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Summary 
Theory on three dimensional wave propagation through semi-infinite elastic media has been pre- 
sented. Simulation of wave phenomena with the Finite Element Method introduces numerical ar- 
tifacts, dispersion and spurious reflection. It can be derived analytically that these errors depend 
on the relative mesh size, i.e. the number of elements per wavelength. Two dimensional dispersion 
analysis, valid for both dillatational (Pressure) and distortional (Shear) single frequency waves, 
shows that the use of 18 constant strain elements per wavelength leads to  a 1% underestimation 
of the wave propagation velocity. Applying this relative mesh size in non-uniform meshes gives a 
refiected wave with an amplitude of 2.5 % of the incident wave. in  current FE-head models the 
element size is typically 0.01 m. This means that the wave length that can be described accurately 
is about 0.18 m which corresponds to  the typical size of a 50th percentile head. It is very unlikely 
that that wave propagation can be described accurately in current headmodels. 

For gaining insight if this is realistic the propagation of a one-dimensional P-wave in a linear 
elastic beam has been modelled in MADYMO using a realistic, traffic impact like, input pulse. 
P-wave has been investigated as to obtain a true one dimensional problem which analytically 
shows no dispersion. A difficulty in the analysis was that single frequency waves do not exist 
in reality. The analysis showed that in this one-dimensional problem approximately 16 elements 
per maximum wavelength were needed to obtain a dispersion error of less than 1%. The strain 
error with respect to  the maximum strain after having traveled 30 m than equals 10%. If the code 
behaves the same for S-waves, as expected theoretically, an element size of 2.5. m is needed 
for a dispersion error less than 1%. The strain error than will be 10% at O.lm wave traveling 
distance. This means that the number of elements needed in a head modelwill be 43 = 64 times 
the number of elements used in current state of the art models. For the three dimensional case it 
can be estimated that this will be 175 times as much. 

The presence of certain wave types in the head is also investigated. A lower bound can be 
defined by considering the wavelength for which a wavelength fits inside a typical head measure 
(i.e. A,,, 5 Dhead = 0.2 m). This means that P-waves exist for f > 7750 H z ,  while S-waves exist 
a t  f < 25 H z .  The upperbound of the relevant frequency range is determined by the viscoelastic 
properties of brain tissue. For S-waves the upperbound is estimated to be 300 H z .  For P-waves 
the damping is that small that the upperbound will be determined by the excitation frequency. 

It is shown that an upperbound for the frequency in typical traffic related impacts equals 
3750 H z .  For this reason no P-waves will be present but S-waves will. In a ballistic/forensic blunt 
impact situation first a direct impact with a duration of approximately 2 to  loops [22],[23] will 
occur. After this inertia will cause the head to  rotate with a typical duration of order ms[24]. 
This means that P-waves can be present at the start and S-waves might develop later on. 
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Chapter 1 

Elementary theory on elastic wave 
propagation 

Elementary theory on wave propagation in semi-infinite, isotropic, linear elastic media will be 
presented as done in e.g.[l]. 

In absence of body forces the general three dimensional equations of motion are given by, 

were p is the mass density of the material, u the symmetric Cauchy stress tensor, t the time, 
and U the displacement vector. Small deformations theory will be applied. For this reason the 
Green-Lagrange strain will be linearised into linear strain, according to, 

E = 5 + (VU)) (1.2) 2 

Linear elastic material behaviour now can be described using Hooke’s law given by, 

u = Xtrace(E)I + 2 p ~  (1.3) 

where X and p are the Lamé parameters for the material. 
Equation(l.1) gives us the Navier equations for the medium, 

Substitution of Hooke’s law into 

(1.4) 
au 
at (A + p ) V  (V .U)  + pV2U = p- 

V2U=V(V.U) - V x (D x U) 

By applying the vector identity, 

and introducing both dilatation A, which represents the change in volume of the material, 

A = V . U  

and rotation i3 [14], 
1 
2 

w = - (V x U) 

equation(l.4) can be rewritten as, 

d2U 
(X+2p)VA - 2pV x w = p- 

at2 

which is the three dimensional wave equation for unbounded linear elastic media. It can be 
shown that this set of equations describes the propagation of two types of waves through the 
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8 Chapter 1 

medium: waves of distortion or S-waves, in which particle motion occurs perpendicular to  the 
direction of propagation of the wave, and waves of dilatation or P-waves, which correspond with 
the change of volume. 

The dilatational wave equation can be derived by taking the divergence of equation(l.5), 

with V 2  E V . V and epthe propagation velocity of the P-wave which equals, 

cp = P 

The wave-equation for the distortional waves can be derived by taking the cross-product of the 
gradient operator and equation(l.5). This yields, 

e, = /; 
Often linear elastic material parameters are provided in terms of Young’s modulus E and 

Poisson’s ratio u. They are related to  the Lamé parameters X and ,u by, 

and 

vE 
A =  

(1 + v) (1 - 2v) 

E 
p =  2 ( 1 + v )  

(1.10) 

(1.11) 

Often the material parameters bulkmodulus B and shear modulus G are used also. They can be 
written as, 

2 
3 

B = X + -,u and G = ,u (1.12) 

Elementary solution for 1D wave equation 

A general solution of the ID wave equation for P-waves will be derived wing elementary theory. 
This theory supposes that the motion due to  the wave is primairily one dimensional. In a linear 
elastic material this can be accomplished by setting Poisson’s ratio Y t o  zero. The Lamé parameters 
then become X = O and p = +. Substituting this in the three dimensional wave equation(l.5) and 
accounting for one dimensional motion by ii = u, gives the one dimensional wave equation, 

(1.13) 

were co = fi is the phase velocity of the one-dimensional wave. 
It can be shown that the d’Alembert solution fullfills the equation (see e.g.[l]). It is often 

written as, 
(1.14) 

where f 1  and f 2  are arbitrary, twice-differentiable functions and k = is termed the wavenum- 
ber. It can be seen that f1 describes a wave propagating in positive x direction and and f 2  one 
propagating in negative x direction. 

In this report the case will be considered were we have a slender beam of infinite length, loaded 
with a prescribed strain history at it’s edge. This boundary condition can be written as, 

u = fl (IC (x - cot)) + f 2  (IC (. + cot)) 
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EBC (t)  = €(X = o, t )  (1.15) 

For this reason we want a solution in terms of strains instead of displacements. This can be 
achieved by taking the partial derivative of the one-dimensional wave equation(l.13) with respect 
to 2,  

(1.16) 

r 7 -  . i his equation shows that the strain &/ax is governed by the same one-dimensional wave equation 
that governs the displacement. Since the beam is defined for positive x values only and since 
the boundary condition is applied at x = O the only physical realistic wave will be a forward 
propagating one. The general solution now will be of the form, 

(1.17) 

Applying boundary condition (1.15) and knowing that in a one-dimensional linear elastic ma- 
terial there will be no dispersion, the analytical solution for the strain history inside the slender 
beam becomes, 

t ,  = &BC(k (x - cot))  
dX 

(1.18) 

with = kco E w i.e. the circular frequency of the wave. 
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Chapter 2 

Numerical sirnulat ion of eliast ic 
wave propagat ion: t heoaet ical 
considerat ions 

When performing numerical simulations two phenomena are of importance. Firstly the accuracy 
of the computatiori and secondly the numerical stability. These phenomena are influenced by both 
spatial and temporal discretisation used in Finite Element models (FE). The presence of these 
effects within FE-codes commonly used for modelling head impacts, will be investigated using 
results of analytical analysis . In this report the FE code MADYMO will be used as reference 
code but it’s characteristics are common to many packages used for head impact modelling. 

2.1 Numerical stability 
In most FE packages used for head modelling time discretisation is performed using explicit time 
integration methods such as the Central Difference method (e.g. LS-DYNA3D, PAM-CRASH, 
Abaqus-explicit). In such explicit time schemes no iteration is performed during one time incre- 
ment, providing low computational effort per time step. However, the maximum time step size 
that can be used is limited since explicit integration schemes are conditionally stable (i.e. stable 
for a time step below as certain value). The maximum size of the time step At,,, is determined 
by the the Courant number [4], defined as, 

In words this requirement means that the time step used should be such that during one time 
step the traveling distance of the fastest wave in the model (c . At,,,) should be smaller than 
the smallest typical element size in the mesh (Ax). Usually this stability requirement gives an 
upperbound for the timestep to be used. If a smaller the time step is taken the integration 
procedure will be more accurate in general. 

2.2 Numerical accuracy 
When computing wave propagation using FE-modelling, two main error sources can be distin- 
guished: numerical dispersion and spurious reflections. Both error sources are mainly influenced 
by the spatial discretisation (i.e. element formulation and mesh density) used. For this reason re- 
sults of so called semi-discretisation analysis will be presented in which only spatial discretisation 
is accounted for. 

11 



12 Chapter 2 

MADYMO achieves spatial discretisation by using constant stress elements with lumped mass 
matrices. These contain eight integration points when full integration is applied. A reduction 
of computational costs can be achieved by using a reduced integration technique in which only 
one integration point per element is used. As a result numerical induced (i.e. artificial) zero 
energy modes, or hourglass modes, may occur. This can be prevented by adding an additional, 
non-physical, damping or stiffness, the so called hourglass parameter. 

Numerical dispersion 
Numerical dispersion is the phenomenon that waves of different wavelength travel at different phase 
velocities through the medium due to  numerical artifacts. Belytschko and Mullen [2] analytically 
investigated semidiscretisation errors in one-dimensional cases. They found that, for constant 
strain elements with lumped mass matrices, the phase velocity in the discrete mesh C F E M  can be 
related to  the theoretical phase velocity c by 

This means that the phase velocity in the discrete mesh is dependent on the wavelength X and 
element size Ax. Also it can be seen that there cannot be any wave propagation when Ax = A. 
Since wavelength X is related to  it’s frequency f by the phase velocity e, an upperbound on the 
frequency in the mesh for which no waves will be propagated can be found as,[2][6] 

f c u t o f f  = 
A X  

Mullen and Belytschko [lo] extended this analysis to  two dimensional finite element semi- 
discretisations. Since they considered the two dimensional wave equation, this means that the 
analysis holds for both P-waves and S-waves. Figure(2.1) shows the effect of the angle of the 
normal of the incident wave front with the mesh, O, on dispersion 7 in square elements. 
Both full and reduced integrated elements were investigated.The results show that for O = O, no 

Full integration Reduced integration 

0.2 ’ I 
O 0.1 0.2 0.3 0.4 

M L  [-I 

Figure 2.1: Dispersion of bilinear quadrilateral elements with lumped mass, as a function of rela- 
tive mesh density for various directions O (extreme values shown). 

differences between fully and reduced integrated elements exist. When a wave arrives at a certain 
angle O # O, the dispersive errors in the reduced integrated elements increase stronger than in the 
fully integrated ones. 
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Spurious reflection due to mesh nonuniformity 
In a uniform finite element mesh, elastic waves propagate without reflection. However, due to  
nonuniformity in the mesh distribution, spurious reflections can occur in the computed solution. 
BaHant et  al. [6] analyzed a compressive wave traveling in a rectangular mesh consisting of two 
uniform parts with different element sizes (h  and H in Figure 2.2). Amplitudes of the waves 
diffracted and reflected at the transition plane between the mesh parts were analytically derived. 
Influences of mesh size ratio x, and number of elements per wave length of the second mesh part 
($) were determined. In Figure(2.3) the amplitudes of diffracted and reflected waves are provided 

I h 8 H 
transition plane 

Figure 2.2: Rectangular Finite Element Mesh used by Baiant et al. [6]. 

as function of mesh size ratio and relative mesh size &. Both are normalized to  the amplitude 
of the incident wave. In the ideal case it would be expected that the amplitude of the reflected 
wave wouià be zero whereas the amplitude of the, normalized, diEracted wave would be equal t o  
one. 
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Figure 2.3: Amplitude of diffracted wave and reflected wave normalized to  1, as function of mesh 
size ratio :and relative mesh size k. (Copied from [6]) 

Figure(2.3) shows spurious reflection when a wave passes between two elements of different 
sizes. It can also be seen that this effect is more prominent when wave length X covers only a 
few finite element sizes H .  If X = 10H the amplitude of the reflected wave still equals 2.5% of 
the amplitude of the incident wave for mesh size ratios of 2 and more. When a wave travels from 
a coarser mesh to  a more refined mesh (mesh size ratio, E < i), the error seems to  grow much 
faster than in the case that > 1. Although not mentioned by the authors, this asymmetric 
behaviour is probably due to  the fact that the curves are determined for constant relative mesh 
size parameter &. Whereas the accuracy of the mesh is in genera1 determined by the coarsest 
mesh. For this reason the error when < 1 has to  be based on the accuracy measure i instead 
of k. A simple analysis for = & proved that the error induced by a transition from a coarse 
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mesh to  a fine one is the same as the other way around'. However, these findings have not yet 
been validated for more than one mesh size ratio. 

2.3 Implications for existing head models 
In the quest for establishing insight in the development of injury during an impact of the head, 
Finite Element head models are used to  assess the dynamical behaviour of the head. A potential 
cause for the appearance of head injury is the focussing effect of compressive and shear waves 
traveling thïmgh the brain t i s s~e .  PJIost FE models f a d  in literature cmsist, d constarit strair? 
elements with an average elementsize Ax = 1.0 . 10-2m (e.g. [7][8]). Since nearly incompressible 
brain tissue has to  be modelled, full integrated elements may show locking phenomena (i.e. strong 
overestimating of element stiffness). For this reason reduced integrated elements are often used. 

Linear (visco)elastic material behaviour for the brain tissue is often assumed, for this reason 
the theory of previous section can be used to assess if current headmodels are capable of describing 
wave phenomena correctly. 

Numerical dispersion 

As shown in Figure(2.1) the dispersive behaviour depends on the direction O by which waves are 
arriving on a mesh. Let's consider the worst case scenario: O = 45". If we want the maximum 
error to  be less than 1% (i.e. GEEX = 0.99), we find that & = 17.7 for reduced integrated 
elements. This relation and the estimated Ax = 1.0- lo-' m provide the smallest wavelength that 
can be computed correctly Amin = 17.7.10-'rn. 

co 

The maximum frequency that can be computed correctly can be determined using, 

c 
f m a z  = - 

L i n  

0 P-waves travel through the brain tissue at approximately 1500 7 [3], so the 
frequency equals 8.5. 103Hz. 

o S-waves travel at approximately 5 7 (1-10: [9]) yielding a maximum frequency 

(2-4) 

maximum 

of 28 Hz.  

Spurious reflection 

From figure(2.3) it can be concluded that for reducing the change of amplitude of a wave traveling 
through a nonuniform mesh to  less than 2.5 % the mesh distribution has to  such that & 2 10. 
Since this is already achieved by fullfilling the requirements with respect to  dispersion, spurious 
reflections should be low. However, it has to  be reminded that the spurious reflection analysis was 
primarily one dimensional and that effects of different element shapes were not induded. 

2.4 Methods of i m p r ~ v e ~ ~ n t  
Until now the effects of spatial discretisation as it is implemented in MADYMO have been taken 
into account. Nothing has been said on effects of time-discretisation and on different spatial 

lExample: For comparing the spurious reflection when F = 0.7 with the the one when 5 = 01-7 for a given 
relative mesh size = 4 the following approach has to be followed, 

1. For f = & the relevant relative mesh size 2 = $ = 4. Figure(2.3) shows that the amplitude of the 
diffracted wave, /y/, increases by approximately 10%. 

2. For f = 0.7 the relative mesh size is determined by h and equals i = 4. Using & = $i it can be 
determined that Q = & = 5.7. Reading the error at this curve gives a decrease of amplitude lyl by 
approximately 10%. 

a x m a z  

This analysis also holds for the reflected spurious wave. 
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discretisation methods. A few comments on the use of these methods will be given using the 
findings of the authors referenced already. 

1D dispersion 

Until now only elements with diagonalized (lumped) mass matrix were considered. Lumped mass 
matrix are known to be computationally more effective but do not allow a very accurate frequency 
representation. Belytschko et al. [2] also investigated elements with a generalized mass matrix 
obtained by using a weighting factor CY by, 

M = (YMconsistent + (1 - a)  M l w n p e d  

It was concluded that elements with consistent mass matrix tend to  overestimate wave velocities 
whereas the ones with lumped mass matrix underestimate the wave velocity. The least dispersion 
was obtained when (Y was set to p .  

When time integration is applied by using the Central-Difference integration scheme, the dis- 
persive behaviour of lumped mass elements can be improved if the timestep is chosen close to the 
critical timestep determined by the Courant number (equation(2.1)). 

Elements with quadratic interpolation functions were found to  display a negligible dispersion 
behaviour. However these elements can introduce a significant amount of additional noise into the 
solutions due to  the existence of two solutions at each wavelength (for more information please 
refer to  Belytschko et al. (1977)[2]). 

2D dispersion 

Mullen et al. found that quadrilateral elements with a consistent mass matrix show the best 
performance[lO]. Mass lumping decreases the performance, particularly in directions that don’t 
coincide with the mesh lines. This is further exacerbated by reduced integration. 

Spurious reflections 

As far spurious reflections are concerned, the consistent mass is superiour to the lumped mass 
matrix, giving about one-half of the amplitude of the reflected wave[6]. Investigating the time 
integration showed that this has no effects on the reflective behaviour. 

It can be concluded that there is not an optimal method for modelling wave propagation. A 
method to prevent spurious wave reflection as well as wave dispersion from overshadowing the true 
dynamic response is to eliminate all wavelengths which are smaller than the critical wavelength 
determined using equation(2.2) or Figure(2.1). This can be done by expanding the applied load 
in a Fourier series an delete all frequency terms correspor,ding to wavelengths smaller than the 
critical one [6]. An other possibility is to adjust the mesh size such that the greatest part of the 
frequency contents of the applied load can be modelled correctly. 

2.5 Conclusions 
Simulation of wave phenomena with the Finite Element Method introduces numerical artifacts, 
dispersion and spurious reflection. It can be derived analytically that these errors increase with 
increasing element size. From a two dimensional dispersion analysis it can be conchded that for 
constant strain elements, with lumped mass matrix the choice, Ax = & A  leads to an error in wave 
propagation velocity of approximately 1 %. Applying the same relative mesh size in non-uniform 
meshes gives a reflected wave with an amplitude of 2.5 % of the incident wave amplitude. 

In current FE-head models the element size is typically 0.01 m. This means that the wave 
length that can be described accurately is about 0.18 m which corresponds to  the typical size of a 
50th percentile head (anterior - posterior head size, 0.195 m, head width, 0.155 m[i5]). From this 
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it can be concluded it is very unlikely that that wave propagation can be described accurately in 
current headmodels. 



Chapter 3 

Numerical sirnulat ion of elastic 
wave propagation: MADYMO 
computation 

In this chapter, it is investigated whether the MADYMO-solutions of wave propagation problems 
behave as predicted theoretically in the previous chapter. For this reason the propagation of one 
dimensional P-waves in a slender linear elastic beam is investigated. Since MADYMO uses three 
dimensional geometry, one dimensional conditions are obtained by setting Poisson's ratio to  zero. 
The beam is excited by applying a force history on one edge. The theory of the previous chapter 
will be applied to determine the correct mesh density and computed results will be compared with 
the analytical solution. 

3.1 Analytical solution of the 1D wave equation 
The beam is loaded by a prescribed force history at one edge. Nahum et al. [li] obtained this 
pulse by impacting a head of a seated cadaver. It is often used for a benchmarking head models 
(e.g. [7][8]). For reasons of simplicity this pulse is approximated by, 

F ( t )  = F,,, sin4(2-rrft) (3.1) 
with F,,, = 6900N and f = 62.5Hz (see also Figure(3.1)). Since there is only one di- 

mensional motion, the cross-area of the beam remains constant ( A  = A@). For this reason the 
prescribed force can easily be written as a prescribed strain using, E @ )  = 2. Substituting this in 
the general one dimensional solution for a wave traveling in positive x-direction (equation( 1.17)) 
and using K = 9, the analytical solution for the strain becomes, 

The material properties of the beam are chosen such that the one-dimensional wave propagation 
velocity co approximates the speed of sound in brain tissue (1500 [3],[12]). They are shown in 
Table 3.1. The length of the beam was chosen to be such that no reflection on the outer edge 
would occur during the simulation. 

3.2 The numerical model 
A beam with square cross-section has been modelled using cubic elements, with one element per 
cross-section of the beam. The length of the beam was chosen to  be such that no reflection on the 

17 
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Table 3.1: Material parameters for linear elastic slender beam. 
Material parameter Value 

E 2.25. lo9 [Pa] 

P 1000 [kg/m3] 
Y 0.0 [-I 

CO = ,E 1500 [m/s] 

outer edge would occur during the simulation. The impact on the beam has been modelled by a 
prescribed nodal force on the nodes at the beam edge at x = O. 

3.2.1 Discretisation requirements 

As can be concluded from chapter 2, choices of both spatial and temporal discretisation depend 
on the wave length we expect in the mesh. Since a linear elastic material model is used, the 
frequencies in the input force are the same as in the resulting strain waves so the wave length can 
be determined directly from the frequencies using f = X. A problem in this is that in a real input 
pulse more than one frequency is present. For this reason a maximum relevant frequency will be 
defined on which the mesh density will be based. A parametric study will provide insight whether 
this choice was correct. 

Impact conditions 

For obtaining the relevant frequency contents of the input pulse, the power spectral density (PSD) 
of the force signal has been determined. Such PSD shows the power contents per frequency 
present in the pulse. For correct modelling of the wave propagation it is assumed that we need 
99 percent of the total power contents of the input. This can be obtained by integrating the PSD 
over frequency (using the trapezoidal method) until we reach the frequency at which the total 
power reaches 99% of the maximum power (as illustrated in Figure(3.1)). The maximum relevant 
frequency than becomes fmaz = 3750 H z .  

Spatial discretisation 

The wave velocity CO, from Table 3.1, and the maximum relevant frequency of the input force, 
f m a z  = 3750Hz, give us the smallest wavelength that has to  be described correctly, Amin = 

= 0.40 m. Since this is a one dimensional wave propagation problem we assume that the 1-D 
frnaa: 

dispersion relation of equation(2.2) is valid. When an accuracy of 1% is required (i.e. cP/co = 0.99) 
this yields a maximum element size Ax = 3.12. 10-2[m]. It has be chosen to  split the beam into 
1000 quadrilateral elements, with element length Ax = 3.0 . 10-2[[m]. 

Temporal discretisation 

The maximum timestep required for stability is determined by the Courant number defined by 
equation(2.1). Setting the Courant number to  one using Ax = 3.0. 10-2[m3 yields the maximum 
timestep, At 5 2.0. 10-5[[s]. This is small enough to  describe the maximum relevant frequency in 
the input force. 

Since both spatial discretisation and time integration influence the accuracy, the Courant 
number of the mesh used is set to i for all simulations unless stated differently. This provides the 
time step, At = 1 . iO-5[s]. The simulation time has been set to 20 [rns], which is the theoretical 
time for the wave to reach to  end of the beam. 
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Figure 3.1: Input force history and power spectral density fitted on Nahum pulse [li]. 

3.3 Results 
In Figure(3.2) both analytical and numerical strain values in the beam are shown as contour 
lines in the time-x-coordinate, domain. To illustrate how to interpret such contour plot, two 
cross-sections are also provided in this figure. The wave propagation velocity can be determined 
from the contour plots by taking the tangent a t  of each contour line of constant strain (see e.g. 
[i]). The wave propagation velocity has been determined out of twelve contour lines at six strain 
values ( E .  1000 = -1.0, -1.5, -2.0, -2.5 - 3.0 [-I). This yields a wave velocity of 1501.3 m/s,  with 
variance of 0.43 m/s,  an overestimation of approximately 0.1%. The maximum relative strain error 
has been computed as the difference between numerical and analytical strain values, normalized 
with respect t o  the maximum theoretical strain value. This error starts very small and grows as 
the wave travels along the beam. The maximum value therefore will be reaches at the end of the 
simulation and equals about 1.0 %. 

3.4 Parametric study 
Dispersion: Spatial discretisation 

To investigate when dispersion errors become of importance, calculations with coarser meshes 
have been carried out. In changing the mesh density, care has been taken to keep the initial 
elementshape cubic. This has been obtained by increasing the area of the beams edge and by 
altering the prescribed load such that the applied stress stays the same for all mesh densities. 
Also the time step has been adapted such that for each mesh the Courant number remains +. The 
maximum relative error as well as the wave velocities have been determined for each mesh density. 
Both data are shown in Figure(3.3). 

Increasing the mesh size provides lower wave propagation velocities, as expected theoretically. 
Figure(3.3) shows that for mesh sizes larger than 0.74 [m] the mean dispersion error becomes larger 
than 1%. Velocity values determined at increasing absolute strain values, a t  the wave front, are 
smaller than the ones determined at decreasing strain values after passage of the wave (indicated 
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Figure 3.2: Characteristics of several strain values in x-direction. (topleft: analytical solution, 
topright: numerical solution (dz = 0.03 m)).  Cross-sections at constant time and 
x-coordinate provided for clarification (bottom left and right respectively). Both nu- 
merical and analytical solutions printed in each cross-section. 

by the maximum and minimum strain values in Figure(3.3)). This dispersion effect is larger for 
coarser meshes. It is caused by the fact that the input pulse contains more than one frequency. 
This causes the resulting wave shape in the beam to be be a wave envelope, i.e. a combination 
of waves with different wavelengths. Dispersion theory states that waves with long wavelengths 
travel faster in a mesh than short ones (see Figure(2.1)). As a result the wavelength distribution 
in the wave envelope will change during traveling along the beam. Components with short wave 
lengths will travel with a velocity below the average envelope velocity defining the rear /of the 
wave. Components with long wavelengths will move with a velocity greater than the average 
envelope velocity, defining the wavefront. 

Figure(3.3) shows that the maximum relative error is more or less a constant at approximately 
1% for mesh sizes smaller up to  0.24m. For coarser meshes the error increases dramatically. For 
mesh size dz = 0.74 m, at which the mean dispersion error equals 1.0%, the maximum relative error 
reaches approximately 10.0 %. The use of fully integrated elements instead of reduced integrated 
elements did not change the error, as was expected from theory by Belytschko et al. [2]. 

Dispersion: Temporal discretisation 

The effect of time step size is investigated by comparing results obtained using the Courant 
numbers 0.8475' and 0.5. Again the wave velocity is determined over ten contour lines at five 
constant strain values. Mean values, maxima and minima are plotted in Figure(3.4). 

It can be seen that decreasing the time step size leads to an increasing dispersion error. This 
is due to  the fact that the error introduced by the Central Difference Time Integration scheme 
used by MADYMO is compensatory with the dispersion error caused by the spatial discretisation. 
It can be derived theoretically, that for a Courant number C = 1 no dispersion will occur when 

'This is the maximum Courant number MADYMO allows. 
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Figure 3.3: Effect of mesh density on maximum relative strain error (left) and on dispersion be- 
haviour (right). Maximum and minimum velocities provided for range indication. 
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Figure 3.4: Effect of time step variation on dispersion. Mean, maximum and minimum values 
provided for range indication. 

elements with linear displacement interpolation functions are used [2]. 

Spurious reflection 

For this analysis the same numerical layout has been used as in the analytical analysis by Ba5ant 
et al. [6]. Only now, three dimensional elements were used instead of two dimensional ones. The 
mesh is shown in Figure(3.5). In chapter 2 it is shown that significant spurious reflection occurs 

- 

_ -  \\I IlzpcI I Ill I :H 
X 

f) 

transition plane 

Figure 3.5: Schematic side view of the mesh used for spurious reflection analysis. 

when the ratio & = 6. Due to  the fact that the input signal contains more than one frequency, 
it proved to  be impossible to determine which X had to be chosen as minimum wavelength in 
the mesh. For this reason X is estimated to be the largest wavelength in the theoretical wave 
equation, i.e. A,,, = With fmin = 62.5 [Hz] (equation(3.2)). This yields A,,, = 12m 
and H = 2m. The ratio is chosen to be two. The transition between the mesh densities is 
positioned at  5 = 16m. Figure(3.6) shows the strain results of both homogeneous meshes as well 
as the non homogeneous one. The time step is chosen the same for all simulations shown.Two 
phenomena can be observed in this figure. A spurious wave can be observed in the nonuniform 
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Figure 3.6: Spurious reflection due to  mesh nonuniformity. Strains of mesh uniform meshes shown 
as well as nonuniform one (bottom left). All simulations performed using the same 
time step. 

mesh (gray-white lines with negative slope in lower left figure). However the amplitude of this 
wave is of the same order than the dispersion errors. Also it can be seen that the velocity of the 
wave propagating in positive x-direction after the transition is lower than before the transition. 
This difference is not caused by dispersion, since the wave velocity for the coarsest mesh (slope of 
contours in top right figure) is larger than the slope seen in the nonuniform result. 

3.5 Conclusions and discussion 
For modelling wave propagation correctly it is assumed the maximum error in wave velocity due to  
numerical dispersion has to be less than 1%. Dispersion theory on one dimensional wave propaga- 
tion shows that this can be obtained by using 13 elements per wavelength (refer to  equation(2.2), 
on page 12). This is valid for both P- and S-waves consisting of one wavelength only. In reality 
more than one frequency is present in an input pulse. As a result a wave envelope. i.e. an assembly 
of waves with different wavelengths, will develop in the beam. For this reason it is not obvious on 
which wavelength the mesh size has to  be based. Investigating this by varying the mesh density 
revealed that 1.0% underestimation of the wave velocity occurs at an element size Ax = 0.75m. 
A rule of thumb for determining the correct mesh density at this input pulse now can be given by 
relating this mesh size to  the largest wavelength we expect in the mesh, A,,,. With TO = 8ms,  
the duration of the input force, and wave velocity c p  = 1500m/s, we obtain that the maximum 
wavelength will be, Ap,,,, = cp . TO = 12 m. It can be concluded that 16 elements per maximum 
wavelength are required for modelling this pulse. 

The theory on the accuracy of FE modelling presented in chapter 2, is valid for both P- and S- 
waves. For this reason we assume that for modelling waves in MADYMQ with a certain accuracy, 
the number of elements per wavelength is the same for both S-waves and P-waves. If the same 
input pulse is used for generating a shear wave, the mesh size needed for accurately modelling the 
resulting wave envelope follows from AXS = q. Applying the shear wave velocity CS = 5 m/s ,  
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gives a mesh size of Axs = 2.5. lop3 m. 
For judging if the required dispersion accuracy of 99% is realistic, the maximum strain errors 

normalised with the maximum occurring strain value will be analysed. At the required 99% 
dispersion accuracy, the maximum relative error equals approximately 10% when the P-wave has 
travelled 30m inside the beam, i.e. when the wave has traveled 40 element lengths. If S-waves 
are modelled using the same dispersion accuracy, the error will also be 10% at 40 element lengths. 
The mesh size for modeling S-waves at this accuracy equals 2.5 . m so the distance at which 
a relative strain error for S-waves reaches 10% equals 0.1 m. 

% m e r i d  dispersion does not only influence the mean velocity of the wave envelope; it also 
changes the shape of the envelope, waves with long wavelengths will travel faster in a mesh than 
short ones. For this reason the wave velocities calculated at increasing strain values (i.e. a t  arrival 
of the strain wave) are higher than the ones calculated at strain values when the strain decreases. 

The presence of spurious reflection at the transition between two mesh densities occurred at 
low mesh densities only at which dispersion effects overrule the spurious reflection effects. For 
this reason a quantitative error investigation could not be performed. It was observed that there 
was also a change in wave propagation velocity after the wave passed the transition. This change 
does not correspond with the difference in propagation velocities of the uniform meshes separately. 
Nevertheless it can be concluded that for the one dimensional situation, spurious reflections will 
not be significantly important when the mesh is chosen such that dispersion error is low ( e g  less 
than 1%). 
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Chapter 4 

Importance of wave phenomena in 
the human head 

After having considered general wave theory in chapter 1 and numerical aspects in chapters 2 and 
3,  it will be estimated in this chapter t o  which extent wave phenomena are present in the human 
head during an impact. This estimate will be based on required boundary conditions, damping 
and reflection behaviour. 

4.1 Boundary conditions f ~ r  wave propagation 
P-waves and S-waves exist at different frequencies due to their different propagation velocities. 
A lower bound for the frequency range for each type of wave can be found by considering the 
largest wave that fits within the head. P-waves and S-waves exist at different frequencies due to  
their different propagation speeds. The lowest frequency for a wave to  exist in the head can be 
estimated by, 

c 
Xmaz = - Dhead (4-1) 

fmin - 
were Dhead represents a typical measure for the diameter of the head. Assuming a head diameter 
of 0.2 m and applying a shear wave velocity of 5 m / s  gives that the lowest frequency equals 25 H z  
for S-waves. For P-waves the propagation velocity is 1550 m/s,  providing a minimum frequency 
of 7750 H z .  

4.2 Effect of damping 
An upperbound of the frequency range of the two wave types can be found by accounting that 
brain tissue behaves like a visco elastic solid. In this analysis it is assumed that linear visco elastic 
material behaviour is valid. The amplitude decay of plane waves is determined as function of 
frequency and distance traveled. Plane waves are well suited for estimating the effect of visco 
elasticity since they do not show amplitude decay when viscous behaviour is absent. Furthermore 
we consider harmonic waves. This is allowed since a transient wave can be thought of as a 
contribution of a number of time harmonic waves. It will be assumed that steady state has been 
reached. The theory presented will be a summary of what can be found in, [16] sectionsl0.4 and 
10.5. 

The general solution for a foreward propagating time-harmonic displacement wave can be written 
in complex notation as, 

( 4 4  
,ji = Adei(k(W)”-$-Wt) 
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- 
were w is the angular frequency, k ( w )  the wave number and 5 and d are unit vectors in the 
directions of propagation and displacement respectively. For linear visco elastic material behaviour 
the wave number k ( w )  is a complex number, with real part k, = R e ( k ( w ) )  and imaginary part 
ki = I m ( k ( w ) ) .  As a result the solution will be of the form, 

It shows that the amplitude of thewave decreases 5s function of the imaginary part of the wavenum- 
ber and the distance traveled 2 . d .  For P-waves ( d  = 3~3 the complex wave number can be written 
as , 

P 
B * ( w )  + $G*(w)  (4.4) 

with B*(w) the complex bulk modulus and G*(w) the complex shear modulus. Both moduli can 
be written in the form, 

G*(w)  = G’(w)  + iG”(w) , B*(w) = B’(w) + B”(w) (4.5) 

were G‘(w) and B’(w) are storage moduli and, G”(w) and B”(w) are loss moduli. When a loss 
modulus equals zero, the complex modulus becomes the real linear elastic modulus defined by 
equation(l.12) on page 8. 

The complex wzve number of S-waves is defined as, 

= w / m  P 

For determining the effect of viscous behaviour in brain tissue the it has been assumed that 
the bulkmodulus is non-viscous, i.e. B*(w)  = B. Since B > p, it can determined from the 
compressive wave velocity by neglecting p,  

Values for storage and loss shear modulus do depend significantly on frequency. Values at 
upper and lower end of the measured frequency spectrum found in literature, are used to  obtain 
an impression of the extreme situations of material damping. They are shown in Table(4.1) 
together with references and the frequencies at which they were determined. A more detailed 
overview of the material parameters can be found in [17]. 

Reference G’ G“ B Frequency [Hz] 
Peters et  al. [18] 600 150 16 
Shuck e t  al. [19] 1.5. lo5 8.0. lo4 400 

equation (4.7) - - 2.4.109 all 

Table 4.1: Material parameters used for estimating the viscous behaviour of brain tissue. 

Application of these material parameters in the definitions for the wavenumbers and applying 
the wave numbers in the visco elastic solution, equation(4.3), provides the amplitude of the wave 
as a function of frequency f = 2 and distance traveled 2.5. 

S-waves 
The normalized amplitude of S-waves as function of frequency and distance traveled, is shown in 
Figure(4.1). In Figure(4.2) the same data are plotted differently. In the left figure the relative 
amplitude is plotted after the S-wave has traveled 0.1m, being approximately the radius of the 
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Figure 4.1: Effect of damping in brain tissue on S-waves, using linear viscoelastic theory. Ampli- 
tude normalized to  one. Bulk modulus is constant. Shear moduli taken from table 
4.1 

human head. On the right, the distance is plotted at which half of the initial amplitude of the 
wave is left. 

An upperbound for the relevant frequency range for S-waves in the head, can be defined as 
the frequency at which the amplitude of a wave remains 1% of its original amplitude, after having 
traveled through the head from one side to  the other. By setting this distance to  0.2 m, and using 
the data set by Shuck et al., which is valid for the highest frequency range, an upper relevant 
frequency of 300 H z  can be found for S-waves. 

'/2 amplitude distance Damping at 0.1 [m] 
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Figure 4.2: (left) Amplitude of S-wave, at distance traveled corresponding to  center of brain 
(0.1 m). (right) distance at which amplitude of S-wave is halved versus frequency. 

P-waves 
Repeating the analysis performed for S-waves with the P-wavesprovides that the largest damping 
occurs when the Shuck data set is applied. The half amplitude distance than equals approximately 
8.4m at f = 1.0 . lo6 H z .  For this reason it can be concluded that there is no damping present 
for relevant pulse durations. 

4.3 2D Reflection 
In the analysis in the previous sections, P- and S-waves were considered separately. However, 
when considering the reflection behaviour this is not possible any more. In general when a wave 
hits a boundary of two media with different material properties, two phenomena can be observed. 
Firstly part of the wave will be reflected back in the and another part will be diffracted into 
the other medium. Secondly, waves can undergo a change of type. E.g. when a P-wave hits a 
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Figure 4.3: Reflected (a) and diffracted (b) P- and S-waves, due to  incident P-wave (i). 

boundary between two linear elastic media, four different waves will occur, a reflected P-wave, 
a transmitted P-wave, a reflected S-wave and a transmitted S-wave (shown in Figure(4.3)). The 
amplitude ratios of the different waves are determined by the material properties of both media. 

In this section the reflection-refraction behaviour of compressive waves at the brain-Cerebro 
Spinal Fluid (CSF) interface in the head is investigated. For simplification reasons it is assumed 
that both brain tissue and CSF behave as two joined linear elastic half spaces. Perfect contact 
is assumed so displacements and stresses are continuous on the interface plane. Furthermore the 
interface plane is assumed to  be flat. Applying these assumptions in the general solution given by 
equation(4.2) a system of four equations for the amplitudes of reflected and diffracted waves in 
terms of the amplitude of the incident wave can be derived (refer to  [16], page 186). This system 
is solved by applying the parameters shown in Table(4.2) and varying the angle @i of the incident 
wave between O and 90. 

Parameter Brain tissue CSF 
1550 m / s ,  [3] Velocity of P-waves 1500 m/s,  sea water [20] 

Velocity of S-waves 0.1 - 10rn/s, [17] 0.0 m / s  
Mass density i000 kg/m3 1000 kglm3 

Table 4.2: Geometrical and material parameters used in estimating reflection behaviour of P-waves 
in brain tissue at CSF interface. 

Figure(4.4) shows the amplitude of the various waves versus the incident angle for Cs,b&n = 
5:. The amplitude of the incident wave is set to  one. As was to be expected, the P-wave is 
almost completely diffracted into the CSF for incident angles less than 60". This is due to  the 
almost equal acoustic impedance for compressive waves (2 = p .  cp)  of brain tissue and CSF. For 
large incident angles the amplitude of the reflected wave increases. It is interesting to notice that 
diffracted P-waves with angles 75" to  90" do not exist. The development of shear waves due to  
reflection of the P-wave is low. A maximum of 0.3 % of the amplitude of the incident wave can 
be seen at an incident angle of approximately 45". The lower right figure shows that all reflected 
waves travel perpendicular to  the surface. Figure(4.4) seems to  indicate that there is also an 
S-wave refracting into the CSF. The angle of this reflected wave equals zero for all incident wave 
angles. This means that the resulting particle motion is in in plane direction of the interface plane 
(i.e. 21 direction in Figure(4.3)). Furthermore perfect contact is assumed, as a result there will 
be particle motion at 52 = O. However this wave will not propagate, since the wave propagation 
velocity C,,CSF is set to zero. A parametric study in which C,,CSF was taken very close to  zero 
showed a convergence to  the solution shown indicating that the result shown is a realistic one and 
not merely determined by the boundary condition at the interface plane. 

The effect of the large spread for the shear velocity in brain tissue on the reflection behaviour 
has been investigated in Figure(4.5). It shows that the maximum amplitude of the reflected shear 
wave equals approximately 0.7 % of the amplitude of the incident compression wave. 
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Figure 4.4: Amplitude and angles of reflected and diffracted waves, for incident P-wave with var- 
ious angles Bi .  cs,b&n = 5m/s. Amplitude incident wave set to  one. Upper figures: 
amplitudes normalised to  incident one. Lower figures: angles of reflected and diffracted 
P-waves (left) and S-waves (right). 

4.4 Summary and Conclusions 
A simple analysis has been performed to obtain knowledge on the presence of waves in brain 
tissue. Both viscoelastic behaviour as well as the reflection at the brain-CSF interface has been 
investigated. This leads to  the following conclusions. 

P-waves 

The minimum frequency for the existence of P-waves in the head has been estimated to  be 7750 H z .  
This is consistent with findings of Young and Morphey [21] who numerically analysed a fluid 
filled sphere and concluded that impact durations of 0.1ms were needed to  obtain a dynamic 
response instead of a quasi static one. At these frequencies also P-waves do not show significant 
damping. This can be explained by the assumption that the bulkmodulus B was elastic, i.e. real. 
At reflection on the brain-CSF interface, most of the P-waves was reflected into the CSF. For 
incident angles close to  90" the amplitude of the diffracted waves decreases while the amplitude 
of the reflected waves increases. 

S-waves 

S-wave exist from approximately 25 H z  inside a human head. The viscosity analysis showed that 
the maximum frequency of a wave that can be reflected in the head is approximately 300 H z .  The 
contribution of transition from P-waves to  S-waves by reflection is low since the amplitude of the 
reflected shear waves was very low over the complete range of incident angles (maximum 0.7 % of 
the incident amplitude at an incident angle of 45"). 
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Figure 4.5: Relative amplitude of reflected shear wave as function of dilatational wave velocity in 
the brain tissue Cs,brain and angle of incidence 00. 



Chapter 5 

Discussion and conclusions 

5.1 Presence of wave propagation during head impact 

The presence of certain wave types in the head depends on the impact conditions. A lower 
bound has been defined by considering the wavelength. A dynamic response will called a wave 
phenomenon if it’s wave length fits inside a typical head measure (i.e. A,,, 5 Dhead = 0.2m). 
Di!atztiona! or P-waves exist for f > 7750 H z ,  while distortional Qr S-waves exist at f < 25 H z .  

The upperbound of the relevant frequency range is determined by the viscoelastic properties 
of brain tissue. These introduce damping which increases with frequency. For S-waves the upper- 
bound is estimated to  be 300 H z .  For P-waves the damping is very small, for f = 1 M H z  the 
amplitude of the wave is halved after having traveled 8.4m. For this reason the upperbound will 
be determined by the excitation frequency. 

From chapter 3 it can be concluded that an upperbound for the frequency in typical traffic 
related impacts equals 3750 H z .  For this reason no P-waves will be present but S-waves will. In 
a ballistic/forensic blunt impact situation, first a direct impact with a duration of approximately 
2 t o  loops [22],[23] will occur. After this inertia will cause the head to rotate with a typical 
duration of order ms[24]. This means that P-waves can be present at the start and S-waves might 
develop later on. 

5.2 Implications for accuracy of existing head models. 

From theoretical analysis it can be concluded that due to the spatial semi-discretisation used in 
headmodelling, the wave velocity calculated will always be lower than the analytical one. When an 
error of less than 1% is required for the numerical wave velocity, current head models are capable 
of modelling compressive waves for frequencies up to  8500 H z  and shear waves up to  28 H z .  For 
gaining insight if this is realistic the propagation of a one-dimensional P-wave in a beam has been 
modelled using a realistic input pulse. A P-wave has been used for obtaining a true one dimensional 
problem which analytically shows no dispersion. A problem was that this pulse contained more 
than one frequency. It was assumed that 99% of the frequency contents of the pulse had to  be 
modelled correctly. The resulting mesh size proved to be too small, since the results were too 
accurate. After having established a mesh density which indeed provided a dispersion error of 
1% the maximum relative strain error at the end of the beam (traveling distance equals 30m) 
became 10%. For estimating the meaning of these results for headmodelling, S-waves have to  be 
considered since P-waves cannot exist in the head for the pulse used (fmaz = 3750Hz, refer to  
section 5.1). If we assume that numerical errors will be the same for S-waves as for P-waves (as 
theoretical expected), it can be derived that the maximum relative strain error equals 10% at a 
traveling distance of 0.1 m. This is the typical head radius. This leads to  the following conclusions: 
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For the pulse shape used, the required dispersion error of less than 1% is a lower bound for 
modelling S-waves. 

Requiring the mesh to  be suited for modelling 99% of the frequency contents of the input 
pulse is too strict. For the pulse used the critical frequency equals & were TO is the duration 
of the pulse. 

The mesh size needed for modelling S-waves correctly is i of the mesh size currently used 
in headmodelling. This means that 64 times as many elements are needed. 

When observing these results it should be considered that the numerical investigation is valid for 
the propagation of 1 dimensional P-waves only. The theory of chapter 2 shows that in the two- 
dimensional case, where waves do not necessarily propagate along the mesh direction, the number 
of elements per waveIength should be increased by 40% (Chapter 2, equation(2.2) and section 2.3). 
If we assume this behaviour also valid for three-dimensional numerical dispersion, 175 as much 
elements should be used in current three-dimensional headmodels . 
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