

Investigating the competitive adsorption of CO2 and H2O on hydrotalcite-based adsorbents for sewgs processes

Citation for published version (APA):
Coenen, K. T., Gallucci, F., Cobden, P., Hensen, E. J. M., & Sint Annaland, van, M. (2015). Investigating the competitive adsorption of CO2 and H2O on hydrotalcite-based adsorbents for sewgs processes. In ECCE10+ECAB3+EPIC5 : September 27th - October 1st, 2015, Nice, France. Abstract book: Chemical engineering and biochemical engineering for a new sustainable process industry in Europe

Document status and date:

Published: 01/01/2015

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 17 Nov. 2023

INVESTIGATING THE COMPETITIVE ADSORPTION OF CO2 AND H2O ON HYDROTALCITE-BASED ADSORBENTS FOR SEWGS PROCESSES

Congress: ECCE10

Topic: Chemical reaction engineering

Presenting author: Kai Coenen

Authors and affiliations: Kai Coenen:Chemical engineering and chemistry, Technische Universiteit
Eindhoven, Eindhoven, Netherlands | Fausto Gallucci:Chemical engineering and chemistry, Technische Universiteit
Eindhoven, Eindhoven, Netherlands | Paul Cobden:Corporate, Energy efficiency, Biomass, ECN, Petten, Netherlands | Emiel
Hensen:Chemical engineering and chemistry, Technische Universiteit Eindhoven, Eindhoven, Netherlands | Martin van Sint
Annaland:Chemical engineering and chemistry, Technische Universiteit Eindhoven, Eindhoven, Netherlands

Abstract:

Sorption Enhanced Water-Gas-Shift reaction (SEWGS) is a promising technology for hydrogen production with integrated CO2 capture. SEWGS involves the capture of CO2 in a sorbent material during the water-gas shift reaction, effectively shifting the equilibrium to higher hydrogen yields (due to Le Châtelier's principle). A pure CO2 stream, which is obtained during sorbent regeneration with steam and further steam condensation, can be used directly for carbon storage. Hydrotalcite-based adsorbents have been investigated as possible candidates for the adsorption of CO2 at elevated temperatures and pressures due to their high stability, fast adsorption/desorption kinetics and high CO2 capacity.

However, there is still lack of understanding of the interactions between small gas molecules such as H2O, CO2 and H2S and the adsorbent. It has been reported in the literature that steam enhances the CO2 sorption capacity of hydrotalcite-based adsorbents. A comprehensive experimental investigation on the ability of these adsorbents to adsorb steam and detailed knowledge on the interactions between H2O and CO2 in a mixed sorption system, are still lacking in the literature.

This study focuses on the influence of water vapor on the sorption kinetics and capacity of hydrotalcites. Isotherms for CO2, H2O and a mixture of CO2 and H2O, have been measured at 400 °C for three different materials. Two potassium promoted hydrotalcite-based adsorbents, with different Mg/Al-ratio (Sasol Germany) and potassium promoted γ-alumina have been investigated to study the influence of the material composition on the sorption properties. We have developed a dedicated Thermogravimetric (TGA) setup to study the adsorption of the gases CO2, H2S and H2O on hydrotalcite-based adsorbents up to 10 bar pressure at elevated temperatures. Five consecutive adsorption –desorption cycles have been found to be sufficient to determine the cyclic adsorption capacity at a certain partial pressure of the reactant gas. The isotherms have been determined in a pressure range from 0 to 8 bar. Based on the adsorption isotherms for the individual gases and their mixtures, the adsorption properties of various HTC materials will be discussed and compared in terms of composition, adsorption sites and sorption kinetics.

Reference 1: Reference 2: Reference 3: Reference 4:

Highlight 1: Sorption Enhanced Water Gas Shift Reaction (SEWGS) for hydrogen production

Highlight 2: Steam adsorption on hydrotalcite based adsorbents

Highlight 3: Adsorption Isotherms at elevated temperatures and pressure