
Inventory Control in a Spare Parts Distribution System 
with Emergency Stocks and Pipeline Information 

 
Motivated by collaboration with a global spare parts service provider, we consider a two-echelon 

inventory system with multiple local warehouses, a so-called support warehouse, and a central 

warehouse with ample capacity. In case of stock-outs, the local warehouses can receive emergency 

shipments from the support warehouse or the central warehouse at an extra cost. Our focus is on using 

information on orders in the replenishment pipeline, i.e. pipeline information, to achieve cost efficient 

policies for requesting emergency shipments. We introduce a policy where the request for an 

emergency shipment is based on the time until an outstanding order will reach the stock point 

considered. The goal is to determine how long one should wait for stock in the replenishment pipeline 

before requesting an emergency shipment, and the cost effects of using pipeline information in this 

manner. The analysis utilizes results from queuing theory and provides a decomposition technique for 

optimizing the policy parameters that reduces the complex multi-echelon problem to more 

manageable single-echelon problems. The performance of our policy indicates that there can be a 

significant benefit in using pipeline information. 
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1. Introduction 
The research presented in this paper is motivated by collaboration with Volvo Parts Corporation, a 

global spare parts service provider with headquarters in Sweden. Volvo Parts is the supplier of 

aftermarket services for the Volvo Group, supporting the business areas: Volvo Trucks, Mack, 

Renault Trucks, Volvo Busses, Volvo Heavy Machinery and Volvo Penta. It follows that a core 

operational area for Volvo Parts is stock keeping and distribution of spare parts. These spare parts are 

distributed through central warehouses, positioned around the world, each one responsible for serving 

several local markets. On each local market they have a number of local warehouses (dealers/retailers) 

that, in turn, serve the end customer. This includes both service and repairs of the customers’ vehicles, 

as well as direct “over the counter” sales of the spare parts. The local warehouses replenish their stock 

by placing orders with the central warehouse. 

 One of the main challenges faced by Volvo Parts is how to cost-effectively achieve high 

availability of low demand spare parts. Looking at the central warehouse on the European market, 
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which is responsible for supplying just over 900 stock points, 98% of the different articles ordered 

have a yearly demand lower than 10 000 units. This corresponds to an average customer demand of 

less than one unit per month at each stock point. At the same time, these articles are generally quite 

expensive and account for 72% of the yearly value (calculated as yearly demand multiplied by item 

value). To achieve high availability for these articles Volvo Parts uses a separate emergency shipment 

system in addition to the regular replenishment system. On most local markets they have an additional 

stock point referred to as a support warehouse. The support warehouse is also replenished by the 

central warehouse and its purpose is to provide emergency shipments to the local warehouses in cases 

of stock-outs. Because the support warehouse is situated closer to the local warehouses than the 

central warehouse, the shipment times are much shorter than for regular replenishments (typically 

over night). However, due to the extra transportation and handling activities involved, they come at a 

higher cost. As a last resort, the central warehouse can also provide an emergency shipment directly to 

the local warehouse. This type of system structure is by no means unique for Volvo Parts. It is, for 

instance, also used by several of their competitors. 

 Looking at the organizational structure of Volvo Parts’ distribution system, some of the local 

warehouses are owned by Volvo Parts, while others are independent privately owned companies. In 

terms of inventory control, Volvo Parts has a VMI (Vendor Managed Inventory) contract with the 

local warehouses, which gives them the mandate to control the local warehouses’ inventories through 

a centralized IT system. More precisely, they are authorized to determine parameters (e.g., base-stock 

levels) in the control policies used. Apart from this, the managerial control of the local warehouses’ 

operations is decentralized. The central warehouses and support warehouses, on the other hand, are 

owned and operated by Volvo Parts, which gives them full control over all emergency shipment 

operations. A motivation for choosing such a distribution structure is to avoid complicated incentive 

issues between local warehouses, typically encountered in systems where stock is shared among 

independently owned companies, e.g., through lateral transshipments. 

 Because emergency shipments are more costly than regular supply, the policy for requesting 

such shipments is of crucial importance. With the recent advances in information technology it is now 

possible to have detailed information on the state of an inventory system, such as the current positions 

of outstanding orders. A critical question is: how can this information be utilized in the design of 

emergency shipment policies? Currently at Volvo Parts, the general policy is to ask for an emergency 

shipment whenever a stock-out occurs. However, as recognized by the company, this is not 

necessarily the best strategy in terms of cost and service effectiveness. For some spare parts it might 
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be better to backorder the demand at the given stock point, in anticipation of the next incoming 

regular order, instead of requesting an emergency shipment. For example, if there is a regular 

replenishment order in the pipeline from the central warehouse in close proximity to the local 

warehouse, not only will the customer waiting time be less if she waits for this incoming order, but at 

the same time, Volvo Parts will avoid the extra cost associated with an emergency shipment. 

Following this line of reasoning, it is clear that if incoming orders are ignored, using emergency 

shipments can actually lead to less effective systems, compared to only using regular supply. This 

highlights the need for a replenishment policy that is more flexible regarding the use of emergency 

shipments, and that utilizes information of when outstanding orders in the replenishment pipeline 

from the central warehouse will be arriving (which is referred to as using pipeline information). 

 In this paper, we focus on a single local market and introduce what we refer to as an (S,T) 

policy at each individual stock point. The policy parameter S is the base-stock level and T is the 

threshold time for backordering instead of emergency ordering. This threshold time is an internal 

decision variable that can be set individually for each product and stock point in the system and is 

designed to incorporate the possibility of waiting for incoming replenishment orders. In essence, T 

specifies how far up the pipeline to look when deciding on how to replenish when there is a stock-out. 

When demand occurs at a specific local warehouse, and that warehouse is out of stock, the demand is 

backordered if there is a regular replenishment order arriving within the set threshold time. If there is 

no regular order close enough in the pipeline (i.e., arriving within T time units), an emergency 

shipment is requested. The request first goes to the support warehouse, which will meet the demand 

and send an emergency shipment if there is stock on hand or stock arriving within its own threshold 

time. If this is not the case, the local warehouse requests an emergency shipment from the central 

warehouse instead. We assume that the central warehouse always can deliver and, therefore, it can be 

viewed as an external supplier. 

 Our model assumes Poisson distributed customer demand and one-for-one ordering at all stock 

points, which is reasonable for the slow moving items in Volvo Parts’ product assortment. Moreover, 

we consider a customer waiting cost per unit and time unit, which is based on contractual obligations, 

down-time costs and loss of good-will. Given this waiting cost, along with holding costs and 

emergency shipment costs, we provide a method for determining base-stock levels and threshold 

times such that the expected system costs are minimized. Note that the determination of suitable 

threshold times is within the control of the company, and is not something to be negotiated with the 

end customer. That is, the local warehouses have an obligation to provide high service to the end 
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customer (the lack of which is quantified by the waiting cost), but emergency shipments is a service 

provided to the local warehouses, and the threshold times are internal decision variables which are not 

visible to the end customer. 

 One of the main advantages of our (S,T) policy is its generality: When all threshold times are 

set to zero, this corresponds to the current situation at Volvo Parts, where emergency shipments are 

used whenever a stock-out occurs. Conversely, if all threshold times are equal to the associated 

replenishment lead times, all demand will wait for regular replenishment, and emergency shipments 

are never used. Our policy therefore provides a cost performance guarantee over simple policies such 

as; (i) always requesting emergency orders when stock-outs occur, (ii) never using this option, or (iii) 

always requesting an emergency order if this makes the item available faster than waiting for the next 

regular order to arrive. Furthermore, optimizing the threshold times provides structural results on 

suitable system configurations for different products: e.g., for which products the support warehouse 

should be used at all. This is another issue of key interest for Volvo Parts. 

 The contributions of our work can be summarized as follows: We address the frequently 

observed, yet unsolved problem of when to place emergency orders in supply chains with multiple 

local warehouses (or dealers, retailers, repair shops, etc.) and an organizational structure that excludes 

the possibility of local inventory pooling (e.g., lateral transshipments between all stock points). The 

importance of the problem is supported by data from Volvo Parts. We develop a multi-echelon model 

to analyze the problem where one building block is an exact method for a local warehouse in 

isolation. We also provide a simple heuristic for determining Sj and Tj-values for the multi-echelon 

system, which proves to be very accurate (average relative cost increase of 0.06% in our study) and 

reasonably fast (average solution time of 60 seconds). Making use of data from Volvo Parts, and the 

flexibility of our new (S,T) policy, we obtain managerial insights by evaluating different strategies for 

requesting emergency shipments. Perhaps the most notable insight is that using pipeline information 

in a simple intuitive way, can result in poor cost performance. For example, choosing the quickest 

replenishment option (emergency stock vs. pipeline stock) resulted in an average penalty of 7% 

(maximum 91%) in our numerical study, compared to optimizing the system parameters in an 

integrated manner using our (S,T) policy.  

 The remainder of this paper is organized as follows: Section 2 provides a review of related 

literature. Section 3 presents the considered model in detail and discusses the assumptions made. 

Section 4 analyzes a single local warehouse in isolation and provides an exact method for cost 

evaluation and optimization of this single-echelon system. Based on these results, a multi-echelon 
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model for the distribution system is presented together with an accurate heuristic for setting base-

stock levels and threshold times for all local warehouses and the support warehouse. Section 5 

evaluates the performance of the proposed heuristic and provides managerial insights regarding the 

value of using pipeline information. Section 6 concludes. 

2. Literature review 
Our work is mainly related to the literature on lateral transshipments, dual supply, partial 

backordering, and multi-echelon systems. 

 The lateral transshipment literature focuses on models where locations in the same echelon can 

share inventory by transferring items between the locations. Recent overviews of this literature are 

provided in Paterson et al. (2011) and Wong et al. (2006). We particularly mention the papers by 

Kranenburg and van Houtum (2009) and Reijnen et al. (2011) because, similar to the considered 

support warehouse, only a subset of local warehouses can supply transshipments. Kranenburg and van 

Houtum consider a two level structure where lateral transshipments can only be supplied by the upper 

level. Reijnen et al. consider a structure where local warehouses can only receive a lateral 

transshipment if the local warehouse can be reached within a predefined time limit. Both papers 

assume Poisson demand, service constraints as opposed to waiting costs, and exponentially distributed 

replenishment lead times. The lead time assumption excludes the possibility of keeping track of 

outstanding orders, due to the memoryless property. Hence, even though the authors of both papers 

recognize that the lateral transshipment time may be non-negligible, they do not consider waiting for a 

replenishment order in the pipeline as an alternative to sending an emergency shipment. 

 A single-echelon lateral transshipment model that incorporates the option of waiting for 

incoming orders is provided by Yang et al. (2013). They consider a structure similar to Reijnen et al. 

(2011) where it is assumed that customers are willing to wait at a local warehouse for a given amount 

of time. In Yang et al. (2013) a local warehouse will wait for incoming orders, instead of requesting a 

lateral transshipment, if the order will arrive within this given time limit. This is similar to our 

assumptions but there are important differences. Firstly, they regard the customer time limit as a given 

parameter and assume that the customer is satisfied if she receives the item within this time (which 

makes it similar to a service constraint). Although our threshold times can be used in the same way 

(by letting them be equal to the customer time limit), in our model we consider a customer waiting 

cost per time unit at each local warehouse, and regard the threshold time as a decision variable. 

Secondly, they restrict all local warehouses to have the same time limit, whereas we allow for 

different threshold times at different locations. Lastly, in their work they assume that demand is 
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backordered if no lateral transshipment can reach the local warehouse in time, while we consider an 

emergency shipment from the central warehouse as a last option.  

 Our work is also related to the literature on unidirectional lateral transshipment models (see e.g. 

Axsäter, 2003b and Olsson, 2010) because the emergency shipments exclusively occur in one 

direction (from the support warehouse to the local warehouses). Another paper that is related to our 

work is Axsäter et al. (2013), which also analyzes the described distribution system used by Volvo 

Parts. However, their work is focused on minimizing costs under fill rate service constraints, and, 

therefore, they do not consider the customer waiting times explicitly. Moreover, they do not consider 

pipeline information, they assume normally distributed demand, and their model assumes that the 

local warehouses always order from the support warehouse when a stock-out occurs. 

 The main distinguishing feature of our work compared to the lateral transshipment papers 

mentioned above is that we consider the inventory in the pipeline before requesting an emergency 

(lateral) transshipment. Furthermore, our policy guarantees better or equal cost performance compared 

to simple policies such as complete backordering (no emergency orders at all), always requesting 

emergency shipments when stock-outs occur, or using emergency shipments when it is faster than 

waiting for the next incoming regular order. None of the lateral transshipment models mentioned 

above provide this performance guarantee. Axsäter (2003a) does suggest a heuristic decision rule for 

lateral transshipments that has a similar performance guarantee. This decision rule incorporates the 

remaining delivery times for outstanding orders. Although we also utilize this information, our use of 

threshold times is quite different from Axsäter’s transshipment rule. Furthermore, we place an 

emphasis on determining replenishment policy parameters, whereas Axsäter uses simulation for 

evaluation and optimization of (R,Q) policies under the given transshipment rule. 

 In our analysis, we start with a single local warehouse in isolation. This means that, given a 

stock-out situation, the decision that the local warehouse faces is to either wait for regular 

replenishment, or to have the demand be satisfied by an exogenous source. The dual supply literature 

studies similar types of decisions, where a common assumption is that a single warehouse can choose 

between a regular supplier and a quicker more expensive emergency supplier. The main difference is 

that, from a single-echelon modeling perspective, our local warehouse does not receive any orders 

from the emergency supplier. These orders are viewed as lost sales (transferred to the support 

warehouse in the multi-echelon model). The dual supply literature is extensive, and for general 

overviews we refer to Minner (2003) and Veeragaghavan and Scheller-Wolf (2008). An important 

work is Whittemore and Saunders (1977) that study a multi-period problem and two suppliers. They 
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show that when the lead times differ by more than one period between the two suppliers, the optimal 

policy is complex and highly state dependent. Moinzadeh and Nahmias (1988) use an approximation 

for determining parameters for an (R,Q) policy under the assumption that there can be at most one 

regular and one emergency order outstanding. However, they do not benchmark the cost performance 

of their policy against other policies. 

 A single-echelon dual supply model which is closely related to our local warehouse in terms of 

modeling assumptions is Moinzadeh and Schmidt (1991). They consider an (S-1,S) inventory system 

with Poisson demand and two exogenous suppliers. When a demand occurs, the decision to order 

from the more expensive emergency supplier with a shorter lead time, τ, is based on comparing the 

remaining times of unreserved outstanding orders to τ. Song and Zipkin (2009) reinterpret the 

ordering policy considered by Moinzadeh and Schmidt (1991) and show that it is equivalent to basing 

the ordering decision on two separate base-stock levels, S1 and S2 (often referred to as a dual-index 

policy). More precisely, an emergency order is placed when the inventory position for the 

downstream part of the pipeline, including stock-on hand − backorders + outstanding order arriving to 

the stock point within τ time units, drops below the base-stock level S2. Otherwise a normal 

replenishment order (with lead time L ≥ τ) is placed to maintain the regular inventory position, 

including all outstanding orders, at the base stock-level S1. This (S1,S2) policy is more general than the 

(S,T) policy in the sense that it allows for proactive emergency orders (if S2>0), while in the (S,T) 

policy emergency shipments can only be requested when a shortage has occurred. On the other hand, 

the (S1,S2) policy is more restrictive than the (S,T) policy in the sense that the emergency ordering 

decision is based on the downstream pipeline information associated with the given emergency lead 

time τ, while in the (S,T) policy the downstream pipeline information to consider is determined by the 

threshold time, T, which is a control variable to be optimized. Another important difference is that the 

(S1,S2) model is restricted to either complete backordering or complete lost sales, while our (S,T) 

model allows for partial backordering, that is, a demand can be either backordered or lost depending 

on the system state at the time of a demand arrival. The partial backordering feature is crucial for the 

tractability of our proposed multi-echelon model. The relationship to the (S1,S2) policy is further 

analyzed in Section 4.1 where we build on the results by Moinzadeh and Schmidt (1991) and Song 

and Zipkin (2009) to derive the performance measures for our (S,T) policy of a local warehouse. 

 A single-echelon dual supply model that focuses on the value of information, albeit under 

rather different modeling assumptions than in our present work, is Gaukler et al. (2008). They study 

the value of emergency ordering based on order progression information, where outstanding orders 
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pass through N stages. They consider an (R,Q) policy with the option of also placing emergency 

orders. A simulation study with heuristically determined control parameters suggests that utilizing 

additional order information adds significant value to emergency shipment policies, which is 

concurrent with our findings. Axsäter (2007) applies the same technique used in Axsäter (2003a) to 

derive a decision rule for when to request an emergency shipment. The analysis assumes an (R,Q) 

replenishment policy for which the optimal parameters are determined by simulation. Although based 

on a different technique, the decision rule shares similarities with our policy in the sense that it also 

guarantees no worse performance than to always or to never request emergency shipments. 

 The third stream of literature that is related to our work is that of partial backordering. In our 

model, a customer that waits for a regular replenishment to arrive is regarded as a backordered 

customer, while one that cannot be served within T is considered lost to the local warehouse. Basing 

the decision to backorder on a threshold time can therefore be viewed as a type of partial 

backordering. For partial backordering models concerning (S-1,S) policies and Poisson demand we 

refer to Das (1977) and Moinzadeh (1989) and references therein. What sets this literature apart from 

our current work is the sole focus on single-echelon models and the fact that partial backordering is 

the result of a given customer behavior, i.e. that customers are willing to wait for a certain amount of 

time before leaving the system. Therefore, these papers do not investigate the value of being able to 

choose when to backorder a demand. Models that do investigate the value of partial backordering are 

given in Chu et al. (2001) and Rabinowitz et al. (1995). They study a single-echelon system under 

Poisson demand where customers are backordered when a replenishment order is close enough in the 

pipeline. Although they illustrate that there is a large potential in allowing for partial backordering, 

their analyses are approximate because they consider (R,Q) replenishment policies under the 

assumption that there can be at most one order outstanding. When allowing for backorders this 

assumption will be violated. In particular, when Q is small there can be many orders outstanding at 

the same time. Thus, their model is not suitable for analyzing base-stock policies (which corresponds 

to Q = 1), whereas we provide exact results for this case. 

 The focus on a two-level system with a single stock point in the upper echelon supplying 

multiple downstream facilities means that there is a relation between our work and the literature on 

continuous review distribution systems. For a general overview of this literature we refer to Axsäter 

(2003c). A more recent overview of continuous review one-warehouse-multiple-retailer models is 

available in Axsäter and Marklund (2008). The main difference is that the upper echelon in this 

8 
 



literature handles regular replenishment orders, whereas the support warehouse in our model handles 

emergency shipments. As a result, the problem formulations and solution techniques differ. 

3. Problem formulation 
We consider a single item inventory model consisting of j local warehouses (index j∈{1,…,J}), a 

support warehouse (index j = 0), and a central warehouse with ample capacity (Figure 1). The 

rationale for the assumption of ample capacity is that the central warehouse at Volvo Parts by a 

strategic decision has very high service levels. Hence, delays due to stock-outs are rare. The support 

warehouse and all local warehouses apply continuous review base-stock, or (S-1,S), policies and the 

customer demand at local warehouse j follows a Poisson process with demand rate λj. These 

assumptions are reasonable for the slow moving spare parts in Volvo Parts’ assortment. Demand is 

satisfied according to a First Come - First Served (FCFS) rule. For fulfillment of a demand we first 

consider the stock on hand and the orders in the replenishment pipeline (i.e., outstanding orders en 

route from the central warehouse) at local warehouse j, where the demand occurred. In case local 

warehouse j has available stock on hand, the customer leaves directly with an item. If the warehouse 

is out of stock and an unreserved replenishment order will arrive within Tj time units, then the demand 

is backordered and waits until the order arrives. By unreserved we mean that there is no other 

customer demand backordered and waiting for the considered item. 

 

 

 

 

 

 

The decision variable Tj is referred to as the threshold time at warehouse j. In case a customer demand 

is satisfied from stock on hand or backordered at local warehouse j a new item is ordered from the 

central warehouse at the moment the demand occurs. The lead time, Lj, for these regular orders to 

arrive at local warehouse j is constant for a given local warehouse j, but may vary between local 

warehouses. If there is no stock on hand, and no stock in the replenishment pipeline that will arrive 

within the threshold time, the demand will be satisfied by an emergency shipment from the support 

warehouse or, as a last option, from the central warehouse. A demand waiting for an emergency 

Figure 1 
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shipment at a local warehouse is not viewed as a backorder at that stock point. The reason is that the 

responsibility for fulfillment of that demand is now shifted to the support warehouse and the central 

warehouse. 

 When requesting an emergency shipment, the local warehouse first contacts the support 

warehouse which applies the same type of (S,T) policy: (i) satisfy the demand from stock on hand by 

sending a shipment to the local warehouse, (ii) backorder the demand based on the pipeline inventory 

of reach within threshold time T0, and send a shipment when the item arrives in stock, (iii) deny the 

request for an emergency shipment. In (iii), the local warehouse requests an emergency shipment 

directly from the central warehouse, which can always deliver. The central warehouse emergency 

shipment lead time, denoted by c
jτ , is constant for a given local warehouse, but may vary between 

local warehouses. The support warehouse emergency transportation time, s
jτ , (the time between an 

item leaves the support warehouse until it reaches the local warehouse) is also constant. However, as 

stock outs may occur at the support warehouse, the emergency shipment lead time is stochastic. 

 We assume a customer waiting cost bj per unit and time unit at local warehouse j. This cost can 

largely be determined by estimation of the down-time costs for vehicles standing still, penalties and 

discounts for delays; but intangible costs, such as loss of goodwill, were also taken into consideration 

by a focus group at Volvo Parts. Furthermore, there is a fixed per-unit cost, cj, associated with every 

emergency shipment from the support warehouse to local warehouse j. This cost is divided into 

handling and shipment costs, cj ,́ and customer waiting costs. Analogously, there is a fixed per-unit 

cost, pj, for every emergency shipment from the central warehouse to local warehouse j, pj≥ cj. Note 

that, because s
jτ  and c

jτ  are constant, the customer waiting cost for an emergency shipment in 

transport will be the same for all customers at local warehouse j. Thus the waiting cost, bj
s
jτ , is 

included in cj (i.e., cj = cj´ + bj
s
jτ ) and, analogously, bj

c
jτ  is included in pj. However, waiting due to 

backordering, at a local warehouse or at the support warehouse, must be handled separately, by 

incurring a waiting cost that equals bj multiplied by the duration of the backorder. We also consider 

inventory holding costs hj (j = 0,…,J) per unit and time unit for stock on hand. 

 Let S = (S0, S1,…,SJ) be the vector of the support warehouse and local warehouse base-stock 

levels, and let T = (T0, T1,…,TJ) be the vector of threshold times. We refer to the policy used at each 

stock point j as an (Sj,Tj) policy. For local warehouse j (j = 1,…,J) we define: 

αj = fraction of demand satisfied from stock on hand at local warehouse j 
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βj = fraction of demand backordered in anticipation of pipeline stock to arrive at local warehouse j 

γj = fraction of demand satisfied from stock on hand at the support warehouse 

δj = fraction of demand backordered at the support warehouse 

θj = fraction of demand satisfied by an emergency shipment from the central warehouse 

ψj = γj + δj + θj, i.e., fraction of demand satisfied through emergency shipments. 

EWj = expected waiting time for an item backordered in anticipation of pipeline stock to arrive 

  at local warehouse j 

EVj = expected waiting time at the support warehouse for an item requested at local 

  warehouse j and backordered at the support warehouse 

EILj
+ = expected inventory on hand at stock point j. 

Note that all customer demand must eventually be satisfied, i.e., αj + βj + γj + δj + θj = 1. The objective 

is to find the S and T ( jj LT0 ≤≤ for all j) that minimize the expected total system cost per time unit: 

 ∑ ∑∑∑∑
= ====

+ λθ++λδ+λγ+λβ+=
J
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In (1), the first term is the expected holding costs, the second term is the expected costs for backorders 

at the local warehouses, the third term is the expected cost for emergency shipments sent immediately 

from the support warehouse, the fourth term is the expected cost for emergency shipments sent, after a 

delay, from the support warehouse, and, finally, the last term is the expected cost for emergency 

shipments sent from the central warehouse. 

 The settings described above matches the setup of Volvo Parts’ distribution system for low 

demand spare parts. However, from a modeling perspective, we can instead view the request for an 

emergency shipment from the support warehouse as a demand lost at the local warehouse, and 

instantly transferred to the support warehouse at the cost cj. Analogously, an emergency shipment 

from the central warehouse can be viewed as demand lost for the support warehouse at an additional 

cost pj − cj. We therefore rearrange (1) into (2) where the first three terms are the local warehouse 

costs, and the last three terms are the support warehouse costs. 

 
J J J J J

j j j j j j j j j 0 0 j j j j j j j j
j 1 j 1 j 1 j 1 j 1

C( , ) h EIL b EW c h EIL b EV (p c )+ +

= = = = =
= + β λ + ψ λ + + δ λ + − θ λ∑ ∑ ∑ ∑ ∑S T . (2) 

4. Analysis 
This section presents the analysis of the considered model. First, we consider a local warehouse, j, in 

isolation, and show how the costs for a given (Sj,Tj) policy can be evaluated exactly, and how to 
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optimize the decision variables. Utilizing these results, we provide an approximate cost evaluation 

technique for the multi-echelon system and a heuristic for determining the decision variables. 

4.1 Single-echelon model 
We will from here on view the system from the modeling perspective expressed in (2). In this section 

we determine the first three terms in (2) exactly by analyzing a single local warehouse in isolation for 

a given (S,T) policy. For notational convenience we suppress the index j. Thus, demand is satisfied 

either directly from stock on hand, or after being backordered for at most T time units, or lost at a cost 

c per unit. Figure 2 shows a schematic representation of the local warehouse, for a given (S,T) policy. 
 

IL

L-T T

L

N1 N2

IP2

IP1

 

Figure 2 

 Figure 2 illustrates that the replenishment pipeline can be separated into two parts. The first part 

is of length (L−T) time units, and an order in this part of the pipeline cannot be reserved by an 

arriving customer. The second part is of length T, and an (unreserved) order in this part of the pipeline 

can be reserved for an incoming customer demand. We define the inventory position of the whole 

system, IP1, as the sum of the inventory level (IL) defined as stock on hand minus backorders, the 

number of items on order in the first part of the pipeline (N1), and the number of items on order in the 

second part of the pipeline (N2). Note that at any point in time IP1 = S holds. Similarly, we define IP2 

as the inventory level plus the number of items in the second part of the pipeline, N2. This implies that 

IP2 = IP1−N1 and that 0≤ IP2≤ IP1. Furthermore, when IP2 > 0 demand is satisfied at the local 

warehouse, and when IP2 = 0 (or equivalently, N1 = S) an arriving demand is lost for the local 

warehouse and satisfied by an emergency shipment. The objective is to minimize the expected costs 

per time unit 

 min C(S,T) hEIL b EW c+= + βλ + ψλ ,   for 0 ≤ T ≤ L,  S ≥ 0 and integer. 

We refer to this single-echelon model as the Time Based Backordering (TBB) model. 
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4.1.1 Cost evaluation for a given (S,T) policy 
We begin with the trivial case where S = 0. Because there will never be any unreserved items in the 

replenishment pipeline and all demand will be lost unless T = L we have 

 
c ; 0 T L

C(0,T)
b L ; T L
λ ≤ <

=  λ = .
 

The result for S = 0 and T = L (i.e. complete backordering) follows from Little’s law. For the case 

where S ≥ 1, the TBB model can be represented as a queuing network, depicted in Figure 3. 

Poisson(λ) N1<S N1

No

Yes

• / D / ∞

N2

• / D / ∞  
Figure 3 

As shown in Figure 3, customers arrive to the system according to a Poisson process. A customer that 

arrives when N1 < S is either satisfied from stock on hand or backordered, and will therefore generate 

a replenishment order that goes directly into the replenishment pipeline, represented by two queuing 

stations. The first station, with deterministic service time L − T and an infinite amount of servers, 

represents the first part of the pipeline. The second station, with deterministic service time T and an 

infinite amount of servers, represents the second part of the pipeline. An arriving customer that 

encounters S customers in the first server (excluding herself), i.e., N1 = S, does not generate an order 

and is lost to the system. Note that there are backorders in the system when N1 + N2 > S. 

 Analysis of this queuing network is difficult because there is no known product-form solution 

to the steady state distribution of the occupancy of the system (and it is unlikely that one exists). 

However, as will be shown that we can circumvent this problem and obtain the performance measures 

we need by utilizing results from a similar queuing network, stemming from different assumptions 

regarding the fulfillment of customer demand. To that end, consider an alternative system where a 

customer facing a stock-out situation is always backordered (never lost) at the local warehouse and 

that this always triggers a replenishment order. Furthermore, assume that the local warehouse has the 

option of choosing between two different suppliers, the first one with lead time L, and the second one 

with lead time T, T≤L. The local warehouse always places its orders to the first supplier, unless a 
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stock-out occurs and an order from the second supplier can reach the local warehouse before an 

(unreserved) order from the first supplier. In this case an order is placed with the second supplier. This 

situation corresponds to a special case of the previously mentioned (S1,S2) policy by Song and Zipkin, 

(2009), where S2=0 and τ=T (i.e., the lead time for the emergency supplier equals the threshold time). 

Recall that the (S1,S2) policy controls the ordering from each supplier by the base stock levels S1 and 

S2 associated with the two inventory positions IP1 and IP2. For our purposes the second supplier is 

only used when there is a stock out and IP2 =S2= 0. This special case, hereafter referred to as the Dual 

Supply (DS) model, can be described by the queuing network depicted in Figure 4. In the DS model 

the number of orders in each part of the pipeline is denoted M1 and M2, respectively. 

Poisson(λ) M1<S M1

No

Yes

• / D / ∞

M2

• / D / ∞
 

Figure 4 
 
Comparing Figure 3 with Figure 4, we see that the difference is that in the DS model customers that 

are blocked from entering the first station (with service time L − T) are not lost for the system, but 

expedited directly to the second station (with service time T). This is sometimes referred to as “jump 

over blocking” in the queuing literature, and it maintains the product form solution (see Lam, 1977), 

making it possible to derive the steady state distribution of the system. We will now show how this 

distribution can be used to obtain the performance measures for the TBB model, for given S and T.  

 As shown in Lam (1977), and Song and Zipkin (2009), the joint steady state distribution of M1 

and M2 is given by 

 )T,m(
))TL(,k(

))TL(,m()m,m( 2S

0k

1
21DS λφ

−λφ

−λφ
=π
∑
=

, 

where !ke),k( kµ=µφ µ−  is the Poisson probability mass function. For tractability regarding the case 

with L = T (complete backordering), and the case with T = 0 (pure lost sales), we define 00 = 1. Recall 

that in order to obtain the expected costs in the TBB model we wish to determine the expected 

inventory on hand (EIL+), the fraction of demand lost for the local warehouse (ψ), and the average 

waiting time for a backordered demand (EW), in the TBB model. For the DS model we define 
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αDS = fraction of demand satisfied from stock on hand 

βDS = fraction of demand backordered in anticipation of an item (incoming from the 

  first supplier) already in the pipeline. 

ψDS = fraction of demand backordered in anticipation of an incoming item from the 

  second supplier. 

EIL+
DS = expected inventory on hand 

EWDS = expected waiting time for a backordered item. 

 We begin with the expected inventory on hand and introduce the following lemma: 

Lemma 1 Given identical values for S, T, λ and L, the distribution of the on-hand inventories are 

identical in the TBB model and the DS model. 

All proofs of lemmas, corollaries and propositions are provided in Online Appendix A. 

 We note that Lemma 1 only applies to the on-hand inventories; the inventory levels in the two 

models are not identical. Lemma 1 implies that determining EIL+ is straightforward using the steady 

state distribution of the dual supply model: 

Corollary 1  ∑∑
=

−

=

++ −−==
S

0i

iS

0j
DSDS )j,i()jiS(EILEIL π . 

 Next we consider the fraction of demand that is lost to the system, ψ. We can determine this 

fraction directly, since it is equivalent to the probability that a customer is blocked at the first station 

in the queuing network in Figure 3. Studying this station in isolation it is clear that it is identical to the 

Erlang loss system and, hence, ψ is the Erlang loss probability, given by 
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The relationship between ψ and ψDS is provided in Corollary 2. 

Corollary 2  α = αDS, β = βDS and ψ = ψDS. 

 
 Corollary 2 establishes that the fractions of customers waiting in anticipation of pipeline stock 

are equal in the two models, and the fraction of customers lost in the TBB model is equal to the 

fraction of customers using the second supplier in the DS model. We will utilize this to determine the 
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last performance measure, EW, in Lemma 2. First let −
DSEIL  denote the expected number of 

backorders in the DS model. The value of −
DSEIL  is obtained from the steady state distribution as 

 ∑ ∑
=

∞

−=

− π−+=
S

0i iSj
DSDS )j,i()Sji(EIL . 
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 The result in Lemma 2 is intuitive. Multiplying both sides with the factor λβ we see that the 

expected number of backorders in the TBB model equals the expected number of backorders in the 

DS model, minus the expected number of backorders waiting for orders from the second supplier. 

4.1.2 Optimization of S and T 
By counterexamples it can be shown that C(S,T) is neither convex in S, nor convex in T, and C(S,T) 

is not unimodal in S, implying that it is difficult to construct a simple optimization procedure. We 

therefore propose an enumeration procedure, where T is discretized. Using this approach one can 

come as close as desired to the optimal value of T by choosing a small enough step size in the search.  

 Let Δ represent the step size for T. Starting at T = 0 we increase T by Δ until we reach T = L. 

For each value of T, we start with S = 0 and increase this variable with one unit at a time, recording 

the resulting total cost in each step. To find an upper bound for S (given T), we utilize that: (i) EIL+ is 

increasing in S, (ii) −
DSEIL  is non-negative, and (iii) from Karush (1957) we know that the probability 

ψ is decreasing in S. Therefore, by using Lemma 2 and rewriting the cost function as 

 DS DSC(S,T) hEIL b EW c hEIL b(EIL T) c hEIL bEIL (c bT)+ + − + −= + βλ + ψλ = + −λψ + ψλ = + +ψλ −  

we conclude that, if c≥ bT we can stop increasing S when hEIL+ is larger than the lowest total cost 

found so far for the given T. Correspondingly, if c < bT, we stop when hEIL+ + ψλ(c – bT) is larger 

than the lowest total cost found. 

4.1.3 Remarks regarding the TBB model 
In the analysis of the TBB model above we exploit important similarities with the DS model. 

However, an important difference becomes apparent when applying these two models to control a 

given system with an emergency replenishment lead time, τ. In the DS model and in the more general 

(S1,S2) model by Song and Zipkin (2009), the inventory position IP2 is defined by the inventory level 

and the outstanding orders arriving in the next τ time units. The service time of the second station (see 

Figure 4) must correspond to τ in order for the inventory level distributions and cost calculations in 
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their model to hold. In the TBB model, IP2 is defined by the inventory level and the outstanding 

orders arriving within the next T time units, where T is a control variable to be optimized. The impact 

of the emergency replenishment lead time τ is considered in the TBB model by including the 

associated waiting cost in the lost sales/transfer cost parameter c = c  ́+ bτ. 

 As mentioned earlier, the (S,T) policy does not allow for proactive emergency ordering (i.e., 

placing emergency orders when IP2 > 0 to avoid prospective stock outs). A generalized (S,T) policy 

that allows for proactive ordering can perform better, but becomes considerably more difficult to 

analyze. However, we can easily obtain a lower bound for the expected costs of such a policy by 

removing the waiting cost component bτ in the lost sales cost c, and solving the TBB model with 

c = c  ́(handling and shipment cost only). This follows as for any emergency order in the TBB model 

the associated waiting cost, bτ, could be avoided if the order was proactively placed with the 

emergency supplier exactly τ time units earlier. No policy for proactive ordering can do better than 

this. 

 To assess how the TBB model performs compared to a feasible policy that allows for proactive 

emergency ordering, we compare it to the (S1,S2) model by Song and Zipkin in a numerical study 

detailed in Online Appendix C. The study is based on the Volvo data for the local warehouses. It 

shows that on average the (S,T) policy renders slightly lower costs (1.3%), but the relative 

performance is highly case dependent; in some instances the (S,T) policy considerably outperforms 

the dual-index policy and vice versa. The relative cost performance of the (S,T) policy is positively 

correlated with c´. When this cost component constitutes a significant part of the total per-unit 

emergency shipment cost c (i.e., the handling and shipment cost for emergency ordering c´ is large 

compared to the waiting cost bτ) the (S,T) policy outperforms the dual-index policy by as much as 

48%. An explanation for this is that when it is more expensive to place emergency orders, it becomes 

more important to consider outstanding orders further up the pipeline (and allow more backordering) 

before using this expensive option. The (S,T) policy allows for this by choosing a larger threshold 

time T, while the (S1,S2) policy is restricted to basing the decision on the outstanding orders arriving 

within the emergency replenishment lead time τ. It is noteworthy that c  ́ is incurred regardless of an 

emergency order is placed proactively or reactively. Furthermore, proactive emergency ordering tends 

to be less important in the Volvo settings (S2=0 in 707 of the 840 scenarios), as the system is designed 

to provide short emergency shipment times (τ=1 in all cases) rendering relatively low customer 

waiting costs, bτ. 

17 
 



4.2 Multi-echelon model 
In Section 4.1 we determined the local warehouse costs exactly (i.e., the first three terms in (2)). Exact 

evaluation of the support warehouse costs (i.e., the last three terms in (2)) is more complicated 

because the demand process at the support warehouse is the sum of J “stock-out overflow” demand 

processes. These processes are difficult to characterize exactly and we will therefore approximate 

them by independent Poisson processes. This commonly used approximation is exact in terms of the 

average demand rate and has been proven to work well in many situations (see e.g. Axsäter 1990, 

Kranenburg and van Houtum 2009, Reijnen et al. 2009, and Tiemessen et al. 2009). Moreover, our 

numerical tests (presented in Section 5.2 and Online Appendix D) indicate that the approximation 

works well across a wide range of problem scenarios. Note that our model is exact in the case where 

Sj = 0 and Tj < Lj for j = 1, 2, …, J, as well as the case where Tj = Lj for j = 1, 2, …, J. 

 Given our approximation, the demand at the support warehouse is a Poisson process with 

average demand rate ∑ = λψ=λ J
1j jj0 . Combined with the assumption of FCFS allocation at the 

support warehouse, the approximation also means that all demand transferred to the support 

warehouse will have equal average backorder waiting times, and equal probabilities of being lost to 

the central warehouse. Thus, the support warehouse costs; the holding cost (h0EIL0
+), waiting cost 

(∑bjδjλjEVj) and lost sales cost (∑(pj − cj)θjλj)), are determined by applying the single-echelon model 

to the support warehouse with demand rate λ0, customer waiting cost b0 and lost sales cost c0, where  

 
J J

0 j j j j j
j 1 j 1

b b
= =

= ψ λ ψ λ∑ ∑  and 
J J

0 j j j j j j
j 1 j 1

c (p c )
= =

= ψ λ − ψ λ∑ ∑  

are the average costs for a given unit at the support warehouse. 

 To determine how accurate the Poisson approximation is at estimating the variance of the 

overflow demand, let 

)t(N  = number of occurrences resulting from a Poisson process with rate λ on a time interval 

  of length t, Poisson distributed random variable with [ ] t)t(NE λ= , [ ] t)t(NV λ= , 

0D (t)  = demand (i.e., number of emergency shipment requests) at the support warehouse from 

one single local warehouse during a time interval of length t, 

)t(Χ  = total accumulated time that the local warehouse is in a state such that a demand 

  occurrence triggers a request for an emergency shipment (demand overflows to the 

  support warehouse) on a time interval of length t, t)t(0 ≤Χ≤ , [ ]E (t) tΧ = ψ . 
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Because of the Poisson demand process at the local warehouse, every time the local warehouse is in a 

state such that demand overflows, the amount that overflows will be Poisson distributed. Furthermore, 

the duration of these stock-out periods at the local warehouse will be independent due to the Poisson 

demand and base-stock policy used. Hence, it follows that ( )0D (t) N (t)= Χ . The distribution of )t(Χ  

is unknown and the overflow approximation we use, denoted 0D (t) , means that we replace )t(Χ  with 

its mean, i.e. [ ]( )0D (t) N E (t) N( t)= Χ = ψ . We introduce the following proposition: 

Proposition 1 The variance of the lead time demand at the support warehouse, [ ]0 0V D (L ) , 

resulting from emergency shipment requests from a single local warehouse with demand rate λ  and 

fraction of demand satisfied by emergency shipments ψ , is bounded on the interval: 

 [ ]   ≤ ≤   
2 2 2

0 0 0 0 0 0 0V D (L ) V D (L ) V D (L ) + λ (ψ - ψ )L . 

 
 Proposition 1 tells us that our approximation will underestimate the variance of the lead time 

demand, but the error is bounded, and it approaches zero as ψ approaches the extreme points of either 

zero or one (and is exact in the actual extreme points). 

 Turning to the optimization of S and T, an exact procedure is difficult to obtain because the 

emergency shipment costs at different local warehouses are coupled to each other via the support 

warehouse (complete enumeration always possible but can be very time consuming). We therefore 

propose a heuristic which is based on decomposing the complex multi-echelon problem into simpler 

single-echelon problems. The heuristic is detailed in Online Appendix B. 

 The solution times for most problems are manageable. For instance, for the 70 problems based 

on data provided by Volvo Parts, presented in Section 5.2, the average solution time was 60 seconds 

(max 182 and min 18 seconds), using VBA for Excel on a laptop with a 2.4GHz processor.  

5. Numerical experiments 
The numerical experiments consist of two main studies. In Section 5.l and Online Appendix D, we 

validate the approximations used for the multi-echelon model. This is done by simulation 

optimization based on complete enumeration. In Section 5.2, we use the flexibility of the (S,T) policy 

to evaluate and compare different policies for requesting emergency shipments. This second study is 

based on data provided by Volvo Parts. 

 The procedure for numerical evaluation of a given problem is to use our analytical model to 

find near-optimal values of the policy parameters, and then to use discrete-event simulation for cost 
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evaluation. The system optimal solution, where the S and T-values are determined jointly with our 

analytical model, is referred to as the OPT policy, (SOPT, TOPT). The resulting expected total cost 

obtained by simulation is denoted C(SOPT,TOPT). 

 By choosing different values for the threshold time, T, the (S,T) policy can be used to 

implement a range of different strategies for when to request an emergency shipment. In Section 5.2 

we evaluate four additional (simpler) options to using the OPT policy with different methods for 

determining T, which we introduce below. 

 The first alternative, referred to as the AR (Always Request) policy, is based on Volvo Parts’ 

current practice, where pipeline information is not utilized and emergency shipments are always 

requested when a stock-out occurs. This corresponds to the threshold times AR
jT 0=  for all j. 

 In the second alternative, the NR (Never Request) policy, emergency shipments are not used. 

The local warehouses apply complete backordering with threshold times NR
j jT L=  for all j. 

 In the third alternative, the QO (Quickest Option) policy, a local warehouse only backorders 

demand if this guarantees faster delivery than the shortest possible emergency shipment time (which 

occurs when there is ample stock at the support warehouse), and that the support warehouse only 

backorders demand if this saves time compared to an emergency shipment from the central 

warehouse. This translates to QO s
j jT = τ  for j = 1,…, J and QO c s

0 j jT = τ − τ  as all local warehouses have 

the same emergency shipment lead times in our study. Note that this policy is of interest only when 

c s
j jτ ≥ τ , otherwise the support warehouse should never be used. 

 Although the QO policy is intuitively appealing, the threshold time, QO
jT  is not affected by the 

cost parameters of the system. To that end, we propose our fourth alternative, a threshold time 

heuristic based on (myopically) choosing the cheapest option, referred to as the CO (Cheapest Option) 

policy. Assume that a stock-out occurs at local warehouse j and the closest unreserved item is δ time 

units away. Backordering the demand will result in the backorder cost bjδ, while requesting an 

emergency shipment from the support warehouse will cost cj (ignoring that support warehouse might 

also be out of stock). Hence, it is reasonable to backorder the demand if bjδ < cj. A reasonable value 

for the threshold time at local warehouse j should thus be CO
j j j jT min(c b ,L )= . Following the same 

logic, a reasonable value for the support warehouse threshold time should be 

( )CO
0 0 0 0 0T min (p c ) b ,L= − , where p0, c0 and b0 can, for instance, be estimated by a weighted 
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average of each local warehouse’s individual cost parameters (this is not necessary in our examples as 

all local warehouses have identical values for the cost parameters). 

 For evaluation of the alternative policies, we used our analytical model to determine the 

optimal S-values (denoted SAR, SNR, SQO, SCO respectively) given the fixed T-values in each policy. 

The expected total cost is then determined through simulation. The measure of comparison that is 

used in Section 5.2 is the expected relative cost increase compared to the OPT policy. This measure 

(denoted by ΔPAR, ΔPNR, ΔPQO and ΔPCO, respectively) is referred to as “the penalty” and is given by 

 
OPT OPT

OPT OPT
C( , ) C( , )P

C( , )

• •

•
−

∆ =
S T S T

S T . 

 In Online Appendix C there are two additional studies that focus solely on the single-echelon 

model. The main result from the first study is that the expected cost function appears to be unimodal 

in T and smooth around the optimum. This suggests that the choice of T is insensitive to small errors. 

The second study uses data from Volvo Parts to compare the (S,T) policy with the (S1,S2) policy by 

Song and Zipkin (2009) and Moinzadeh and Schmidt (1991), as discussed earlier in Section 4.1.3.  

5.1 Validation of the multi-echelon model 
For the multi-echelon model we approximate the demand distribution at the support warehouse and 

we use a heuristic for determining S and T-values. To provide evidence of the validity of these 

approximations, we compare our solutions with the ones obtained by complete enumeration using 

discrete-event simulation. The study focuses on how accurate our analytical model is at determining 

the optimal S and T-values (i.e., focuses on the OPT policy), but for additional comparison we also 

investigate the accuracy of solely determining the S-values for the AR policy used by Volvo Parts. 

 We consider 112 problems scenarios, evaluated both for OPT and AR, which renders a total of 

224 problems. Cases assuming both identical and non-identical local warehouses are included in the 

numerical testing. Our analytical model found the exact same solution as the simulation optimization 

in 208 out of the 224 problems. For the 16 problems where the analytical solutions differed, this 

resulted in an average relative total cost increase of 0.9% (maximum 1.6%), implying an average 

relative increase of only 0.06% over all 224 problems. Hence, the model seems to produce accurate 

results. Given the unsystematic occurrences of alternative solutions, there does not appear to be any 

clear pattern as to when the analytical model will render a different solution than the simulation 

optimization. Moreover, our method appears to work well in both cases of identical and non-identical 

local warehouses. Further details are provided in Online Appendix D. 
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5.2 Results from the case company 
This section presents a simulation study based on data from Volvo Parts Spanish market. In total, 70 

low demand spare parts are selected for which the (S-1,S) policy is an appropriate choice. 

 On the Spanish market, Volvo Parts has 63 local warehouses, but not all parts are sold at all 

locations. For the purpose of this work, we consider 12 local warehouses for each item (i.e., N = 12 

for all problems). The demand rates at the local warehouses vary between 0.003 and 0.56 per day. The 

lead times for regular replenishments from the central warehouse are 6 days for all local warehouses. 

For the support warehouse, a regular replenishment from the central warehouse takes 3 days. 

 The holding costs are the same at all stock points, and all the costs have been normalized so 

that the holding costs are equal to one for all problems. The waiting costs are the same for all retailers, 

but they vary depending on item. For the items considered, the customer waiting costs per unit and 

day are between 17 and 625 times higher than the holding cost. These costs, that reflect the 

consequences of providing poor service, are based on focus group discussions at Volvo Parts. In these 

discussions contractual obligations, down-time costs and loss of goodwill were taken into 

consideration. The main component in the emergency shipment costs is the cost of transportation, 

where Volvo Parts pay their transporters on a weight per kilometer basis. Recall that the extra costs of 

picking, packing, receiving, and the cost for waiting for units that have left the support warehouse (or 

the central warehouse) are also included in cj (or pj). It should be noted that even though we exclude 

the central warehouse from the present analysis, operations at the central warehouse have been 

analyzed in order to obtain accurate cost estimates. Emergency shipments that are dispatched from the 

support warehouse, which is situated close to Madrid, reach the local warehouses by truck within a 

day ( s
jτ  = 1). The cost of this, cj, varies depending on item and it is between 32 and 877 times the 

holding cost. The emergency shipments from the central warehouse also take one day ( c
jτ  = 1), but 

are more expensive (pj is between 76 and 8472 times the holding cost for the various items). The main 

reason for the higher costs of these shipments is that the central warehouse is situated in Gent, in 

Belgium, and therefore they have to use air freight (as opposed to land freight for regular shipments) 

when providing emergency shipments from this location. When facing a stock-out in Volvo Parts’ 

system one would typically be interested in what day the desired part will arrive. It is therefore 

reasonable to discretize the T-values to whole days. 

 We first compare Volvo Parts’ current AR policy with the OPT policy. Detailed results are 

provided in Table E1-E3 in Online Appendix E. Note that the scenarios are sorted according to largest 
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ΔPAR, and that the local warehouses are sorted according to largest λ within each scenario. The 

standard deviations of all simulated values are always less than 1% of the mean. The average ΔPAR 

over the 70 scenarios is 15.4%, with a maximum of 106% and a minimum of 2.4%. Thus, it can be 

very costly to ignore pipeline information and always request an emergency shipment. 

 In Table E1-E3 we see that for 22 out of the 70 parts, it is optimal to use the NR policy 

(Tj
OPT = 6 for j = 1,…,12). Using emergency shipments appears to be the wrong strategy for these 

spare parts and it follows that the ΔPAR-values are among the highest in these cases. Not surprisingly, 

the common attribute for these parts is that the costs of emergency shipments are relatively high 

compared to the waiting - and holding costs. Figure 9 shows how the values of ΔPAR are positively 

correlated with the ratio between the support warehouse emergency shipment cost and the customer 

waiting cost (i.e., the ratio c/b, a similar correlation was also recorded with the ratio p/b). However, 

even in cases with low c/b and p/b-ratios, and thus low ΔPAR, Table E1-E3 show that it is never 

optimal to use the current AR policy. That is, even when emergency shipments are cheap, one should 

not always request an emergency shipment, but in these cases most often choose the quickest option 

(i.e., Tj = 1). 

 
Figure 9 

 Another interesting result, from Volvo Parts’ perspective, is that the solutions point to a rather 

infrequent use of emergency shipments from the central warehouse. From Table E1-E3 we deduce 

that these emergency shipments are only utilized in 20 of the scenarios considered. Furthermore, out 

of these 20 scenarios, there are only three cases where the central warehouse is the sole provider of 

emergency shipments (i.e., S0
OPT = 0 and T0

OPT = 0 in scenarios 62, 68 and 70). However, this does not 

mean that emergency shipments do not bring significant value to Volvo Parts. Table 1 presents the 

average and maximum penalties over the 70 scenarios for all alternative emergency shipment policies. 

Values for ΔPAR, ΔPNR, ΔPQO and ΔPCO for each of the 70 items are available in Table E1-E3. 

Table 1. Average and maximum penalties for all alternative policies. 

 
AR NR QO CO 

Average ΔP (%) 15.4 6.4 7.2 0.4 
Maximum ΔP (%) 106.0 49.5 90.8 4.2 
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We see that the penalties for the NR policy are relatively high, implying that for many items the 

support warehouse brings significant value to the system. Table 1 reveals that the QO policy also 

performs poorly in general. Hence, basing the emergency shipment decision only on the emergency 

shipment lead times and ignoring the cost structure of system can be costly. We also see that the CO 

policy outperforms the other simpler emergency shipment policies. With a small average penalty, it 

appears to be an attractive heuristic, which does not require enumeration of the threshold times. 

 Although our tests have illustrated that incorporating pipeline information in the emergency 

shipment decision can be very beneficial from a cost perspective, and the (S,T) policy in principle is 

easy to implement, it is not without challenges. A key issue, apart from potential technical difficulties 

associated with integrating new decision tools in existing ERP systems, is that information about cost 

parameters and pipeline inventories may not be readily available in the firm’s IT systems. With 

respect to the cost parameters, the emergency shipment costs (cj and pj) and the waiting costs (bj) for 

all warehouses and items are in general the most difficult to obtain. This is, for example, the case at 

Volvo Parts where (like in many other companies) inventory policies have traditionally been based on 

minimizing holding costs at each local facility under service level constraints. Note that the AR 

(Always Request) policy that Volvo Parts uses, which in our study has the worst cost performance, 

makes perfect sense when each inventory location focuses on customer service, and costs for 

emergency shipments and waiting are disregarded. As for the lack of pipeline information, it is a 

diminishing implementation issue considering the fast development in IT and mobile technology 

(including RFID, and track & trace systems). Still, if the required pipeline information is not yet 

available, as in the case of Volvo Parts, investments to upgrade the IT systems are required before the 

(S,T) policy, or for that matter, the heuristic CO or QO policies can be implemented. 

 It is worth noting that in the absence of pipeline information, an alternative use for our model 

could be to analyze which of the AR and NR policy performs better for each product separately. That 

is, to only provide emergency shipments for some spare parts and apply complete backordering for 

the others. For our test data, this approach of considering min(ΔPAR, ΔPNR) for each scenario results in 

an average penalty of 3.5% with a maximum penalty of 19.5%. Thus, on average the strategy may be 

a viable option. However, to avoid substantial penalties for some spare parts it is necessary to 

incorporate pipeline information. It is also worth noting in Tables E1-E3 in Online Appendix E that 

choosing the better of the NR and CO policies in each scenario results in a performance on par with 

the OPT policy for our test data. 
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6. Summary and concluding remarks 
In this paper we have introduced a new policy, the (S,T) policy, for controlling an inventory system 

consisting of a number of local warehouses, a support warehouse and a central warehouse with ample 

capacity. The policy can be used to simultaneously determine stock levels and strategies for 

requesting emergency shipments. We have provided an accurate heuristic for determining costs and 

optimizing decision variables, which is based on exact evaluation of a local warehouse in isolation. 

 Our results indicate that significant cost benefits can be reaped by applying our new policy. The 

determination of suitable stock levels and the time one should wait for stock in the replenishment 

pipeline are complex decisions. Ignoring pipeline information and applying simple decision rules, 

such as always requesting a shipment or never requesting a shipment when facing a stock-out 

situation, can be far from cost optimal. Moreover, incorporating pipeline information in a simple way, 

such as only basing the decision on the emergency shipment lead times, can produce equally poor 

results. 

 Regarding implementation of our proposed policy it is crucial that the necessary information 

about cost components and pipeline inventories are available in the system. With modern technology, 

such as RFID track and trace systems etc., it is possible to have real-time information on incoming 

orders at all warehouses. Furthermore, at many companies a warehouse knows when an order will be 

arriving, even without these advanced information systems, because of strict routines and high 

delivery reliability. This is, for example, the case at Volvo Parts, although they are also in the process 

of upgrading their information systems. 

 For future research, we believe that significant advantages can be achieved by using our (S,T) 

policy in more general systems where emergency shipments are utilized. One step in this direction is 

to extend our current model scope to include the central warehouse, and to question the high service 

requirements currently used at this location. This would require that all markets served by the central 

warehouse are taken into consideration. Other interesting extensions would be to consider batch 

ordering, more general demand distributions and proactive emergency ordering. 
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