
 

Automatic segmentation of subcutaneous mouse tumors by
multiparametric MR analysis based on endogenous contrast
Citation for published version (APA):
Hectors, S. J. C. G., Jacobs, I., Strijkers, G. J., & Nicolaij, K. (2015). Automatic segmentation of subcutaneous
mouse tumors by multiparametric MR analysis based on endogenous contrast. Magnetic Resonance Materials
in Physics, Biology and Medicine, 28(4), 363-375. https://doi.org/10.1007/s10334-014-0472-1

DOI:
10.1007/s10334-014-0472-1

Document status and date:
Published: 27/08/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.1007/s10334-014-0472-1
https://doi.org/10.1007/s10334-014-0472-1
https://research.tue.nl/en/publications/931d381f-d04b-4fc4-bcdc-399273caeb62


1 3

Magn Reson Mater Phy (2015) 28:363–375
DOI 10.1007/s10334-014-0472-1

RESEARCH ARTICLE

Automatic segmentation of subcutaneous mouse tumors 
by multiparametric MR analysis based on endogenous contrast

Stefanie J. C. G. Hectors · Igor Jacobs · 
Gustav J. Strijkers · Klaas Nicolay 

Received: 19 July 2014 / Revised: 26 October 2014 / Accepted: 29 October 2014 / Published online: 27 November 2014 
© ESMRMB 2014

{T2, ADC} and four clusters. A strong linear correlation 
between automatically and manually segmented tumor 
volumes (R2  =  0.99) was observed for this segmentation 
method. Automatically segmented tumor volumes also 
correlated strongly with histology-derived tumor volumes 
(R2 = 0.96).
Conclusion  Automatic segmentation of mouse subcutane-
ous tumors can be achieved on the basis of endogenous MR 
contrast only.

Keywords  Tumor segmentation · Multiparametric MRI · 
Endogenous contrast · Cluster analysis

Introduction

Accurate tumor volume delineation is often necessary in 
(pre)clinical cancer research and clinical practice. Tumor 
size measurements are widely used to assess tumor treat-
ment efficacy [1]. Furthermore, image-guided cancer-
treatment techniques, including MRI-guided high-inten-
sity focused ultrasound (HIFU) and radiotherapy, require 
accurate tumor demarcation to define the target volume 
for treatment. Currently, tumor delineation is usually per-
formed by manual segmentation of the tumor tissue, which 
is time-consuming and prone to inter-observer variabil-
ity. Automatic tumor segmentation would facilitate more 
robust, rapid, objective, and reproducible delineation of the 
tumor tissue.

Multiple methods for (semi)automatic tumor seg-
mentation based on MRI images have been described 
for different tumors, including breast [2–6], prostate [7, 
8], brain [9–11], and head and neck [12] tumors. A vari-
ety of segmentation algorithms were used in these stud-
ies, including volume growing, threshold-based methods, 
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and clustering algorithms, for example fuzzy c-means and 
fuzzy connectedness. Contrast-enhanced imaging is com-
monly included in MRI procedures for automated tumor 
segmentation. However, if tumor segmentation has to be 
performed shortly before treatment, the presence of the 
gadolinium (Gd) contrast agent during the treatment might 
have adverse effects. It has recently been reported that pres-
ence of Gd during HIFU treatment may be inappropriate, 
because Gd-induced magnetic susceptibility changes in the 
tissue cause inaccuracies in the temperature maps acquired 
during treatment [13]. Furthermore, tumor ablation with 
HIFU could induce entrapment of Gd in the treated tis-
sue, possibly resulting in prolonged retention of Gd by the 
body and potential release of free Gd3+ ions from the che-
lates [14]. These free Gd3+ ions have been strongly associ-
ated with the development of nephrogenic systemic fibro-
sis (NSF) [15]. The disadvantages of contrast-enhanced  
T1-weighted imaging for treatment planning are, however, 
not restricted to HIFU treatment. The presence of the MR 
contrast agent may also be inappropriate if treatment evalu-
ation with MRI has to be performed immediately after 
treatment, because the effect of the contrast agent on the 
post-treatment MRI data could lead to misinterpretation of 
the effects of treatment. Furthermore, apart from treatment-
related disadvantages of injection of Gd contrast agents, in 
clinical practice, injection of Gd contrast agent is contrain-
dicated for patients with severely impaired renal function, 
because of the increased risk of NSF [16]. Cancer patients 
are especially vulnerable to renal toxicity as a result of con-
trast agents, because they are frequently exposed to nephro-
toxic chemotherapeutics and may be dehydrated because of 
chemotherapy-related and cancer-related nausea and vomit-
ing [17].

There have been few studies of automatic tumor segmen-
tation methods based on endogenous contrast MRI. Hsieh 
et al. [18] reported a method for automatic segmentation of 
meningiomas on the basis of T1 and T2-weighted images. 
Although successful segmentation was achieved for most 
tumors, the method failed in approximately 20 % of cases. 
The authors reported that noticeable edema was present in 
the brain in these failure cases, indicating that the method 
could not distinguish between tumor and edematous tissue. 
A recent preclinical study demonstrated semi-automatic 
size measurement for tumors subcutaneously inoculated 
in the neck region of mice [19]. A threshold-based method 
was applied to T2-weighted images to segment the tumor 
tissue from the surrounding tissue. Additional manual 
delineation had to be performed to exclude regions where 
the segmentation had failed.

These previous reports on automated tumor segmenta-
tion based on endogenous contrast suggest that a more 
advanced MR procedure is required to improve the accu-
racy of automatic tumor segmentation. Specifically, we 

hypothesize that addition of apparent diffusion coefficient 
(ADC) mapping to endogenous contrast MRI methods may 
result in improved discrimination between tumor tissue 
and surrounding tissue, for example edema. Cancerous tis-
sue typically has a lower ADC than non-cancerous tissue, 
because of high cell density, and thus increased effects of 
diffusion-hindering obstacles, for example cell membranes 
and other macromolecular structures [20]. In contrast, the 
peri-tumoral edematous tissue usually has a high ADC 
because of low cellularity. It has been shown that the com-
bination of ADC maps and T2-weighted images improves 
the sensitivity and specificity of detection of prostate can-
cer by visual inspection [21].

The purpose of this study was to assess whether accurate 
automatic tumor segmentation could be achieved on the 
basis of combined analysis of quantitative T1, T2, and ADC 
maps. Clustering-based algorithms were used as segmen-
tation method, because these algorithms are particularly 
suitable for segmentation on the basis of multiparametric 
data. The purpose of the study was to assess the general 
feasibility of clustering algorithms based on endogenous 
MRI data for automatic tumor segmentation. Therefore, 
as a first step, the implemented algorithms were applied to 
segmentation of subcutaneous mouse tumors. To determine 
the optimum clustering method for automatic delineation 
of the tumor tissue, k-means clustering and fuzzy c-means 
clustering were performed with all possible combinations 
of MR parameters, i.e. feature vectors. Furthermore, the 
number of clusters was varied for each feature vector. The 
optimum segmentation method, i.e. the method that yielded 
the best segmentation of the tumor, was determined by 
quantitative comparison of automatic tumor segmentation 
and manual tumor segmentation performed by three experi-
enced observers. Quantitative correlation analysis was also 
performed between automatically segmented tumor vol-
umes and histology-derived tumor volumes.

Materials and methods

Tumor model

CT26.WT mouse colon carcinoma cells (American Type 
Culture Collection; ATCC; CRL-2638) were cultured as a 
monolayer at 37 °C and 5 % CO2 in RPMI-1640 medium 
(Invitrogen, Breda, The Netherlands), supplemented with 
10  % fetal bovine serum (Greiner Bio-One, Alphen a/d 
Rijn, The Netherlands) and 50  U/ml penicillin and strep-
tomycin (Lonza Bioscience, Basel, Switzerland). Early 
passages (5–10) of the original ATCC batch were used for 
inoculation.

Ten to twelve-week-old Balb/c mice (n  =  21; Charles 
River, Maastricht, The Netherlands) were inoculated with 
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2 ×  106 CT26.WT cells subcutaneously in the right hind 
limb. Approximately 10  days after inoculation, tumors 
became palpable in all animals.

MRI measurements

MRI measurements were performed with a 6.3-T scanner 
(Bruker BioSpin, Ettlingen, Germany) using a 3.2-cm-
diameter quadrature birdcage RF coil (Rapid Biomedi-
cal, Rimpar, Germany). The mice were positioned in a 
custom-made cradle, equipped with a mask for anesthetic 
gas (1–2 % isoflurane). Respiration was monitored with 
a balloon sensor. Animal temperature was monitored and 
maintained at body temperature by use of a warm water 
pad. For reduction of susceptibility artefacts in the echo 
planar imaging (EPI) sequences, the tumor-bearing limb 
was covered with degassed ultrasound gel (Aquasonic® 
100; Parker Laboratories). Artefacts were further reduced 
by local shimming of the tumor-bearing limb.

The multi-slice imaging procedure, covering the 
whole tumor, consisted of fat-suppressed T2-weighted 
imaging (spin-echo, echo time TE  =  30  ms, repetition 
time TR = 1,000 ms, number of averages NA = 1), quan-
titative T1 mapping (inversion recovery look-locker EPI, 
TE = 8 ms, TR = 10,000 ms, inversion time = 30 ms, 
flip angle  =  20°, pulse separation  =  400  ms, num-
ber of points  =  15, NA  =  2), T2 mapping (MLEV-
prepared GE-EPI [22], 7 TEs ranging from 1 to 82 ms, 
TR  =  2,000  ms, NA  =  2), and ADC mapping (double 
spin-echo prepared EPI, TE =  41  ms, TR =  4,000  ms, 
b-values 0, 100, 200, and 400  s/mm2, three orthogonal 
directions, NA =  4). All acquired images had a matrix 
size of 128 ×  128, FOV of 4 ×  4  cm2 and 1 mm slice 
thickness. Irrespective of tumor size, a minimum of 
twelve slices was acquired. For tumors extending out-
side these twelve slices, the number of slices was 
increased (to a maximum of sixteen slices) to cover the 
entire tumor volume.

Image processing and generation of maps

Image analysis was performed in Mathematica 8.0 (Wolf-
ram Research, Champaign, IL, USA). Maps were cal-
culated on a pixel-by-pixel basis in each slice. Values 
were only determined for pixels with substantial signal 
intensity (>0.05 times the maximum signal intensity) 
in the T2-weighted images. T1 maps were generated as 
described elsewhere [23]. T2 maps were calculated from 
mono-exponential fitting of the multi-echo data. For 
generation of ADC maps, mono-exponential fitting was 
performed by use of the signal intensities at the different 
b-values for each diffusion-encoding direction separately. 

Next, ADC values of the different directions were aver-
aged to obtain the final (orientation-invariant) ADC value 
for each pixel.

Automatic tumor segmentation

A flow chart of the automatic tumor segmentation method 
is shown in Fig.  1. Tumor segmentation based on the 
acquired maps was performed by either k-means or fuzzy 
c-means clustering. Fuzzy c-means clustering is a soft 
version of k-means clustering, in which each pixel has a 
certain amount of membership of each cluster. In appli-
cations where there is overlap between the clusters in the 
data set, fuzzy c-means clustering is more suitable than 
k-means [24]. Clustering was performed with all possible 
feature vectors, namely {T1}, {T2}, {ADC}, {T1, ADC}, 
{T2, ADC}, {T1, T2} and {T1, T2, ADC} and with different 
numbers of clusters, ranging from 2 to 7. For fuzzy c-means 
clustering the fuzziness index was set to 2. The clustering 
algorithms were iterated until the method converged or the 
maximum number of iterations of 50 was reached.

The segmentation method was performed on large rec-
tangular regions around the tumor-bearing limb. These 
regions contained tumor tissue and surrounding muscle, 
oedema, and bone. Before segmentation, pixels within the 
ultrasound gel were excluded from the defined rectangular 
regions by application of a threshold to the T2-weighted 
images. This led to segmentation of the hyperintense ultra-
sound gel and the relatively hypo-intense tissue. To correct 
for scaling differences between the different parameters, 
features were normalized (mean  =  0, standard deviation 
SD = 1) before clustering was performed.

Prior knowledge of specific characteristics of the tumor 
tissue is needed to enable the algorithm to automatically 
assign clusters as tumor or non-tumor tissue. In the exam-
ple of the subcutaneous tumors presented here, we made 
use of the typically higher signal intensity of the tumor 
tissue compared with the surrounding muscle tissue in 
T2-weighted images. An initial tumor mask was generated 
by a threshold-based segmentation method that was based 
on the T2-weighted images. The threshold-based tumor 
segmentation is illustrated on the right of Fig.  1. For this 
method, the T2-weighted images from the different ani-
mals were normalized by dividing the pixel intensities by 
the average signal intensity of the ultrasound gel surround-
ing the tumor-bearing limb. Next, a histogram of the nor-
malized signal intensities in the T2-weighted images aver-
aged for all animals was generated. A clear peak that, on 
the basis of visual inspection, belonged to the tumor tissue 
was observed in this averaged histogram. The minimum 
and maximum intensity values for this peak were found 
to be 0.45 and 0.65, respectively. Subsequently, all pixel 
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values between these minimum and maximum intensities 
were set to 1, which resulted in a tumor mask that could be 
used as input for the clustering-based algorithm to enable 
automatic determination of the subset of clusters belong-
ing to the tumor tissue. The similarity index (SI) between 

the threshold-based tumor segmentation and the clustering-
based segmentation method was determined for all possible 
subsets of clusters. The SI is a measure of the area defined 
as tumor tissue by both methods relative to the total seg-
mented area, and was determined by use of Eq. 1 [9, 25].

Fig. 1   Flowchart of the cluster-
ing-based and threshold-based 
tumor segmentation methods. 
The tumor mask resulting from 
the threshold-based segmen-
tation method was used for 
automatic selection of the tumor 
clusters in the clustering-based 
segmentation method. For 
details see text
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(1)SIthreshold,clustering =
2 ∗ Sthreshold ∩ Sclustering

2 ∗ Sthreshold ∩ Sclustering + Sthreshold ∩ Sclustering + Sclustering ∩ Sthreshold

segmentation methods were quantitatively compared with 
the manual tumor delineations. The performance of the 
segmentation methods was assessed by calculation of the 
specificity, sensitivity, and similarity index (SImanual,automatic) 
between manual and automatic tumor segmentation. An SI 
>0.7 is indicative of good segmentation [26].

The sensitivity, specificity, and SImanual,automatic were 
determined by use of Eq. 2, 3 and 4, respectively:

In these equations, TP is the number of true-positive pixels, 
FP is the number of false-positive pixels, TN is the number 
of true-negative pixels, and FN is the number of false-neg-
ative pixels.

The sensitivity, specificity, and SImanual,automatic values of 
all assessed segmentation methods were determined for each 
observer separately. The optimum segmentation method was 
defined as the method for which the SImanual,automatic value, 
averaged for the different observers, was maximum.

Assessment of inter‑observer variability

Manual segmentation by the different observers were com-
pared by calculation of the above-mentioned SI. The SI 
between two different manual segmentations was assessed 
by use of the equation:

 in which Si and Sj are the manual segmentations of observ-
ers Oi and Oj, respectively.

Comparison of the optimum automatic segmentation 
method with histology

The segmentation method that was considered optimum on 
the basis of the above measures of performance was run on 
seven separate MRI data sets of the same tumor model that 
had been acquired by use of the same MRI procedure as 
described above. For these data sets, histological sections 
of the tumors excised directly after acquisition of the MRI 

(2)Sensitivity =
TP

TP+ FN

(3)Specificity =
TN

TN + FP

(4)SImanual,automatic =
2 ∗ TP

2 ∗ TP+ FP+ FN

(5)SIOi ,Oj
=

2 ∗ Si ∩ Sj

2 ∗ Si ∩ Sj + Si ∩ Sj + Sj ∩ Si
,

In this equation Sthreshold and Sclustering are the tumor seg-
mentations resulting from threshold-based and clustering-
based segmentation, respectively. The ∩ symbol represents 
intersection.

The tumor clusters were determined by automatic selec-
tion of the subset of clusters for which the SIthreshold,clustering 
was maximum. To eliminate small groups of pixels outside the 
large tumor volume that were assigned to (one of) the tumor 
cluster(s), connected components analysis was performed on 
all pixels that were assigned to the tumor cluster(s) (Mathe-
matica command morphological components). This connected 
components method segments an image into different groups 
of connected pixels. The largest component resulting from this 
analysis was assumed to be the tumor. Region growing was 
applied on this component to include pixels within the tumor 
that were not assigned to the tumor cluster(s), e.g. because of 
naturally occurring necrotic tumor tissue that has MR values 
different from those of viable tumor tissue and may, therefore, 
initially not be selected as tumor tissue by the segmentation 
method. To compare the performance of the clustering-based 
segmentation methods with that of the threshold-based seg-
mentation method, the same procedure of morphological com-
ponent analysis and region growing was also applied to the 
generated threshold-based tumor mask.

Manual tumor segmentation

Manual segmentation was performed by three independ-
ent observers (O1, O2, and O3). All three observers have 
substantial experience (>4  years) in MRI of subcutane-
ous mouse tumors. Regions of interest (ROIs) around the 
tumor tissue were drawn on the 3rd echo images of the T2 
mapping procedure, because this image has approximately 
the same echo time (28 ms) as the spin-echo T2-weighted 
image (30  ms). ROI definition was performed on the 
images from the T2 mapping rather than on the spin-echo 
T2-weighted images, because, although maximum effort 
was taken to minimize the effects of susceptibility artefacts 
in the EPI acquisitions, minor geometric distortions could 
still be present in the EPI acquisitions. These distortions 
could lead to a slight misregistration between the spin-echo 
T2-weighted imaging and the EPI-based T1, T2, and ADC 
acquisitions.

Evaluation of automatic segmentation methods

To determine the optimum automatic segmentation 
method, the tumor delineations resulting from the different 
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data were available. The 5-µm-thick cryosections covered 
the entire tumor volume and were cut with a 300-µm inter-
section distance. The cryosections were stained for nico-
tinamide adenine dinucleotide diaphorase (NADH) activ-
ity, which is a marker for cell viability (the procedure is 
described elsewhere [27]). All sections were imaged with 
brightfield microscopy consisting of mosaic acquisition at 
5× magnification. Analysis of the microscopy images was 
done in Mathematica. ROIs were manually drawn around 
the entire tumor tissue on each section. Subsequently, his-
tology-derived tumor volumes were calculated by multipli-
cation of the sum of the areas of tumor tissue in all sections 
with the inter-section distance.

Statistics

All data are presented as mean ± SD. The SImanual,automatic 
values from the different segmentation methods were sta-
tistically compared by use of a paired t test. The effect 
of different observers on the SImanual,automatic values was 
assessed by ANOVA for repeated measures. If the effect of 

observer on SImanual,automatic proved statistically significant, 
Bonferroni post-hoc tests were performed to compare the 
SImanual,automatic values of the individual observers. For all 
tests, the level of significance was set to α = 0.05.

The automatically and manually segmented tumor volumes 
were compared by linear regression that consisted of fitting 
the data points to the line y = a * x + b. A similar analysis 
was performed for comparison of tumor volumes from histol-
ogy with automatically segmented tumor volumes. Outliers 
that significantly affected the linear regression were identi-
fied by calculation of the Cook’s distance for each data point. 
A data point was regarded as an outlier if its Cook’s distance 
was greater than 4/(n – k − 1), where n is the number of data 
points and k is the number of fitted parameters (Eq. 2) [28].

Results

Inter‑observer variability

Three observers manually delineated the tumor tissue on 
the T2-weighted images of all tumors. Inter-observer vari-
ability was assessed by calculation of the similarity index 
(SI). The SI values between the different manual segmenta-
tions are listed in Table 1, and show good agreement among 
segmentation by the different observers.

Performance of k‑means clustering

Average sensitivity and specificity for the k-means meth-
ods with the different feature vectors as a function of the 

Table 1   Average similarity index between the three manual tumor 
segmentations

Values are mean ± SD (n = 21)

Observer O1 O2 O3

O1 1 0.86 ± 0.04 0.84 ± 0.04

O2 – 1 0.87 ± 0.04

O3 – – 1

Fig. 2   Mean sensitiv-
ity (a), specificity (b), and 
SImanual,automatic, i.e. similarity 
index between manual and 
automatic tumor segmentation 
(c) averaged over the observers 
for the different feature vec-
tors (bottom right) as function 
of the number of clusters for 
the k-means clustering-based 
segmentation method. The error 
bars represent the standard 
deviation among the different 
animals (n = 21)
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number of clusters are displayed in Fig.  2a, b, respec-
tively. An increase in specificity of the automatic seg-
mentation method with increasing number of clusters 
was usually observed. Selection of the optimum k-means 
method for automatic tumor delineation was based on the 
SImanual,automatic values, which are displayed in Fig.  2c for 
the different methods. The highest SImanual,automatic value 
(0.82 ± 0.06) was observed for feature vector {T2, ADC} 
with four clusters. For this k-means method the sensitiv-
ity (Fig. 2a) and specificity (Fig. 2b) were 0.76 ± 0.10 and 
0.95  ±  0.02, respectively. The SImanual,automatic value for 
this method was statistically significantly larger than those 
for most of the other k-means methods. Only the k-means 
methods with feature vector {T1, ADC} with four clusters, 
feature vector {T1, T2, ADC} with 4 and 5 clusters, and 
feature vector {T2, ADC} with 3, 5, and 6 clusters did not 
have a statistically significantly lower SImanual,automatic than 
the optimized k-means method with feature vector {T2, 
ADC} and four clusters. The SImanual,automatic value for the 
automatic segmentation using k–means with feature vector 
{T2, ADC} and four clusters was higher than 0.7 (indica-
tive of good agreement; as discussed in the “Materials and 
methods” section) for 20 out of 21 tumors.

SImanual,automatic values between manual segmentation by 
each observer and automatic segmentation with k-means 
clustering with feature vector {T2, ADC} and four clusters 

were 0.85 ± 0.05, 0.82 ± 0.08, and 0.80 ± 0.07 for observ-
ers O1, O2, and O3, respectively. These high SImanual,automatic 
values are indicative of good agreement between auto-
matic segmentation and individual manual segmentation. 
Statistical analysis showed there was a significant effect 
of observer on the SImanual,automatic values (P < 0.001). The 
SImanual,automatic values for observer O1 were statistically 
significantly higher than those for observers O2 and O3. 
Furthermore, SImanual,automatic values obtained for observer 
O2 were statistically significantly higher than those for 
observer O3.

Figure 3 shows three representative examples of auto-
matic tumor segmentation with k-means clustering with 
feature vector {T2, ADC} and four clusters. On the right-
hand side of the figure, the automatic tumor segmentation 
and the manual tumor segmentation for each observer are 
overlaid on the T2-weighted images. Close agreement 
between the manual and automated tumor segmentation 
was obtained for all observers. The algorithm accurately 
segmented the tumor tissue, even for tumors with a het-
erogeneous appearance on the T2-weighted images, for 
example the tumors in the 2nd and 3rd row of Fig. 3. For 
these heterogeneous tumors, the (most likely necrotic) 
regions within the tumor with a low signal intensity on 
the T2-weighted images were usually not assigned to 
one of the tumor clusters. However, they were included 

Fig. 3   Three representative examples of the results of k-means clus-
tering with feature vector {T2, ADC} and four clusters. The T2 and 
ADC maps of the tumor-bearing limbs are shown in the first and sec-
ond columns, respectively. The third column shows the correspond-

ing T2-weighted images. In the fourth, fifth, and sixth columns the 
automatic tumor segmentation (blue) and manual segmentation (yel-
low) for observers O1, O2, and O3, respectively, are overlaid on the 
T2-weighted image
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in the final segmented tumor volume by the region grow-
ing algorithm that was applied in the last step of the algo-
rithm (Fig.  1; discussed in the “Materials and methods” 
section).

Performance of fuzzy c‑means clustering

Average sensitivity, specificity, and SImanual,automatic 
values for the different fuzzy c-means methods are 
shown in Fig.  4a–c, respectively. All values were gen-
erally lower than those obtained for k-means cluster-
ing (Fig.  2). For fuzzy c-means clustering, the highest 
SImanual,automatic was noted for feature vector {T2, ADC} 
and seven clusters. For this fuzzy c-means method, the 
SImanual,automatic was 0.79  ±  0.11, which tended to be 
lower (P = 0.053) than the SImanual,automatic for the opti-
mum k-means method.

Performance of threshold‑based segmentation method

For the threshold-based segmentation method, which only 
made use of T2-weighted images, a mean SImanual,automatic 
of 0.69 ± 0.14 was obtained, which is significantly lower 
than the SImanual,automatic values for both the optimized 
k-means (P < 0.001) and fuzzy c-means (P < 0.01) cluster-
ing methods.

Comparison of tumor volumes from automatic and manual 
segmentation

Figure 5a shows the tumor volumes resulting from k-means 
clustering with feature vector {T2, ADC} and four clusters 
versus the average tumor volumes derived from manual 
tumor segmentation by the three observers. A high linear 
correlation (R2  =  0.99) was observed between manually 
and automatically segmented tumor volumes. However, the 
slope of the linear fit was 0.88, indicative of either under-
estimation of the tumor volume in the automatic segmenta-
tion or overestimation of the tumor volume in the manual 
segmentation. Figure 5b shows a Bland–Altman plot of the 
difference between the tumor volume in manual and auto-
matic segmentation resulting from the optimized segmenta-
tion method versus the mean of the manually and automati-
cally segmented tumor volumes. This plot further illustrates 
that the automatically segmented tumor volumes were 
consistently smaller than the manually segmented tumor 
volumes.

Comparison of tumor volumes from automatic 
segmentation and histology

Figure  6 shows a correlation plot between histology-
derived tumor volumes and tumor volumes derived from 

Fig. 4   Mean sensitivity (a), specificity (b), and SImanual,automatic, i.e. 
the similarity index between the manual and automatic tumor seg-
mentation (c), averaged over the observers for the different feature 

vectors (bottom right) as function of the number of clusters for the 
fuzzy c-means clustering-based segmentation method. The error bars 
represent the standard deviation among the different animals (n = 21)
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automatic segmentation of seven separate data sets. A 
strong linear correlation (R2  =  0.96) was observed after 
omitting a data point that was identified as an outlier. For 

all tumors, the automatically segmented tumor volume was 
larger than the tumor volume derived from histology.

Discussion

An automatic segmentation method for delineation of 
tumor tissue based on endogenous MR contrast has been 
described. For optimization of the segmentation method, 
automatic tumor delineations were quantitatively compared 
with manual segmentation performed by three observers. 
The largest overlap between automatic and manual seg-
mentation was observed for k-means clustering with fea-
ture vector {T2, ADC} and four clusters. Visual inspection 
of the four clusters originating from this k-means method 
showed that three clusters corresponded to tumor tissue, 
peritumoral edema, and muscle tissue. The fourth clus-
ter usually originated from small regions of a few pixels 
in muscle or tumor tissue. The bone tissue in the tumor-
bearing limb was typically excluded from analysis, since 
parameter values were not calculated for bone pixels, 
because the signal intensity for these pixels was at noise 
level (as discussed in the “Materials and methods” section). 
The SImanual,automatic of k-means clustering with {T2, ADC} 
and four clusters was not statistically significantly better 
than the k-means method with feature vectors {T1, ADC} 
(four clusters) and {T1, T2, ADC} (4 and 5 clusters), which 
indicated that clustering based on ADC and either T1 or T2 
worked equally well for segmentation of these tumors.

Fig. 5   a Tumor volumes derived from automatic tumor segmenta-
tion with k-means clustering with feature vector {T2, ADC} and 
four clusters versus average tumor volumes derived from manual 
tumor segmentation. The error bars represent the standard deviation 
for the manually segmented tumor volumes of the different observ-
ers (n = 3). The fit to the data points is plotted as the solid line. The 
corresponding fit data are shown bottom right. The line of identity 

(dashed line) is added as visual reference. b Bland–Altman plot of 
the differences between tumor volume for the manually and automati-
cally segmented tumors (i.e. automatically segmented tumor volume 
minus the observer-averaged manually segmented tumor volume) 
versus the mean of the manually and automatically segmented tumor 
volumes. The dashed lines represent the mean and 95 % confidence 
interval for the differences between tumor volumes

Fig. 6   Tumor volumes resulting from automatic segmentation with 
k-means clustering with feature vector {T2, ADC} and four clusters 
versus tumor volumes derived from whole-tumor based histology. 
The fit to the data points is plotted as the solid line. The correspond-
ing fit data are shown bottom right. The line of identity (dashed line) 
is added as visual reference. One data point was identified as an out-
lier and is indicated with a black circle
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Fuzzy c-means clustering did not improve the tumor 
segmentation compared with k-means clustering, which 
implies that the contrast between the clusters of the differ-
ent tissue types was well-defined. In clinical applications of 
automated tumor segmentation, fuzzy c-means clustering is 
widely used for different types of tumor  [3–5, 9, 10]. For 
human tumors, the tissue around the tumor is usually very 
different from the surrounding tissue (muscle, oedema, 
bone) in the subcutaneous tumor model here. The contrast 
between tumor and surrounding tissue could be less well-
defined, which may explain the additive value of fuzzy 
c-means clustering in the clinic. Furthermore, the resolu-
tion of clinical MR images is usually lower than that in 
our study (0.31 × 0.31 × 1 mm3), leading to larger partial 
volume effects at the tumor borders and a less well-defined 
demarcation between tumor and surrounding tissue. In 
such cases, a soft segmentation method, for example fuzzy 
c-means, could prove beneficial.

A strong linear correlation was observed between tumor 
volumes from the optimized automated segmentation and 
manual segmentation (Fig. 6). However, the automatically 
segmented tumor volumes were, on average, smaller than 
those from the manual segmentation, which corresponds 
to the finding that the sensitivity of the optimized segmen-
tation method was lower (0.76) than its specificity (0.95). 
Although the partial volume effects were relatively small, 
as stated above, they could partly explain the smaller tumor 
volumes for the automatic segmentation. Visual inspection 
of the segmentation revealed that pixels at the tumor rim 
were usually included in manual segmentation, whereas 
they were not always included in the automatic segmenta-
tion because of partial volume effects with adjacent muscle 
or edematous tissue. These partial volume effects should be 
carefully taken into account when the segmentation method 
is used for image-guided treatment planning. It would be 
advisable to include a safety margin around the segmented 
tumor volume to prevent undertreatment. Safety margins 
are, usually, already included in image-guided therapy, for 
example during HIFU procedures [29], to take into account 
the possible presence of occult tumor cells outside the 
tumor mass that are not visible with the imaging method 
used. The deviation between the automatically and manu-
ally segmented tumor volumes was also partly caused by 
errors in the manual tumor segmentation. Manual tumor 
delineation was based on T2-weighted images only. The 
border between tumor tissue and peri-tumoral edema was 
sometimes hardly visible, which led to incorrect inclusion 
of edematous tissue in manual segmentation of several 
tumors, and emphasizes the need for automatic segmenta-
tion methods. Possible susceptibility artefacts that arise 
from EPI that was used as readout in the mapping acqui-
sitions most likely did not cause the observed mismatch 
between the automatically and manually segmented tumor 

volumes, because both the manual and automatic seg-
mentation were performed on the basis of EPI images. No 
apparent geometrical differences between the EPI images 
of the T1, T2, and ADC mapping procedures were observed. 
In addition, susceptibility artefacts at air–tissue interfaces 
were small, anyway, because of application of ultrasound 
gel to the tumor-bearing limb (as discussed in the “Materi-
als and methods” section).

The inter-observer variability was assessed by calcula-
tion of the SI between the different manual segmentations 
(Table  1). Strong agreement (average SI of 0.86  ±  0.02) 
was observed between the tumor delineations of the differ-
ent observers. Visual inspection of the manual segmentation 
showed that differences between the manual tumor deline-
ations were mainly caused by the aforementioned inclusion 
of peri-tumoral edema. In a future study, the accuracy of 
manual tumor delineation could be improved by inclusion 
of diffusion-weighted images as a visual reference. The 
contrast between tumor and edematous tissue is usually 
better on diffusion-weighted images than on T2-weighted 
images, because of the large difference between apparent 
diffusion coefficient of water in tumor tissue and edema 
[30]. In addition, manual segmentation could also be per-
formed on contrast-enhanced T1-weighted images. These 
tumor delineations could then be compared with automatic 
segmentation by the proposed intrinsic MR contrast-based 
method to assess whether our method could rival tumor 
delineation based on contrast-enhanced MRI, which, in 
the clinic, is regarded as the best method. This study can 
be regarded as a feasibility study in which we determined 
whether automatic tumor segmentation based on intrinsic 
MR contrast can be performed for a subcutaneous tumor 
model. Because T2-weighted images, rather than contrast-
enhanced T1-weighted images, are usually used for manual 
segmentation of these subcutaneous tumors (e.g. Refs. [31–
33]), manual tumor delineation from T2-weighted images 
were considered as the best method in this study.

Selection of the clusters associated with the tumor tis-
sue was performed on the basis of a threshold-based seg-
mentation method (Fig. 1 and discussed in the “Materials 
and methods” section). SImanual,automatic was statistically sig-
nificantly lower for threshold-based segmentation than for 
clustering-based segmentation. Although a clear peak that 
corresponded to tumor tissue was observed in the averaged 
histogram of signal intensities in the T2-weighted images 
(Fig.  1), this peak considerably overlapped with other 
peaks in the histogram. Consequently, next to the tumor tis-
sue, regions of other types of tissue were also incorrectly 
assigned as tumor tissue by the threshold-based segmenta-
tion. In addition, for individual animals, the tumor peak in 
the histogram could be slightly shifted compared with the 
histogram averaged for all animals, resulting in incom-
plete segmentation of the tumor by the threshold-based 
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segmentation. Nevertheless, threshold-based segmentation 
provided a suitable initial tumor segmentation from which 
the tumor clusters could be selected in the clustering-based 
segmentation. However, care must be taken when defin-
ing the thresholds for the T2-weighted signal intensity val-
ues. To address this, we evaluated the effect of varying the 
thresholds on the SImanual,automatic values of the optimized 
segmentation method. Application of a smaller range of 
normalized intensity values (0.5–0.6) as threshold did not 
affect the SImanual,automatic values, whereas a larger range 
(0.4–0.7) did lead to a lower performance of the method  
(SImanual,automatic = 0.78 ± 0.11 compared with SImanual,automatic = 
0.82  ±  0.06 for the threshold range used in this study 
(0.45–0.65)). This finding suggests it is better to choose 
the threshold intensity range conservatively. A range which 
is too broad leads to larger overlap of the tumor peak with 
peaks of other tissue and consequently to substantial mis-
classification of surrounding non-tumor tissue as tumor 
tissue.

The threshold-based segmentation may, however, not 
be applicable to some (clinical) tumor types for which the 
contrast between tumor and surrounding tissue is poorly 
defined on T2-weighted images. For those tumor types, 
the threshold-based segmentation method may be applied 
to T1-weighted or diffusion-weighted images, if the con-
trast between tumor and other tissue is more visible on 
those images. While the threshold-based method is likely 
to require re-definition of the set thresholds for each tumor 
type, automatic selection of clusters could possibly also 
be performed on the basis of features more specific to 
tumors in general, for example shape, size [18], and tissue 
homogeneity [9]. Recently, Linguraru et  al. [34] showed 
that liver tumors can be accurately detected on contrast-
enhanced computed tomography images by using a set of 
features that describe the intensity, shape, size, and homo-
geneity of identified objects of interest in the liver. Apart 
from their potential utility for cluster selection, such tumor 
features could also be used to select the tumor volume from 
the results from morphological component analysis. In this 
study, the largest component was assumed to be the tumor 
volume, but this procedure would not be applicable to data 
sets in which more than one tumor is present. In such cases, 
the tumor volumes could be automatically selected on the 
basis of the above-mentioned tumor features.

Furthermore, clustering-based segmentation may also be 
performed without input of prior knowledge on tumor tis-
sue characteristics. The expert observer or radiologist could 
then manually select the cluster(s) associated with tumor 
tissue and subsequently the tumor volume(s). Although 
this would imply some user interaction, manual selection 
of the tumor clusters may still yield a more accurate and 
faster segmentation than tumor segmentation based purely 
on laborious manual delineations.

Manual segmentation was regarded as the best method 
for tumor demarcation in this study. In other reports on 
automatic segmentation of tumors, manual segmentation 
is also often used as reference for evaluation of the perfor-
mance of the segmentation method presented [3, 6, 9, 10, 
12]. However, the above-discussed inter-observer variabil-
ity might suggest that manual segmentation is not the best 
reference for optimization of automatic segmentation meth-
ods. Ideal validation of the proposed segmentation method 
would consist of spatial correlation analysis between the 
segmented tumors and histological tumor sections. How-
ever, spatial registration between MRI and histology is 
known to be very challenging and would have required an 
intermediate MRI scan of the excised tumors and a robust 
anatomical reference [35]. Instead of assessment of the spa-
tial correlation between MRI and histology, in this study 
whole-tumor histology was used to calculate the tumor 
volume of a small set of tumors. A strong correlation was 
observed between automatically segmented tumor volumes 
and histology-derived tumor volumes. However, the tumor 
volumes from histology were consistently smaller than the 
automatically segmented tumor volumes. This finding can 
most probably be explained by tissue shrinkage during 
preparation of the tumors for cryosectioning. In addition, 
histological processing can induce substantial tissue defor-
mation, which may explain the outlier observed in Fig. 6. 
Visual inspection of the automatically segmented tumor 
volume corresponding to the outlier showed that the algo-
rithm had accurately identified the tumor tissue. Tumor 
weight could provide an alternative measure of tumor vol-
ume. Strong correlations between tumor mass and MRI-
derived measurements of tumor burden in mouse lung [36] 
and subcutaneous [19] tumor models have been described 
elsewhere.

Clinical application of the automatic segmentation 
method seems feasible, because the proposed MRI pro-
cedures are already clinically available. However, as indi-
cated above, different properties of the surrounding tissue 
and the typically lower spatial resolution in clinical MR 
imaging could affect the accuracy of the proposed algo-
rithm. Furthermore, the typical lower field strength of clini-
cal scanners could affect the observed contrast between 
tumor and surrounding tissue, because most MR param-
eters, for example T1 and T2, depend on the magnetic field 
strength. Because of these potential challenges regarding 
application of the proposed method from the subcutaneous 
mouse tumor model to human tumors, the algorithm must 
be tested for different tumors to gain insight in its clinical 
applicability. Alteration of the algorithm to enable segmen-
tation of a broader range of tumor types may include use of 
tumor features other than the relative signal intensity in the 
T2-weighted images for automatic selection of the clusters 
associated with the tumor tissue, as indicated above.
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Apart from having potential clinical utility, the proposed 
method may also be useful for a variety of preclinical 
applications. Analysis of preclinical MRI data for different 
tumor models is usually performed on the basis of manu-
ally drawn ROIs. An observer-independent tumor volume 
measure could increase reproducibility in these preclinical 
studies. Application of the algorithm to several orthotopic 
animal tumor models is necessary to assess the suitability 
of the method in preclinical MR cancer research in general, 
because segmentation of these orthotopic tumors may, sim-
ilarly to human tumors, require adaptation of the algorithm.

For practical application of the proposed method to a 
larger variety of tumor types, the implemented algorithms 
should be integrated into software with a graphical user 
interface (GUI) that facilitates user-friendly MRI data pro-
cessing and subsequent automatic tumor segmentation. This 
GUI should enable user interaction, for example addition of 
information on tumor characteristics and manual adjustment 
of automatic segmentation. In addition, previous knowledge 
derived from automatic segmentation of different tumor 
types could be stored by the software to improve the accu-
racy of the automatic segmentation of subsequent tumors.

Conclusion

We have shown that time-efficient, automatic segmenta-
tion of tumor tissue growing subcutaneously in the mouse 
hindleg can be achieved on the basis of endogenous MR 
contrast only, without the need of injection of a contrast 
agent. We believe this automatic segmentation method 
will be beneficial for various clinical and preclinical 
applications.
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