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Abstract 

We completely characterize termination of one-rule string rewriting systems of the 
form OP i q -+ iT Os for every choice of positive integers p, q, r, and s. For the simply 
terminating cases, we give a sharp estimate of the complexity of derivation lengths. 

1 Introduction 

A term rewriting system R terminates, if every R-derivation tl -+ R t2 -+ R '" is finite. 
Much of the success of term rewriting is due to the availability of powerful termination 
criteria. String rewriting is a special case of term rewriting where function symbols are of 
arity 1, and may be taken as characters. 

Termination of term rewriting systems is known to be undecidable, even for the special 
case of string rewriting systems [12], and even for left-linear, one-rule term rewriting 
systems [5]. The question whether termination is decidable for one-rule string rewriting 
systems is still open. In this paper we give a decision procedure for a non-trivial subclass 
of one-rule string rewriting systems, namely 

(Z) 

for positive integer numbers p, q, r, s. More precisely, we prove the following theorem . 

. Theorem 1.1 Let p, q, r, s denote positive integer numbers. Then the system OP l q -+ 
1 r Os terminates if, and only if 

1. P ~ s, or 

2. q ~ r, or 

3. p<s<2pandqlr, or 

4. q < r < 2q and pIs. 
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Here xly means that x is a divisor of y. We show that this class contains 

1. simply terminating systems (cases 1 and 2) of 

(a) linear (p> s or q > r), 

(b) quadratic (p = s, q = r), and 

(c) exponential derivation lengths (p = s, q < r, or p < s, q = r), 

2. non-terminating systems (2p :$ s, 2q :$ r, or p < s < 2p, q < r, qlr, or q < r < 2q, 
p < s, pis), and 

3. non-simply terminating systems (cases 3 and 4). 

The main goal of the paper is not only proving this theorem, but also showing how 
a very difficult termination proof can be given in a purely transformational style. We 
give such a proof for the non-simply terminating case. Instead of giving a complicated 
recursively defined ordering as is quite usual in termination proofs, we transform the 
system a number of times. For every transformation the termination of the original system 
follows from termination of the transformed system, which is equivalent to saying that the 
transformation preserves non-termination. This preservation follows from theorems that 
are generally applicable. These theorems follow the underlying ideas of transformation 
ordering [2, 3] and dummy elimination [9]. 

The paper is organized as follows. First we treat the case of simple termination in 
section 3. Here the termination proof is routine and we extend our attention to derivation 
lengths, on which we obtain sharp bounds. In section 4 we deal with the non-terminating 
cases. 

The remainder and the main part of the paper is devoted to the difficult, non-simply 
terminating case p < s < 2p, q < r, q % rj the other non-simply terminating case is obtained 
by symmetry. In section 5, we describe how the system is transformed a number of times. 
In one step a fresh symbol 0 is introduced in a right hand side of a rule, whose purpose is 
to stand there as a proof for the absence of information flow. This step is called dummy 
introduction, and is treated in detail in section 6. We employ an impoverished form of 
transformation order to prove preservation of non-termination. The next step is dummy 
elimination, the syinbol 0 is removed again by splitting the rule I -+ r1 0 r2 into two 
rules I -+ rI, I -+ r2' In section 8 the representation of strings over 0 and 1 is changed by 
describing such a string by om 1 n packages. In this representation termination of the final 
system is proved by a lexicographical argument. We conclude by comparing related work. 

2 Basic notions 

We assume that the reader is familiar with term rewriting, and in particular with termi­
nation proofs. A comprehensive survey on termination of rewriting is [7]. 

A binary relation -+ ~ S x S on a set S is said to terminate, if there is no infinite 
-+-derivation t1 -+ t2 -+ .... 

For -+ a binary relation, -+-1 and ~ denote the inverse relation: s ~ t holds if t -+ s. 
Likewise -++ and -+* denote the transitive, transitive-reflexive closure of -+, respectively. 
R/ S abbreviates for S* RS*, and t-t for the symmetric closure -+ U ~ of -+. 
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A binary relation on terms is called an order if it is irreflexive and transitive, and a 
quasiorder if it is reflexive and transitive. A quasiorder ~ defines an order > by s > t, 
if s ~ t and not t ~ s, and an equivalence relation - by s - t, if s ~ t and t ~ s. We 
say that ~ strictly satisfies a property P if both ~ and > satisfy P. By abuse, we call a 
quasiorder ~ terminating, or wellfounded, if > is terminating. 

Given two quasiorders ;:::1, ;:::2, their lexicographic combination, (;:::1, ;:::2), is a qua­
siorder ;::: defined by ;::: =def >1 u (-1 n ;:::2). Strict stability, strict monotonicity, and 
termination are preserved by lexicographic combination. 

As a well-known fact, a string rewriting system can be considered a term rewriting 
system. For this purpose every character is taken as a unary function, concatenation of 
strings becomes composition of functions, and a fixed variable (say, z) is appended at 
the right end of the string. The left context of the string is the context of the respective 
term. The right context is the substitution for z. So for instance the rewrite system 
o 0 11 --+ 111 0 0 0 translates to 

O(O(l(l(z)))) --+ l(l(l(O(O(O(z)))))) 

We will however, for sake of simplicity, stick to the string representation, and will 
occasionally use some of the vocabulary of string rewriting. Concatenation will be denoted 
by juxtaposition, and the empty string (i.e. the term z) will be denoted by c. For surveys 
on string rewriting see [13] and [4]. 

3 Simple termination 

If we try to apply well-known simplification orders like the recursive path order (rpo) [6] 
to a one-rule rewrite system of the form OP 1 q --+ 1 r 0', we find that rpo can handle the 
case p ~ s for arbitrary q, r, using the precedence 0 > 1. The same is done by polynomial 
interpretation [O](x) = (r + l)x, [l](x) = x + 1 [14]. So in this case obviously Z is simply 
terminating. Moreover, since the interpretation is linear, the derivation length D(n) is at 
most exponential in n [15]. Here D(n) is defined to be the maximal number of steps in a 
reduction starting with a string of length n. Below we show that there are systems having 
linear, quadratic, and exponential derivation lengths. 

Now it is easy to see that exchanging 0 by 1 and reversing strings gives only a renamed 
copy of the problem. By this symmetry argument the case q ~ T, with arbitrary p, s is 
simply terminating as well. 

Proposition 3.1 Z is simply terminating if p ~ s or q ~ T. 

It is a surprising fact that in spite of the symmetry neither rpo nor one-level polynomial 
interpretations are able to handle the case p < s, q = r. Both techniques imply w­
termination as introduced in [18]. In [18] it is proved that the system 01 --+ 100 is not 
w-terminating; the same holds for the more general case p < s, q = T. 

3.1 Linear and quadratic derivation lengths 

If the number of 0 symbols strictly decreases, then obviously the length of a derivation 
is bounded by the number of 0 symbols in the initial term. The complexity of derivation 
lengths is thus linear in this case. 
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Proposition 3.2 If p > s or q > r then D(n) = O(n). 

If the number of 0 symbols remains constant, i.e. if p = s holds, then substrings Op behave 
exactly like single characters. So it suffices to treat the case p = s = 1. 

Now consider the case p = s = 1 = q = r. The rewrite system 01 -+ 10 amounts to 
swap adjacent symbols if the former symbol is smaller (w.r.t. 0 < 1) than the latter. This 
is nothing but the well-known bubblesort algorithm. Bubblesort has quadratic worst-case 
complexity. 

Proposition 3.3 If p = sand q = r then D(n) = O(n2 ). 

Starting with the string Onp 1 nq of which the size is linear in n indeed yields a reduction 
of which the length is quadratic in n. 

3.2 Exponential derivation lengths 

The considerations of the previous subsection leave the case p = s = 1, q < r. We claim 
that here for every choice of q < r, the derivation lengths are indeed exponential in the 
worst case. For instance, consider the case q = 1, r = 2. The rewrite system is 0 1 -+ 110. 
In a nutshell, every 0 symbol doubles the number of 1 symbols right to it. A worst-case 
initial term is on 1, for it has the normal form 12n on, and every rewrite step contributes 
only 1 to the length of a term. So the derivation has length 2n 

- 1. 
Things are however much less easy in the general case; many terms initiate only deriva­

tions of polynomial length. The following example is typical. Let q = 2, r = 3, so Z is 
011 -+ 1110. The term on 11 undergoes the following derivation to normal form. 

On 11 -+z On-l lll 0 -+z On-2 111 0 1 0 -+~-2 11(1 ot 
This derivation has length n, so is linear. The shortness is caused by the fact that 1 
symbols are not used up completely since 3 is not divisible by 2. We better provide a 
pattern which is free from such losses. An easy induction on k shows that the following 
holds. 

Proposition 3.4 For Z the system 01 q -+ IT 0, the following derivation holds. 

k k 

This is exactly the pattern which works without any losses. Its derivation length is T T=~ . 
Note however that this length may be not exponential in the size of the initial term. For, 
the initial term has length k + qk, which is itself exponential in k, if q > 1. And by an 
easy calculation, the asymptotic derivation length is described by 

if q = 1, 

else 

where n is the size k + qk of the initial term. This is an exponential function for q = 1 but 
a polynomial else. 

To finally achieve a worst-case pattern we choose a fixed number k which is large 
enough to lead to a (at least) a duplication of the exponent of 1. Thus we can simulate 
the behaviour of case q = 1, r = 2 by a macro step. 
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Proposition 3.5 Let Z denote the system 0 1 q -t 1 r 0, where 1 < q < r, and let k be the 
least integer 2:: A. Then the term onk 1 qk initiates a Z -derivation of a length exponential 

og2 q 

in n, for every n > O. 

Proof By definition, k is the smallest number such that rk 2 2qk holds. Let c denote 
the (constant) length of the derivation Ok 1 qk -tz 1 rk Ok. By an easy induction on m one 

k k . 

shows that Ok 1 mq -tz 1 mr Ok holds. We prove by induction on n that every term of the 
form onk lmqk has a derivation length 2 c(2n - l}m. The base case n = 1 is given. For 
n > 1, there is a derivation starting with 

onk lmqk = O(n-l)k On lmqk -tzm O(n-l)k lmrk Ok = O(n-l)k 12mqk lmrk-2mqk Ok 
rk2:2qk 

whose substring o(n-l)k 12mqk by inductive hypothesis still makes for at least c(2(n-l) -
1)2m = c(2n - 2}m steps. Altogether there are em + c(2n - 2}m = c(2n - l)m steps. This 
finishes the proof of the intermediate lemma. The claim is immediate by m = 1. 

Note that since k is fixed, the initial term indeed has size linear in n. Thus we have 
exponential derivation lengths, in the size of the initial term. 

4 N on-termination 

As we claim "if and only if" in our main theorem, we should be able to prove non­
termination for the following cases: 

1. 2p::; s, 2q ::; r, 

2. p < s < 2p, q < r, qlr, 

3. q < r < 2q, p < s, pis. 

To do it we employ the well-known fact that every looping derivation extends to an infinite 
derivation. For a string rewriting relation -t, a proper derivation t -t+ u is called looping, 
if u = vtw holds for some v, w. Indeed we have: 

Lemma 4.1 For p 2 s, q 2: r, the system Z has a looping derivation. 

Proof The following derivation is looping. (The re-occurrence of the initial string, Op 12q
, 

is marked. by a frame box.) 

To prove that the other case is looping as well, is more difficult. First we establish a lemma 
saying that a certain suffix can be reached. We use the notation t -t ... u to express the 
fact that t admits a derivation to a string which has suffix u. 

Lemma 4.2 If p < s < 2p, 1 = q < r, then OPk 1 m+1 -tz ... osk holds for all nonnegative 
k, m. 

5 



Proof By induction on k and m lexicographically. If k = 0 then the claim is trivial. So 
let k > O. Here we get: 

OPk 1 m+1 -+ Z Op(k-l) 1 r Os 1m -+:i ... Os(k-l) O· 1m = ... Osk 1m 

IH,(k-l,r) 

If m = 0 then we are finished. Else, the derivation continues by 

O·k 1m - OPk 1m * O·k ... - ... -+z .. · 
s>p I H,(k,m-l) 

This finishes the proof. 

This lemma is used to prove our claim: 

Lemma 4.3 Ifp < s < 2p, q < r, qlr, or symmetrically, q < r < 2q, p < s, pis, then Z 
has a looping derivation. 

Proof Again, we may assume p < s < 2p, 1 = q < r. Then the following derivation is 
looping. (The re-occurrence of the initial string, Op2 12 , is marked by a frame box.) 

22 2 2 2 () OP 1 -+z OP -P 1r O· 1 -+z OP -P 1r O·-p 1r O· -+:i ... O· p-l O·-p 1r O· = 
lemma .t.t! 

5 The proof architecture for the complex case 

Finally, we are left with the case p < s < 2p, q < r, q I r, and its symmetric counterpart. 
Here, as we are going to show below, Z is terminating again, but no longer simply ter­
minating. The termination proof is very involved. Nevertheless, we found that standard 
methods applied and could do much of the clerical work for the termination proof. 

Lemma 5.1 Ifp < s < 2p, q < r, qlr, then Z is self-embedding. 

Proof Let x be some positive integer number. Consider the following derivation. (Re­
dexes are underlined.) 

OP1Qx =OP1Q1q(x-l)-+ 1r O·-P OP 1Q-+* (o·-plr)x 0· -- z --z 

Now we have an embedding if we can choose x = Xl + X2 so that OP is embedded in 
(O·-p 1r)Xl and 1Qx is embedded in (O·-p 1r)X2. An easy calculation shows that this is the 
case whenever Xl ~ r~l and x ~ r~l hold; such Xl and X are easily found. 

As we will show in the remainder of the paper, Z is terminating. 
The rewrite system Z, whose termination we want to prove, is transformed to a rewrite 

system C in such a way that termination of C entails termination of Z. In the same way, 
C is transformed to another system, B, next B to S, and, finally, S to R. 

Z~C~B~S~R 

Let us briefly explain how the rewrite systems look like, and by which intuition we justify 
the steps. 
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5.1 Step 1: Encompassment by left and right contexts 

The first transformation step is easy: We consider the rule in every pair of left and right 
context each of length 1. As the alphabet is {o, 1}, we get the four-rule rewrite system 
C = {(I), (2), (3), (4)}, as follows. 

(1) OOP 1 q 0 -t 0 1 r Os 0 

(2) OOP 1 q 1 -t 01 r Os 1 

(3) 10P1qO-t11rOsO 

( 4) 1 OP 1 q 1 -t 11 r Os 1 

It is obvious that for every Z-derivation, starting with term t, there is a corresponding 
C-derivation of the same length, starting e.g. with 0 t O. For this reason, as soon as we have 
proved termination of -te, termination of -tz follows. The purpose of this transformation 
is simply to split up Z into four cases which may be treated each in a different way. 

5.2 Step 2: Dummy introduction 

The main idea for this step is that there is no "information flow" between the left half, 0 1 r , 

and the right half, Os 1, of the right hand side, 0 1r Os 1, of this rule. More precisely, there 
is no redex that needs a proper part of both the left and right half. This fact allows one to 
introduce a "barrier", or "block", 0, between the two, without changing the applicability 
of rewrite steps. Thus the termination proof of rewrite system C reduces to that of the 
rewrite system B = {(1), (2'), (3), (4)}, where rule (2) has been replaced by the following 
rule. 

(2') 

In section 6 we prove that this step indeed preserves non-termination, provided that p,(s, 
q l r, 8' > 8 - 8 mod p, and r' > r - r mod q hold. 

5.3 Step 3: Dummy elimination 

The introduction of the 0 symbol enables a further step which splits rule (2') into two 
rules 

(21) 

(22) 

o OP 1 q 1 -t 0 1 r' 

o OP 1 q 1 -t Os' 1 

This transforms B towards a system S = {(I), (21), (22), (3), (4)}. In section 7 we prove 
that this step is non-termination preserving. 

5.4 Step 4: Relative termination 

In an arbitrary string consider the number of nonempty packages of zeroes (separated by 
ones). In system S each rule decreases the number of packages, rule (3) even strictly. 
Let R denote S \ {(3)}. Obviously any S-derivation contains only finitely many (3)-steps. 
Hence termination of S follows from termination of R. This can als be stated as -t(3) 
terminates relative to -tR; relative termination is studied in [10j. Termination of R for 
8' = P + 1 is proven in section 8. 
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6 Dummy introduction 

The idea that leads to this step can be expressed informally as follows. Call a string d 
dead in context (v, w) if every derivation starting from a string of the form l vdwr will 
only take steps in the part strictly left or strictly right of d in the string. In particular 
never a nonempty part of d appears in a redex. (But the definition makes sense even 
when d is empty.) When one replaces the dead part by a new symbol, no derivation (and, 
particularly, no infinite derivation) disappears. The introduction of this new symbol so 
may be used as a non-termination preserving transformation step. By construction, the 
new symbol only appears at right hand sides of the new rewrite system; such a symbol is 
called a dummy symbol in [9}. 

Technically, dummies are introduced by rewrite steps using rules of the form 

vdw -+ vOw 

where d is dead for C in context (v, w). These rules are collected in an additional rewrite 
system T. In the next subsection we present abstract criteria for which termination of C 
can be concluded from termination of B. 

6.1 A new abstract commutation criterion 

The commutation property is first expressed by a local criterion on abstract reduction 
systems. 

Lemma 6.1 Let -+B, -+T, and -+c be arbitrary binary relations on a given set. If 

1. -+ B terminates, 

2 C + * . -+c _ -+B +-T' 

3. +-T -+c ~ -+6 +-r 

then -+c terminates. 

Proof We have 

-+T-l -+c = +-T -+c C -+;j +-j. = -t;j -tj._l C -t;j -tCUT-l = -tc -tCUT-l . 

Since -tc -tc ~ -tc -tCUT-l we obtain 

--+CUT-l -+c ~ -+c -+CUT-l j 

straightforward induction yields 

--+CUT-l -+c ~ -+c -+CUT-l . 

Using this property and premise 2, we obtain by the following diagram that for every 
element t having an infinite --+c-derivation there exists an element t' again having an 
infinite --+c -derivation satisfying t --+ ~ t'. 
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t c c c 

T* (CUT-I)* 

t' c c 
Repeating the argument shows that the existence of t having an infinite -+0 -derivation 
leads to an infinite -+B-derivation of t, contradicting the termination of -+B. 

6.2 Application to Term Rewriting Systems 

If R, B are rewrite systems, the set CP(R, B) of (R, B)-critical pairs is the set of all critical 
pairs (s, t) of a rule from R with a rule from B, together with all pairs (s, t) where (t, s) is 
a critical pair of a rule from B with one from R. A rewrite rule I -+ r is called non-erasing 
if each variable in I also appears in r, and left-linear if each variable occurs at most once 
in 1. A rewrite system is non-erasing, left-linear, respectively, if each of its rules is so. 

By a straightforward critical pair analysis, lemma 6.1 yields the following result for 
term rewriting systems. 

Theorem 6.1 Let B, T, and C be term rewriting systems. If 

1. -+B terminates, 

2. C ~ -+~ t-;', 

3. CP(T, C) ~ -+~ +-;', 

4. T left-linear and non-erasing, 

5. Cleft-linear, 

then -+0 terminates. 

We stipulate that our theorem is applicable not only in string rewriting, but in proper 
term rewriting as well. The following is a witness. 

Example 6.1 Let C be given by the rule 

f(h(x» -+ h(f(g(h(x), x»). 

Since C is self-embedding all methods for simple termination fail. Let k be a new bi­
nary function symbol, and let T be the system g(h(x),y) -+ k(x,y). Choose B to be 
f(h(x» -+ h(f(k(x,x»). Now all conditions are satisfied: there are no critical pairs and 
-+ B terminates by recursive path order with precedence f > h > k. So theorem 6.1 applies, 
by which -+0 terminates. 
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6.3 Termination by completion 

Let us now apply theorem 6.1 to do the dummy introduction step, C H B. Here B was 
obtained from C by replacing the rule 0 Op 1 q 1 -+ 0 l r Os 1 by OOP 1 q 1 -+ 01 r' 00" 1. 
For the dead part d we have d = or-r' 1 s-.' which may be empty. The notion of dead 
part pre assumes r 2: r', 8 2: 8', but the construction below works as well without this 
restriction. The precise definition of r' and 8' is postponed. 

Recall that for string rewriting systems, conditions 4 and 5 are always satisfied. Let T 
consist at least of the rule 

then condition 2 is satisfied. In order to check condition 3 we consider a typical critical 
pair. Other critical pairs are either trivial - overlapping in a pair of contexts - or 
similar. The overlapping region of the peak string is marked by a frame box, else the 
redex is underlined. 

o Op-1! 0 1q lI1r- q- 1 O· 1 ----+ 0 1r Os-l 0 l r- q O' 1 
c 

oOP l q llr '-q-1 DO" 1 ----+ 0 1r 0' 1r'-q DOs' 1 
c 

The -+T arrow at the right column is required by the critical pair condition, but not 
satisfied. Hence condition 3 is not yet satisfied. Like in the Knuth/Bendix completion 
procedure, we simply add a new rule 

to T, such that the condition becomes satisfied. The same idea underlies the "termination 
by completion" method [3J. 

With the new rule we again check for critical pairs, add corresponding rules, and so 
forth, until we get no more critical pairs. We can easily read off that the exponents of 1 
are of the form iq + r mod q at the left hand side, and iq + r" at the right hand side, where 
r" = r' -ql~J = r'-r+r mod q. The number r" should be positive, otherwise some critical 
pairs would not close. In other words, our construction works only if r' > r - r mod q. Of 
course, we might choose r' = r but we will see that r' = r - r mod q + 1 suits our purposes 
better. 

In the same way, critical pairs with C rules from the right cause new rules in T where 
o gets new exponents. Finally we arrive at 

T = 
def 

{ 0 1 iq+rmodq ojp+smodp 1 o 1 iq+r" 0 ojp+s" 1 

Observe that the requirement q A r indeed turns out necessary for the diagrams to work. 
For, if r mod q = 0, then the T-rule for i = 0 = j, which is 0 Osmodp 1 -+ 0 l r

" 0 Os" 1 
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chases the following diagram 

1 op-amodP-11 0 Osmodp 111 q-I 0 ---+ llr Os 0 
c 

1 op-smodp-I 0 1 r" 0 Os" 11 q-I 0 

The diagram does not close as the string 11 r O· 0 is not able to develop a 0 symbol, and 
C steps cannot get rid of O. 

We conclude: 

If p % s, q %r, and r' > r - r mod q, s' > s - s mod p, then T satisfies the critical 
pair criterion: 

CP(T, C) ~ ~c +-T 

Hence theorem 6.1 can be applied and termination of ~B implies termination of ~c. 

7 Dummy elimination 

Let 0 be a symbol which only occurs at right hand sides of a string rewriting system. 
This symbol 0 can never be removed by any rewrite rule and will act as a separator 
between parts of the string. Intuitively an infinite derivation can be localized between 
these separators, hence a rule 

~ rl 0 r2 0 ... 0 r n 

may be split into n rules 

... , 

whose termination can be easier to prove. In this section we formalize this idea. 

Definition 7.1 For each string of the form s = rl 0 r2'" 0 r n where ri E (A \ {O})* for 
alli E {I, ... ,n}, let£(s) =def {rIl'" ,rn}. 

Lemma 7.1 Let B be a string rewriting system on the alphabet A where the symbol 0 E A 
does not occur on left hand sides of B. Let S = {l ~ u I (l ~ r) E R 1\ u E £(r)}. Then 
~ B terminates if ~ s terminates. 

Proof In the definition of£(s) it does not make any difference whether£(s) is considered 
as a set or as a multiset. Here we consider £(s) as a multiset in order to apply well­
foundedness of the multiset order. 

Let ~ s be terminating. Define order> on strings on A \ {O} by v > w if there exist 
q, q' such that v ~t qwq'. Clearly> is an order. Assume VI > V2 > 1'3 > ... with 
Vi ~ t QiVi+1 Q~, then 

contradicting termination of ~ s, hence > is well-founded. 
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We claim that s -+ B t implies £ (s) > mult £ (t). Suppose s -+ B t using rule 1 -+ r 
in B, which means that s is of the form s = Slls2. Let us first assume that Sl, S2 do 
not contain 0, whence &(s) = {Slls2}. If r does not contain 0, then &(t) = {Slrs2}, 
and the claim follows by S11S2 -+5 Slrs2, as rule 1 -+ r is also in S. Else, suppose that 
r = r1 0 r2 0···0 rn with n > 1. Then &(t) = {slr1,r2,r3, ... ,rn-1,rnS2}. Now by 
defintion s11s2 is greater than every element of &(t), hence again the claim follows. By 
closure under multiset union, this reasoning carries over to the case where Sl or S2 contain 
dummy symbols and the claim has been proved. Since > mult is well founded, termination 
of -+ B follows. 

Remark. This multiset comparison is not closed under left and right contexts. For 
example, let > be a simplification order that satisfies 1 > 00, on strings over the alphabet 
{O, 1}, for instance recursive path order with precedence 1 > o. Let s = 0001, t = 100. 
Then &(s) >mult &(t), but not &(vs) >mult &(vt). An order that works in the same spirit, 
and is moreover closed under left and right contetxs, may be defined using a recursive 
path order construct instead of multisets [11]. 

In [9J a general dummy elimination theorem is proved for term rewriting instead of 
string rewriting. Our lemma can also be proved using that theorem. 

8 Finish of the proof 

It remains to prove termination of R consisting of the rules 

(1) o OP 1 q 0 -+ 0 1 r 0" 0 

(4) 10P l q l-+11r O"1 

(21) o OP 1 q 1 -+ 0 1 r' 

(22) o OP 1 q 1 -+ 0" 1 

In this system we still have some freedom in choosing r' and s'; the validity of dummy 
introduction only required r' > r - r mod q and s' > s - s mod p. Here we require 
p < s < 2p, hence we may choose s' = p + 1 and replace s' in rule (22) by p + 1. 

Now we switch the representation of a string 

to a sequence of pairs of non-negative integers, 

where for uniqueness we require that except possibly mt, nkl all numbers are positive. 
Now R can be presented in the form 

(1) 

(4) 

(21) 

(22) 

(m + p, q)(m', z) -+ (m, r)(m' + s, z) 

(z,n)(p,n' +q) -+ (z,n+r)(s,n') 

(m+p,n+q) -+ (m,n+r'-l) 

(m+p,n+q) -+ (m+p,n) 
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where z ~ 0 and m,m',n,n' > O. 
Choose any well-founded order :::J on non-negative integers for which p :::J sand n+p :::J n 

for all n, for example n ~ n' ~ fen) ~ fen') for 

fen) = {n + p, if pin, 
def n, else 

Now we see that by an R-reduction step of type (1), (4) and (21) of the sequence 
(ml' nt} ... (mk' nk) the string (ml,'" ,mk) lexicographically decreases according to :::J, 
while it remains the same by a step of type (22). Hence any R-reduction contains only 
finitely many steps of type (1), (4) and (21). Since the rule (22) is clearly terminating, we 
conclude that -+ R terminates. 

It can be shown that this proof works only with the choice s' = p + 1, whence the 
requirement s < 2p is essential. 

9 Related Work 

Our work on this subject began with proving termination of the one-rule string rewriting 
system, sometimes called "Zantema's problem", 

0011-+111000 

which corresponds to the case p = 2 = q, r = 3 = s, of this paper. To our knowledge, there 
is a proof sketch by N achum Dershowitz and Charles Hoot [8], and a detailed proof includ­
ing a treatment of derivation lengths by Elias Tahhan-Bittar [16]. Dershowitz/Hoot's line 
of argument is by minimal counterexample, and by forward closures. Tahhan-Bittar uses 
the notion of "inner red ex" and shows termination by the fact that all inner redexes termi­
nate. Our notion of dead part corresponds to his "strongly irreducible" strings. He could 
extend his termination result to prove a sharp upper bound for the lengths of derivation. 

Theorem 9.1 ([16]) If p = 2 = q, r = 3 = s then D(n) = 2n - 6. 

A completely different approach is currently investigated by Jan-Willem Klop (personal 
communication). He uses a reasoning by cases, visualized at rectangular figures where 
o characters are represented by upwards arrows, and 1 characters by rightbound arrows. 
Rewrite steps are understood as commuting diagrams. 

The notion of "transformation ordering" and "termination by completion" have been 
coined by Fran~oise Bellegarde and Pierre Lescanne [2, 3J. 

Theorem 9.2 (Transformation order, [2, 3]) Let B, C, and T be term rewriting sys­
tems. If 

1. -+ B U -+T terminates, 

2. -+T is confluent, 

3. T is non-erasing and left-linear, and 

4. CP(T, B) is cooperative, i.e. it satisfies CP(T, B) ~ (-+B / -+T)+ ~T' 
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then even 
>~f (-1-B / BT)+ U -1-~ 

terminates. Moreover, every rewrite system C that satisfies C ~ >, is a terminating rewrite 
system. 

In fact, an earlier attack to our problem has shown that the transformation ordering is quite 
useful, too, to describe the dummy introduction step [11]. On closer observation however 
we found that termination of the transformer system is an unnatural requirement: T steps 
did not occur as C rules, and the critical pair criteria worked as well without assuming 
any normal forms. We felt that we could do without it. 

The result is our theorem 6.1. It is a criterion similar to the quasi-commutation 
criterion of Leo Bachmair and Nachum Dershowitz. Quasi-commutation is the property 
-1-T -1-B ~ -1-B -1-BUT' which, provided that -1-B terminates, is equivalent to -1-T -1- B ~ 

-1-~ -1-;'. 

Theorem 9.3 ([1]) Let B, T be term rewriting systems. If 

1. -1- B terminates, 

3. B is left-linear and non-erasing, 

4. T is right-linear 

then -1- B -1-;' terminates. 

But it is not quite the same. Comparing the abstract versions, we find we can simulate 
their version, by -1-C = -1-B f-;' with T inverted, but not (naively) vice versa. As a 
counterexample choose a -1- B b, b -1- B c, a -1-C c, b -1-T c. Here -1- B terminates, and so -tc 
by our criteria, but -t BrT does not terminate. Though we do not claim that we have 
essentially improved over Bachmair/Dershowitz' criterion: We have the same technical 
restrictions (left-linearity, non-erasingness) as they have, and a slightly different critical 
pair condition which is put on C rather than on B. By accident, this suits our needs 
better in the case of dummy introduction, as critical pairs with C are more comfortable 
to handle. 

10 Conclusions 

We gave a complete and precise characterization when a one-rule string rewriting system 
Z of the form OP i q -t iT 0' terminates, where p, q, r, s are positive integers. For the 
simply terminating cases we gave sharp upper bounds for the complexity of derivation 
lengths. 

We attacked the difficult, non-simply terminating case, p < s < 2p, q < r, q X r, by 
a series of transformation steps, each preserving non-termination. We demonstrated how 
to design a termination proof and how to split it into small steps each of which can be 
supported by standard methods. For the dummy introduction, we used an impoverished 
form of transformation order. Dummy elimination is about to become a standard method. 
Another standard method, semantic labelling [17J turned out not to support the dummy 
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introduction step, but a twin-labelling (first label as usual, then label the reversed strings) 
looks promising. 

Of course, we would like to have an estimate of the derivation length in the non­
simple termination case, too. We expect that derivation lengths are linear, as in the case 
p = 2 = q, r = 3 = s. On close observation of the termination proof, we get that each 
of the transformation steps, except the dummy elimination step, preserves the length of 
derivations. Dummy elimination, however, gives only an exponential upper bound. 
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