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A Multilevel Green Function Interpolation Method
to Efficiently Construct the EFIE MoM-Matrix for
2D-Periodic PEC Structures in 3D Space

P. Jorna*

Abstract — For scattering by perfectly conducting
objects in a two-dimensionally periodic setup we em-
ploy a surface-integral equation, the Ewald repre-
sentation of the Green function, and the Method
of Moments (MoM). For moderate-size matrices, we
observe that the computation time is dominated by
the computation of the matrix elements. By employ-
ing a multi-level decomposition of the Green func-
tion based on Lagrange interpolation on a Cheby-
shev grid, we demonstrate that the overall compu-
tation time can be reduced by 73% compared to the

original MoM computation.

1 INTRODUCTION

The two most time consuming tasks in computing
the equivalent electric currents for a Surface In-
tegral Equation (SIE) formulation for 2D-periodic
PEC structures when using the Method of Mo-
ments (MoM) is building the MoM matrix and sub-
sequently solving the linear system of equations.
In previous work we have seen that building the
MoM matrix is costly in case the 2D Quasi-Periodic
Green Function (QPGF) in the double integrals has
to be computed time and again, but if we use the
Ewald representation of the QPGF to pre-compute
the QPGF on a pre-defined grid and use interpola-
tion to compute the QPGF in the double integrals
it is shown that for a unit cell that is not too large
in terms of wavelength the matrix build time is of
the same order of magnitude as for the aperiodic

case [1, 2].

By using the combination of tabulation and inter-
polation of the QPGF we have managed to reduce
the computational cost of building the MoM matrix
considerably but the cost still increases quadrati-
cally with the number of unknowns while the com-
putational cost of applying a direct solver increases
cubically with the number of unknowns. A success-
ful strategy to further reduce the computation time,
suitable for large scale electromagnetic problems,
is to apply fast iterative algorithms that make use
of an efficient matrix-vector product. Especially
interesting are kernel-independent fast algorithms,
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such as the Multilevel Green Function Interpolation
Method (MLGFIM) [3, 4, 5], that have the poten-
tial to be applied in a periodic configuration and
that could, in due time, be tailored to a layered-
medium Green function.

A disadvantage of these fast algorithms is that it-
erative solvers are not as powerful as direct solvers
in the sense that iterative solvers may exhibit poor
convergence or may not converge at all even if the
linear system is nonsingular. In particular, the
Electric Field Integral Equation (EFIE) formula-
tion is well known for producing a poorly condi-
tioned MoM-matrix. Therefore, it may be neces-
sary to construct a preconditioner that induces fast
convergence of the iterative solver. Another draw-
back of iterative solvers is that the case of multiple
right-hand sides often does not benefit from previ-
ous computations, whereas for a direct solver only
the forward-backward substitution, which is rela-
tively cheap numerically, needs to be repeated after
the matrix has been factorized. This is an impor-
tant observation if one is interested in character-
izing the 2D-periodic PEC structure under consid-
eration via a scattering matrix, for which we have
to solve each linear system for a large number of
right-hand sides.

In previous work we have observed that for
moderate-size unit cell problems the bulk of com-
putation time is spent on building the MoM-matrix
whereas factorization of the matrix is still relatively
cheap. For this class of medium scale electromag-
netic problems we present a MLGFIM algorithm
that can be used to efficiently construct the EFIE
MoM-matrix. By adopting this approach we can
keep on using a direct solver to circumvent the
convergence problems with an iterative solver and
to efficiently compute solutions for multiple right-
hand sides.

2 MLGFIM-EFIE

In the developed MLGFIM algorithm we use an oc-
tree for the hierarchical spatial subdivision of the
computational domain. The interaction integrals
for Rao-Wilton-Glisson (RWG) basis functions and
RWG test functions that are considered to be near
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to each other are computed using traditional di-
rect integration but all other interaction integrals
are computed using low-rank approximations of the
QPGF. The required low-rank approximations of
the QPGF, for all hierarchical levels, for each com-
bination of a non-empty source box and a non-
empty test box that are non-touching near neigh-
bors at that level, are derived in the pre-processing
stage. To derive the low-rank approximation of the
QPGF we first choose a suitable set of interpolation
functions for both the source box and the test box
that will allow an efficient and accurate approxima-
tion of the QPGF. For a unit cell that is not too
large in terms of the wavelength we expect that we
can efficiently use polynomial interpolation func-
tions and we therefore use Lagrange interpolation
on a Chebyshev grid.

Next, a Green function matrix that relates the
interpolation functions in the source box and the
test box is formed by sampling the QPGF. Based
on the properties of the QPGF it is known that we
can find a low-rank approximation of this Green
function matrix and we have investigated two tech-
niques (SVD and QR-factorization) to determine
such a low-rank approximate matrix. Also com-
puted in the pre-processing stage for each RWG are
the integrals of (the divergence of) the RWG with
the interpolation functions in the source/test box
at the finest level. To approximate for each source
RWG the integrals of (the divergence of) the RWG
with the interpolation functions in source boxes at
a coarser level we apply lower-to-upper-level inter-
polation in the upward pass. To approximate the
interpolation functions in test boxes at coarser lev-
els in terms of the interpolation functions in the test
boxes at finer levels we apply upper-to-lower-level
interpolation in the downward pass [3, 4].

To efficiently evaluate the interaction integrals
for a source RWG and a test RWG, we consecu-
tively perform an upward pass on the integrals of
(the divergence of) the source RWG with the inter-
polation functions in the source box at the finest
level, to the level where the source RWG and the
test RWG are non-touching near neighbors, per-
form peer-level Green function interpolation, using
the low-rank approximation of the QPGF, perform
a downward pass to the finest level and finally mul-
tiply with the integrals of (the divergence of) the
test RWG with the interpolation functions in the
test box at the finest level.

3 CONSEQUENCES OF
SETUP FOR MLGFIM

PERIODIC

In our current implementation, the octree is con-
structed on the height-limited volume of the unit

cell (—ay/2,a1/2] x (—az/2,a2/2] X [Zmin; Zmax],
where a; and a, are the Bravais lattice vectors
of the unit cell and [zmin, Zmax] covers at least the
height of the entire structure in the z-direction, but
is otherwise free to choose. As a consequence, the
quasi-periodicity of the Green function in the zy-
plane is also encountered at the discrete level of
the octree. This makes the detection of the nearest
neighbors in the octree for the periodic case rela-
tively straightforward [5]. It also means that the
number of non-touching near neighbors is smaller
than in the aperiodic case.

Note that we can immediately determine the
finest level, lax, possible in the MLGFIM once
the maximum edge length sy in the mesh and
the minimum dimension of the periodic unit cell
amin = min{|ay |, |az|} are known, namely

Gmin

3 Smax < 2ln1ax )

(1)

where a separation criterion is used that the mini-
mum dimension of a box is at least three times the
maximum edge length in the mesh, to avoid contri-
butions from the singularity of the Green function.
Typically, the maximum edge length is given as a
fraction of the free-space wavelength )y, that is,
Smax = Ao/N while the minimum dimension of the
periodic unit cell is given in terms of the free-space
wavelength, that is, amin = PAg, consequently

lmax < logQ(PN) - IOgQ(S) (2)
A further consequence of the octree spanning the
exact cross-section of the unit cell is that the di-
mensions and shape of the unit cell dictate the cell
shape and size at all levels of the octree, as indi-
cated by the above criterion. For example, an elon-
gated unit cell is more restrictive than a square one
regarding the deepest level that can be attained for
a given mesh for the scattering object inside the
unit cell.

4 NUMERICAL EXAMPLE

Two identical and mirror-symmetrical PEC struc-
tures are put in a unit cell such that the unit cell
cannot be reduced further and the distance between
the structures in the as-direction is given by d. In
Figure 1, the unit-cell configuration with the two
structures with a sidewall angle (SWA) of approx-
imately 84° is shown together with all dimension
definitions, which are specified in Table 1 together
with the wavelength )y of the incident plane wave.
We use a dense mesh with 4222 triangular elements
on each of the structures, that is, there is a total of
8444 triangular elements in the mesh. For this con-
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Figure 1: Two PEC copper structures with SWA
84° in the unit cell.

parameter | dimension

[ai] 1.000
llaz| 0.800

d 0.296

l 0.920

h 0.240

wp 0.840

wy 0.360

Ao 0.850

Table 1: Dimensions of the scattering setup as de-
fined in Figure 1.

figuration ami, = min{1.000,0.800} ~ X, whereas
Smax ~ Ao/35 applies, hence if we want to invoke
the MLGFIM, the rule of thumb, given in (2), sug-
gests the finest level [, we can use has to satisfy

Imax < logy(35) —logy(3) ~ 3.5.

Hence, we can apply the MLGFIM on a single
level | = 2 with [,.x = 2 or on two levels [ = 2
and [ = 3 with lh.x = 3. We may increase the
computational domain in the z-direction and take
its height equal to d. o = max{amin, Zmax — Zmin }
so that d,o = 0.800. Thus, the boxes at level
I = 2 have dimensions dg, 2 = 0.250, d,, 2 = 0.200
and d,» = 0.200 and the boxes at level [ = 3
have dimensions d,, 3 = 0.125, d,, 3 = 0.100 and
d. 3 = 0.100.

To determine the order of the interpolation poly-
nomials in each box at each level in the MLGFIM,
we compute the reflection coefficients for three an-
gles of incidence, 8 = 0°, 6§ = 30° and 6 = 60°,
while the azimuth angle is fixed at ¢ = 45°. We
compute the reflection coefficients using three dif-
ferent methods to build the MoM-matrix, namely,
the MLGFIM on a single level, the MLGFIM on
two levels, and the standard-MoM approach. We
use the reflection coefficients computed with the
MoM-matrix that is built with the standard-MoM
approach as the reference. In Table 2 we provide

the overview of timings for the MLGFIM at level-
two only, with 5 x 5 x 5 interpolation points in each
of the level two boxes, and in Table 3 we provide
the comparison between the standard MoM and the
MLGFIM with 5 x5 x 5 interpolation points in each
of the level-two boxes, 4 x 4 x 4 interpolation points
in each of the level-three boxes. These settings are
sufficient for a root-mean-square error of 10~3 or
less in the reflection coefficients. In both cases a
low-rank approximation of the QPGF was obtained
via the @QR-factorization with a relative error cri-
terion of 10~4. During the tabulation phase, the
QR factorization was found to be faster than the
SVD, while both exhibit similar low-rank perfor-
mance. The CPU times for the standard MoM
computation are of course unchanged for both cases
and many of the entries in the first column of the
two tables are therefore the same, but now that
we use either one or two levels in the MLGFIM
the definition of the touching near-neighbor inter-
actions at the finest level has changed and as a con-
sequence the entries in the third and fourth row
have changed. If we compare the entries in Ta-
bles 2 and 3, we can see that the majority of time
in the standard MoM in Table 3 was spent on com-
puting the non-touching near-neighbor interactions
(L1 A nnn), whereas in Table 2 the majority of time
was spent on computing the touching near-neighbor
interactions (£ s tnn). Consequently, the room for
improvement in the combined level-two and level-
three octree is larger, as only non-touching near-
neighbor interactions are amenable to speedup with
the low-rank decomposition of the Green function.

With an improvement factor in the CPU time
that is even slightly higher than the improvement
factor in the CPU time measured for the single-
level MLGFIM over the standard MoM for the non-
touching near-neighbor interactions, the reduction
in CPU time that we obtain by computing the non-
touching near-neighbor interactions with the two-
level MLGFIM instead of the standard MoM now
really makes a big difference. While the standard
MoM requires more than 30 minutes to compute the
non-touching near-neighbor interactions, the two-
level MLGFIM is finished in approximately one and
a half minute. More precisely, by using the two-
level MLGFIM the CPU time that is needed to
compute the non-touching near-neighbor interac-
tions is only 5.4 % of the CPU-time that is needed
with the standard MoM. With this reduction in
computation time for the RWGs that are consid-
ered to be sufficiently separated the total build time
when using the two-level MLGFIM is only 21.6 %
of the total build time with the standard MoM.
The total CPU-time to solve the scattering problem
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. MoM MLGFIM | Improvement | Percentage

CPU Time (in sec.) | (in sec.) faci)or MLGFH\% vs. MoM
Tabulation QPGF 6.0 9.8 0.61 164.0
LA tnn 1334.3 1334.3

L1,A nnn 843.4 53.5 15.73 6.4
Build 2183.6 1397.8 1.56 64.0
Factorize 137.1 137.5

] Total \ 2321.4 \ 1535.9 \ 1.51 \ 66.2 \

Table 2: Comparison CPU time tasks in MoM EFIE with and without MLGFIM. The MLGFIM makes
use of a single level, 5 x 5 x 5 interpolation points in each box, and @ R-factorization with a relative error

criterion of 10~4.

. MoM MLGFIM | Improvement | Percentage

CPU Time (in sec.) | (in sec.) faci)or MLGFH\% vs. MoM
Tabulation QPGF 6.0 9.5 0.63 159.8
LA tnn 363.7 363.7

L1,A nnn 1813.9 97.0 18.69 5.4
Build 2183.6 470.5 4.64 21.6
Factorize 137.1 136.7

] Total \ 2321.4 \ 607.8 \ 3.82 \ 26.2 \

Table 3: Comparison CPU time tasks in MoM EFIE with and without MLGFIM. The MLGFIM makes
use of two levels, 5 x 5 x 5 interpolation points in each box at level [ = 2, 4 x 4 x 4 interpolation points
in each box at level I = 3, and QR-factorization with a relative error criterion of 104,

when using the two-level MLGFIM is only 26.2 %
of the total CPU-time with the standard MoM, ver-
sus 66.2 % for the one-level MLGFIM. By applying
the two-level MLGFIM to build the MoM matrix
we have managed to reduce the total computation
time by 73 %.

5 CONCLUSIONS

We have demonstrated the efficiency of the ML-
GFIM for building the full MoM matrix of a peri-
odic problem with 12666 unknowns. We show that
computing the non-touching near neighbor contri-
butions in the EFIE MoM-matrix using the two-
level MLGFIM only takes 5.4% of the CPU time it
takes to compute the matrix entries with standard
MoM. We also show that the two-level MLGFIM
reduces the required total CPU time to build the
EFIE MoM-matrix by more than 73 %.
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