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We consider an integrated maintenance and spare part optimization problem for a single critical 

component of a moving asset for which the degradation level is observable. Degradation is 

modelled as a function of the current operating mode, mostly dictated by where the moving asset 

physically is. The spare part is stocked at the home base where the moving asset eventually stops 

by. Alternatively, the spare part can be stocked on board of the moving asset to prevent costly 

expedited deliveries. The costs associated with spare part deliveries and part replacements 

depend on the operating mode. Our objective is to minimize the total expected discounted cost of 

spare part deliveries, part replacements, and inventory holding over an infinite planning horizon. 

We formulate the problem as a Markov decision process and characterize the structure of the 

optimal policy, which is shown to be a bi-threshold policy in each operating mode. Our 

numerical experiments show that the cost savings obtained by the integrated optimization of 

spare part inventory and part replacement decisions are significant. We also demonstrate the 

value of the integrated approach in a case study from the maritime sector. 

Keywords: maintenance, replacement, spare parts, moving assets, inventory, maritime, condition-

based maintenance 

 Introduction 1.

Maintenance and spare parts holding costs are known to be a significant part of the overall operating 

costs for many moving assets such as maritime assets (e.g., ships, vessels, submarines), aircrafts, 

commercial vehicles (e.g., trucks, buses, trains), and military equipment (e.g., frigates, strike-fighter). 

For maritime assets, maintenance activities can contribute in the range of 25-35% to the operating 

costs (Turan et al., 2009). For commercial airlines, maintenance accounts for around 10% of airlines’ 

total costs (Lam, 1995). The total spare parts inventory in the aviation industry is estimated to be 45 

billion US dollars in 1995 (Flint, 1995). In addition to the significant cost associated with 

maintenance and spare parts inventory, unexpected downtimes can lead to a significant loss of 

revenues and can affect health, safety, and environment. For instance, daily shipping operations of 

tankers yield as much as $20,500 depending on the vessel size (Unctad, 2013). Downtime of the Navy 

ships can seriously affect national safety. For such assets, maintenance and spare parts optimization is 

essential to decrease overall operating costs and to increase asset availability.  

A component is called critical when the consequences associated with its failure are significant. In 

practice, such components are usually maintained by the so-called repair-by-replacement strategy, i.e., 

the component is removed from the asset and replaced by a new or as good as new spare part. This 

reduces maintenance execution time and the resulting downtime (van Houtum and Kranenburg, 

2015). In this setting, the availability of spare parts is crucial since emergency shipments and the 
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downtime while waiting for the spare parts may be very costly. Traditionally, maintenance and spare 

parts inventory decisions are made separately. However, a separate optimization may lead to poor 

solutions since it ignores the interdependencies between the two decisions. In general, the integrated 

optimization provides remarkable improvement in terms of cost and availability compared to separate 

optimization (Kabir and Al-Olayan, 1996; van Horenbeek et al., 2013).   

For many technical systems, it is possible to measure parameters of critical components that reveal the 

actual degradation behavior (van Houtum and Kranenburg, 2015). This enables the prevention of 

failures by means of condition-based maintenance (CBM), i.e., by executing a preventive replacement 

at the moment that a certain degradation threshold is exceeded. In practice, measurements can be 

performed via periodic inspections or advanced sensor technologies. Physical degradation models 

investigate the quantitative relation between degradation, usage, and environment (see, e.g., Tinga, 

2010; Tinga and Janssen, 2013). In this paper, we consider a critical component of a moving asset for 

which the degradation level is observable and can be modelled as a function of the current operating 

mode. Operating modes represent where the moving asset physically is, how the component is used, 

and under which environmental conditions it operates. For many moving assets, the sequence and the 

duration of operating modes are more realistically modelled as random variables (see, e.g., Alam and 

Al-Saggaf, 1986; Çekyay and Özekici, 2015).  

Under the common repair-by-replacement strategy, the spare part must be on board of the moving 

asset when replacing the component. In practice, the spare part is usually available at a fixed location 

in the home base, where the moving asset eventually stops by. Depending on the application, the 

home base can be a harbor, hangar, or garage. Typically, the cost associated with delivering a spare 

part is negligible when the moving asset is already in the home base. However, the cost of a spare part 

delivery might be significant when the asset is operating at a remote location. Such a delivery is made 

by means of an aircraft, helicopter, boat, dedicated vehicle, etc. To prevent costly deliveries, the spare 

part can be stocked on board of the moving asset. A holding cost is incurred if the spare part is kept 

on board. This holding cost might be relatively high due to several factors including the spare part’s 

unit-value, the risk of obsolescence, and limited space availability on board.  

This work is motivated by our collaboration with Fugro Marine Services (FMS). Fugro is the world’s 

largest integrator of geotechnical, survey, subsea and geosciences services. A major part of Fugro’s 

turnover relates to the research of the seafloor, i.e., collecting and interpreting data related to the 

earth’s seafloor. For these operations, the so-called survey vessels are employed. The availability of 

these vessels is of high importance since the activities performed generate high revenue. FMS is 

Fugro’s in-house vessel managing company. FMS manages maintenance related activities for survey 

vessels among others. We consider a critical component of one of these vessels in the case study 

presented in Section 6. FMS has treated the component under consideration as reliable based on the 
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original equipment manufacturer (OEM) specifications. The replacement of this component was 

planned to be performed on a time-based schedule and it was decided to not to hold the spare part on 

board. Nevertheless, the component has failed before its preventive replacement time while the vessel 

was operating at a remote location. The expedited delivery of the spare part has amounted to €10,000 

approximately. In addition, the downtime cost due to one-day delay in operations, which is 

significantly varying over time, was within the range of €20,000 – €50,000 at that time. This situation 

could have been avoided if the spare part of this relatively cheap component was held on board of the 

vessel. On the other hand, it is neither realistic nor economical to always hold spare parts on board. 

First of all, the available space on board is usually very limited. Some of the critical components are 

very expensive resulting in significant holding costs. This shows that there is a need for a structured 

approach to make the decisions on “when to put a spare part on board” and “when to replace the 

component” just-in-time. Such an approach should take into account the randomness in the sequence 

and the duration of operating modes as well as the relation among operating modes, component 

degradation, and cost parameters. To the best of our knowledge, this problem is not yet studied in the 

literature.  

We formulate the above-presented problem as a Markov decision process model in which the 

objective is to minimize the total expected discounted cost. Given that many moving assets have very 

long service times; we develop an infinite horizon model. We characterize the structure of the optimal 

policy, which is found to be a bi-threshold policy in each operating mode. Moreover, we provide 

insights regarding the performance of the optimal policy compared to four benchmark policies. In 

these benchmark policies, replacement decisions are optimized and spare part inventory decisions are 

pre-defined as: never keep a spare part on board or always keep a spare part on board. Our numerical 

experiments show that, compared to the benchmark policies considered, the cost savings obtained by 

the optimal policy can be significant. 

The paper is organized as follows. Section 2 presents the related literature. Section 3 formulates the 

problem as a Markov decision process model. Section 4 characterizes the structure of the optimal 

integrated policy. Section 5 provides numerical experiments and several insights regarding the 

performance of the optimal policy compared to four benchmark policies. Section 6 presents a case 

study for demonstration purposes. Section 7 draws some conclusions and suggests potential future 

research directions. 

 Literature Review 2.

Our paper relates to three main research streams, namely, CBM optimization for components subject 

to Markovian degradation, maintenance optimization of mission-based systems, and integrated 

maintenance and spare parts inventory optimization. 



4 

 

 

A large body of the CBM literature models degradation as a Markov process (Elwany et al., 2011). 

The earliest and basic replacement models for components subject to Markovian degradation can be 

found in Derman (1970), Kolesar (1966), and Kawai et al. (2002). For these models, it is shown that 

under some monotonicity assumptions the optimal replacement policy minimizing expected total 

discounted cost in an infinite time horizon is a threshold-type policy. This means that there exists a 

threshold with respect to the degradation level above which the optimal decision is to replace the 

component and below which the optimal decision is to do nothing. Over the last decades, the structure 

of optimal replacement policies have been investigated in different problem settings (see, e.g., Makis 

and Jiang, 2003; Elwany et al., 2011; Kurt and Kharoufeh, 2010). Çekyay et al. (2011) reviewed 

CBM models with Markovian degradation for which threshold-type policies are optimal. They 

showed that these polices are not necessarily optimal in a variety of cases and the optimal policy may 

have a rather complex structure. 

There is a vast literature on systems performing missions which are composed of different phases or 

stages. In the literature, these systems are called phased-mission systems or mission-based systems. 

These systems are analogous to those that are subject to different operating modes and mission 

environments. Many papers focused on reliability and availability analysis for such systems (see, e.g., 

Esary and Ziehms, 1975; Kim and Park, 1994; Mura and Bondavalli, 1999; Kharoufeh et al., 2010). 

To the best of our knowledge, maintenance and replacement models for mission-based systems and 

for systems subject to randomly varying environments are limited. Waldmann (1983) investigated the 

structure of an optimal replacement policy for a system subject to stochastic degradation in a random 

environment. The author provided sufficient conditions to establish the optimality of threshold-type 

policies. Özekici (1995) modelled the environment by a semi-Markov process and used the intrinsic 

aging concept for degradation. The intrinsic age represents the cumulative hazard accumulated in time 

during the operation of the component in the randomly varying environment. Under increasing failure 

rate distribution functions in all environments and reasonable cost structures, the author showed that 

the threshold-type intrinsic age replacement and repair policies are optimal. In a similar setting, 

Çekyay and Özekici (2015) and Zhang et al. (2013) provided extensions to deal with the multi-

component case. Ulukus et al. (2012) modelled the environment as a finite state Markov process. 

They assumed that the system accumulates degradation at a linear rate whose value depends on the 

environment. They showed that there exists an optimal threshold-type replacement policy for each 

environment. Considering similar degradation dynamics, Flory et al. (2015) extended the work of  

Ulukus et al. (2012) to partially observable environments. Çekyay and Özekici (2012) defined both 

the mission process and the degradation process as finite state Markov processes where the generator 

of the degradation process depends on the phases of the mission. They discussed optimal repair and 

replacement problems and characterized the optimal policies under some monotonicity assumptions. 

In this paper, our assumptions regarding mission and degradation processes are similar. The mission 



5 

 

 

process (operating modes) is described as a finite state Markov process. The degradation process of 

the component is defined by another finite state Markov process and is modulated by the mission 

process. Differently from the existing papers in this research stream, we investigate an integrated 

problem by taking the spare part inventory decision into account. 

In the last decades, several integrated maintenance and spare parts inventory optimization models 

have been developed. Many papers in this research stream rely on the assumption that components’ 

life-time/reliability distributions are given. Armstrong and Atkins (1996) considered a single 

component subject to age-based replacement. They investigated the optimal combination of 

replacement and ordering time that minimizes the total replacement and inventory costs. Armstrong 

and Atkins (1998) provided several extensions to the previous work, generalizing the cost terms and 

the replenishment time of spare parts. Kabir and Al-Olayan (1996) proposed a policy for integrated 

optimization of age-based replacement and spare parts ordering. They considered a number of 

identical components. Their simulation model reported a remarkable improvement on the total cost 

compared to separate optimization. To the best of our knowledge, only a few articles are available for 

components subject to CBM.  Wang et al. (2008) considered a number of identical components and 

developed a condition-based replacement and spare parts ordering policy. They modelled the 

degradation of components as discrete-time Markov chains. They used Monte Carlo simulation to 

evaluate the performance of the proposed policy. Wang et al. (2009) combined Monte Carlo 

simulation and a genetic algorithm to determine the optimal parameters of the condition-based 

replacement and spare parts ordering policy. Elwany and Gebraeel (2008) enabled the use of sensor 

information and proposed a method which dynamically updates replacement and ordering decisions 

based on the physical condition of the equipment. They highlighted the advantages of using the 

proposed methodology compared to that of Armstrong and Atkins (1996). We refer the reader to van 

Horenbeek et al. (2013) for a complete review of this research stream. Unlike our work, existing 

research does not investigate integrated maintenance and inventory optimization problem from a 

moving asset perspective. To the best of our knowledge, none of these models incorporates the 

relation among operating modes, component degradation, and cost parameters. 

 Markov decision process formulation 3.

In this section, we present the Markov decision process formulation of our integrated maintenance and 

spare part optimization problem.  

Let I be a non-empty set representing different operating modes of the moving asset. Operating modes 

dictate where the moving asset physically is, how the component is used, and under which 

environmental conditions it operates. For example, operating modes can be defined as “wait in the 

home base”, “transit to location l”, and “perform mission m in environment e”, etc.  We assume that 

the operation process evolves as a continuous-time Markov chain (CTMC), }0,{  tX t on discrete 
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state space I. Therefore, the duration of operating mode Ii  is assumed to be exponentially 

distributed with rate i . The probability that the system jumps from operating mode Ii  to 

operating mode Ik  is denoted by ),( kiQ . Generally, 0),( iiQ  for all Ii , but technically one 

can allow ),( iiQ  to be larger than zero. As further demonstrated in Section 6, the operation process of 

a real-life system can be well-represented by such a Markov process. 

The degradation of the component also evolves as a CTMC, }0,{  tYt  on a discrete state space 

}...,,1,0{ FJ  , representing degradation levels from perfect (0) to failure state (F), where 1F . 

Transitions in degradation levels are from j  to 1j  for Jj ˆ , where }.{\ˆ FJJ   The degradation 

process is modulated by the operation process, i.e., transition rate ij  for the transition from j  to 

1j  depends on the current operating mode Ii . We note that the number of degradation levels and 

operating modes can be arbitrarily large. Therefore, this constitutes a fairly general degradation 

process.  

We assume that at most one spare part can be stocked on board of the moving asset. This assumption 

is not unrealistic considering limited space availability on board. Moreover, the component lifetime is 

usually much higher than the time between two successive home base visits, i.e., in practice, it is not 

likely to observe two or more failures during one mission. We denote the number of spare parts on 

board by Uu , where }1,0{U . 

We define the state of the Markov decision process as UJIuji ),,( , a realization of the joint 

process ),,(   where   denotes the current operating mode,  is the current level of degradation, 

and   is the number of spare parts on board. We restrict our attention to a model in which decisions 

are only made at transition instants. A decision maker observes the system at each decision epoch 

(i.e., each time instant at which a transition occurs) and makes decision }2,1,0{a  which can be one 

of the followings:  

0: Do nothing  

1: Deliver a spare part  

2: Replace the part  

The set of possible actions ),,( ujiA  in state UJIuji ),,(  is defined as: 























1,, if}2{

0,, if}1{

1,ˆ, if}2,0{

0,ˆ, if}1,0{

),,(

uFjIi

uFjIi

uJjIi

uJjIi

ujiA  
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At a decision epoch, action 0 (do nothing) can be chosen if the component has not failed. Action 1 

(spare part delivery) is possible if there is no spare part on board. Action 2 (part replacement) can be 

performed only if the spare part is already on board. 

We assume that a part replacement or a spare part delivery can be scheduled to occur immediately and 

instantaneously. Therefore, action 1 brings the system from state )0,,( ji  to state )1,,( ji  immediately. 

Similarly, action 2 brings the system from state )1,,( ji  to state )0,0,(i  immediately. After each 

transition, a new action can be taken. That is, a spare part delivery can be immediately followed by a 

part replacement and the other way around. For example, if the component has failed when the spare 

part was not on board, a spare part delivery and a part replacement should take place consecutively, 

bringing the system from state )0,,( Fi  to state )1,,( Fi  and then from state )1,,( Fi  to state )0,0,(i  

instantaneously. In this case, both actions take place at the same time instant.  

The assumption of instantaneous replacements and deliveries is reasonable when the duration of these 

actions is much shorter than the mean component lifetime. In practice, even short downtimes can lead 

to significant costs. In this model, the downtime is translated into cost parameters. We distinguish a 

part replacement cost and a spare part delivery cost. At the time that a preventive replacement occurs 

in operating mode Ii , the replacement cost 0pr ic  is charged. If the system is found to be failed, 

then a corrective replacement must be performed at a corrective replacement cost cr
ic , where prcr

ii cc   

for Ii . The replacement cost parameters pr
ic  and cr

ic  include the cost of labour and the cost of 

downtime due to preventive and corrective replacement actions, respectively. 

For a spare part delivery that takes place when the system is up in operating mode Ii , a preventive 

spare part delivery cost 0pd ic  is incurred. The cost of a preventive delivery includes the price of the 

spare part and the transportation cost. The transportation cost depends on the location of the moving 

asset, i.e., on the operating mode. We assume that a spare part is always available at the home base. 

By definition, the moving asset eventually stops by the home base. When the moving asset is at the 

home base, the spare part can be directly put on board with a negligible transportation cost (regular 

delivery). If the moving asset is at a remote location at the moment a spare part is requested, the 

delivery should be made by means of an aircraft, helicopter, boat, dedicated vehicle, etc. (expedited 

delivery). We translate the difference between regular and expedited deliveries into cost terms, by 

differentiating the spare part delivery cost with respect to operating modes. In principle, preventive 

deliveries do not cause downtime if the component has not failed. If the component has failed, 

additional costs may be incurred due to the cost of an emergency shipment and the cost of downtime 

while waiting for the spare part. To represent these additional costs, we introduce a corrective spare 

part delivery cost cd
ic , where pdcd

ii cc   for Ii . Moreover, holding the spare part on board of the 

moving asset incurs a holding cost 0h  per time unit.  
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We apply uniformization to convert the continuous-time Markov decision problem into an equivalent 

discrete-time Markov decision problem. The uniformization is applied to the subset of states in which 

action 0 is possible. We add fictitious transitions from state UJIuji  ˆ),,(  to itself, ensuring that 

the total rate out of a state is equal for all states UJIuji  ˆ),,( . The latter refers to the so-called 

uniformization rate (see Alagoz and Ayvaci, 2010). We select a positive uniformization rate v  such 

that }ˆ,|max{ JjIivv ij   where ijiijv   . In our Markov decision model, how long the 

system stays in a state depends on the action taken. Under uniformization, if action 0 is taken, the next 

transition (and decision epoch) is after an exponentially distributed time with mean v/1  in each state 

UJIuji  ˆ),,( . In this case, one of the following transitions can occur at the subsequent transition 

instant: (1) the system can jump from degradation level Jj ˆ  to 1j  with probability vij / ,  (2) the 

system can jump from operating mode Ii  to operating mode Ik , ik   with probability 

vkiQi /),( , or (3) the system can occupy the same state after transition with probability vvij /1 . 

For illustration purposes, we depict an exemplary process in Appendix I. 

We assume a continuous discount rate 0  so that any cost incurred at some future time t is 

discounted by a factor 
te 
. Hence, the discount factor in the uniformized process can be defined as: 


 


 




v

v
dve v

0

)(
 

The discounted holding cost of keeping a spare part on board during t  time units is: 

)1(

0

t

t

e
h

dhe 


    

If there is a spare part on board and action 0 is taken, then the expected discounted holding cost 

between two decision epochs is: 

h
v

dtvee
h vtt 



 




0

)1(  

The total expected discounted cost between two decision epochs ),,,( aujir  if action a is taken in 

state ),,( uji  is equal to: 

),,,(),,,(),,,( aujiCaujiHaujir   

where ),,,( aujiH  is the continuous cost and ),,,( aujiC  is the lump sum cost of action 

),,( ujiAa  in state ),,( uji : 
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










Otherwise0

0,1,ˆ, if
),,,(

auJjIih
vaujiH



 

























Otherwise0

2,1,, if

2,1,ˆ,if

1,0,,if

1,0,ˆ,if

),,,(

cr

pr

cd

pd

auFjIic

auJjIic

auFjIic

auJjIic

aujiC

i

i

i

i

  

Let ),,( ujiV  be the value function representing the minimum expected total discounted cost using the 

optimal policy if the operating mode is i, the degradation level is  j, and the number of spare parts on 

board is u. The optimal replacement problem can be formulated by the following dynamic 

programming equation:  

)},,(),,,({min),,(
),,(

ujiVaujirujiV a
ujiAa




 (1) 

where operators 0 , 1 , 2  refer to the actions of doing nothing, a spare part delivery, and a part 

replacement, respectively: 

UuJjIiujiVvvujiVujkVkiQ
v

ujiV ijij

ikIk

i 













 



,ˆ,for),,()(),1,(),,(),(),,(
,

0 


 (2) 

JjIijiVjiV  ,for)1,,()0,,(1  (3) 

JjIiiVjiV  ,for)0,0,()1,,(2  (4) 

Equation (2) models possible future random events following the decision of doing nothing. It 

consists of three types of transitions. The first one is the transition in operating modes, bringing the 

system from state ),,( uji  to ),,( ujk  where kiIki  ,, . The second one represents the 

component’s degradation, bringing the system from state ),,( uji  to ),1,( uji   where .Ĵj  The 

third one represents the transitions from state ),,( uji  to itself which is a consequence of the 

uniformization. Equation (3) corresponds to the decision of delivering a spare part, in which case the 

system jumps immediately from state )0,,( ji  to state )1,,( ji . Finally, Equation (4) represents the 

replacement decision which resets the number of spare parts on board and the degradation level to 0. 

Under (3)  and  (4), at each decision epoch, a part replacement can immediately follow a spare part 

delivery and the other way around. 

We note that the state space of the model is discrete, the action space }2,1,0{),,( ujiA  is finite for 

each UJIuji ),,( . The model satisfies the conditions of Theorem 6.2.10 in Puterman (1994), 

which establishes the existence of an optimal deterministic stationary policy and the convergence of 
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the value iteration algorithm to the optimal value. A value iteration algorithm that is designed to deal 

with immediate and instantaneous actions is given in Appendix II.  

 Optimal Policy 4.

In this section we analyze the structure of the optimal policy. We start by stating three theorems that 

establish monotonicity results related to the component’s degradation level. From this, we derive the 

structure of the optimal policy, which is an operating-mode-dependent bi-threshold policy. The proofs 

of the theorems are given in Appendixes III - V. 

Theorem 1: ),,( ujiV  is non-decreasing in Jj  for each Ii  and Uu . 

This theorem states the following. Consider two components in operating mode Ii  while Uu  

spare parts are on board. If the degradation level of the first component is higher than the second one, 

then the minimum expected total cost of the first component cannot be less than the minimum 

expected total cost of the second component.  

Theorem 2: ),,( ujiV  is submodular in UJuj ),( , i.e., 

 0)0,1,()1,1,()0,,()1,,(  jiVjiVjiVjiV  for each Ii  and }0{\Jj . 

In Theorem 2, we consider the difference between the two cases, (i) there is a spare part on board and 

(ii) there is no spare part on board. We show that in a certain operating mode, when component’s 

degradation increases, the increase in the minimum expected total cost in case (i) cannot be greater 

than that of case (ii). In other words, if the spare part is not on board, the cost increase resulting from 

component’s degradation is higher compared to the case where the spare part is on board.  

Theorem 3: In each Ii , there exists an optimal part replacement threshold Fi )(  and an optimal 

spare part delivery threshold Fi )(  such that: 























1,)(if2

1,)(if0

0,)(if1

0,)(if0

),,(*

uij

uij

uij

uij

ujia









   

This theorem shows that the optimal policy is an operating-mode-dependent bi-threshold policy on the 

degradation level.  

Remark: The spare part delivery threshold can be greater than or equal to the part replacement 

threshold, which may seem counterintuitive in sense that one would expect a spare part delivery to 

precede a part replacement in all operating modes. This is because, whether a replacement decision is 

made or not depends on the number of spare parts on board. If there is no spare part on board at a 

certain degradation level and operating mode, the additional cost of delivering a spare part may not 
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pay off the risk of a failure. However, if there is already a spare part on board for the same 

degradation level and operating mode, it may be optimal to replace the component. 

 Numerical experiments 5.

In this section, we execute numerical experiments in order to test the performance of the optimal 

policy and to assess the value of integrated spare part and maintenance optimization. We compare the 

optimal policy to four benchmark policies in which replacement decisions are not integrated with 

spare part optimization. These policies simplify spare part inventory decisions by “never” or “always” 

keeping the spare part stock on board. Replacement decisions are optimized in all benchmark policies.  

In the first benchmark policy, the spare part stock is never kept on board. That is, a spare part delivery 

is always followed by a part replacement. In addition, preventive deliveries are not allowed when the 

moving asset is outside the home base. As a consequence, preventive part replacements can only 

occur in the home base. We refer to this policy as never spare part policy (NP). The second policy is 

similar to NP, with the only difference of allowing preventive deliveries when the moving asset is 

outside the home base. We call this policy as never spare part policy with preventive deliveries (NPP). 

In NPP, the spare part delivery threshold becomes equal to the part replacement threshold in each 

operating mode. In the third policy, the spare part is put on board whenever the asset is in the home 

base (if it is not already on board). We refer to this policy as always spare part policy (AP). In AP, 

preventive deliveries in other operating modes than the home base are not allowed. That is, the spare 

part delivery threshold is zero in the home base and equals to the failure threshold in all other 

operating modes. Finally, we relax AP to allow preventive deliveries outside the home base and call 

this policy as always spare part policy with preventive deliveries (APP). The setup of the experiments 

is described in Section 5.1 and the results are discussed in Section 5.2. 

5.1. Setup 

We consider a critical component with 4 operating states }3,2,1,0{I  where 0 represents the home 

base of the moving asset, 1 and 3 intermediate states, and 2 the mission state. Intermediate states may 

correspond to transit states from home base to the mission site or vice versa. The operating mode 

transition probability matrix is defined as in Table 1, representing a deterministic cyclic sequence of 

operating modes. 

Table 1: Operating mode transition probability matrix 

),( kiQ  0 1 2 3 

0 0.00 1.00 0.00 0.00 

1 0.00 0.00 1.00 0.00 

2 0.00 0.00 0.00 1.00 

3 1.00 0.00 0.00 0.00 
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Three alternatives are considered regarding the operating mode transition rates (see Table 2). 

Alternative 1 fits to a commercial setting similar to the real-life case that we present in Section 6. In 

that case, missions and home base visits have short durations. Alternative 2 reflects our observations 

from the defense industry (Navy ships) where mission durations and home base visits are long. To 

enrich our comparative analysis, we also consider Alternative 3, in which mission durations are very 

long compared to home base visits.  

Table 2: Operating mode transition rates 

Operating mode 

transition rate (per year): 
i  

0 1 2 3 

High 180 720 90 720 

Low 6 26 6 26 

Low in mission 180 52 6 52 

Depending on the component, degradation can be uniform in different operating modes, high during 

missions or high during home base visits. For example, the power on/off switching has much 

influence on degradation for some electronic components, in which case degradation rates may be 

higher in the home base where the systems are often switched on/off.  On the other hand, if the 

degradation is linearly related to operating time and the component mostly operates during missions, 

the degradation would be higher in missions (cf. the case study in Section 6). In these numerical 

experiments, we consider 10 degradation levels }9..,,1,0{J  and different degradation profiles for 

each operating mode Ii  as given in Table 3. 

Table 3: Degradation rates    

Degradation rates 

(per year): 
ij  

   j  

 i       
0 1 2 3 4 5 6 7 8 9 

Uniform 

0 2 2 2 2 4 6 8 10 12 - 

1 2 2 2 2 4 6 8 10 12 - 

2 2 2 2 2 4 6 8 10 12 - 

3 2 2 2 2 4 6 8 10 12 - 

High in mission 

0 2 2 2 2 4 6 8 10 12 - 

1 4 4 4 4 8 12 16 20 24 - 

2 6 6 6 6 12 18 24 30 36 - 

3 4 4 4 4 8 12 16 20 24 - 

High in home 

base 

0 6 6 6 6 12 18 24 30 36 - 

1 4 4 4 4 8 12 16 20 24 - 

2 2 2 2 2 4 6 8 10 12 - 

3 4 4 4 4 8 12 16 20 24 - 

We take the same preventive replacement costs 000,1€pr ic  for all operating modes Ii . The cost 

parameters considered for corrective replacement cr
ic , transportation tr

ic , and the spare part’s price 

spc  are given in Table 4. We note that the preventive spare part delivery cost consists of the cost of 

transportation and the spare part’s price, i.e., sptrpd ccc ii   in operating mode Ii . Additional spare 

part delivery cost in case of failure ad
ic  is the difference between preventive and corrective deliveries, 

reflecting a possible downtime cost or the additional cost of an emergency shipment, i.e., 
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adpdcd
iii ccc   in operating mode Ii . Three alternatives are considered for the holding cost rate 

rah , 10% (low), 25% (medium), and 50% (high). The holding cost per time unit is calculated by 

multiplying the holding cost rate with the spare part’s price, i.e.,  sprachh  . The annual discount rate 

of money is taken as 2%, resulting in the continuous rate )98.0ln( . We note that the cost ranges 

considered are based on our observations from real-life cases that consist of both commercial (survey 

vessels) and defence equipment (the Navy ships) in the maritime sector. Overall, we obtain 

14582.36   instances with the combination of different alternatives considered. 

Table 4: Cost parameters in thousand € 

Cost parameters  

(in thousand €) 
Alternatives 

Operating mode i 

0 1 2 3 

Transportation cost 

( tr
ic ) 

Low 0 0.1 0.2 0.1 

Medium 0 1 2 1 

High 0 10 20 10 

Additional delivery cost 

( ad
ic ) 

Yes 0 25 50 25 

No - 

Corrective replacement cost 

( cr
ic ) 

Low 1.5 

Medium 5 

High 50 

Spare part’s price 

(
spc ) 

Low 0.05 

Medium 5 

High 50 

5.1. Results 

We assess the value of the integrated approach by comparing its performance with the four 

benchmark policies in terms of average and maximum cost increase. The cost increase is calculated 

by ** /)( CCCCS  ,  where C  is the expected total discounted cost under the benchmark policy 

and *C  is the optimal cost obtained by our integrated maintenance and spare part optimization model. 

In addition, we calculate the percentage of instances for which the expected total discounted cost 

obtained under the benchmark policy coincides with the optimal cost (denoted by OC %).  

Our numerical experiments show that the integrated approach has significant value. As shown in 

Table 5, the average cost increases under the benchmark policies NP, NPP, AP, and APP are 78%, 

20%, 30%, and 27% respectively. The benchmark policies are not very likely to give the optimal cost. 

The percentage of instances for which the optimal cost coincides with the cost obtained by NP, NPP, 

AP, or APP is 5%, 22%, 2%, or 12%. Not surprisingly, NP and AP are outperformed by NPP and 

APP, respectively. The average cost performance of NPP is found to be better than that of APP. In 

addition, “never spare part policies” (NP and NPP) are more likely to give the optimal cost than 

“always spare part policies” (AP and APP) for most of the cases. Nevertheless, the maximum cost 

increases in “never spare part policies” are significantly higher compared to “always spare part 
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policies”, meaning that the latter is usually more robust. In what follows, we summarize our 

observations regarding the performance of benchmark policies in different parameter settings. 

Observation 1: AP and APP are relatively well-performing (badly-performing) when the spare part is 

cheap (expensive) and the holding cost rate is low (high). On the other hand, NPP performs the best 

(worst) when the price of the spare part is high (low) and the transportation costs are low (high).  

Observation 2: When the spare part is never stocked on board, relying on preventive replacements in 

the home base deteriorates the cost performance significantly. The cost performance of NP is 

significantly worse compared to NPP when the transportation costs are low, corrective replacement 

and corrective delivery costs are high, degradation is fast during missions, and the moving asset is 

mostly in mission. Moreover, since preventive deliveries are favorable when transportation costs are 

low, the cost performance of NP is non-monotonous with respect to transportation costs. 

Observation 3: When the spare part is put on board whenever the moving asset is at the home base, 

the cost saving resulting from preventive deliveries performed in other operating modes than the 

home base is usually very limited. The difference between AP and APP is relatively high when the 

degradation is fast during missions and the spare part’s price is low. 

Observation 4: The cost performance of all benchmark policies is very sensitive to the structure of 

the degradation rates. The performance of “never spare part policies” deteriorates when component’s 

degradation is fast during missions. On the other hand, “always spare part policies” perform relatively 

badly when degradation is fast in the home base. For uniform degradation rates that we consider, the 

component’s life-time is longer compared to other alternatives. This is shown to cause a very poor 

performance in “always spare part policies”. 

Observation 5: Contrary to “always spare part policies”, the performance of “never spare part 

policies” is very sensitive to the changes in operating mode transition rates. This is because, when the 

spare part is not stocked on board, the total cost of spare part deliveries is highly dependent on the 

operation process. In particular, NPP performs very well when the operating mode transition rates are 

high, i.e., when the home base visits are frequent. These cases greatly improve the average 

performance of NPP. 

Observation 6: The cost performance of all benchmark policies is almost insensitive with respect to 

corrective replacement and corrective delivery costs. This is because, the trade-off between preventive 

and corrective costs is already taken into account while optimizing replacement decisions. 
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Table 5: Cost increases under the benchmark policies compared to the optimal policy 

Parameter Alternative 

Never spare part policies Always spare part policies 

NP NPP AP APP 

Avr.(%) Max.(%)  OC (%) Avr.(%) Max.(%)  OC (%) Avr.(%) Max.(%)  OC (%) Avr.(%) Max.(%)  OC (%) 

Degradation 

rates 

Uniform 40% 199% 7% 13% 108% 31% 41% 140% 2% 41% 140% 6% 

High in mission 154% 1057% 2% 33% 264% 14% 23% 74% 2% 14% 62% 23% 

High in home base 41% 200% 4% 14% 108% 22% 26% 105% 2% 25% 105% 7% 

Operating mode 

transition rates 

High 9% 34% 8% 5% 32% 22% 31% 140% 0% 31% 140% 0% 

Low 108% 950% 3% 25% 243% 29% 29% 134% 3% 24% 134% 17% 

Low in mission 119% 1057% 2% 29% 264% 15% 30% 132% 3% 25% 132% 19% 

Corrective 

replacement 

cost 

Low 56% 613% 10% 19% 264% 18% 29% 140% 4% 27% 140% 12% 

Medium 62% 645% 2% 20% 264% 25% 29% 137% 2% 27% 137% 12% 

High 117% 1057% 1% 20% 264% 24% 32% 137% 0% 27% 137% 12% 

Transportation 

cost 

Low 78% 1057% 7% 3% 14% 45% 35% 140% 0% 32% 140% 5% 

Medium 76% 1034% 4% 13% 73% 16% 31% 136% 0% 28% 136% 7% 

High 82% 963% 3% 44% 264% 5% 23% 129% 6% 21% 129% 24% 

Add. exp. cost 

in case of failure 

No 47% 617% 8% 19% 264% 25% 29% 140% 4% 27% 140% 12% 

Yes 109% 1057% 1% 20% 264% 19% 31% 137% 0% 27% 137% 12% 

Spare part’s 

price 

Low 170% 1057% 0% 48% 264% 0% 8% 74% 5% 1% 6% 33% 

Medium 51% 283% 3% 10% 85% 20% 35% 115% 1% 33% 115% 4% 

High 15% 73% 10% 2% 18% 47% 47% 140% 0% 47% 140% 0% 

Holding cost 

rate 

Low 81% 1057% 3% 22% 264% 15% 13% 74% 2% 10% 32% 15% 

Medium 78% 1051% 3% 20% 263% 19% 27% 74% 2% 24% 73% 14% 

High 75% 1041% 7% 18% 260% 33% 50% 140% 1% 47% 140% 8% 

Overall  

Avr. / Max. 
  78% 1057% 5% 20% 264% 22% 30% 140% 2% 27% 140% 12% 
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 Case Study: Cooling fan of a survey vessel 6.

In this section, real-life data acquired from Fugro Marine Services (FMS) are utilized for 

demonstrating our integrated maintenance and spare part optimization model. As briefly introduced in 

Section 1, a major part of Fugro’s business activity relates to the research of the seafloor, for which 

survey vessels are being employed. These vessels use diesel electric propulsion (DEP) systems which 

produce thrust and create movement. The DEP system consists of several subsystems. The centrifugal 

cooling fan of the frequency convertor is part of the DEP system. The frequency converter generates 

heat as a consequence of its process and needs to be cooled down by a cooling fan. Since the failure of 

the cooling fan can lead to a fire, the DEP system needs to be stopped if the cooling fan has failed, 

which causes downtime. The cooling fan can be easily replaced in every location and its spare part 

stock can be kept on shore or on board of the vessel.  

The daily reports of survey vessels contain information about the duration of different states such as 

staying in the harbor, sailing to a location, performing operations, or waiting for suitable weather 

conditions. In case of unsuitable weather conditions, the vessel sails to a location near the shore and 

waits there for a while. If weather conditions get better, the vessel sails back to operation site. 

Otherwise, the vessel returns back to the harbor. Based on these daily reports, we have categorized the 

operating modes as follows: “harbor”, “transit-to-mission”, “mission”, “transit-to-harbor”, and 

“weather”. We have analyzed a data set of three years regarding the sequence of these operating 

modes and their duration. As for the appropriateness of the Markovian model, we have also tested 

whether the durations of operation modes are well-represented by exponential distributions. For all 

operating modes except transit-to-mission state, the exponential distribution assumption is not 

rejected by the Kolmogorov-Smirnov test at the 95% confidence level. The corresponding transition 

rates and the transition probability matrix are given in Table 6. Based on the failures experienced by 

FMS, the failure of the ball bearing is found to be the main reason of the cooling fan’s failure. 

According to the OEM, the service life of the bearing system mainly depends on the thermal load on 

the bearing, i.e., the thermal fatigue. The OEM provides the L10 fatigue life of the bearing which is the 

time at which 10% of the bearings can be expected to have failed. The OEM states that the L10 fatigue 

life is approximately 40,000 operating hours at an ambient temperature of 40 °C. Based on this 

information, FMS has treated cooling fans as reliable and held no spare parts on board.  The current 

policy employed by FMS corresponds to a time-based block replacement policy. The replacement is 

done during dry-dock maintenance which is mandatory every 5 years. Corrective maintenance is done 

if the cooling fan has failed before dry-dock maintenance. 

Over the last 3 years, FMS has observed significantly short service lives. The earliest failures have 

occurred within the range of 2,000 – 5,000 operating hours. In the pursuit of representing the expected 
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failure times of the ball bearing better, we have used the fatigue life prediction model presented in 

Harris and Barnsby (2001): 

10321 LaaaLna   (5) 

where naL  is the adjusted bearing fatigue life and ,, 21 aa  and 3a  are life adjustment factors for the 

selected reliability level, material, and operating conditions, respectively. Since the vessel under 

consideration always operates at the same geographical region, environmental conditions are assumed 

to be similar in different operating modes. After applying (5) (based on the qualitative information 

obtained from FMS), the adjusted fatigue life of the ball bearing is found to be 4,300 operating hours. 

The latter explains the current observations of FMS much better. 

Table 6: Transition rates and the transition probability matrix 

Transition Matrix:  

),( liQ  
Harbor 

Transit-to-

mission 
Mission 

Transit-to-

harbor 
Weather 

Transition/year: 

i  

Harbor 0.00 1.00 0.00 0.00 0.00 151 

Transit-to-mission 0.00 0.00 1.00 0.00 0.00 1039 

Mission 0.00 0.19 0.00 0.46 0.35 102 

Transit-to-harbor 1.00 0.00 0.00 0.00 0.00 924 

Weather 0.00 0.61 0.00 0.39 0.00 194 

The degradation process is modelled based on our service life estimation in (5) and considering how 

the cooling fan is used in different operating modes. We note that the cooling fan is being in use only 

when the bow thruster is operating. This is required to make the vessel more maneuverable in 

mission, harbor, and weather states. Using the expert knowledge, we have assessed the operating time 

of the cooling fan in different operating modes. Assuming that the degradation is linearly correlated 

with the operating time, the cooling fan is expected to degrade 17 times faster during missions than 

during harbor or weather states. In transit states, the degradation of the cooling fan is assumed to be 

negligible since it is never utilized. Based on this information, we build an Erlangian degradation 

process for each operating mode where 10F  and the rates out of each state to the next degradation 

state are 0.41, 0.00, 7.13, and 0.41 for harbor, transit, mission, and weather states respectively. By 

doing this, we divide the lifetime of the component in 10 equal parts. There is small amount of data to 

statistically support the degradation process that we propose. Nevertheless, this degradation process is 

found reflective considering what FMS has observed so far.  

The cost parameters differ between operating modes and are as listed in Table 7. The preventive 

replacement costs mainly consist of the cost of labor. The preventive delivery costs include the spare 

part’s price which is €3,600 and the cost of transportation which is €10,000 (applied if the vessel is in 

transit or in mission). During weather state the vessel is waiting near the shore which results in lower 

transportation costs. During harbor state the cost of transportation is negligible. The corrective 

replacement and delivery costs can be significantly high during mission and transit-to-mission states 
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due to the resulting downtime. A corrective replacement is estimated to take 4 hours and an expedited 

delivery lasts almost 1 day. The downtime cost associated with the delay in operations is an intangible 

parameter and is considerably varying over time. In this case study, we take the downtime cost as 

€30,000 per day, not to mean that it is actually what FMS incurs or bases its decisions on. We refer 

the reader to Section 5 for the impact of the downtime cost on the solution performance (this is 

reflected in corrective costs). In this case study, holding cost rate is taken as 25% per year and the 

continuous rate is set to )98.0ln( . 

Table 7: Cost parameters 

Operating mode 

Preventive 

replacement cost 
pr

ic  

Corrective 

replacement cost  
cr

ic  

Preventive 

delivery cost 
pd

ic  

Corrective 

delivery cost 
cd

ic  

Harbor €    100 €    400 €   3,600 €   3,600 

Transit-to-mission €    100 € 5,400 € 13,600 € 43,600 

Mission €    100 € 5,400 € 13,600 € 43,600 

Transit-to-harbor €    100 €    400 € 13,600 € 13,600 

Weather €    100 €    400 €   8,600 €   8,600 

We compare the optimal policy with the current policy of FMS as well as the benchmark policies, NP, 

NPP, AP, and APP. We observe NP and AP give the same solution as NPP and APP, respectively. 

This is because, preventive delivery costs are high in non-harbor states and the frequency of harbor 

visits is very high compared to the frequency of failures. This makes preventive deliveries 

unfavorable in non-harbor states.  

Figure 1 demonstrates the thresholds values obtained by the optimal policy and the benchmark 

policies. We observe that “never spare part policies” encourage early replacements in the harbor to 

deal with the risk of corrective deliveries/replacements in non-harbor states. On the other hand, 

“always spare part policies” postpone the replacement in the operating modes in which the corrective 

replacement costs are relatively low (harbor, transit-to-harbor, and weather states). 

 

Figure 1: Threshold values obtained for different policies 
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Table 8 summarizes the performance of different policies in terms of cost. We note that the total cost 

obtained by the current policy is coherent considering what FMS has faced for the last few years. 

Assuming that the degradation model that we have built reflects the degradation of the cooling fan, 

the current policy performs significantly badly compared to the optimal policy, with a cost increase of 

745%. This is because the initial service life was overestimated and the current policy excludes the 

relation between operating modes and degradation.  

Table 8: Cost performance of different policies  

 

Expected total discounted cost 

over an infinite horizon 

Cost increase compared to the 

optimal policy 

Current policy €   804,933 745% 

Never spare part policies  

(NP and NPP) 
€   105,784 11% 

Always spare part policies  

(AP and APP) 
€   131,736 38% 

Optimal policy €     95,290 
 

We observe that “never spare part policies” outperform “always spare part policies”. This is because 

harbor visits are very frequent, offering many opportunities for cheap preventive replacements in the 

harbor. Nevertheless, compared to the optimal policy, both simple policies are shown to be very 

costly. The total cost increases of about 11% and 38% are observed under “never spare part policies” 

and “always spare part policies”, respectively. Even under very frequent harbor visits, it is not optimal 

to “never” keep the spare part stock on board. The optimal policy provides a solution in which the 

component is stocked on board when the risk of failure is high, providing a trade-off between spare 

part delivery, part replacement and holding costs. 

 Conclusion 7.

In this paper, we have considered an integrated maintenance and spare part optimization problem for a 

single critical component of a moving asset.  We have proposed a Markov decision model and 

analyzed the optimal integrated policy. We have showed that the optimal policy is an operating-mode-

dependent bi-threshold policy. Numerical experiments have been provided to assess the value of the 

optimal policy compared to four benchmark policies. In these benchmark policies, replacement 

decisions are optimized but not integrated with spare part inventory decisions. These policies simplify 

spare part inventory decisions by “never” or “always” keeping the spare part stock on board. Through 

a comparative analysis, we have showed that our integrated approach has significant value. 

Simplifying spare part inventory decisions result in an average cost increase of at least 20.0%. The 

benchmark policies are unlikely to be optimal except some specific conditions such as very high or 

very low spare part’s price or transportation costs.  
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The problem studied in this paper was motivated by a real-life problem faced by Fugro Marine 

Services. From our collaboration with the maritime sector, we observe that failure-related historical 

data is usually limited. This makes the characterization of the degradation process challenging. In 

modelling the degradation and failure behaviors of the components, physical models are known to be 

less data demanding than data-driven models. Moreover, the difference associated with operating 

modes can be incorporated into physical models, using the quantitative relation between usage, 

environment, and degradation. Nevertheless, considerable effort is generally needed to develop such 

models.  

In this paper, we assume that spare parts are always available at the home base. In practice, the home 

base is a central warehouse in which the spare parts stock is limited and pooled to serve several 

moving assets. If spare parts are directly assigned to moving assets and stocked on board, the benefit 

of inventory pooling at the central warehouse vanishes. In particular, this happens if lateral 

transshipments from one asset to another are not allowed. In our model, this effect can be taken into 

account implicitly, by inflating the holding cost rate. However, this approach is approximate. An 

exact approach would be to analyze this problem from multi-echelon spare parts inventory 

perspective, considering a number of moving assets served by a central warehouse (see, e.g., 

Muckstadt, 2005; van Houtum and Kranenburg, 2015).  

Furthermore, in this paper, the consequences associated with system failure are translated into cost 

parameters. In practice, estimating intangible corrective cost terms is not straightforward, in 

particular, when failures affect people’s health, safety, and environment. If modelling the trade-off 

between preventive and corrective costs is not obvious, the focus should lie on availability and 

reliability measures. The relation between system design and availability-reliability requirements 

needs to be well-investigated in systems’ design phase.  

We note that although our motivation comes from a maritime application, the model and the results 

presented in this paper may be applied to other moving assets such as aircrafts, commercial vehicles, 

and military equipment. The rapid development of advanced sensor technologies is making 

components’ condition monitoring more affordable and feasible. The condition information provided 

by sensors can be especially useful for critical systems operating in environments that vary randomly 

over time. This is because the changes in environmental conditions and system usage can be related to 

the rate at which degradation accumulates (Ulukus et al., 2012). The model that we propose is greatly 

valuable considering the trend of shifting from time-based maintenance to condition-based 

maintenance. Moreover, repair-by-replacement is a common practice for high-value capital assets in 

general (Driessen et al., 2014). For moving assets, our model can be of value when there is an option 

of stocking the spare part on board. Depending on the application to be performed, the model can be 



21 

 

 

easily tailored to adjust to the number of operating modes, their duration/sequence, associated costs, 

and degradation parameters. 
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Appendix I. Uniformization Example 

For illustration purposes, we depict an exemplary process in Figure A.1. We consider two operating 

modes }1,0{I  and three degradation levels }2,1,0{J . We assume that the system operates under 

the following policy. In operating mode 0i , a spare is delivered when degradation level j  is 

greater than 1. In operating mode 1i , spare part delivery is performed when the component has 

failed. In both operating modes, the component is replaced only correctively. In the uniformized 

process, when action 0 is taken under the given policy, the probability that the system jumps from 

degradation level Jj ˆ  to 1j  is vp ijij /  and the probability that the system jumps from 

operating mode Ii  to ik   is vkiQq iik /),( . In Figure A.1, transitions from a state to itself are 

not depicted for ease of exposition (the corresponding probabilities are )/1 vvq ijii  . Immediate 

transitions under the given policy are shown by dotted arcs. 

Figure A.1: Markov chain illustrating the uniformized process under a given policy 
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Appendix II. Value iteration algorithm 

Let ),,( ujiVn  be the expected total discounted cost over a time horizon of n periods, where each 

period has an expected length v/1 . Without loss of generality, we select ),,(0 ujiV  as follows:  


















1,,if

0,,if

,,ˆif0

),,(

cr

crcd
0

uIiFjc

uIiFjcc

UuIiJj

ujiV

i

ii  (A.1) 

We introduce an additional notation a  to represent the instantaneous part replacements and spare 

part deliveries: 










21for1

0for0

,a

a
a  

For UJIuji ),,(  and n ℕ0, ),,(1 ujiVn  can be computed by: 

)},,(),,,({min),,(
),,(

1 ujiVaujirujiV
ana

ujiAa
n 


   (A.2) 

where ),,( ujiV
ana   is defined as follows for 0a , 1a , and 2a , respectively: 

UuJjIi

ujiVvvujiVujkVkiQ
v

ujiV nijnij

ikIk

nin
















 



,ˆ,for

),,()(),1,(),,(),(),,(
,

0 


 (A.3) 

JjIijiVjiV nn   ,for)1,,()0,,( 111  (A.4) 

JjIiiVjiV nn   ,for)0,0,()1,,( 112  (A.5) 

Due to instantaneous part replacements and spare part deliveries, value iteration should substitute 

updated values of ),,(1 ujiVn  at the (n + 1)
th
 iteration. In state )1,0,(i , if the optimal decision is to 

replace the part, this decision will not be immediately followed by a spare part delivery. This is 

because,  )1,0,()1,0,( 1
pdpr

1 iVcciV niin    cannot hold since 0pr ic  and 0pd ic  for each Ii . 

Therefore, )1,0,(1 iVn  is equivalent to: 









 )1,0,(),0,0,(min)1,0,( 00
pr

1 iVh
v

iVciV nnin


 for Ii  (A.6) 

Starting with (A.6), ),,(1 ujiVn  can be evaluated in decreasing order of Uu  and increasing order of 

Jj  using (A.2). As such, (A.4) and (A.5) can be indirectly expressed in terms of  ),,( ujiVn  for 

each .),,( UJIuji   This overcomes instantaneous transitions for all states. What follows 
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presents the value iteration algorithm which is designed to solve (1). We refer to Puterman (1994, 

Theorem 6.3.1., p. 161) for further details about the convergence of such a value iteration algorithm to 

the optimal value of the infinite horizon problem. 

Value iteration algorithm   

Step 1: Set 0n  and 0001.0 . Select ),,(0 ujiV  as (A.1).  

Step 2: For each UJIuji ),,( , compute ),,(1 ujiVn  in decreasing order of Uu  and increasing 

order of Jj : If )1,0(),( uj  use (A.6). Otherwise, use (A.2). 

Step 3: If for each UJIuji ),,( ,  2/)1(),,(),,(1  ujiVujiV nn   

Then, go to Step 4. Otherwise, increment n by 1 and return to Step 2. 

Step 4: For each UJIuji ),,( , choose the optimal stationary policy by: 

)},,(),,,({minarg),,(
),,(

* ujiVaujirujia
ana

ujiAa




  and stop. 

Appendix III. Proof of Theorem 1 

In order to prove Theorem 1, we first introduce Lemmas 1 – 4.  

Lemma 1: For each Ii  and n ℕ0, if )1,,(0 jiVn  is non-decreasing in Jj ˆ , then )1,,(1 jiVn  is 

non-decreasing in Jj ˆ . 

Proof of Lemma 1: From (A.2), )1,,(1 jiVn  can be re-written as follows for each Ii , Jj ˆ , and 

n ℕ0: 









  )1,,(),0,0,(min)1,,( 01
pr

1 jiVh
v

iVcjiV nnin


 (A.7) 

For each Ii , the cost of preventive replacement )0,0,(1
pr iVc ni   and the term h

v


 are constant and 

do not depend on Jj ˆ . Therefore, if )1,,(0 jiVn  is non-decreasing in Jj ˆ , then (A.7) is also non-

decreasing in Jj ˆ .          □ 

Lemma 2: For each Ii  and n ℕ0: 

(a)  )1,,( jiVn  is non-decreasing in Jj  

(b) )1,,(0 jiVn  is non-decreasing in Jj ˆ  

Proof of Lemma 2: We first prove Lemma 2(a) by induction.  

Basis: Lemma 2(a) holds for 0n  by (A.1). 
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Induction Step: For each Ii , assume that )1,,( jiVn  is non-decreasing in Jj  for a given 0n  

(induction hypothesis). From (A.3), we have the following for }0{\Ĵj : 

)1,1,()1,,( 00  jiVjiV nn   









































)1,1,()()1,,()1,1,(),(

)1,,()()1,1,()1,,(),(

1,1,

,

,

jiVvvjiVjkVkiQ
v

jiVvvjiVjkVkiQ
v

njinji

ikSk

ni

nijnij

ikSk

ni







  

 

   

 )1,1,()1,,()(

)1,,()1,1,()1,1,()1,,(),(

1,

,

















jiVjiVvv

jiVjiVjkVjkVkiQ
v

nnji

ikSk

nnijnni 


 (A.8) 

The second equality follows from the definition of ijv  and 1, jiv  which are equal to 
iji    and 

1,  jii  , respectively. We note that  JjIivv ij  ,|max  by definition. Therefore, (A.8) is 

greater than or equal to zero for each Ii  and }0{\Ĵj  under the induction hypothesis. Thus, 

)1,,(0 jiVn  is non-decreasing in Jj ˆ  for each Ii . Using Lemma 1, )1,,(1 jiVn  is non-decreasing 

in Jj ˆ  for each Ii .  

It remains to prove that 0)1,1,()1,,( 11   FiVFiV nn  for each Ii . For Fj  , we have: 

)1,1,()0,0,()0,0,()1,,( 11
pr

1
cr

1   FiViVciVcFiV nninin  for all Ii , n ℕ0 
(A.9) 

The first inequality follows from the definition of preventive and corrective cost parameters. The 

second inequality holds by the definition of )1,1,(1  FiVn . Thus, for each Ii , )1,,(1 jiVn  is non-

decreasing in Jj , completing the induction and the proof of Lemma 1(a). 

From Lemma 1(a), (A.8) is greater than or equal to zero for each Ii , }0{\Ĵj , and n ℕ0, 

implying that Lemma 2(b) holds.        □  

We note that Lemma 2(b) is required to prove Theorem 2.  

Lemma 3: For each Ii  and n ℕ0, if )0,,(0 jiVn  is non-decreasing in Jj ˆ , then )0,,(1 jiVn  is 

non-decreasing in Jj ˆ .  

Proof of Lemma 3: From (A.2), )0,,(1 jiVn  can be re-written as follows for each Ii , Jj ˆ , and 

n ℕ0: 
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 )0,,(),1,,(min)0,,( 01
pd

1 jiVjiVcjiV nnin    (A.10) 

From Lemma 2(a), )1,,(1 jiVn  is non-decreasing in Jj  for each Ii  and n ℕ0. Lemma 3 

follows from the definition of )0,,(1 jiVn , which is the minimum between two non-decreasing terms 

in .Ĵj             □ 

Lemma 4: For each Ii  and n ℕ0: 

(a)  )0,,( jiVn  is non-decreasing in Jj  

(b) )0,,(0 jiVn  is non-decreasing in Jj ˆ  

Proof of Lemma 4: The proof of Lemma 4 is along the same lines as the proof of Lemma 2, 

replacing, 1u  by 0u , Lemma 1 by Lemma 3, Lemma 2 by Lemma 4, and (A.9) by: 

)0,1,()1,,()1,,()0,,( 11
pd

1
cd

1   FiVFiVcFiVcFiV nninin  for all Ii , n ℕ0 
□ 

We note that Lemma 4(b) is required to prove Theorem 3. 

Proof of Theorem 1: Theorem 1 follows from Lemma 2(a) and Lemma 4(a). Since they hold for all 

n ℕ0, they also hold for the infinite horizon function ),,( ujiV  where n tends to infinity.  □ 

Appendix IV. Proof of Theorem 2 

In order to prove Theorem 2, we first introduce Lemmas 5 – 7.  

Lemma 5: For each Ii , }0{\Ĵj , and n ℕ0 , if action 2 is optimal in state )1,1,( ji , then 

action 2 is also optimal in state )1,,( ji . 

Proof of Lemma 5: Fix operating mode Ii  and n ℕ0. Suppose that }0{\Ĵj .  

From (A.7), the optimality of action 2 means that the cost associated with action 2 is less than or equal 

to the cost associated with action 0. Hence, if action 2 is optimal in state )1,1,( ji , then: 

)1,1,()0,0,( 01
pr   jiVh

v
iVc nni


  

From Lemma 2(b), we have: 

)1,,()0,0,( 01
pr jiVh

v
iVc nni  


  

Thus, action 2 is also optimal in state )1,,( ji , completing the proof.     □ 
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Lemma 6: The following inequality holds for all Ii , }0{\Ĵj , and n ℕ0: 

)0,1,()1,1,()1,,()0,1,()1,1,()1,,( 000111   jiVjiVjiVjiVjiVjiV nnnnnn  (A.11) 

Proof of Lemma 6: Fix operating mode Ii  and n ℕ0. Suppose that }0{\Ĵj .  

From (A.10), we have )0,1,()0,1,( 01  jiVjiV nn . Similarly, from (A.7), we have 

)1,,()1,,( 01 jiVh
v

jiV nn 


. Therefore, if )1,1,()1,1,( 01  jiVh

v
jiV nn


, then (A.11) holds.  

Otherwise, if )0,0,()1,1,( pr
1 iVcjiV in  , then 0)1,1,()1,,( 11   jiVjiV nn  by Lemma 5. From 

Lemma 2(b), 0)1,1,()1,,( 00  jiVjiV nn  and thus, (A.11) holds.       □ 

Lemma 7: For each Ii  and n ℕ0, the following inequalities hold: 

 (a) 0)0,1,()1,1,()0,,()1,,(  jiVjiVjiVjiV nnnn  for }0{\Jj  (A.12) 

 (b) 0)0,1,()1,1,()0,,()1,,( 0000  jiVjiVjiVjiV nnnn  for }0{\Jj  (A.13) 

Proof of Lemma 7: We first prove Lemma 7(a) by induction. 

Basis: Lemma 7(a) holds for 0n  under (A.1). 

Induction Step: For each Ii  and }0{\Jj , assume that Lemma 7(a) holds for a given 0n  

(induction hypothesis).  

 Case 1: Fj  .  

By definition, )1,,()0,,( 1
cd

1 FiVcFiV nin   . Hence, for 1n , the left-hand side of (A.12) is: 

)0,1,()1,1,( 11
cd   FiVFiVc nni  (A.14) 

Equation (A.14) is less than or equal to 0 since  
pd

11 )1,1,()0,1,( inn cFiVFiV    and  .cdpd
ii cc    

 Case 2: }0{\Ĵj  and )1,,()0,,( 1
pd

1 jiVcjiV nin   .  

For 1n , the left-hand side of (A.12) is: 

)0,1,()1,1,( 11
pd   jiVjiVc nni  (A.15) 

From (A.10), (A.15) is less than or equal to 0.  

 Case 3: }0{\Ĵj  and )0,,()0,,( 01 jiVjiV nn  .  

For 1n , the left-hand side of (A.12) becomes: 



27 

 

 

)0,1,()1,1,()0,,()1,,( 1101   jiVjiVjiVjiV nnnn  (A.16) 

From the definition of operator 0 , we have the following: 

)0,1,()1,1,()0,,()1,,( 0000  jiVjiVjiVjiV nnnn    

 

 

 )0,1,()1,1,()0,,()1,,()(

)0,,()1,,()0,1,()1,1,(

)0,1,()1,1,()0,,()1,,(),(

1,

,



















jiVjiVjiVjiVvv

jiVjiVjiVjiV

jkVjkVjkVjkVkiQ
v

nnnnji

nnnnij

ikSk

nnnni






 

(A.17) 

From the induction hypothesis, (A.17) is less than or equal to zero for each Ii  and }0{\Ĵj . 

Lemma 6 implies that (A.16) is less than or equal to (A.17). Hence, (A.16) is less than or equal to zero 

for each Ii  and }0{\Ĵj ,  completing the induction and the proof of Lemma 7(a). 

From Lemma 7(a), (A.17) is less than or equal to zero for each Ii , }0{\Ĵj , and n ℕ0, 

implying that Lemma 7(b) holds.        □ 

Proof of Theorem 2: Theorem 2 follows from Lemma 7(a). Since (A.12) holds for all n ℕ0, it also 

holds for the infinite horizon function ),,( ujiV  where n tends to infinity.     □ 

Appendix V. Proof of Theorem 3 

Lemma 8: For each Ii , }0{\Ĵj , and n ℕ0, if action 1 is optimal in state )0,1,( ji , then 

action 1 is also optimal in state )0,,( ji .  

Proof of Lemma 8: Fix operating mode Ii  and n ℕ0. Suppose that }0{\Ĵj . 

From (A.10), the optimality of action 1 means that the cost associated with action 1 is less than or 

equal to the cost associated with action 0. Hence, if action 1 is optimal in state )0,1,( ji , then: 

)0,1,()1,1,( 01
pd   jiVjiVc nni   

From Lemma 4(b), we have: 

)0,,()1,1,( 01
pd jiVjiVc nni    

If )0,0,()1,1,( 1
pr

1 iVcjiV nin   , then )1,1,()0,0,()1,,( 11
pr

1   jiViVcjiV nnin  from Lemma 5. 

In this case, it holds that )0,,()1,1,()1,,( 01
pd

1
pd jiVjiVcjiVc nnini    and thus, action 1 is 

optimal in state )0,,( ji . 
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Otherwise, if )1,1,()1,1,( 01  jiVh
v

jiV nn


, then:  

)0,1,()1,1,( 00
pd  jiVjiVh

v
c nni


  (A.18) 

From Lemma 7(b), we have: 

0)0,1,()1,1,()0,,()1,,( 0000  jiVjiVjiVjiV nnnn   (A.19) 

Inequalities (A.18) and (A.19) imply: 

)0,,()1,,( 00
pd jiVjiVh

v
c nni 



  

From (A.7), )1,,()1,,( 01 jiVh
v

jiV nn 


. Thus, 

)0,,()1,,( 01
pd jiVjiVc nni    

In this case, action 1 is optimal in state )0,,( ji , completing the proof.    □ 

Proof of Theorem 3: The existence of an optimal replacement threshold  Fi )(  in operating mode 

Ii  follows from Lemma 5. The existence of an optimal spare part delivery threshold Fi )(  in 

operating mode Ii   follows from Lemma 8. Since both Lemmas hold for all n ℕ0, they also hold 

for the infinite horizon problem where n tends to infinity.      □ 
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