

The PAP preprocessor : a precompiler for a language for
concurrent processing on a multiprocessor system
Citation for published version (APA):
Lemmens, W. J. M. (1982). The PAP preprocessor : a precompiler for a language for concurrent processing on a
multiprocessor system. (EUT report. E, Fac. of Electrical Engineering; Vol. 82-E-130). Technische Hogeschool
Eindhoven.

Document status and date:
Published: 01/01/1982

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/e1782af2-8b12-456f-96ab-0b2f72867c01

Department of
Electrical Engineering

The PAP preprocessor: A precompiler
for a language for concurrent processing
on a multiprocessor system.

By
W.J.M. Lemmens

EUT Report 82-E-130
ISBN 90-6144-130-7
ISSN 0167-9708

October 1982

Eindhoven University of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Electrical Engineering

Eindhoven The Netherlands

THE PAP PREPROCESSOR:

A precompiler for a language

for concurrent processing on

a multiprocessor system

By

W.J.M. Lemmens

EUT Report 82-E-130

ISBN 90-6144-130-7

ISSN 0167-9708

Eindhoven

October 1982

CIP-gegevens

Lemmens, W.J.M.

The PAP preprocessor : a precompiler for a language for
concurrent processing on a multiprocessor system / by
W.J.M. Lemmens ; [publ. of the] Department of electrical
engineering, Eindhoven University of Technology. -
Eindhoven: University of technology. - Fig. - (Eindhoven
University of Technology research reports ; 82-E-130)
Met lit. opg., reg.
ISBN 90-6144-130-7
ISSN 0167-9708
SISO 365.3 UDC 681.3.066 UGI650
Trefw. : programmeertalen.

PAP report
PAGE 1

Summary.

This report describes the desi.gn, implementation and use of a language for
concurrent processing on a mult.iprocessor computer system. It contains a
user's manu.al and implementat.:l!on notes and ends with a discussion of the
advantages and disauvantages of using a preprocessor in addition to a
compiler for the translation of programs written in such a language.

Lemmens, W.J.M.
THE PAP PREPROCESSOR: A precompiler for a language for concurrent processing
on a multiprocessor system.
Department of Electrical Engineering, Eindhoven University of Technology, 1982.
EUT Report 82-E-130

Address of the author:

Group Measurement and Control,
Department of Electrical Engineering,
Eindhoven University of Technology,
P.O. Box 513,
5600 ME EINDHOVEN,
The Netherlands

...... - '- .- " ... , . . . :. : .. : .. >.:,,~"::.~ . :::.::.: ~.',:.:. . ,-, ." ":',': ,~.:

PAP report

Contents:

Summary.

Contents.

Preface.

Part I. PAP user's manual.

1. Introduction.

2. PAP features.

3. PAP syntax.

4. Structure of the list file.

5. Operating environment.

6. Error messages.

Part II. Preprocessor design and implementation.

1. Introduction.

2. The parser.

3. Output text generation.

4. Some considerations on building a preprocessor.

Literature.

Appendices.

A. Insertion and replacement of texts.

B. The text generation software.

3

5

6

8

II

12

12

16

18

20

22

24

C. Other preprocessor subprograms and data structures.

PAGE 2

PAP report PAGE 3

Preface.

At the measurement and control group of the department of electrical
engineering of rhe Eindhoven University of Technology we have built a
multiprocessor computer configuration for measurement and control
applications. For this .system we have created an advanced language for
concurrent programming, named PAP (PAscal Plus real-time extensions), and
built the facilities to use it. This language and the hardware mentioned
have so far been used for practical work assignments for M. Sc. students of
several specialisations and as an object of study for M. Sc. theses. The
report presented here discusses the design and implementation of PAP. A
report covering the whole project will be published separately.

This report is divided in two parts: Part I constitutes a user's manual,
aimed at those people who want to use the system, but do not intend to
change it or otherwise want to be concerned with its inner workings. It
mainly describes how the system should be used and what it should be used
for. However, those who are interested in the development and construction
of the system will need it as an introduction to its features and use.

In part II,
This part
PAP system.
the program

some aspects that have been mentioned in part I are elaborated.
deals specifically with the preprocessor which forms part of the
It contains a description of the construction and operation of
and some considerations on which these are based.

The appendices document some
facilitating the alterations
maintenance and extension of the

aspects of the
and additions

package.

system in more detail,
that may be needed for

PAP report

Part 1.

PAP userts manual.

PAP report PAGE 5

1.1. Introduction.

PAP is a programming language based on Pascal and designed for real-time
multiprocessor applications. Programs written in PAP will run on a PDP-ll
single- or multiprocessor system. Therefore the PAP package consists of
three parts:

1. A preprocessor for the conversion of PAP programs to standard
Pascal programs.

2. A sligthly modified Pascal compiler to translate the output of the
preprocessor to machine code.

3. A run-time system specifically built for the PAP system.

This report is mostly concerned with the preprocessor mentioned above. The
preprocessor constitutes an extra translation step before the compiler. It
checks the correct use of the features that have been added to standard
Pascal and produces Pascal programs as output. To be more specific, it has
the following tasks:

1. To insert declarations for PAP standard types, variables, functions
and procedures.

2. To check the syntactical correctness of PAP programs, or at least
of the PAP-specific elements of PAP programs.

3. To perform conversion of
constructs, e.g. PROCESS
TRUE DO BEGIN, etc.

PAP language elements to Pascal
translates to PROCEDURE, CYCLE to WHILE

4. To establish links to the run-time system, e.g. by insertion of
system routine calls for starting up of processes or for checking
stack overflow.

5. To insert initialisation statements for the PAP variables that need
init ialisation.

6. To carry out type compatibility checks of PAP variables used in PAP
operations.

7. To investigate possible deadlock situations when using critical
regions.

8. To compact the output text in order to speed up the Pascal
compilation.

9. To produce a listing of the program, including input and output
line numbers, error messages and summaries of declared identifiers.

PAP report PAGE 6

The following chapters provide more information on PAP features and PAP use.

1.2. PAP features.

PAP as a language is nothing more than standard PAscal Plus some added
features to allow real-time programming:

The reserved word PROCESS
software module that may
of, other modules (see lit.

designates
be executed
1).

the following program unit as a
concurrently with, and independently

The reserved word
BEGIN and marks
indefinite period

CYCLE is equivalent
the beginning of

of time.

to the Pascal construct WHILE TRUE DO
a block that should be executed for an

PAP features three different communication and/or synchronisation
primitives: Critical regions, semaphores and message buffers with their
corresponding messages (see lit. 2). These are available as predeclared
types. Variables of these types mus't be declared using the reserved words
REGION, SEMAF, MSGBUF and MESSAGE respectively.

1. Critical regions may be used to restrict access to certain devices
or groups of data to only one process at a time. A region may be
entered by using REGENTER < regname > and left through REGEXIT
<regname>.

2. Semaphores are used as a synchronising mechanism between processes.
The only operations to be performed upon variables of this type are
SIGNAL(SEM) and WAIT(SEM). SEM may be any identifier of type SEMAF.

3. Messages and message buffers are a means of communication among
processes. Messages are passed from one process to another by way
of message buffers. They are arrays of CHAR (or ASCII or BYTE) or
INTEGER, declared in a special way to allow type checking with
SEND(MSG,MBUF) and RECEIVE(MSG,MBUF) operations, whereby MSG is a
message and MBUF is a message buffer. These operations constitute
the only admissible way to access message buffers.

Besides semaphores, messages and message buffers, arrays of elements of
these types may be declared, using the reserved word VECTOR. Vectors are
limited to one dimension only, unlike conventional arrays.

Procedure declarations follow Pascal rules, but there are two extensions:

L Declarations of procedures and functions may
reserved word SYSTEM. They are thereby
procedures, which means that the preprocessor

be preceded
declared as

automatically

by the
system
issues

PAP report PAGE 7

some
This
use

process identification with every procedure or function call.
feature is mostly used by operating system procedures and its

is transparent to the normal user.

2. The type specification of a procedure or function parameter may be
preceded by the word symbol UNIV. This suppresses type
compatibility checks between actual and formal parameters at a
subprogram call. Any parameters declared UNIV must also be declared
VAR in the procedure/function declaration. This feature allows type
conversion between any two types that can be mapped upon the same
memory segment. It should however be used with the utmost care as
erroneous use affects the integrity of the whole program.

Apart from the standard procedures SIGNAL, WAIT, SEND and RECEIVE and the
standard Pascal procedures, PAP offers some more predeclared procedures:

1. ATTACH(DEV,SEM), which
vector (adress) DEV.
associated semaphore by

associates semaphore SEM with interrupt
It enables a specific device to signal the
generating an interrupt.

2. START(PROCQ,PRI,HL,SL,PROCS, ••) activates process PROCS so it may
compete for processor time concurrently with other processes. PROCQ
indicates the queue in which the process is to reside while being
active (see below), but not running, PRI is the process priority,
HL and SL are the length of the hardware and software stack
respectively. The dots after the process name indicate any
parameters the process will have. All process parameters must be
given a value at the invocation of the start procedure.

3. BYE deactivates the process from which it is called, effectively
removing it from the system (but not from memory).

4. READREG(PART,REG) is a function of type WORD, which supplies the
content of memory location REG within partition PART. WORD is a
predeclared type meaning the contents of a memory word without
conversion to any specific type.

5. WRITEREG(PART,REG,CONT) transfers the value of CONT to location REG
in partition PART.

6. STRINGTOINTEGER(S,I) converts string S of ~~ClI-coded figures to an
integer value that is assigned to I.

7. INTEGERTOSTRING(I,S) accomplishes the reverse: It is a procedure
that converts integer value I to string S.

For a more detailed description of these subprograms, see lit. 6.

There are three system dependent predeclared variables: PROCAQ, PROCBQ and
READYQ that are used as a parameter in the START procedure. They indicate

PAP report PAGE 8

whether a process is to be run exclusively on one specific processor, and if
so, on which one.

PAP offers possibilities for code sharing among processes. In fact, this is
the only reason why processes may have parameter lists. Any process may be
started more than once, each time with different values of the parameters
and in a different queue.

1.3. PAP syntax.

The syntax graphs depicted here are intended as an addition to the Pascal
graphs (see lit. 3). Together with the Pascal graphs and the following notes
they define the syntax of the PAP language.

Notes:

1. <declaration part> is identical to the Pascal <block> excluding
BEGIN <statement> {; <statement» END •
Procedure and function declarations may be preceded by the reserved
word SYSTEM (see chap. 1.2).

2. The PAP statement is identical to the Pascal statement with the
addition of I REGENTER <region identifier> <statement> {;
<statement» REGEXIT <region identifier> •

3. The definition of the PAP <parameter list> given here replaces the
Pascal definition. It is identical to this except for UNIV.

4. BYTE or ASCII are also allowed message element types.

The Pascal scope rules apply also to processes declared within other
processes. These processes are considered local to the enclosing process, so
the START procedure calls for these processes should be situated within the
statement part of that process.

In addition to the word delimiters of Pascal, PAP has the following reserved
words: ASCII, BYTE, CHAR, CYCLE, INTEGER, MESSAGE, MSGBUF, PROCESS,
REGENTER, REGEXIT, REGION, SEMAF, SYSTEM, VECTOR. These should never be used
as identifiers anywhere within a PAP program. The word UNIV has a special
meaning only if it precedes a type identifier within a parameter list of a
process, procedure or function.

As the user program and part of the system software are merged into one
Pascal program by the preprocessor, a number of reserved identifiers should
not occur in a user declaration at the program and/or process level because
they are used internally by the system. INITIALISE, INITTOS, NUMMER,
PHOENIX, R5, TEMPQPNTR, TOPOFSTACK, ERRORBUF should not be declared at the
program level. INIT, NEWCHK, NEWREG, NEWSTK, OVFLCHK, PDPOINTER, STARTREG

PAP report PAGE 9

should occur neither within a program nor in a process declaration part. The
same goes for some of the system identifiers that are accessible to the
user: BYE, PROCAQ, PROCBQ, READYQ, SIGNAL and WAIT. SEND and RECEIVE should
never be redeclared as system procedures or functions, and NEW and START
never as normal subprograms because the preprocessor scans the program for
subprograms having these names in order to do certain checks or insertions.

PAP Type

REGION
Message

Type

VECTOR

Message Type

Vector Identifier
OF Range

Constant
SEMAF Identifier

Message
Type

Unsigned
Integer

Vector
Range

CHAR 4) }-.--------

PAP report

program
PROGRAM

process
declaration PROCESS

statement 2)

Parameter
List 3)

PAGE 10

Declaration 1-_ __
part 1)

Statement ~---..,....----_

o

'----+--(END)-!-(END }--([)~_

PAP report PAGE 11

1.4. Structure of the list file.

Upon request the preprocessor produces a listing of the source program,
which contains the original program text plus information on identifiers
declared and errors detected within the program. The source text lines in
the list file are preceded by two numbers: first a line number of the input
text and second a line number of the output text. In this way the Pascal
compilation that eventually follows does not need to produce a listing of
its own. This would be rather illegible anyhow, as the preprocessor
compresses the output text and any lay-out from the source text is totally
disturbed. So if the Pascal compiler displays an error message, the
corresponding line can be found in the preprocessor listing.

In between the source text lines overviews of identifiers declared within
the program unit concerned are given. These are listed in alfabetical order,
followed by an indication of their kind (constant, type, variable or process
identifier), their type (for type or variable identifiers) or value (for
integer constant identifiers) and some information that depends on their
type. The kind of the procedure and function identifiers is taken to be
variable. The type of type or variable identifiers is indicated by a number:

0 = Semaphore.
I = Message.
2 = Message buffer.
3 = Critical region.
4 = Vector.
5 = Procedure or function.
6 = The rest, i.e. all Pascal types.

For type identifiers this is all that is
that are declared in the parameter list
PARAMETER VARIABLE displayed after their
variables more information is given:

displayed. Variable identifiers
of the process concerned will have

type indication. Of the other

1. For messages the number of elements and the type of the elements
(word type or byte type).

2. For message buffers the maximum number of messages they may contain
and the corresponding message type identifier.

3. For vectors the lower boundary, the upper boundary, and an element
type identifier.

4. And for procedures/functions a list of critical regions and
subprograms called from within the procedure/function body.

These overviews are given each time immediately after the first BEGIN of the
statement part of the program or process.

If the preprocessor detects an error somewhere in the program text, the

PAP report

corresponding line in the list file is closed at that point and
message is inserted at the next line. The program text is continued
line thereafter, following a string of '*'-characters that replaces
numbers. For possible error messages, see 1.6.

PAGE 12

an error
on the

the line

Each page of the listing has a header in which the name of the list file and
the date and time of production are mentioned.

1.5. Operating environment.

PAP, or more specifically the PAP run-time system is originally designed to
run on a multiprocessor system composed of two or more LSI-ll processors
connected to one or more memory units by way of a crossbar system. Each
memory unit has an arbiter that decides which processor may have access to
the unit and sets the crossbar switches accordingly. Peripheral devices are
directly connected to one of the processor busses, so any process that needs
a device must be active on the corresponding processor exclusively. Hence
the different processor queues.
Processes that are running on a certain processor keep doing so until they
become waiting through execution of a WAIT operation. Until that occurs,
they may only be temporarily suspended because of a hardware interrupt.
A processor that becomes idle, e.g. because of a wait operation performed by
the process that was being executed on it, first searches its own queue for
new processes to execute. if that queue is empty, the CPU inspects the
READYQ. In the queues processes are sorted according to their priority, so
high priority processes are handled before processes having a lower
priority. This goes for both the active queues and the semaphore queues, in
which processes reside while waiting.

The run-time system is made exclusively for the configuration described
above. If the software is to be transferred onto an other hardware system
the run-time system should be rewritten for that system. The preprocessor
may run on any system that accepts the Pascal in which it is written and the
only system-specific aspect of its output is the use of ready and processor
queues.

For more information on the hardware configuration, see Lit. 4. The run-time
system is described in Lit. 5 and 6.

1.6. Error messages.

If during preprocessing an error is encountered, the current line in the
list file is closed and an error message is inserted. After preprocessing is
finished, the number of errors encountered is displayed on the terminal.
Error messages are:

OUTPUT BUFFER OVERFLOW. Indicates the presence of a string that is

PAP report

too long and without spaces or TAB-characters.
of missing closing symbol ("*)" or "''') in a
string.

PAGE 13

May be an indication
comment or literal

INTEGER VALUE TOO LARGE. Integers must have a value between +32767
and -32768.

UNDECLARED IDENTIFIER. Non-standard identifiers must be declared
before they are used.

IDENTIFIER DECLARED TWICE. No two identifiers within the same scope
may have the same name, except field identifiers of different
records or field identifiers and other identifiers.

ILLEGAL VECTOR TYPE. Only semaphores, messages and buffers are
allowed as VECTOR elements.

TYPE NOT ALLOWED IN MESSAGE. Messages may only be of CHAR, ASCII,
BYTE or INTEGER type.

ERROR IN BUFFER TYPE. Buffers may only be declared for legal
message types.

WRONG DECLARATION ORDER. LABEL declarations should come first. Next
come CONST declarations, next TYPE declarations, then VAR
declarations, then PROCEDURE and FUNCTION declarations and
thereafter PROCESS declarations. Statements should be last.

NO REGION IDENTIFIER. REGENTER should be followed by a REGION
identif ier.

WRONG NESTING OF REGIONS. No REGION identifier or the wrong REGION
identifier after REGEXIT.

DEAR USER,
I AM SORRY, BUT I'M NOT QUITE SURE WHAT YOU ARE TRYING TO ACHIEVE.
YOU SEE, IN MY HUMBLE OPINION, YOU JUST TRIED TO ENTER A REGION
THAT WAS ALREADY OCCUPIED BY THE CURRENT PROCESS. PERHAPS, IN YOUR
INFINITE WISDOM, YOU HAVE REASONS TO CREATE A MASSIVE DEADLOCK THIS
WAY, BUT MAYBE IT'S JUST A SILLY MISTAKE. NEVER MIND THEN, ANY
HUMAN IS ENTITLED TO ITS OCCASIONAL ERRORS, EVEN THOUGH RE DOESN'T
EXPECT THEM FROM ME. IN CASE IT WAS INTENDED, PLEASE FORGIVE MY
RUDE INTERFERENCE.

THIS IS NOT A CONSTANT IDENTIFIER. And probably it should be.

ILLEGAL USE OF PROCESS NAME. A process name may only occur in a
process declaration or in a START procedure call.

THIS IS NOT A MESSAGE. The first operand in a SEND or RECEIVE
operation should be of MESSAGE type.

PAP report PAGE 14

THIS IS NOT A BUFFER. The second operand in a SEND or RECEIVE
operation should be of MSGBUF type.

INCOMPATIBLE MESSAGE AND BUFFER TYPES. The message type in a SEND
or RECEIVE operation should match the type for which the buffer is
declared.

IDENTIFIER EXPECTED.
"BEGIN" EXPECTED.
"OF" EXPECTED.
"REGEXIT" EXPECTED.
"END" EXPECTED.
UNSIGNED INTEGER OR INTEGER CONSTANT EXPECTED.
RIGHT PARENTHESIS EXPECTED.
COLON EXPECTED.
SEMICOLON EXPECTED.
PERIOD EXPECTED.
FINAL PERIOD (". ") EXPECTED.
These messages are more or less self-explanatory.

UNEXPECTED END OF INPUT. Probably too little ENDs or too many
BEGINs.

Apart from the error messages in the list file, the following messages may
appear on the terminal during preprocessing:

PAP PREPROCESSOR. OUTPUT = 000, INPUT = iii. This message is
generated at the start of the preprocessing if all goes well. 000

and iii are the output and the input file name, respectively.

OPEN FAILURE ON INPUT FILE indicates that a file with the name
given for the input file does not exist or is otherwise
inaccessible. If this message is generated, the part INPUT = iii is
omitted in the previous string.

PREPROCESSING ABORTED AFTER nnnn LINES OF INPUT is generated if the
end of the input file is encountered before regular completion of
the program is detected.

END OF PREPROCESSING.
eeeeee ERRORS DETECTED, nnnn LINES READ. This message concludes
preprocessing if the preprocessor program reached its regular
termination. eeeeee Indicates the number of errors encountered
during preprocessing, nnnn is the number of lines processed.

PAP report

Part II.

Preprocessor design and implementation.

PAP report PAGE 16

11.1. Introduction.

The PAP preprocessor has many of the features of a Pascal compiler. It
comprises a lexical scanner, a parser, a kind of code generator and software
to produce a listing of the program text. In fact, the choice of
implementing the PAP language by building a preprocessor in stead of a full
blown compiler causes many things to be done twice while preparing a program
for execution on the system. Constructing a new compiler or converting an
existing compiler to PAP however would have cost many more man hours.

1. The lexical scan identifies strings of characters and replaces them
with a symbol code plus attribute values, like the name of an
identifier or the magnitude of an unsigned integer. Spaces, TABs,
carriage returns and other delimiters are skipped. However, because
the preprocessor output should be a file suitable for compilation
by a standard Pascal compiler, the symbol codes are not exported to
the compiler and are used only internally. Most of the program text
is passed unchanged to the output text generator. Only superfluous
delimiters, used for enhancement of readability of the program, are
discarded, as are comments.

2. The parser should examine programs as to their accordance to the
PAP-specific syntax rules, but it does not necessarily need to
analyse the standard Pascal constructs of the programs. So, in
contrast to parsers for other languages, it does not pass judgment
over all language constructs used, but it transfers part of the
program unanalysed to the output file. Thus in the declaration part
only region, vector, semaphore, message and message buffer
declarations are processed and the statement part of program units
is treated as an unstructured stream of symbols and identifiers
with BEGIN, END, CYCLE, REGENTER and REGEXIT-markers standing out.
From a certain point on parsing is limited to merely looking for
certain identifiers in the program until a certain symbol is
reached. Upon finding one of these identifiers SEND, RECEIVE,
NEW, START and all process and system subprogram names - certain
actions are performed after which scanning proceeds.
Besides violations of the context free syntax rules the parser also
detects any deviations from the scope rules or the declaration
conventions, as far as typical PAP variables are concerned, and the
use of illegal types in PAP operations or expressions.
Because the parser analyses the program it is able to decide where
certain texts should be inserted or which part of the input text
should be replaced by a different text. So another task of the
parser is the execution of control over the output text generator.

3. Most of the input text appears at the output essentially unaltered,
with unnecessary delimiters removed and certain declarations and
statements inserted. But only Pascal symbols and identifiers,
delimiters that are indispensable and certain compiler directives
are passed on to the output file, so specific PAP symbols have to

PAP report PAGE 17

be replaced by a legal Pascal text. The replacement and insertion
of texts is directed by the parser. The texts to be inserted or to
be used instead of those input symbols are contained in a file on
disk, together with the text of the error messages that may appear
in a Listing. Every text on disk has an unique number. With this
number it may be accessed through a table that is loaded from disk
during initialisation of the preprocessor. The randomly accessible
texts may contain one or more insertion symbols ('@'-characters)
that are to be be substituted with any other text from the text
file, or a name from the identifier table, or the current symbol in
the input text, or any number expressed in ASCII characters. A text
as it appears in the output file may thus be composed of several
texts from the text file, combined with symbols or names from the
input and numbers generated by the preprocessor.

4. The program listing is assembled from a number of components:

1. The original program text. This is put into the list file by
the lexical scan software.

2. Page heading and input and output line numbers. Every time a
new line is to be started a procedure is called that checks
first if the current page is full and starts a new page if
necessary. After that the new line is started and this is
provided with line numbers if it is an input text line.

3. Error messages, if necessary. These are inserted by the parser,
using the text insertion subprograms that are also used by the
code generation software.

4. An overview of all identifiers declared within a process or in
the main program. This is produced by the procedure that also
takes care of the initialisation of PAP variables, as it scans
the identifier table.

So there is no specific listing part of the preprocessor. All parts
contribute to the composition of the list file.

Added to all this are some procedures for input of file names via the user
terminal and initialisation of the preprocessor itself.
The parts mentioned here all are active simultaneously, but not
concurrently. Ours is a one-pass preprocessor, contained in one sequential
program, with procedures and functions that are called when they are needed.

The compiler that is used to convert the preprocessor output to machine code
is the so-called Ericsson compiler (lit. 7), but in fact any reliable Pascal
compiler would have been adequate. Only, it proved necessary for the

PAP report PAGE 18

implementation of SEND and RECEIVE in PAP and in order to create a PAP file
handling system (lit. 8), to be able to suppress type checking at some
points. Therefore provisions have been made to switch off the compiler type
compatibility check for procedure and function parameters. As descibed in
1.2 the word UNIV has been introduced for this purpose. A VAR parameter of
which the type identifier is preceded by UNIV in the subprogram declaration,
is marked as universal in the compiler identifier table and no compatibility
check is made on this parameter when the procedure or function concerned is
called. There are compilers with this feature built in (lit. 9), but we
chose to adapt the Ericsson compiler because that was better suited for our
purpose.
The programmer is now able to make implicit
subprogram and its environment: The variables
outside the subprogram, but may be treated as
subprogram body. Also, variables of different
one procedure or function.

11.2. The parser.

type conversions between a
in question may be of one type
of different type inside the
lengths may be accommodated by

The parser is of recursive descent type (lit. 10), so the syntax graphs of
chap. 1.3 may be viewed as a blueprint for the structure of the parser:
there is a procedure for the syntactical item <program> which calls a
procedure for the declaration part, which among others calls a procedure for
parameter lists, etc. ·until finally the presence of a specific symbol is
verified.

The primary task of the parser is to check whether the program contains
errors. At every point in the syntax graph there is a limited number of
allowed continuation symbols, for example in a FOR statement, after the
assignment only TO or DOWNTO are legal. If the symbol detected at a certain
point in the program text does not belong to the current set of continuation
symbols or is an identifier of the wrong kind, we have an error condition.
This is notified in the list file in the form of an error message which, if
possible, mentions the symbol expected at that point. The boolean variable
ERROR becomes TRUE and thus suppresses further error messages.
During the error state attempts are made to restore the situation to normal:
If a specific symbol was expected a search is made for that symbol by
inspecting the next symbol in the program. In this way for every symbol to
be evaluated two symbols are inspected: the current symbol and the next.
This method deals effectively with erroneously inserted symbols and
incorrectly spelled symbols. There is however no guarantee that this will
lead to a return to the normal state. For one thing, the parser does not
always call the routine that performs the actions described above. It also
has other ways to deal with specific symbols.
Therefore some key procedures are constructed in such a way that they return
control to the calling program upon reaching one of a group of closing
symbols, regardless of their inner state at the moment. This deals with the
inadvertent omission of necessary symbols from the source program. Any
symbols between the occurrence of the error and the closing symbol are

PAP report PAGE 19

ignored.
During an error state the output generation is not interrupted, but
heuristical attempts are made to produce an output with as little errors as
possible. As soon as the parser finds a symbol that matches the syntax
definit:ion at that point or an identifier of the correct kind, the ERROR
variabLe becomes FALSE and the situation reverts to normal.

The preprocessor maintains a table of most of the identifiers declared in a
user program. The structure of this table reflects the program structure, so
adherence to the scope rules can be verified rather easily. An other purpose
of this table is to enable type checking:

1. Every time a message, a buffer or a vector is declared, a check is
made to ensure that the elements are of the right type.

2. The operands in a send or receive operation are examined for their
compatibility: the length of the buffer elements should be the same
as that of the messages transmitted and the types of the
constituents of both should tally. Hereby CHAR-types are taken to
be compatible with ASCII and BYTE-types.

3. The identifier that follows a REGENTER or REGEXIT should have been
declared as a variable of type REGION. Further the identifiers that
follow corresponding REGENTER and REGEXIT delimiters should be
identical and no REGENTER should be done on a critical region that
has been entered before and has not been left since. All this is
checked by the preprocessor, even inside the body of procedures
that are called from within a region.

The identifier table is implemented as a stack of trees: For every block
that is entered a new table is started that is linked to the previous one.
These subtables take the form of a tree of identifier records in which the
nodes are ordered lexicographically, according to the names of the
identifiers. That is, every node of the tree has two subtrees, a left one
and a right one. The left subtree only contains records of identifiers of
which the names lexicographically precede the name of the node identifier,
while the right tree contains identifiers with names that succeed it in
lexicographical order. Alternatively, one or both of the subtrees may be
empty.
The records of which the trees are built contain all information that the
preprocessor may need on the identifier concerned, such as its name, whether
it is a constant, type, variable or process identifier, whether it has been
declared formally in a parameter list or actually in the declaration part of
a program or subprogram block. For integer constants the value is stored and
for type and variable identifiers the type is registered, with for each type
some characteristic data, like the number of elements it contains and a
reference to the corresponding message type for a message buffer or element
type and boundaries for a vector. Also for each record in the tree the
number of records by which it is referenced is noted (see below). Procedures
and functions are taken to be variables.
After a block is left the corresponding tree is broken down and the records

PAP report PAGE 20

are returned to the pool of free records, but with a few exceptions. The
stacked tree structure harbours an other structure of linked records, namely
the lists of regions entered and procedures and functions called from inside
a block. Every procedure and function record has such a list attached and
the records of the list should not be discarded until the owner of the list
disappears from the identifier table. So even after the parser has left the
block where. they have been declared, some identifier records may continue
their existence. This goes specifically for procedures and functions
declared within other procedures or functions.
The list described here is set up to create the possibility for a deadlock
test as mentioned above. It is scanned every time the procedure or function
to which it belongs is called. The regions in the list are inspected to see
whether they are occupied and a deadlock warning is issued if that is the
case.

Besides error detection and report generation, the parser executes control
over the output text generation by calling the approriate procedure of the
output generator part when needed.

11.3. Output text generation.

If the source program is a correct PAP program, then the preprocessor output
should be a correct Pascal program. So, first specific PAP symbols should in
the output file be replaced with their Pascal equivalents, or, if they are
preprocessor directives, be discarded altogether. We already encountered the
conversion of PROCESS to PROCEDURE and CYCLE to WHILE TRUE DO in 1.1. Other
examples are:

1. MESSAGE n OF •• translates to ARRAY[O •• m] OF •• , with m=n-l.

2. REGENTER r translates to BEGIN WAIT(r);

3. START(a,b,c,d,e, ••) to NEWSTK(a,b,c,d); e(••)

4. SYSTEM is skipped.

But apart from such direct translations there are quite a number of texts
that are added to the output for a variety of reasons. New types that are
standard in PAP must be declared in Pascal, such as SEMAF, REGION and WORD.
The same goes for the standard procedures and functions that are mentioned
in 1.2. Then some variables that are used internally by the system are added
and the statements for the initialisation of PAP types are inserted in the
Pascal text.
The initialisation of variables declared in the declaration part of a
program or a process takes place immediately after the initialisation of
that module itself. After the BEGIN that follows the declaration part first
some statements are inserted for initialisation of certain system data
structures and then the procedure PRTREE(ROOTOFLOCALIDTREE) is called. This

PAP report PAGE 21

procedure recursively scans the local identifier tree and performs two acts:
It passes a description of the identifiers it encounters to the list file
and it inserts the statements needed for the initialisation of any variables
it finds that require initialisation in the output file. The result of all
this is an alfabetical list of identifiers in the list file, with their
kind, their type or their value, and any other relevant data mentioned. In
the output file there will appear a group of statements that establish
initial values for semaphore counters, buffer indices and so on, that form
part of the variables declared within the process in which the
initialisation occurs.
Finally, there are special constructs to be built, e.g. critical regions
around START and NEW, a process that does not contain a CYCLE should be
terminated after completion, etc.
For more details, see appendix A.

The decision to discard a piece from the input or to pass it on will only be
made after the part concerned has been analysed by the parser. So the
lexical scan software may not transfer the text it reads directly to the
output. An output buffer is used instead, where pieces of text reside while
they are being analysed. After that they may be discarded or put into the
output file.
The output buffer is a circular buffer of 132 characters. It will never
contain more than one PAP symbol plus leading delimiters. These are (strings
of) characters that have no special meaning for the preprocessor but they
may have a meaning in Pascal. Associated with the buffer are two pointers: a
put pointer that points to the position where new characters may be inserted,
and a get pointer that indicates the position from where the next character
should be taken when emptying the buffer. Discarding the contents of the
buffer is accomplished by making the put pointer equal to the getpointer.
Text to be inserted is put directly into the output file. It will therefore
appear before the current symbol in the Pascal text produced, if that symbol
is not discarded, in which case we have a replacement of the input text.
The texts to be inserted are stored in a file on disk from which they have
to be retrieved in random order. This file is prepared from a file made by
the person that built the PAP system by using a special program. This
program creates the file in which the texts are directly accessible and a
table in which the text number is associated with the position of the text
in the text file. Insertion of texts, using this table, is done by:
PROCEDURE OUTXT(IFIL:DESTIN; NTXT:INTEGER; ILST:INLIST)
The parameters of this procedure indicate successively:

1. The file to which the text is to be transported. IFIL=LISF
indicates the list file, IFIL=OUTF the output file.

2. NTXT is the text number, the index in the text table.

3. ILST is a pointer that indicates the list of elements that should
take the place of the '~'-characters in the indicated text. The
elements are characterised by a code and an attribute, such as a
numerical value or a name string, if necessary. If the element to
be inserted is an other text from the text file, it will have its

PAP report PAGE 22

own insert list as an attribute.

Appendix B offers a full account on how the insertion of texts into texts
that themselves are to be inserted into other texts is accomplished.

11.4. Some considerations on building a preprocesssor.

As we noted in 11.1, the use of a preprocessor instead of a specially
developed compiler creates a certain amount of overhead and duplication. The
chosen solution represents a trade-off between excessive development cost
and utilisation cost.

The decision to build a preprocessor that does not fully duplicate some
compiler functions poses considerable limitations on the language design.
Especially the variable and type declarations may take time to evaluate, if
we allow Pascal and PAP types to be fully mixed. In that case namely, we
have to have all ARRAY, RECORD, FILE and pointer type declarations evaluated
in addition to the PAP types, because of possible combinations of these
types with PAP types. Therefore, declarations of types like

ARRAY[BOUNDSl OF RECORD P:POINTER;
I: INTEGER;
S:SEMAF

E®
are not allowed in PAP. PAP types should not be mixed with Pascal types and
that is the reason why they stand beside the Pascal types in the syntax
graphs. That is also the reason why we needed to introduce the VECTOR
keyword to declare arrays of PAP types.
The same considerations apply to the message concept. Ideally one would like
to transfer any variable by way of message buffers. Just to make that
possible we have introduced the UNIV symbol. This leaves type compatibility
checks of the operands in SE® and RECEIVE operations to the preprocessor.
But to allow all variable types in a message buffer, the preprocessor should
fully analyse all types declared within the program. That is why the message
type is introduced and the range of types of message elements is limited to
CHAR, ASCII, BYTE or INTEGER.
In such a way duplication of compiler functions in the preprocessor is kept
within reasonable bounds: The analysis of Pascal type declarations is left
to the Pascal compiler. These declarations are only scanned for the
detection of the closing symbol, after which the search for PAP types is
resumed. However, in order to detect the closing symbol in a record
declaration, which is END, the preprocessor must be aware that the type is a
record type, and therefore must be able to detect the starting word symbol
RECORD. The same applies to the parentheses surrounding enumerations.

A comparable situation occurs during the processing of statements. The
preprocessor does not analyse Pascal constructs like WHILE <expression> DO
<statement>, but it should distinguish the cyclic part of a process from the
rest of the statement part and the statement part from the rest of the
process body. Therefore it should detect the enclosing CYCLE and E® symbols

PAP report PAGE 23

and BEGIN and END symbols, respectively. But in order to associate the
correct END with the BEGIN or CYCLE, it should be able to detect CASE and
END pairs as well. So the CASE symbol has to be detected by the
preprocessor, like the RECORD symbol, although they have no special meaning
in PAP.

These are only a few examples to demonstrate that a certain duplication of
actions between the preprocessor and the Pascal compiler is unavoidable. As
we have shown, care has been taken to limit this duplication to the least
possible. But there are even more disadvantages of using a preprocessor,
such as the fact that PAP variables have to be initialised by statements
that are inserted into the Pascal text. These statements raise the load on
the compiler and the amount of memory occupied by the compiled program. A
compiler would have initialised the variables itself, without expanding the
object program. A PAP compiler, however, would have been almost ten times as
big as the preprocessor, with accompanying extra cost in manpower.

PAP report PAGE 24

Literature

(1) Dijkstra, E.W.
CO OPERATING SEQUENTIAL PROCESSES.
In: PROGRAMMING LANGUAGES. NATO Advanced Study Institute
Summer School, Villard-de-Lans, 1966. Ed. by F. Genuys.
London: Academic Press, 1968. P. 43-112.

(2) Brinch Hansen, P.
OPERATING SYSTEM PRINCLPLES.
Englewood Cliffs, N.J.: Prentice-Hall, 1973.

(3) Jensen, K. and N. Wirth
PASCAL USER MANUAL AND REPORT. 2nd ed.
New York: Springer, 1975.

(4) Kanters, M.J.
HARDWARE FOR A 'MULTIPROCESSOR SYSTEM' WITH LSI-II.
In: Proc. European DECUS Symp., Monte Carlo, 4-6 Sept. 1979,
Proc. of the Digital Equipment Computer Users Society, Vol. 6
(1979), No. I, p. 39-41.
Maynard, Mass.: Digital Equipment Corp., 1979.

(5) Dekker, W.P.M. den
DEVELOPMENT OF A SOFTWARE PACKAGE FOR A MULTIPROCESSOR
SYSTEM (in Dutch).
Project report. Group Measurement and Control, Department
of Electrical Engineering, Eindhoven University of Technology,
1979.

(6) Meulenbroeks, F.H.J.M.
PASCAL FOR PARALLEL PROCESSES: An implementation on a
multiprocessor system.
M.Sc. Thesis. Group Measurement and Control, Department
of Electrical Engineering, Eindhoven University of Technology,
1982.

(7) Torstendahl, S.
PASCAL USER MANUAL: PASCAL for PDP 11 under RSX/IAS. 1980.
A report intended as a supplement to (3). Available from
the author at: Telefonaktiebolaget L.M. Ericsson,
S-126 25 Stockholm (Sweden).

(8) Kruysdijk, H.J.M. van
A FILE SYSTEM FOR A MULTIPROCESSOR CONFIGURATION (in Dutch).
M.Sc. Thesis. Group Measurement and Control, Department of
Electrical Engineering, Eindhoven University of Technology, 1981.

(9) Hartmann, A.C.
A CONCURRENT PASCAL COMPILER FOR MINICOMPUTERS.
Berlin: Springer, 1977.
Lecture notes in computer science, Vol. 50.

(10) Gries, D.
COMPILER CONSTRUCTION FOR DIGITAL COMPUTERS.
New York: Wiley, 1971.

APPENDIX A

Insertion and replacement of texts.

This appendix presents an overview of all texts that may be inserted into
the output file.

1. TYPE @ 'is inserted if the program does not have any type
declarati-ons.

2. WORD=INTEGER;
ADDRESS=WORD;
PDPT=PRODESC;
QPOINTER=QUEUEj
PRODESC=RECORD SP:WORDj

PROCXQ:QPOINTERj
PS : INTEGER;
NR:INTEGER;
PRI : INTEGER;
HST:INTEGER;
SST: INTEGER;
NEXT:PDPT

END;
QUEUE=RECORD SLOT:WORD;

GET:PDPT
END;
SEMAF=RECORD SLOT:WORDj

END;
REGION=SEMAF;

CTR: INTEGER;
GET:PDPT

MSGBUF=RECORD EMPTY:SEMAF;
FULL:SEMAF;
MUTEX:SEMAF;
LENGTH: INTEGER;
NBYT:INTEGER;
GE:TPT:INTEGER;
PUTPT:INTEGER;
BUF:ARRAY[O •• 11oF ARRAY[O •• 11 OF CHAR

END;
ERRORMES=ARRAY[O •• 291 OF BYTE;
ERRORBUFTYPE=RECORD EMPTY:SEMAF;

Insertion and replacement of texts. PAGE A-2

These are the
declarations
previous text.

Elin ;
standard
at the

FULL:SEMAF;
MUTEX:SEMAF;
LENGTH: INTEGER;
NBYT: INTEGER;
GETPT:INTEGER;
PUTPT:INTEGER;
BUF:ARIMY[O •• 9J OF E&R.ORMES

types. that are inserted before the user type
program level or that replace the ' , 1n the

3. ARRAY[O •• ml replaces MESSAGE n, whereby m=n-l.

4. RECORD EMPTY: SEMAF;
FULL: SEMAF;
MUTEX:SEMAF;
LENGTH: INTEGER;
NBYT:INTEGER;
GETPT:INTEGER;
PUTPT:INTEGER;
BUF: ARRAY[O •• ml OF <message type>

END
replaces MSGBUF n OF <message type>. Here too m=n-l.

5. ARRAY replaces VECTOR.

6. VAR@ is inserted if the program or process does not have VAR
declarations. Instead of '~' comes the following single declaration
if it concerns a process, or all of the following variable
declarations if it concerns the program declaration part.

7. PDPOINTER: PDPT;
R5:INTEGER;
PROCAQ, PROCBQ, READYQ, BYEQUEUE:QPOINTER;
NUMMER:INTEGER;
TEMPQPNTR:PDPT;
TOPOFSTACK:INTEGER;
NEWREG:REGION;
STARTREG:REGION;
ERRORBUF:ERRORBUFTYPE;

8. PROCEDURE INITIALISE; EXTERN;
PROCEDURE PHOENIX(VAR PROCAQ:QUEUE;VAR PROCBQ:QUEUE;

VAR READYQ:QUEUE); EXTERN;
PROCEDURE SIGNAL(VAR SEM:SEMAF); EXTERN;
PROCEDURE WAIT(VAR PDPOINTER:PDPT;VAR SEM:SEMAF); EXTERN;
PROCEDURE ATTACH(DEV:ADDRESS;VAR SEM:SEMAF); EXTERN;
PROCEDURE INIT(VAR PDPOINTER:PDPT); EXTERN;
PROCEDURE BYE(VAR PDPOINTER:PDPT); EXTERN;
PROCEDURE SEND(VAR PDPOINTER:PDPT;

Insertion and replacement of texts.

VAR MSG:UNIV ARRAY[INTEGERl OF CHAR;
VAR MBUF:UNIV MSGBUF); EXTERN;

PROCEDURE RECEIVE(VAR PDPOINTER:PDPT;
VAR MSG:UNIV ARRAY[INTEGERl OF CHAR;
VAR MBUF:UNIV MSGBUF); EXTERN;

PROCEDURE STRINGTOINTEGER(STRING S; V AR I: INTEGER) ; EXTERN;
PROCEDURE INTEGERTOSTRING(I: INTEGER; STRING S) ; EXTERN;
FUNCTION READREG(PART:INTEGER; REG:ADDRESS):WORD; EXTERN;
PROCEDURE WRITEREG(PART: INTEGER; REG: ADDRESS; CONT:WORD);

EXTERN;
PROCEDURE NEWSTK(QID:QPOINTER;PRI:INTEGER;HL:INTEGER;

SL:INTEGER); EXTERN;
PROCEDURE OVFLCHK; EXTERN;
PROCEDURE NEWCHK(TOPOFSTACK:INTEGER); EXTERN;
FUNCTION INITTOS:INTEGER; EXTERN;
(* Standard processes *)
PROCEDURE TTIN(VAR CHARBUF:UNIV MSGBUF); EXTERN;
PROCEDURE TTUIT(VAR CHARBUF:UNIV MSGBUF); EXTERN;
PROCEDURE ERRORLOG(VAR BUF:UNIV MSGBUF); EXTERN;

PAGE A-3

These are the standard procedure and function declarations that
will appear before the global user subprogram declarations in the
output file.

9. PROCEDURE comes instead of PROCESS.

10. INIT(PDPOINTER); First statement in a process.

11. WHILE TRUE DO BEGIN replaces CYCLE.

12. WITH @ DO BEGIN SLOT:=l; CTR:=@; GET:=NIL END;
Initialisation of semaphores and critical regions. First '@' is
replaced by SEMAF or REGION identifier, second '~' becomes 1 for
REGIONs and 0 for SEMAFs.

13. WITH @ DO BEGIN PUTPT:=O; GETPT:=O; MUTEX.SLOT:=l; MUTEX.CTR:~l;

MUTEX.GET:=NIL; EMPTY.SLOT:=l; EMPTY.CTR:=~; EMPTY.GET:=NIL;
FULL.SLOT:=1; FULL.CTR:=O; FULL.GET:=NIL; LENGTH:=~ NBYT:~ END;
Initialisation of message buffers. On the first '@' the buffer name
is inserted. The second an third are replaced by the maximum number
of messages in the buffer and the fourth becomes the number of
bytes in a message.

14. @[@] inserted for first '(!' in initialisation of VECTOR of SEMAF,
MSGBUF or MESSAGE. First '@' is replaced by VECTOR identifier,
second by index value.

15. BEGIN WAIT(PDPOINTER,@); replaces REGENTER@.

16. ; SIGNAL(@) END replaces REGEXIT@.

17. PDPOINTER Inserted as first parameter in a SYSTEM subprogram call.

Insertion and replacement of texts. PAGE A-4

18. (PDPOINTER) Used if SYSTEM subprogram call has no parameters.

19. BEGIN WAIT(PDPOINTER.NEWREG); <user call of NEW>
;SIGNAL(NEWREG);NEWCHK(TOPOFSTACK) END
Critical region created around call of NEW.

20. ;BYE(PDPOINTER) Last statement in a process having no CYCLE ••• END
part and in main program. as the main program is treated like a
normal process by the run-time system.

21. INITIALISE;
TOPOFSTACK:=INITTOS-40; (* 20 words reserved for NEWSTK *)
NEWSTK(READYQ.lOOOO.30.300);PDPOINTER:=TEMPQPNTR;
PHOENIX(PROCAQ.PROCBQ.READYQ);
First statements of the main program.

22. BEGIN WAIT(PDPOINTER.STARTREG) and
;SIGNAL(STARTREG) END
form a critical region around invocation of START procedure.

23. ;NEWSTK(Q.PRI.HL.SL); PROCS(•••)
replaces START(Q.PRI.HL.SL.PROCS ••••)

APPENDIX B

The text generation software.

The fLle from which the texts to be inserted are taken is organised as a
direct acces,s fLle of 8-byte chunks, in which texts are stored in
consecmtve chunks, with each new text starti.ng in a new chunk. So one text
may occupy more than. one chunk, but one chunk only contains (part of) one
text. As described in 11.1, the texts may be retrieved by number via a table
that contains a reference to the first chunk of every text. The number of
chunks for one text is calculated by subtracting the table entry for that
text from the succeeding entry. The two files, one containing the text
chunks and one containing the index table, are prepared by program FILTXT.
This program uses as input a text file in which the texts are stored
consecutively, with each text terminated by a '$' character. Anything after
that character on the same line up to and including the carriage return and
line feed characters is considered as a comment. This is usefull for adding
text numbers and other information to the different texts. The file is
terminated by a double '$'.

Replacement and insertion of texts is performed by:

PROCEDURE REPLACE(NTXT:INTEGER; ILST:INLIST); and
PROCEDURE OUTXT(IFIL:DESTIN; NTXT:INTEGER; ILST:INLIST);

REPLACE discards the current contents of the output buffer and invokes
OUTXT. OUTXT transfers text NTXT to the file indicated by IFIL.
As the number of '@'-characters in a text varies from one text to another it
is not possible to indicate the strings that have to be inserted at those
positions by parameters of the OUTXT procedure. Moreover, the string to be
inserted may itself originate in the text file and have its own '@'s.
Therefore a list construction, consisting of records linked by pointers is
used:

INLIST=ATXTLIST;
MKIND=(TXT,INT,NME,PSY,MTY);
TXTLIST=RECORD NEXT:INLIST;

END;

CASE KIND:MKIND OF
TXT: (TXTNR:INTEGER; SLIST:INLIST);
INT: (I:INTEGER);
NME: (NM: IDNAME)

The text generation software. PAGE B-2

Here TXT indicates a text from the text file, INT means an integer number,
NME an identifier (max. 10 char.), PSY is the next symbol from the input
file and MTY indicates an empty string nothing is filled in at the
'@'-position. The records are created by:

,
FUNCTION LNSTX(N:&XT:INTEGER.; lLIST:INI.IST): INLIST; This function
pr:otluces a record of kinu TXT. ILIST is the list of inserts for text
NTXT.
FUNCTION INSI(I:INTEGER): INLISTj generates an INT record.
FUNCTION INSNM(NM:IDNAME): INLIST; generates a NME record.
FUNCTION INSSY: INLIST; for PSY records.
FUNCTION INSO: INLIST; for MTY records.

The result of these functions is a pOinter to the record created. So the
function call may be used as OUTXT parameter for lists of only one element.
The record generation functions use:

FUNCTION ILNEW: INLIST;

to obtain a new record from the pool of free records or to have it created
if none is available there. Lists of more elements are built by:

FUNCTION CONC(LSTl,LST2:INLIST): INLIST;

This function joins two lists LST1 and L8T2, head to tail, and delivers a
pointer to the first list element (being the first element of LST1 if that
is a non-empty list).

The codes TXT, INT, NME, PSY and MTY of each succeeding record are
interpreted by OUTXT, one each time a '@Y'-character is encountered, and the
appropriate string is produced. Therefore the following procedures are
declared within OUTXT:

PROCEDURE PUTO(C:ASCII);
PROCEDURE SPLICE(NTXT:INTEGER; ILST:INLIST);

PUTO is used to transfer texts to the output file, thereby discarding any
superfluous TABs or spaces. SPLICE takes care of the text generation and is
called recursively every time a text from the file of chunks is to be
inserted. After use the records are disengaged from the chain and disposed,
that is, added to the pool of free records to be used again for a new text
to be generated.

Now we are able to generate output texts by using statements like:

LP:=INSTX(43,CONC(INSNM(REPR),INSI(I»);
OUTXT(OUTF,II,CONC(LP,CONC(INSI(VSUBA.MULT),INSI(NBYT»));

These yield a text string consisting of text 11 with at its first '@' text·
43 inserted, in which the first '@' is replaced by identifier REPR and the
second by number I. The second and third '@'s of text 11 are filled in with

The text generation software. PAGE B-3

numbers VSUB.MULT and NBYT respectively.

APPENDIX C

Other preprocessor subprograms and data structures.

C.l Data type'S and va.riables used by preprocessor:

Selection of type declarstions:

SYMBOL=(ASCIISYM,BEGINSYM,BYTESYM,CASESYM,CHARSYM,CONSTSYM,
CYCLESYM,ENDSYM,EXTSYM,FWDSYM,FUNCTSYM,INTGRSYM,MESSGSYM,
MBUFSYM,OFSYM,PROCDSYM,PROCSSYM,RECDSYM,RENTRSYM,ROUTSYM,REGSYM,
SEMSYM,SYSTSYM,TYPESYM,VARSYM,VECTSYM,IDENTIF,UNSINT,STRNGSYM,
COMTSYM,OPEN,CLOSE,COLON,SEMICOLN,PERIOD);

Enumeration of all special PAP symbols and Pascal symbols that have to be
processed.

IDKIND=(CONSTIDENT,TYPIDENT,VARIDENT,PRCSIDENT);
Kind of identifier: Constant, Type, Variable or Process.

IDCLASS=(SEMIDENT,MSGIDENT,BUFIDENT,REGIDENT,VECTIDENT,
PROCFUNCID,RESTIDENT);

Identifier class: Semaphore, Message, Message buffer, Critical region,
Vector of PAP types, Procedure or Function, Pascal type.

IDNAME=ARRAY [0 •• MAXIDNAMEl OF CHAR;
Identifier name (maximum of 10 characters).

MSGTYP=(BYTE,WORD);
Message element type: Byte = CHAR, ASCII or BYTE; Word = INTEGER.

SPREF=(FWD,EXT,DCL);
FORWARD, EXTERNAL or direct declaration of procedure or function.

REGPT=AREGENTRY;
IDPT=AIDSPECS;
REGENTRY=RECORD REG:IDPT;

NEXT:REGPT
END;

Record of region/subprogram list to be attached to identifier record.

Other preprocessor subprograms and data structures. PAGE C-2

IDSPECS=RECORD
REPR:IDNAME;
FORMAL: BOOLEAN; REFS: INTEGER;
(*THESE 2 FLELDS ONLY SIGNIFICANT FOR VARIDENT*)
LEFTPT,RIGHTPT:IDPT;
CASE KIND:IDKIND OF
CONSTIDENT: (CASE INTC:BOOLEAN OF

TRUE: (VALUE:INTEGER»;
TYPIDENT,VARIDENT: (CASE CLASS:IDCLASS OF

REGIDENT: (INUSE:BOOLEAN);
MSGIDENT: (ELTYP:MSGTYP; NEL:INTEGER);
BUFIDENT: (SUBPT:IDPT; MULT:INTEGER);
VECTIDENT: (VSUB:IDPT; LL,UL:INTEGER);
PROCFUNCID: (OCCUR:SPREF; REGLIST:REGPT;

SYSP: BOOLEAN»
END;

Identifier record with full description of identifier.
FORMAL is TRUE if identifier is specified in parameter list.
REFS is number of references to this record from other identifier
records or regIon/subprogram list elements.
INTC is TRUE if constant is of INTEGER type.
INUSE is TRUE during evaluation of region. Used for deadlock detection.
SYSP is TRUE for SYSTEM PROCEDURES or SYSTEM FUNCTIONS.

SCOPT=ASCOPE;
SCOPE=RECORD CONTENTS:IDPT;

FATHER:SCOPT
END;

Used to build scope stack.

MODUL=(MAIN,PRCSS,SUBP);
Identification of software module: Main program, Process or Subprogram.

Some variables used by the preprocessor:

WDEL:ARRAY[O •• MAXWDEIJ OF RECORD
RWORD:IDNAME;
SPSYM:SYMBOL

END;
Table of reserved words with corresponding symbol.

OUTBUF:ARRAY[O •• MAXOUTBJ OF ASCII; GI,PI:O •• MAXOUTB;
Output buffer with getpointer and putpointer.

Other preprocessor subprograms and data structures.

C.2 Overview of subprograms not mentioned in previous appendix.

FUNCTION IPNEW:IDPT;
DELIVERS NEW IDENTIFIER RECORD

PROCEDURE INSERTREE(NEWPT:IDPT);
ADDS IDENTIFIER RECORD TO IDENTIFIER TREE

PROCEDURE DUMP;
TRANSFERS CONTENTS OF OUTPUT BUFFER TO OUTPUT FILE

PROCEDURE LISLIN;
CLOSES LINE OF LISTING. STARTS NEW PAGE IF NECESSARY.

PROCEDURE FAULT(MSGNR:INTEGER);
HANDLES ERROR LOGGING

PROCEDURE COPY(C:ASCII);
ADDS CHARACTER TO OUTPUT BUFFER

PROCEDURE INSCHAR(C:ASCII);
TRANSMITS C TO OUTPUT FILE

PROCEDURE REPLACE(I:INTEGER; ILST:INLIST);

PAGE C-3

DELETES CONTENTS OF OUTPUT BUFFER AND TRANSMITS TEXT I TO OUTPUT FILE

PROCEDURE RINPUT;
READS INPUT CHARACTER; TAKES CARE OF LISTING

PROCEDURE FETCH;
GETS NEXT CHARACTER FROM INPUT FILE; CONVERTS (STRINGS OF) CONTROL
CHARACTERS PLUS SPACES TO ONE SPACE AND LOWER CASE TO UPPER CASE

PROCEDURE NEXTSYM;
EVALUATES NEXT INPUT SYMBOL
Procedures declared within NEXTSYM:

PROCEDURE COMMENT;
PROCESSES COMMENTS: COMMENTS ARE SKIPPED IF THEY DON'T START
WITH '$'. ONLY OPTION IDENTIFIERS FROM LEGAL SUBSET ARE
TRANSFERRED TO OUTPUT FILE.

PROCEDURE NEXTCHR;
EVALUATES NEXT INPUT CHARACTER

PROCEDURE WORDSYM;
EVALUATES TEXT SYMBOLS

PROCEDURE NUMBER;
EVALUATES NUMBERS

Other preprocessor subprograms and data structures.

PROCEDURE STRING;
PROCESSES STRING CONSTANTS

FUNCTION 'l'Il:RMSYM(.Y: SYMBOL,) : BOOhEAN;
CHECKS INPUT SYMBOL

PROCEDURE TESTSYM(Y:SYMBOL);
TEST FOR SYMBOL Y

FUNCTION RPNEW:REGPT;
DELIVERS NEW REGION/SUBPROGRAM LIST ELEMENT

PROCEDURE ENTERSCOPE;
SETS UP NEW SCOPE STRUCTURE: PUSHES NEW SCOPE ELEMENT ON SCOPE STACK
AND INITIALISES IDENTIFIER TREE

PROCEDURE LEAVESCOPE;
LEAVE CURRENT SCOPE, RELEASE IDENTIFIER TREE ELEMENTS

PROCEDURE IDREL(IDTREE:IDPT);
TRANSFERS IDENTIFIER RECORDS TO FREE POOL IF ALLOWED

FUNCTION CHECKID(VAR IP:IDPT; IK:IDKIND; IC:IDCLASS): BOOLEAN;
LOOKUP IDENTIFIER, TEST ATTRIBUTES

FUNCTION FOUND(VAR IDTREE:IDPT);

PAGE C-4

SEARCHES IDENTIFIER DATA STRUCTURE FOR RECORD OF IDENTIFIER WITH
GIVEN NAME.

FUNCTION INTCONST(VAR I:INTEGER):BOOLEAN;
EVALUATES INTEGER CONSTANT

PROCEDURE TYPESPEC(DECLPTR:IDPT);
EVALUATES TYPE OF IDENTIFIER DECLPTR AND UPDATES IDENTIFIER TREE

PROCEDURE DECLARE(DECLPTR:IDPT; DECLASS:IDCLASS);
COMPLETES RECORDS OF IDENTIFIER LIST AND ADDS THEM TO IDENTIFIER
TREE

FUNCTION DCLSUBTYP(DECLPTR:IDPT): IDPT;
SUBTYPE DECLARATION

PROCEDURE LIST(CLSYM:SYMBOL);
DIGESTS INPUT TEXT UP TO CLSYM

PROCEDURE PRTREE(P:IDPT);
INSERTS INITIALISATION STATEMENTS OF IDENTIFIERS IN OUTPUT FILE
AND LISTS ATTRIBUTES

Other preprocessor subprograms and data structures.

PROCEDURE STATEMT;
PROCESSES BLOCK OF STATEMENTS AND UPDATES REGION/SUBPROGRAM LIST

PROCEDURE REGTREE(VAR RLPT:RE'GPT);
LNSPECTS REGION/SUBPROGRAM ,LIST FOR OCCUPIED REGIONS

PROCEDURE SCLOSE;
DIGESTS PARAMETER LIST OF SEND OR RECEIVE AFTER ERROR

PROCEDURE SKIPDL;
SKIPS DELIMITERS

PROCEDURE VARDECL(FML:BOOLEAN);
HANDLES VARIABLE DECLARATIONS

PROCEDURE PARLIST;

PAGE C-5

HANDLES PARAMETER LIST IN PROCEDURE, FUNCTION OR PROCESS DECLARATIONS.

PROCEDURE DECLPART(MKIND:MODUL);
EVALUATES CONSTANT, TYPE, VAR AND PROCEDURE/FUNCTION DECLARATIONS
AND CREATES IDENTIFIER DATA STRUCTURE FOR TYPE CHECKING

PROCEDURE PROCDEF;
HANDLES PROCESS DEFINITIONS

PROCEDURE INIPREP;
TAKES CARE OF STANDARD DECLARATIONS

PROCEDURE BODY;
HANDLES PROGRAM BODY

FUNCTION STARTPREP:BOOLEAN;
HANDLES FILE SPECIFICATIONS AND INITIALISES VARIABLES

PROCEDURE GCC;
C:=NEXT CHARACTER FROM COMMAND LINE. C:='\' IF END OF LINE.

PROCEDURE NAMIN(EXTNAME:FLN);
EVALUATES FILE SPECIFICATIONS

PROCEDURE DPLFIL;
DISPLAYS FILE SPECIFICATIONS

Other preprocessor subprograms and data structures. PAGE C-6

C.3 Overview of global identifiers from the preprocessor:

Name

BLKSTSYM
BODY

BUFLENGTH
C
CH
CHECKID
CHUNK
CONC
COPY
CSCOPE
DAT
DCLENDSYM
DECLPART

DESTIN
DIGITS
DUMP
ENDF
ENTERS COPE
EOM
ERROR
FAULT
FETCH
GI
IDCLASS
IDKIND
IDNAME
IDPT
IDSPECS
ILFREE
ILNEW
IMTYP
IMUL2
IMULT
INIPREP
INLIST
INSO
INSCHAR
INSERTREE

Kind If kind = constant, is it an integer, and if so,
what is its value?
If kind = subprogram (procedure ,,·r function), what
other subprograms are called from this one?

VARIABLE
SUBPROGR FETCH INSCHAR TESTSYM STATEMT LISLIN

PRTREE OUTXT DUMP FAULT PROCDEF
DECLPART ENTERS COPE INIPREP NEW NEXTSYM

CONSTANT INTEGER, 132
VARIABLE
VARIABLE
SUBPROGR FOUND
TYPE
SUBPROGR
SUBPROGR FAULT
VARIABLE
VARIABLE
VARIABLE
SUBPROGR LEAVESCOPE STATEMT PARLIST ENTERS COPE FAULT

CHECKID VARDECL INSTX TYPE SPEC OUTXT
TESTSYM INSERTREE INTCONST IPNEW TERMSYM
NEXTSYM

TYPE
VARIABLE
SUBPROGR
VARIABLE
SUBPROGR NEW
CONSTANT
VARIABLE
SUBPROGR OUTXT LISLIN
SUBPROGR RINPUT
VARIABLE
TYPE
TYPE
TYPE
TYPE
TYPE
VARIABLE
SUBPROGR NEW
VARIABLE
VARIABLE
VARIABLE
SUBPROGR
TYPE
SUBPROGR ILNEW
SUBPROGR OUTRY
SUBPROGR

Other preprocessor subprograms and data structures. PAGE C-7
Name Kind Integer constant or subprograms called.

INS I SUBPROGR ILNEW
INSNM SUBPROGR ILNEW
INSPC VARIABLE
INSSY SUBPROGR ILNEW
INSTX SUBPROGR ILNEW
INTCONST SUBPROGR FAULT CHECKID
INTVAL VARIABLE
INTXT VARIABLE
IOSELECT VARIABLE
IOSPEC TYPE
IPFREE VARIABLE
IPNEW SUBPROGR NEW
IRP VARIABLE
ISUBPT VARIABLE
LC VARIABLE
LEAVESCOPE SUBPROGR lOREL
LEGALSW VARIABLE
LETTERS VARIABLE
LFIL VARIABLE
LI VARIABLE
LISI VARIABLE
LISLIN SUBPROGR
LISNAM VARIABLE
LNR VARIABLE
LSIGNS VARIABLE
MAXCHN CONSTANT INTEGER, 7
MAXIDNAME CONSTANT INTEGER, 9
MAXOUTB CONSTANT INTEGER, 131
MAXSRC CONSTANT INTEGER, 132
MAXWDEL CONSTANT INTEGER, 25
MKIND TYPE
MODUL TYPE
MSGTYP TYPE
MXINTD10 CONSTANT INTEGER, 3276
MXINTLD CONSTANT INTEGER, 7
NAME VARIABLE
NERR VARIABLE
NEWL VARIABLE
NEXTSYM SUBPROGR FAULT FETCH COMMENT STRING COpy

NUMBER WORDSYM DUMP NEXTCHR
NOMAIN VARIABLE
OUTBUF VARIABLE
OUTRY SUBPROGR
OUTXT SUBPROGR SPLICE
PAGELT CONSTANT INTEGER, 57
PARLIST SUBPROGR TESTSYM VARDECL TERMSYM NEXTSYM
PI VARIABLE
PROCDEF SUBPROGR LEAVESCOPE STATEMT LISLIN PRTREE OUTXT

DUMP DECLPART TERMSYM TESTSYM PARLIST
ENTERS COPE INSERTREE IPNEW FAULT NEXTSYM
REPLACE

Other preprocessor subprograms and data structures. PAGE C-8
Name Kind Integer constant or subprograms called.

PRTREE SUBPROGR INSTX INSI INSNM CONC OUTXT
LISLIN

PTABL VARIABLE
QM CONSTANT
REGENTRY TYPE
REGPT TYPE
REPLACE SUBPROGR OUTXT
RINPUT SUBPROGR LISLIN
RPFREE VARIABLE
RPNEW SUBPROGR NEW
SCFREE VARIABLE
SCOPE TYPE
SCOPT TYPE
SP CONSTANT
SPREF TYPE
SRCI VARIABLE
STARTPREP SUBPROGR GCC DPLFIL NAMIN GCML
STATEMT SUBPROGR REGTREE SKIPDL SCLOSE INSTX INS CHAR

OUTXT TERMSYM DUMP FAULT RPNEW
CHECKID INSSY REPLACE TESTSYM NEXTSYM

SYM VARIABLE
SYMBOL TYPE
TABLE TYPE
TERMSYM SUBPROGR NEXTSYM
TESTSYM SUBPROGR INSNM INSTX OUTXT LISLIN NEXTSYM

TERMSYM
TIM VARIABLE
TXTLIST TYPE
TYPE SPEC SUBPROGR LIST OUTXT DCLSUBTYP CHECKID DECLARE

TERMSYM TESTSYM FAULT INSI INTCONST
NEXTSYM REPLACE

TYPSTSYM VARIABLE
VARDECL SUBPROGR TYPESPEC NEXTSYM TESTSYM IPNEW
WDEL VARIABLE

EINDHOVEN UNIVERSITY OF TECHNOLoGY
THE NETHERLANDS
DEPARTMENT OF ELECIRICAL ENGINEERING

Reports:
EUT Reports are a continuation of TH-Reports.

116)~,W.

THE CIRCULAR HALL PLATE: Approximation of the geometrical correction
factor for small contacts.
TH-Report 81-E-116. 1981. ISBN 90-6144-116-1

117) Fabian, K.
'i5Es"I'GN AND IMPLEMENTATION OF A CENTRAL INSTRUCTION PROCESSOR WITH
A MULTlMASTER BUS INTERFACE.

118)

TH-Report 8\-E-117. 1981. ISBN 90-6144-1 17-X

Wans Yen Ping
ENCODING MOVING PICTURE BY USING ADAPTIVE STRAIGHT LINE APPROXIMATION.
EUT 'Report 81-E-118. 1981. ISBN 90-6144-118-8

119) Reijnen, C.J.H .• B.A.~, J.F.G.J. Oliislagers and W. ~
FABRICATION OF PLANAR SEMICONDUCTOR DIODES, AN EDUCATIONAl LABORATORY
EXPERIMENT.

120)

121)

122)

EUT Report 81-E-119. 1981. ISBN 90-6144-119-6.

Piel:ha, J.
DESCRIPTION AND IMPLEMENTATION OF A SINGLE BOARD COMPUTER FOR
INDUSTRIAL CONTROL.
EUT Report 81-E-120. 1981. ISBN 90-6144-120-X

Plasman, J.L.C. and C.M.M. Timmers
DIRECT MEASUREMENT OF BLOOD~RE BY LIQUID-FILLED CATHETER
MANOMETER SYSTEMS.
EUT Report 8\-E-121. 1981. ISBN 90-6144-12)-8

Ponomarenko. M.F.
INFORMATION THEORY AND IDENTIFICATION.
EUT Report 81-E-122. 1981. ISBN 90-6144-122-6

123) Ponomarenko. M.F.
INFORMATION MEASURES AND THEIR APPLICATIONS TO IDENTIFICATION
(a bibliography).
EUT Report 81-E-123. 1981. ISBN 90-6J44-J23-4

124) Borghi, C.A., A. Veefk1nd and J .M. ~
EFFECT OF RADIATION AND NON-MAXWELLIAN ELECTRON DISTRIBuTION ON
RELAXATION PROCESSES IN ANNmK>SPHERIC CESIUM SEEDED ARGON PLASMA.
EUT Report 82-E-124. 1982. ISBN 90-6144-124-2

125} Saranurnmi, N.
DETECTION OF TRENoS IN LONG TERM RECOlmINGS OF CARDIOVASCULAR SIGNALS.
BUT Report 82-E-125. 1982. ISBN 90-6144-125-0

126) Krolikowski, A.
MODEL STRUCTURE SELECTION IN LINEAR SYSTEM IDENTIFICATION~ Survey
of methods with emphasis on the information theory approach.
EUT Report 82-E-126. 1982. ISBN 90-6144-126-9

EINDHOVEN UNIVERSITY OF TECHNOLOGY
THE NETHERLANDS
DEPARTMENT OF ELECIRICAL ENGINEERING

Eindhoven University of Technology Research Reports (ISSN 0167-9708)

(127)

(128)

(129)

Damen, A.A.H •• P.M.J. Van den ~ and A.K. Hajdasiiiski
1lUfiPAGE MATRIX: An excellent tool for noise filtering of Markov
parameters. order testing and realization.
EllT Report 82-E-127. 1982. ISBN 90-6144-127-7

Nicola. V. F •
~LAN MODELS OF A TRANSACTIONAL SYSTEM SUPPORTED BY CHECKPOINTING
AND RECOVERY STRATEGIES. Part 1: A model with state-dependent
parameters.
EUr Report 82-E-128. 1982. ISBN 90-6144-128-5

Nicola. V.F.
~IAN MODELS OF A TRANSACTIONAL SYSTEM SUPPORTED BY CHECKPQINTING
AND RECOVERY STRATEGIES. Part 2: A model with a specified number of
completed transactions between checkpoints.
EUT Report 82-E-\29. 1982. ISBN 90-6144-129-3

(130) Lemmens, W.J.M.
~ PREPROCESSOR: A precompiler for a language for concurrent
processing on a multiprocessor system.
EUT Report 82-E-130. 1982. ISBN 90-6144-130-7

(131) Eijnden, P.H.C.M. van den, H.M.J.M. Dortmans, J.P. Kemper and
M.P.J. Stevens
JOBHAND'L'iNG'IN A NETWORK OF DISTRIBUTED PROCESSORS.
EUT Report 82-E-131. 1982. ISBN 90-6144-131-5

	Contents
	Preface
	Part I : PAP user's manual
	I.1 Introduction
	I.2 PAP features
	I.3 PAP syntax
	I.4 Structure of the list file
	I.5 Operating environment
	I.6 Error messages
	Part II : Preprocessor design and implementation
	II.1 Introduction
	II.2 The parser
	II.3 Output text generation
	II.4 Some considerations on building a preprocessor
	Literature
	Appendix A : Insertion and replacement of texts
	Appendix B : The text generation software
	Appendix C : Other preprocessor subprograms and data structures

