

Robust multiprocessor scheduling of industrial-scale
mechatronic control systems
Citation for published version (APA):
Adyanthaya, S. (2016). Robust multiprocessor scheduling of industrial-scale mechatronic control systems. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 04/07/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/5f367883-e4d9-4c98-8c44-9ab4e465c14e

Robust Multiprocessor Scheduling of
Industrial-Scale Mechatronic Control

Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de rector magnificus

prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen door het
College voor Promoties, in het openbaar te verdedigen op maandag

04 juli 2016 om 16:00 uur

door

Shreya Adyanthaya

geboren te Mangalore, Karnataka, India

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. A.B. Smolders
1e promotor: prof.dr.ir. A.A. Basten
copromotor: dr.ir. M.C.W. Geilen
copromotor: dr.ir. J.P.M. Voeten
leden: prof.dr.sc. S. Chakraborty (Technische Universität München)

prof.dr. B.F. Heidergott (Vrije Universiteit Amsterdam)
prof.dr. J.J. Lukkien

adviseur: dr.ir. R.R.H. Schiffelers (ASML)

Het onderzoek of ontwerp dat in dit proefschrift / proefontwerp wordt beschreven is
uitgevoerd in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Robust Multiprocessor Scheduling of
Industrial-Scale Mechatronic Control

Systems

Shreya Adyanthaya

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 349.

c© Shreya Adyanthaya 2016. All rights are reserved. Reproduction in whole or
in part is prohibited without the written consent of the copyright owner.

Cover design by Ernest Mithun Xavier Lobo

Printed by CPI-Koninklijke Wöhrmann - The Netherlands

A catalogue record is available from the Eindhoven University of Technology
Library. ISBN: 978-90-386-4074-4

Acknowledgements

“Vidya dadati vinayam, vinayadyati patratam,
patratvaddhanamapnoti, dhanaddharmam tatah sukham.” -Hitopadesha
Translation: Education gives humility, humility gives worthiness, from worthiness
one gets wealth, with wealth one does good deeds, from good deeds one gets joy.

The joy that I feel today as I am completing my thesis is the outcome of not
just my own efforts but the support of many people who have played indispensable
roles in helping me through these years. The least I can do is thank them.

Firstly, I must thank my promoter prof.dr.ir. Twan Basten, co-promoters dr.ir.
Marc Geilen and dr.ir. Jeroen Voeten, and advisor dr.ir. Ramon Schiffelers for
giving me the opportunity to work in the CARM 2G project that gave me ample
exposure to both academia and industry. Most importantly it gave me the chance
to see my work landed in practice. I am grateful for the crucial Friday morning
discussions with Twan and Marc during which a lot of the research work of this
thesis originated. I am grateful to Twan for always pulling me out of the details
and helping me look at the bigger picture. His valuable guidance enabled me to
ensure that the chapters of the thesis are well connected to form one coherent
story. Despite his very busy schedule being the chairperson of the ES group, he
still kept continuous track of my work and guided me during our discussions. I
am very grateful to Marc for the detailed guidance that led in one way or another
to the majority of the contributions of this thesis. I have always admired Marc’s
keen eye for detail and his humble and friendly nature. His constructive feedback
helped me grow both in terms of research work as well as writing skills. Thank you
for always finding time for discussions irrespective of your schedule and sometimes
even after 18:00 hrs. I must thank Jeroen for all the white board discussions on
how to formally approach the ASML’s challenges that taught me innovative ways
of doing applied research. Jeroen is the quintessential connection between the
ES group, ASML and TNO-ESI and to me has been a motivational figure who
has always given me reasons to feel proud of my work. I must also give credit
to Jeroen’s excellent presentation skills for teaching me the art of making and
giving good presentations. I am thankful to Ramon for laying the foundation
for CARM2G and for all the brainstorming sessions that led to the important
scheduling achievements for ASML. Thank you for constantly telling me to plan
my work which in turn helped me achieve my targets on time.

I extend my gratitude to prof.dr. Bernd Heidergott, prof.dr. Johan Lukkien,
prof.dr.sc. Samarjit Chakraborty and prof.dr.ir. Bart Smolders for agreeing to
be a part of my defense committee and for their time and effort in reviewing
this manuscript. I specially thank Bernd for the insightful discussions at the VU

v

Amsterdam that led to interesting directions for future work and collaborations.
This research work was funded by ASML and TNO-ESI. I would like to thank

Ramon Schiffelers, Jeroen Voeten, Nikola Gidalov, Pieter Nagelmaeker, Tom En-
gels, Jan van de Ven, Mark Flesch and Wilbert Alberts for all the important
inputs that helped in the understanding of the scheduling challenges faced by
ASML. Additionally, I thank Cees van Huët, Robert Hoogland, Elmar Beuzen-
berg, Jan Stoeten, Harry Borggreve and Jos Benschop for their managerial and
financial support. My special thanks to Rolf Theunissen and Yuri Blankenstein
from Altran for the many ASML discussions and for ensuring that the scheduling
work was well integrated into the ASML workflow. I also thank Jan Schuddemat,
Bart Theelen, Hristina Moneva, Boudewijn Haverkort, Reinier van Eck and Frans
Beenker for their support from TNO-ESI. I specially thank Bart Theelen for the
valuable inputs that led to the contributions of Chapter 2. Additionally, I would
like to thank my master students at ASML, Santhosh Vaiyapuri, Zhihui Zhang
and Beril Ok, for their work that directly or indirectly aided the research. Many
thanks to my ASML PhD colleagues Raymond Frijns for the combined work on
contention analysis, as well as João Bastos and Bram van der Sanden for the
many cheerful chats at ASML.

I extend my heartfelt gratitude to all the members of the ES group for always
being warm and friendly towards me. In particular, I would like to thank Martijn
Koedam for helping me restore all the data that I had lost during an unfortunate
laptop ‘and’ hard-disk crash recently. I also thank Sander, Marc and Martijn
for the friendly atmosphere while sharing the office at floor 3. Special thanks to
Marja, Rian and Margot for ensuring that all our activities were well planned
and maintaining a warm and welcoming atmosphere in the group at all times.
Thanks to Manil, Rehan, João, Francesco, Joost, Umar, Shubendu, Bram, Amir,
Hadi and Róbinson for going from being colleagues to friends. I take with me fond
memories of lunches shared, conferences attended together, games played and of
course the yearly ES day celebrations.

I want to thank my close friends who made life in Eindhoven filled with fun and
adventure. Thanks to my TU/e lunch partners Alok, Deb and Ram for the many
de-stressing discussions on work, life and everything under the sun. I particularly
thank Ajith and Shravan for helping me out at various points of my work. Thank
you Saba and Mehaal for tolerating me during the stressful parts of my PhD and
cheering me up when needed. Thank you Arnica, Ashu, Chetna, Geeta, Harshi,
Hilda, Madhu, Shruthi, Shruti, Varshi, Abhinav, Adi, Amit, Ashwin, Guru, Hari,
Mac, Manju, Poojith, Vikram, Vinod and Vivek for all our fun times together.

None of the above work could have been possible without the blessings of my
parents and love from my sister, Shreshta. They supported me in my decision
to do a PhD and always showered me with their unconditional love, which has
always been my greatest pillar of strength. Finally and very importantly, I want
to thank my loving fiancé Ernest for always believing in me and bringing the best
out in me. Thank you for always being by my side, for caring for me in every way
possible and for telling me, time and again, that I can definitely achieve this.

Summary

Robust Multiprocessor Scheduling of Industrial-
Scale Mechatronic Control Systems

Over the last decades, embedded platform architectures for mechatronic systems
have been composed of general-purpose components to benefit from their steady
increase in average performance, most notably due to their increased processor
clock frequencies. This trend has come to an end due to IC power dissipation
limits. To meet future application demands, a shift has to be made to higher-
parallel execution platforms. Given the control application specification one has
to determine what application functionalities will run on which resources and in
what sequence. This should be done in such a way that all timing requirements
of all applications are met. The work of this thesis is motivated by the schedul-
ing challenges faced by ASML, the world’s leading provider of wafer scanners. A
wafer scanner is a complex cyber-physical system that manipulates silicon wafers
with extreme accuracy at high throughput. Typical control applications of the
wafer scanner consist of thousands of precedence-constrained tasks with latency
requirements. Machines are customized so that precise characteristics of the con-
trol applications to be scheduled are only known during machine start-up. This
results in large-scale scheduling problems that need to be solved during start-up
of the machine under a strict timing constraint on the schedule delivery time. We
have incrementally dealt with several aspects of the scheduling problem in the
form of four thesis contributions.

The first contribution considers directed acyclic graphs with tasks having a
fixed binding on multiprocessor platforms and stringent latency requirements. It
introduces a fast and scalable list scheduling approach. It uses a heuristic that
makes scheduling decisions based on a new metric that finds feasible static-order
schedules meeting timing requirements as quickly as possible and is shown to
be scalable to very large task graphs. The computation of this metric exploits

vii

the binding information of the application. The second contribution relaxes the
fixed binding assumption while extending the model with communication costs
across resources. It presents a binding algorithm that, taking these communica-
tion penalties into account, reduces the makespan of the schedule upon scheduling
while ensuring that latency requirements are met.

The above contributions work under the assumption that execution times of
tasks in the applications are fixed. However, tasks executing on general purpose
multiprocessor platforms exhibit variations in their execution times. These varia-
tions need to be considered during scheduling to produce robust schedules that are
tolerant to execution time fluctuations. The first step towards solving the robust
scheduling problem is to provide a means to quantify robustness of static-order
schedules. This forms the third contribution of this thesis. We define probabilistic
robustness metrics that are computed using a new robustness analysis approach.
Stochastic execution times of tasks are used to compute completion time distri-
butions which are then used to compute the metrics. It overcome the difficulties
involved with the max operation on distributions by presenting an approach that
combines analytical and limited simulation based results. The fourth contribution
is an iterative robust scheduling method that uses the above robustness analysis
to produce robust multiprocessor schedules of directed acyclic graphs with a low
expected number of tasks that miss deadlines. We experimentally show that this
robust scheduler produces significantly more robust schedules in comparison to
the scheduler from the first contribution. All of the above contributions have been
validated on large industrial as well as synthetically generated test sets. The first
two contributions have already been adopted into ASML’s latest generation of
wafer scanners.

viii

Table of contents

Acknowledgements v

1 Introduction 1
1.1 Mechatronic control domain . 2
1.2 Platform technology . 5
1.3 Model based design flow: Scheduling 6
1.4 Problem Statement and Research Challenges 8
1.5 Contributions . 10
1.6 Thesis outline . 13

2 Fast and scalable scheduling with fixed task binding 15
2.1 Motivational example . 16
2.2 Related work . 17
2.3 Problem definition . 19

2.3.1 Preliminaries . 19
2.3.2 Problem statement . 20

2.4 Complexity analysis . 20
2.5 Proposed scheduling algorithm . 21

2.5.1 List scheduling and static-order schedules 21
2.5.2 Due-dates . 21
2.5.3 List scheduling with earliest due-date first heuristic 26

2.6 Experimental results . 28
2.6.1 Industrial test cases . 28
2.6.2 Comparison of EDDF and ECF: Synthetic test cases 30

2.7 Summary . 31

3 Communication aware binding for shared memory systems 33
3.1 Problem definition and solution overview 34

ix

3.1.1 Preliminaries . 34
3.1.2 Problem description . 35
3.1.3 Solution flow and rationale 37

3.2 Clustering . 38
3.2.1 DSC . 38
3.2.2 Deadline-aware extension to DSC 40
3.2.3 Shared memory extension to DSC 42
3.2.4 BDSC . 44

3.3 Merging . 45
3.4 Load balanced allocation . 46
3.5 Experimental Setup and Results 47

3.5.1 Scheduler Setup . 47
3.5.2 Results . 48

3.6 Related work . 54
3.7 Summary . 57

4 Robustness analysis of static-order schedules 59
4.1 Related work . 60
4.2 Problem definition and solution overview 62

4.2.1 Preliminaries . 62
4.2.2 Problem description . 64
4.2.3 Solution flow . 65

4.3 Challenges of the analysis . 65
4.3.1 Analytical approach only 66
4.3.2 Simulations only . 68

4.4 Proposed robustness analysis approach 68
4.4.1 Curve fitting metric . 69
4.4.2 Curve fitting using divide and conquer search for best fit . 70
4.4.3 Curve fitting using PERT equations 73
4.4.4 Obtaining completion time distributions: Combining anal-

ysis and simulations . 74
4.4.5 Robustness metrics . 74

4.5 Experimental results . 75
4.5.1 Evaluation of the robustness analysis approach 76
4.5.2 Validation with extensive (day-long) simulations 78
4.5.3 Speed vs. accuracy: trade-off 80

4.6 Summary . 82

5 Iterative robust scheduling with fixed task binding 83
5.1 Related work . 84
5.2 Problem definition and solution overview 86

5.2.1 Preliminaries . 86
5.2.2 Problem statement and solution flow 87

5.3 Refined robustness analysis: Impact metric 89

x

5.3.1 Impact metric . 89
5.3.2 Impact metric computation 90

5.4 Iterative highest robustness impact first heuristic 93
5.5 Iterative list scheduling with IHRIF heuristic 95
5.6 Experimental results . 96

5.6.1 Real world applications . 96
5.6.2 Synthetic test cases . 97

5.7 Summary . 99

6 Conclusions and future work 101
6.1 Conclusions . 102
6.2 Future work . 103

6.2.1 Fast and scalable communication aware robust binding and
scheduling . 103

6.2.2 Robustness analysis and scheduling under communication
contention . 104

6.2.3 Robustness analysis under execution time correlations . . . 104
6.2.4 Robustness analysis for other application domains 105
6.2.5 Multi-rate scheduling: Data flow models 105

7 List of Abbreviations 115

8 List of Symbols 117

9 Curriculum Vitae 119

10 List of Publications 121

xi

xii

Chapter 1

Introduction

With the digital revolution, modern day appliances such as smart phones, tablets,
laptops, and other electronic devices have become an integral part of everyday life.
They have been paramount in improving our quality of living by allowing high
speed access to information and communication as well as reducing the time of our
daily activities through automation. Current technological advances are slowly
paving the way to the revolution of the Internet of Things [12] where more and
more such objects are interconnected with each other further increasing the speed
and efficiency of our day to day activities. This has been mainly possible due
to the rapid advances in the semiconductor industry that has drastically reduced
the amount of time needed for data processing and communication [56]. Right
from the advent of the semiconductor technology, the number of transistors in an
integrated circuit (IC) or chip has been growing exponentially over time. Gordon
Moore had correctly predicted that the number of transistors in a chip would
approximately double every two years [57]. More transistors per chip directly
implies that more computing power is available to the electronic devices leading
to faster growth. A modern IC can have billions of transistors on it.

Technological developments in the chip manufacturing process have made tran-
sistors smaller in size by packing more and more electronic circuitry within a small
area at extremely high precision. The chip manufacturing process is a combina-
tion of chemical processing and photo-lithographic steps in which the electronic
circuits are created on wafers made of a semiconductor material, mostly silicon.
Chemical processing includes polishing thin slices of silicon with a photosensitive
material to form silicon wafers composed of multiple chips. These silicon wafers
are exposed using a lithography process that projects the circuit pattern which is
placed on a quartz plate called a reticle (or photomask). This is done by passing

1

Scan movement

Step movement

Reticle scan

Reticle on top

of reticle stage

Wafer on top

 of wafer stage

Light stripe

Reduction lens

Chip

Figure 1.1: Exposure of a wafer in the step and scan fashion in the lithography process [66].

light through the reticle onto a reduction lens which reduces and projects the
image formed onto the chip as shown in Figure 1.1. The exposed wafers are de-
veloped, etched and post-processed in several chemical processing steps including
removal of the photosensitive layer. The whole process of exposure and wafer
processing is repeated multiple times for one wafer to selectively grow, modify,
and etch out every layer of the chip. A modern chip can have as many as 40
layers. Finally, the wafer is separated into individual chips that, after packaging,
are used in electronic equipment.

1.1 Mechatronic control domain

The lithography process is the main step in chip manufacturing that is respon-
sible for determining how much circuitry can be packed onto a chip, controlling
the size and shape of all chip components, connections and contacts. ASML [1]
is the world’s leading supplier of machines, called wafer scanners, that perform
this lithography process for the semiconductor industry. In order to push Moore’s
law, new machines are produced almost every two years with rapid advancements
in the underlying technology that have allowed feature size reduction from 350

2

nm in 1994 to less than 20 nm today. The wafer scanners of ASML are in the
forefront of technological advancements in the mechatronic control domain. This
domain is composed of a combination of control, mechanical, electronic and soft-
ware engineering. This combination is seen in most high tech equipment such
as wafer scanners, printers, health-care devices, automotive plants, aeronautical
devices or robots. Although we use the servo control systems of ASML as the
primary case study in this thesis, all the thesis contributions are also applicable
to several of these other domains. In this section, we look into the control and
mechanical aspects of the wafer scanner systems. We further elaborate on the
electronic aspects pertaining to the platform technology and the software aspects
related to the model based design in the next sections.

The wafer scanners carry out lithography in a step and scan fashion on the
wafer as shown in Figure 1.1 [77]. The exposure is performed by a scanning
movement where the reticle and wafer move in opposite directions and the image
is exposed one thin stripe at a time onto the chip. A step movement then resets
the reticle to the initial position and places it on top of the next chip to be
exposed. The movements required for the step and scan operations are zig-zag
movements that are achieved by placing the wafer and the reticle on stages that
can move in many degrees of freedom with nanometer accuracy and accelerations
exceeding 20G [20]. The reduction in chip size implies that the accuracy with
which the multiple chip layers are deposited on the chip and on top of each
other needs to be extremely high and tolerate very low error margins. This
heavily depends on the nanometer precision with which the stages are aligned
with each other and perform the scanning. The same applies to several other
components and robots that manipulate the wafers during the process that also
need to work with extreme precision. Such precise control over the wafers is
achieved through high performance control. In addition to feature size reduction,
another technological driver is the throughput of the wafer scanner in terms of
the number of wafers produced per hour. The accelerations with which the stages
move makes the exposure process faster and thus also has an impact on the
machine throughput. However, the stages tend to vibrate when subjected to such
high accelerations. These disturbances need to be continuously cancelled out by
means of high performance and high frequency control.

The high performance control is realized by means of a large number of closed
loop or servo control systems. Servo control systems consist of control applications
that are mapped onto execution platforms, as depicted in Figure 1.2. Control ap-
plications read values from sensors such as the position coordinates of the stages.
They then compute mathematical functions specified in control tasks to translate
these readings into corrective signals. These corrective signals are then sent to the
actuators that translate them into physical actions, like movements or tempera-
ture changes. The actions are then carried out by the corresponding components
to reject disturbances. These control operations are repeated periodically to en-
sure smooth functioning of the components. Wafer scanners have hundreds of
control applications, each with hundreds of control tasks, sensors and actuators

3

Control

task

Control

task

Control

task

Control

task

Sensor

Sensor

Actuator

Actuator

Processor Processor
Communication

network

Memory Memory

Figure 1.2: Servo control application mapped on an execution platform.

and this complexity grows with each new generation of machines. The complex-
ity comes not only from the large number of control operations that need to be
performed but also from the large number of dependencies between the control
operations. The stages application, that includes the stages for the wafers and
the reticle together with multiple other components, has approximately 50 con-
nected servo controllers, 4000 process control tasks and 20,000 task dependencies.
Additionally, to keep the tracking error small, these control systems need to op-
erate at very high frequencies. This is because frequent readings and corrective
actions provide more control over the system. The rate at which a control system
processes sensor input samples is called the sample frequency. The stages control
applications run at sample frequencies as high as 20kHz. The delay between the
arrival of a sensor input sample and the generation of the actuator output sample
is called the IO delay. High throughput and accuracy directly translate to higher
sample frequencies and lowers IO delays. These performance requirements are as-
signed by control engineers in the form of constraints on sample frequency and IO
delay during the design of the control systems. These constraints in turn trans-
late into latency requirements for the control applications. A sample frequency
of 20kHz translates into a latency requirement of 50µs. Not meeting latency re-
quirements thus has a direct impact on the machine throughput and the accuracy
with which features can be deposited on the chips.

4

1.2 Platform technology

To achieve the required machine performance, control applications have to exe-
cute at high sample frequencies and have to satisfy stringent latency requirements
between sensing and actuation. For this purpose a lot of computational power
is needed, which is offered by multiprocessor platforms consisting of tens of ho-
mogeneous general purpose processors communicating through high bandwidth
packet-switched communication networks. Partitioning of applications among
the processors is often performed during design time to minimize inter-processor
communication overhead over the network. For a long time there was steady
increase in performance by frequency scaling of single-core general purpose pro-
cessors based on Moore’s law. This increase in performance has reached a limit
due to the physical limitations of semiconductor devices caused by excessive heat
and power dissipation resulting from leakage of currents [60]. To meet the grow-
ing demands of complex control applications, there is a shift from single-core to
multi-core execution platforms. As a consequence, increase in performance of
applications no longer comes for free and needs the efficient utilization of appli-
cation parallelism. General purpose processors now consist of one or more pro-
cessing units or cores that communicate with each other via low latency shared
cache memory. Due to the relative low cost of shared memory communication,
application demands can be met by exploiting their parallelism on the multi-core
processors. This can be observed in the wafer scanners where only latency require-
ments corresponding to 10kHz and below could be met with single-core platforms.
To run applications at 20kHz, multi-core platforms had to be introduced.

An important issue addressed in this thesis is the low execution-time pre-
dictability of general purpose processors. Applications running on platforms com-
posed of these processors exhibit fluctuations in execution timings. The main
reason for this unpredictability is that general purpose architectures are complex
in design to make them applicable to a broad class of applications. These archi-
tectures employ complex techniques like caching, pipelining, branch predictions,
and out-of-order execution to improve the performance of the processors. Caching
can cause significant timing variations [63]. Execution times can range from being
small during cache hits to being significantly larger when there are access delays
due to cache misses. Timings variations arise also when multiple applications
contend to access the shared cache memory in shared memory communication.
Branch predictions aim to reduce the penalty of executing branch instructions by
attempting to predict the outcome of a branch before it is known often using the
history of previous outcomes. This is particularly useful in pipelined architectures
where due to the pipelining of instructions the outcome of a branch statement is
known much later in the pipeline. Deeper pipelines require more advanced branch
prediction techniques. The timings can vary from no delays when the prediction is
correct to significant delays when the predictions go wrong and the speculatively
executed instructions need to be discarded to carry out the correct ones [31]. Sim-

5

ilarly, out-of-order execution, that attempts to reduce waiting times by executing
instructions in the order based on the availability of their input data instead of
the original program order, can also induce variations [42]. Hardware and soft-
ware interrupts are other sources of variation wherein the execution of the current
set of instructions is suspended to carry out higher priority activities requiring
immediate attention.

Execution time variations severely complicate meeting the latency require-
ments of control applications. Alternatives to avoid variations are high perfor-
mance special purpose platforms that have architectures designed to be specific
to the applications running on them and have the advantage of high predictabil-
ity [35]. However, the cost of making such application specific platforms for each
complex type of application can be very high. General purpose platforms are pop-
ular as they are cost-effective and highly flexible. Moreover with the advent of
multi-cores, they have been able to meet the demands of increasingly demanding
embedded applications. The increasing popularity of general purpose platforms
and their inherent unpredictability raises an important concern for the robustness
of the schedules of the applications running on them to execution time variations.
Robust scheduling of the tasks in the application is necessary to ensure that ap-
plications can meet latency requirements even in the presence of variations.

1.3 Model based design flow: Scheduling

Tasks of mechatronic control applications need to be bound and scheduled on
multiprocessor platforms to ensure that latency requirements are met. Sched-
ules that meet latency requirements are called feasible schedules. In addition
to meeting latency requirements, it is also desirable to complete applications as
early as possible which allows better utilization of platform resources for other
applications. In the design flow used in ASML, the computation of a schedule
requires information in models based on domain specific languages (DSLs) [43]
that are developed by domain experts. The architecture of these models follows
the Y-chart approach [46], the layers of which define the application, execution
platform, binding and schedules of the application tasks on platform resources as
presented in [65]. Figure 1.3 gives the model based design flow. It starts from the
domain specific models of the application and the platform specification that are
developed by control and hardware designers. Essential scheduling information is
extracted from these models and model-to-model transformations are performed
on them to construct a directed acyclic graph (DAG), consisting of control tasks
and their dependencies. These DAGs form the starting point for the work of this
thesis. Task deadlines are obtained from the latency requirements of the appli-
cation. Although each task is aware of its processor binding, the binding among
the cores of the processors is kept flexible. This is typical in ASML applications
where designers tend to avoid communication costs across processors by deciding
the binding on them before-hand. Application parallelism is then exploited by

6

Domain Specific Models

Mechatronic Control

Application Specification

Static-Order Schedule

Platform Specification

Directed Acyclic

Graph

Model to model

transformations

Multiprocessor binding

and scheduling

Figure 1.3: Model based design flow

utilizing the cores of the shared memory multi-core processors which tend to have
relatively low communication overhead. To derive the initial binding information,
the platform specification is also required as input in the transformations leading
to the DAG. Depending on the platform specification the binding of the tasks can
either be fully known in case of single core processors or partially known in case
of multi-core processors. The binding and scheduling algorithms then transform
the DAGs with their partial binding information into static-order schedules with
complete binding information, i.e. orderings of tasks on the processors. These
schedules are then periodically executed at their sample frequencies during run-
time of the machine by a dispatcher.

The ASML wafer scanners are customized so that many of the required con-
figuration parameters defining the characteristics of the servo control applications
are available only at the start-up of the machine. As a result, the entire design
flow of transforming application and platform models to DAGs and then per-
forming scheduling needs to be done during machine start-up. The computation
time of the schedules thus contributes to the startup time of machines. As the
machines process as many as 300 wafers per hour, long start-up times cause a
delay in the production process and can therefore be expensive to the customers.
Consequently, the time to produce a schedule must be low.

Meeting latency requirements is particularly challenging due to the unpre-
dictability of the general execution purpose platforms. Schedules produced using
most-likely (referred to as ‘nominal’) execution times of tasks can become in-
feasible when tasks take longer to execute. There is a need to cope with these
execution time variations and to produce schedules that are robust in nature. Ro-

7

bustness of a schedule is its tolerance to variations in the execution times of tasks.
Scheduling and analysis of applications in classical real time approaches mostly
take the worst case execution timings into account. If a static-order multiproces-
sor schedule of an application meets its latency requirements in the worst case,
it is highly robust. However, application execution timings on general purpose
platforms exhibit variations in which the nominal execution times are typically
closer to the best-case execution times than to the worst-case execution times. In
addition, the worst-case execution times are typically relatively large. Schedul-
ing for the worst case then needs additional platform resources to accommodate
the worst case. Moreover, it is may be very unlikely that all tasks simultaneously
take an execution time close to their worst-case. Hence, the traditional worst case
scheduling is pessimistic and leads to overdimensioned platforms. We thus need a
stochastic scheduling mechanism that takes these execution time variations into
account and produces schedules that are robust in nature.

1.4 Problem Statement and Research Challenges

The problem being dealt with in this thesis can be briefly summarized as follows:

Achieving fast, scalable, communication-aware, and robust binding and schedul-
ing of directed acyclic graphs on multiprocessor platforms such that all latency
requirements are met.

The aim is to produce static order schedules during machine start-up time. These
schedules are periodically executed at their sample frequencies during run-time
without changing the ordering of the tasks. The binding and scheduling problem
thus focuses on a single execution of the graph and there is no notion of periodicity
within the problem. To minimize the overhead of context switching during run-
time, preemption of tasks is not allowed. Each task has its own deadline. These
are based on the latency requirements derived from the sample frequencies. These
latency requirements form the available timing budget on the processors. Dead-
lines assigned to control tasks can vary depending upon what are the intended
operations of the tasks. For instance, tasks that contribute to sending data to
actuators are assigned tighter deadlines to ensure that the sensor to actuator IO
delays are kept small. Different actuators can have different delay requirements
and therefore different deadlines. Remaining tasks are assigned deadlines based
on the processor budget in the sampling period. The multiple challenges in the
problem statement are discuss below:

1) How can we design a scheduler that is scalable to large DAGs while still being
fast? For maximum productivity, the scheduler needs to be fast in order to pro-
duce schedules within the required start-up time window of the machines. This
should be the case even for large industrial-scale input DAGs.

8

2) How do we make good binding decisions in the absence of accurate information
on the amount of synchronization due to communication? In a platform con-
sisting of multi-core processors, utilizing the parallelism in the applications and
executing tasks simultaneously on parallel cores can result in significant improve-
ment in performance. Parallel schedules produced will have lower makespans
(completion time of the last task) allowing the remaining processor time to be
utilized by other applications. This can be achieved by making a proper trade-off
between exploiting parallelism and reducing the communication overhead that
can arise when applications run on different cores. Additionally, the platform
size constraints will need to be accounted for as the available resources are typ-
ically limited. Under the assumption that read-write operations are part of the
task execution, shared memory communication mainly includes synchronization
operations. Depending on the schedule order, many of these operations may be
redundant due to the ordering being indirectly enforced by other synchroniza-
tions. Hence, the exact synchronization needed is only known after the schedule
is formed and not during binding. This lack of complete knowledge makes the
binding problem challenging for shared memory systems.

3) How do we make scheduling decisions that lead to a robust schedule when the
robustness of a schedule is only known after the schedule is formed? To produce
schedules that are maximally robust against execution time fluctuations, we need
to design robust schedulers. This requires two steps. The first step is to precisely
define robustness of tasks and schedules and to develop a means to measure this
robustness. The main challenges in doing this are:

1. Finding a means to represent the execution time distributions that are
skewed and bounded in nature.

2. Accounting for dependencies between task execution times.

3. Accounting for the dependencies between stochastic variables arising due to
task dependencies in the graph.

4. Performing convolutions and maximization operations on distributions. There
are no known practical analytical means to compute the distribution of the
maximum of stochastic variables that are skewed in nature. Computing the
exact max of distributions is computationally intractable.

Once we have overcome the above challenges to obtain a means to analyze robust-
ness, the second step is to develop a robust scheduler that can use the robustness
analysis to create robust schedules. The main challenge here is that the robust-
ness of a schedule heavily depends on the robustness of its tasks, which in turn
depend on the schedule order. A robust scheduler needs to predict upfront the
impact of each scheduling decision on the robustness of the schedule, which is

9

only known when the complete schedule is formed at the end of the scheduling.

4) How do we design a scheduler that is fast, scalable, communication aware and
robust at the same time? The final goal is to achieve a binding and scheduling
mechanism that is both communication aware and robust and is still scalable to
very large task graphs producing schedules in minimal time. Robustness analysis
and robust scheduling are inherently computationally expensive due to the intro-
duction of stochastic variables. Hence, the main challenge is the integration of
the different aspects in combination with scalability and speed to ensure that the
outcome is still applicable to the likes of the mechatronic control domain.

1.5 Contributions

In this thesis, we have broken down the problem into manageable pieces and devel-
oped solutions in an incremental manner. The thesis has four major contributions.

Contribution 1: Fast multiprocessor scheduling with fixed task binding. The first
contribution of this thesis introduces a fast and scalable static-order scheduling
approach for DAGs having tasks with deadlines and a fixed binding on multipro-
cessor platforms. To focus on the first aspect of the thesis problem statement,
we assume that the platforms consist of single-core processors only and that the
binding is thus given. Due to the fixed binding, communication overhead is as-
sumed to be taken into account in the task execution times and is not addressed
explicitly. The scheduler uses a heuristic that makes scheduling decisions based
on a new due-date metric to find feasible schedules that meet timing requirements
as quickly as possible and it is shown to be scalable to very large task graphs.
The computation of this due-date metric exploits the binding information of the
application. Experiments performed on the wafer scanner control applications
allowed us to successfully verify the functioning of the scheduler in real industrial
scenarios. The approach has been incorporated into all of ASML’s latest genera-
tion of wafer scanners. This contribution has been published in:

[4] S. Adyanthaya, M. Geilen, T. Basten, R. Schiffelers, B. Theelen, and J. Voeten.
Fast multiprocessor scheduling with fixed task binding of large scale industrial cy-
ber physical systems. In Euromicro Conference on Digital System Design (DSD),
pages 979-988. IEEE, Sept 2013.

Contribution 2: Communication aware multiprocessor binding. In this con-
tribution, we present a binding algorithm to compute the binding of tasks on a
shared memory multiprocessor platform. The binding obtained is then fixed in
the DAG and given as input to a communication aware extension of the scheduler
from Contribution 1. Figure 1.4 shows this flow. It presents a three-step bind-
ing algorithm that utilizes application parallelism while taking communication

10

Communication

Aware Binding

Clustering

Merging

Load Balanced Allocation

Scheduling with Fixed Task Binding

DAG

Schedule

DAG with

Fixed Binding

Figure 1.4: Flow of the binding results of Contribution 2 to the scheduler of Contribution 1

overhead and task deadlines into account that results in feasible schedules of the
DAGs with low makespans on limited platform resources. It first clusters tasks
assuming unlimited resources using a deadline-aware shared memory extension of
the existing dominant sequence clustering (DSC) algorithm. The clusters thus
produced are merged based on communication dependencies to make them fit
on the number of available platform resources. First clustering the entire graph
and then performing merging enabled us to make good binding decisions without
knowing the exact amount of communication between tasks. As a final step, the
clusters are allocated to the available resources by balancing the workload. The
approach has been shown to outperform state of the art methods for ASML appli-
cations as well as test cases of other well-known parallel problems. This technique
is about to be integrated into the ASML machines. This contribution has been
accepted to be published in:

[6] S. Adyanthaya, M. Geilen, T. Basten, J. Voeten, and R. Schiffelers. Commu-
nication Aware Multiprocessor Binding for Shared Memory Systems. In Proceed-
ings of the 11th IEEE International Symposium on Industrial Embedded Systems,
SIES. IEEE, Article in press, 2016.

Contribution 3: Robustness analysis of multiprocessor schedules. This con-
tribution focuses on the first step towards robust scheduling by establishing an

11

approach that can be used to measure the robustness of schedules of DAGs and
their constituent tasks. We revert back to the assumption that the platform con-
tains single-core processors only and that communication overhead is accounted
for in task execution times. We make these assumptions to be able to focus on
working towards a robust scheduler which is a complex problem in itself due to
the introduction of stochastic variables. Dealing with execution time dependen-
cies is not covered in this thesis and is a part of future work. We thus assume
execution time independence. Robustness of a task is defined in terms of the
probability of missing its deadline. Robustness of a schedule is then defined in
terms of the (normalized) expected value of the number of tasks missing their
deadlines. Lower expected value of deadline misses implies higher robustness.
To compute these values, we need to propagate task execution time distributions
along the dependencies between the scheduled tasks and compute task comple-
tion time distributions. This propagation requires max-plus operations to be
performed on the distributions. To overcome the high complexity of doing this
analytically and the drawbacks of missing rare events using simulations alone, we
present a new combined analytical and limited simulations based approach. It
fits a (skewed and bounded) PERT distribution on simulated histograms using
analytically computed bounds. The technique has been tested for scalability and
accuracy on the schedules of wafer scanner control applications that were produced
using the scheduler from Contribution 1. This contribution has been published in:

[7] S. Adyanthaya, Z. Zhang, M. Geilen, J. Voeten, T. Basten, and R. Schiffelers.
Robustness analysis of multiprocessor schedules. In International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIV) 2014, pages 9-17. IEEE, July 2014.

Contribution 4: Iterative robust multiprocessor scheduling. The next step, after
we have been able to analyse the robustness of schedules, is to perform robust
scheduling. This contribution presents a robust scheduler that uses the robust-
ness analysis of Contribution 3 in its approach. We continue assuming single-core
execution platforms. This implies that the binding is again fixed and commu-
nication overhead between processors is accounted for in task execution times.
To overcome the challenge of the absence of knowledge about task and partial
schedule robustness during scheduling, we present an iterative approach that it-
erates between scheduling and robustness analysis. This solution flow is shown
in Figure 1.5. It starts from the schedule produced using the scheduler from
Contribution 1 and then repeatedly performs robustness analysis followed by list
scheduling with a new stochastic robustness heuristic. We quantify schedule ro-
bustness using the metric from Contribution 3 based on the expected number of
tasks that miss their deadlines in the schedule. We also extend the analysis in
Contribution 3 with a new metric that quantifies the task-level impact on ex-
pected deadline misses. This metric is used in an iterative highest robustness
impact first heuristic to guide the stochastic list scheduler towards robust sched-

12

Scheduling with Fixed Task Binding

Robustness Analysis

Robust Scheduling

Stop

Criterion

Reached

Yes

No

Initial Schedule

Robustness Metric

Robust Schedule Intermediate Schedule

DAG

Figure 1.5: Flow of Contribution 4 starts with scheduler of Contribution 1 and iteratively uses
the robustness analysis of Contribution 3

ules in the iterations. The contribution is published in:

[5] S. Adyanthaya, M. Geilen, T. Basten, J. Voeten, and R. Schiffelers. Iterative
robust multiprocessor scheduling. In Proceedings of the 23rd International Con-
ference on Real Time and Networks Systems, RTNS’15, pages 23-32, New York,
NY, USA, 2015. ACM.

1.6 Thesis outline

The remainder of this thesis is organized into five chapters. Chapter 2 presents
a fast and scalable multiprocessor scheduler for DAGs with fixed task binding
on multiprocessor platforms. Chapter 3 presents a binding algorithm that works
in combination with the scheduler from Chapter 2 to exploit the parallelism in
the application while taking communication overhead into account to produce
feasible schedules with low makespans. Chapter 4 presents a new technique to

13

analyse the robustness of static-order multiprocessor schedules. Chapter 5 then
uses this analysis in an iterative robust multiprocessor scheduling mechanism
that, starting from the schedule produced using the scheduler from Chapter 2,
iteratively improves the schedule robustness. Chapter 6 gives the final conclusions
and directions for future work.

14

Chapter 2

Fast and scalable
scheduling with fixed task

binding

This chapter presents a scheduler that aims to rapidly obtain feasible schedules
of very large applications with strict latency requirements. The contents of this
chapter is based on [4]. It deals with the first thesis challenge of achieving a fast
and scalable scheduler under some limiting assumptions, such as fixed binding
and absence of communication cost. It uses a list scheduling heuristic based on a
new due-date metric, the computation of which exploits the binding information
of the application. Due-date is an upper bound on the completion time of the
task which if missed makes the schedule infeasible. Computation of the optimal
value for the due-date of a task is as hard as the scheduling problem itself and
hence is NP-Complete. This chapter presents a simple and efficient algorithm to
compute a sufficiently accurate value of the due-date in a new due-date metric
that allows the scheduler to obtain feasible schedules in short time. Section 2.1
gives a motivational example for the scheduling problem. Section 2.2 presents
related work in the domain of multiprocessor scheduling. Section 2.3 introduces
preliminary definitions of the required basic scheduling concepts and terminology
that are used in the chapter. Most of these concept are reused throughout the
thesis by making slight modifications based on the context of the corresponding
chapters. This section also poses the main problem statement. The complex-
ity of the scheduling problem is analysed in Section 2.4. Section 2.5 introduces
the scheduling algorithm. Experimental analysis is given in Section 2.6 and the

15

a16:=(8,P1,140)

a25:=(10,P2,140)

a23:=(7,P2,140)

a22:=(7,P2,140)

a8:=(8,P1,140)

a13:=(9,P1,140)

Figure 2.1: Fragment of motivational example application

Figure 2.2: Snapshot of schedule using CALAP

summary in Section 2.7.

2.1 Motivational example

As a motivational example consider a fragment of an example application shown
in Figure 2.1. A task a is defined by an execution time e, a resource r and a
deadline d. For instance, task a8 has an execution time of 8, is bound to resource
P1 and has a deadline 140. A dependency (arrow) between two tasks implies that
the source task needs to be completed before the target task can begin. A task is
enabled when all its predecessors have completed their execution. In Figure 2.1,
both tasks a8 and a13 are assumed enabled at the same time. We make a choice
of which one of the two must be scheduled sooner on P1 based on the classical
as-late-as-possible (CALAP) completion times of the two. CALAP of any task
a is the minimum of the values (CALAPs − es) of each successor s and its own
deadline da. Although the deadline of a25 is 140, its CALAP value is 119. It is
computed by propagating backwards from the leaf nodes of the complete graph,
most nodes of which have been omitted from Figure 2.1 for the sake of simplicity.
In turn, a16, a22 and a23, all having a25 as their only successor, get a CALAP
value of (min(119-10, 140)) = 109. Thereafter, a8 gets a CALAP of 101 and a13

gets a CALAP of 102. Based on CALAP values, a8 is given a preference over a13

and is scheduled earlier. Task a22 can be scheduled only after a13. This results
in a large gap in the schedule of P2 shown in the snapshot of the Gantt chart
in Figure 2.2, produced using visualization tools of ASML. Consequently, a later
task in the schedule misses its deadline. While computing the CALAP times we

16

Figure 2.3: Snapshot of schedule using Due-date

do not take into account the extra information of the task bindings, thus ignoring
the fact that a13 has higher workload following it on its resource as compared to
a8. CALAP computation is unaware that although a22 and a23 are parallel tasks
in the graph, their binding enforces them to be scheduled sequentially on resource
P2. This binding information can be taken into account in the computation of a
new bound on the task completion time referred to as due-date and denoted by
dd. The due-date of a task is the minimum of (dds − es) among all its successors
(s) and its own deadline da as well as the term (dd(S) − e(S)) for the set S of
successors of the task bound to the same resource. The term dd(S) denotes the
maximum among the due-dates of the tasks in S which is the due-date of the set.
The term e(S) denotes the sum of their execution times. This results in a due-
date of (min(109-(7+7), 140)) = 95 for a13. If we select based on dd instead of
CALAP, a13 gets preference over a8 resulting in a schedule with a smaller gap and
no deadline misses also having a smaller makespan. A fragment of this schedule
is shown in the Gantt chart in Figure 2.3.

2.2 Related work

There is a vast amount of literature available in the scheduling domain. In this
section, we will first begin with a brief classification and positioning of the schedul-
ing problem, following by bibliography and related work and lastly comparisons
with closely related work. A scheduling problem is defined in terms of the char-
acteristics of a system and the tasks that occur in it. Tasks can be classified as
periodic, aperiodic or sporadic. Task priorities may be known and they may be
either fixed or dynamic. Tasks can be independent or precedence-constrained.
Precedence-constrained graphs without cycles are DAGs. If tasks have deadlines,
then they can be soft real time or hard real time systems based on how strict the
deadlines are to the real application. Optimization criteria, such as minimizing
makespan, deadline misses, communication latency or optimizing throughput, are
also a means of classifying scheduling problems. Based on platform characteris-
tics, scheduling can be classified into uniprocessor and multiprocessor scheduling.
Scheduling problems may be partitioned or global based on whether or not the
platform binding of the tasks is decided beforehand. Furthermore, scheduling can
be classified into either static-order or dynamic depending on whether or not the

17

entire task set is known prior to scheduling. Scheduling algorithms can be either
preemptive or non-preemptive.

The problem being dealt with in this chapter is non-preemptive static-order
scheduling of DAGs with task deadlines on a multiprocessor platform when the
task binding is known. In literature this is often referred to as partitioned schedul-
ing in which sets of tasks are assigned to separate processors beforehand. There
has been significant research done in multiprocessor scheduling for industrial sys-
tems presented in the survey paper [30]. It discusses several partitioned and
global scheduling approaches but mainly considers independent tasks. In [19],
the scalability of scheduling large applications consisting of independent sporadic
tasks on multi-core platforms has been addressed. It has been concluded that
partitioned Earliest Deadline First (EDF) is well suited for multiple application
types. In this chapter, we introduce a partitioned list scheduling approach for
non-preemptive DAGs that outperforms a list scheduler which uses the earliest
deadline first heuristic in the experiments. A clustered scheduling algorithm to
compute binding and then scheduling of tasks for soft real-time distributed task
systems with precedence constraints is presented in [54]. Another paper [51] on
partitioned scheduling for multi-cores allows task pre-emption that is not allowed
in our problem.

The problem of scheduling parallel applications described by DAGs on het-
erogenous grid computing systems is presented in [34]. DAG scheduling with
arbitrary length tasks without fixed binding is known to be NP complete [59]. In
this chapter, we show that the addition of the information on fixed binding does
not reduce the complexity of the problem, which is still NP-Complete. Significant
work has been done on DAG scheduling as presented in [50], which presents a
comparison between various DAG scheduling algorithms and their complexities.
List scheduling [41] is very efficient (assuming its ranking function is also effi-
cient) and the most commonly used approach in DAG scheduling, wherein tasks
are chosen from a list based on a certain priority rank and scheduled in that order.
There are several heuristics that can be used to efficiently select tasks with list
scheduling for better results. Some such heuristic algorithms are the Dominant
Sequence Clustering (DSC) [87], Dynamic Level Scheduling (DLS) [69], Modified
Critical Path (MCP), Highest Level First (HLF), Longest Path First (LP) and
Longest Processing Time First(LPT) [3, 48, 84]. All these heuristics also compute
binding of tasks to processing elements. The efficiency of EDF for scheduling spo-
radic DAG models on multiprocessors platforms with unknown binding is studied
in [14]. An algorithm called FAST that tries to improve the quality in terms
of schedule length of existing scheduling algorithms is presented in [85]. In this
chapter, we use list scheduling with a new scheduling heuristic that exploits the
task binding information known beforehand to make better scheduling decisions.

Work that is close to ours is presented in [80] wherein deadlines are used for the
selection heuristic and a deadline modification algorithm is presented. However,
this deadline modification algorithm does not take task bindings, if known, into
consideration. In this chapter, it is shown that this additional information can

18

be used to compute tighter deadlines for tasks. In addition to this, [80] considers
unit length tasks with unit communication delays. In our work we have tasks of
arbitrary lengths and since the binding is known communication delays are taken
into account implicitly in the task execution. In [75], classical as-late-as-possible
(CALAP) time was presented which comes close to the modified deadlines of this
chapter but it also does not exploit the binding information. Comparisons are
made later in the chapter.

2.3 Problem definition

2.3.1 Preliminaries

We denote the sets of real numbers with R, non-negative real numbers with R≥0

and integers with Z. For a set X, we use X∗ to represent the set of finite lists
with elements from X.

An application is a DAG, G = (T,D) with a finite set T of tasks and the set
of dependencies between tasks D ⊆ T 2. A multiprocessor platform is a set of
processors called resources denoted by R.

A task a ∈ T is defined by a tuple a = (ea, ra, da) ∈ R≥0 × R × R≥0, where
ea denotes the execution time, ra denotes the resource that it is bound to and da
denotes the deadline of a. For a set A of tasks, execution time e(A) of the set is
the sum of the execution times of the tasks and its deadline d(A) is the largest
deadline in the set.

A dependency (a, b) ∈ D denotes that task b is allowed to start its execution
only after the completion of task a. There can be data dependencies, control
dependencies and sequence dependencies (dependencies added merely to enforce
a certain sequence) in a graph.

A (static-order) schedule S is a mapping S : R → T ∗ that maps a resource
to an ordered list of tasks in which all data dependencies are respected. No task
begins its execution before the completion of any task having a direct or indirect
dependency to it. S is a schedule for application G = (T,D) iff (i) every task
in T appears once in the ordered list of exactly one of the resources in S, (ii) S
respects the task bindings and, (iii) dependencies. At runtime, tasks execute in
the order given by the schedule as soon as their respective resource is available
and their dependencies are satisfied with no pre-emptions. We let sa denote the
start time and ca denote the completion time of task a. The start time of the first
task scheduled on a resource is 0. Based on this, the values of sa and ca can be
computed for each task a given S and G. The completion times are obtained by
adding task execution times to task start times implying that ca = sa+ea. A fea-
sible schedule is a schedule in which all the tasks meet their respective deadlines
which means that for all a ∈ T, ca ≤ da. During the process of scheduling, we re-
fer to a partial schedule Sprt which is an intermediate incomplete schedule which
does not necessarily contain all the tasks from the application. Note that during

19

run-time, tasks are scheduled in the same order as in the static-order schedule
without pre-emptions. As such, even though the binding is fixed, dependencies
between tasks on different processors make the multiprocessor scheduling problem
more challenging than uni-processor scheduling.

The completion time of the last completing task across all resources gives the
makespan m of the schedule defined by m = max

a∈T
ca.

2.3.2 Problem statement

This subsection gives the statement of the exact problem being dealt with in this
chapter.

Problem Statement 1. Given an application G = (T,D) with tasks bound to
a set R of resources, does there exist a feasible schedule? We call this decision
problem SPFM , where FM stands for feasible multiprocessor scheduling.

The execution times of tasks are fixed values extracted from measurements on
the machine. Since the task bindings are known a priori, communication time is
considered implicitly in the execution times of existing tasks in the task graphs
and hence need not be considered separately during scheduling.

2.4 Complexity analysis

It is well known that Multiprocessor scheduling of DAGs under latency constraints
with unknown binding is NP-complete [59]. This raises the question whether the
additional binding information allows a more efficient solution. In [79], it is shown
that determining the existence of schedules with a makespan of at most four for
a collection of fork graphs with unit execution tasks, with known binding on m
processors and without communication delays, is NP Complete. A fork graph is
an outtree of height one that consist of a task as its source and the children of
the source as its sinks. The DAGs in SPFM are a generalization of a collection of
fork graphs. Also, our DAGs consist of tasks with arbitrary execution times as
opposed to unit execution tasks. The required makespan of at most four can be
trivially converted to a task deadline of four for all tasks. All this combined with
the fact that communication delays are implicit within the tasks in SPFM , imply
that SPFM is a generalization of the problem considered in [79]. Hence, SPFM is
NP-hard.

The NP-Completeness of SPFM can be proven by showing that it belongs to
the class NP. A decision problem belongs to class NP if the solution to the problem
is verifiable in polynomial time. Consider an instance of SPFM and a schedule S,
we need to verify if S is a feasible solution. Given the execution times of tasks,
the data dependencies and the ordering of tasks on their respective resources, the
completion time of tasks can be computed using a function that is linear in the
number of data dependencies in the task graph. Since a graph with m tasks can

20

have (m×m) data dependencies, this function is quadratic in the number of tasks.
This means that the completion times can be computed in polynomial time. The
check for feasibility is efficient, since it involves a simple check to ensure that the
completion time does not exceed the deadline for each task. This shows that given
a schedule, it can be verified in polynomial time. Thus, SPFM belongs to class
NP and is NP-complete leading to Theorem 1.

Theorem 1. SPFM is NP-complete.

2.5 Proposed scheduling algorithm

In this section we describe our scheduling algorithm and its heuristic to arrive at
a feasible solution as quickly as possible.

2.5.1 List scheduling and static-order schedules

We perform scheduling on a per task basis using list scheduling with a new heuris-
tic. The scheduler keeps track of the set of enabled tasks and a partial schedule.
Each time, a task is chosen from a set of enabled tasks using the heuristic and
is consequently scheduled on its resource. Its start time sa is computed as the
maximum of the completion times of its predecessor tasks and the earliest time
that the task can be scheduled on the resource. This may lead to gaps in the
schedule when a task cannot be scheduled immediately after the last scheduled
task on a resource due to task dependencies. The scheduler also tries to fit tasks
into existing gaps in the partial schedule. So, the earliest time on the resource
also considers the earliest time among all the gaps in the partial schedule that are
large enough to hold the task. Once the task is scheduled, the partial schedule is
updated to include information of this scheduled task. When a task completely
fits into a gap, the gap is removed from the updated schedule. If the gap is big-
ger than the size of the task then the task is scheduled in the gap and the gap
is updated to a smaller sized gap in the schedule. Using the updated schedule,
the new set of enabled tasks is computed from the data dependencies in the task
graph and the process is repeated until all tasks are scheduled or the schedule is
found to be infeasible and the scheduler returns with a message indicating this.
This process is explained later in Section 2.5.3.

In order to improve the odds of arriving at a feasible schedule without back-
tracking, there is a need to smartly select which task is to be scheduled from the
set of enabled tasks. The heuristic we use for this purpose is based on a derived
property of a task called due-date, introduced next.

2.5.2 Due-dates

A due-date dd ∈ R of a task is an upper bound on the completion time of the task
which, if missed, renders the scheduling problem infeasible. If dd is a due-date of

21

a task a ∈ T , then any dd′ > dd is therefore also a due-date. Also, dd is a due-date
of a set A of tasks, if dd is a due-date for all a ∈ A. If specific due-dates (dda)
are known for all a ∈ A, then the due-date of A is dd(A) = max

a∈A
dda. Due-dates

are used to determine as soon as possible during scheduling whether a particular
branch in the search space is infeasible or not hence allowing us to prune the search
space by omitting the infeasible branches. They are also used in the heuristic to
choose a task from the set of enabled tasks and steer the scheduling process. A
task with a smaller due-date is more urgent, which leads to the scheduling heuristic
called Earliest Due-Date First wherein a task with a smaller due-date is chosen
for scheduling sooner than a task with a larger due-date. This is the same as the
Earliest Due-Date heuristic (EDD) introduced by Jackson in 1955. The challenge
is to find the tightest (smallest) possible due-date for a task since this enables
us to detect sooner during scheduling whether a particular branch is infeasible or
not. It also enables us to better determine which is the most urgent task in the set
of enabled tasks and steer the scheduler in the right direction. However, finding
the tightest possible due-date is as hard as solving the scheduling problem. The
corresponding decision problem is NP-Complete as explained in Theorem 2.

Theorem 2. Given a task ‘a’ and an arbitrary number k, deciding whether its
tightest due-date dda is greater than or equal to k is NP-Complete.

Proof. This theorem is proved in two steps. The first step shows that the decision
problem is NP-Hard, followed by a proof of its NP-Completeness. We prove the
NP-Hardness by showing a reduction from SPFM which is already proven to be
in NP-Complete in Section 2.4. We show that any instance of SPFM can be
reduced to an instance of this problem where k = 0. To illustrate this, consider
any instance of SPFM with a task graph T . We make a the initial task to T
such that a has outgoing dependencies to all the source tasks in T . If there does
not exist a feasible schedule to T , it implies that dda < 0. Alternatively, if there
exists a feasible schedule to T , dda ≥ 0. Hence, solving SPFM gives the solution
to an instance of this problem where k = 0, implying that it is at-least as hard as
SPFM . Hence, it is NP-Hard.

Given the tightest due-date of a and an arbitrary k, it is trivially known
whether dda ≥ k, implying that the solution to the problem is verifiable in poly-
nomial time. Hence, the problem belongs to the class NP and is NP-Complete.

Our purpose is to compute due-dates of tasks prior to scheduling and use the
earliest due-date first heuristic to perform scheduling efficiently in such a manner
that feasible schedules can be arrived at without the need for backtracking, hence
saving time. So to simplify the due-date computation we present a means to
extract a due-date from the immediate successors of a task in the task graph,
since this information is easily known and does not require the exact schedule
information. Computing due-dates in a particular order by traversing the task
graph backwards ensures that even the future successors of a task are accounted
for in its due-date computation. Along with looking at the successors, we also

22

look at the resources that the successors are bound to. We use this information
to compute tighter due-dates as explained later in this section. The due-date so
computed is the due-date we use in the earliest due-date first heuristic in this
chapter.

As mentioned earlier, computation of due-dates of tasks is done starting with
the sink nodes, i.e. nodes with no outgoing dependencies, in the task graph and
traversing backwards in topological order of dependencies. The due-date of a task
depends on its own deadline and the due-dates of its immediate successors. In
the absence of any successors, the due-date of a task is simply its deadline. As
mentioned in Section 2.2, a deadline modification approach is presented in [80]
that does not take task bindings into account. In [75], classical ALAP times are
computed by taking the minimum of the dda−ea for all successor tasks. However,
using the binding information, successors of a task can be partitioned into groups
deployed on each resource. We exploit the fact that all successor tasks on one
resource must be completed before the largest of their due-dates. This is because
tasks with a due-date smaller than the largest must be completed before their
respective due-dates, and the tasks with the largest due-date must be completed
before that largest due-date. The due date computation of a task first computes
the due-date per resource, which is the due-date of the task considering only the
successors bound to that particular resource, and then takes the minimum of the
due-dates, so computed, over all resources. These two steps are explained below:

Due-date per resource: When a set of successors of a task is bound to the
same resource, all these successors must be completed sequentially before their
largest due-date. For example, in Figure 2.4, task a1 has 3 successors. These
tasks have no successors implying that their deadlines are their due-dates. Task
a2 has to be completed before time 3, task a3 before time 4 and task a4 before
time 5. This means that all three successors must be completed before their
largest due-date, 5. Task a1 has to be scheduled before all of them and they are
executed sequentially on the resource. Subtracting the sum of the execution time
of all successor tasks from the largest due-date gives a due-date for a1. Hence,
5-(1+1+2) = 1 is a due-date. By doing this, we are exploiting the additional
binding information of the successors that is known to us. We also get the due-
dates from looking at the dda − ea of the single successors: 5-2 = 3, 4-1 = 3 and
3-1 = 2. We use the minimum among all these due-dates as the due-date of the
task which might be an equal or tighter value than just taking the minimum of
the dda− ea of the individual successors. This gives us a due-date of min(1, 3, 3,
2) = 1 in Figure 2.4. Note that any subset of successors can be used to compute
a due-date.

An even tighter due-date can be achieved by calculating the due-dates in
this manner for all possible subsets of the successor tasks. Doing this ensures
that adding an extra dependency from a task to another task in the task graph
does not cause its due-date to relax. This is not the case using just the above
explained computation as illustrated using the example in Figure 2.5, where a
new dependency is added from task a1 to another task a5 in the task graph which

23

a2:=(1,P,3)

a4:=(2,P,5)

a3:=(1,P,4)

a5:=(1,P,7)

a1:=(1,P,10)

Figure 2.4: Due-date computation

a2:=(1,P,3)

a4:=(2,P,5)

a3:=(1,P,4)

a5:=(1,P,7)

a1:=(1,P,10)

Figure 2.5: Non-monotonicity of due-date computation due to addition of a dependency

has a due-date of 7 time units and an execution time of 1 time unit. The resulting
due-date of a1 is min(7-(1+1+1+2), 7-1, 5-2, 4-1, 3-1) = 2 time units. However,
we know from the earlier computation that there exists a tighter due-date which
can be computed if we exclude the newly added task from the set of successors.
Hence, it is necessary that this due-date computation is performed by considering
all subsets of the successor tasks and taking the minimum. This computed value
will be unique since we have taken into account all possible ways the successor
tasks can be scheduled after the current task. In Figure 2.5, one of the subsets
{a2,a3,a4} gives us the tighter due-date of 1 time unit. Computing due-dates using
all successor subsets needs us to compute due-dates for all the 2n possible subsets
for n successor tasks and take the minimum among them. However, among these
2n subsets several subsets are not necessary to obtain the due-date as elaborated
in Theorem 3.

Theorem 3. The due-date of a task with n successors computed using all 2n

successor subsets is the same as the due-date of a task computed using n subsets
chosen incrementally by adding one successor at a time from the set of successors
in ascending order of due-dates.

Proof. Consider the successor with largest due-date. In the example on Figure 2.5
it is the task a5. Keeping this task fixed in the subsets, there are 2n−1 possible
subsets which include this task. Among these only one subset containing all
successor tasks is relevant and gives the tightest due-date owing to the fact that

24

all successors in the subset need to be completed before the due-date of a5. As
a result we can consider this one subset instead of considering the 2n−1 subsets
including the task a5. This same rule applies to even the other successors of the
task. For every successor we only consider one subset which contains itself and
all tasks with a due-date smaller or equal to its own. We end up with exactly
n subsets, one for each successor. The resultant due-date which is the minimum
among the due-dates computing using these n subsets, is the same as the one
obtained by taking the minimum of all subset due-dates.

Considering subsets in the incremental manner explained above in the naive
implementation for one particular task is still quadratic in the number of suc-
cessors of the task since the due-date computation is repeated for each successor
being added to the subset. An alternative linear approach for computation of the
due-date of a task a on a particular resource r computes the same result without
needing to perform the repeated computation for all the n successor subsets. It
starts with an infinite due-date and sorts the successors in descending order of
due-dates. Starting with the first successor in the sorted list, it assigns the dda−ea
of this successor as the due-date of the task. Thereafter it keeps deducting the
execution time of subsequent successors in the sorted list from this value as long
as the result is equal to or smaller than considering the dda − ea of the successor
being considered. In case it is larger, the value computed till then is discarded and
the new due-date of the task is dda− ea of this successor. The execution times of
subsequent successors in the list are then extracted from this value. Proposition
1 shows that this is equivalent to considering only those smaller subsets that can
give a tighter due-date for the task and ignore considering all subsets in between
since they do not contribute to tightening the computed due-date value in any
manner.

Algorithm 1: computeDueDatePerResource()

Input : G := (T,D), R, a, r
Output: dda

1 dda :=∞;

2 for a′ ∈ succorderedr (a) do
3 if dda′ ≤ dda then
4 dda := dda′ − ea′ ;
5 end
6 else
7 dda := dda − ea′ ;
8 end

9 end
10 return min(dda, da)

25

Proposition 1. For a task with sets A and B of successors such that A ⊂ B, the
due-date computed using A is tighter only if dd(A) < (dd(B)− e(B −A)).

Proof. Since A ⊂ B, B has all the successors in A plus at-least one more. The
due-date computed for subset A is dd(A) − e(A). The due-date of subset B is
dd(B) − e(B) which in turn is dd(B) − e(B − A) − e(A) since A ⊂ B. As such,
considering subset A will yield a tighter due-date only if dd(A) < dd(B)− e(B −
A).

The minimum of the resultant value with the original deadline of the task
gives its due-date. This alternative due-date computation for a particular task
is linear in the number of successors to the task. Consequently, the due-date
computation for the entire task graph is quadratic in the number of tasks. Let
succorderedr (a) represent the list of immediate successors of a task a on its resource
r, in descending order of due-dates. Algorithm 1 shows this approach.

Due-date across resources: The minimum over the due-dates computed
per resource is a due-date of the task.

2.5.3 List scheduling with earliest due-date first heuristic

Algorithm 2 formalizes the scheduling process. Let all predecessors of a task a be
denoted by pred(a) := {a′ ∈ T | (a′, a) ∈ D} and all successors of a be denoted
by succ(a) := {a′ ∈ T | (a, a′) ∈ D}. A gap g in the schedule, is defined by the
tuple g = (sg, cg) ∈ R≥0 × R≥0, where sg represents the start time of the gap
and the cg represents the closing time of the gap. Let Gr represent the set of
gaps left on a resource r ∈ R during scheduling. The algorithm first computes
the due-dates of all tasks in the task graph in line 2. It then maintains a set
of enabled tasks (ET) and another set of scheduled tasks (ST) which is initially
empty. It schedules enabled tasks in a loop until all tasks in the task graph are
added into the set of scheduled tasks. In line 5, the current set of enabled tasks are
extracted as the ones whose predecessors have been scheduled. In line 6, the task
with the earliest due-date a is chosen to be scheduled next from the set of enabled
tasks. The completion time of the last completing predecessor (lastPreda) of a is
extracted in line 7. If there are any gaps in the schedule, the chosen gap gchosen
is the earliest gap that is large enough to fit a after the completion time of its
last completing predecessor as given in line 8. In lines 9-11, if there is such a
gap, the task is scheduled in it starting from either the beginning of the gap or
somewhere in between if any of its predecessors completes later. In lines 12-15,
if there are no gaps, arg min of the empty set returns NULL and the task is
scheduled at the end of the partial schedule on its resource either immediately
after the last task scheduled on r (lastr) or at any later time depending on the
completion times of its predecessors. In lines 16-18, if the completion time of the
task exceeds its due-date, either the current or some successor task will miss its
deadline and the resultant schedule will be infeasible. At this point, it could be
decided to backtrack and chose tasks differently to arrive at alternative schedules.

26

The possibility of incorporating backtracking has not been elaborated here. If the
task does not miss its due-date, it is added to the partial schedule on its resource
as well as to the set of scheduled tasks in lines 20 and 21. Following this in line 22,
the new set of enabled tasks are obtained by removing this task from the current
set and adding all other tasks which are now enabled due to this task into the
set. The whole process then repeats.

Algorithm 2: Scheduler()

Input : G := (T,D), R
Output: S

1 ∀r ∈ R,Sprtr := NULL;
2 computeDueDates(G,R);
3 ST := φ;
4 while |ST | 6= |T | do
5 ET := {a ∈ T | pred(a) ⊆ ST};
6 a := arg min

a∈ET
dda;

7 clastPreda := max
a′∈pred(a)

ca′ ;

8 gchosen := arg min
g∈G(ra)

{sg | max(clastPreda , sg) + ea ≤ cg};

9 if gchosen 6= NULL then
10 sa := max(clastPreda , sgchosen);
11 end
12 else
13 clastr := Completion time of last task on r;
14 sa := max(clastPreda , clastr);

15 end
16 if ca > dda then
17 return ′deadline miss′;
18 end
19 else
20 Sprtra := append(Sprtra , (ea, ra, da));
21 ST := ST ∪ {a};
22 ET := {ET\{a}}∪ {a′ ∈ succ(a) | pred(a′) ⊆ ST};
23 end

24 end
25 return S;

27

2.6 Experimental results

2.6.1 Industrial test cases

As mentioned in the Chapter 1, task graphs originating from the wafer scanner
control domain have been scheduled using the scheduler introduced in this chapter.
In these task graphs, latency requirements of the control blocks have been specified
as deadlines. The binding of a block to its processor resource is given along
with its execution times on the resource. Using the information in the control
application, schedules are computed for each processor resource in the platform.
For the purpose of our study, three separate control applications from the wafer
scanner systems have been chosen as described below. The control tasks range
from simple operations like addition to complex operations like filtering, clipping
and matrix multiplications that are performed by larger control tasks.

1) NXT stages. NXT is a version of the ASML wafer scanners called TWIN-
SCAN. These can process two wafers at a time wherein one wafer is being mea-
sured for its accurate positioning and orientation and a different wafer is being
exposed with an electronic circuit. It is a collection of inter-connected applica-
tions comprising of several components that move synchronously to transfer the
wafers within the system. A large number of sensors and actuators are required to
perform the measurements and the movements accurately to ensure perfect wafer
and reticle movement and positioning. The complete NXT stages application
contains 4301 tasks and 4095 dependencies. The application graph is repeatedly
executed at a sample frequency of 10kHz on a platform consisting of 11 single core
processors. This frequency translates to a latency requirement of 10 · 10−5 which
is taken to be the available budget on the processor. The execution time of the
tasks range from a minimum of 1 · 10−8s to 2.25 · 10−6s. The tasks are assigned
72% of the processor budget and the remaining is kept for background processing,
which gives them a deadline of 7.2 · 10−5s. Apart from this, the task graphs also
contain several critical tasks that send data to actuators and are assigned tighter
deadlines. They are critical because the time that data is received by actuators
determines the IO delay of the particular component and is crucial to the accuracy
and throughput of the machine. In this case, critical actuators tasks are assigned
a deadline of 30% of the processor budget giving them a deadline of 3 · 10−5s.
The number of incoming and outgoing dependencies (degree) of the tasks range
from 0 to 22 dependencies.

Apart from this, there is also a specialized NXT stages application which
assigns short deadlines to a special set of critical actuator tasks involved in a
specific critical movement operation in the machine. These tasks are of higher
priority and are assigned 26% of the processor budget giving them a deadline of
2.6 · 10−5s.

2) Flexray: The lithography process to expose wafers requires light beams
from a light source to be passed through the transparent and opaque regions on a
quartz plate containing the images of the circuits, called a reticle, onto the wafer.

28

The illuminator forms a key part of this lithographic optical system. It conditions
the light from the source, and causes the light beam to take on a prescribed shape,
known as the pupil shape, before it goes through the reticle. This component,
called the Flexray, is involved with imaging and includes 4096 mirrors working
in parallel to transmit a light beam accurately onto a wafer. As such it contains
an extremely large number of parallel control tasks which manipulate each mirror
independently in 6 degrees of freedom to adjust the pupil shape. This is the
largest model that the schedulers have been tested on, containing as many as
14,908 tasks and 26,189 dependencies. These tasks are scheduled on a platform
consisting of 14 single core processors which run on a sample frequency of 238 Hz.
The execution time of the tasks range from a minimum of 1 · 10−9s to as much
as 8.31 · 10−5s. The tasks are assigned 100% of the processor budget, since it a
very large application, which gives them a deadline of 4.201 · 10−3s. The degrees
of the tasks range from 0 to 131 dependencies.

3) Projection optics box (POB): The latest NXE versions of the TWINSCAN
wafer scanner systems expose wafers using extreme ultraviolet (EUV) light. The
Projection Optics Box (POB) is the enclosure containing the optical components
(mirrors) between the reticle and the wafer stage that holds the wafers to be
exposed. Since air absorbs the EUV light, the POB is kept under vacuum to
ensure that there is no loss of intensity in the light falling on the wafer. The POB
models contain 1878 tasks and 1540 dependencies. These tasks are scheduled on
a platform consisting of 6 single core processors which run on a sample frequency
of 10kHz. The execution time of the tasks range from a minimum of 3.42 · 10−8s
to 1.36 · 10−6s. The tasks are assigned 70% of the processor budget, with the rest
being kept for background processing, which gives them a deadline of 7 · 10−5s.
Critical tasks are assigned a deadline of 22% of the processor budget. The degrees
of the tasks range from 0 to 13 dependencies.

Table 2.1: Measured timings for due-date computation and scheduling

Application Due-date Computation (s) Scheduling (s)
Stages 0.05 1.15

Sp stages 0.05 1.14
Flexray 0.18 3.64

POB 0.03 0.81

Table 2.2: Comparison between EDDF, EDF and ECF using industrial test cases

Application EDDF EDF Makespan #Misses ECF Makespan #Misses
diff (s) diff (s)

Stages F I 9.57 · 10-5 382 F 0 0

Flexray F I 4.99 · 10-4 563 F 0 0
POB F I 0 324 F 0 0

Sp stages F I 9.57 · 10-5 382 I 0 44

29

Table 2.1 gives the due-date computation and scheduling times obtained after
running the scheduler on each of these control applications. To draw comparisons,
we ran the above test cases with a list scheduler using the earliest due-date first
(EDDF) heuristic, earliest deadline first (EDF) heuristic and the earliest CALAP
first (ECF) heuristic. The first column gives the application name. The second,
third and sixth columns give the outcome of whether the schedules produced
were feasible (F) or infeasible (I) for EDDF, EDF and ECCF respectively. The
fourth and seventh columns give the increase in makespans of EDF and ECCF
respectively compared to EDDF. The fifth and eight columns give the number
of deadline misses for EDF and ECCF respectively. We observed that the EDF
heuristic produces infeasible schedules for all four cases. EDDF and ECF heuris-
tics produce similar schedules in most cases. We see a difference in the specialized
NXT-Motion case. This is a specialized and highly constrained application for
which the list scheduler with the earliest due-date first heuristic produces a fea-
sible schedule in the first shot as opposed to the list schedulers with the earliest
CALAP first heuristic that fails to produce a feasible schedule in the first shot.
The total makespans of the two schedules are the same for all applications. The
results are summarized in Table 2.2.

2.6.2 Comparison of EDDF and ECF: Synthetic test cases

To evaluate the statistical significance of improvements obtained by our approach
over ECF, the schedulers have been run on 1000 DAGs that are generated using
the random graph generator tool of SDF3 [72]. These task graphs with 4500 tasks
each are bound to 2 to 5 processors using a binding approach that binds entire
branches containing subgraphs to the same resource as much as possible. This is
similar to the binding approach used in ASML which binds groups of intercon-
nected control tasks on the same resource in order to minimize communication
delays across resources, as opposed to task binding where maximum parallelism is
utilized. The execution times of the tasks randomly vary from 1·10−2s to 30s with
an average of 2s in accordance with the ranges scaled up for the NXT-Motion ap-
plication. The tasks are assigned deadlines which is twice the average load on the
resources. Between 200-250 tasks are randomly chosen to be critical in accordance
to the number of critical actuator tasks in the NXT-Motion application. These
tasks are assigned deadlines equivalent to the average load on the resources. The
degree of the tasks ranges from 1 to 10 with an average of 5. EDDF produced 590
feasible schedules, whereas ECF produced 517 feasible schedules. There were 336
test cases where EDDF produced feasible schedules and ECF produced infeasible
schedules. On the other hand, there were 263 test cases where ECF produced
feasible schedules and EDDF produced infeasible schedules. There were 254 test
cases where both EDDF and ECF produced feasible schedules, and 147 cases
where both produced infeasible schedules. These results are summarized in Table
2.3.

To ensure that the positive result for EDDF is not a coincidence, we performed

30

Table 2.3: Comparison of feasibility results of EDDF and ECF on synthetic test cases

Outcome ECF Feasible ECF Infeasible
EDDF Feasible 254 336

EDDF Infeasible 263 147

the McNemar test on these results and obtained a very low p-value of 0.001 which
indicates that the probability that this positive outcome of EDDF is a coincidence
is only 0.1%. Apart from this we also compared the makespans obtained using
the two approaches. EDDF and ECF produced identical makespans in 253 of the
1000 test cases. EDDF produced a better (smaller) makespan than ECF in 403
cases and ECF produced a better makespan in 344 test cases. These results are
summarized in Table 2.4. We performed the paired student t-test on the values of
the makespan obtained using EDDF and ECF. A very low p-value of 7.32 · 10−6

was obtained, which is also in favour of our claim that the positive outcome of
EDDF is not a coincidence.

Table 2.4: Comparison of makespan results of EDDF and ECF on synthetic test cases

mEDDF < mECF mECF < mEDDF mEDDF = mECF

403 344 253

2.7 Summary

This chapter presents a list scheduler with the earliest due-date first heuristic
to try to avoid infeasible branches in the search space during scheduling thus
maximizing the odds of arriving at a feasible schedule in one shot. An efficient
approach is used to compute tight task due-dates in one backward traversal of
the graph by utilizing the binding information of the application on the multipro-
cessor platform. The key contributions of this chapter are 1) the task due-date
computation technique and, 2) the overall list scheduler with earliest due-date first
heuristic. The earliest due-date first heuristic has been shown to outperform the
earliest CALAP first heuristic on both ASML as well as synthetic test cases. The
multiprocessor scheduler has been shown to compute feasible schedules of very
large task graphs within minimal time. This approach has been incorporated in
all the latest versions of ASML’s wafer scanners.

31

32

Chapter 3

Communication aware
binding for shared memory

systems

Chapter 2 presented a scheduler that assumes a fixed binding and zero communi-
cation overhead. This chapter deals with the second thesis challenge of binding by
presenting a communication aware binding algorithm for shared memory systems.
The contents of this chapter is based on [6]. Taking platform size constraints into
account, it utilizes the application structure and communication overhead infor-
mation to produce the binding of the tasks on the platform resources. In the work
of this thesis, we distinguish binding and scheduling as separate concerns. The
motivation behind this is to narrow down the scope of the problem on obtaining a
good binding method that optimizes the makespans of the schedules while ensur-
ing that task deadlines are met. Once, we have this binding we use the scheduler
from Chapter 2 that exploits the binding to produce proper schedules. Shared
memory communication is a commonly used paradigm for multi-core systems
wherein multiple processors can access the same shared memory. Tasks on these
processors communicate via this shared memory. As explained in Section 1.4, if
we assume that read-write operations are part of the task execution, then shared
memory communication mainly involves the synchronization operations only. De-
pending on the schedule order, many of these operations may be redundant due
to the ordering being indirectly enforced by other synchronizations. For instance,
a receiver task need not synchronize with a sender task if another receiver task
scheduled before it on its resource has already synchronized with that particular

33

sender. Hence, the exact synchronization needed is only known after the schedule
is formed and not during binding. This lack of complete knowledge makes binding
challenging for shared memory systems.

The main contribution of this chapter is a binding approach for shared memory
systems that includes three steps, namely clustering, merging and load balanced
allocation. We refer to our binding algorithm as CMA (‘C’lustering, ‘M’erging,
‘A’llocation). The first step of clustering uses a deadline-aware shared memory
extension of the Dominant Sequence Clustering (DSC) algorithm [87] to produce
clusters of tasks in the graph without considering platform constraints. Since
the number of clusters thus formed can be higher than the number of platform
resources, the next step merges clusters using the application structure while con-
straining the merging based on the platform size. The final step allocates clusters
to resources balancing their load. After the binding, the scheduler from Chapter 2
will order the tasks on the processors. We validate CMA by drawing comparisons
with the state of the art bounded dominant sequence clustering (BDSC) algo-
rithm [44] which is an extension of DSC for limited resources. We compare them
on a benchmark consisting of industrial applications of ASML wafer scanners and
a large number of generated test cases of well known parallel applications. We
show that our algorithm outperforms BDSC in most of the cases.

The remainder of this chapter is organised as follows. Section 3.1 starts with
preliminaries, followed by a description of the problem and the solution flow.
Section 3.2 explains the first clustering step. Sections 3.3 and 3.4 elaborate on
the merging and resource allocation steps. Section 3.5 illustrates our experimental
evaluation. Section 3.6 discusses related work. Related work has been moved to
the end of this chapter, after all the concepts used in this section have been
introduced, for readability purposes. Section 3.7 summarizes the chapter.

3.1 Problem definition and solution overview

3.1.1 Preliminaries

The aim of this chapter is to decide on the binding of the tasks by taking com-
munication overhead into account. Hence, we extend the definition of a task to
allow the binding of a task to be unknown and the definition of a dependency to
include communication cost.

A task a ∈ T is defined by a tuple a = (ea, ra, da) ∈ R≥0 × (R ∪ {⊥})× R≥0,
where ea denotes the execution time, ra denotes the resource and da denotes the
deadline of a. The value ⊥ is added to denote that the task is not (yet) bound to
a resource. Initially ra is ⊥ and the binding algorithm must select and bind a to
one of the resources in R.

The definition of the set of dependencies between tasks is modified to the tuple
D ⊆ (T 2 × R) to include the communication cost. A dependency (a, b, ĉ) ∈ D
implies that it takes ĉ time units for b to obtain the data communicated from a

34

only after which it can begin execution. Here, a, b are the source and destination
tasks; ĉ is the communication cost. All the other terminology is identical to the
terminology introduced in Chapter 2.

3.1.2 Problem description

There are two main kinds of communication paradigms seen in practice, namely
message passing systems and shared memory systems. In message passing sys-
tems tasks communicate by sending messages through a communication network
and communication costs are incurred on dedicated communication resources.
Our work is focused on shared memory systems where tasks communicate by
reading and writing variables in a shared memory infrastructure. This happens
when the tasks are bound to cores of a multi-core processor that share memory.
Since shared memory read-write operations are typically non-blocking, we must
ensure that the receiver task reads data from the memory only after the sender
task has written into the memory. To ensure that the data flow semantics are
followed, shared memory systems can make use of data synchronization mecha-
nisms. The mechanism considered in this chapter concerns updating a status flag
by the sender, indicating that it has completed writing its data. The receiver task,
once enabled, waits until the status flag is set to read the data. In our work, the
time taken to read and write data to the shared memory is accounted for in the
execution time of the task. We make the approximation of assuming that there
is no contention on the shared memory. Communication cost is thus composed
of (1) the time taken by the sender task to update the status flag (U), and (2)
the time taken by the receiver task to read the status update (R). The receiver
task has to one by one synchronize with each sender task from which it has an
incoming dependency. These communication costs are induced by communication
(or synchronization) operations that are added in the schedule and executed on
the same resources as the sender and receiver tasks respectively. There is no ded-
icated communication network and the communication costs are incurred by the
computation resources. We assume communication costs to be fixed for a graph
and ignore varying timings that can be caused by cache operations. Figure 3.1(a)
is an example of shared memory communication, where the dotted lines show the
dependencies in the graph. Task a3 synchronizes with tasks a1 and a2. There is
a read operation per predecessor for a3 on its processor. Although a task needs
a read operation per predecessor, it updates its status flag only once irrespective
of its number of successors. Hence, the number of reads is at least equal to and
can often be more than the number of updates.

The synchronization operations in schedules of shared memory systems may
sometimes be redundant depending upon whether the synchronization has implic-
itly taken place due to synchronizations with other tasks scheduled earlier. For
instance consider Figure 3.1(b) where a task a2 is waiting to synchronize with a
predecessor a1. This synchronization is redundant if another task a3 scheduled
before a2 on its processor has already synchronized with a1. In this case, the

35

a1

a3

a2

U

RR

U

P1

P2

P3

a1

a3 a2

U

R

P1

P2

a1

a3

a2 U

R

P1

P2

(a)

(b) (c)

Figure 3.1: (a) Example of communication in shared memory systems, (b) No read needed for
a2 due to transitive reduction, (c) Task a3 does not need to read the status update from a1 and
consequently a1 does not need to update its status flag

data from a1 is already in the memory and its flag has been updated. Then the
synchronization for a2 can be removed. This process of removing redundant com-
munications that are implied by others is known as transitive reduction [9]. If all
read operations corresponding to an update have been transitively removed, the
update is also removed. This is shown in Figure 3.1(c) where the synchronization
for the dependency between a1 and a3 is implied by that between a2 and a3. Task
a3 does not need to read the status update from a1 as the status update from a2

already implies that a1 has finished execution. Consequently a1 does not need to
update its status flag since no task is going to read its status update. To remove
such redundant synchronization, the number of communication operations needs
to be optimized by performing transitive reduction on the graphs after scheduling.
This is because the reduction depends on the binding and scheduling order of the
tasks. For instance, in Figure 3.1(b) if a2 is scheduled before a3, then the read
for a3 is redundant instead of a2. Alternatively, if a2 is bound to a third resource
P3 , then no transitive reduction is possible. Since this binding and ordering is
unknown during the binding phase, it is not possible to predict the exact amount
of synchronization that will appear in the final schedule. As binding algorithms
typically exploit this information, this makes the binding problem challenging.
The problem statement is given below.

Problem Statement 2. Given an application and a shared memory multipro-
cessor platform, find a binding of the application tasks on the available platform
resources that, upon scheduling, gives the lowest makespan with all task deadlines
being met.

As this problem is NP-complete, in analogy with the partitioning problem in

36

Binding

Clustering

Merging

Load Balanced Binding

Scheduling

G

S

Figure 3.2: Solution Flow

graph theory [37], finding an optimal solution is not feasible. So, we present an
algorithm that uses heuristics to obtain the binding of tasks.

3.1.3 Solution flow and rationale

Our solution involves three steps, namely clustering of tasks constraining them to
be bound to the same resource, merging and load balanced allocation as shown
in the flow chart in Figure 3.2. The benefit of having a three-step approach
instead of a single step one is the use of more high level (global) structure of
the graph in comparison to a single step approach like BDSC thats makes local
binding decisions. After the first clustering step on unlimited resources we have
the global information of all the cluster dependencies. The merging step bases
its decisions on this global knowledge. BDSC, on the other hand, makes local
decisions by assigning a task to one of the available clusters with the best timings
for the task once the number of clusters has reached the resource limit.

The use of global information is particularly beneficial for shared memory sys-
tems because transitive reduction cannot be performed during clustering and we
do not know the accurate communication costs during binding. Local decisions
of BDSC made based on inaccurate timing values may not be good. We attempt
to reduce the impact of this inaccuracy by first making as many clusters as pos-
sible assuming unlimited resources and then merging highly connected clusters
together. The hypothesis is that there is a higher likelihood of highly connected
clusters having higher communication overhead between them even after transi-
tive reduction in comparison to less connected clusters. Hence, they should be

37

merged. After merging, clusters are allocated to resources by balancing the work-
load. The end result is a graph with known binding which is then fed into a
scheduler to decide the task orderings.

3.2 Clustering

In this section we present our solution for clustering the tasks in the graph using a
deadline-aware modified DSC algorithm that can deal with shared memory type of
communication. We first briefly explain DSC followed by details of the extension
and the algorithm itself.

3.2.1 DSC

DSC follows a list scheduling [41] pattern where at each step a new task is clustered
of which all predecessors have been clustered before. We refer to such a task as
an enabled task. From the enabled tasks, DSC selects a task on the longest path
from source to sink in a partially clustered DAG. This path is called the dominant
sequence. For a fully clustered DAG, this is the critical path. To detect which
task among the enabled tasks is on the dominant sequence, DSC assigns priorities
to tasks equal to the length of the longest path that passes through them. The
objective of this selection is to minimize the length of the dominant sequence by
avoiding communication costs along this path first. This is achieved by assigning
tasks to the same clusters which in turn is expected to reduce the length of the
critical path and thus the makespan. We define clusters below.

Definition 1. (Cluster) A cluster cl ⊆ T is a set of tasks that are constrained
to be bound to the same resource. The size sz (cl) of cl is the sum of the execution
times of its constituent tasks. There exists a cluster dependency (cl , cl ′) if there
is a dependency (a, b, ĉ) ∈ D between some tasks a ∈ cl and b ∈ cl ′. We use CLD
to denote the set of cluster dependencies.

Since tasks in a cluster are assigned to the same resource, the communication
costs between them is zero. The length of the longest path that passes through
a task is calculated as the sum of the task’s top level and bottom level, defined
below.

Definition 2. (Top Level) The top level of a task ‘a’ in DAG G, denoted by
tlevel(a,G) ∈ R, is the length of the longest path from any of the source nodes
(tasks without incoming dependencies) of G to a. The length of a path is composed
of the computation costs of the tasks and the communication costs of the edges
along the path.

Definition 3. (Bottom Level) The bottom level of a task ‘a’ in DAG G,
denoted by blevel(a,G) ∈ R, is the length of the longest path from a to any of the
sink nodes (tasks without outgoing dependencies) in G.

38

a1:=(1,⊥,20)

a2:=(5,⊥,20)

a4:=(3,⊥,20)

a6:=(2,⊥,20)

a3:=(2,⊥,20)

a5:=(2,⊥,20)

a7:=(1.5,⊥,20)

11

1

1

1

1
1

1

a8:=(1,⊥,20)

1

Figure 3.3: An example DAG with the binding unknown

Table 3.1: initial dsc top-levels, initial dsc bottom-levels and due-dates of tasks in the example
dag

Task tlevel blevel dd
a1 0 14 10
a2 2 12 15
a3 2 5 18
a4 8 6 18
a5 8 5 17.75
a6 12 2 20
a7 11 1.5 20
a8 11 1 20

Consider the example DAG in Figure 3.3 which needs to be bound on a plat-
form consisting of 2 shared memory processors P1 and P2 . The numbers shown
next to the dependencies between the tasks specify the communication cost. The
cost of the read and update operations is taken to be 0.5 units each giving a
total communication time of 1 time unit. The initial top levels and bottom levels
of tasks as computed by DSC are given in Table 3.1. The last column will be
explained later. The task having the highest tlevel + blevel among the enabled
tasks is on the dominant sequence and is chosen to be clustered next. Priorities
are assigned as tlevel + blevel as this gives the length of the dominant sequence
and thus has more information than using, for instance, blevel alone which only
gives the length of the path from a current node to an exit node. In the example,
the dominant sequence is a1 , a2 , a4 , a6 .

The task that is selected to be clustered is added to the cluster that gives it the

39

highest reduction in tlevel resulting from zeroing the communication cost of edges
from predecessors in the cluster, if such a cluster exists. In computing the new
reduced tlevel on the cluster, the DAG is also updated by adding a dependency
from the last task in the cluster to the selected task. This is to account for the
tasks that were already added to the cluster before the current selected task.
These additional dependencies in the graph are temporary and are used only
within the clustering phase for tlevel computations. If there is no such cluster
that reduces the tlevel , the task is assigned to a new cluster and its tlevel remains
the same. After each clustering step, the top levels of un-clustered tasks must
be recomputed taking into account the changes in the tlevel of their clustered
predecessors. The complexity of performing this re-computation per step can be
reduced by incrementally computing and updating top levels of enabled tasks.

3.2.2 Deadline-aware extension to DSC

In our work, tasks in a DAG have deadlines that must be met. These deadlines
must be taken into account for task priorities to avoid clustering decisions to
cause deadline misses. In our extension to DSC, we compute priorities based
on top levels and the due-dates from Chapter 2. The computation of due-dates
utilizes the binding information of the tasks in the graph to compute tight bounds.
However, before clustering, the binding of tasks is unknown. Hence, we generalize
the due-date computation of Chapter 2 to one that does not know the exact
binding of tasks. The due-date of a task a depends on its own deadline and the
due-dates of its immediate successors. If the task has no successors, its due-date
is simply its deadline. Given the due-dates of all the successors, the due-date of a
task with unknown binding is computed using Equation 3.1, where succ(a) refers
to the set of all successors of a.

dda = min

{
da , min

s∈succ(a)
(dds − es),

(
max

s∈succ(a)
dds −

∑
s∈succ(a) es

|R|

)}
(3.1)

This equation is composed of three terms:
1) The due-date of a task is at most its deadline da.
2) Each successor of a has to complete before its due-date. Hence, a must finish
its execution before the minimum of (dds − es) over all the successors.
3) The third term exploits the fact that all successors must complete before the
maximum of their due-dates. For example in Figure 3.3, all successors of a5 must
be completed before the maximum of their due-dates equal to 20. The execution
time for the total workload cannot be less than the averaged workload over the set
of resources. Hence, a must be completed before the average successor workload
deducted from the maximum of the successor due-dates. The averaged workload
of the successors of a5 over the set of resources {P1 ,P2} is 4.5/2 = 2.25. Hence,
the value of this term for a5 is 20 − 2.25 = 17.75. The due-date of a is the
minimum of these three terms. Just like in Chapter 2, due-dates of all tasks are

40

computed before the start of the binding process by a single backward traversal
through the graph. For Figure 3.3, starting from leaf nodes a6, a7 and a8 and
having their deadlines as due-dates, the remaining task due-dates are computed
using Equation 3.1 in the last column of Table 3.1.

Since tasks are not yet scheduled during the computation of due-dates, it is
not possible to have a good estimate of the amount of communication penalty that
needs to be taken into account during the computation. Hence, we compute a
conservative estimate of the due-dates by not taking any communication overhead
into account. Given the task due-dates and top levels, we assign priorities based
on the slack sl between their due-dates and their top levels increased with their
execution. The smaller the slack, the higher the priority.

sla = dda − (tlevel(a,G) + ea) (3.2)

Algorithm 3: Clustering()

Input : G := (T,D)
Output: CL, CLD

1 CT := ∅,CL := ∅,CLD := ∅;
2 while CT 6= T do
3 ET := {a ∈ T | pred(a) ⊆ CT};
4 ∀a ∈ ET, tlevel(a,G) := getTLevel(a, ∅);
5 a := arg min

a∈ET
dda − (tlevel(a,G) + ea);

6 cla := {cl ∈ CL |getTLevel(a, cl) < tlevel(a,G)};
7 if cla = ∅ then
8 cla := createNewCluster();
9 CL := CL ∪ {cla};

10 end
11 tlevel(a,G) := getTLevel(a, cla);
12 for a′ ∈ pred(a) do
13 if cla′ 6= cla then
14 CLD := CLD ∪ {(cla′ , cla)}
15 end

16 end
17 CT := CT ∪ {a}
18 end
19 return CL,CLD ;

The clustering algorithm is given in Algorithm 3. The due-dates of all tasks
are computed before clustering using Equation 3.1. As a pre-processing step, we
perform transitive reduction on the DAG thus removing dependencies that are
already redundant in the graph. CL represents the set of formed clusters, ET

41

represents the set of enabled tasks and the set CT holds all clustered tasks. In
the beginning the sets CL and CT are empty. Recall that we refer to the set of
all predecessors of a task a as pred(a). We compute the top levels of all tasks
from the list of enabled tasks in line 4. The highest priority enabled task is chosen
in line 5. Line 6 assigns it to the cluster that gives the lowest updated top level
that is below its current top level. If there is no such cluster then a new cluster is
created with the task in lines 7-10. Line 11 updates the tlevel of the task to that
on its chosen cluster. Lines 12-16 add a cluster dependency for every dependency
between the chosen task and its predecessors on other clusters. In line 17, the task
is added to the set of clustered tasks. This process repeats until all tasks have
been clustered. The algorithm returns the set CL of clusters and the set CLD of
cluster dependencies. Its complexity is O((|T |+ |D |)log |T |), which is the same
as the complexity of DSC [87].

3.2.3 Shared memory extension to DSC

In this section, we adapt the tlevel computation in the clustering algorithm of
DSC, which was designed for message passing behaviour, to deal with shared
memory systems. Communication operations are scheduled on computation re-
sources in shared memory systems. As no transitive reduction can be performed
during the top level computation, we need to make useful approximations about
the synchronization costs to be considered to make better timing predictions.
Firstly, we only consider read operations and ignore the update operations in the
top level computations. This is because there is at most one update operation per
sender as opposed to multiple possible read operations per receiver corresponding
to all its predecessors. Hence, the read operations form the primary varying factor
in the communication costs. Due to the lower impact of the update operations and
the likelihood that the update operation will be removed later during scheduling
and transitive reduction, we make the approximation of not considering them at
all. Algorithm 4 gives the computation of the top level of task a for shared mem-
ory systems. If no cluster is given as input, the algorithm returns the top level
of a before assigning it to a cluster. If a cluster is given as input, the algorithm
returns the top level of a in the cluster. In this case, it adds a dependency from
the last task in the cluster to a in lines 1-6. Line 7 computes the maximum of
the sum of top level and execution times of the predecessors of a. The top level is
obtained by adding the total communication cost to this value. When no cluster
is specified, then the total communication cost is the sum of the communication
costs from all predecessors in lines 8-10, where commCost is the cost of one read
operation. When a cluster is specified, the total communication cost is the sum of
the communication costs for only the predecessors in other clusters in lines 11-17.
We take the sum of the communication costs (as opposed to maximum in DSC)
because the synchronization operations are executed on the same resource as the
task.

Table 3.2 shows the process of the clustering algorithm on the DAG in Fig-

42

Algorithm 4: getTLevel()

Input : a, cl
Output: tlevel(a,G)

1 if cl 6= ∅ then
2 alast := last task clustered in cl;
3 if alast 6= ∅ then
4 D := D ∪ {(alast , a, 0)};
5 end

6 end
7 tlevel(a,G) := max

p∈pred(a)
(tlevel(p,G) + ep);

8 if cl = ∅ then
9 tlevel(a,G) := tlevel(a,G) + commCost ∗ |pred(a)|;

10 end
11 else
12 for p ∈ pred(a) do
13 if clp 6= cl then
14 tlevel(a,G) := tlevel(a,G) + commCost ;
15 end

16 end

17 end
18 return tlevel(a,G);

ure 3.3. The first column gives the clustering step. The corresponding task chosen
in that step, its top level before being assigned to a cluster for that step, its due-
date and its slack are given in the second to fifth columns. The remaining columns
give the top levels in the available clusters with the * indicating the cluster that
is chosen. In the first step only task a1 is enabled and is added to a new cluster
cl1 . After a1 is clustered, a2 and a3 become enabled. As a2 has a lower slack it
is chosen to be clustered on cl1 which gives a reduction in its top level. Notice
that the top level of a2 is 1.5 as we have only considered the read part of the
communication (explained earlier) which is 0.5 time units. Next, a4 is clustered
on cl1 after which a5 is added to a new cluster cl2 since cl1 increases its top level.
Then, a7 is added to cl2 and a8 is added to a new cluster cl3 as cl1 and cl2 increase
its top level. The next task a3 has a much smaller top level than on both cl1 and
cl2 and is added to a new cluster cl4. Although a3 has been enabled since step 2,
it was not chosen until step 6 due to its low priority resulting from its high slack.
Finally, a6 is added to cl1. In Section 3.3, we will attempt to merge some of these
clusters to reduce them to the number of resources.

43

Table 3.2: clustering algorithm on the example dag

Step Task tlevel dd sl Top levels on clusters
cl1 cl2 cl3 cl4

1 a1 0 10 9 0∗

2 a2 1.5 15 8.5 1∗

3 a4 6.5 18 8.5 6∗

4 a5 6.5 17.75 9.25 9 6.5∗

5 a7 9 20 9.5 9.5 8.5∗

6 a8 9 20 10 9.5 10 9∗

7 a3 1.5 18 14.5 9 10.5 10.5 1.5∗

8 a6 10.5 20 7.5 10∗ 11 11.5 10

3.2.4 BDSC

BDSC is a one step approach for binding of DAGs on a limited number of re-
sources [44]. It uses an additional heuristic that checks for and fills up the idle
slots at the end of existing clusters to limit the number of new clusters created.
Once the number of clusters reaches the resource limit, it assigns tasks to one
of the available clusters that gives it the lowest top level. In [44], it is shown
to outperform other binding methods for limited resources and is therefore our
benchmark for comparisons. Table 3.3 gives the outcome of applying BDSC to
the DAG from Figure 3.3. The top level computations use the full communication
cost of 1 time unit here. The clustering until step 5 is the same as in our algorithm.
In step 6, task a8 chooses cl1 since BDSC disallows new clusters to be created
after the resource limit is reached. Next, a3 and a6 are clustered into cl2 finally
resulting in tasks a1, a2, a4, a8 being bound to one processor and a3, a5, a6, a7 to
the other.

Table 3.3: bdsc on the example dag

Step Task tlevel blevel DS Top level on clusters
cl1 cl2

1 a1 0 14 14 0∗

2 a2 2 12 14 1∗

3 a4 8 6 14 6∗

4 a5 8 5 13 9 7∗

5 a7 11 1.5 12.5 10 9∗

6 a8 11 1 12 10∗ 10.5
7 a3 2 5 7 11 10.5∗

8 a6 12 2 14 13.5 12.5∗

44

3.3 Merging

Algorithm 3 produces clusters assuming unlimited resources in the platform. The
merging step combines highly connected clusters to bring down the number of
clusters towards the number of available resources. The criterion used for merg-
ing is based on the number of cluster dependencies. Highly mutually connected
clusters are merged to save the communication costs between resources after the
binding.

Definition 4. (Highest connected cluster) A highest connected cluster
function maps a cluster cl with one of the clusters it has the highest number
of cluster dependencies with. It is denoted by HCC : CL→ CL. If the cluster has
no dependencies to any other cluster, it returns null.

Algorithm 5: Merging()

Input : CL
Output: CLMerged

1 if |CL| ≤ |R| then
2 return CL;
3 end
4 else
5 CLSorted := Clusters sorted in descending order of number of cluster

dependencies with their HCCs;
6 for cl ∈ CLSorted do
7 if HCC (cl) = null then
8 return CLSorted

9 end
10 if sz (cl) + sz (HCC (cl)) ≤ threshold then
11 CLSorted := CLSorted ∪ {(cl + HCC (cl))};
12 Update CLD ,HCC ,CLSorted ;
13 CLSorted := CLSorted\{cl ,HCC (cl)};
14 Update CLD ,HCC ;

15 end
16 if |CLSorted | = |R| then
17 return CLSorted ;
18 end

19 end
20 CLMerged := CLSorted ;
21 return CLMerged ;

22 end

The merging algorithm is given in Algorithm 5. It takes the set CL of clusters

45

and returns the set CLMerged of merged clusters. If the number of clusters is
less than or equal to the number of resources, we stop the process in lines 1-3.
In line 5, the clusters are sorted in descending order of the number of cluster
dependencies they have with their highest connected clusters. When a cluster
has the same highest number of dependencies with more than one cluster we
choose arbitrarily. Counting the number of cluster dependencies instead of the
costs of these dependencies is sufficient here because the communication costs are
proportional to the number of dependencies due to the costs being fixed. The
algorithm then chooses the highest connected cluster from the sorted list. If this
cluster has no highest connected cluster, we have only clusters left with no cluster
dependencies. The process then stops and returns the clusters. Note that there
can still be more clusters than the number of resources. Otherwise it merges the
chosen cluster with its highest connected cluster if the sum of the two clusters
does not exceed a threshold given by the total workload of the task graph divided
by the number of resources.

threshold :=

∑
a∈T ea

|R|
(3.3)

This enforces that the combined size of the merged clusters does not exceed the
average workload of the graph on the given resource set. The motivation for this
threshold is to ensure that not too many clusters are merged together resulting
in unevenly sized clusters whose workload cannot be evenly balanced on the re-
sources thus adversely affecting the makespan. If the combined size is within the
threshold, the chosen cluster is merged with its highest connected cluster while
updating CLD , HCC and the sorted cluster list accordingly in lines 10-15. If the
number of resulting clusters are equal to the number of resources, the clusters are
returned in lines 16-18. Otherwise, the process repeats until the end of the list
and returns the clusters. Since we sort the clusters in this algorithm, each time
two clusters are merged the sorted list along with the relevant cluster dependen-
cies need to be updated to include the new cluster and remove the constituent
ones. Hence, the worst case complexity of this algorithm is O(|T |(|T |+ |D |)).
In the example of Figure 3.3, the average workload is 17.5/2 = 8.75 time units.
On top of the sorted cluster list is cl1 whose size is 11 time units which is larger
than the threshold. Hence it cannot be merged despite having dependencies with
other clusters. Next in the list is cl2 which has one dependency with its highest
connected cluster cl3. Their combined size is 4 which is below the threshold and
they are merged into cl23. Next cl4 remains in a separate cluster as it has no
dependencies with cl23 and it cannot be merged with cl1 due to the threshold.

3.4 Load balanced allocation

After merging, the clusters are allocated to the available resources while balancing
the workload. This step, detailed in Algorithm 6, ensures that clusters are evenly

46

Algorithm 6: LoadBalancedAllocation()

Input : CLMerged , R
Output: CA

1 ∀r ∈ R, capacity(r) :=
∑

cl∈CLMerged
sz (cl);

2 CLSorted := Clusters sorted on decreasing size;
3 for cl ∈ CLSorted do
4 r := arg max

r∈R
capacity(r)

5 CA := CA ∪ (cl , r);
6 capacity(r) := capacity(r)− sz (cl);

7 end
8 return CA;

distributed on the cores. The cluster allocation function is defined below.

Definition 5. (Cluster Allocation) A cluster allocation is a function which
allocates a cluster in CL to a resource in R. It is denoted by CA : CL→ R.

At first, all resources in R are assumed to have maximum capacity equal to
the sum of the sizes of all clusters in line 1. Clusters are sorted in decreasing
order of size in line 2. The largest cluster is then allocated to the resource having
the highest remaining capacity in lines 3-5. The size of the cluster is then de-
ducted from the capacity of the chosen resource in line 6 and the process repeats
until all clusters are allocated. When a cluster is allocated to a resource r ∈ R,
all tasks in the cluster are bound to r. This algorithm has linear complexity.
The overall complexity of CMA comes from the merging step and is equal to
O(|T |(|T |+ |D |)). In the example, the allocation step assigns cl1 to one resource
and cl23 together with cl4 to the other resource. This gives us the final binding
where tasks a1, a2, a4, a5 are bound to one processor and tasks a3, a5, a7, a8 to the
other.

3.5 Experimental Setup and Results

In this section, we evaluate CMA by comparing its binding to BDSC on indus-
trial test cases and other well-known test cases. For the evaluation, we need the
scheduler to order the tasks once they are bound to resources. We first elaborate
on this scheduler setup.

3.5.1 Scheduler Setup

For scheduling, we adopt the list scheduler with the earliest due-date first heuris-
tic from Chapter 2. By recomputing the due-dates after the binding technique

47

a1

a3 a7

U

R

P1

P2

a2 a4

a5 a8

a6

U

R

0 1 7 9 12

U

R

2 4 10 13

a1

a3 a7

U

R

P1

P2

a2 a4

a5

a8

a6U

0 1 7 9 12

U

R

2 4 10

U R

R

1411

(a)

(b)

Figure 3.4: Schedules obtained from (a) CMA, (b) BDSC for the example DAG

presented in this chapter, we can exploit the task bindings so computed in the
due-date computations and get tight bounds on the completion times. However,
this scheduler does not take communication overhead into account to compute
start times of tasks. A small modification in the computation of the start times is
needed to take the communication overhead into account. We perform transitive
reduction at each scheduling step based on the partial schedule to get an esti-
mation of the number of synchronization operations that need to be taken into
account in the start times using Equation 3.4.

sa = max(max
p∈pred(a)

cp , max
a′∈T&(ra′=ra)

ca′) + tranRedCommCosts (3.4)

Here, max
p∈pred(a)

cp and max
a′∈T&(ra′=ra)

ca′ give the completion time of the last com-

pleting predecessor of a and the last task scheduled on ra respectively. The term
tranRedCommCosts refers to the transitively reduced synchronization costs.

For the DAG in Figure 3.3, the resultant schedule after the ordering of tasks
by the scheduler and the transitive reduction of the redundant synchronization is
given in Figure 3.4(a). It has a makespan of 12.5 time units. Figure 3.4(b) gives
the schedule obtained from BDSC which has a makespan of 14 time units.

3.5.2 Results

We now compare CMA to BDSC on some industrial and other well known ap-
plication graphs. We use the scheduler of the previous section for both methods
and evaluate the binding based on the resultant makespans and deadlines being
met. The features that we use to categorize the test cases are as follows:

• Communication to computation ratio (CCR): This is the ratio of the com-
munication cost to the average computation cost (total of task execution

48

times divided by the number of tasks). A low CCR value implies that the
application is computation-intensive. We have generated test cases for CCR
values in {0.1, 0.5, 1, 2, 3,..., 10} by adapting the task execution times.

• Number of processors (#P) the application is to be bound to. We have
chosen a range of 2-16 processors.

• Size of the application: We quantify application size in terms of its number of
tasks. This depends on the kind of application and its attributes, explained
separately below.

Industrial applications. We applied the binding approach on three large control
applications of the ASML wafer scanners. The architecture of the platforms con-
sists of homogenous general purpose single-core and octo-core processors. Tasks
on the octo-core processors use the shared memory communication mechanism
between cores. Communication between processors is carried out through a com-
munication network. Due to the relatively high cost of communication through
the network compared to shared memory, partial binding of the application tasks
on the processors is still manually decided by the designers to keep the commu-
nication through the network minimal. The remaining binding of the tasks on
the cores of the multi-core processors is to be computed using CMA. Multi-core
processors in the platform architectures of ASML are typically octo-cores. One
of the cores of the octo-core processors is reserved for background processing im-
plying that tasks bound to the octo-cores can choose from the remaining seven
cores. Additionally, the tasks in these applications are subdivided into operational
phases based on criticality. If there exists a dependency from phase A to B, then
all tasks in phase A should complete execution before the beginning of phase B.
Hence, we have performed the binding of the phases separately and reported the
final makespan results. Some phases do not have much parallelism to be exploited;
others have very few and relatively independent tasks. These corner cases have
been excluded from binding. During scheduling, the scheduler binds tasks in the
excluded phases to the core with the earliest start time. Synchronization cost is
fixed to 1.95 · 10−9s for the ASML platform to abstract from jitter and caching
delay variations. Task execution times and synchronization costs are taken as the
average of measurements.

Note that these test cases are different from those in Chapter 2 as the control
applications were updated during the introduction of multi-cores and we worked
with the latest versions. The dependencies are also much higher in these ap-
plications because the dependencies between phases are specified in a different
manner when dealing with multi-core platforms. Applications also differ based
on the version of the machines that they are part of. The applications are detailed
below.

1) NXE stages. We took the stages application from the latest NXE 3350B
version of the TWINSCAN wafer scanners of ASML that expose wafers using
EUV light. It has 4,438 control tasks and 48,491 dependencies, with a degree

49

a11

a12 a12 a13 a14

a22

a23 a24 a25

a33

a34 a35

a44

a45(a) (b)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

M
A

K
ES

PA
N

MATRIX SIZE

GE, #P=6, CCR=4

BDSC

CMA
(μ

s)

Figure 3.5: (a) Example graph for GE, (b) GE results for the given matrix sizes

(total incoming and outgoing dependencies) ranging from 1 to 240. The applica-
tion graph is repeatedly executed at a sample frequency of 20kHz. This frequency
translates to a latency requirement of 5 · 10−5s which is taken to be the available
budget on the processor. The platform consists of eight octo-cores. Task dead-
lines, decided based on their criticality by domain experts in ASML, range from
50% to 55% of the processor budget for critical tasks and 100% of the proces-
sor budget for non-critical ones. Task execution times range from 5 · 10−10s to
2.2 · 10−5s with an average of 1.1 · 10−7s. The CCR values range from 0.009 to
383 with an average of 11. CMA produces a makespan of 3.61 · 10−5s. This is 3%
lower than the 3.73 ·10−5s obtained from BDSC. The completion times of the last
completing tasks per multi-core processor from CMA are 0-9% lower than BDSC.

2) FlexRay. We chose the latest Flexray application from the NXT version
of TWINSCAN. It consists of 13,950 tasks and 663,141 dependencies, with the
degree of the tasks ranging from 1 to 1,233, executed at a sample frequency of
238Hz. The platform consists of four octo-core processors. Task deadlines range
from 50%-55% of the processor budget for critical tasks and are equal to 100% for
non-critical tasks. Task execution times range from 1.8 · 10−8s to 1.5 · 10−6s with
an average of 1.9 · 10−7s. The CCR values range from 0.1 to 11 with 1.4 being
the average. CMA produces a makespan of 3.41 · 10−3s which is 0.6% lower than
3.43 · 10−3s from BDSC. The completion times of the last tasks per multi-core
processor are lower by 0.3% to 14.7%.

3) POB. We chose the POB application from the TWINSCAN NXE 3350B
version of the wafer scanners. It consists of 2,769 tasks and 35,617 dependencies,
with a degree in the range 1-158. The application is composed of two independent
parts. One part is executed at a sample frequency of 20kHz and bound to three

50

a1

a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

(a) (b)

0.0

5.0

10.0

15.0

20.0

25.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
A

K
ES

PA
N

INPUT SIZE

FFT, #P=4, CCR=1

BDSC

CMA
(μ

s)

Figure 3.6: (a) Example graph for FFT, (b) FFT results for the given input sizes

octo-core processors. The other is executed at 10kHz and bound to two single-
core processors. Deadlines of tasks range from 50% to 55% of their respective
processor budget for critical tasks and 100% of the budget for non-critical tasks.
Task execution times range from 2.5 · 10−10s to 1.8 · 10−6s with an average of
1 ·10−7s. CCR values range from 0.1 to 774 with an average of 20. The makespan
of 2.16 · 10−5s from CMA is 6% lower compared to the 2.31 · 10−5s from BDSC.
The completion times of the last tasks on the multi-core processors are lower by
5-9%.

In all of the above applications task deadlines were met by both approaches.
However, CMA produces a lower makespan in each case. As we know that BDSC
only focuses on makespans and does not account for task deadlines, we need
another experiment to make a fairer comparison focusing on makespan results
alone. We henceforth abstract from deadlines by assigning equal and very large
deadlines to all tasks.

Application graphs of well-known problems. We generated applications graphs
of varying sizes bound to varying sized platforms for four kinds of well-known
problems. For each case, we chose to show a result plot for one set of input values
that is representative of the typical outcome observed.

1) Gaussian Elimination (GE). Gaussian elimination is an algorithm that
solves a matrix of linear equations to return the values of the unknown vari-

ables [27]. For a matrix of size m, the corresponding task graph has m2+m−2
2

tasks. Figure 3.5(a) is the task graph for a matrix size of 5. The critical path is
a11 , a12 , a22 , a23 , a33 , a34 , a44 , a45 having the most tasks. We generated a wide
range of test cases for matrix sizes from 5 to 20. The outcome for a platform of 6
processors and a CCR of 4 over all matrix sizes is in Figure 3.5(b). We see that
CMA always produces a lower makespan than BDSC.

2) Fast Fourier Transform (FFT). Fast fourier transform [26] is an algorithm

51

a1

a2 a3

a4 a5 a6 a7

a8 a9

a10

(a) (b)

0.0

20.0

40.0

60.0

80.0

100.0

0 1 2 3 4 5 6 7

M
A

K
ES

PA
N

DEPTH

FJ, #P = 5, CCR = 5, DEGREE = 3

BDSC

CMA

(μ
s)

Figure 3.7: (a) Example graph for FJ, (b) FJ results for the given depth values

that computes the Discrete Fourier Transform of a sequence of equally spaced
samples of a signal. The task graph corresponding to an input consisting of 4
data points is in Figure 3.6(a) [76]. Any path starting from the source task to any
of the leaf tasks is a critical path. For an input of size m where m = 2 k for some
integer k, there are 2m − 1 + m · log2m tasks in the graph. We have generated
test cases for input sizes 2, 4, 8, 16 and 32. Figure 3.6(b) gives the outcome for
4 processors and CCR of 1 for all input sizes. CMA and BDSC produce similar
makespans for smaller graphs, with CMA giving smaller makespans for larger
graphs.

3) Fork Join Graphs (FJ). These graphs consist of a series of fork operations
starting from a source node that are then followed by join operations to a leaf
node. We use the depth and degree parameter to define these graphs. The depth
specifies the number of recursive fork operations and degree specifies the number
of children of a task produced during a fork. Figure 3.7(a) is a fork-join graph for
a depth and degree of 2 [45]. Again, any path starting from the source task to the
leaf task is a critical path. We generated test cases with degree in the range 2-4
and depth in 1-6. Figure 3.7(b) is the result for 5 processors, a CCR value of 5
and a degree of 3 for the different depth values. The difference in makespans for
higher depths is more magnified than in the other test cases. This is because the
size of the fork join graphs with depths of 4-6 are much larger than the largest
graphs of the other test cases. Similar results are also seen for changing degrees.
This shows that our algorithm gives higher gains for larger graphs with more
communicating tasks.

4) Molecular Dynamics Code (MDC). Molecular dynamics is a method of
computer simulation that is used to study physical movements of atoms and

52

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4 5 6 7 8

M
A

K
ES

PA
N

#PROCESSORS

MDC, CCR=4

BDSC

CMA

(μ
s)

(a) (b)

Figure 3.8: (a) MDC task graph, (b)MDC results over the number of processors

molecules. The graph of its code, in Figure 3.8(a) [76], has a fixed number of
tasks and a relatively irregular structure compared to the other test cases which
makes it also useful for evaluating our algorithm. We vary the CCR values and
the number of processors (from 2 to 7) per test case. The outcome for CCR of 4 is
given in Figure 3.8. CMA produces lower makespans than BDSC and we observe
that the makespan difference reduces as we add resources, showing the benefit of
using CMA for limited resources. Another interesting observation is that more
processors does not necessarily imply smaller makespan. It is possible that with
more processors the amount of synchronization needed among cores increases thus
adversely effecting the makespan.

Table 3.4: Makespan comparison results of cma and bdsc for the well-known applications

Application Lower mBDSC Lower mCMA Equal
GE 638 2185 57
FFT 77 537 286
FJ 373 2203 484

MDC 19 53 0

Table 3.4 summarizes the overall results of the above test cases. The first
column lists the application type. The second and third columns give the number
of test cases where BDSC and CMA respectively produce the lowest makespan.
The last column gives the number of equal makespan cases. We see that CMA
produces lower makespans than BDSC in a significantly higher number of test
cases of each type. The box-plot of the percentage of improvements per case
are given in Figure 3.9. The leftmost and rightmost whiskers give the lowest

53

-140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100

RELATIVE IMPROVEMENT (%)

MDC

FJ

FFT

GE

Figure 3.9: Box plots of relative percentage improvements of CMA over BDSC

and highest improvement respectively. The left and right ends of the box are the
lower and upper quartiles and the line dividing the box is the median. The typical
improvements lie in the range between the lower and upper quartile covering 50%
of the cases. This range is 0.5-19% for GE, 0-25% for FFT, 0-57% for FJ and
-0.9-28% for MDC which is mainly positive. To gain insight in the cases where
BDSC results in better makespan, we have the box-plots of those cases in terms
of number of processors, CCR and graph sizes in Figure 3.10. The graphs where
BDSC performs better are typically smaller. This highlights the usefulness of
CMA for larger graphs. Another observation is that the negative extremes (<-
50%) for FJ and GE in Figure 3.9 are either small graphs with CCR of above 8
or bigger graphs bound to 2 processors. Both cases are outliers in Figure 3.10
implying that the negative extremes are due to a few corner cases that are not
typical.

We also performed experiments by adapting CMA to message passing systems
(using the tlevel computation of DSC) and observed that CMA and BDSC are
similar in terms of the number of test cases where they perform best. This implies
that CMA is also applicable to message passing systems. However, it confirms our
hypothesis that the three-step approach of CMA is particularly beneficial when
dealing with the inaccuracy in timing computations in the shared memory case.

3.6 Related work

Standard combinatorial optimization techniques such as branch and bound algo-
rithms [23], tabu search [38] and simulated annealing [47] search the state-space
for optimal solutions with different heuristic search strategies. To achieve good

54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#P
s

0 500 1000 1500 2000

#T
as
ks

0 1 2 3 4 5 6 7 8 9 10 11

C
C
R

Figure 3.10: Box plot of (a) number of processors, (b) CCR values, and (c) number of tasks
in the graph for test cases where CMA produces higher makespans

quality the algorithms rely on the exploration of a significant number of alternative
solutions. This works very well for small to medium sized graphs in a reasonable
amount of time. Our solution targets solutions for large DAGs constructing only a
single solution. We therefore resort to list scheduling [41] and clustering [87] based
methods that are efficient and commonly used in DAG binding and scheduling.

The clustering step in our work adopts the DSC algorithm in [87] and modifies
it to deal with individual task deadlines and the shared memory communication
mechanism. DSC has been shown to outperform other clustering methods for
an unbounded number of processors in terms of results and algorithmic complex-
ity [44]. DSC performs clustering assuming unlimited resources. We compare
CMA to BDSC, an extension of DSC for limited resources, that uses a common
binding method for both shared memory and message passing systems. It uses the
justification that if it is worthwhile to nullify a communication cost for message
passing systems, it is also worthwhile for shared memory systems. CMA, on the
other hand, explicitly takes the shared memory communication framework into
account in its extension of DSC that enables it to make better clustering decisions.
Its three-step approach uses more high level structural information in the graph
compared to the local decisions made by BDSC. The algorithmic complexity of
BDSC is O(|T |3), which is the same as the complexity of CMA.

One of the earliest methods to consider platform size limitations, proposed
by Sarkar in [64], performs clustering assuming unlimited resources and then
uses an incremental approach to perform the assignment of clusters to resources
iteratively. Each iteration selects and assigns a task along with all other tasks in
the cluster to the processor that gives the least makespan increase from the last
iteration. This needs makespan computation by scheduling all the tasks in the

55

cluster for each processor per iteration. Its complexity of O(|T ||R|(|T |+ |D |))
makes the algorithm slow for large graphs. A low complexity binding approach
in PYRROS [86] first uses DSC to obtain the initial clusters. It then sorts the
clusters in decreasing order of their loads and then maps them to the processors in
a balanced manner. Such a mapping risks assigning independent clusters onto the
same resource while separating dependent clusters onto different resources which
can increase the makespan. CMA reduces this risk by performing an intermediate
merging step based on dependencies. Also CMA, in its first step, adapts the
clustering of DSC to deal with shared memory systems.

Another approach for limited processors, called Triplet [24], also adopts a
three-step approach for binding to a system of heterogenous systems called work-
stations. The first clustering step on unlimited resources only uses task top levels
to sort tasks. CMA utilizes more information by taking top levels and due-dates
to sort tasks during clustering. After clustering, Triplet clusters the worksta-
tions to form homogenous workstation clusters. Lastly, clusters are sorted on the
amount of external communication and workload and assigned to the workstation
cluster that gives the earliest start time. In CMA’s second step, we sort clusters
on the number of dependencies with their highest connected cluster. We then
merge the highest connected clusters together thus removing the communication
cost between them. Only then we allocate the clusters to processors. This second
step allows us to further reduce communication between clusters thus minimizing
makespans.

An approach for shared memory systems and limited resources that considers
the concept of synchronization time, like in CMA, is the Extended Latency Time
(ELT) [70] approach. It calculates priorities of tasks using a combination of met-
rics including top levels and bottom levels. It then performs binding by choosing
tasks based on the priority order, while keeping the priorities fixed. CMA, like
DSC and BDSC, uses dynamic priorities which are updated during clustering to
account for the edge costs that become zero when two tasks are clustered to-
gether. This helps in making better binding decisions as it can detect changes in
the critical paths that can arise due to zeroing of edge costs, also pointed out in
[49].

Other single-step binding algorithms include High Level First with Estimated
Times [3], Heterogenous Earliest-Finish Time [76], and Constrained Earliest Fin-
ish Time [45]. In [44], BDSC is shown to outperform these as well as the earlier
mentioned multi-step approaches. BDSC is thus chosen as our benchmark for
comparison. This chapter shows that CMA outperforms BDSC for binding in
shared memory systems.

Binding algorithms typically focus on makespan reductions and do not take
task deadlines into account. An approach that does consider deadlines is given
in [13]. However, it considers independent sporadic tasks and is preemptive also
allowing task migration, none of which are applicable to our problem domain.
CMA performs binding of DAGs on multiprocessor platforms by utilizing paral-
lelism while taking both communication overhead and task deadlines into account.

56

3.7 Summary

This chapter contributes a three-step binding algorithm that computes the binding
of tasks with deadlines on the limited resources of a shared memory multiprocessor
platform. The first step, a deadline aware shared memory extension of the DSC
algorithm, produces a clustered graph assuming unlimited resources. Since there
can be more clusters than resources, the next step performs merging of clusters
based on dependencies while constraining them to be smaller than a threshold.
Finally the clusters are allocated to the resources by balancing the workload.
CMA has been validated by evaluating its impact on our earliest due-date first
scheduler on large control applications of ASML. CMA produces lower makespans
in comparison to the state of the art BDSC algorithm. It also outperforms BDSC
in a high number of test cases of other well-known parallel algorithms.

57

58

Chapter 4

Robustness analysis of
static-order schedules

In the applications considered until now, tasks have fixed measured execution
durations. Most of the time, tasks execute with execution times around these
durations. However, as explained in Chapter 1, general purpose platforms are
known to suffer from low predictability and applications running on them often
exhibit fluctuations in execution timings. There is a need for a stochastic ro-
bust scheduler that can produce schedules that are tolerant to these variations
and robust in nature. Due to the complexity of the problem, we revert back to
the simpler task model where the binding of tasks is known and communication
overhead is not considered. This chapter presents the first step towards robust
scheduling by providing a means to define and measure robustness of tasks and
static-order schedules. An early version of this work has been published in [7].

Robustness of a task is defined as the probability of meeting its deadline and
the robustness of a schedule is expressed in terms of the expected value of the
number of tasks missing their deadlines. Since nominal execution times of tasks
are mostly closer to the best case execution time than to the worst case execu-
tion time, the probability density function of the task execution time is mostly
not normally distributed but right skewed in nature. Multiprocessor schedules
are characterized by dependencies that span along as well as across processors.
Propagation of completion time distributions along these dependencies requires
a combination of convolutions and maximization operations to be performed on
the task execution and completion time distributions. Since there are no known
practical analytical means to compute or accurately approximate the distribution

59

of the maximum of stochastic variables that are skewed in nature (e.g. skew-
normal or PERT), we devise an approach that combines the advantages of both
analytical computations and simulations to accurately estimate the robustness
of tasks and schedules. Apart from being skewed, we have information on the
bounds of the distributions in the form of best-case and worst-case task execution
times. The combination of the skewness and the boundedness requirements is
met by (modified) PERT distributions, as opposed to the skew-normal distribu-
tions which do not meet the boundedness requirement. Our robustness approach
involves fitting a (modified) PERT distribution on the simulated results using
analytically computed bounds. We present two possible ways of doing this curve
fitting and compare them in the experimental section. The robustness analysis
(and both its possible curve fitting techniques) has been tested for scalability on
ASML applications. The chapter is further organized as follows. Section 4.1 gives
the related work in robustness analysis. Section 4.2 defines the problem by giving
the preliminaries followed by a problem description and a summary of the solution
approach. Section 4.3 gives the major challenges of the analysis and Section 4.4
gives the details of the proposed practical realization of the analysis. Section 4.5
gives the experimental results and Section 4.6 summarizes the chapter.

4.1 Related work

In this section, we present literature survey pertaining to the three main aspects of
this chapter, 1) different robustness measures presented in literature, 2) techniques
to perform max-plus operations on distributions and 3) evaluation of the goodness
of fit of a distribution on data samples.

First we elaborate on the existing work for analyzing robustness. A paper
by Canon and Jeanot [22] does a survey of several robustness metrics for DAG
schedules and compares them. It discusses a means to measure robustness, as
presented in [10], by 1) defining what performance measure needs to be robust, 2)
identifying what parameters impact its robustness, 3) identifying how changing
these parameters effects robustness and 4) quantifying what amount of parameter
variation causes loss in performance. Based on these steps, a metric called the
‘robustness radius’ is defined as the smallest variation of the parameter that af-
fects the system performance. Such kind of definition does not take into account
probabilities that some parameter changes occur more often than others. In our
work, the performance measure is the number of deadline misses and the param-
eters that effects it are the variations in task execution times quantified using
probability distributions. The authors of [32] use the Kolmogorov-Smirnov (KS)
distance between the cumulative distribution of the performance measure with
and without perturbations. A large distance implies that the perturbation has a
big impact on robustness. In our work, the parameters that impact robustness
are not external perturbations but the given execution time distributions of tasks.
Other alternatives of quantifying robustness in literature are slack based metrics

60

as presented in [68]. An example is the slack mean defined as the mean of the
slack in the schedule in [18]. These metrics are suitable when we do not have the
stochastic execution time information that forms the basis of this work. In our
work, we utilize this stochastic information to derive deadline miss probability-
based metrics to quantify DAG schedule robustness.

There is also literature that does express robustness in probabilistic terms.
In [83], the deadline miss probabilities of tasks running on unreliable hosts is es-
timated. They study the availability periods of hosts and their effect on tasks
meeting their deadlines. In our work we study robustness of schedules in relation
to task execution time variations that are known beforehand and internal to the
tasks. Another probabilistic metric is presented in [67] that gives the probability
that the makespan is within two bounds. This can be used to address the deadline
problem by assuming the upper bound on the makespan to be the deadline that
needs to be met. However, the approach only looks at independent applications
and hence the propagation of distributions avoids the need to consider synchro-
nization and hence the need to compute the maximum of stochastic variables.
In our DAG schedules, tasks on different processors have data dependencies be-
tween them. When a task has dependencies from two source tasks on different
processors, the start time of the tasks is the maximum of the completion times of
the source tasks requiring the analysis of the maximum of stochastic completion
times.

We will now look into the related work in performing the max-plus opera-
tions on distributions. The central limit theorem [61] states the convergence of
many random variables (under certain fairly common conditions) to approximate
a normal distribution under summation, but it does not apply to the maximum
operator. In fact, it has been observed that the max of standard normal distribu-
tions can tend to be skewed depending on the difference in the standard deviations
of the input terms. There are no known classes of continuous distributions that
are closed under the maximum operation (such that the distribution of the max-
imum is also in the class). Work has been done to approximate the maximum
of 2 or more standard normal random variables with another standard normal
random variable up to a certain degree of accuracy such as presented in the work
of Clark [25] and in [58, 15]. It has been shown in [58] that these approximations
perform poorly when the standard deviations of the input distributions are dif-
ferent. In addition, we could not find methods of approximating the maximum
of distributions that are skewed by nature. In the applications considered in the
domain of this chapter, the distributions of the execution times of tasks are most
often skewed (right skewed with nominal values closer to min). Hence, we cannot
use normal approximations without losing accuracy in the results.

Alternatively, one could approximate distributions with a limited number of
discrete values. However, this results in exponential computational complexity
as all combinations for different tasks need to be enumerated [16]. Another ap-
proach to this computation is the enumeration of all the critical paths leading to
a particular node. The propagation of distributions along these individual paths

61

follows the sum operator alone. Finally, maximization is applied to the distribu-
tions of all the critical paths. This approach separates the analysis into two parts:
computing the timings of paths which can be computed with simple convolutions
and which enjoy the central limit theorem and finally applying the maximization
[8]. The drawback of this approach is the need to find the critical paths to be
considered per node. For large schedules the number of critical paths that need
to be detected can be very large.

Most approximation methods compare with extensive simulations to judge the
accuracy of their approximations [73, 62]. This involves simulating a large number
of samples to obtain the entire resultant distribution including the tails with often
small probability mass that determine the deadline miss probabilities. This has
the drawback of being too time consuming. In this work, we also use simulations,
but we use the PERT distribution to shorten simulation times. The results of these
quick simulations are combined with analytically computed bounds to obtain the
distributions.

On the PERT fitting aspect, there exist distance measures in the literature
that can be used to evaluate the goodness of fit of distributions on samples of data
such as the KS-statistic in [32, 39]. These measures have their own probability
distribution and studying these distributions gives an estimate on the closeness of
the input distributions. The R-squared measure [21] used in regression analysis
is a single value between 0 and 1 that indicates how well data fits the statistical
model that is predicted using the analysis and is calculated using the sum of
squares method on the data. In our work, we propose a new metric based on the
inner product of the two distributions that also returns a single value between 0
and 1 which gives an estimate of their closeness. It can be used to evaluate the
closeness of any two distributions and not just that of a distribution on data. One
of our curve fitting approaches uses this metric in a divide and conquer search
algorithm to accurately and with low complexity fit a PERT distribution on the
histograms obtained from limited simulations.

4.2 Problem definition and solution overview

4.2.1 Preliminaries

In this chapter, the definition of a task is extended to replace the fixed variables
corresponding to execution time, start time and completion time with stochastic
variables. Additionally, since we revert back to the fixed binding assumption to
focus on the robustness problem, we again constrain the binding of a task to be
known by removing the ⊥ value that was introduced in Chapter 3. We also revert
back to the definition of a set of dependencies as the tuple D ⊆ T 2 that does not
consider the communication cost.

Let D be the set of all probability density functions such that if d ∈ D, then
d : R≥0 → R≥0. For a DAG G = (T,D), a task a ∈ T is a tuple a = (Pea , ra, da) ∈

62

P
R

O
B

A
B

IL
IT

Y
 D

EN
SI

TY

RANDOM VALUE

gamma1 = 4

gamma2 = 50

gamma3 = 547

gamma4 = 1000

histogram

max mode min

Figure 4.1: Modified PERT distributions with different γ values.

D × R × R≥0. Here, ra ∈ R is the resource that a is bound to from the set of
resources R, Pea is the probability density function of the continuous execution
time distribution of a, with ea denoting the random variable for the execution
time of a, and da is the deadline of a.

We use the fixed binding and assume a given execution order of tasks in a
static-order schedule to perform robustness analysis of run-time scheduling. Given
a static-order schedule, the tasks have stochastic start and completion times due
to their random execution times. For task a, sSa and cSa denote the random
variables for the start and completion time in S, respectively. The start time
of the first task scheduled on a resource, without any predecessors, is zero with
probability 1. Completion times are derived by adding the task execution times
to the corresponding task start times. The probability density functions for the
start time and the completion time of a are denoted by PSsa and PSca respectively.

A PERT distribution [82] is a version of the Beta distribution and is defined
by three parameters, namely the minimum (min), the most likely value (mode)
and the maximum (max). It derives its name from the PERT (project evaluation
and review technique) networks, a statistical tool used in project management to
analyse, with respect to their timings, the tasks involved in completing a project.

A modified PERT distribution is a variant of the PERT distribution developed
by David Vose and allows producing shapes with varying degrees of uncertainty
by means of a fourth parameter, gamma (γ), that scales the width (variance) of
the distribution. In the standard PERT, γ = 4 and upon increasing the value of
γ, the distribution becomes more concentrated around the mode. On the other
hand on decreasing the value of γ, the distribution gets more spread out between
the min and max . Figure 4.1 shows the standard PERT distribution with γ = 4

63

and three example modified PERT distributions for higher values of γ together
with their fitting on a histogram for a particular task in the ASML schedules.
The probability density function for the modified PERT distribution with min,
max , mode and γ as parameters is given by the following equation [78]:

P (x) =

{
(x−min)α1−1(max−x)α2−1

β(α1,α2)(max−min)α1+α2−1 min ≤ x ≤ max

0 otherwise

where the shape parameters α1 and α2 are given in Equation 4.1 and the beta
function (β(α1, α2)) is given in Equation 4.2.

α1 = 1 + γ

(
mode −min

max −min

)
;α2 = 1 + γ

(
max −mode

max −min

)
(4.1)

β(α1, α2) =

∫ 1

0

tα1−1(1− t)α2−1dt (4.2)

4.2.2 Problem description

A DAG schedule is a fixed static-order and binding of tasks on a multiproces-
sor. Tasks in a schedule have dependencies between them both along and across
processors. We make two additional assumptions: (1) Task execution time distri-
butions are known and have finite support, i.e., lower and upper bounds outside
of which the probability density is zero. A deadline is given for each task. (2) Ex-
ecution times of tasks are independent. In reality positive or negative correlations
between execution times of tasks may exist, but the focus of this work is to study
how robustness of schedules is influenced by scheduled order and synchronization
of the tasks.

Robustness is a measure of the tolerance of a task or schedule to variations in
the execution times of tasks. Tolerance is measured by the probability that the
tasks in the schedule still meet their deadlines in the presence of these variations.
First, robustness of tasks to missing their deadlines is defined and from that
robustness of the schedule as a whole is defined. The statement of the problem
being dealt with in this chapter is:

Problem Statement 3. Given static-order schedule S, what is the robustness
of S and its constituent tasks?

To obtain deadline miss probabilities, we need to derive task completion time
distributions from task execution time distributions and the given schedule. There
are two obvious approaches to doing this: (1) compute the completion time dis-
tributions analytically, (2) use the execution time distributions to draw execution
time samples and perform extensive simulations to obtain the full completion time
distributions. However, computing the completion time distributions analytically
is highly complex due to the presence of the max operations owing to the depen-
dencies between the tasks. This will be further elaborated in Section 4.3. On

64

the other hand performing simulations alone will require us to perform extensive,
time consuming simulations to be able to derive full completion time distributions
with sufficiently accurate tails to estimate deadline miss probabilities. Instead, we
use an approach which combines limited simulations with analytically computed
bounds to estimate the completion time distributions.

4.2.3 Solution flow

In this subsection we summarize the overall approach of the chapter. Deadline
miss probabilities can be derived from the distributions of the completion times
of the tasks and their deadlines. Before we can compute the completion time
distributions, we need task execution time distributions. These are typically ap-
proximated using statistical data from measurements, as shown in Figure 4.2(a).
We present two curve fitting techniques that can be used to fit a PERT distribu-
tion on measurement samples. Taking the lower bound (min) and upper bound
(max) of the execution times, one technique uses a nested divide and conquer
search on the histograms of the measurement samples to obtain the unknown
mode and γ PERT parameters. The other technique directly computes the mode
and γ from the min and max together with the mean and variance of the measure-
ment samples. We compare the two fitting techniques in the experimental section.
Once we have the execution time distributions, we need to derive the completion
time distributions of the tasks. Due to the difficulties of performing max and plus
operations on distributions [16], this cannot be done entirely analytically. On
the other hand, performing only simulations produces insufficient rare deadline
misses depending on the length of the simulations as shown in Figure 4.2(b) and
(c). Hence, we instead approximate the completion time distributions as PERT
distributions using analytically computed min and max and data from limited
simulations, carried out by drawing samples from the given PERT execution time
distributions. This is shown in Figure 4.2(d). For this approximation, we consider
the same two mentioned curve fitting techniques. Once we have obtained the es-
timates of the completion time distributions, we can calculate task robustness as
the red shaded portion of the area under the density function in Figure 4.2(e).
Schedule robustness is then quantified as the expected number of task deadline
misses. Although not a focus of this work, it might be possible to adapt the
fitting algorithms to apply the overall approach even when the distributions are
not PERT-like.

4.3 Challenges of the analysis

In this section we explain in some detail the analytical model and the reasons for
its complexity. This is followed by an explanation on why an approach using only
simulations is also not practically feasible.

65

A B

C D E

A B

C D E

min maxmode

Accurate task robustness

cannot be derived only from

a histogram due to absence

of rare events. Hence, best

case(min) and worst

case(max) completion times

are computed analytically.
Best curve fit PERT

distributions are

derived from task

execution time

histograms

Simulations are used to derive

completion time histograms per

task. Rare events do not

appear in simulation

Derive task robustness

from PERT distribution

which can then be used

to compute schedule

robustness

min maxmode

Best curve fit

modified PERT

distribution is

derived using the

histogram and the

computed values

(a) (b) (c)

(d)
(e)

Figure 4.2: Robustness analysis: flow of solution approach.

4.3.1 Analytical approach only

Since we want to compute the deadline miss probabilities of all tasks in the sched-
ule, we need to compute and propagate the completion time distributions per task.
Computing these distributions under the maximum operation is very difficult as
is explained below. Given the start and execution time distribution of a task a
in a schedule S, the completion time distribution is the distribution of their sum
and is computed as follows.

PSca(t) =

∫ ∞
0

PSsa(t′) · Pea(t− t′)dt′ (4.3)

The start time of a task without predecessors, when there is no task scheduled
on its resource r is 0, and its distribution is as follows (δ(t) represents the Dirac
δ-function).

PSsa(t) = δ(t) (4.4)

The start time of a task which has no predecessors but has tasks scheduled
before it on its resource r, with before(r, a) being the last task scheduled on r
before a, is the completion time of before(r, a).

P S
sa(t) = P S

cbefore(r,a)
(t) (4.5)

The start time of a task a with predecessors is the maximum of the completion
time of the last completing predecessor (lastPred(a)) and that of before(r, a).

66

sa = max(cSbefore(r,a), c
S
lastPred(a)) (4.6)

The corresponding start time distribution is computed as follows.

P S
sa(t) = P S

cbefore(r,a)
(t)

∫ ∞

t

P S
clastPred(a)

(t′)dt′

+ P S
clastPred(a)

(t)

∫ ∞

t

P S
cbefore(r)

(t′)dt′
(4.7)

If the completion times of lastPred(a) and before(r, a) are dependent, due to the
existence of dependencies to common tasks, one would have to resort to computing
it from the joint distribution of lastPred(a) and before(r, a).

P S
sa(t) =

∫ ∞

t

P S
cbefore(r,a),lastPred(a)

(t, t′)dt′

+

∫ ∞

t

P S
clastPred(a),before(r,a)

(t′, t)dt′
(4.8)

Such a joint distribution also includes the information about the correlation
between the individual completion time values of the tasks. As such, obtaining
this distribution is difficult in practice. The completion time distribution can be
computed from the start time distributions using Equation 4.3. However, obtain-
ing the start time distributions is hard even without correlations. This is because
there are no continuous distributions that are known to be closed under the max
operation, which captures synchronization on input dependencies and execution
times. Hence, even if P S

cbefore(r,a)
and P S

clastPred(a)
are known distributions, the dis-

tribution of their max need not be the same or even a known distribution. Also,
if P S

cbefore(r,a)
and P S

clastPred(a)
are the max of certain other distributions (from

earlier in the schedule) then it is possible that their properties are already not
known. Due to this it becomes very hard to compute their integrals. Alterna-
tively we could consider discrete enumerations of P S

cbefore(r,a)
and P S

clastPred(a)
for

the computation. We would then need to compute the max (or sum) for each
combination of discrete values from them. The complexity of this computation
grows exponentially in the size of the task graph and the number of possible dis-
crete values [71]. This is clear when we consider a schedule with n tasks and
each task has m possible values for its execution time. The number of possible
values for the completion time is mn. Industrial schedules may have thousands
of tasks executing on general purpose platforms and exhibiting large variations in
their execution timings. To avoid the exponential complexity of such a discrete
approximation, we should instead be able to somehow approximate the resultant

67

distribution to some known distribution with parameters computed in terms of
the parameters of the input distributions. However, as already seen in Section
4.1, there are also no known analytical approximations for the parameters of the
max of skewed distributions. As such, we could not compute the completion time
distributions of tasks analytically alone.

4.3.2 Simulations only

Simulations are performed on the schedules by drawing samples from the task
execution time distributions. Extensive simulations to obtain a large number
of completion time samples can be used to estimate the entire completion time
distributions. The advantage of this approach is that we do not need to keep
track of the correlations between the various distributions due to dependencies
between tasks since they are inherently carried across in the simulations. The
main drawback is that extensive simulations require a significant amount of time.
In particular, simulating fewer samples results in the drawback that events with
very low probability of occurrence (such as deadline misses often are) may not
appear at all or too infrequently to accurately estimate their likelihood. As a
result, with limited simulations we only obtain values around the most likely
completion times and miss out those that are less likely. In this scenario, we will
find the probability of missing deadlines to be estimated very inaccurately. Hence,
we need an approach that combines the accuracy of the analytical approach to
obtain rare events with the strength of simulations to generate mass around the
most likely events and to naturally handle correlations due to task dependencies,
to obtain completion time distributions.

4.4 Proposed robustness analysis approach

We assume that task execution time distributions are known apriori. Mostly in
reality, the information known about task execution times is limited to measure-
ments. PERT distributions are fitted on the measurements to obtain execution
time distributions. Later on in Section 4.4.4, PERT distributions are fitted on
completion time samples from simulations in combination with analytically com-
puted bounds to obtain completion time distributions. We present two approaches
to fit PERT distributions on samples (measured samples for execution times and
simulated samples for completion times). The parameters of a PERT distribution
are min, max , mode and γ. Along with the samples, both approaches needs the
min and max of the distributions. In case of the execution time distributions,
the min and max are set to be the lower bound and the upper bound values
obtained from the measurements. For the completion time distributions, we use
analytically computed bounds as min and max which are further elaborated in
Section 4.4.4. We compute these bounds analytically since they can be efficiently
computed and the simulations are too limited to obtain these extreme values as

68

already explained in Section 4.3.2. To evaluate the fitting approaches, we first
define a metric that quantifies how well a PERT distribution fits on a histogram.
One of the curve fitting techniques also uses this metric in its fitting process.

4.4.1 Curve fitting metric

A histogram is a means of categorizing data samples into a number of bins. These
bins are identified by a specific range or bin-interval and the width of the interval
is the bin-width represented as ∆. In this chapter, we consider all bins of a
histogram to be of the same width. The normalized height of the bin is given by
the number of elements falling within the bin interval divided by the total number
of elements in the histogram. We obtain the frequency density by dividing the
height of the bin with the bin-width. The number b of bins is a parameter of our
approach. Depending on the number of samples, the value of b must be chosen
taking into account the trade-off between the fine-graininess of the bin-intervals
and the irregularities in the resultant bin heights due to the limited statistical
information. In order to define the best fit of one distribution on another, we
need a metric that quantifies the fit between two distributions.

Definition 6. (L2 functions) A function f(x) is said to be square integrable
if |f |2 =

∫∞
−∞ f(x)2dx is finite. An L2 function is a function that is square

integrable. In such a case |f | is called its L2-norm.

Definition 7. (L2 inner product) Given two L2 functions f and g, their inner
product is given by

〈f, g〉 =

∫ ∞
−∞

f(x) · g(x) dx, (4.9)

Note that |f |2 = 〈f, f〉.

Based on the above definitions, we define the curve fitting metric using the nor-
malized inner product of the PERT and the histogram as follows:

Definition 8. (Curve fitting metric) Given a PERT distribution p and a
histogram h, both L2 functions, their curve fitting metric (M〈p,h〉) is defined by

M〈p,h〉 =
〈p, h〉
|p| · |h|

(4.10)

We normalize the inner product with the L2 norms of the PERT and the
histogram. This is to scale their respective lengths in order to obtain a metric in
the range [0,1] that describes how well a PERT curve fits on a histogram. Since
the histogram is discrete with a fixed number of bins b, each density value can
be obtained using the rectangular function. We use δ∆ to denote a rectangular
function over a bin width ∆ and height 1

∆ , centered from 0 to ∆.

69

h(x) =
∑

1≤k≤b

hk · δ∆(x− lk) (4.11)

where lk is the left boundary of the kth bin and hk is its normalized height
obtained by dividing the number of the elements in the bin with the total number
of elements in the histogram. Given this, the inner product of h and the continuous
PERT distribution p is computed as follows.

〈p, h〉 =

∫ ∞
−∞

p(x)
∑

1≤k≤b

hk · δ∆(x− lk)dx

=
1

∆

∑
1≤k≤b

hk

∫ rk

lk

p(x)dx,

(4.12)

where lk and rk are left and right boundaries of the kth bin. To obtain the
curve fitting metric of Equation 4.10, we divide the inner product of p and h by
both their L2 norms obtained by taking the square root of their respective L2

inner products. Using Definition 7 and Equation 4.11, the L2 inner product of
the discrete histogram h with itself can be computed.

〈h, h〉 =

∫ ∞
−∞

∑
1≤k≤b

hk · δ∆(x− lk) ·
∑

1≤k≤b

hk · δ∆(x− lk)dx

=
1

∆2

∑
1≤k≤b

hk · hk ·∆ =
1

∆

∑
1≤k≤b

h2
k

(4.13)

where ∆ is the bin-width of the bins of the histogram.
The L2 inner product of p with itself can be reduced to the following expres-

sion from the PERT equations in Section 4.2.1 (we used Mathematica for the
reduction).

〈p, p〉 =
Γ(2α1 − 1) · Γ(α1 + α2)2 · Γ(2α2 − 1)

(max−min) · Γ(α1)2 · Γ(α2)2 · Γ(2(α1 + α2 − 1))
, (4.14)

where α1 and α2 are obtained using Equation 4.1 and Γ(n) is the Gamma function
[11] on n. The following two subsections explain our approaches to fit a PERT
distribution on execution or completion time histograms.

4.4.2 Curve fitting using divide and conquer search for best
fit

The first curve fitting technique fits a PERT distribution onto a histogram. For
execution times, the measured discrete values can be classified into histograms.

70

Algorithm 7: DCSm
Input : mlow ,mhigh , γlow, γhigh, precm , precγ
Output: Best fit m, Best fit γ, Best fit M

1 m1 := mlow ;
2 m4 := mhigh ;

3 interval := (m4−m1)
3 ;

4 while interval ≥ precm do
5 m2 := m1 + interval;
6 m3 := m1 + 2 ∗ interval;
7 for each x ∈ {1, 2, 3, 4} do
8 (γx,M(mx)) := DCSγ(mx, γlow , γhigh , precγ)
9 end

10 [m1, m4] := selectSegment(M(m1, γ1),
M(m2, γ2),M(m3, γ3),M(m4, γ4));

11 interval := (m4−m1)
3 ;

12 end
13 return (m1, γ1,M(m1, γ1))

For completion times, the simulation samples are classified into histograms. With
the information of the min and max of the distributions and these histograms,
the aim of this curve fitting technique is to derive the mode and γ for the PERT
distribution with the best fit on the histogram (giving the highest value for the
curve fitting metric).

We use a divide & conquer search (DCS) approach given in Algorithm 7. The
algorithm efficiently searches for a local maximum in a function of two variables on
a given interval. The algorithm is used with the function that returns the metric
M〈p,h〉 for a given histogram h and PERT distribution p with parameters m and
γ, where m and γ are the mode and γ parameters. The search converges quickly
without requiring a search through all the points in the search space. To compute
the best mode and γ combination, a nested divide & conquer search is applied. At
the top level, the algorithm searches for the optimal mode. To compare different
modes, we need to compute the value of the metric corresponding to this mode
with its optimal value for γ. So for each chosen mode, a second level of divide
& conquer search is applied to look for the optimal γ, as given in Algorithm 8.
Algorithm 7 takes as input the range for the mode values ([mlow, mhigh]), the
range for the γ values ([γlow, γhigh]) and the precision up to which we continue
the search for the optimal mode and γ denoted as precm and precγ . The lower
and upper bounds on the mode are the left boundary of the first bin and the right
boundary of the last bin, respectively. The lower bound on γ is 4 (default value γ
for PERT distributions) and the upper bound is chosen to be a sufficiently large
value (104 here) that does not exclude the optimum, based on experiments.

71

Algorithm 8: DCSγ

Input : m, γlow, γhigh, precγ
Output: Best fit γ, Best fit M

1 γ1 := γlow ;
2 γ4 := γhigh ;

3 interval := (γ4−γ1)
3 ;

4 while interval ≥ precγ do
5 γ2 := γ1 + interval;
6 γ3 := γ1 + 2 ∗ interval;
7 for each x ∈ {1, 2, 3, 4} do
8 Compute M(γx) using γx and the fixed m
9 end

10 [γ1, γ4] := selectSegment(M(m, γ1),M(m, γ2),
M(m, γ3),M(m, γ4));

11 interval := (γ4−γ1)
3 ;

12 end
13 return (γ1,M(m, γ1))

Algorithm 7 works by choosing four equidistant mode points (m1, m2, m3 and
m4) covering the given range. When the distance between these points (interval)
is below the precision precm the while loop exits. For each of these four points,
the optimal γ and corresponding metric value (M) are computed using Algorithm
8. Algorithm 8 similarly employs a search on the γ parameter by choosing four
equidistant γ points in the range [γlow, γhigh]. At each of these γ points, with
given mode, min and max , the value of the metric is computed with the formulae
for the curve fitting metric given in Equation 4.10.

In both algorithms, based on the values of M at these (mode or γ) points, the
selectSegment function updates the left and right most points by eliminating at
least one and sometimes two of the three intervals based on the values of the metric
at each of the points and decides which segment(s) can contain the local maximum
assuming uni-modal behavior of the function. For instance, consider Figure 4.3
which shows a mapping of points (mode or γ) to M values such that M1 < M2,
M2 > M3 and M3 > M4. This indicates that the curve is increasing between
M1 and M2 and decreasing between M2 and M3 and continues to decrease until
M4. As such the peak cannot lie between M3 and M4. The interval is reduced
to [M1,M3]. By continuing the search in this manner, the interval between the
points is reduced in every iteration of the loop to at most 2/3rd and possibly even
1/3rd of its original size. When the while loop exits the search returns the highest
metric and the corresponding γ (for Algorithm 8) or mode and γ combination (for
Algorithm 7) from the last four points. This algorithm has logarithmic complexity
in the size of the interval and converges quickly. It is possible that the histogram
being fitted using the DCS algorithm has multiple (local or global) peaks. In this
case the algorithm tends to fit a PERT distribution with a mode either around

72

Point1 Point2 Point3 Point4

M1

M2

M3

M4

MODE or γ

C
U

R
V

E
FI

TT
IN

G
 M

ET
R

IC

Figure 4.3: Divide and conquer search using four equidistant points.

one of the peaks or somewhere in between in such a manner that the overall curve
fit is good. The speed of the divide and conquer is preferred over the accuracy of
a full search. With respect to γ, we expect the function to be uni-modal; a proof
of this conjecture remains to be done.

4.4.3 Curve fitting using PERT equations

A faster alternative to the divide and conquer search presented in the previous
section is to use PERT equations to compute mode and γ directly from the min,
max and execution time or completion time samples. We do not need classification
of samples into histograms for this method. We first compute the arithmetic mean
and variance of the samples, denoted by µ and var respectively. The mode and γ
parameters are then computed from the min, max , µ and var as follows:

γ =
(µ−min) · (max − µ)− 3 · var

var
(4.15)

mode =
µ · (γ + 2)−min −max

γ
(4.16)

Equations 4.15 and 4.16 were obtained by rearranging the expressions defining
the mean and var of a modified PERT distribution given below [78].

µ =
min + γ ·mode + max

γ + 2
(4.17)

73

var =
(µ−min) · (max − µ)

γ + 3
(4.18)

This alternative is much faster than the divide and conquer search. In the
experimental section, we use the curve fitting metric from Section 4.4.1 and the
robustness metric that is presented in Section 4.4.5 to compare the two curve
fitting techniques. The best approach is used within the robust scheduler of
Chapter 5.

4.4.4 Obtaining completion time distributions: Combining
analysis and simulations

To obtain the completion time distributions, we first analytically compute the
min and max points of the PERT distributions from the bounds of the execution
time distributions. Since the schedules are static-order, the best case and worst
case completion times can be computed by considering all tasks in their best case
and worst case execution times, respectively. In the static-order schedule, the
fixed execution order of tasks on processors and the processor to processor syn-
chronization mechanism are monotone, i.e., when a task execution time increases,
completion times of tasks that follow it in the schedule either remain the same
or increase also. Hence, worst-case execution times of tasks are known to lead
to worst-case completion times of other tasks and similarly for best-case. As a
result, there cannot be any scheduling anomalies allowing for a straightforward
computation of the bounds on the completion times of tasks. Once we have the
min and max, we draw samples from the PERT execution time distributions and
perform simulations to obtain completion time samples which are converted to
histograms. Each simulation corresponds to one run through the graph and re-
turns one completion time sample per task. Since we generate samples by walking
through the tasks and dependencies in the graph, correlations due to data depen-
dencies are implicitly taken into account in these completion time samples. We
then compute the mode and γ values using one of the two curve fitting techniques
presented in Section 4.4.2 and Section 4.4.3 to obtain completion time distribu-
tions. Note that the required number of simulations is relatively small, because
we only need to estimate the PERT parameters rather than the full distribution,
as demonstrated in the experiments section.

4.4.5 Robustness metrics

The robustness of a task can be measured in terms of the probability of missing
its deadline. Given the distribution for the completion times of a task a, the
probability of missing its deadline da is computed as follows.

P[cSa > da] =

∫ ∞
da

PSca(t)dt (4.19)

74

Given the modified PERT completion time distribution of a task a and its
deadline da , its probability of deadline miss is the cumulative probability density
of the PERT from da to max . It can be computed by substituting the PERT
equations from Section 4.2.1 to Equation 4.19 to obtain the following expression.

P[cSa > da] =

∫ max

da

(t−min)α1−1(max − t)α2−1

β(α1, α2)(max −min)α1+α2−1
dt (4.20)

Given the probabilities of deadline misses per task, we define a random variable
X to express the number of tasks that miss their deadline in a schedule. The
probability distribution for this random variable is a discrete distribution with
probability values for any x tasks missing their deadlines.

P (X = x) : Probability that x tasks miss their deadlines (4.21)

The expected value of this random variable gives the expected value of the
number of tasks that miss their deadlines in a schedule S. It is one metric that
quantifies the robustness of S and can be derived by taking the sum of the dead-
line miss probabilities of its constituent tasks. Note that this also applies if the
completion time distributions of the tasks are dependent. We choose to measure
robustness using the expected number of tasks missing deadlines instead of meet-
ing deadlines for typically being the smaller number of the two. A highly robust
schedule will thus have zero expected number of deadline misses.

E[X] =
∑
a∈T

P[cSa > da] (4.22)

Normalizing the expected value with the number of tasks in S gives a metric
that can be used to compare schedules of different sizes.

E[X] =

∑
a∈T P[cSa > da]

|T |
(4.23)

The following section gives the experimental results obtained by applying this
approach on real schedules.

4.5 Experimental results

We performed robustness analysis on the schedules of three applications of the
TWINSCAN NXE 3300B version of the wafer scanners, namely (1) Stages, (2)
Wafer handler and (3) POB. Stages and POB applications have been introduced
in previous chapters. Wafer handler is an application that performs multiple tasks
to manoeuvre the wafer into the wafer stage to be exposed while regulating its
features such as temperature, positioning and orientation as required.

75

The schedule of this stages application consists of 4219 tasks running at a
frequency of 10kHz on a platform consisting of 12 general purpose single-core
processors. The deadlines assigned to non-critical tasks is 100% of the processor
budget. We instead analyzed the actual schedules on 80% of the processor budget,
targeting the analysis to future high performance machines. This gives the tasks
a deadline of 8 ·10−5s. There are also 22 critical tasks that are assigned deadlines
ranging between 4 · 10−5 to 4.5 · 10−5s. The handler schedule has 1681 tasks
running at 10kHz on a platform with 3 general purpose single-core processors.
The POB schedule has 2442 tasks running at 10kHz on a platform of 6 general
purpose single-core processors. Task deadlines assigned are the same as for the
stages schedule.

We computed PERT execution time distributions for tasks, based on avail-
able measurement statistics. We then performed robustness analysis by drawing
samples from these distributions, simulating completion time histograms, and fit-
ting PERT distributions with analytically computed bounds. The simulations
were performed by converting the schedule models to discrete event simulation
models in POOSL [81] and run with the Rotalumis simulation tool. We chose to
present the results of the stages schedule in more detail compared to the other
two schedules due to bigger size and higher complexity. The handler and POB
schedules produce similar results and so we only list them in a table and leave
out the details.

4.5.1 Evaluation of the robustness analysis approach

To perform robustness analysis, we simulated 1000 samples of the stages schedule
and performed curve fitting using the two approaches presented in Section 4.4.
For the nested divide and conquer search, we chose precγ to be 1 and precm to be
the interval obtained by dividing the x-axis of the histogram considered into 100
parts. The number of bins in the histograms was chosen to be 10. To visualize
how the PERT fitting of the two approaches is able to approximate mass around
the rare events, we show the PERT fit on the completion time histograms of two
tasks of the stages application. Figure 4.4(a) shows a task with sufficient mass
in the histogram to produce an accurate fit. On the other hand Figure 4.4(b)
shows a task with missing mass around the rare events which is covered by the
PERT distributions. We see that both the PERT fitting approaches produce a
good curve fit in either case. To draw comparisons, we plot the value of the curve
fitting metric obtained for all tasks of the stages schedule using both techniques
in Figure 4.5. The tasks on the x-axis are sorted on the values of the curve fitting
metrics obtained using the DCS method. We see that all tasks have a good curve
fit value M of above 93% from both techniques. This shows that PERT is a
good distribution for the completion times. DCS performs slightly better with
an average M value of 0.9895 in comparison to 0.9889 from the PERT equations.
This was also observed on the handler and the POB schedules. The robustness
of the stages schedule, in terms of the expected value of the number of tasks that

76

0

200000

400000

600000

800000

1000000

1200000

1400000

0.00001 0.000014 0.000018 0.000022 0.000026 0.00003

P
R

O
B

A
B

IL
IT

Y
D

EN
SI

TY

COMPLETION TIME (s)

Histogram

PERT from DCS

PERT from equations

(a)

(b)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

3.00E-07 3.50E-07 4.00E-07 4.50E-07 5.00E-07 5.50E-07 6.00E-07 6.50E-07

P
R

O
B

A
B

IL
IT

Y
D

EN
SI

TY

COMPLETION TIME (s)

Histogram

PERT from DCS

PERT from equations

Figure 4.4: (a) PERT fit on a histogram with sufficient mass at the extremes and (b) PERT
fit on a histogram with missing rare events.

miss their deadlines from Equation 4.22, was found to be around 79.02 from DCS
and 78.80 from PERT equations (which is around 2% of the tasks). The average
of the number of tasks that miss deadlines in all the 1000 simulation runs was
found to be around 78.80 with a variance of around 138 and standard deviation
of around 11, which is close to our predictions.

Table 4.1 lists the results for all the three schedules. The first column gives the
name of the schedule and the second column gives the number of tasks. The third
column gives the average number of deadline misses from the 1000 simulations.
The fourth and fifth columns give the expected number of deadline misses obtained
from the robustness analysis using the two curve fitting techniques. ‘Eqn’ refers to
the curve fitting approach using PERT equations. We see that both techniques are
quite accurate with respect to the simulation results. PERT equations performs

77

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
U

R
V

E
FI

TT
IN

G
 M

ET
R

IC

TASKS

PERT from equations

PERT from DCS

Figure 4.5: Curve fitting metrics for all tasks of the TWINSCAN NXE stages application.

Table 4.1: Robustness analysis outcome on the TWINSCAN NXE applications

Sch #Tasks Avg sim E[X] Avg M Runtime(s) Sim
d misses DCS Eqn DCS Eqn DCS Eqn time(s)

Stages 4219 78.80 79.02 78.80 0.9895 0.9889 908 76 70
Handler 1681 36.55 36.68 36.54 0.9902 0.9897 372 30 27

POB 2442 14.48 14.48 14.46 0.9901 0.9896 533 44 40

slightly better for the stages and handler schedules, whereas DCS performs slightly
better for the POB schedule. The sixth and seventh columns give the average
value of the curve fitting metric from the two techniques. DCS produces better
average curve fit in all three schedules. Column eight and nine give the run
time of the robustness analysis using the two techniques which also includes the
simulation time. Lastly, the tenth column gives the time taken for the simulations
alone. We see that DCS takes significantly higher amount of time compared to
PERT equations.

4.5.2 Validation with extensive (day-long) simulations

In order to validate our results we performed extensive simulations (24 hours)
on the stages schedules. We look into the details of the completion time of the
task from Figure 4.4(b). We placed the histogram obtained from the extensive
simulations on top of the PERT distributions fitted on the histogram of limited
simulations of 1000 runs from Figure 4.4(b). We consider a snapshot by zooming
into the bottom portion to observe the outer bins of the histogram as shown in

78

Figure 4.6: Comparison of PERT fit on limited and extensive simulations.

Figure 4.6. Note that the inner vertical lines are the outer edges of the outermost
bins of the histogram from the limited simulations. Figure 4.6 makes it clear that
the extensive simulations produced results outside of the bins of the histogram of
the limited simulations.

The values of the metric M of the PERT using equations on the extensive sim-
ulations is 0.9905 and on the limited simulations is 0.9901. The M value of DCS is
0.9913 on the extensive simulations and 0.9902 on the extensive simulations. Both
these results confirm that the PERT obtained from the limited simulations fits
even better on the extensive simulations results. Hence, we observe that PERT
is a good distribution to perform robustness analysis of a task, which cannot be
done accurately with only limited simulations. We also observe that DCS again
fits better on the extensive simulations than PERT equations.

The probability of deadline miss assuming, for the sake of the example, a dead-
line of 1.64 · 10−5s is 0 from the limited (1000) simulations, 0.69 · 10−4 from the
PERT equations and 0.98 · 10−4 from DCS. On the other hand, the probability
of deadline miss at 1.64 · 10−5s is approximated as 1.04 · 10−4 from the extensive
simulations. This shows that the PERT derived from the limited simulations gives
reasonable estimates for events that only occurred in the extensive simulations.
We also notice that DCS is more accurate in predicting the deadline miss proba-
bility of this task. However, the average number of tasks that miss deadlines in
the extensive simulations is equal to 78.78 which is close to our prediction of 78.80
from PERT equations. Although DCS produces better curve fits on histograms
than the PERT equations and more accurate deadline miss probability for this
particular task, the PERT equations technique happens to give a more accurate
schedule robustness result for the stages schedule. To understand this, we created

79

-0.013 -0.008 -0.003 0.002 0.007 0.012 0.017 0.022 0.027 0.032

DCS

Eqn

Figure 4.7: Box plot of deviation of the task deadline miss probabilities of the two curve fitting
techniques with respect to extensive simulations.

box-plots of the deviations of the task deadline miss probabilities obtained using
the two curve fitting techniques to the approximations from extensive simulations
in Figure 4.7. We only include 164 tasks in the plot for whom at least one of the
three techniques (robustness analysis with the two curve fitting techniques and
extensive simulations) gives a deadline miss probability above 1 · 10−5. This is
to avoid the plot being dominated by the small probabilities of all the remaining
tasks making it hard to visualize the deviations. We see in Figure 4.7 that the
range of typical deviations of DCS, shown by the boxes, is bigger than for PERT
equations. This explains why the overall schedule robustness is less accurate for
DCS despite giving good curve fit. A reason for this could be the small loss of in-
formation that happens when abstracting the simulated completion time samples
into histograms. However, both techniques overall give us quite accurate robust-
ness results. From this we can conclude that our robustness analysis approach
is sufficiently fast to be practically useful, whereas using extensive simulations to
obtain statistically relevant results is not practically feasible.

4.5.3 Speed vs. accuracy: trade-off

Choosing one of the two curve-fitting approaches. The robustness analysis tech-
nique presented in this chapter is used within the robust scheduler in the next
chapter. The speed of the robustness analysis then significantly contributes to
the scheduler run-time. Hence, it is important that the run-time of the analysis is
low. Although DCS performs better in curve fitting, it is a lot slower than PERT
equations. Additionally, the difference in the accuracy of the results in quite small
in comparison to the difference in run-times. Based on this, we make the choice
of adopting the curve fitting using PERT equations to be used in the robustness
analysis for the scheduler. The nested divide and conquer search technique is still

80

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000

SI
M

U
LA

TI
O

N
 T

IM
E

(s
)

#SIMULATIONS

Figure 4.8: Plot of time taken to simulate different number of samples for the NXE stages
schedule.

valuable as it can be generalized to other uni-modal distributions than PERT for
other domains. The more the number of unknown parameters, the more involved
is the nesting that is needed in the divide and conquer search though.

Number of simulations vs accuracy. By choosing the PERT equations over DCS,
we gain significant time in the robustness analysis at a small cost of accuracy.
Another time consuming part of the analysis is the simulations. For large graphs,
we can save time by reducing the number of simulation runs. Figure 4.8 shows
the time taken for the simulations increases linearly with the number of samples
generated. However, reducing samples can affect the accuracy of the results.
To study this impact, we calculate the expected numbers of deadline misses for
different number of simulation runs lower than 1000 for the stages application and
plot the results in Figure 4.9. On the x-axis are the number of simulation runs in
the robustness analysis; on the y-axis are the corresponding expected values. We
also plot a line corresponding to the average number of tasks that miss deadlines
in the extensive simulations. We see that the accuracy of the results is low for
few simulations, but it soon stabilizes towards the value obtained from extensive
simulations and we can achieve nearly accurate results even with a few hundred
simulations. The number of simulations thus provides a parameter to tune the
accuracy vs. speed trade-off of the approach.

81

74

76

78

80

82

84

86

88

0 200 400 600 800 1000

E{
X

]

#SIMULATIONS

PERT from equations

Extensive simulations

Figure 4.9: Plot of the expected number of deadline misses for different number of simulation
runs in the robustness analysis for the NXE stages schedule.

4.6 Summary

In this chapter, we have presented an approach to perform robustness analysis
of multiprocessor schedules. The overall approach addresses the complexity of
performing max-plus operations on distributions by using a combined analytical
and limited simulations-based approach. The metrics that we obtain quantify the
robustness of tasks and schedules. We also present a new curve fitting metric
to quantify how well a PERT distribution fits on a histogram. We present two
ways of fitting a PERT distribution on the results of the limited simulations using
analytically computed bounds, one using nested divide and conquer search and
one using PERT equations. The PERT equations technique is much faster than
the divide and conquer search while still being quite accurate. Hence, it is chosen
to be used within the scheduler in the next chapter. The key contributions of this
chapter are: 1) the overall robustness analysis technique that takes correlations
due to dependencies naturally into account, and 2) the robustness metrics to
quantify robustness of tasks and schedules. This robustness analysis technique
is used in the next chapter to make scheduling decisions that steer the scheduler
towards achieving more robust schedules.

82

Chapter 5

Iterative robust
scheduling with fixed task

binding

This chapter presents an iterative robust scheduling mechanism that uses the
robustness analysis presented in Chapter 4 to produce robust schedules. The
contents of this chapter is based on [5]. Given a DAG with fixed task binding,
it begins with the schedule produced from the scheduler in Chapter 2 and it-
eratively improves its robustness. Robustness of a schedule is quantified using
the metric from Chapter 4 based on the expected number of tasks that miss their
deadlines in the schedule. This analysis is extended to compute a new metric that
quantifies the task-level impact on the expected deadlines misses. This metric is
used in an iterative highest robustness impact first heuristic to guide the stochas-
tic list scheduler towards a robust schedule during the iterations. The scheduler
repeatedly performs the extended robustness analysis followed by list scheduling
with this new stochastic robustness heuristic to improve schedule robustness. The
process stops either upon reaching a fixed number of iterations or if there are no
changes in the schedules of successive iterations. The remainder of this chapter
is organized as follows. Section 5.1 summarizes related work. Section 5.2 defines
the problem by first introducing the preliminaries followed by the problem state-
ment and the flow of the solution approach. Section 5.3 describes the extended
robustness analysis and the new metric. Section 5.4 details on the scheduling
heuristic and Section 5.5 elaborates on the iterative robust scheduler that uses
the heuristic. Experiments are given in Section 5.6 and a summary of the chapter

83

is given in Section 5.7.

5.1 Related work

Task execution time variations that impact schedule robustness can arise due to
multiple factors, resulting in different models of variation. In [10, 32], variations
are modeled as external perturbations and their effects on system performance
are used to study robustness. We model variations in task execution times which
are internal to the system, due to the general purpose processing (cache misses,
branch predictions, memory access delays). External perturbations do not play a
role. Variations can be modeled using deterministic parameters such as min/max
bounds and expected values, allowing for slack based robust scheduling techniques
[18]. We use the richer model of probability density functions. Often, normal
distributions are used [25, 29]. However in most practical cases, variations are not
symmetric and are skewed in nature. We base our robustness analysis technique
on realistic skewed bounded PERT distributions of execution times as explained
in Chapter 4.

Robustness can be quantified using different metrics such as slack based met-
rics [29]. Stochastic metrics include more information. Deadline miss probabilities
of tasks [83] is an example metric. This does not give a global measure of schedule
robustness if there are multiple tasks with different deadlines. Global schedule
robustness can be quantified using the probability that the makespan is within
specific bounds [67]. This corresponds to all tasks having the same deadline. Our
work considers task level deadlines which can differ within a graph.

Multiprocessor real-time scheduling with fixed execution times has been stud-
ied extensively, a survey of which is presented in [30]. In [29], robust scheduling
using slack introduces temporal slack to each task such that a certain level of un-
certainty can be absorbed without rescheduling. Here, normal distributions are
used to describe machine breakdown behaviours and their parameters are used to
calculate the amount of slack added per task. Task ordering is not changed. In-
troducing unnecessary slack can adversely effect meeting latency requirements. In
our work, we alternatively determine stochastic task robustness and derive met-
rics that allow us to produce different task orderings that result in more robust
schedules. A partitioning heuristic [33] takes execution time overruns into account
and aims to assign tasks to resources such that the amount of allowable overrun
per task is maximized. Its focus is on the assignment problem using fixed priority
and deadline monotonic priority assignment. This chapter finds robust ordering
of tasks for a given binding on resources and aims to maximize probabilities of
meeting task deadlines.

Recent work on robust scheduling [55] looks at non-preemptive scheduling un-
der task duration uncertainty. It presents a hybrid offline/online technique to
meet hard real time guarantees with limited idle time insertion called Precedence
Constraint Posting. Bounds and expected values are used instead of probability

84

distributions to deal with uncertainty. Tasks are assigned a common deadline
corresponding to global real-time constraints. The scheduling aims to reduce
makespan. In our context, each task has its own deadline and reducing makespan
does not guarantee all tasks meeting their deadlines. As meeting latency require-
ments is our primary goal, we quantify robustness in terms of the expected number
of task deadline misses and provide a scheduling heuristic to improve this. We use
probability distributions for task execution times to analyze schedule robustness
allowing for more accurate analysis in comparison to using bounds alone.

Other recent work on scheduling precedence constrained stochastic tasks on
heterogenous cluster systems performs list scheduling based on stochastic bottom
levels and stochastic dynamic levels [53]. It aims to reduce schedule makespan and
does not address robust scheduling under task deadline constraints. The expected
schedule makespan is measured by assuming that tasks have normal execution
time distributions and using Clark’s equations to estimate the max of distributions
due to task synchronization [25]. Our work allows skewed task execution times
distributions by adopting and refining the robustness analysis of Chapter 4. It
combines analytical results with limited simulations. It overcomes the drawback
of Clark’s equations which are not accurate when performing max operations
on distributions with large differences in their standard deviations [58]. Our
analysis forms part of the iterative robust scheduling loop. Other alternatives are
learning techniques such as metaheuristics [17] that explore the search space using
heuristics to find good solutions. These can be quite time consuming depending
on the number of solutions explored. We present an iterative list scheduler that
can produce robust schedules in a small number of iterations.

Effective online scheduling approaches that deal with execution time uncer-
tainty include reservation-based scheduling such as the Constant Bandwidth Server
(CBS) introduced in [2]. Using a task model which comprises hard real time and
soft real time tasks, they first schedule hard real time tasks based on latency
requirements and consequently use reservation methods for soft real time tasks.
These tasks are assigned dedicated processor bandwidth that can be reclaimed by
other tasks on early completion. However in our task model, all tasks are soft real
time and the scheduling aim is to reduce the number of possible deadline misses by
making a robust static-order schedule. We consider scheduling that is performed
during machine start-up time for ASML, or possibly on design time for other sys-
tems, whenever the application graph is available. The static order schedule thus
produced cannot be changed online and tasks are run using a dispatcher in the
same order. This is typical in throughput and latency driven applications that
try to minimize any scheduling overhead during system run-time.

85

a1a1 a3a3

a2a2 a4a4

(a) (b)

a1a1 a3a3

a2a2a4a4

P1

P2

(c)

Task r d

min mode max γ
a1 2 2 2 4 P1 3
a2 4 4 4 4 P2 8
a3 1 2 3 4 P1 6
a4 1 2 3 4 P2 7

Figure 5.1: Example to illustrate list scheduling

5.2 Problem definition and solution overview

5.2.1 Preliminaries

The definition of tasks, dependencies and static-order schedules are the same as
in Chapter 4. An addition is that tasks have a unique most-likely execution time,
called the nominal execution time which is given by the mode or peak of the dis-
tribution (assuming single peaked distributions like PERT). We obtain execution
time distributions by profiling and then use the chosen curve fitting technique us-
ing PERT equations from Chapter 4 to obtain modified PERT distributions. An
alternative method to obtain execution time distributions is to use static prob-
abilistic worst-case execution time analysis [40]. Like in Chapter 4, we assume
that task execution times vary independently. Dealing with task execution time
correlations is left for future work. The nominal start and completion times of a
task are derived by using nominal execution times for all tasks in the graph. A
schedule is feasible if all its tasks meet their deadlines under nominal execution
times.

The iterative robust scheduling mechanism presented in this chapter is com-
pared with the list scheduler with the EDDF heuristic from Chapter 2 that uses
nominal execution times of tasks. To illustrate the flow of the approach in this
chapter with an example, we consider the task graph in Figure 5.1(a). The at-
tributes of the tasks are given in Figure 5.1(b). This is a simple case where the
due-dates of task a1, a2, a3 and a4 are equal to their deadlines of 3, 8, 6 and 7

86

respectively. In the beginning, only a1 and a2 are enabled since they do not have
any predecessors. Based on the earliest due-date first heuristic, a1 is chosen to
be scheduled. Thereafter, a3 and a4 become enabled along with a2. Again based
on due-dates, a3 is scheduled followed by a4 and then a2 resulting in the schedule
shown in Figure 5.1(c).

We use the robustness analysis technique of Chapter 4. We measure robustness
of a static-order schedule S is terms of the expected value of the number of tasks
that miss their deadlines in S using the following equation from Chapter 4.

E[X] =
∑
a∈T

P[cSa > da] (5.1)

5.2.2 Problem statement and solution flow

The exact statement of the problem of this paper is as follows:

Problem Statement 4. Given an application with tasks bound to a set of re-
sources, find the static-order multiprocessor schedule with the lowest expected value
of the number of tasks that miss deadlines.

Producing a schedule with the maximum likelihood of meeting an optimization
criterion under processing time uncertainty such as total flow time is proven to
be NP-hard in [28]. Our problem is a generalization of this as we can connect
all leaf tasks in the DAG to an additional task which has the flow time as its
deadline. Hence, our problem is NP-hard and finding the optimal robust schedule
is computationally intractable. We aim to design a stochastic robust scheduler
that, starting from a certain schedule (produced using a non-stochastic scheduler
in our case) uses an efficient scheduling heuristic to improve schedule robustness.

Our scheduling approach iterates between a scheduling step and a robustness
analysis step. The scheduling step uses list scheduling with a heuristic to improve
robustness. Our approach uses the deterministic scheduler from Chapter 2 that
produces a starting schedule using nominal execution times of tasks. Given this
schedule, our work aims to iteratively produce more robust schedules. The idea
is to use the robustness analysis of the schedule obtained in an iteration to guide
the scheduler towards a more robust schedule in the next iteration. Figure 5.2
illustrates the flow of the iterative robust scheduler. It begins with schedule S0

obtained from the list scheduler with the EDDF heuristic. We perform robustness
analysis of S0, involving computation of the task completion time distributions,
to compute a robustness impact metric per task. These metrics obtained from
S0 are used to refine the list scheduling towards robustness with an iterative
highest robustness impact first (IHRIF) heuristic resulting in schedule S1. This
list scheduler with IHRIF heuristic differs from the EDDF list scheduler of the
initial iteration only in the heuristic that determines the scheduling choices. The
construction of the schedule, however, is done using nominal execution times of
tasks for scheduling speed and simplicity’s sake. This is because maintaining and

87

List Scheduling with EDDF HeuristicList Scheduling with EDDF Heuristic

Robustness AnalysisRobustness Analysis

Impact Metric

S0

Stop

criterion

reached

Stop

criterion

reached

S
Yes

No

List Scheduling with IHRIF HeuristicList Scheduling with IHRIF Heuristic

G

Si

Figure 5.2: Flow of Iterative Robust Scheduler

updating start and completion time distributions during schedule construction is
very expensive. In the next iteration, the impact metric computed from S1 is
used in the list scheduling heuristic to obtain S2. This repeats until either the
process converges with no schedule changes or until a fixed number of iterations.

To illustrate the flow of the scheduler, we reuse the example from Figure 5.1(a).
The initial schedule S0 is the one produced using list scheduling with the earli-
est due-date first heuristic and is given in Figure 5.1(c). We perform robustness
analysis on this schedule. The expected value of deadline misses is 0.5 due to the
deadline miss probability of a2. The task completion time distributions, deadline
miss probabilities and impact metrics of the tasks in S0 are given in Figure 5.3(a).
The computation of the impact metric is explained in Section 5.3.2. Tasks a1, a3

and a4 have zero impact since the completion time distributions of their depen-
dent tasks are within their own deadlines. Task a2 has a positive impact since
its deadline is in the middle of its completion time distribution. In the next iter-
ation, list scheduling is performed using the highest impact first heuristic. As a
result, a2 gets priority and is scheduled first resulting in the schedule S1 given in
Figure 5.3(b) and the corresponding task details in Figure 5.3(c). The expected
value of deadline misses of this new schedule obtained after performing robustness
analysis is 0 implying that it has better robustness than the initial schedule.

The explanation of the iterative robust scheduler is divided into three sections.
Section 5.3 elaborates on the refinement of the robustness analysis to compute the
impact metric. Section 5.4 explains the IHRIF heuristic which uses the impact
metric computed from the refined robustness analysis and Section 5.5 details on

88

(a)

a1a1 a3a3

a2a2 a4a4

P1

P2

(b)

(c)

Task d [>d]

min mode max γ

a1 2 2 2 4 3 0 0
a2 7 8 9 4 8 0.5 0.9
a3 3 4 5 4 6 0 0
a4 3 4 5 4 7 0 0

Task d [>d]

min mode max γ

a1 2 2 2 4 3 0 0
a2 4 4 4 4 8 0 0
a3 3 4 5 4 6 0 0
a4 5 6 7 4 7 0 0

Figure 5.3: Example to illustrate the Iterative Robust Scheduling flow

the list scheduler with the IHRIF heuristic.

5.3 Refined robustness analysis: Impact metric

The robustness analysis of Chapter 4 uses task deadline miss probabilities to
compute the schedule robustness using Equation 5.1. We refer to the schedule-
level notion of robustness as global robustness and task-level notion of robustness
as local robustness. Since list scheduling is performed on a per task basis, the
global notion of robustness is insufficient to construct a robust schedule. For
construction, we require a local notion of robustness that is consistent with and
aids in the improvement of the global robustness. Hence, we refine the current
robustness analysis with a new impact metric per task that provides this local
notion of robustness.

5.3.1 Impact metric

Given a schedule S, this metric quantifies the impact of a task on the expected
number of deadline misses in S. We use task deadline miss probabilities to extract
the impact metric per task. The hypothesis is that schedule robustness can be
improved by scheduling highest impact tasks first. The rationale behind the

89

heuristic is that delaying a task which has a high impact on the deadline misses
of its future tasks will cause an increase in the expected deadline misses.

Definition 9. (Impact Metric) The impact metric of a task ‘a’ at a given
completion time cSa in a schedule S, denoted by ISa : R≥0, is the derivative of the
expected value of number of task deadline misses in S over the delay in ca.

To estimate the impact metric of a task, we define the dependent set of a as
follows.

Definition 10. (Dependent set) Dependent set of task ‘a’, denoted by DSa, is
the set of tasks including a and all tasks that have a direct or indirect dependency
from a in the DAG. These do not include dependencies due to scheduling order.

Since the scheduling of task a influences the scheduling of the tasks in DSa, we
need to compute the expected value of the number of tasks that miss deadlines in
DSa to compute ISa . Let random variable Xa represent the number of tasks from
DSa that miss deadlines in S. The expected value of Xa is given by

E[Xa] =
∑
b∈DSa

P[cSb > db] (5.2)

The value of E[Xa] as a function of the completion time of a is denoted by the
function vE[Xa] : D → R≥0. The derivative of vE[Xa] gives the impact metric
representing the impact on E[Xa] caused by delaying cSa by a small amount of
time. To express the shifting of a probability density function by an amount of
time τ ∈ R≥0, we define τd : R≥0 → R≥0 such that τd(t) = d(t− τ) for all t ∈ R.
Using this, τ c

S
a represents the random variable for the completion time of a after

the shift of τ and τP
S
ca represents the corresponding probability density function.

This in turn causes an increase of ‘at most’ τ in the completion times of tasks in
DSa. From Equation 5.2, we deduce that this may cause the expected value of
Xa to increase. Hence, the impact metric of a in S is captured as follows.

ISa = lim
τ→0

vE[Xa](τ c
S
a)− vE[Xa](c

S
a)

τ
=
dvE[Xa](τ c

S
a)

dτ
(5.3)

In the next subsection we explain the computation of this derivative.

5.3.2 Impact metric computation

In schedule S, any change in E[Xa] due to delaying a is only caused by tasks in
DSa that experience an increase in their deadline miss probabilities due to the
delay. To compute the derivative in Equation 5.3, we consider the delay to be
infinitesimal. This in turn can cause only an infinitesimal shift in the completion
times of tasks in DSa. The increase in the deadline miss probability of a task

90

Figure 5.4: Increase in deadline miss probability due to delaying a task

b ∈ DSa for an infinitesimal shift in cSb is equal to the probability density at its
deadline:

lim
τ→0

(P[τ c
S
b > db]− P[cSb > db]) = PScb(db) (5.4)

Here, P[cSb > db] is the deadline miss probability of b before the shift and
P[τ c

S
b > db] gives the deadline miss probability after shifting by τ . The probability

density at its deadline db is given by PScb(db). How we arrive at this is illustrated
in Figure 5.4 that shows a task’s completion time distribution shifted by τ . This
causes an increase in its deadline miss probability given by the shaded portion.
For an infinitesimal increase τ → 0, this area collapses into a straight line of
length equal to the probability density at the task deadline d.

Another important aspect of the computation is that shifting the completion
time of a by τ will increase the deadline miss probability of task b ∈ DSa only
if the slack between a and b is smaller than τ . This slack in S, denoted by slSab,
is the difference between the completion time of a and the start time of b taking
dependent tasks in between into account. Taking the limit τ → 0 implies that
task b will be affected iff slSab = 0. Note that slSab can never be smaller than 0.
The probability of slSab being 0, denoted by P[slSab = 0], can be approximated by
counting the number of times the slack equals zero in the simulations used in the
robustness analysis. These probabilities, starting from immediate predecessors of
leaf nodes, are propagated backwards through the schedule to get the probabilities
also for tasks which do not have a direct dependency between them. Also, the
probability of zero slack between a task and itself, given by P[slSaa = 0], is 1.
Using this, we compute the impact metric of a as follows.

ISa =
∑
b∈DSa

P[slSab = 0] · PScb(db) (5.5)

Here, we see that the impact metric of a task is based heavily on its successors and
can be computed only after the successors have been scheduled. Hence, computing
ISa requires the complete schedule of all tasks in DSa. Similarly any change in the

91

(a)

a1 a3

a2 a4

P1

P2

(b)

Task r d

min mode max
γ

min mode max γ

a1 2 2 2 4 P1 2 2 2 4 3 0.9
a2 4 4 4 4 P2 4 4 4 4 5 0
a3 1 2 3 4 P1 3 4 5 4 4 0.9
a4 1 2 3 4 P2 5 6 7 4 6 0.9

Figure 5.5: Example to illustrate the Impact Metric Computation

scheduling of tasks in DSa might require ISa to be recomputed. Therefore, the
robust scheduling approach presented in this work uses an iterative mechanism
and cannot be performed efficiently in one shot. We compute the impact metrics
of tasks in a schedule generated in the previous iteration and use it for scheduling
in the next iteration. The idea behind this approach is to progress towards a
more robust schedule by performing robustness based scheduling decisions in an
iteration, for high impact tasks detected in the schedule of the previous iteration.

To illustrate the impact metric computation we reuse the example schedule in
Figure 5.3(b) but with tighter deadlines to get non-zero impacts. The execution
time and completion time distributions, deadlines, and impacts of the tasks are
in Figure 5.5(b). Impacts of a2, a3 and a4 having no successors are equal to the
probability densities of their completion distributions at their respective dead-
lines. The probability of zero slack between a1 and itself is 1. The probability of
zero slack between a1 and a3 is also 1 (a3 always immediately follows a1). The
probability of zero slack between a1 and a4 is 0 (the start time of a4 depends on
the completion time of a2 which is always greater than that of a1). Hence, the
impact of a1 is computed as follows.

ISa1
= P[slSa1a1

= 0] · PSca1
(da1

) + P[slSa1a3
= 0] · PSca3

(da3
)

+ P[slSa1a4
= 0] · PSca4

(da4)

= 1 · 0 + 1 · 0.9 + 0 · 0.9 = 0.9

Note that different deadlines can result in different impact values and different
scheduling choices for the same graph. In the next subsection we elaborate on the
IHRIF heuristic which uses the impact metric to guide the scheduling decisions.

92

5.4 Iterative highest robustness impact first heuris-
tic

The iterative approach uses a list scheduler which chooses tasks from the list of
enabled tasks using the IHRIF heuristic. The various components of the heuristic
are as follows.

1) Impact History : During the robustness analysis of S, we only obtain the
impact of a at its current completion time in S. At different decision points during
scheduling, the completion time of a can be different from the ones observed in
prior schedules. We need to be able to estimate impact values at all possible com-
pletion times. To do so, we maintain a history of all the impact values observed
in prior iterations along with their corresponding nominal completion times. We
use nominal completion times mainly to simplify the approach by removing the
complexity of combining density functions in the impact history. With more it-
erations, we obtain more values and can approximate the impact metrics of tasks
with changing completion times.

Definition 11. (Impact History) The impact history of a task ‘a’ is a function
which maps an iteration i to a tuple of its nominal completion time and the
corresponding impact metric at that iteration. It is denoted by the mapping IHa :
N→ (R≥0,R≥0). The functions left(IHa(i)) and right(IHa(i)) give the nominal
completion time and the impact metric of a at the ith iteration.

Using this function during scheduling, we need to deduce an impact estimate of
a at the potential nominal completion time of a if it were to be scheduled next.
This impact estimate enables us to approximate the impact metrics at completion
times not observed in schedules of prior iterations. At each scheduling step we
need to compute impact estimates for all enabled tasks. The IHRIF heuristic then
ranks enabled tasks based on the highest impact estimate. At each scheduling
step, the task with the highest impact estimate is scheduled.

Definition 12. (Impact Estimate) The impact estimate of a task ‘a’, used
during scheduling, is a function which maps a potential nominal completion time
of a to the estimated impact metric at that time using the current impact history.
It is denoted by the function IEa : R≥0 → R≥0.

We can derive impact estimates at any point in time from the points in the impact
history. Since the impact computation performed during robustness analysis of a
schedule is a random process, we can have multiple impact metric values for the
same nominal completion time. These values can arise if we compute the impact
of a task the position of which has not changed in multiple iterations. This could
also happen if two different schedules result in the same nominal completion
time for the task. To smoothen out the effects of these multiple values, we use
a weighted distance average computation to compute impact estimate from the
impact history. If CH a is the set of all nominal completion times of a in the

93

impact history and K the number of iterations so far, then the following equation
is used to compute IEa at time t from its impact history.

IEa(t) =

avg{right(IH a(k))|left(IH a(k)) = min(CH a)} t < min(CH a)

avg{right(IH a(k))|left(IH a(k)) = max(CH a)} t > max(CH a)

avg{right(IH a(k))|left(IH a(k)) = t} t ∈ CH a∑
k∈K

∆k
dk
· right(IHa(k))∑
k∈K

∆k
dk

otherwise

where dk = |left(IH a(k) − t| is the distance from t to left(IH a(k)) and ∆k =
left(IHa(k+1))−left(IHa(k−1))

2 denotes the range of values covered by the kth entry.
Multiplying the weight by ∆k ensures that having multiple completion time entries
close to each other does not bias the impact estimate in that region.

2) Scheduling history (fallback choices): The impact history allows us to im-
prove the estimation of the impact metrics used in the scheduling heuristic. Aside
from this, we also want to improve the scheduling decisions by maintaining the
scheduling history. This involves keeping the scheduling decisions of the best
prior schedule in order to steer the search process of the heuristic towards global
robustness improvement. Scheduling decisions are defined below.

Definition 13. (Scheduling Decisions) Scheduling decisions of a scheduler,
denoted by the function SD : T → N, is a function which maps a task to the step
number at which the scheduler schedules the task.

Maintaining scheduling history implies that we base our fallback choices on the
scheduling decisions made in the most globally robust schedule observed so far
in all prior iterations. This is the schedule with the lowest expected number of
deadline misses. Fallback choices occur when all tasks in the enabled set have the
same impact estimate. The reason for basing the fallback choices on the scheduling
decisions of this schedule is to utilize the knowledge that these decisions have
previously led to a globally more robust schedule.

3) Impact Threshold : An additional aspect of the heuristic is to limit the
changes in the schedule to high impact tasks of each iteration. The rationale is
based on the fact that the impact history is derived from schedules observed in
prior iterations. If drastic changes are made early on during scheduling for low
impact tasks, the schedule being formed becomes too different. This renders the
impact estimate inaccurate for the subsequent high impact tasks which become
visible to the scheduler only at the later scheduling steps. Therefore, we introduce
an impact threshold, denoted by it, such that only impact values above a certain
threshold are considered during scheduling. For tasks with impact values below

94

the threshold, the scheduler uses the scheduling history explained earlier. This
threshold is computed as a certain percentage, called impact threshold percentage
itp, of the highest impact metric observed in the last iteration. By doing this the
low impact tasks in a current iteration become visible above the threshold only
in the later iterations, when the scheduler has already dealt with the current high
impact tasks.

5.5 Iterative list scheduling with IHRIF heuristic

Algorithm 9 gives the overall iterative robust scheduler. NI is the number of
allowed iterations, SD i the ith iteration scheduling decisions, ListSchedulerEDDF()
the list scheduler with EDDF heuristic, ListSchedulerIHRIF() the list scheduler with
IHRIF heuristic, and RobustnessAnalysis() is the robustness analysis step. Line
1 produces an initial schedule using ListSchedulerEDDF() and Line 3 performs
RobustnessAnalysis(). From the impact metrics obtained, impact threshold is
computed in Line 4. We iteratively perform ListSchedulerIHRIF() and Robustnes-
sAnalysis() in the loop between Lines 6-14 until stop criterion of Line 14. Line 9
recomputes impact threshold for the next iteration. If the schedule produced is
better than previous best, Line 10-12 updates the best schedule and scheduling
decisions. Line 15 returns the best schedule. Note that by construction the best
result SBest cannot be worse than the EDDF schedule.

For complexity analysis of the iterative algorithm, we consider its 3 major
components: (1) ListSchedulerEDDF(), (2) ListSchedulerIHRIF() and (3) Robustnes-
sAnalysis(). ListSchedulerEDDF() includes topological sorting of tasks and com-
putation of due-dates. Topological sorting is linear in the number of tasks and
dependencies. Due-date computation uses an efficient linear approach requir-
ing one backward traversal of the graph. ListSchedulerIHRIF() differs only in the
scheduling heuristic involving the computation of the impact estimate from the
impact history, whose entries depends on the number of iterations. Since we need
to repeat the computation for every task in the enabled set along with obtain-
ing their potential completion times, this heuristic has a quadratic complexity
of O(NI · (|T | + |D|)2). RobustnessAnalysis() obtains completion time distribu-
tions of tasks by linear max-plus computation of completion time bounds and a
limited number of simulations, NSim. This requires the traversal of the schedule
NSim times and the complexity is O(NSim · (|T |+ |D|)). There is a trade-off here
between the number of simulations and accuracy of the analysis which can be
exploited to reduce the scheduler run-times. RobustnessAnalysis() additionally
performs the impact metric computation per task as a product of two factors in
Equation 5.5. Zero slack probability can be computed in one backward traversal
through the graph. The second factor, probability density at the deadlines, takes
constant time independent of graph size. Overall, since the impact metric of each
task needs the sum of values obtained from all dependent tasks, this computa-

95

Algorithm 9: IterativeRobustScheduler()

Input : G := (T,D), R,NI , thp
Output: S

1 [S0,SD0] := ListSchedulerEDDF(G,R);
2 IH = φ;
3 [E[X0], IH] := RobustnessAnalysis(S0, IH);

4 it := itp
100 ·max

a∈T
right(IHa(0));

5 SBest := S0, SDBest := SD0, i := 0;
6 repeat
7 [Si,SD i] := ListSchedulerIHRIF(G,R, IH , it,SDBest);
8 [E[Xi], IH] := RobustnessAnalysis(Si);

9 it := itp
100 ·max

a∈T
right(IHa(i));

10 if E[Xi] < E[Xi−1] then
11 SBest := Si, SDBest := SD i;
12 end
13 i:=i+1;

14 until i ≤ NI or Si = Si−1;
15 return SBest;

tion is quadratic in the number of tasks and dependencies. Lastly computation
of expected deadline misses involves obtaining the deadline miss probabilities of
constituent tasks and summing them up. The computation of these cumulative
probabilities takes constant time independent of graph size.

5.6 Experimental results

In this section, we evaluate the iterative robust scheduler on real world applica-
tions and multiple synthetic test sets.

5.6.1 Real world applications

Lithography Machines. To test the scheduler on the wafer scanners we chose
the NXT stages application similar to Chapter 2 with fixed binding on single-core
processors. It has 4301 control tasks and 4095 dependencies, with a degree ranging
from 0 to 22, running with a frequency of 10kHz on a platform of 11 general
purpose single-core processors. Task execution time distributions are estimated
from measurements made on the machine. Critical actuator tasks are assigned
30% and the remaining tasks are assigned 70% of the processor budget as deadline.
The expected number of tasks that miss deadlines in the EDDF schedule is around
458. A threshold percentage of 10% and 10 iterations gives a schedule with

96

an expected value of deadline misses of around 445 which is approximately 3%
robustness improvement. The scheduler runtime was 8.55 minutes.

Video Conferencing Applications. With current advancements in video stream-
ing, video conferencing on applications like Skype has become an integral part of
daily life. Video and audio decoders are software components that convert a
compressed video or audio into raw uncompressed form. The rate at which the
decoders decompress frames has a direct impact on the quality of the video con-
ference experience. The end to end delay can be seen as a latency requirement
on the end task of the decoders. Missing these latency requirements results in
jitter and failures experienced during the conference calls. We tested the robust
scheduler on an application consisting of two audio and two video decoders. The
graphs and the distributions are taken from documented Scenario Aware Dataflow
Graphs (SADF) of video and audio decoders [74]. The graph of the four SADFs
combined consists of 1982 tasks, each performing a software function, mapped
onto a platform consisting on three general purpose processors. A common dead-
line is assigned to the end tasks of all the four decoders. The expected value of
deadline misses from the EDDF schedule is 0.53, consisting of the end tasks of
the two video decoders having a deadline miss probability of 0.24 and 0.29 re-
spectively. Starting from this schedule, the robust scheduler produces a schedule
with an expected value of deadline misses equal to 0.11 using a threshold of 10%
and 10 iterations. In this schedule, the end tasks of the video decoders have a
deadline miss probability of 0.05 and 0.06 respectively. This is a significant robust-
ness improvement of 79% experienced during the conference calls. The scheduler
run-time was 4.25 minutes with 100 simulations in the robustness analysis.

A variant of the above application includes three video decoders with 603 tasks
on a platform consisting of two homogenous general purpose processors. We assign
fewer resources to utilize the parallelism in the application. Tight deadlines result
in an expected value of deadline misses of 2.39 in the EDDF schedule. The robust
scheduler yields a schedule with an expected value of 2.16 with a threshold of 10%
and 10 iterations which is around 10% improvement in robustness. The scheduler
ran for 1.33 minutes.

5.6.2 Synthetic test cases

For further validation, we use multiple test sets consisting of 1000 DAGs generated
using the random graph generator tool of SDF3 [72]. In the first test set, each
graph consists of 100 tasks and each task has a degree ranging from 1 to 5 with
an average of 2 and variance of 1. These tasks are bound to two to five resources
such that highly interconnected sub-branches are mapped on the same resources
to the maximum possible extent. This is to mimic the binding approach used
in control applications wherein tasks in highly interconnected control loops are
mapped on the same resources in order to minimize communication overhead.

Figure 5.6(a) compares the results obtained using the EDDF and the IHRIF
scheduler. The horizontal axis represents the iterations in increasing order. The

97

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

te
st

 c
a

se
s

Iterations
(a)

IHRIF equal to EDDF IHRIF better than EDDF

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

te
st

 c
a

se
s

Iterations
(b)

IHRIF equal to EDDF IHRIF better than EDDF

Figure 5.6: (a) Aggregated, and (b) per iteration schedule robustness improvements of IHRIF
over EDDF

number of allowed iterations was chosen to be reasonably large at 10. The bottom
portion of each vertical bar gives the number of graphs from 1000 that improved
in robustness. The top portion gives the ones that showed no improvement. No
improvement arises when IHRIF does not perform better than EDDF. In some
of these cases the EDDF schedules may already be optimally robust. We see an
aggregated result of 76% more robust schedules at the end of 10 iterations. It can
be shown that this is statistically a very significant result.

Since 5.6(a) gives aggregated results (taking the best of all schedules upto each
iteration). From this, we cannot assess whether the individual iterations also pro-
duce significantly better results. In other words, we would also like to see if with
more iterations, each iteration of the scheduler by itself also, on average, produces
more robust schedules. From this we can deduce whether the schedules converge
over iterations. Figure 5.6(b) compares each iteration of IHRIF individually with
EDDF. Also per iteration, the number of more robust schedules gets significantly
better in Figure 5.6(b). This validates our hypothesis that maintaining history in
the iterative approach allows the scheduler to gather sufficient information over
iterations to produce more robust schedules.

Figure 5.7 compares the expected number of deadline misses in schedules ob-
tained from EDDF, the X-axis, and from IHRIF, the Y-axis. Points below the line
correspond to cases where IHRIF improves over EDDF. The test set consists of a
range of problems with low and high expected number of deadline misses from the
EDDF schedules; we see improvement in most cases. The absolute improvement
ranges from 0 to 6 tasks. The relative improvement compared to EDDF sched-
ules ranges from 0-100% with an average of 12%, a median of 5% and a standard
deviation of 18% (which is high due to some exceptional very high robustness
improvement cases), see Figure 5.8. There is no tractable algorithm to find op-
timally robust schedules. Exhaustive state space search does not scale for DAGs
with more than a few tasks. Hence, we cannot compare to optimal schedules. To
test whether the approach is sensitive towards the binding mechanism used and

98

to different task graph sizes, we also validated the approach on test sets with a
first fit binding approach and on sets of larger task graph sizes with 500 and 4500
tasks. The results are consistent with the reported ones. The scheduler run-time
for graphs of sizes 100 and 500 is tens of seconds per graph, using 1000 simulations
in the robustness analysis. For larger graphs of size 4500, we use 100 simulations
in robustness analysis and obtain run-times in the order of minutes.

0

10

20

30

40

0 10 20 30 40

E
xp

e
ct

e
d

 d
e

a
d

li
n

e
 m

is
se

s
o

f
IH

R
IF

Expected deadline misses from EDDF

Figure 5.7: Comparison of the expected values of number of tasks that miss deadlines obtained
from EDDF and IHRIF

5.7 Summary

This chapter presents an iterative robust scheduler. It begins with a schedule
produced using nominal execution times and iteratively improves its robustness
using a refined version of the robustness analysis from Chapter 4. The key con-
tributions of this chapter are: 1) an overall iterative robust scheduling approach
that improves the robustness of the starting schedule, 2) a new task impact metric
that helps predict upfront the impact of delaying a task on the schedule robust-
ness and 3) an IHRIF list scheduling heuristic based on the impact metric used
by the scheduler to make scheduling decisions. The end result of the approach
is a schedule with a lower expected number of deadline misses and thus a higher
robustness. The iterative approach is necessary to allow estimating the impact
of a task on robustness of a schedule, a piece of information that depends on the
complete schedule that is not yet known during scheduling. The scheduler has

99

0 10 20 30 40 50 60 70 80 90 100

Relative Improvement (%)

Figure 5.8: BoxPlot of relative improvement of IHRIF over EDDF

been validated on real world applications and has shown to deliver robustness
improvements between 3% and 79%. It has also been tested on 1000 synthetic
graphs and has shown improvements in 76% of the schedules with an average
robustness improvement of 12%.

100

Chapter 6

Conclusions and future
work

Many technological advances that are seen today have been possible due to the
rapid growth and development of the semiconductor industry that has continu-
ously reduced the feature size of a chip to push Moore’s law. One of the primary
reasons for this reduction is the increasing performance of lithography machines
that are responsible for exposing patterns of electronic circuitry onto silicon chips.
This performance increase comes at the cost of increasing complexity of the ma-
chines and the need for high performance control systems to ensure the smooth
functioning of their components. The low IO delays and the high frequencies with
which these control systems execute translate into very strict latency requirements
on their control applications. To achieve the desired performance, these control
applications are to be bound and scheduled on tens of general purpose multi-
processor platforms such that all latency requirements are met. The static-order
schedules produced must be robust against execution time variations. Owing to
the fact that several configuration parameters are not known beforehand, sched-
ulers must run during the minimal machine initialization time. Therefore, they
must be fast and scalable to the large control applications. These challenges are
combined into the problem statement of this thesis to achieve fast and scalable
robust communication aware binding and scheduling of DAGs on multiprocessor
platforms, while meeting all latency requirements. We have broken down the
problem statement into its primary aspects to develop solutions incrementally.

101

6.1 Conclusions

We addressed the various aspects of the problem statement of this thesis in four
main contributions. In the first contribution, we tackle the first challenge of the
thesis by presenting a fast and scalable multiprocessor scheduler for DAGs with
fixed binding on multiprocessor platforms that aims to meet latency requirements.
We compute a due-date metric for tasks with deadlines by exploiting the binding
information of the application. We present a list scheduler that uses the earliest
due-date first heuristic to increase the odds of finding feasible schedules in one
attempt. It has been shown to compute feasible schedules of very large task
graphs within little time. The heuristic has been shown to outperform the classical
earliest CALAP first heuristic in producing feasible schedules for ASML control
applications as well as for 1000 large synthetic task graphs. The approach has
been incorporated in all the latest ASML lithography scanners.

Our second contribution is a communication aware binding method that deals
with the second thesis challenge. It is a three-step binding algorithm, named
CMA, that computes the binding of tasks on the resources of a shared mem-
ory multiprocessor platform. In three steps we capture the parallelism in the
application, the latency requirements, the shared memory communication mech-
anism and the platform size limitations to derive a binding that results in feasible
schedules with low makespan. In the first step we apply a deadline aware shared
memory extension of the DSC algorithm that produces a clustered graph assuming
unlimited resources. Since the number of clusters produced can be larger than the
number of resources, we next perform a merging step to combine clusters based
on dependencies while constraining them to remain smaller than a threshold. Fi-
nally the clusters are allocated to the available processors while balancing the
workload. The three-step approach of CMA is shown to be particularly beneficial
when dealing with the inaccuracy in the computation of synchronization timings
for shared memory communication prior to scheduling. The binding algorithm
has been validated in combination with the scheduler from Chapter 2 on control
applications of ASML in which it is shown to produce lower makespans than the
state of the art BDSC algorithm. It is also shown to outperform BDSC in a sig-
nificantly high number of test cases of other well-known parallel problems. The
binding algorithm has been adopted for integration by ASML.

The third contribution of this thesis is the first step towards the robust schedul-
ing challenge wherein we develop an approach to perform robustness analysis of
static-order multiprocessor schedules. We define metrics to quantify the robust-
ness of tasks and schedules. Robustness of a task is defined as the probability
of meeting its deadlines. Robustness of a schedule is defined in terms of the ex-
pected value of the number of tasks missing deadlines in the schedule. The overall
approach addresses the complexity of performing max-plus operations on distri-
butions by using an approach that effectively combines a best-case and worst-case
analysis with limited simulations. We present two curve fitting techniques to de-

102

rive the distributions needed for the analysis. We select one based on its speed
and accuracy to be used in the fourth thesis contribution. The approaches have
been tested for scalability on wafer scanner control applications.

Lastly, we present an iterative robust scheduler that, starting from the sched-
ule produced by the list scheduler with the earliest due-date first heuristic from
Chapter 2, iteratively improves the schedule robustness. It uses the robustness
analysis technique of Chapter 4 after refining it to produce a new task level impact
metric that estimates the impact of delaying a task on schedule robustness. This
new metric is used by the list scheduler that employs a new robustness heuris-
tic called ‘iterative highest robustness impact first’. The approach reduces the
expected number of deadlines misses in a schedule thereby improving schedule
robustness. The iterative mechanism is needed to extract sufficiently precise ro-
bustness information without excessive lookahead at each scheduling step. The
scheduler has been validated on wafer scanner applications, video conferencing
applications and 1000 synthetic graphs where it has shown significant robustness
improvements.

6.2 Future work

In this thesis, we have addressed all the separate aspects of the problem statement
except for the last challenge of developing one integrated framework that can deal
with all of them together. The open points form directions for future work and
are listed below.

6.2.1 Fast and scalable communication aware robust bind-
ing and scheduling

The binding technique presented in Chapter 3 does not consider execution time
variations. A direct way to address these would be to incorporate the variations
by computing stochastic distributions of the task attributes such as top levels and
due-dates. With these distributions, we can obtain slack probabilities that can
be used in the priorities for the clustering algorithm. The binding so obtained
should then be fed into the robust scheduler from Chapter 5 after it is extended
to also account for the shared memory communication overhead.

In addition to defining how to functionally combine all the aspects of the
problem statement, another important issue is the impact on the scheduling time
and scalability. The current iterative scheduler without communication aware
binding is already a lot slower than the ‘one shot’ EDDF scheduler. The multi-
step binding algorithm and the transitive reductions during scheduling are also
computationally expensive and together they will not meet the scalability and
speed requirements. Effective ways of approximating information in a meaningful
manner will therefore be needed to speed up the scheduling process. However the

103

approach will still be quite useful in cases where scheduling time is not constrained,
such as for offline scheduling or for scheduling of relatively small sized applications.

6.2.2 Robustness analysis and scheduling under communi-
cation contention

Throughout the thesis, we made the assumption that communication time be-
tween processors through the network and the read-write costs to the memory are
accounted for in the execution times of tasks. However, communication resource
contention is an important factor that causes variations in the communication
timings and the subsequent cumulative execution times of tasks that follow them
in the graph. Hence, these assumptions need to be relaxed to obtain robustness
estimates that are much closer to the observations on the machines. Variations
due to contention arise mainly because the communication through the network
and memory hierarchy is no longer statically ordered. It depends on the arbitra-
tion policies of the network interconnect in case of inter-processor communication
and on the shared memory hierarchy in case of communication between processor
cores. In the interconnects at ASML, a first-come-first-served (FCFS) arbitration
policy is used.

The robustness analysis presented in this thesis works only for static-order
schedules. To extend it, we first need a means to compute the min-max comple-
tion time bounds of tasks taking also communication contention into account. An
initial step in this direction, made in [36], presents a fix-point based interval anal-
ysis technique to compute the task completion time bounds for a DAG mapped
on a set of interconnected resources that employ FCFS arbitration. Once we have
established the min-max bounds, we need simulated samples for the distribution
of the probability mass. The simulation models will need to mimic the entire
communication framework with the arbitration policies so that we can obtain
completion time samples in the presence of communication contention. There-
after, we can perform curve fitting on the histograms of the simulated samples
together with the interval analysis bounds to obtain completion time distributions
and measure robustness. When integrating this analysis with robust scheduling,
introducing a fix-point analysis at each scheduling iteration together with the mul-
tiple simulations will no longer be scalable to be applicable for ASML. However,
as mentioned earlier the approach is still worthwhile for small sized applications
or offline scheduling problems.

6.2.3 Robustness analysis under execution time correlations

In this thesis, we have ignored correlations between the execution times of tasks.
In order to take these correlations into account during robustness analysis, we
need a means to first extract the coefficients that define the correlation between
the different execution time variables. Once this is known, we need to employ

104

more involved sampling techniques that can draw samples from conditional dis-
tributions of the random variables taking their correlations into account.

6.2.4 Robustness analysis for other application domains

The robustness analysis presented in this thesis is also applicable to other domains
such as the study of the impact of delays in timetabled systems such as the
railways. It is often seen in day to day commuting that a delay in the arrival
of one train to a particular station can significantly impact the schedules of the
others trains passing through that station. In this domain, the scheduling of
trains needs to be robust against the delays caused by system failures or weather
conditions. The travelling times of trains can be expressed in terms of execution
time distributions and deadlines would then correspond to their arrival times at
stations. To focus on the impact of delays alone, the robustness analysis can be
extended to further improve the accuracy of the PERT distributions at their tails.
This can be achieved by using importance sampling techniques that allow us to
generate samples for rare events and perform even better fitting of distributions
near the tails.

6.2.5 Multi-rate scheduling: Data flow models

The applications studied in this thesis are all typically running at the same sample
frequencies. In ASML, some control applications are more critical than others and
the designers often decide to execute them at relatively higher sample frequen-
cies. The current scheduling framework cannot deal with applications running
at multiple frequencies on the same processors. For example the POB appli-
cation, considered in Chapter 3, consists of two independent parts running at
different sample frequencies that are executed on different processors. With the
introduction of multi-rate control, we will need to evolve from our DAGs to more
expressive formalisms such as Synchronous Data Flow (SDF) [52] graphs that use
token rates to express the relative execution rates of tasks. The computations at
each scheduling step will become more involved to also keep track of these rates
and schedule tasks accordingly.

105

106

Bibliography

[1] ASML. http://www.asml.com. Accessed: 08/03/2016.

[2] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-
time systems. In Real-Time Systems Symposium, 1998. Proceedings., The
19th IEEE, pages 4–13, Dec 1998.

[3] T. L. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list schedules
for parallel processing systems. Communications ACM, 17(12):685–690, Dec.
1974.

[4] S. Adyanthaya, M. Geilen, T. Basten, R. Schiffelers, B. Theelen, and
J. Voeten. Fast multiprocessor scheduling with fixed task binding of large
scale industrial cyber physical systems. In Euromicro Conference on Digital
System Design (DSD), pages 979–988. IEEE, Sept 2013.

[5] S. Adyanthaya, M. Geilen, T. Basten, J. Voeten, and R. Schiffelers. Iterative
robust multiprocessor scheduling. In Proceedings of the 23rd International
Conference on Real Time and Networks Systems, RTNS’15, pages 23–32,
New York, NY, USA, 2015. ACM.

[6] S. Adyanthaya, M. Geilen, T. Basten, J. Voeten, and R. Schiffelers. Com-
munication aware multiprocessor binding for shared memory systems. In
Proceedings of the 11th International Symposium on Industrial Embedded
Systems, SIES. IEEE, Article in press, 2016.

[7] S. Adyanthaya, Z. Zhang, M. Geilen, J. Voeten, T. Basten, and R. Schiffelers.
Robustness analysis of multiprocessor schedules. In International Conference
on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS XIV), pages 9–17. IEEE, July 2014.

107

http://www.asml.com

[8] A. Agarwal, D. Blaauw, and V. Zolotov. Statistical timing analysis for intra-
die process variations with spatial correlations. In Computer Aided Design,
ICCAD-2003. International Conference on, pages 900–907, 2003.

[9] A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a
directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[10] S. Ali, A. Maciejewski, H. Siegel, and J.-K. Kim. Measuring the robustness of
a resource allocation. Parallel and Distributed Systems, IEEE Transactions
on, 15(7):630–641, July 2004.

[11] E. Artin. The gamma function. Holt, Rinehart and Winston, New York,
1964.

[12] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Comput. Netw., 54(15):2787–2805, Oct. 2010.

[13] S. Baruah and B. Brandenburg. Multiprocessor feasibility analysis of recur-
rent task systems with specified processor affinities. In Real-Time Systems
Symposium (RTSS), 2013 IEEE 34th, pages 160–169, Dec 2013.

[14] S. K. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese. A generalized parallel task model for recurrent real-time processes.
In RTSS, 2012.

[15] M. Berkelaar. Statistical delay calculation, a linear time method. In TAU
(ACM/IEEE workshop on timing issues in the specification and synthesis of
digital systems), December 1997.

[16] S. Bhardwaj, S. Vrudhula, and D. Blaauw. τau: Timing analysis under uncer-
tainty. In Computer Aided Design, ICCAD-2003. International Conference
on, pages 615–620, 2003.

[17] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr. A survey on
metaheuristics for stochastic combinatorial optimization. Natural Comput-
ing, 8(2):239–287, 2009.

[18] L. Boloni and D. C. Marinescu. Robust scheduling of metaprograms. Journal
of Scheduling, 5(5):395–412, 2002.

[19] B. B. Brandenburg, J. M. Calandrino, and J. H. Anderson. On the scalability
of real-time scheduling algorithms on multicore platforms: A case study. In
Proceedings of the 2008 Real-Time Systems Symposium, RTSS ’08.

[20] H. Butler. Position control in lithographic equipment [applications of control].
Control Systems, IEEE, 31(5):28–47, Oct 2011.

108

[21] A. C. Cameron and F. A. Windmeijer. An r-squared measure of goodness of
fit for some common nonlinear regression models. Journal of Econometrics,
77(2):329 – 342, 1997.

[22] L.-C. Canon and E. Jeannot. Evaluation and optimization of the robust-
ness of dag schedules in heterogeneous environments. IEEE Transactions on
Parallel and Distributed Systems, 21(4):532–546, 2010.

[23] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem.
Management Science, 35(2):164–176, 1989.

[24] B. Cirou and E. Jeannot. Triplet: A clustering scheduling algorithm for
heterogeneous systems. In International Conference on Parallel Processing
Workshops, pages 231–236, 2001.

[25] C. E. Clark. The greatest of a finite set of random variables. Operations
Research, 9(2):145–162, 1961.

[26] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[27] M. Cosnard, M. Marrakchi, Y. Robert, and D. Trystram. Parallel gaussian
elimination on an mimd computer. Parallel Computing, 6(3):275 – 296, 1988.

[28] R. L. Daniels and J. E. Carrillo. β-robust scheduling for single-machine
systems with uncertain processing times. IIE Transactions, 29(11):977–985,
1997.

[29] A. Davenport, C. Gefflot, and C. Beck. Slack-based techniques for robust
schedules. In Sixth European Conference on Planning, 2014.

[30] R. I. Davis and A. Burns. A survey of hard real-time scheduling for multi-
processor systems. ACM Computing Surveys, 43(4):35:1–35:44, Oct. 2011.

[31] J. Engblom. Analysis of the execution time unpredictability caused by dy-
namic branch prediction. In Real-Time and Embedded Technology and Appli-
cations Symposium, 2003. Proceedings. The 9th IEEE, pages 152–159, May
2003.

[32] D. England, J. B. Weissman, and J. Sadagopan. A new metric for robustness
with application to job scheduling. In HPDC, pages 135–143. IEEE, 2005.

[33] F. Fauberteau et al. Robust partitioned scheduling for real-time multipro-
cessor systems. In Distributed, Parallel and Biologically Inspired Systems,
pages 193–204. Springer, 2010.

[34] A. Forti. DAG scheduling in grid computing systems. PhD thesis, University
of Udine, 2006.

109

[35] R. Frijns. Platform-based Design for High-Performance Mechatronic Systems.
PhD thesis, Eindhoven University of Technology, 2015.

[36] R. M. W. Frijns, S. Adyanthaya, S. Stuijk, J. P. M. Voeten, M. C. W. Geilen,
R. R. H. Schiffelers, and H. Corporaal. Timing analysis of first-come first-
served scheduled interval-timed directed acyclic graphs. In Proceedings of
the Conference on Design, Automation & Test in Europe (DATE), pages
288:1–288:6. IEEE, March 2014.

[37] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA, 1990.

[38] F. Glover. Tabu search – part i. ORSA Journal on Computing, 1(3):190–206,
1989.

[39] P. E. Greenwood and M. S. Nikulin. A guide to chi-squared testing. Wiley-
Interscience, 1996.

[40] D. Hardy and I. Puaut. Static probabilistic worst case execution time esti-
mation for architectures with faulty instruction caches. In Proceedings of the
21st International Conference on Real-Time Networks and Systems, RTNS
’13, pages 35–44, New York, NY, USA, 2013. ACM.

[41] T. C. Hu. Parallel sequencing and assembly line problems. Operations Re-
search, 9(6):841–848, 1961.

[42] C. J. Hughes, P. Kaul, S. V. Adve, R. Jain, C. Park, and J. Srinivasan.
Variability in the execution of multimedia applications and implications for
architecture. In Proceedings of the 28th Annual International Symposium
on Computer Architecture, ISCA ’01, pages 254–265, New York, NY, USA,
2001. ACM.

[43] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code
Generation. Wiley-IEEE Computer Society Pr, 2008.

[44] D. Khaldi, P. Jouvelot, and C. Ancourt. Parallelizing with BDSC, a resource-
constrained scheduling algorithm for shared and distributed memory systems.
Parallel Computing, 41:66 – 89, 2015.

[45] M. A. Khan. Scheduling for heterogeneous systems using constrained critical
paths. Parallel Computing, 38(45):175–193, 2012.

[46] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An approach
for quantitative analysis of application-specific dataflow architectures. In
Proceedings of the IEEE International Conference on Application-Specific
Systems, Architectures and Processors. IEEE Computer Society, 1997.

110

[47] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[48] B. Kruatrachue and T. Lewis. Grain size determination for parallel process-
ing. IEEE Software, 5(1):23–32, Jan 1988.

[49] Y. K. Kwok and I. Ahmad. Benchmarking the task graph scheduling al-
gorithms. In Parallel Processing Symposium, 1998. IPPS/SPDP 1998. Pro-
ceedings of the First Merged International ... and Symposium on Parallel and
Distributed Processing 1998, pages 531–537, Mar 1998.

[50] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors. ACM Computing Surveys, 31(4):406–
471, Dec. 1999.

[51] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned fixed-priority
preemptive scheduling for multi-core processors. In Proceedings of the 21st
Euromicro Conference on Real-Time Systems (ECRTS), pages 239–248, July
2009.

[52] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of
the IEEE, 75(9):1235–1245, Sept 1987.

[53] K. Li et al. Scheduling precedence constrained stochastic tasks on hetero-
geneous cluster systems. Computers, IEEE Transactions on, 64(1):191–204,
Jan 2015.

[54] C. Liu and J. Anderson. Supporting graph-based real-time applications in
distributed systems. In Proceedings of the 17th IEEE International Con-
ference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2011.

[55] M. Lombardi et al. Robust scheduling of task graphs under execution time
uncertainty. Computers, IEEE Transactions on, 62(1):98–111, 2013.

[56] L. Lukasiak and A. Jakubowski. History of semiconductors. Journal of
Telecommunications and Information Technology, (1):3–9, 2010.

[57] G. Moore. Progress in digital integrated electronics. In Electron Devices
Meeting, 1975 International, volume 21, pages 11–13, 1975.

[58] S. Nadarajah and S. Kotz. Exact distribution of the max/min of two gaus-
sian random variables. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 16(2):210–212, Feb 2008.

[59] C. Papadimitriou and M. Yannakakis. Scheduling interval-ordered tasks.
SIAM Journal on Computing, 8(3):405–409, 1979.

111

[60] J. Parkhurst, J. Darringer, and B. Grundmann. From single core to multi-
core: Preparing for a new exponential. In Computer-Aided Design, 2006. IC-
CAD ’06. IEEE/ACM International Conference on, pages 67–72, Nov 2006.

[61] A. Renyi. On the central limit theorem for the sum of a random number of
independent random variables. Acta Mathematica Academiae Scientiarum
Hungarica, 11(1-2):97–102, 1963.

[62] R. Rubinstein and D. Kroese. Simulation and the Monte Carlo Method.
Wiley Series in Probability and Statistics. Wiley, 2008.

[63] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer. Modeling
performance variation due to cache sharing. In High Performance Computer
Architecture (HPCA2013), 2013 IEEE 19th International Symposium on,
pages 155–166, Feb 2013.

[64] V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors.
MIT Press, Cambridge, MA, USA, 1989.

[65] R. R. H. Schiffelers, W. Alberts, and J. P. M. Voeten. Model-based spec-
ification, analysis and synthesis of servo controllers for lithoscanners. In
Proceedings of the 6th International Workshop on Multi-Paradigm Modeling,
MPM ’12, pages 55–60, New York, NY, USA, 2012. ACM.

[66] R.-H. M. Schmidt. Ultra-precision engineering in lithographic exposure
equipment for the semiconductor industry. Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering Sci-
ences, 370(1973):3950–3972, 2012.

[67] V. Shestak, J. Smith, A. A. Maciejewski, and H. J. Siegel. Stochastic robust-
ness metric and its use for static resource allocations. J. Parallel Distrib.
Comput., 68(8):1157–1173, Aug. 2008.

[68] Z. Shi, E. Jeannot, and J. Dongarra. Robust task scheduling in non-
deterministic heterogeneous computing systems. In Cluster Computing, 2006
IEEE International Conference on, pages 1–10, 2006.

[69] G. Sih and E. Lee. A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Transactions on
Parallel and Distributed Systems, 4(2):175–187, Feb 1993.

[70] M. Solar and M. Inostroza. A scheduling algorithm to optimize real-world
applications. In Distributed Computing Systems Workshops. Proceedings.
24th International Conference on, pages 858–862, March 2004.

[71] F. Stork. Stochastic resource-constrained project scheduling. PhD thesis,
Technische Universität Berlin, 2001.

112

[72] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For Free. In Application of
Concurrency to System Design, 6th International Conference, ACSD 2006,
Proceedings, 2006.

[73] B. Theelen. Performance Modelling for System-Level Design. PhD thesis,
Eindhoven University of Technology, 2004.

[74] B. Theelen. A performance analysis tool for scenario-aware streaming appli-
cations. In Quantitative Evaluation of Systems, 2007. QEST 2007. Fourth
International Conference on the, pages 269–270, Sept 2007.

[75] A. H. Timmer. From Design Space Exploration to Code Generation. PhD
thesis, Eindhoven University of Technology, 1996.

[76] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Transactions
on Parallel and Distributed Systems, 13(3):260–274, 2002.

[77] M. A. van den Brink, H. Jasper, S. D. Slonaker, P. Wijnhoven, and
F. Klaassen. Step-and-scan and step-and-repeat: a technology comparison.
In Proceedings of SPIE, volume 2726, pages 734–753, 1996.

[78] M. Van Hauwermeiren and D. Vose. A Compendium on Distributions.
[ebook]. Vose Software, Ghent, Belgium, 2009.

[79] J. Verriet. The complexity of scheduling typed task systems with and without
communication delays. Technical report, Utrecht University, 1998.

[80] J. H. Verriet. Scheduling with communication for multiprocessor computa-
tion. Technical report, Utrecht University, 1998.

[81] J. P. M. Voeten, P. van der Putten, M. Geilen, and M. P. J. Stevens. For-
mal modelling of reactive hardware/software systems. In J.P. Veen, Ed.,
Proceedings of ProRISC/IEEE 97, Utrecht : STW, Technology Foundation,
pages 663–670, 1997.

[82] D. Vose. Risk analysis : a quantitative guide. Wiley, Chichester, England,
Hoboken, NJ, 2008.

[83] D. Wang, B. Gong, and G. Zhao. Estimating deadline-miss probabilities of
tasks in large distributed systems. In R. Li, J. Cao, and J. Bourgeois, editors,
Advances in Grid and Pervasive Computing, volume 7296 of Lecture Notes
in Computer Science, pages 254–263. Springer Berlin Heidelberg, 2012.

[84] M.-Y. Wu and D. Gajski. Hypertool: a programming aid for message-passing
systems. IEEE Transactions on Parallel and Distributed Systems, 1(3):330–
343, July 1990.

113

[85] M.-Y. Wu, W. Shu, and J. Gu. Efficient local search for DAG scheduling.
IEEE Transactions on Parallel and Distributed Systems, 2001:617–627, 2001.

[86] T. Yang and A. Gerasoulis. PYRROS: Static task scheduling and code gen-
eration for message passing multiprocessors. In Proceedings of the 6th Inter-
national Conference on Supercomputing, ICS ’92, pages 428–437, 1992.

[87] T. Yang and A. Gerasoulis. DSC: scheduling parallel tasks on an unbounded
number of processors. IEEE Transactions on Parallel and Distributed Sys-
tems, 5(9):951–967, Sep 1994.

114

List of Abbreviations

BDSC Bounded Dominant Sequence Clustering
CALAP Classical As-Late-As-Possible
CCR Communication to Computation Ratio
CMA Clustering, Merging, Allocation
DAG Directed Acyclic Graph
DCS Divide & Conquer Search
DSC Dominant Sequence Clustering
DSL Domain Specific Language
ECF Earliest Classical As-Late-As-Possible First
EDDF Earliest Due-date First
EDF Earliest Deadline First
EUV Extreme Ultraviolet
FCFS First-Come-First-Served
FFT Fast Fourier Transforms
FJ Fork Join
GE Gaussian Elimination
IHRIF Iterative Highest Robustness Impact First
IO Input Output
MDC Molecular Dynamics Code
PERT Project Evaluation & Review Technique
POB Projection Optics Box
POOSL Parallel Object-Oriented Specification Language
SADF Scenario Aware Data Flow

115

116

List of Symbols

Notation Description

a Task
(a, b) A dependency from task a to b not considering communication cost
(a, b, ĉ) A dependency from task a to b with a communication cost of ĉ
|f | L2 norm of a function f
< f , g > L2 inner product of two functions f and g
before(r , a) Last task scheduled before task a on resource r
blevela Bottom level of a task a
ca Completion time of a task a
cg Completion time of a gap g
CA Cluster Allocation
CL Set of clusters
cl Cluster
CL Set of clusters
CLD Set of cluster dependencies
CT Set of clustered Tasks
da Deadline of a task a
D Set of dependencies
D Probability density functions
dda Due-date of a task a
ddA Due-date of a set A of tasks
DSa Dependent set of a task a
ea Execution time of a task a
ET Set of enabled tasks
G DAG
g Gap
HCC Highly Connected Cluster Function

117

Notation Description

I S
a Impact of a task a in a schedule S

IEa Impact estimate of a task a

IHa(i) Impact history of a task a in the ith iteration of the iterative robust
scheduler

lastr Last task scheduled of resource r
lastPreda Last completion predecessor of a task a
M<p,h> Curve fitting metric of a pert distribution p on a histogram h
m Makespan
max Parameter ‘maximum’ of a PERT distribution
min Parameter ‘minimum’ of a PERT distribution
mode Parameter ‘mode’ or peak of a PERT distribution
P[x < y] Probability of x being less than y
Pca Probability density function of the completion time of a task a
Pea Probability density function of the execution time of a task a
Psa Probability density function of the start time of a task a
precγ Precision parameter for divide and conquer search on γ
precm Precision parameter for divide and conquer search on mode
pred(a) Set of predecessors of a task a

R≥0 Non-negative real numbers
R Real numbers
ra Resource of a task a
R Set of resources
R Read operation
Sprt Partial schedule
sa Start time of a task a
sg Start time of gap g
S Static-order schedule
SD Scheduling decisions of a scheduler
sla Slack of a task a
slab

S Slack between two tasks a and b in a schedule S
SPFM Feasible multiprocessor scheduling problem
ST Set of scheduled tasks
succ(a) Set of successors of a task a
T Set of tasks
t Time
tlevela Top level of a task a
U Update operation
var Variance of a set of simulated samples
X Random variable for the number of deadline misses in a schedule
Z Integers
Number of
⊥ No resource assigned to task
δ(t) Dirac δ-function
∆ Bin-width of a histogram
γ Parameter ‘gamma’ or intensity parameter of a PERT distribution
µ Mean of a set of simulated samples
τ Delay

118

Curriculum Vitae

Shreya Adyanthaya was born on 21 December 1987 in Mangalore, India. She
received her B.E. in Computer Science and Engineering from Nitte Mahalinga
Adyanthaya Memorial Institute of Technology under the Visvesvaraya Techno-
logical University, India, in 2009. She obtained her MTech in Software Engineer-
ing from the Manipal University, India, and her MSc in Computer Science and
Engineering from the Eindhoven University of technology in 2011, as a part of
a dual degree exchange program. The focus of her MSc degree was on Formal
Methods and during her master thesis project she performed the formal modelling
and verification of the ASML wafer scanner systems in UPPAAL. She started her
PhD in November 2011 in the Electronic Systems group at the Department of
Electrical Engineering of Eindhoven University of Technology. This PhD project
is a joint collaboration of TU/e with ASML and TNO-ESI. During the course of
her PhD work, she developed several scheduling algorithms for ASML that are
currently integrated into their wafer scanner systems. These contributions also
led to several publications and the contents of this thesis. She currently works as
a design engineer at ASML.

119

120

List of Publications

First author

Conference papers

[1] S. Adyanthaya, M. Geilen, T. Basten, J. Voeten, and R. Schiffelers. Commu-
nication Aware Multiprocessor Binding for Shared Memory Systems. In Proceed-
ings of the 11th IEEE International Symposium on Industrial Embedded Systems,
SIES. IEEE, Article in press, 2016.

[2] S. Adyanthaya, M. Geilen, T. Basten, J. Voeten, and R. Schiffelers. Iterative
robust multiprocessor scheduling. In Proceedings of the 23rd International Con-
ference on Real Time and Networks Systems, RTNS’15, pages 23-32, New York,
NY, USA, 2015. ACM.

[3] S. Adyanthaya, Z. Zhang, M. Geilen, J. Voeten, T. Basten, and R. Schiffelers.
Robustness analysis of multiprocessor schedules. In International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIV) 2014, pages 9-17. IEEE, July 2014.

[4] S. Adyanthaya, M. Geilen, T. Basten, R. Schiffelers, B. Theelen, and J. Voeten.
Fast multiprocessor scheduling with fixed task binding of large scale industrial cy-
ber physical systems. In Euromicro Conference on Digital System Design (DSD),
pages 979-988. IEEE, Sept 2013.

121

Posters

[5] S. Adyanthaya, R.R.H. Schiffelers, R. Theunissen, C. van Huët, M.C.W.
Geilen, R.M.W. Frijns, and J.P.M. Voeten, Multi-core communication-aware sched-
uler for CARM 2G, In 14th ASML Technology Conference, poster, 2013.

Co-author

Journal papers

[6] S. Adyanthaya, H. Alizadeh Ara, J. Bastos, A. Behrouzian, R. Medina Sánchez,
J. van Pinxten, B. van der Sanden, U. Waqas, T. Basten, H. Corporaal, R. Frijns,
M. Geilen, M. Hendriks, D. Goswami, S. Stuijk, M. Reniers, and J. Voeten. xCPS:
A tool to eXplore Cyber Physical Systems. SIGBED Review. ACM, Accepted
for publication, 2016.

Conference papers

[7] R.M.W. Frijns, S. Adyanthaya, S. Stuijk, J.P.M. Voeten, M.C.W. Geilen,
R.R.H. Schiffelers, and H. Corporaal. Timing analysis of first-come first-served
scheduled interval-timed directed acyclic graphs. In Proceedings of the Confer-
ence on Design, Automation & Test in Europe (DATE), pages 288:1-288:6, IEEE,
March 2014.

[8] S. Adyanthaya, H. Alizadeh Ara, J. Bastos, A. Behrouzian, R. Medina Sánchez,
J. van Pinxten, B. van der Sanden, U. Waqas, T. Basten, H. Corporaal, R. Frijns,
M. Geilen, D. Goswami, S. Stuijk, M. Reniers, and J. Voeten. xCPS: A tool to
eXplore Cyber Physical Systems. In Proceedings of the Workshop on Embedded
and Cyber-Physical Systems Education, WESE’15, pages 3:1-3:8, New York, NY,
USA, 2015. ACM.

122

	Acknowledgements
	Summary

	Introduction
	Mechatronic control domain
	Platform technology
	Model based design flow: Scheduling
	Problem Statement and Research Challenges
	Contributions
	Thesis outline

	Fast and scalable scheduling with fixed task binding
	Motivational example
	Related work
	Problem definition
	Preliminaries
	Problem statement

	Complexity analysis
	Proposed scheduling algorithm
	List scheduling and static-order schedules
	Due-dates
	List scheduling with earliest due-date first heuristic

	Experimental results
	Industrial test cases
	Comparison of EDDF and ECF: Synthetic test cases

	Summary

	Communication aware binding for shared memory systems
	Problem definition and solution overview
	Preliminaries
	Problem description
	Solution flow and rationale

	Clustering
	DSC
	Deadline-aware extension to DSC
	Shared memory extension to DSC
	BDSC

	Merging
	Load balanced allocation
	Experimental Setup and Results
	Scheduler Setup
	Results

	Related work
	Summary

	Robustness analysis of static-order schedules
	Related work
	Problem definition and solution overview
	Preliminaries
	Problem description
	Solution flow

	Challenges of the analysis
	Analytical approach only
	Simulations only

	Proposed robustness analysis approach
	Curve fitting metric
	Curve fitting using divide and conquer search for best fit
	Curve fitting using PERT equations
	Obtaining completion time distributions: Combining analysis and simulations
	Robustness metrics

	Experimental results
	Evaluation of the robustness analysis approach
	Validation with extensive (day-long) simulations
	Speed vs. accuracy: trade-off

	Summary

	Iterative robust scheduling with fixed task binding
	Related work
	Problem definition and solution overview
	Preliminaries
	Problem statement and solution flow

	Refined robustness analysis: Impact metric
	Impact metric
	Impact metric computation

	Iterative highest robustness impact first heuristic
	Iterative list scheduling with IHRIF heuristic
	Experimental results
	Real world applications
	Synthetic test cases

	Summary

	Conclusions and future work
	Conclusions
	Future work
	Fast and scalable communication aware robust binding and scheduling
	Robustness analysis and scheduling under communication contention
	Robustness analysis under execution time correlations
	Robustness analysis for other application domains
	Multi-rate scheduling: Data flow models

	List of Abbreviations
	List of Symbols
	Curriculum Vitae
	List of Publications

