978-1-4539-0084-0
https://dx.doi.org/10.3726/978-1-4539-0084-0
https://dx.doi.org/10.1115/DETC2014-35418
http://www.developer.com/design/article.php/10925_2207371_3/Understanding-Service-Oriented-Architecture.htm
http://www.developer.com/design/article.php/10925_2207371_3/Understanding-Service-Oriented-Architecture.htm
https://dx.doi.org/10.2307/1981946
http://www.opengroup.org/architecture/togaf9-doc/arch
https://dx.doi.org/10.1007/978-3-540-88322-7_9
https://dx.doi.org/10.1007/978-3-540-88322-7_9
https://dx.doi.org/10.1145/1631111.1631122
https://dx.doi.org/10.1155/2016/5680526
https://dx.doi.org/10.1155/2016/5680526

Bibliography

Ventura, M., Shute, V. J., & Kim, Y. J. (2012). Video gameplay, personality and academic
performance. Computers & Education, 58(4), 1260–1266. doi:10.1016/j.compedu.
2011.11.022

WeWantToKnow. (2012). DragonBox. Retrieved July 31, 2014, from http://dragonbox
app.com

Wiebe, E.N., Lamb, A.,Hardy,M., & Sharek, D. (2014).Measuring engagement in video
game-based environments: investigation of the user engagement scale. Computers
in Human Behavior, 32, 123–132. doi:10.1016/j.chb.2013.12.001

Wiliam, D. & Black, P. (1996). Meanings and consequences: a basis for distinguishing for-
mative and summative functions of assessment? British Educational Research Jour-
nal, 22(5), 537–548. doi:10.1080/0141192960220502

Wouters, P., Nimwegen, C. van, Oostendorp, H. van, & Spek, E. D. van der. (2013). A
meta-analysis of the cognitive and motivational eʮects of serious games. Journal of
Educational Psychology, 105(2), 249.

Wu, H. (2002). A reference architecture for adaptive hypermedia applications (Doctoral dis-
sertation, Eindhoven University of Technology).

Yorke, M. (2001). Formative assessment and its relevance to retention. Higher Education
Research and Development, 20(2), 115–126. doi:10.1080/758483462

Zagal, J. P., Mateas, M., Fernández-Vara, C., Hochhalter, B., & Lichti, N. (2005). To-
wards an ontological language for game analysis. In Proceedings of the Digital Games
Research Association International Conference – DiGRA 2005: Changing views –
worlds in play.

Zaphiris, P., Wilson, S., & Ang, C. S. (2010). Computer games and sociocultural play:
an activity theoretical perspective.Games and Culture, 5(4), 354–380. doi:10.1177/
1555412009360411

161

https://dx.doi.org/10.1016/j.compedu.2011.11.022
https://dx.doi.org/10.1016/j.compedu.2011.11.022
http://dragonboxapp.com
http://dragonboxapp.com
https://dx.doi.org/10.1016/j.chb.2013.12.001
https://dx.doi.org/10.1080/0141192960220502
https://dx.doi.org/10.1080/758483462
https://dx.doi.org/10.1177/1555412009360411
https://dx.doi.org/10.1177/1555412009360411

Acknowledgement

This dissertation is the result of work carried out in two partner universities, in two
diʮerent countries, and under the guidance of four supervisors.

I am forever grateful to my supervisors, who were always helpful and supportive of my
work throughout this PhD. At the University of Genoa, prof. Francesco Bellotti was a
tireless mentor, always available to discuss my work and my ideas. His excitement for
research is contagious, and it certainly aʮectedmy PhD experience in a very positive way.
I would also like to thank my ʯrst promotor, prof. Alessandro De Gloria, for giving me
the chance to get involved in the Games and Learning Alliance project, which was an
incredible professional opportunity. At the Eindhoven University of Technology, I was
lucky to study under the supervision ofmy second promotor, prof. Matthias Rauterberg,
whose knowledge and experience were invaluable sources of inspiration. Sometimes I
would get too tangled in the technicalities, but Matthias always made sure I did not lose
sight of the very human dimension of my work. My deepest gratitude to prof. Jun Hu,
whose advice and remarks were always thoughtful and spot on. Jun helped me craft a
coherent story from the work carried out throughout these years. He also helped me
remain calm and focused during the toughest times.

During these years, I had the privilege to meet and work with amazing researchers.
Jannicke Baalsrud Hauge, Carolina Islas Sedano, Michael Kickmeier-Rust, Erik van der
Spek, Ioana Stanescu and Riccardo Berta, I am indebted to you for all the fruitful and in-
spiring discussions, without which this thesis would not be possible. MehrnooshVahdat,
thank you for the opportunity to work with you. I think we made a great research team!
To my colleagues at Unige, at TU/e, and from the ICEPhD program, thank you for the
research and non-research discussions and companionship throughout these years. It was
a privilege to meet you all!

The story of this PhD started many, many years ago, with my admiration for both my
parents’ academic careers in the ʯeld of technology for education. I am grateful to my
mother, prof. Fátima Brandão, for her inʯnite wisdom, patience, love, and unrelenting
support. She is my role model! My gratitude also to my father, prof. Marco Carvalho,
who has always been an inspiration, in every way possible.

163

Bibliography

Krešimir Dabčević supported me by being not only my caring and loving life partner,
but also my unoʱcial research mate. He listened to me when I needed to talk about
my ideas, even before they made any sense. He helped me with my manuscripts, proof-
reading and giving me his always insightful comments. He cheered with me for my
achievements and was my rock during the hard days. His companionship was the best
gift I could ever wish for.

I would like to extend my gratitude to my siblings, Fernanda, Pedro, and Milla, for their
love and companionship; to Luciano, for his support and enthusiasm; to Deborah, for
her care and encouragement; and to my grandmother, Dona Edith, the family matriarch
and our greatest inspiration. Finally, to all my friends and family, some close and some
far away, but all of them always in my heart: thank you!

164

Publications

Journal articles

Arnab, S., Lim, T., Carvalho, M. B., Bellotti, F., Freitas, S. de, Louchart, S., Suttie,
N., Berta, R., & De Gloria, A. (2015). Mapping learning and game mechanics for
serious games analysis. British Journal of Educational Technology, 46(2), 391–411.
doi:10.1111/bjet.12113

Baalsrud Hauge, J., Bellotti, F., Berta, R., Carvalho, M. B., De Gloria, A., Lavagnino, E.,
Nadolski, R., &Ott,M. (2013). Field assessment of serious games for entrepreneur-
ship in higher education. Journal of Convergence Information Technology, 8(13), 1–
12.

Baalsrud Hauge, J., Bellotti, F., Nadolski, R., Berta, R., & Carvalho, M. B. (2014). De-
ploying serious games for management in higher education: lessons learned and
good practices. EAI Endorsed Transactions on Serious Games, 14(3), 1–12. doi:10.
4108/sg.1.3.e4

Carvalho,M. B., Bellotti, F., Berta, R., Gloria, A.D., Gazzarata, G.,Hu, J., &Kickmeier-
Rust, M. D. (2015). A case study on Service-Oriented Architecture for serious
games. Entertainment Computing, 6, 1–10. doi:10.1016/j.entcom.2014.11.001

Carvalho, M. B., Bellotti, F., Berta, R., Gloria, A. D., Sedano, C. I., Baalsrud Hauge, J.,
Hu, J., & Rauterberg, M. (2015). An activity theory-based model for serious games
analysis and conceptual design. Computers and Education, 87, 166–181. doi:10 .
1016/j.compedu.2015.03.023

Conference proceedings

Baalsrud Hauge, J., Stanescu, I. A., Carvalho, M. B., Stefan, A., Banica, M., & Lim, T.
(2015). Integrating SG in VES to support knowledge processes. In Proceedings of
the ASME International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference – IDETC/CIE 2015.

Baalsrud Hauge, J., Stanescu, I., Carvalho, M. B., Lim, T., & Arnab, S. (2015). Serious
Games Mechanics and opportunities for reuse. In Proceedings of the 11th eLearning
and Software for Education Conference – eLSE 2015. Bucharest, Romania.

165

https://dx.doi.org/10.1111/bjet.12113
https://dx.doi.org/10.4108/sg.1.3.e4
https://dx.doi.org/10.4108/sg.1.3.e4
https://dx.doi.org/10.1016/j.entcom.2014.11.001
https://dx.doi.org/10.1016/j.compedu.2015.03.023
https://dx.doi.org/10.1016/j.compedu.2015.03.023

Appendix E. Publications

Carvalho, M. B., Bellotti, F., Hu, J., Baalsrud Hauge, J., Berta, R., Gloria, A. D., &
Rauterberg, M. (2015). Towards a Service-Oriented Architecture framework for
educational serious games. In Proceedings of the 15th IEEE International Conference
on Advanced Learning Technologies – ICALT 2015. Hualien, Taiwan.

Carvalho, M. B., Hu, J., Bellotti, F., De Gloria, A., & Rauterberg, M. (2015). Service-
oriented architecture (SOA) development for serious games. In Proceedings of the
14th International Conference on Entertainment Computing – ICEC 2015. Trond-
heim, Norway.

Islas Sedano, C., Carvalho, M. B., Secco, N., & Longstreet, C. S. (2013). Collaborative
and cooperative games: facts and assumptions. In Proceedings of the International
Conference on Collaboration Technologies and Systems – CTS 2013 (pp. 370–376).

Lim, T., Louchart, S., Suttie, N., Baalsrud Hauge, J., Stanescu, I. A., Bellotti, F., Car-
valho, M. B., Earp, J., Ott, M., Arnab, S., & Brown, D. (2014). Serious game me-
chanics, workshop on the ludo-pedagogical mechanism. In Games for training, ed-
ucation, health and sports (pp. 186–189). Springer.

Lim, T., Louchart, S., Suttie,N., BaalsrudHauge, J., Stanescu, I. A.,Ortiz, I.M.,Moreno-
Ger, P., Bellotti, F., Carvalho, M. B., Earp, J., Ott, M., Arnab, S., & Berta, R.
(2014). Narrative serious game mechanics (NSGM)–insights into the narrative-
pedagogical mechanism. InGames for training, education, health and sports (pp. 23–
34). Springer.

Vahdat, M., Carvalho, M. B., Funk, M., Rauterberg, M., Hu, J., & Anguita, D. (2016).
Learning analytics for a puzzle game to discover the puzzle-solving tactics of play-
ers. In Proceedings of the 11th European Conference on Technology Enhanced Learn-
ing – EC-TEL 2016. Lyon, France.

Dataset

Carvalho, M. B. (2015). Comparison of two models for serious games analysis. Dataset.
Retrieved April 1, 2015, from http://persistent- identifier .nl/?identifier=urn:
nbn:nl:ui:13-r5t6-mn

166

http://persistent-identifier.nl/?identifier=urn:nbn:nl:ui:13-r5t6-mn
http://persistent-identifier.nl/?identifier=urn:nbn:nl:ui:13-r5t6-mn

Curriculum Vitae

Maira Brandao Carvalho was born on February 1st, 1983, in Brasilia, Brazil. She re-
ceived her Bachelor’s degree in Communications (Advertising and Journalism) from the
University of Brasilia, Brazil, in 2004. Later, in 2011, she received her M. Sc. degree in
Interactive Technology from the University of Tampere, Finland, where her work and
research focused on the development of applications for low-literacy users.

She has more than eleven years of experience as information architect, interface designer
and web developer. She has worked for companies and organizations such as WWF-
Brazil, Agência Click, Brazil’s National Supply Company (CONAB), and at the head-
quarters of the International Labour Organization (ILO), in Geneva, Switzerland.

Since October 2012, she has been a doctoral candidate in the Erasmus Mundus Joint
Doctorate in Interactive and Cognitive Environments. She spent the ʯrst two years
of her doctoral studies at the Dipartimento di Ingegneria Navale, Elettrica, Elettronica
e delle Telecomunicazioni of the Università degli Studi di Genova, Italy. During the
second half of her studies, she was a member of the Designed Intelligence research group,
at the Department of Industrial Design of Eindhoven University of Technology, The
Netherlands. In her PhD project, she focused on the design and development of serious
games, particularly on how to enhance games with centralized user proʯles, learning
analytics and automatic adaptation to players’ skills and aʮective states.

167

