
 

On representing behaviors in the frequency domain

Citation for published version (APA):
Weiland, S., & Stoorvogel, A. A. (1996). On representing behaviors in the frequency domain. (Measurement and
control systems : internal report; Vol. 96-I/01). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/212a2cca-28fc-436e-a8a3-6b8421570bdd


tlB 
Eindhoven University of Technology 

Department of Electrical Engineering 

On Representing Behaviors in the 
Frequency Domain 

Siep Weiland and Anton A. Stoorvogel 

January, 1996 

Measurement and Control Group 

Internal Report, 96 1/01 

Reprint of paper published in the Proceedings of the 13th World Congress of 
the International Federation of Automatic Control (IFAC), San Francisco, 

June 30 - July 5, 1996. 

Eindhoven, January 1996 



ON REPRESENTING BEHAVIORS IN THE FREQUENCY DOMAIN 

S. Weiland *,1 A.A. Stoorvogel**,2 

* Department of Electrical Engineering 
Eindhoven University of Technology 

P.O. Box 513 
5600 MB Eindhoven 

The Netherlands 
E-mail: s.weiland@ele.tue.nl 

** Department of Mathematics and Computing Science 
Eindhoven University of Technology 

P.O. Box 513 
5600 MB Eindhoven 

The Netherlands 
E-mail: wscoas@win.tue.nl 

Abstract. In this paper we give a fairly complete theory for rational representa­
tions of discrete time dynamical systems whose behaviors are assumed to be linear, 
left-shift invariant and complete subsets of it. Using the Hilbert space isomorphism 
between it and the Hardy space 1ft this leads to frequency domain descriptions of 
dynamical systems in which system variables are not necessarily partitioned in inputs 
and outputs. Analytic functions are used to define kernel and image representations 
of dynamical systems and it is shown that for an important class of discrete time 
systems rational kernel and rational image representations always exist. We further 
investigate the concept of state by considering factor spaces of left- and right-shift 
invariant subspaces of 1ft. It is shown how state space representations are obtained· 
by associating Hankel operators directly with kernel and image representations of 
dynamical systems. 
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1. INTRODUCTION 

In this paper we focus on the class of discrete time i 2-

systems with time set T = Z+. Following the tradition 
of the behavioral framework (Willems, 1986a; Willems, 
1986b; Willems, 1987; Willems, 1991) such a system is 
specified by a set B consisting of (multivariate) square 
summable trajectories w : Z+ -+ W which are consid­
ered to be compatible with the system. We make the 



mathematical assumption that an l2-system is a closed 
subset B of it where it := i 2(Z+, W) is the set of all 
trajectories w : Z+ -+ W for which 

00 

II W 112:= {L II wet) 112 }I/2 < 00 

t=o 

and W is a normed vector space which in this paper is 
assumed to be W = IRq with q a positive integer. 

Most qualitative properties of dynamical systems are 
naturally defined in an 12 setting. An £2-system B is 
called linear if B is a linear subspace of i2 (Z+, IRq) and 
it is said to be complete if wEB whenever for w E 
it the restrictions W![tO,tl] E Bi[tO,tl] for all intervals 
[to, tIl C Z+. The left-shift on i 2(Z+,.lRn is defined as 
(O"LW)(t) = wet + 1) and the right-shift on i 2(Z+, lRn is 
defined as 

(O"RW)(t) = {o 
wet 1) for t ~ 1. 

for t = ° (1) 

An i2 system B is called left-shift invariant if O"LB ~ B 
and right-shift invariant if O"RB ~ B. 

Since by (1), trajectories in a right-shift invariant i2 sys­
tem can be preceded by an arbitrary number of zeros it 
is intuitively clear that in the context of systems defined 
by difference equations, right-shift invariant i2 systems 
correspond to systems with "zero initial conditions" . In 
view of the practical importance of autonomous systems, 
transient phenomena, non-zero initial conditions, off­
sets, etc. this makes the class of right-shift invariant £2 
systems less suitable for general modeling purposes. In 
this paper we therefore concentrate on left-shift invari­
ant l2-systems. More specifically, we define the model 
class ~ as all closed (in the £2 topology) subsets B ~ 
i 2 (Z+,]Rq) which are linear, left-shift invariant and com­
plete 3 • 

The importance of this class of models is motivated as 
follows. Firstly, square sum mabie trajectories are ubiq­
uitous in many physical systems in which dissipativity, 
power and energy considerations play a natural role. 
Also, for many problems in robust stabilization and opti­
mal control the square summability assumption of sys­
tem trajectories is often made implicitly. Secondly, in 
many modeling problems the partitioning of system vari­
ables in inputs and outputs may be unclear or arbitrary. 
In the model class ~ system variables are treated in a 
symmetric way without distinguishing between inputs 
and outputs. Thirdly, autonomous systems are naturally 
included in the model class ~. This in contrast to the 
class of right-shift invariant linear subsets of it where 

3 In fact, completeness in the sense defined above implies closed­
ness in'the £2 topology. 

autonomous systems are necessarily trivial. Fourthly, us­
ing the Hilbert space isomorphism between it and the 
Hardy space 1lt we can interchangeably consider sys­
tems in the time domain and in the frequency domain. 
Specifically, we define for all B E ~: 

B = { w E 1lt I wEB} 

where w(z) := E:o w(t)z-t denotes the z-transform. 

In (Willems, 1986a; Willems, 1991) Willems investigated 
polynomial representations of linear, left-shift invariant 
snbspaces of (.IRq )z+ and (IRq)z which are closed in the 
topology of pointwise convergence. In (Heij, 1989) state 
space representations of £2 systems with doubly infi­
nite time sets are derived, whereas Georgiou and Smith 
(Georgiou and Smith, 1994) proposed a theory for right­
shift invariant £2 systems by taking the £2 graph of an 
input-output operator as the basic object of study. The 
role of the £2 graph has been further investigated in 
(Ober and Sefton, 1991; Sefton and Ober, 1993) in the 
context of stability and model uncertainty. The class ~ 
of left-shift invariant £2-systems with one sided time set 
T = Z+ is essentially different than the model classes 
studied in these works and the representation of systems 
in this model class is the topic of this paper. 

In what follows, we will give characterizations of the 
model class ~ in terms of kernel, image and state space 
representations. These representations are introduced in 
the next sections and we address the questions of exis­
tence, uniqueness and minimality of analytic functions 
which represent models in ~. 

The following notation will be used. Let £2 denote the 
set of functions f : C -+ (Y which are square integrable 
on the unit circle. 1lt is the subspace of £2 consisting 
of those functions for which the negative Fourier coeffi­
cients are zero. 1l; is the complement of 1lt in £2 and 
consists of all £2 functions whose non-negative Fourier 
coefficients vanish. Let II+ and II_ be the canonical pro­
jections of £2 on 1it and 1i;, respectively. 1it, and 
1i-;;' denote the Hardy spaces of complex valued func­
tions which are bounded on the unit circle with analytic 
continuation in Izl < 1 and Izi > 1, respectively. The 
prefix 'R will be used to denote rational elements, i.e. 
'R1i-;;', 'R1it" etc. 

The left- and right-shift operators are defined in the 
frequency domain as the mappings aL, aR : 1lt -+ 1it 
defined, given w E 1lt, by 

(aLw)(z) = II+zw(z) 
(aRw)(z) = z-lw(z) 

with z E Co With these definitions an £2 system is left 
(right) shift invariant if and only if? is left (ri~ht) shift 
invariant in the sense that aLB ~ B (aRB ~ B). In the 



sequel we will mainly work in the frequency domain and 
we will omit the hats A to simplify notation. 

2. KERNEL REPRESENTATIONS 

Let E> E 1f-;;" and associate with E> a multiplicative op­
erator E> : 1ft -t £2 defined as 

(E>w)(z) := E>(z)w(z) 

with z E C. We will be interested in the subspaces of 
1ft defined by the kernel of this operator. To this end, 
we define two sets 

8 = Bker(E» := {w E 1ft I II+E>w = O} (2) 

8* = 8~er(E» := {w E 1ft I E>w = O}. (3) 

Then it is easily seen that 8 is a linear left-shift invariant 
and closed subset of 1ft and 8* is a linear right-shift 
invariant and closed subset of 1ft. This means that for 
all E> E 1<-1f00 the set 8 ker (E» belongs to the model class 
~ . Note that 8 ker( E» = ker(II+ E» and 8~er (E» ker E>. 
It is thus immediate that 8* ~ B. We will see in section 
4 that the factor space 8 (mod 8*) plays an important 
role in the construction of state space representations of 
models in lBl:z. 

Our first main result characterizes the model class ~ as 
precisely those i!2-systems which admit a rational kernel 
representation of the form (2). Moreover, Theorem 2.1 
completely characterizes non-uniqueness of this type of 
system representations. 

Theorem 2.1. (1) The following statements are equiv­
alent. 
(a) 8 E ~ 
(b) there exists E> E 1<-1f-;;" such that B = Bker(E». 

(2) Let E>1, E>2 E 1<-1f-;;". Then 
(a) 8 1 ~ 8 2 if and only if there exists U E 1<-1f-;;" 

such that E>2 = UE>l. 
(b) 8 ker (E>d = Bker (E>2) if and only if there exist 

Ul , U2 E 1<-1f-;;" such that E>1 = Ul E>2 andE>2 = 
U1E>l. 

Remark 2.2. Note that it follows from Theorem 2.1 that 
if Bker (E>1) = 8 ker (E>2) with E>1 and E>2 both full rank 
then E>1 = UE>2 for some unit U E 1<-1f-;;". In particular, 
taking U the left inverse of the outer factor of E>2, yields 
that E>1 is co-inner (that is E>1 E>j = I) so that any 8 E 
~ admits a co-inner kernel representation 8 ker (E». 

Definition 2.3. We call E> E 1f-;;" a kernel representation 
of a system 8 if 8 = 8 ker (E». Such a representation is 
called normalized if in addition E> is co-inner. 

Remark 2.4. It is shown in (Weiland and Stoorvogel, 
1996) that the mapping E> 1-+ kerII+E> with E> E 1f-;;" in 

fact defines a parameterization of the model class of lin­
ear, left-shift invariant and closed subsets of 1ft. The­
orem 2.1 provides a parameterization of lBl:z by taking 
rational elements E> E 1f-;;" as the domain of this map. 

The set 8* = B~er(E» has been studied in (Georgiou 
and Smith, 1994; Ober and Sefton, 1991) and is easily 
seen to be a subset of 8 = 8 ker CE». In fact, B* will be 
useful for the construction of state space representations 
of systems 8 E ~. This right shift invariant subspace is 
characterized as follows (Weiland and Stoorvogel, 1996). 

Theorem 2.5. Let 8 = 8 ker (E» and B* = Bker(E». Then 
the following statements are equivalent: 

(1) 8" = {w E 1ft I t7~W E 8 for all t E Z+} 
(2) 8* is the largest 4 right-shift invariant subspace of 

8. 

Theorem 2.5 in fact shows that 8* only depends on 8 
and is independent of E>. 

3. IMAGE REPRESENTATIONS 

Kernel representations are particularly useful in verify­
ing whether a given trajectory does or does not belong 
to a system. In this section we wish to parametrize the 
elements 8 of ~ in such a way as to produce the set of 
compatible trajectories wE 8. We will introduce a class 
of image representations which will parametrize the el­
ements of the model class ~ as the images of a map. 

Let Wa, We be elements of 1ft, and associate with Wa a 
multiplicative map from H:; to £2 defined by 

(wav)(z) := wa{z)v(z) 

and associate with We the map We: £2 -t £2 defined by 
the multiplication 

(WcV)(z) := wc(z)v{z) 

where z E C. Introduce the following sets: 

8 8 im(wa, we) 

:= { 11+ (w aWe) (~~) I Vl E rei, V2 E £2 } 

8* = 8~(wc):= im wcII+ = wc1ft. 

Then it is straightforward to see that 8 is a linear left­
shift invariant and closed subset of 1ft and 8* is a linear 
right-shift invariant subset of 1ft. In fact, 8* ~ 8 and 
it is shown in Theorem 3.7 below that 8* only depends 
on 8 and not of a particular representation W c' 

4 in the sense of subspace inclusions 



Remark 3.1. The operators Wa and We constitute a nat­
ural decomposition of B = Bim(wa , we) in the sense 
that B = Ba + Be where Ba := II+wa'H2" and Be := 
II+ W e£2. In fact, in such a decomposition Ba defines 
an autonomous £2 system and Be defines a controllable 
£2 system. We refer to Ba and Be as the autonomous 
part and the controllable part of B. We remark that the 
autonomous part of an £2 system B E lE:2 is in general 
non-unique. 

The main representation result for image representa­
tions of systems in lE:2 is as follows. 

Theorem 3.2. 

(1) The following statements are equivalent. 
(a) BE lE:2 
(b) There exists Wa , WeE R'Hoo such that B = 

Bim(wa , we). 
(c) There exists "IjIa and"ljle in R'Ht, where ("ljla "IjIe) 

is square and inner and "IjI e has no finite or in­
finite zeros such that B = Bim("ljla, "IjIe). 

(2) With "IjIa and "IjIe as defined in statement (c), there 
holds that B = Bim (w a, We) if and only if there 
exists R E R'H~, T E RHt, and S E R£oo such 
that Rand T have a right-inverse in £00' 

Wa = "IjIaR+ "IjIes 
We = "IjIeT 

and such that there are no stable pole-zero cancel­
lations between "IjI a and R or, in other words, the 
number of stable poles of "IjI a equals the number of 
stable poles of "IjI aR. 

Remark 3.3. Together with Theorem 2.1 this result sta­
tes that systems in the model class lE:2 admit both ker­
nel as well as image representations. We emphasize the 
difference between these results and the results in e.g. 
(Willems, 1991) where it is shown that polynomial im­
age representations exist only for controllable systems. 

Remark 3.4. Theorem 3.2 shows, among other things, 
that autonomous left-shift invariant £2-systems admit 
analytic image representations. As noted earlier, the mo­
del class lE:2 of left-shift invariant linear systems allows 
for non-trivial autonomous systems. This is in contrast 
with the class of right-shift invariant £2 systems (or the 
class of linear (left or right) shift invariant subspaces of 
£2(Z, m.q )) in which autonomous systems are necessarily 
trivial (See (Heij, 1989), (Weiland and Stoorvogel, 1996) 
for details). 

Remark 3.5. In words, the last part of Theorem 3.2 sta­
tes that two image representations define the same £2 
system if and only if their image representations have a 

common square and inner left factor. With the obvious 
notation, B = Bim("ljla, "IjIe) admits a special decomposi­
tion B = Ba + Be in which the autonomous part Ba is 
orthogonal to Be. See (Weiland and Stoorvogel, 1996) 
for details. 

Definition 3.6. We call Wa , Wean image representation 
of a system B if B = Bim(wa , we). Such a representation 
is called normalized if in addition (W aWe) is square and 
inner and if We has no finite or infinite zeros. 

The set B* = B;m(we) has similar features as the set B* 
of Theorem 2.5. Precisely, 

Theorem 3.7. Let B = Bim(wa , we) and B* = B;m(we). 
Then the following statements are equivalent: 

(1) B* = {w E 'Ht I a~w E B for all t E Z+} 
(2) B* is the largest right-shift invariant subspace of B. 

In particular, it follows that the largest right-shift in­
variant subspace of B = Bim(wa , We) is independent of 
Wa. 

Remark 3.B. It is emphasized that the largest right-shift 
invariant subspace B* of B is a representation indepen­
dent object which is directly characterized in terms of 
both the kernel and the image representations of B. 

4. STATE SPACE REPRESENTATIONS 

In this section we will show that state space representa­
tions of systems B E lE:2 can be constructed directly from 
the kernel and image representations which have been 
introduced so far. Such a construction is non-trivial as 
it amounts to define the state of a system on the basis 
of a representation of the external behavior only. First 
of all, a state space needs to be defined, and second, its 
evolution as a function of time needs to be specified. The 
construction of state space representations will be based 
on the subsets Band B* and will exploit the difference 
between right- and left shift invariance. 

An £2 state space system will be defined as an £2 sys­
tem for which the signal space is partitioned and for 
which past and future system trajectories are indepen­
dent given the current value of the state. Formally, 

Definition 4.1. Let q > 0 and n > 0 be integers. A 
(discrete time) £2 state space system is a closed sub­
set B. of £2(Z+, m.q+n

) with the property that for all 
(WI,XI), (w", x") E B. and to E Z+ there exist (w,x) E 
B. which satisfies 



{
(WI (t), x' (t)) 

(w, x) = (wit (t), Xl' (t)) 

whenever xl(to) = xlt(to). 

for t < to 

for t ~ to 

Definition 4.2. An £2 state space system B8 is said to 
represent a system B if 

B = {w E it I 3x E it s.t. (w,x) E B.}. 

It is said to be a minimal representation of B if n is 
minimal among all state space representations of B. 

Let B E B:? and let B* denote the largest right-shift 
invariant subspace contained in B. We call two trajec­
tories WI, W2 EBright-shift equivalent if WI - W2 E B*. 
Introduce the factor space B (mod B*) which consists 
of all equivalence classes w (mod B*) with wEB. In­
tuitively, the equivalence class x(O) := w (mod B*) can 
be viewed as the initial state of the system when wEB 
is observed and the factor space 

X := B (mod B*) 

can therefore be identified as the state space of B. 

Suppose that 

B = Bker(6) = Bim(wa, we) 

define kernel and image representations of B. We asso­
ciate with 9 and the pair (w a , W c) the state spaces 

X ker = IL 9'Ht 

Xim = II+ (Wa W c)'H.;;. 

Remark 4.3. Note that X ker is a subset of the infinite 
dimensional space 'H;; and X im a subset of the infinite 
dimensional space Ht. Their dimensions, however, are 
finite if and only if 6 and ('1! aWe) are rational opera­
tors. In this case, dim X ker equals the McMillan degree of 
9 and dimXim equals the McMillan degree of (Wa we). 

Next, let wEB and suppose that VI E 'H;; and V2 E £2 
are such that 

w = II+ '1!aVI + ll+ WeV2. 

We define for t E Z+ the state trajectories Xker : Z+ -+ 

X ker and Xim : Z+ -+ Xim as 

Xker(t) ;= 1l_9a-~w (4) 

Xim(t) := II+wau~vl + II+'1!cII_v2 (5) 

where fh is the left shift operator on £2 defined as 
(ULV)(Z) := zv(z) with Z E <C. 

It can be shown that, in the sense of definition 4.1, the 
sets 

B;er:= {(w,x) E it I w E Bker(6);x = Xker} 

B~m:= {(w,x) E it I w E Bim(wa, we)jX = Xim} 

define £2 state space systems. 5 • 

Clearly, this result is of little practical interest as it does 
not provide an iterative way to compute state trajecto­
ries of £2 systems. Therefore, consider the equations 

x(t + 1) = Ax(t) + Bw(t) (6) 
0= Cx(t) + Dw(t) (7) 

and associate with (6) the output nulling behavior 

Bon := {(w,x) E it I (6) hOlds}. (8) 

Similarly, associate with the equations 

X(t + 1) = Ax(t) + Bv(t) 

wet) Cx{t) + Dv{t) 

the driving variable behavior 

(9) 

(1O) 

Bdv := {(w,x) E £t I 3v E it such that (9) holds}. 
(11) 

The matrices A, B, C, D are assumed to be compatible 
with the indicated partitionings. It is easy to see that 
Bon and Bdv define £2 state space systems in the' sense 
of definition 4.1 and we will refer to these sets as output 
nulling and driving variable state space systems, respec­
tively. 

The next theorem is the main result of this section and 
provides explicit expressions for the state space matrices 
A, B, C and D which define output nulling and driving 
variable state space representations of a given system 
B E B:? To state the result we introduce some more 
notation. Let P be the mapping from the signal space 
IRq to Ht defined by 

(Pw)(z) := w 

for all Z E <C. Further, let IIo denote the map Ht --+ 

IRq which assigns the Fourier coefficient with index 0 to 
elements in Ht, i.e., 

IIo(w(z»:= lim w(z}. 
Izl->oo 

Finally, let llxker be the orthogonal projection on X ker . 

Theorem 4.4. Let BE B:? and suppose that 

B = Bker(8) Bim(wa, we) 

define kernel and image representations of B. 

(1) Let 

A := IIxkeruL 
B := -IIxkerll_aLE>P 
C := (1 - IIxker)aL 
D := -(1 - llxker)II_CTLE>P. 

5 Here, all signals need to be interpreted in the time domain by 
taking inverse z-transforms. 



Then Bon(A, B, G, D) defines an output-nulling state 
space representation of B. Moreover, if Bker(8) is 
a normalized kernel representation of B then this 
state space representation is minimal. 

(2) Let 

A:= aL 
B := II+"IlI cihP 
G:= IIo 
D := IIo"lllcP' 

Then Bdy(A, B, G, D) defines a driving-variable state 
space representation of B. Moreover, if Bim("IlIa , "IlI c ) 

is a normalized image representation of B then this 
state space representation is minimal. 

The proof of this result can be found in (Weiland and 
Stoorvogel, 1996) and is based on the fact that for ev­
ery (w,x) E Bon(A,B,G,D) the state trajectory x(·) 
coincides with the trajectory Xker(·) as defined in (4). 
Similarly, for every (w,x) E Bim(A,B,G,D) the state 
trajectory x(·) coincides with the trajectory Xim (.) de­
fined in (5) where Vi E H2 is any element for which 
x(O) = Xim(O) and V2 is the Laplace transform of V in 
(11). 

Remark 4.5. Note that the matrices A,B,G,D defining 
the driving variable state space representation are inde­
pendent of "Ill a. This is in accordance with the intuitive 
idea that the autonomous subset II+"IlI a H2 is only de­
pending on initial conditions of the state. 

5. CONCLUSION 

In this paper we investigated the class of discrete time 
left-shift invariant linear £2-systems with time set T = 
Z+. It is shown that systems in this class admit both 
kernel representations as well as image representations 
in terms of multivariable Hoo functions. The set of Hoo 
functions that represent the same £2 system has been 
characterized completely for both the kernel as well as 
the image representations of £2-systems. It is shown how 
state space representations can be obtained directly from 
kernel and image representations, by associating a Han­
kel operator with the Hoo functions which define the 
representation of the external behavior. 
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