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Proposed setupIntroduction
 ○ Goal: Design and fabrication of a focused ion beam (FIB) based on 
photoionization of a laser cooled and compressed thermal beam of 
rubidium to reach nm spot sizes

 ○ Applications: Imaging and altering structures 
at the nanometer length scale. By scanning 
the beam over a substrate material can be 
removed (milling), a precursor gas can be 
deposited or the substrate can be imaged 
by looking at secondary/back scattered 
electrons/ions.

 ○ Other FIB sources: 
•	 Liquid metal ion source (LMIS), uses   

heavy Gallium ions (good for milling), but 
only has resolution of 5 nm.

•	 Gas Field Ionization Source (GFIS), uses  
light helium or neon atoms, but has a high  
resolution of < 1 nm.

 ○ Important beam parameters:
•	 Reduced brightness Br:  

current density per unit of area 
and solid angle

•	 Longitudinal energy spread σU
Higher Br and lower σU give a smaller spot size.

FIB milling

Commercial (LMIS) FIB system:
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 ○  85Rb is heated in a 
Knudsen cell. Due 
to the created vapor 
pressure rubidium will 
flow	through	a	tube	to	
the rest of the setup.

 ○A collimation tube is 
used to send back 
part of the atoms 
that can not be 
laser cooled and 
compressed, in 
order to increase the 
lifetime of a future 
FIB instrument.

 ○A Magneto-optical 
Compressor (MOC), 
consisting of a 
quadrupole magnetic 
field	in	combination	
with circularly polarized 
laser	beams	intensifies	
the atomic beam.

 ○An aperture is used to select 
the atomic beam. A build-
up cavity creates an intense 
enough laser to ionize the 
complete transmitted beam. 
This happens inside an electric 
field	to	immediately	accelerate	
the interacting ions.

 ○A commercial FIB 
electrostatic lens system will 
be used to focus the beam. 
Combined laser cooling [1] 
and charged particle tracing 
[2] simulations predict a 
nanometer sized probe.

Knudsen source: design and flux
Design Flux measurements

[3] S.H.W. Wouters et al., Rev. Sci. Instr. 87, 083305 (2016)
[4] D.R. Olander and V. Kruger, Molecular beam sources fabricated from multichannel 
arrays. iii. the exit density problem. J. Appl. Phys. 41, 2769 (1970)
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Conclusion and outlook
 ○ Flux	from	Knudsen	cell	scales	as	expected	and	is	sufficient	for	our	purpose.

 ○ Magneto-optical compression experiments show that an equivalent reduced brightness of106 A/m2/sr/
eV can be achieved in a single 70 mm laser cooling stage, additional sub-Doppler cooling improves the 
equivalent reduced brightness to 6×106 A/m2/sr/eV.

 ○ Build-up cavity is realized in which an ionization intensity of 2×1010 W/m2 can be reached, which can 
ionize 80% of the atomic beam.

Next steps: 
 ○ Ion beam creation in tailor made vacuum vessel to accomodate accelerator and build up cavity 
 ○ Energy	spread	analysis	with	retarding	field	analyzer	(0.1	eV	FWHM	energy	spread	expected	@	1pA)
 ○ Mounting source on FIB collumn (FEI sidewinder) and determine ion beam brightness

 ○ Bandheaters can heat the cross and 
bellows up to 160oC and an additional 
heating wire wrapped around tube heats 
the tube to 200oC to prevent clogging.

 ○ Collimating tube design chosen over 
recirculating skimmed oven because of its 
simple design

Magneto-optical Compression (MOC)

CF16 cross piece 
collimation tube

PEEK 	ange as 
thermal insulation

Stainless steel
PEEK
Copper
O-ring
Bolt

bellows for breaking 
Rb ampule

 ○ Measured	flux	[3]	a	factor	of	4	lower	than	predicted	
by	molecular	flow	theory	[4].	However, this is not a big 
problem since it is simply overwon by increasing the 
Knudsen cell temperature by 20 K.

 ○ At higher temperatures (>400 K) collission in the 
tube	cause	the	flux	to	decrease,	hence	the	larger	
discrepancy with theory.

Ionization: process and realization

Experimental setup

Equivalent brightness of 6×106 A/m2/sr/eV 
with 500 pA equivalent current!

 ○ 100 µm diameter aperture to select ‘useful’ central 
part of the beam
 ○ Imbalance in current through opposing quadrupole 
coils to overlap magnetic axis with aperture
 ○ Lasers with linear perpendicular linear polarisation 
configuration	were	added	to	improve	on	the	
temperature of the beam
 ○ Laser	induced	fluorescence	(LIF)	of	atoms	imaged	
on	camera	to	measure	beam	flux	and	size
 ○ Probe laser perpendicular to beam (θ = 0) for 
temperature	and	flux	measurements	and	θ 
= 0.3 rad for longitudinal velocity distribution 
measurement.

E

30 kV 0-30 kV

Knudsen cell Collimation
Laser cooling
& compression

Photo-
ionization Post accel. Focussing

[1] S.H.W. Wouters et al., PRA 90, 063817 (2014)

[2] G. ten Haaf et al., JAP 116, 244301 (2014)

Two-step ionization

 ○ Reflectance	=	99.7%, 
max.  theor. build up = 

 ○Cavity length chosen to give an 18	μm	waist.	Two	
lenses used for mode coupling.
 ○ Pound Drever Hall [5] technique used to lock the 
length of the cavity to an integer times the half 
wavelength.
 ○ Build up of (190 ± 30) measured by locking the 

cavity and comparing 
the transmitted power 
through the cavity to 
the incident power.

 ○ So 300 mW laser 
gives 2×1010 W/m2, 
enough for ionizing 
≈80%.

Build-up cavity
Atomic level scheme 85Rb ○ Two lasers 

overlapped 
spatially at the 
position of the 
atomic beam. 

 ○ For largest 
brightness 
nearly complete 
ionization 
wanted

 ○Numerical calculations of the ionization 
process showed an ionization laser 
(479 nm) intensity of 1010 W/m2 will 
ionize	≈80%	of	the	beam	within	
approximately 3 µm
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θ

Longitudinal velocity distribution

Equivalent reduced brightness

 ○ Longitudinal velocity required 
for accurate determination of 
flux	(because	of	transit	time	
through the probe laser) and  
temperature (because extracted 
from divergence)
 ○ Longitudinal velocity of cooled 
beam lower than input from 
Knudsen source because slow 
atoms are captured more easily 
than fast atoms

[5] E.D. Black, Am. J. Phys. 69, 
79 (2001)

Build up cavity realization
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Beam profiles @ different magnetic gradients

Beam parameters vs. magnetic gradient

Beam density vs. source temperature

 ○Without interactions the density in the beam would scale 
according	the	flux	from	the	Knudsen	source	(dashed	lines).
 ○ At low source temperatures (1), scaling agrees with data when 
only cooling the beam, i.e. without compression.
 ○ At higher temperatures (2), scaling doesn’t hold anymore due 
to atomic collisions inside the collimation tube that lowers the 
amount	of	useable	flux	that	can	be	captured	in	the	cooled	beam.
 ○When also compressing the beam the discrepancy with the 
scaling is larger (3), possibly due to radiation trapping or inelastic 
collisions between ground and excited state atoms.
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