

Verifying sequentially consistent memory

Citation for published version (APA):
Brinksma, E., Davies, J., Gerth, R. T., Graf, S., Janssen, W., Jonsson, B., Katz, S., Lowe, G., Poel, M., Pnueli,
A., Rump, C., & Zwiers, J. (1994). Verifying sequentially consistent memory. (Computing science reports; Vol.
9444). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/e91d9a0f-5743-409b-87b4-49cbb19e166a

Eindhoven University of Technology

Department of Mathematics and Computing Science

Verifying Sequentially Consistent Memory

ISSN 0926-4515

All rights reselVed
editors: prof.dr. J.C.M. Baeten

prof.dr. M. Rem

by

E. Brinksma, J.Davies,
R. Gerth, S. Graf,

W. Janssen, B. Jonsson,
S. Katz, G. Lowe,
M. Poel, A. Pnueli,

C. Rump and J. Zwiers.

94/44

Computing Science Report 94/44
Eindhoven, October 1994

Verifying Sequentially Consistent Memory

Ed Brinksma' , Twente2 Jim Davies3, Reading4
Rob Gerth (Editor)', Eindhoven3 Susanne Graf', VERIMAG4

Wil Janssen', Twente2 Bengt Jonsson5, Uppsala7 Shmuel Katz, The Technion8

Gavin Lowe', Oxford9 Mannes PoeI', Twente2 Amir Pnueli', Weizmann lO

Camilla Rump" ,Lyngby'2 Job Zwiers', Twente2

August 1994

'Currently working in ESPRIT project P6021: "Building Correct Reactive Systems (REACT)".
'Computer Science Department, University of Twente, P.O. Box 217. 7500 AE Enschede, The Netherlands
JFunded hy ORA Malvern.

4Department of Computer Science, University of Reading, Reading RG6 2AY, England
'Department of Computing Science, Eindhoven University of Tcchnology, P.O. Box 513, 5600 MB Eind

hoven, The Netherlands. Email: robg@win.tue.nl
4Miniparc, Zirs\, Rue Lavoisier, F-38330 Monlbonnol Saint Martin, France.
5Supported in part by the Swedish Board for Technical Development (NUTEK) as part of Esprit BRA project

REACT, No. 6021
'Department of Computer Systems, Urrsala University, Box 325, 751 05 Uprsala, Sweden
8Dcpartmcnl of Computer Science, The Technion, Haifa, Israel
9Programming Research Group, Oxford University Computing Laboratory, Wolfson Building. Parks Road,

Oxford. OXI 3QD, England
IODeparlment of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot,

Israel
'ICurrently working in ESPRIT BRA Project No. 7071: "Provahly Correct Systems (ProCoS II)"
"Department of Computer Science, Technical University of Denmark. DK-2800 Lyngby, Denmark

Abstract

In distributed shared memory architectures, memory usually obeys weaker constraints than that
of ordinary memory in (cache-less) single processor systems. One popular weakening is that of
sequential cOl1Jisfency. Proving that a memory is sequentialy consistent does not easily fit the
standard refinemcnt and vcrification strategies. This paper takes a sequential consistent memory-the
lazy caching protocol-and verifies it using a number of verification approaches. In almost all cases,
existing approaches have to be generalized first.

Contents

1 Introduction 2

2 Cache Consistency hy Design 9

3 Sequential Consistency as Interface Refinement 29

4 Characterization ofa Sequentially Consistent Memory and Verification ofa Cache Mem-
ory hy Ahstraction 41

5 A CSP A pproach to Sequential Consistency 59

6 The Compositional Approach to Sequential Consistency and Lazy Caching 77

7 Proving Refinement Using Transduction 105

8 Sequential Consistency Using Glohal Equivalence Proofs and Temporal Logic 142

Chapter 1

Introduction

R. Gerth

2

In large mUltiprocessor architectures tbe design of efficient shared memory systems is important
because the latency imposed on the processors when reading or writing sbould be kept at a minimum.
This is usually achieved by interposing a cache memory between each processor and the shared
memory system. A cache is private to a processor and contains a subset of the memory; hopefully
containing most of the locations (variables) that the processor needs to access; i.e., the 'cache-hit'
probability should be high. Such caches induce replication of data and hence there is a problem of
cache consistency: if one processor updates the value at some location, all caches in the system that
contain a copy of the location need to be updated. This is often done by marking the location in
the caches so that a subsequent access causes the location to be fetched from shared memory again;
variations exist, though. Clearly, changing a location and marking that location in other caches must
be done as one atomic operation if memory is to behave as expected.

If the mUltiprocessor architecture is also distributed then such 'write and mark' operations cause
unacceptable latencies. For instance, the DASH [LLG+92] and KSRI [BFKR92] architectures
envisage up to 10000 workstations to be connected and to operate on a conceptually shared memory.
Atomic write-and-marks produce massive network congestion because at any time there will be many
writes in progress.

The approach taken in such distributed shared memory architectures is to relax the constraints on
the behavior of a standard shared memory. Many of these relaxations are patterned after Lamport's
proposal of sequential consistency [Lam79]. In a standard memory the value that is read at a location
must be the value that has last been written to that location. A sequentially correct memory satisfies
a less stringent requirement: in Lamport's words

the result ~l allY execution lof the memory} is the same as if the operations [memory
accesses} of a II the processors were executed in some sequential order, and the operations
of each individual processor appear in this sequence in the order specified by its program.

The challenge that sequentially correct memory poses is not so much the verification of yet another
complex protocol but rather the fact that sequential consistency does not comfortably fit the patterns
of standard refinement strategies (trace inclusion, failure or ready trace equivalence, testing pre order,
bisimulation, etc.).

The aim of this paper is to appraise how verifying sequential consistency can be accommodated
for in a number of refinement methods. We do this by actually verifying a sequentially consistent
memory-the lazy caching protocol of [ABM93]-using a variety of approaches. Although the
protocol is proven con-ect in that paper, the proof is on a semantical level and is not grounded in a
verification methodology. This makes the proof quite hard to follow and hard to generalize to more
complex protocols such as release consistent or non-blocking memory.

In the next section we explain and define sequential consistency. The lazy caching protocol is
introduced in the Section 3. The hea.1 of the paper is formed by Chapters 2 till 8 which contain the
various proofs.

In Chapter 2, process algebraic notions such as bisimulation and action transducers are used to
derive the caching protocol through a number of refinement steps. Chapter 3 interpretes sequential
consistency as a form of interface refinement and gives a direct refinement proof. Abstract interpre
tation techniques are used in Chapter 4 to reduce the verification problem to one that is amenable to
automated verification using model checking techniques. In Chapter 5 CSP process notation and a
trace based proof system is used to supply an assertional proof. The proof in Chapter 6 also uses step
wise refinement, but on a more abstract, conceptual level. The refinement proofs are based on partial
order based techniques. Chapter 7 develops refinement transducers as a verification methodology and
uses this to verify the caching protocol. These transducers can be seen as a syntactic elaboration of

3

the techniques of Chapter 4. Finally, Chapter 8 uses interleaving set temporal logic (ISTL) and the
idea of representative sequences to verify the protocol.

1.1 Sequential consistency

In order to understand Lamport's definition, we first fix the behavior of a standard, 'serial' shared
memory. This is done in Figures 1.1 and 1.2.

• • •

~ ~.

<oj '" "" '"'d
~

~.

0:: 5

Nluria,l

Figure 1.1: Architecture of M,,,;.i

The interface of the memory comprises of read (R; (d, a) and write (W;(d, a) events for each
processor Pi. The processors and the memory have to synchronize on these read and write events. The

transition system in Figure 1.2 indicates that these are the only external events that M"T;ai participates
in and that it has no internal events. A read event R;(d, a), issued by Pi, can only occur if the memory
holds value d at location G.: Mew.[aJ = d. Write events Wit d, a) can always occur with the expected
result. The external behavior of the serial memory, Beh(M,,,;ai), is defined as the maximal (hence
infinite) sequences of read and write events generated according to the transition system of Figure 1.2.
Hence, the memory serializes the reads and writes of the processors.

The interface of the serial memory (and the caching protocol) in [ABM93] differs from the one
we use. There, a R,:(d, a)-event in either protocol is split into an (input) event Read Request i (d, a),
which is always enabled, and an (output) event Read Return;(d, G.) that behaves as the Ri (d, a)-event.
One reason for doing so is their use of 1/0 automata specifications in which input events must be
always enabled. However, that paper also stipulates that a process i must not do otherwise than
engage in a Return event after it has issued a Request. This means that the intended interface is
synchronous so that not using 1/0 automata and having simple read and write external events seem to
be the conceptually clearer approach.

Two objections that might be levied against this choice of interface are: events cannot overlap
because they do not extend in time; and: read events specify the value that is read and thus do not
really model read actions. Note that the second objection applies to the [ABM93] interface as well.
The answer to both objections is that what is of importance are the points at which the memory system
changes state and the values that can be read from memory as a result of these changes. Hence, write
events should merely be viewed as the initiators of state changes while read events indicate which

4

values can be returned. Thus, the precise way in which a process initiates a read or a write is of no
importance to the modeling.

We can use this definition of serial memory both to characterize the sequential orders in which
the memory accesses of the processors can be executed-any order that corresponds to a behavior
of M"ri,i-as well as to characterize the order of operations of each individual processor-since a
processor belongs to the environment of Ai"r;,i, possible orderings are determined by the behaviors
of A1serial as well.

E I Event Allowed if Action

.; Ri(rl, n) Mem[n] = rl

.; Wi(d,n) Mem[a]:=d

initially: Va Mem[a.] = 0

We rephrase Lamport's proposal of correct behavior of sequentially consistent memory (SCM)
thus

any external behavior, cr, r of the SCM I corresponds with an external behavior, T, of
Mserial so that the order in which the operations of each individual processor appear in
a coincides with order in which they appear ill 7.

For instance, the graph below depicts a possible prefix of a behavior of an SCM and a corresponding
serial behavior:

SCM WI(I,:!:) W2(2, y) R3(2, y) R,(O,x) R,(I,x)

PI: WI(I,:!:)
P2: W2(2, y)
fJ1: R,(2, y) R3(O,X) R3(1,x)

AlseriIJ./ W2(2,y) R,(2,1/) R,(O,:!:) WI(I,x) R3(1,X)

Time flows from left to right. In pal1icular notice that, although PI sets x to I before P3 accesses
that location, the first read of 1', retrieves :/: 's initial value O. The effect of writes are thus seen to
propagate slowly through the system. This is typical of sequentially consistent memory. Also notice
that this SCM behavior is not possible for serial memory.

For completeness sake, we mention that the following behavior of the individual processes cannot
be accommodated for by SCM:

PI: WI(I,,,:)
P2: W2(2, ,I:)
P3: R3(1,.r,)

The problem is that P, and P4 'observe' the writes of PI and P2 in different order.
Sequential consistency has been the canonical distributed memory model for a long time. In prac

tice, however, different, sti II weaker memory models tend to be implemented as the synchronization

5

overhead of SCM is still too large. For instance, the processor consistency model would allow the
above behavior at the processors. See [Mos93] for an overview of distributed memory models.

A formal definition

Let· I'; denote the operation on behaviors of removing the events that do not originate from process
Pi or that are not external. Then we have

A memory M is sequentially consistent w.r.t. M"cini, M s.c. M"cial, iff

Va E Beh(M) 3T E Beh(M"'inl) Vi = I ... n afi = T Ii

This memory model enjoys an important advantage over its 'competitors': for reasoning about
a program we may ignore the fact that the program runs on a sequential consistent memory and can
assume instead that it runs on a standard serial memory. I.e., verification techniques need not be
adapted and the programming model is that of standard shared memory.

We stress that this is the case only if the program has no means of communication, either implicitly
or explicitly, other than through the memory. If a program can send messages or can sense the time at
which reads and writes occur, then differences between sequential consistent and serial memory can
be detected; see, e.g., [ABM93].

1.2 The lazy caching protocol

In [ABM93] a sequential correct memory that is not serial was proposed: the lazy caching protocol.
We use a slightly adapted version of this protocol.

The architecture of Aldis/_r is depicted in Figure 1.3; the transition system in Figure 1.4. The
protocol is thus geared towards a bus based architecture. Here, too, the interface of the memory
comprises of the read and write events of the processors. Mdistr. however, interposes caches Ci
between the shared memory Me", and the processes Pi. Each cache C i contains a part of the memory
Me1//. and has two queues associated with it: an out-queue 01lti in which Pis write requests are
buffered and an in-queue lni in which the pending cache updates are stored. These queues model the
asynchronous behavior of write events in a sequential consistent memory. The gray arrows indicate
the information flows from the out queues to the in queues and to A1em.

A write event Wit d, a.) does not have immediate effect. Instead, a request (d, a) is placed in Outi.
When the write request is taken out of the queue, by an internal memory-write event MWi(d, a), the
memory is updated and a cache update request (d, a.) is placed in every in-queue. This cache update
is eventually removed from the top of some queue Inj by an internal cache update event CU j(d, a)
as a result of which cache memory Cj gets updated. Cache misses are modeled by internal cache
invalidate events: Cli can arbitrarily remove locations from cache Ci. Caches are filled both as the
delayed result of write events as well as through internal memory-read events, M Ri(d, a.). The latter
events intend to model the efTect of a cache-miss: in that case the read event suspends until the
location is copied from memory.

A read event R;(d, a.), predictably, stalls until a copy of location a. is present in C; but also until the
copy contains a 'correct' value in the following sense: sequential consistency implies that a processor
Pi reads the value at a location a. that was most recently written by Pi unless some other processor
updated (/. in the mean time. Hence, a read event Ri(d,a) cannot occur unless all pending writes in

6

• • •

"<'"--«~--"""--~----.:::--,--- j
.• '"W~·

Mem

Figure 1.3: Architecture of Md;,',

QlIt; are processed as well as the cache update requests from Ini that correspond to writes of Pi. For
this reason, such cache update request are marked (with a *).

The transition system in Figure 1.4 makes all this precise.
In this transition system caches are modeled as partial functions from the set of locations to the

set of values. Cache update (CU) actions produce 'variant functions': lIpdate(Gi, d, a) stands for the
function .f that coincides with Gi except 'at' a where .f(a) = d. Cache invalidate (CI) actions yield
'restrictions' of functions: "cstl'ict(G;) stands for any function whose domain is included in that of
Ci and which coincides with C; on its domain.

For AId;", there is a distinction between the external behavior, Beh(Md;,',) and the internal
behavior, !Bch(M d;,',) that comprises the maximal sequences of internal and external events that
Md;,"· can generate (obviously we have Beh(M",,;d) = !Beh(M",ial). Observe that for s E
!Beh(Md; .• ,,·), s fi denotes the subsequence of external read and write-events of Pi in s.

7

E I Event

.; R,(d,o)

Allowed if

C,(a) = d A Oul, = {}
1\ no *-ed entries in lUi

Action

.; Wild, a) OUli := append(OUli, (d, a»

MW,(d,o) head(Oul;) = (d,a) Mem[a]:= d;
OUli := lail(OUli);
(Vk i i :: Ink := append(Ink' (d, a»);
Ini := uppend(Ini, (d, a, .))

MR,(d,a) Mem[u.] = d Ini:= append(Ini,(d,a))

(U,(d,a) head(Tni) is either

(Ii

Initially:

Fairness:

(d,a)or(d,o,.) Ini:= lail(In,); C,:= update(C"d,a)

C, := resl.rielCCi)

Vo Mem[oJ = 0
A Vi = 1 ... 'I/. Ci C Mem A Ini = {} A Oul, = {}
no action other than (I, can be always enabled but never taken

MW-memory write
(U ---cache update

M R-memory read
(I---cache invalidate

Figure 1.4: Md',',

8

Chapter 2

Cache Consistency by Design

E. Brinksma

9

2.1 Introduction

In this paper we present proof for the sequential consistency the lazy caching protocol of [ABM93]
as formulated in [Ger95]. The proof will follow a strategy of stepwise refinement, developing the dis
tributed caching memory in five transformation steps from a specification of the serial memory, whilst
preserving the sequential consistency in each step. Thus our proof, in fact, presents a rationalized
design of the distributed caching memory.

We will carry out our proof using a simple process-algebraic formalism for the specification of
the various design stages. Process algebraic techniques [Hoa85, Mil89, BW90] are by their nature
suitable for transformational proofs as they concentrate on laws that equate andlor compare different
behaviour expressions. Such laws are natural candidates for design transformations. Our proof will
not follow a strictly algebraic exposition, however. For some transformations we will show the
correctness using semantic arguments directly, instead of pure syntactic derivations from basic laws.
We will also employ the less standard feature of action transducers to relate behaviours in two of our
design steps.

The structure of the rest of this paper is as follows.

• section 2 introduces the process-algebraic formalism that we use;

• section 3 explains about the use of action transducers, and introduces the notion of queue-like
action transducers in pm1icular;

• section 4 gives a transformation style proof of the weak sequential consistency of the distributed
cache memory. This property takes into account only finite sequences of the observable actions
of a system;

• section 5 improves the result to .ltrong sequential consistency, also taking possibly infinite
behaviour into account;

• section (j discusses the results that have been obtained and draws some conclusions.

2.2 A simple process-algebraic formalism

We will work with a simple process algebraic formalism to specify the different design stages in
the course of our proof. Throughout this paper we will assume a working knowledge of process
algebras. For a good introduction to the literature of process algebras the reader is referred to
[Hoa85, Mil89, BW90]. Below, we give a short summary of those features that are essential for the
development of our proof.

The syntax and semantics of our formalism are given in tables 2.1 and 2.2, respectively. The
tables assume a given set of observable actions Act and an additional silent or hidden action T. The
behaviour expressions defined by the syntax table define the behaviour of systems in terms of labeled
transition systems, where the transitions are labeled by elements in Act U {T}. These operational
models can be derived for each behaviour expression with the aid of the inference rules given in
table 2.2. For a detailed account of this so-called structured operational semantics or SOS style of
definition, we refer to [Mi189, Plo81].

The behaviour expressions are defined in an environment of process definitions of the form

{}J <= IIp I l' E P}

10

Name

inaction
action-prefix

choice
composition

hiding

renaming

instantiation

Name

inaction

action-prefix

choice

composition

hiding

renaming

instantiation

Syntax B Label set L(B)

0 0
/I.B (JI E Act) {JI} U L(]])
T.11 L(B)
]], +]]2 L(13 ,) U L(]]2)
B,1l0]]2 L(B ,) U L(B2)
(G c;;: Act)

B/G L(B) - G
(G c;;: Act)
B[ll] Jl(L(B))
(11 : Act --+ Act)

J! L"
(p ¢= B". L(Bp) c;;: Lp)

Table 2.1: syntax of a simple process algebraic language

Axioms and inference rules

none

" II..]] --+ n
(" E Act U {T})

II II

iJ, --+ B,'I- H, + 132 ~]],'
II. p-

iJ2 11/ I- jJ I + il2 --+ fJz'
p. JI

lI, --+ IJ ,' I-"",G 13,IIG132 --+]],'IIG]]2
II /1.

Ih --+ 112'1-"",G]],IIG1h --+ }],IIGlh'
II I II I Jt I I

H,]], ,]]2 --+ 112 I-,'EG 11,[10112 --+]], IIG]]2
II p

H]]'I-,'iGII/G --+]]'/G
P T

]] --+ IJ'I-,'EoB/G --+ B'/G
" lI(p)

U --+]]' I-]][ll] --> B'[lf]
II. II.

IJ}' --+ U' I-1'<=B" J' --+ IJ'

Table 2.2: structured operational semantics

where P is a set of process identifiers p with action label type L p ' and Bp is a behaviour expression
with action label set L(Up) c;;: Lp. We will use the the notation J' ¢=]]p to denote the statement that
'1' ¢= 13" is an element of the environment of process definitions'. The environment may contain
mutually recursive process definitions. The label types Lp are usually left undefined, and are implicitly
understood to be the smallest label types satisfying the static constraints of table 2.1. In the application
part of the paper we will provide concrete instances of the set of actions Act en the process definition
environment.

In addition to the process algebraic combinators introduced by table 2.1 we will use generalizations

11

(I) lJdlGB2 = B211GBI

(3)

(4)

(5)

(BdIGB2)/A = BI/AIIGB2/A

(lidIGli2)[1l] = lIdIT]IIGlJ2[1I]

if An G = 0

if lI[G = idG and If-I(G) = G

Table 2.3: Some transformation laws

for the choice and composition operators. If B denotes afinite set of behaviour expressions then L B
and TIG B denote the repeated application of '+' and 'IIG', respectively, to the elements of B. E.g. if
B = {JJ I, ... , Hn} then

This notation exploits the commutativity and associativity of the combinators '+' and 'IIG' that will

be justified below. If B = {lJ,li E I} we often write LiET Bi and TI~I Bi.
The standard identity over the behaviour expressions (and labeled transition systems) will be

given by the strong hisimulation equivalence relation, which is a congruence with respect to all the
given combinators. We recall the definition.

Let BE denote the set of behaviour expressions over given sets Act and P of actions and process
identifiers, respectively.

Definition 2,2,1 A relation R <;; HE X 11E is a strong simulation relation iff/or all (B), B2) E R

andforall" E ActU {T} 3iJ l ' 111 ~ lJl' implies3iJ2' 112': iJ2' and (BI',B2') E R.
A relation R <;; liE x BE is a strong bisimulation relation iffboth R and its inverse R- 1 are

strong simulation relations.
Two behaviour !~xpressions B I, Ih are strong bi.~imulation equivlIient, notation B I f"V B2. iff there

exists a strong bisimu/afioH relation R with (JJ j , Bz) E R. 0

The following fact is a standard result in the process algebraic literature (cf. [MiI89])

Fact 2.2.2 The relation ~ is a congruence with respect to aI/ the comhinators introduced in table 2.1
and satisfies the laws listed in table 2.3. 0

We recall the following (standard) notations. Action names are variables over Act U {T} and (J

denotes a string of actions (f,j .,. an.

(T a I an I

B - lJ' ~df 3 /Jo, ... , lin 1) == JJo --> HI A ... A Bn_1 --> Bn == B

JJ =':, 13'

13 ~ .11'

13 ~ /3'

Der(lI)

,"
~ .If :=in /J --> 11'

~df 3I1 1, lJz lJ =':, /31 AlJ l -":, .112 A .112 =':, B'

~df :=iBo,.· ·,lIn 11 == Bo * JJ I A ... A 13n _ 1 ~ IIn == B'

=df {B' I :=icr E Act' B ~ JJ'}

12

We will also need a less strict relation than ~.

Definition 2.2.3 A relation R S;; BE X BE is a weak simulation relation ifffor all (B" B2) E R
andforalla E ActU {c} 3B,' B, ~ B,' implies3B2' B2 ~ B2' and (B,',B2') E R.

A relation R S;; BE X BE is a weak bisimulation relation iffboth R and its inverse R-' are weak
simulation relations.

Two behaviour expressions B" B2 are weak bisimulation equivalent, notation B, "" B2, iff there
exists a weak bisimulation relation R with (B" B2) E R. 0

Again we have a standard result (cf. [MiI89]).

Fact 2.2.4 The relation"" is a congruence with respect to all the combinators introduced in table 2.1
except for the choice comhinator '+' (and its generalization L:) and ~ S;; "" (i.e. "" satisfies all laws
~~~ 0 

Finally, let us define Traces(B) =<lJ {a E Act' I 3B' B ~ B'}, then we have the following 
well-known definition and results (cf. [Hoa8S, vG93]). 

Definition 2.2.5 Two behaviour expressions Ti" B2 are trace equivalent, notation B, ""trace B2, iff 
Traces(B,) = Traces(1J2)' 0 

Fact 2.2.6 The relation ""tmee is a congruellce with respect to all the combinators introduced in 
tahle 2.1 and ,...., ~ ~ ~ ';:::;rrace. D 

Fact 2.2.7 Let B,II.B2 be defined as in Table 2.3. 

Traces ( 1It1 I.B2) = 
{a E (L(BI) U J{/Jz))* I arL(lJ,) E Traces(B,),arL(Ti2) E Traces(B2)}D 

2.3 Queue-like action-transducers 

Action-transducers are the operational counterpart of contexts, i.e. behaviour expressions with an 
open place or hole in them. Such open places, often denoted by the symbol '[ r, can be regarded as 
variables that can be replaced with actual behaviour expressions to obtain instantiations of a given 

context. For example, the context C[ 1 =d{ a..0 + [ 1 can be instantiated by the expression b.c.O, 
yielding C[b.c.O] = 0..0 + h.c.O. 

Whereas we can use behaviour expressions to define states with transitions between them (e.g. 
as defined by table 2.2), contexts define action transducers with transductions between them. Such 
transductions will be denoted by doubly decorated arrows, as in 

a , 
T---"'T 

b 

which represents the transduction of action I, into action a. as action-transducer (state) T changes into 
T'. Informally, this should be understood as follows: whenever a behaviour B at the place of the 
formal parameter '[]' produces an a.-action transforming into B', T[B] will produce a b-action as its 
result and transform into T'[B']. 

13 



Example 2.3.1 

a.BIi{a}[ ][a/b] 
a. 

---7 BII{a}[ ][a/b] 
b 

where a/ b denotes the obvious renaming function replacing b bya. 

a 
The transduction l' 1" thus corresponds to the operational semantic rule 

b 

b a 
B ---7 JJ' I- T[JJ] ---7 T'[JJ'] 

o 

Additionally. we also allow transducers to produce actions 'spontaneously' to cater for contexts like 
a .. []. which can produce an (I.-action without consuming an action of an instantiating behaviour. This 

a 
will be denoted by transduction of the form l' ---7 1", corresponding to the operational semantic rule 

o 

I- T[lI] 
a 

---7 T'[B] 

Example 2.3.2 

o 

In this paper we will not give a complete formal introduction to the concept of contexts as action
transducers. For this the reader is referred to [Lar90, Bri92l. Here, it will suffice to define systems of 
action-transducers by explicitly giving sets of transducer states and transductions between them. 

A last step before defining transducer systems is the extension of the transduction notation to a 
suitable 'double-arrow' notation. Let cr, cr' E (Act U {T, O})*. We write (T <l (T' iff (T can be obtained 
from (T' by erasing any number of T- or O-occurrences in it. We define 

l' (I.t •. 
on ,:, 7" 

bl···/>fl 

T~T' 
~2 

¢>dj 

¢>dj 

We now proceed with the definition of the special kind of action-transducer systems that we need 
for our application, viz. the queue-like families of action transducers. 

Definition 2.3.3 Let Q <;; Ael. Afamity of action-transducers TQ = {TO I (T E Q*} is queue-like iff 
its franductions are of the form: 

I. 'If{ E Q, (T E Q* TO .'!.." 1'~'1 
() 

, 
2. V" E Q,u E Q* T'w ~ 

q 

a 
3. for 0 or more u E q', (I. E (A cf. - q) TO ---7 1'". 

a 

14 

o 



Definition 2.3.4 Let TQ = {T" I a E Q*} be a queue·like family of action·transducers. For each 
A <;; Q we define the set IJA <;; Act. by 

, 
1]A = {a E Act I T" --+ T" iffafA = c} 

n 

o 

Definition 2.3.5 LetTQ = {T" I a E Q*} be a queue-like family of action-transducers. We say that 
TQ preserves A <;; Act iff 

V (I, a E Act', v E Q* 1'< ~ TV implies p fA = av fA 
" 

o 

The following two lemmata express invariants of the observable trace transductions that are 
induced by families of queue-like action transducers. Of course, a string over any subset A of the set 
of actions CJ that are subject to queing will be preserved. The lemmata indicate that A can always 
be extended with D A, the set of actions that can be passed directly 'through' the context when no 
element of A is being queued. The intuition behind this result is that actions in 1] A could therefore 
never 'overtake' actions in A, or vice versa, and thus upset the ordering of elements in the string. 

Lemma 2.3.6 Let TQ = {T" I a E Q*} be a queue-like family of action-transducers. For each 
II <;; Q TQ preserves A U D A. 

Proof. Let T' ~ TV. We carry out the proof by induction on Ipi + 10"1. The basic case that Ipl + 10"1 = 0 
c 

follows trivially as it implies that p ::::: (T = V ::::: [. 

Let us therefore suppose that the lemma holds for all n < jpj + /ol We can factorize Tf ~ rv 
q 

into Tf. ~ TV] -: TV for some suiwhly chosen PI) 0"1, VI, a, and b. Since, by the definition of queue-
(T] b 

like transductions, not both (/ and b E {T, 0) we can deduce that IpIi + hi < Ipi + 10"1 and therefore that 
PI r(A U DA) = (711)1 [(A U DA)' 

a 
We now proceed by case analysis on the nature of the transduction TV] ----+ TV as given in definition 2.3.3. 

b 

n q 
,. j'v) ---. TV = TVt _____ 'l'Vlq. 

b 0 

Then p[(A U DA ) = f'liJ[(A U D,,) = cTlliliJ[(A U DA) = cTvr(A U DA)' 
, T 

2. TV) _ T~) = 7''i tJ ____ TV. 
b q 

Then p[(A U DA ) = PI [(A U D A ) = (7IVI [(A U DA ) = (7lqvr(A U D A ) 

= O"v[(A U DA)' 

" , 3. TV] ----l- TV = TV -+ TV. 
b • 

This is only possible if a !i Q and thus" !i A. Assume that also a !i D A. In that case it follows that 

p[(A U DA ) = PI,,[(A U DA ) = (7lvl,,[(A U DA ) = O"I"vl r(A U DA ) 

= (7,,[(A U DA ). 

In the other case that a E DA it follows that 1)1 n A = v n A = 0. 
Therefore, we gel 

f'r(A U D A) = f'lar(A U D A) = (711)1 ,,[(A U DA) = (71,,[(A U D",) 
= (7r(A U J),.j = (7v[(A U DA)' 

15 

o 



o 

Lemma 2.3.7 «preservation lemma)) Let TQ = {TO I (J E Q'} be a queue-like family of action
transducers. Let]] continuously allow all actions in Q, i.e. for all B' E Der( B) and all q E Q 

q 
3]]" B' --; 11". Then for all A <;; Q we have 

Ver E Traces(T'[JJ]) jer' E Traces(11) with err(A U DA) = (1'r(A U DA) 

Proof. Assume that T'[B] '* 1'" [B']. Because B continuously allows all actions in Q, we have in particular 
that B' ~ B" and therefore T"[13'] =s. T'[I]"]. II follows that there exists a (T' with T' ~ T' and 

, 0' 
cr' E Traces( B). The required preservalion result now follows from an applkation of the previous lemma .. 0 

o 

2.4 Deriving the lazy caching memory 

We start our derivation of the lazy caching protocol with a specification of the serial memory, which 
is given by the process Mem(x) defined by (2.1) below. The contents of the memory is represented 
by the process parameter X, which is a vector of elements in the data domain D indexed by the set A 
of memory addresses. For all {/. E A :r" denotes the a,h element ofx. The set J = {I, ... , n} indexes 
the number of user interaction points of the memory, i.e. the number of locations where local read 
and write actions can be performed. 

Mem", (x) {= L Wi(d, a).Mem",,(x{ dlx,}) 
ieI 

(I.EA,riED 

+ L Ri(J:a,fL).Mem",,(x) 
iEI 

nEA 

(2.1) 

Here, Wi( d, a) represents the action of writing datum d in memory address fL, and Ri( d, a) reading 
datum" from memory location n. It will be useful to define the sets 

• Wi =d/ {lVi(d, (/.) IdE D, a. E A} and W =,1/ UiEJ Wi 

• R.i ='1/ {H;(d,a.) IdE D,n E A} and R =diUiEJR.i 

• [i =,,/ Wi U 'R. i and [ ="i UiEJ [i 

We can now formulate the correctness criterion in our setting as 

Definition 2.4.1 Let III alld 112 he hehaviour expressions with ,[,(1Ji) <;; L A behaviour BJ is weak 
sequential consistent with lh iff 

Ver E Traces(1IJ) jer' E Traces(1l2) such that Vi E J err [i = a' r [i 
o 

This is a weaker requirement than the originally given definition of sequential consistency, which 
is concerned with maximal, and therefore possibly infinite traces (which are not in Traces(Btl). We 
will first complete the design for this version of sequential consistency and will revisit the question 
of infinite traces in section 2.5. 

16 



2.4.1 Distributing tbe memory 

Our first step in the design is to create a local copy of the memory for every user. The specification 
of the local memory for user j E I is given by the process definition of Locmemj(x) at (2.2) below. 
Note that Locmemj(x) still interacts in all actions in W, but accepts only local read actions, i.e. those 
in R.i-

I: Wi(d,a).Locmemj(x{d/x a }) 

iEJ 
(l-EA,dED 

+ I: Rj(:ca , a).Locmemj(x) 
a·EA 

Our first refinement is now given by the process definition Refinement! in (2.3). 

Refinement! -¢= rrw -
Locmemj(O) 

JEI 

The correctness of this step is certified by the following lemma. 

Lemma 2.4.2 

Mem"".(O) ~ Refinement! 

Proof. The relation defined by 

W 
{(Mem",,(x), rr Locmemj (x)) I x E DA} 

JEI 

is a strong hisimulation. This follows directly as for all writing actions we have 

W,(d.a) 
Mem.",,(x) ~ Mem.",,(x{ d/ "a}) 

W;(d,(I) 
{c} \lj E I Locmemj(x) ------. Locmemj(x{d/"a}) 

rrw W,(d.a) rrW 
{c} Locmemj(x) ------. Locmemj(x{d/xa}) 

JEI JEI 

and for all reading actions 

HiC;!'" ,a) 
Mems('/"(E) -- Mem.w~,.(x) 

H,(."o,o) 
¢:> Locmemi (:iT) ---t Locmemi {x) 

rrw . R,(.,o.') rrW 
'¢:} Locmemj (x) -----t Locmemj (X") 

JEI JEI 

Corollary 2.4.3 Refinement! is weak sequential consistent with Mem.,,,,(O) 

Proof. Follows directly from - <; "'1m", (fact 2.2.6). 

17 

(2.2) 

(2.3) 

o 
o 

o 
o 



2.4.2 Introducing local caching 

In the next step of our design we introduce a local cache that the user communicates with and that 
is updated by the local memory. Because of its direct interface with the user this cache has a more 
elaborate set of interactions that the chaches that we will ultimately design. The behaviour of the 
cache at interaction point j E J is given by the process definition Cachej(x) in (2.4) below. In 
addition to the (local) memory the caches have update actions Uj(d, a). For convenience we define 
l1i =dr{Ui(d,a) IdE D,o E A} andl1 =drUiEl l1i. 

Cache; (x) {= L Wi(d,o).Cachej(x{d/x a }) 

iEI 
a.EA,riED 

+ L U;(d,a)'Cachej(x{d/x a }) 

(/·EA,dED 

+ L H;(:r,,, a). Cachej (x) 
r!jx 

+ L T.Cache,(rJ) 
"Eel") 

(2.4) 

Note that the local caches synchronize on all actions in YV. but accept only local read and update 
actions, i.e. only actions in R.; U /./;. Cache invalidation is modelled by allowing the elements of the 
memory vector x to take the undefined value r, and the introduction of the following predicate and 
set: 

• al x iff :1'" 1"1 

Let /./ /R : Act ~ Act denote the renaming function that maps each read action Ri( d, a) to the 
corresponding update action Ui(d, a) for all i, d, and a, and all other actions to themselves. We are 
now ready to define the second refinement of our design as follows. 

Refinemenf2 ¢:: II
w . -

(Locl71em; (0) [U /RJ IIUjuW Cach€j(Yjo))/U (2.5) 
:iEl 

for arbitrary Yi;o E 1'(0). 

The correctness of this step follows from the following lemma. 

Lemma 2.4.4 'Ix E j)A, Y E 1'('1:), j E I 

(Locl71el71j (x) [U /R] IlujuW Cachcj(Y))/U "" Locmemj(x) 

Proof. The relation 

{«Locmelllj (x)[U /RlllliiUW Cachej (m )/U, Locmemj(x)) I x E DA, fi E rex)} 

is a weak hisimulation relation. It suffices to consider the following cases: 

18 



• (Locmemj(x)[U /Rliluiuw Cachcj(y))/U =S n: 
Then B = (Locmemj (x)[U /R·llluiUW Cache; (Ti'))/U with 'if E rex) where tile silent transitions in =S 
consist of zero or more cache invalidations and/or updates. It suffices to take Locmem; (x) =S Locmem; (x). 

Wi(d,a) 
• (Locmemj(x)[U /RllluiUW Cachej(Ti))/U -----+ B: 

Then n = (Locmemj(x{d/2',,])[U/R.l IlujuW Cachej(fJ{d/Ya]))/U, This is directly matched by 
W,(d,a) 

Locmemj(x) -----+ Locmcl1lj(x{d/"a}). 

Rj(J.: o ,ll) 
• (Locmemj(x)[U/RllluiUW Cachej(y))/U ~ 1J: 

Then 13 = (Locmel1lj(x)[U /RlllujuW Cachej(fJ))/U. This is directly matched by 
J(i(:ro ,a) 

Locmemj (x) ----+ Locmemj (x). 

• Locmemj (x) =S [1: 

Then B = Locmemj(x). This is therefore directly matched by 

(Locmemj(x)[U /RlllujuW Cachej(y))/U =S 
(Locmel1lj(x)[U/RllluiUW Cachcj(Ti))/U. 

H-T,(d a) 

• Locmelllj (x) ---.:....:....; JJ: 

Then n = Locmelllj (x{ d/:r,,}). This is directly matched by 
W;(d,a) 

(Locmemj(x)[U /R·llluiUW Cachcj(Ti))/U -----+ 

(Locmcl1lj (x{ d/:",,} )[U /RllluiUW Cnchcj (Ti{ d/Ya} ))/U. 

Rj\J.:",a) 
• Locmemj(x) --- B: 

Then 13 = Locmemj (x). If a 1 fJ then this is directly matched by 
Rj(l'" ,a) 

(Locmemj(x)[U/RllluiUW Cachej(Ti))/U ~ 
(Locmel1lj(x)[U /RllluiUW Cachej(Ti))/U. 
1f Ua ::: r then first a cache update of address a must take place. This generates the folJowing matching 
sequence of actions: 

(Locmcl1lj(x)[U/RllluiUW Cachcj(fJ))/U -.:.., 

(Locmemj(x)[U/RllluiUW Cachcj(Ti{",,/Y,,}))/U 
(Locmemj (x)[U /Rllluiuw Cachej (Ti{ "a/Y,,} ))/U 

Corollary 2.4.5 Rejillemellt2 is weak sequential consistent with Mem.<e'(O) 

o 
o 

Proof. Because", is a congruence relation w,r.1. the parallel combinator IIG (fact 2.2.4) it follows from that 
Refinement2 ~ Refinement!. Combining this with ~ ~ ~'ra(:e (fact 2.2.6) and coronary 2.4.3 the desired result 
now follows directly. 0 

o 

2.4.3 Buffering cache communication 

In this refinement step we will buffer the communication of write/update actions to the cache, and 
only allow read actions if there are no local write actions buffered. This can be expressed using a 
family of queue-like action transducers in the sense of section 2.3. 

19 



Definition 2.4.6 Thefamilyofqueue-like action transducers {](J I IT E (WUUj)*} isfor each j E I 
completely characterized by the following set of transductions: 

• 
Uj(d,,,) U(d) A"C: __ : ]{c:- } .,(l. 

.1 0 J 

• 
W;(rl.CI.) \"( I ) j'-cr __ , ]{a. 'I, ( ,a. 

'!.. j 0 J for all i E I 

• ]
,.UAd,(l).a -r J.'a 
\. -..f \. 

.1 UJ'(d,(!) J 

• /
,Wi(d,(I).(T T l'a 

'\i ----+ \. 
. Wi(d,,,).1 

foralli E I 

Rj(d,n) 
J{C! ----+ ,J{C! 

.1 RJ(d,a.) J 
• if IT contains no Wj-actions 

The refinement is reflected in the following process definition. 

Refinement) <¢= IT W (Locmemi (0) [U /R] IIUjuW ](j[Cachej(Yjo)])/U 
,iEi 

for arbitrary l]iO E "(0). 

We can now prove the following lemma. 

Lemma 2.4.7 

Vj E T, IT E (W U Ri U Uil', x E DA, Y E 1'('1') 

(Locmemj(O)[U/R] IluJuw ](HCachej(Yjo)])/U '* 
'la' E (W U Rj UUj)' 

- a' 
(Locmemj(O)[U /R] IluJuw Cachej(YjO))/U =} 

II d(Wi U Rj) = (T' [(Wj U Rj) II a[W = IT' [W 

Proof. This essentially follows from the preservation lemma 2.3.7. Assume that 

(Locmemj(O)[U/R]lk,juw KJ[Cachej(Yjo)])/U ~ 

It follows there must exist a 0"1 with (fl III ::::::: (T and 

Locmel1lj (O)[U /R] Ilu;uw IIJ[Cachej (Yjo)] 2-

By the properties of 11"luw (fact 2.2.7) for (12 = (11 [(Uj U Wj) we have 

Locl11emj(O)[U /R] 2 and HJ(Cachej(fijol] 2 

By the preservation lelllma 2.3.7 there is a a~ with Cachej (Yjo) ~ and 

o 

(2.6) 

which follows hy taking A = Wj (then DA = Rj), and A = W U IIj (then DA = 0), respectively. 
Recombining, we get 

LoclI1el11j(O)(U /R]lluiuw Cachej(Yjo) j 

20 



Then taking (1"' = crUll it follows that 

with 

and likewise 

rrr(Wj URj) = (rrJ/U)f(Wj URj) = (TJr(Wj URj))/U = 
(rr;nWj URj))/U = (rr;/UH(Wj URj) = o-'r(Wj URj) 

Corollary 2.4.8 Refinement, is weak sequential consistent with Mem,<erCO) 

Proof. Assume that 

IIW(L(}('nzemj(O)ru/R] IllIjUW KjrGachej(Yjo)])/U ~ 
jEf 

then according to fact 2,2.7 for each JET with rrj = rr r(W U R j ) we have 

(uJC/1zemj (O)[U /R] IIlIjUW KjrGachej (Yjo)])/U ~ 

o 
o 

Also, it follows that for all j E J the crj must agree on their common actions in W. i.e. tJ'jl rW = uhrW 
for jl)h E I. 

Using the above lemma we find "J with rrj r(Wj U R'j) = O'J r(Wj U R j ) and "j rW = o-j rW. The latter 
equality implies that for jJ, hE J we have "'j, rW = "j, rW = (Tj, rW = (Tj, rW, This means that we can apply 
fact 2,2,7 again, in the opposite direction, combining the "j and find a (T' with (T'r(W U 0R.j ) = o-} r(W U Rj) 

W , II (Locmemj (O)[U /R] IlujuW [(jrGac"ej (Yjo)])/U ~ 
jE) 

It follows that ,,' r(Wj U R j ) = "r(Wj U R.j) for all j E I. i.e, Refinement, is weak sequential consistent 
with Re{inement2, and thus with Mem,<er(O), 0 

o 

We proceed with a cosmetic transformation that is not really necessary for the design, but brings 
our specification closer in line with the specification given in the problem statement in [Ger95]. There, 
the cache communication buffer identifies all update and non-local write interactions once they have 
been buffered, The contents of local write interactions is marked for identification with a special 

symbol (','), To achieve this in our design we introduce a revised class of queue-like transducer 
families. 

Definition 2.4.9 Thefamily of queue-like action transducers {Lj I (J' E (WUUj)*} isforeachj E I 
completely characterized by the following set of transductions: 

21 



Uj(,!,,) ) 
La ----+ L"J.-(d,' 

.1 0 • 

• 
Wj(,!,,,) (d) L

J
": --------;. ]{c:. ,(1.,* 

o J 

W;(d,a) (I) L"! ---). ]{c;' (.,f! 

.1 () .1 
iij o • 

• LL.I'(d,(I.).cr ~ LO: 
J Uj(d,,) J 

cr(d,n) E {(a,d),(a,d,.)} 

fl.) (d,a.) 
Lj -----+ Lj 

. Rj(d,n) 
• if a contains no *-actions 

The corresponding revision of the cache specification is given by the process definition of 
Cachej(x) below. 

I: Uj( d, a).Cachej(x{djxa}) 

+ I: Rj(xa, n).Cachej(x) 
ajx 

+ I: T.Cachej(y) 
yE,(,,) 

(2.7) 

The overall refinement step that is implied by these changes is given by the process definition 
Refinement}'. 

Refinement3 , ¢= rr w - I 
(Locmemj(O)[U /R.] lIujuW Lj[Cachej(Yjo)])/U (2.8) 

jEI 

for arbitrary YjO E 1'(0). 

Essentially, Lj[Cnchej(Yjo)] differs from KJ[Cachcj(Yjo)] only in the way in which the internal 
events corresponding to the buffer-cache communication are produced; the resulting transition systems 
are identical. 

Lemma 2.4.10 

Lj[Cnchej(Yjo)] ~ Kj[Cachcj(Yjol] 

Proof. Left to the reader. 

Corollary 2.4.11 Refinement3 , is weak sequellfial consistent with Mem.,ec(O) 

Proof. As"" is a congruence W.r.t. the operators used and preserves traces. 

22 

o 
o 

o 
o 



2.4.4 Centralizing background memory 

As the local memories have served their purpose in producing the local (buffered) caches they can 
now be recombined into a central background memory. Therefore. our penultimate design step is 
specified as follows. 

Rejinemenf4 {= (Mel1l,e/(O)[UjR.llluuw rrw Lj[Cachej(Yjo)])jU 
jEI 

for arbitrary YjO E 1'(0). 

Lemma 2.4.12 

Proof. 

(Mem,,,(O)[UjR·llluuwrrWLj[Cachej(Yjo)])jU ~ 
.iEI 

rr W ([.ocl1lemi (O)[U jRlllujuW Lj[e achej(Yjo)])jU 
JEI 

n;;;1 (Locmemj (O)[U /R11111juW Lj [Cachej(Yjo)])/1l 

{law 4 o/'fable 2.3} 

m;;;1 (Locmemj (O)[U /R11111juW Lj[Cachej(Yjol]))/1l 

{L(Locmemj,(O)[U /RJ) n L(Locmemj,(O)[U /R]) = W (jl '" j,), 
r.(Locmelllj(O)[U/R)) n r.(Lj[Cachcj(Yjo)]) = IIj U W} 

{laws I al1d 3 '~flable 2.3) 

mjEI Locmel1lj(O)[U /R111. njEl Lj [Cachej (Yjo)])/U 

{law 5 of lable 2.3 and lemma 2.4.2} 

(Mem",(0)[U/R111. mEl Lj[Cacbej(Yjo)])/U 

{T.(Mem", (0) [U/R]) n LmiEi Lj [Cachcj (Yjo)]) = II U W, 
L(Lj,[Cachcj,(Yj,o)]) nL(Lj,[Cachej,(YJ,o)J) = W (jl '" j,)} 

(Mem.,,,,.(O)[U /Rllllluw TI j EI W T.j [CachejWjo)))/U 

Corollary 2.4.13 Rejinemel114 is weak sequential consistent with Mel1l",,(O) 

Proof. As,...., preserves traces. 

23 

(2.9) 

o 
o 

o 
o 



2.4.5 Adding the user interface 

The last step in our design is the buffering of local write interactions with the users. Local read 
interaction is permitted only when the local write buffer is empty. Again. this can be conveniently 
modelled using families of queue-like action transducers. 

Definition 2.4.14 The family of queue-like action transducers {Mj 
completely characterized by thefollowing set of trans duct ions: 

I a E Wj'} is for each j E I 

W-(d,(J) ur (I ) AIl! ~ AI,~·Ylj (,<1. 

.1 0 J • 
AiVj(d,(!).(T ~ A1C! 

.1 Wj(d,a).7 • 

• 
Hj{rI,n) 

M' -_. M' 
J RJ(d,a) .I 

o 

" lvl" -+ AI" 
.7 (i' .1 • a E {Ri(d,u),Wi(d,a)lj"t i E I} 

The corresponding refinement is expressed by process definition Refinements below (recall that 
in the beginning of this section we put J = {I, ... , n}). 

Refinement,) ¢:: 

(Mi 0 ..• 0 M,~)[(Mem,er(O)[U /R] Iluuw IIw 
Lj[Cnchej(Yjo)J)/U] 

jEi 

for arbitrary YjO E 1'(0). 

Theorem 2.4.15 For all i E 1 

(M! 0 .•• 0 Mi') [(Mem", (O)[U /Rllluuw II w Lj[Cnchej(Yjo)])/U] 
jEI 

is weak sequential cOllsistent with Mem.H!r(O). 

(2.10) 

Proof. By induction on 1: using preservation lemma 2.3.7 it is straightforward to show that the application of 
each A1i{ preserves the actions in }Vi UR. j and in Wj UR-j for j # i, choosing A = Wi and A = 0. respectively. 
The sequential consistency with Mel1lser(O) then follows from corollary 2.4.13. 0 

Corollary 2.4.16 

(MI 0 ... 0 M,~ )[(Mem",(O)[U /R] IllIuw II W Lj[Cachej(Yjo)])/U] 
JEI 

is weak sequential cOl1sistent with Mem,H,r(O). 

Proof. Take i = II. 

24 

o 

o 
o 



2.5 Strong sequential consistency 

Having completed the design and proven it correct in terms of weak sequential consistency we come 
back to the original formulation of the problem in [Ger95J, where sequential consistency is required 
with respect to the maximal observable traces, i.e. possibly infinite traces, of the systems involved. 
This is a strictly stronger requirement, as can be learned from the following example. 

Example 2.5.1 Consider a serial memory with only two user intetfaces and only a single memory 
location initially holding the value O. Suppose now a distributed implementation displays the infinite 
trace 

that is, user 1 writes the value I into the memory and user 2 keeps on reading the initial value 0 
infinitelyoften. 

Note that every finite prefix of this trace is weak sequential consistent with the serial memory. For 
ail n WI (I )(R2(o))n is weak sequential consistent with (R2(O) )nWI (I), which is a valid behaviour 
of the serial memory. For the infinite trace WI(I)(R2(O))W there exists no analogous permutation, 
as can be readily checked. 0 

The above example shows that when intinite strings are considered sequential consistency implies 
a liveness property: a write by one user is eventually read by the other. In this section we will show 
that the lazy caching memory in fact satisfies this stronger requirement, and will require only minor 
adaptations of the proofs for weak sequential consistency. 

First, let AW denote the set of finite and infinite strings over A. Then we define the set of tinite 
and infinite traces of a behaviour 11 as 

Definition 2.5.2 «strong sequential consistency)) Let BI and B2 be behaviour expressions with 
L( B,) S;; £. A behaviour 111 is strong sequential consistent with B2 iff 

o 

To show the correctness of the distributed caching memory it suffices to extend some of the 
definitions and facts of section 2.2. We stalt with the equivalence corresponding to Tracesw( B) 
detined by 

Fact 2.5.3 The relation ""tracew is a congruence with respect to all the combinators introduced in 
table 2. J and ~ ~ ';:jlracew ~ ';:jrrtlcc. 0 

Fact 2.5.4 Let IJIII.lh be d~fined as;n Tahie 2.3. 

Tracesw(TJd l.li2) = 
{tT E (L(JlI) U L(B2))W I dL(lJJ) E Traces~(lJl),tTrL(B2) E Tracesw(B2)} 

o 

25 



The proofs of these facts are standard, and are left to the reader. 
The last generalization that we need is the extension of lemma 2.3.7 to strings in Act"'. This is 

the only part of the proof in which we will need the weakfaimess assumption given in the problem 
description in [Ger95]: that no read, write, orupdateaction is continuously enabled but never executed. 

Lemma 2.5.5 «extended preservation lemma)) Let TQ = {TU I a E Q*} be a queue-like family 
of action-transducers. Let n continuously allow all actions in Q. i.e. for all B' E Der(B) and all 

I ,q II 
q E Q 3n' n ...., n . Thenfor all A <;; Q we have 

Va E Tracesw(T'[nJ) 3a' E Tracesw(n) with areA U DA) = a'r(A U DA) 

Proof. We may assume that (T is an infinite trace, otherwise the proof oflcmrna 2.3.7 applies. By the definition 
of an infinite trace we then get that (1 = CTO.0'].CT2 • .•• with 

3{'1'''' [IJ,]LEN TV. [IJ,] g;. '1'V'+'[B,+I] with TVO[Bo] "" T'[B] 

Factorizing these transitions into transdUcliolls of the context and transitions of (the derivatives of) B we get 

It 1(,lIows from lemma 2.3.6 that (0'0' ... . 0':) [(A U D A) is prelix of C 0'0 . ... . 00iJrCA U D A) for all i. 
Now deline ,,' = "o."J.",.···, and suppose that "[CA U D A ) # ".'[CA U DA ), then it follows that 

O'[CA U DA) = O"[(A UDA).,,"[(A UDA) for some <T" with <T"[(A UDA) # <. The latter entails in particular 
that (Til r A 'I- ( as the clements in D A would, by construction, already occur in ai, Also, it follows that 
,,' [(A U D A) is finite, i.e. that there exists an N such that <Ta(A U D A) = ( for ail i. > N. By the transduction 
rules for queue-like transducers this implies that Vi is a prefix of v for all transducers 'J'V that occur in the 

derivation of TV.i ~ T~J.i+' for j > .j > N. . -
OJ 

Because (Til r A t= ( we gct thai Vi i= ( from some A1 > N onwards. As n continuously allows all actions 
T , 

in Q, in particular the first clemcnt 110 of VM, this action is continuously enabled as TV; -4 TV for i > M and 

Vi = 110. vi. But it is never selected, because i > N and Vi is nol a prefix of v'. 
assumption. Thcrei'orc,,[(A UDA) = <T'[CA U DA)' 

Theorem 2.5.6 

Uo 

This contradicts our fairness 
o 
o 

- l1w 
(Ali 0 .•• 0 M,~)[(Mem",(O)[U I'R] Iluuw Lj[Cachej(Yjo)])IU] 

jEi 

is strong sequential cOl1sistent with Mel11.w',.(O). 

Proof. We check proofs of the refincment steps for the weak sequential case: 

]. distributing the menUJI)!: Ihis was proved using that "'-' ~ ~/ra(."(' (see corollary 2.4.3). which can now be 
replaced by the argumcnt that ....., ~ ~/mC(!w. 

2. il1ltVducing local caching: this was proved using that ~ ~ ~/,.tJce (see corollary 2.4.5), which can now 
be replaced hy the argument that ~ ~ :::::::;,ftlc('w. 

3. bl~ffering cache communication: an infinite trace version of lemma 2.4.7 can be proved using fact 2.5.4 
instead of fact 2.2.7, and the extended preservation lemma 2.5.5, which leads to the strong version of 
corollary 2.4.8. The subsequent modification in Refinement31 can be imitated as ~t,.acew is invariant 
under renaming of internal actions. 

4. centralizing hackground meI11(1)1: this is more or less the inverse of refinement 1, and therefore follows 
again by ....., ~ ~/racew' and tile faci that ~tracew is a congruence. 

5. addinl{ the user iI/Ie/face: this follows by using the extended version of the preservation lemma. 0 

o 

26 



2.6 Conclusions 

In this paper we have presented a proof of the sequential consistency of the lazy caching protocol of 
[ABM93]. It is based on the application of a number of transformation steps, deriving the distributed 
caching memory in several steps from the sequential memory, whilst maintaining the property of 
sequential consistency. Thus the proof can also be seen as a rationalized reconstruction of the design 
of the lazy caching protocol, and a a posteriori attempt at correctness by design. One of the potential 
benefits of such an approach is that more general results can be obtained than the correctness of 
a specific design only. In this case the factorization of the proof in separate design steps gives 
substantial insight in design alternatives, and in fact provides us with correctness proofs for a whole 
family of distributed caching designs. Being based on the same transformation principles the following 
variations can be proven correct by minimal rearrangements of the proof: 

I. user interface buffers: we can allow asymmetry between users in the sense that some may have 
buffered and others may not have a buffered user interface. 

2. cache buffers: we can also allow asymmetry between caches in the sense that some may have 
buffered access and others not. 

3. local memories: we may choose some users to have access to a complete local memory instead 
of a cache. 

4. background memories: we may choose to have several write-synchronizing background mem
ories for smaller user groups (e.g. to expedite cache updates). 

The structured presentation of the proof also allows for a rather precise analysis of the blanket 
fairness assumption (no action other than cache invalidations can always be enabled but never taken) 
in general exposition in [Ger95]. Weak fairness is required in the following places: 

I. processing local writes stored in the user interface buffers into the memory and the local cache 
buffers; 

2. processing writes and updates stored in a local cache buffer into the local cache; 

3. processing memory updates into the local cache buffers. 

The first two are used in (the application of) the extended preservation lemma 2.5.5; the last is 
implicit in the proof of weak bisimulation equivalence in lemma 2.4.4. The latter exploits a notion 
of fairness that is 'built-in' in the notion of weak bisimulation equivalence. In the context of ACP it 
appears as Kooll1el1\fairabstractiol1 rule [BW90]. 

Although we have used a process-algebraic notation for the specification of the various design 
stages, and have applied a number of well-known laws from the process-algebraic literature, our proof 
is, in fact, heterogeneous in nature. The process-algebraic syntax is used to define labelled transitions 
systems. We have allowed, however, some of the fairness requirements to be superimposed on 
this representation, thereby leaving a proper process-algebraic framework. Also, we have not used 
a structured syntax to define action transducers, but have defined them directly in terms of their 
transductions. As already mentioned, the transducers have their syntactic counterparts in behaviour 
expression contexts, i.e. behaviour expressions with open places or 'holes' in them. Contexts 
corresponding to the transducers that we have used could be expressed in terms of our process
algebraic formalism if we accept simple compound data types such as strings and their associated 

27 



operations as given (otherwise one could turn to languages like LOTOS to formalize such notions 
[BB87)). In these cases, however, their syntactic representation is much more involved than their 
operational one, and would distract from the essential feature that figures in the proof, viz. that they are 
action transducers that induce observable action-sequence transductions. As sequential consistency 
is an invariant of such transductions, that is precisely the way we want to view them. 

The correctness of a number of transformations has been shown in terms of direct semantic proofs, 
viz. by producing strong and weak bisimulations, and by reasoning in terms of action transducers. 
As a consequence, it can be disputed as to what extent our proof can be seen as one based on 
the application of correctness-preserving transformations (CPTs). Although our transformations do 
preserve the desired correctness criterion, this term is usually reserved for generic design principles 
whose correctness has been established beforehand (cf. for example [BoI92]), to be contrasted with 
the procedure of 'invent and verify'. In addition to the applied standard process algebraic laws listed 
in table 2.3, however, most other parts of the proof could retrospectively qualify as CPTs. The 
formulation of our transduction based proofs, the (extended) preservation lemma, for example, is 
generic in the sense that it applies to all queue-like transducers. This enables its repeated application 
in proof, viz. twice in the proof of lemma 2.4.7 concerning the cache buffer, and twice in the proof 
of theorem 2.4.15 concerning the user interface buffer. In order not to burden our proof with such 
concerns we have foregonc the formulation of a generic transformation principle corresponding to the 
equivalence proven in Icmma 2.4.2. The idea behind the proof is quite general, however, viz. that a 
process maybe split into parts according to a partitioning of all those of its actions that do not affect 
its state, where each pall should still be able to synchronize on all actions that do influence the state 
in order to maintain it. We present a generic formulation of this transformation without proof. 

Let p(:I:) be a parameterized process defined by 

]'(:1:) {= L I(a,:I:).p(g(a,:c))+ L h(a,x).p(:c) (2.11 ) 
oE\0r a.EbIV 

where :l: ranges over a given domain D, V£"Ir and Inv are given index sets, and f : Var X D ~ Act, 
9 : Varx D ~ D, and h : Inv X D ~ AclU {T} are functions with I injective and rge(.f)nrge(h) = 0. 

Theorem 2.6.1 Let ]1(:,,) oftheJfmn defined hy (2.11) above. Let F be afinite partitioning olin v and 
define Jf" all P E .F 

Then 

o 

Sofar, we have not succeeded in formulating a suitably general formulation of the transformation 
principle behind the introduction of the local caches in lemma 2.4.4. It seems that the semantic idea 
behind it is not readily expressible in generic syntactic terms. Summarizing, we can say that the 
problem of proving the lazy caching protocol correct has also served as a source of inspiration for 
the formulation of new correctness preserving design transformations. Although much of our proof 
can be interpreted as the application of such transformations, parts remain that rely on the 'invent 
and verify' approach. As a whole the proof illustrates that an opportunistic combination of different 
methods can lead to an insightful example of correctness by design. 

28 



Chapter 3 

Sequential Consistency as Interface 
Refinement 

R. Gerth 

29 



3.1 Interface Refinement 

The proof of sequential consistency will be based on our notion of interface refinement. The approach 
that we shall use is based on a much streamlined version of the one published in [GKS92]. This 
section intends to supply a quick introduction to interface refinement and a (derived) proof rule that is 
specifically engineered for proving sequential consistency. A full account of the general, streamlined 
approach will be published elsewhere. 

We assume some general knowledge of linear temporal logic and of transition systems. 

If we compare the definitions of sequential consistency 

C 8.C. A iff Va E Beh(C) 3r E Beh(A) Vi = l ... n (7 ii = r ii 

and that of standard (trace) refinement 

C ref il iff Va E Beh(C) 3r E Beh(A) a = r 

we detect a pattern: 

C refn A iff Va E Beh(C) 3r E Beh(A) (7,r) E R 

I.e., these cases can be viewed as refinements, except that the way in which an abstract behavior (7 gets 
implemented as r may change. Consequently. the refinement relation is parameterized with a relation 
R that determines how behaviors are implemented. For example, the relation is that of equality for 
ordinary refinement. This pattern is also shared by, e.g., the condition of serializebility of database 
transactions and by Lamport's 'stutter closed' refinement. 

We assume that such relations are specified in some logic. I.e., a relation R is now given by a 
formula 1> and (a, r) E R iff a, r F 1>, for a suitably defined satisfaction relation F. 

The logic will be a linear temporal logic (LTL); although we shall only use always (D) and 
eventuality (0) propel1ies. An LTL is usually valuated on (infinite) sequences of states. To express 
constraints on (internal) behaviors, we aSSUme the logic to be extended with a history variable h that 
valuates at a point in a state sequence to the sequence of events that have occurred up to this point. A 
second complication is that here, the LTL is used to compare two state sequences. By convention, two 
(equal length) state sequences determine a single such sequence through taking the pointwise product 
of the states in the sequences. In the logic we can then use projection functions to refer to the separate 
sequences again. Write h" and h" for the projections of history h; 'c' for concrete and'a' for abstract. 

We need to establish some notation. We generically assume that C and A are interpreted transition 
systems that have disjoint sets of (free) variables; see M,,,;,i or Jv1d;,'.r for examples. Write S( A) for 
the set of states of A; I( A) for its initial states; and'" ~ Sf in A' if the event", is executed in state 
s of A and produces state Sf. Remember that these states also valuate the variables; in particular the 
variable h, so that s(h) = E if S E i( A) and if s ~ Sf in A then sf(h) = s(h ra. We often write just 
8 ~ Sf if the transition system is clear from the context. Write [A] for the set of maximal sequences 
of states, obtained by repeatedly applying ~ starting in some initial state of A. We assume that 
there are no finite state sequences in [A]; as is the case for e.g. M,eri,i and Md;,tr' Because states 
valuate h, every state sequence a E [/I] uniquely determines an event sequence, a e E IBeh(A); 
hence lBeh(A) = {ae I a E [A]}. For states" and t. write '"xl' for their product or pairing. For 
(infinite) sequences of states a and r write aXr for the sequence obtained by the pointwise product 
of the states in a and r. Write'H for the set of (finite) event sequences h, hf, .... History variables 
take there value from 'H. 

30 



Definition 3.1.1 (Interface refinement) Let 1> be some LTLformula. Then 

C ref¢ A iff Va E [C] 3T E [A] aXT 1= 1>. 

For example, standard trace refinement, C ref A, is defined as C ref ¢ A by taking, e.g., 

1> == 04> and 4> == last(he) = last(ha ) . 

For a E [C] and T E [A] we have by definition of 0 that a X T 1= 1> holds just in case ax T, k 1= 1> 
holds at every position k; i.e., for every state pair in a X T. If s x t is the k-th such state pair, then this 
is equivalent to -'x/. 1= 4> which holds precisely if(j) lasl.(s(h)) = last(t(h)). I.e., (8xt)(he) = 8(h) 
and (sxt)(h a ) = I.(h). Thus, (tl expresses that the event that produced s in C is the same as the one 
that produced t in A. 

3.1.1 Sequential consistency as interface refinement 

For this we make a simplifying assumption 

Every process issues infinitely many writes to Mdi.wr. Stated differently, on any a E [Mdis/r] 
and for any i = I ... 11, a e r i contains infinitely may Wi events. 

This simplification is not essential for the proof; it does make it slightly easier. 

Sequential consistency is a condition on maximal, hence, infinite sequences. To express this in 
an LTL, we must rewrite to a condition on states, i.e., on prefixes of the sequences, that must hold at 
various points along the sequences. A first try is 

Aldisl-r s.c. j\{~eJ'ial iff A1distr refq<; J\lseria,[ with <i> = 0 !\i=l...n ¢i and 

4>i 3H (he = H II OIl ri :< h" ri) 
In (T X T 1= 4>i, the function of the quantification is to 'freeze' prefixes of the distributed behavior (7 

so that they can be matched against prefixes of the serial behavior T. As every prefix of (7 is eventually 
matched against a prefix of T and because (T is infinite, we must have (7 ri = T rio 

Another way of doing this is to associate with every prefix of T a prefix of a that can be matched 
against it. This approach leads to an easier proof. Now, however, we must make sure that we match 
ever longer prefixes of (T. Hence, we change 4>; by replacing the existentially quantified temporal 
variable IT by a 'choice function' fi that maps a history to a prefix of that history. Say that I: 1i -+ 1i 
increases i.o. on A iff for every chain ",0 :< 11.1 ••• such that limn~= hn = IBeh(A) we have 

lim,<-oo l.f;(h") 1 = 00. Then 

Lemma 3.1.2 Mdi",,· s.c. Mwial iff Mdi.,,,· ref¢ M.,eriul with 1> = 01\;=1 ... " 1>i and 

fi(ho) ri :< 11.1 ri for some Ii that increases i.o. on Mdi.,tr (3.1) 

For completeness sake, we supply a proof. It is basically expanding definitions: 

Proof. The left to right direction is obvious. Now assume that MdiJtr s.c. M.I·erial is not true. So, for some 
(T = 50S I ... E [MII;.,tr] and for every T E [M.I"t"rilll] we have (T€ r i "# T€ r i for some i. Fix such au, i and T, and 
take any Ii that increases i.n. on Mdi.l/r. 

For some index j we must have (SOSI ... Sj Y f i ::; T€ fi and (SOSL ... Sj+I)€ fi t r e ri which is equivalent 
to Sj (h) Ii :< T' Ii hut sH' (h) I i to T' Ii. Now, consider D<pi. As f; increases i.o. on M,/i,'n there is an index 
" such that Hj +, (h) :S f;( sdh )). But then IT, T, k P'o <Pi whence IT, T P'o <p. Since this conclusion holds for every 
T E [Mwr;af] and any .Ii. we conclude that MII;slr ref rP M.ler;a! cannot hold. 0 

31 



3.1.2 A proof rule 

The first step in verifying sequential consistency C ref ~ A, or interface refinement in general, is to 
relate behaviors in the two systems with each other. The second step is then to prove that related 
behaviors satisfy the appropriate specification 

A general technique for relating state sequences is that of simulation (backward or forward 
simulation, possibility mappings, implementation functions). 

Definition 3.1.3 (Weak simulation) Given transition systems C and A, a relation R <;; 5( C) X 5(A) 
is a weak simulation of C in ii, C ~ R A, provided 

I. for any 8 E l(C) there isant E I(A) such that (s,l) E R, 

2. if( 8,1) Eiland 8 ~ s' in C then there is an I.' E 5 (A) such that (s', I.') E R and either there 

is an event (J such that t ~'--. I' in A ar I. = /' (we say (3 = f in this case) 

The inductive clause (2) is illustrated in the figure I. (J I' 

on the right. Given a state sequence (T E [CI, a weak J'( -----------~\/I: R A 
simulation C ~ II A constructs a state sequence T of A L 

in which every state in T is related to some state in a. 
However, we do not necessarily have T E [AI. First of 0" 

all, A may have fairness constraints which T may violate. s of, C 
Secondly, T may be finite because from some moment onwards R relates the transitions in a with f 

transitions 'in' T. Fairness constraints are no problem for us, as M",;,i will play the role of A and it 
does not have fairness constraints. Forcing T to be infinite will be done implicitly, later on. 

II is called a weak simulation because A is allowed to 'stutter' and because there are no constraints 
on the events of the transitions of C and A. nor on the related states. This is different from more 
standard forms of simulation where there are constraints on the events--e.g., 0" == (3-oron the related 
states. 

In our view, such condition are really implicitly defining how behaviors must be implemented 
and that is precisely what we want to avoid at this point. E.g., forcing 0" == (3 in related transitions is 
forcing related sequences to be equal. If we set up such a stronger simulation between the states of C 
and A we are showing ordinary refinement. 

Given a weak simulation, C ~lI. fI, the second step is to show that R-related sequences a and 
T satisfy (TXT 1= 0/. For sequential consistency this is easy, as it reduces to proving cPi for every 
i = I ... J/. in every related state pair. 

This observation immediately suggests the proof rule in Figure 3.1. 

A and C are transition systems such that il has no fairness constraints I : 

C ~II A, VB, I ($, I) E R '* sxt F 0/; (i = 1 .. . 11.) 

with o/i == Ii("o) fi :::0 1/.1 Ii for some Ii that increases i.o. on C 

Figure 3. I: Proof rule for establishing sequential consistency 

32 



Soundness of the rule is immediate. Observe that because Ii must increase i.o. on C so that <1>, 
maps ever longer prefixes of [CI to prefixes of [AI. the weak simulation R cannot associate a finite 
state sequence of [AI to one in [Cj. 

The proof rule for general interface refinement. C ref ¢ A. is based on the same ideas. The first 
step. again. is establishing a weak simulation. The second step changes because now <I> need not be 
of the form oqs and it is this form that determined the second premiss in rule 3.1. For instance. if 
<P '" OOqs for some state assertion qs. then we need to establish qs at infinitely many state pairs along 
every pair of }l-related state sequences. For this we introduce an auxiliary state formula d such that 

C 1= DOd and demand that (s, t) E R & s 1= rl =} sxi 1= qs. In case <I> '" 00<1>' 1\ 0<1>" we would 
use two auxiliary state assertions el' and el" such that C 1= OOel' 1\ Od", etc. The normal form result 
of [MP9 I 1 tells us that a finite number of auxiliary formulae always suffices. Specifically. we have that 
for every TL formula 4' (without quantifiers) there is a propositional TL formula 'I' with propositional 

variables 1'1 ..... 1'" and state formulae <PI ..... <P" such that 1= <P <-+ 'I'[<I>J/P!' ... ,<I>n/Pnj, where 
. /. denotes syntactic substitution; we usually write '1'( <PI, ... <1>,,). The following proof rule applies 
to the general casco 

A and C are transition systems such that A has no fairness constraints; 'I' is a propositional TL formula 
with propositional variables 1'1 •.. " p,,; and <PI •..• , <P" and ell, ••• , d" are state formulae. 

1= 'I'(<p[, .. ·<p"l ~ <P 
C 1= 'I'(el l , ... , el"l 
C~HA 

sl=d;&(s,t)ER. =} sxtl=<Pi (i= 1 ... 71) 
1= C ref¢ A 

Figure 3.2: Proof rule for general interface refinement 

The sequential consistency proof rule is obtained by taking di = true and by noting that the 
formula in Lemma 3.1.2 is in normal form. 

3.2 Correctness Proof of M h,/,. s.c. M",;"! 

3.2.1 Constructing a weak simulation R 

The problem in defining a simulation is to decide when to 'allow' the serial memory to make a 
tmnsition. 

In the situation indicated on the right, (3 should not 
be the corresponding Witt!, a)-event. If it is, Hi (e, 0.)
actions in the distributed memory that read an earlier 
value c at location II become disabled in the serial 
memory. This suggests that the corresponding serial 
write be postponed until the write has been completed. 

1I( ----~,:,-~)---~)R M"." 
~ ___ ....c.::"":'-'-__ -M.' Md"'T 

! Formally: [A] must he dosed in the sense thill for any chain 0"0 :5 0'1 :5 .. . for which Vi 3u E [A] qi :5 u we have 
limi_= ,,' E [A] 

33 



that is, until no processor can read an older value from 
the distributed memory system, i.e., from its cache. 
As a consequence, any read-action that reads the value of an uncompleted write-action is postponed 
as well. 

We shall define R inductively, using a dag <h. Given a state s of Md;,'" the minimal elements of 
<5(h)' i.e., the elements that are not the target of any edge in the dag, define the actions that M",iai 

can 'safely' execute. E.g., a write event a in 8(h) cannot be minimal as long as the event is still not 
completed and a rcad event, Ri ( d, 0.), is not minimal as long as the write event that writes value d at 
location a. has not occurred. Then, if (s, t.) E Rand s ~ s' we take (s', t.') E R for any t' such that 

I. L I.' where (3 is a minimal (enabled) event in <,'(h) that has not yet appeared in t(h) (or £ if there 
are none). 

Thus, along a state sequence .5(l.51 ... of M,I;,'r the dag <siehl functions as a scheduler of the 
events of M""i, , and forces the R-related M""i,,1 computation t.ol·1 ... to be always compatible with 
8(lSI ... so that at no point we can have Siehl ri -L (lOt.I ... )e rio 

In order to formalize the above ideas, we adapt the transition system of Md;",; see Figure 3.3. 
Every write-action uniquely tags the value that it writes so that cache and memory update actions can 
be traced back to the specific action that 'caused' them. 

Obviously, we still have 

Lemma 3.2.1 Beh(M~;",.) = Beh(M,h,w) 

This is because Cit 0.) = din M""i,,1 iff 3n C;( 0.) = d*n in Mdi,', and the enabling condition of the 
other events are independent from any specific value of the data. 

Since actions can occur more than once on behaviors the subsequent discussion is couched in 
terms of events, i.e., action-occurrences: (k, a)' is the k-th occurrence of a type( IT )-action in the 
behavior or history under discussion, where type( IY) is defined as R; or Wi depending on whether 
(y == Ri ( d, a) or IY == Wit d, a) for some d, (l. Also write addr( (y) for the location that the action IT 

refers to. Write Acti for the i-labeled actions and E:l:ti for the i-labeled external actions. 
For uniformity of notation and proof, the initial values of the memory are represented as pseudo

actions WorD, a) for every location a.. Every Mj;",-behavior is implicitly prepended with a sequence 
(Wo(O, a.)L where tl ranges over all locations. 

From flVlV Ofl, II. (11.') will deflote prefixes of distributed (serial) memory internal behaviors 

We define the following predicates. The more complex definitions are preceded by their intuitive 
meamng: 

• (k, a) occurs in h iff '-' occurs in II. (i.e., h = holYhl for some ho, '1-1) and h contains at least 
k occun'ences of type(l.> )-events 

• (k,a) occurs before (1,(3) in II. iff(I,(3) occurS in II. and there is a prefix 11.' of h such that 
(k, IY) occurs ill h' but not (I, (3) occurs in h' 

• (k, Wi(d,a)) is completed in Ii ifflfj = I ... n CUj(rl*("'*i), ,,) occurs ill h 

• 0 completes (k, (3) in h iff not (k, (3) is completed in II. but (k, (3) is completed in hIT 

34 



E\ 

vi 

vi 

Event 

R;(r!,a) 

W;(r!,o) 

MW;(d, a) 

MR;(d,a) 

CU;(d,a) 

Cli 

Initially: 

Fairness: 

Allowed if 

C;( a) = d*n for some n 
flOuti = {} 
1\ no *-ed entries in lUi 

head(Outi) = (d,a) 

Action 

ti := ti + I; 
Outi := append( Out" (d*!t,*i), a)) 

Mem[aJ:= d; 
Outi := tail( Out,); 
(Ilk i i :: Ink := append(Ink' (d, a))); 
In; := append(Ini' (d, a,.)) 

Mem.[aJ = d Ini:= append(In,,(d,a)) 

hcad(IlI;) is either 
(d, a) or (d, a, .) lni:= tail(Ini); Ci := update( C" d, a) 

C; := f·e8trict.( Ci) 

Va Mem[aJ = 0*0 
fI IIi = I ... II. Ci C Mel//. fI Ini = {} fI Outi = {} fI ti = 0 
no action other than Cli can be always enabled but never taken 

MW-memory write 
CU-cache update 

M R-memory read 
CI-cache invalidate 

.*. is some pairing function; say '11,*111, = 2n 3m . 

Figure 3.3: Adapted MJ:", 

• (A:,,,) is read by (I, (3) in h iff (k, ,,) is the (unique) write-event that caused the value read 
by (I, (3) to be written. By convention, write-events are always read by themselves. More 
formally: 

(1,f3) occurs in II. and (i)fi is a write-event and (k,a) = (l,f3) or (ii) fi == Ri(d,a) for some 
i, d, a, 0' == W j (d, a) for some .i and either j i 0 and the last CUi-event before (I, (3) in h that 
refers to location a writes value d*(hj) or j = 0, k = 0, d = 0 and there are no CU-events 
before (I, (3) in II. that refer to location a 

• (h:, Wit d, a)) distributes before (I, WJ ( d', a')) in II. iff every cache 'sees' (i.e., is affected 
by) the (A:, Wi(d, all-event before it sees the second event. More formally: 

A: = i = d = 0 or (k, MWi( d*(hi), a)) occurs before (I, MWj(d'*(I*j), a')) in h 

• (A:, Ri( d, a)) reads before (l, W j ( d', a)) in II. iff (h" Ri( d, Il)) reads a value at an address that 
will be overwritten by the (I, Wi(d', all-event. More formally: 

for some (m,W,,(d,n)) we have that (m,Wk(d,a)) is read by (k,Ri(d,a)) in h and 
(111, Wk( d, a)) distributes before (I, Wi ( d', a)) in II 

35 



• (Ie, 0') is ready in h, h' iff Ie > 0,0' is the k-th type( n )-event in h and there are precisely k - I 
type( n )-events in h' 

We now state some important properties of the caching protocol. The whole correctness proof 
will be based on just these properties of M di,/,·. 

Lemma 3_2.2 Let k > 0 and (I.:, 0') oF (I, (3). The following formulae are invariants of Mrs,,: 

1. (A:, Ri(d, a)) occurs in h --> (I, Wi ( d, all is read by (k, Ri( d, a)) in hfor 
some (I, Wj(d, a)) 

2. (h"") occurs in h 1\ type(,,) = Wi --> O( k,") is eompleted in h 

3. (k, a) is read by (I, (3) in h --> (h',,,) occurs before (I, (3) in h 

4. (I.:, MWi(d,II)) occurs before (I, MWi(d', a')) in h--> 
.(1, CU J( d',' a)) occurs before (k, CU J( d, a)) in h 

5. a E Acti 1\ (3 E Acti --+ 

(1.:,0") reads before (I, (3) in h --+ (k, cr) occurs before (I, (3) in h 
1\ (Ie, cr) distributes before (1,(3) in h --+ (k, a) occurs before (1,(3) in h 

6. "E Acti 1\ (3 E Acti 1\ " == Wit d, II) 1\ (Ie,,,) occurs before (I, (3) in h --+ 

type((3) = Wi --+ (k,,,) distributes before (l, (3) in h 
1\ type((3) = Ri --+ (k, CUi ( d*( hi), a.)) occurS before (l, (3) in h 
1\ (/,(3) is completed in h --+ (I.:, cr) is completed in h 

7. (h" Wi(d', a')) occurs hefore (l, R i( d, n)) in h 
1\ (I, R;( d, a)) reads before (1/1., Wit rI, a)) in h --+ 

( h" W;( d', a')) distributes before (m., Wj ( rI, a)) in h 

Proof. We shall nut give completely formal proofs here. 

(I) Every value needs to he written; rememher the convention to prepend histories with virtual (0, Wo(O, a)
actions. 

(2) This is a consequence of the birncss constraint on M3;,'TI' and the fact that MWi and CUi-events are enabled 
as long as Oufl: and 1I1i arc non-empty. 

(3) 1l1is follows from the unique lagging of the data heing wrilten 

(4) Follows fromlhe facllhal (d, a) cnlers queue 111.f before (d', a') docs. 

(5) Lei" == Ri(d, a), (3 == Wild', a) and let (m, ,) is read by (k, ttl in h with, == Wj(d, a). Since 
(111, Wj(d, a)) distributes before (I, Wild', a)) in h by definilion of reads before, (I, MWi(d'*(m*i), aJ) 
occurs before (k, 0) in h would entaillhal not (1/1, ,) is read by (k, tt) in h holds: "becomes enabled only 
after Oulf is flushed and Il1i does not contain any *-ed entries but (d'*(I*i) , Q., *) enters lni after (d*(m*i), a) 

docs. The second implication is proven analogously 

(6) Follows from the fact that Wi events are queued in OUli and that a suhsequent Ri event flushes the Outi 

queue and the *-cd entries in the 1m queue as well (; rememher that a {IVi event eventually contributes a *-ed 
entry to Illi). 

(7) Lei (j) (n,W,.(d,a)) is read by (I,Ri(d,a)) in h. Bydclinitionofreads before we have (n,W,(d,a)) 
distributes before (m, Wj (,I, (I)) in h. If the consequent is false then we also have (m, Wj (d, a)) distributes 
before (k, Wit d', fI') in h. We oblain (n', CU,l d*( 11*,.), a) occurs before (m', CUi (d*( "aj) , a)) in hand 
(!II', CUi( <I*CtJI*j), 0) occurs before (k', CUi(d'*(hi), a'») in h. As Wi(d', a') and Ri ( d, a) both originate 
in Ihe same process, we musl have (I:', CUi(d'*(hi), a')) occurs before (I, Ri(d, aJ) in h. This contradicts (I) 
since this CUi-event processes a *-ed entry in In,. 0 

36 



Now we can define the dag and the simulation relation based on it: 

Dag <h 

Define the dag <h on the set 

{( ':, a) I k > 0, a is the k-th type( a)-event in h} U {1.} 

as the smallest relation satisfying 

I. if a,fJ E Ad; and (k, a) occurs before (l,fJ) in h then (k,a) <h (l,fJ) 

2. if(k,a) is read by (I,jJ)inhthen(k,a) <h (I,fJ) 

3. if (h:, a) reads before (I, fJ) in h then (k, a) <h (I, jJ) 

4. if (k, a) distributes before (I, jJ) in h then (k, a) <h (I, fJ) 

5. ifnot (k, a) is completed in h then 1. <h (':, a) 

Here, we write II <h Ii to indicate that the dag has an edge from 1£ to V. 

Simulation R. 

The simulation relation Il is inductively defined as the smallest relation that includes the pairs (8, t) 
for initial states 8 of M,L'T and t of M.m;n! and that satisfies for all (8, t) E R. and 8 ~ 8' that there 

is a state I' and an event fJ such that (s', I') E /I, and /. .!!.... I' subject to the following constraint: 

I fJ I.' R( -----------~> 
~ n _, 
.5 s' 

LetT = min«,'(h) iR",,) with 
RH',t = {(k, a) I (k,O') is ready in s'(h), t(h)} U {1.}. 
If T n Acl = 0 then fJ = T else there is an I such that 
(I,jJ) E T. Moreover, if 0' completes (n,,) in 8(h) and 
, E Adi then (l,fJ) E Tn Acti 

So, M'''''in! executes an action that is minimal in the dag determined by s'(h) from which all events 
that have already occured in I(h) are removed. To ensure that M"rial executes actions from every 
Pi, there is the additional constraint that if M,li,tT completes a Pi-write action from 8 then M"rial 

must execute a Pi-action from I. It is only at such points that we can be sure that there is a Pi-action 
amongst the minimal ones. 

Lemma 3.2.3 

1. Let (8, I) E II and 8 --"-+ 8' (ill M~;"",.). Theil for every fJ '" 1., if (I, fJ) E mini <"(h) fRs',,) for 
some /, then;J is enabled ill 1. 

2. MI,,,. 1= 0(( k, a) E dom( <h) ~ O(k, a) E mini <h)) 

37 



We defer the proof of Clause (I); Clause (2) is a direct consequence of Lemma 3.2.2(2) and the 
fact that each process issues infinitely many writes. 

From the inductive definition of R, Lemma 3.2.2(2) and Lemma 3.2.3(1), we immediately conclude 

that MY;,'r '-+ Jl. M.W'i,l; provided we can show that <h is indeed a dag so that minimal elements 
always exists. 

Theorem 3.2.4 <h is a dag. 

The proof is based on a Lemma that relates the ordering of MW-events to the ordering of read and 
write events. 

Write (k" a) <t (l, 1') to indicate that the dag <h admits a path from (k, a) to (1,1'). 

Lemma 3.2.5 Lei (h:, Wi(d, 0)) <t (1,1') . 

• If I' = R.i(d', fI') then (h:, MWi(d*(hi), a.) occurs before (1,1') in h 

• If I' = Wit d', fI') then (k" Wit d, 0)) distributes before (I, W k( d', a'll in II, 

Proof. We usc induction along a path from (I:, W,( d, a)) to (I, (3). Let a == Wi (d, a) and (3 E Act;. 

Firstassumc that(k,o) <h (l,{3). Thencither(i)j = iand (k,a) occurs before (I,{3) in h or (ii) j oF i and 
(l" n) is read by (I, (3) in h or (I:, t» distributes before (I, (3) in h. For case (i) the Lemma follows from 
Lemma 3.2.2(6). Case (ii) follows immediately from the definitions of the is read by and distributes before 
relations. 

Next, suppose that (1:,0') <t (m,,) <h (I,{3). By induction the Lemma holds for (k,a-) <t (m,,). 
According to the definition of <h there arc four cascs. If, fie Act; and (m, ,) reads before (I, (3) in h, then the 
result follows from Lemma 3.2.2(7). The other cases arc as (i) and (ii) above. 0 

We are ready to show that <h is a dag 

Proof of Theorem 3.2.4. Suppose that <h admits a cycle. Then, we must have (k, a) <t (T, jJ) and 
(T, jJ) <t (x:, (l) for some ii and jJ. Wl.o.g., we may assume that (k, ,,) <h (T, jJ). So, by definition of <h, 
there must be an (111, '1') such that (7, jJ) <t (,1" '1') <t (l:,6-) and not (Y, jJ, '1' E Acti for some i. 

By transitivity of <t this means that we have (Al( 1:, Wi(d, a) is read by (I, (3) in hand (/, (3) <t (k, Wi(d, a») 
or (B) (l', W; (d, a») distrihutes hefore (I, (3) in if and (I, (3) <t (k, W;( d, a») or (C) (k, 1» reads before 
(I, W;( d, [I) in hand (I, Wit d, a)) <7 (k, II') with t>, {3 fie Acti. We immediately obtain (k, MWi(d*( hi), a») 
occurs before (/', W;(d, a)) in if for case (A) and hy Lemma 3.2.5 (k, MWi(d * (k * i), a») occurs before 
(I:, MW;(d * (I: * i), a)) in It 1(" case (B) and (I, MWi (d*(I*i), a)) occurs before (k,I» in h for case (C). 
The first two cases give immediate contradictions; the last one via Lemma 3.2.2(7) from which we infer that 
(I, W;(d, a») distributes before (I, W;(d, a)) in h which is impossible. 0 

There remains the proof that minimal elements of <h are always enabled. For this, we need the 
following two trivial facts about A1sn-i!d. 

I. Wit d, a) is enabled in any state, 

2. Ri ( £I, a) is enabled in state I. iff the last write-event in t.(h) that referred to location a has the 
form Wj(d, tI) for some.i 

38 



Proof of Lemma 3.2.3(1). In the proof we refer to the figure in thedefinition of the simulation R on Page 37. 
First observe that (h:, -y) E dome <"'(h») implies that (k, -y) occurs in s'(h) for any (k,-y). This is immediate 
from the detinition of <II. 

Since writes arc always enabled we may assume that {J := Rj (d, a). Now, suppose that f3 is not enabled in 
t.. Then the last write evcnllhat referred to location a in I.(h) was 0' == Wi(d', a) for some i with d' #- d; let 
this be the k -/.II W;-event in t(h). Since (k, tt) occurs in t(II). we must have (k, fr) is completed in s(h) by 
definition of R. As (I, (3) occurs in ,,'(h) we have (1/, -y) is read by (I, (3) in s'(h) for some nand -y '" Wr(d, a) 
so that (1/, -y) <,'(h) (I, (3). Also. since (I, (3) E mine <"'(10) r R",,) we must have (n, ')') is completed in s(h). 

Now, if( I, (3) reads before (l" ,,) in s' (h) then (I, (3) <,'(h) (k, fr), whereas (k, fr) occnrs in t(h) but not 
(I, (3) occurs in t(h). This contradicts the definition of R. 

Hence, since both write actions arc completed we must have (k, C\') distributes before (n, ')') in s'(h). We 
conclude that (k, oj <,'(h) (11, -y) so that we cannot have (n, -y) occurs before (k, fr) in t(h). As (k, a) is the 
last write event referring to location a in t(h), we must have (n, ')') E dome <,'(h) rR",,) so that (I, (3) is not 
minimal. Contrad'lcflOll. 

We conclude that (j' cannot he of this form and, hence, that f3 is enabled in t. o 

3.2.2 Concluding the proof 

For the last step of verifying that ('" I.) E 11. ~ s xl. F <Pi for every i. = I .. . 71, we need to instantiate 

the choice functions f; and define 

fJiI) = I,' 

"i(lw) = 

where h' is the prefix of h such that Ih'l = ni(h) with 

1I.i inductively defined by nit £) = 0 and 

{ 
1Ii( h) + I, if" completes (11,1') in h II , E Acti 
1I.i(h), otherWIse 

So, the length of f;(h) is the number of completed Wi-events in h. This is the obvious choice 
because the definition of n guarantees that i\{~cria.1 performs a Pi-action, only in case Mdistr completes 

a Wi-action. 
By Lemma 3.2.2(3) and the assumption that every processor contributes infinitely many writes, 

each Ii increases 1.0. on lHd!:str. 

Now, fix some i = 1 ... 11. and ($, t.) E R. As <Pi '" fiChe) fi :0 ha fi., we have to show that 

fi(s(h)) fi:o t(h) fi. 
Since both 11. and f; are defined inductively, we prove this inductively. 

The base case is clear as then ,,(h) = I(h) = f and 1Ii( f) = O. 

For the inductive step, we may assume that fi(s'(h)) fi i t(h) fi.. We refer to the definition 

of 11. on Page 37. Hence, we must have (i) "completes (m,,) in 8(h) with, E Acti. Let 
J;(.,'(h)) fi = f,(8(h)) fi'b and let b be the 1I-th event of type(5). Then, (ii) (71,6) is ready in 

,,'(h), /.(h) must be true. By induction, it suffices to prove that 5", (3, where (3 is the transition taken 

in I. according to R. 
From Clause 2 in the definition of <s'(h)' we have 1- fs'(h) (m,,),) so that T n Act; io 0 by 

Lemma 3.2.3(1). In fact IT n Aclil = I as Clause (1) says that <,'(h) extends the ordering on event 
occurrences induced by ,,'(h) fi .. Because (i) holds, we know from Lemma 3.2.2(6) that for any Wi 

event 6, if (1·,6) occurs ill 8(li(h)) then (1', b) is completed in s(li(h)); whence 1- fs'(h) (1',6). 
By (ii) and the fact that 1- is never covered by read events, we then have (n, 6) E Tn Acti and also 

Ii '" (3 since (l, (3) E 'I' n A eli for some I by definition of 11,. 

39 



3.3 Conclusions 

We have worked out the proof in considerable detail. The proof rule demands that a weak simulation 
be constructed as the first stcp. This can be interpreted as defining a scheduler that schedules the 
appropriate event in M"";,i for every Md;",-event. For verifying sequential consistency this is a 
quite natural approach because the purpose of the protocol is to ensure that the event sequences 
that each process engages in can also be obtained from a serial memory. In this respect, there is a 
correspondence with the verification approach of [ABM93]. An important ingredient of the proof 
is the 'delayed' checking of sequential consistency of prefixes, which is inherent to our approach to 
interface refinement. This makes the definition of <h easier, although a penalty is paid in the form of 
a slightly more complex proof of Lemma 3.2.3( I). In contrast, the scheduler used in [ABM93] needs 
to maintain sequential consistency of the complete history instead of (ever longer) prefixes of history. 

The actual proof tries to abstract from the details of the protocol. I.e., <h is defined in terms 
of some relations on the external behavior of the protocol and the proof is based on a number of 
correctness properties of the protocol. For the same reason, we have not used auxiliary variables other 
than for the purpose of making events unique. In fact, we view this proof as a first step towards a 
proper analysis of sequcntial consistency: The dag <h characterizes the constraints that the protocol 
maintains in order to generate sequentially consistent behavior. However, as is, <h is defined using 
internal events of Md;.",; e.g., the distributes before relation refers to MW-events. Accordingly, one 
might ask for the weakest online2 scheduler defined in terms of constraints on the external events only 
that maintains sequential consistency. In fact, we have already obtained more efficient protocols for 
network based architectures and are generalizing the protocols towards weaker memory models such 
as release consistency. 

Acknowledgments 

We thank Ruurd Kuiper for his help and Michael Merritt for posing the problem and for catching the 
last bug in the definition of <h. 

21n the sense of only depending on the current state. 

40 



Chapter 4 

Characterization of a Sequentially 
Consistent Memory and Verification of a 
Cache Memory by Abstraction 

S.Graf 

41 



4.1 Introduction 

We propose to verify the distributed cache memory presented in [ABM93] and [Ger95] by using the 
verification method proposed in [BBLS92, LGS+94, CGL92, Lon93]. This method, based on the 
principle of abstract interpretation [CC77], proposes to verify a set of'tcrL' [SG90] formulas on 
a composed program, as follows: define an appropriate abstract program, obtained compositionally 
from the given program, and verify the required properties on it. Our way of computing abstract 
programs is very simi lar to that proposed in [CGL92, Lon93], but our concept of compositionality 
is different from that proposed in [Lon93] or in [Pnu85]. We construct a global abstraction of the 
system by composing abstractions of its components, whereas the other method consists in deducing 
properties of the composed system from properties of its components. Both approaches are useful, 
but in the distributed cache memory that we want to verify the global properties cannot be deduced 
easily from properties of the components. An abstraction of each component is obtained applying the 
principle of abstract interpretation by means of a relation I! relating the domain of its variables and 
the domain of the set of some abstract variables. 

In [GL93, Loi94] is described a tool allowing to verify finite state systems in a fully automatic 
way by using this method. Here, we show that the same method is also tractable in practice for infinite 
state systems where a complete automatization is not possible. In fact, if - depending on the formula 
one wants to verify - for each component P,: one can guess an appropriate abstraction relation I!i 

verification becomcs often a relativcly simple task as 

• the corresponding finite state abstract program is reasonably easy to obtain, 

• the verification of the properties on the obtained abstract program can be done fully automati
cally. 

Despite the fact that 'v'CTL'" contains also lil'eness propclties, this method does in general not support 

directly the verification of livencss propcrties as they do not hold on most of the finite abstractions. 
Here, we verify livencss property of the cache memory by applying the induction rules given in 
[Pnu85, JPR94] to a set of safety propel1ies. 

In Section 4.2, we recall all the ingredients we need for our verification method: 

• a simple program formalism similar to that used e. g., in [Pnu86], 

• a method to compute abstract programs, consisting in defining for each operator on the concrete 
domains a corresponding ah.l"lrac( operator- the only step in the proposed method that cannot 
be fully automated, 

• the temporal logic CTL* and its fragments, used for the description of properties, 

• the preservation results allowing to deduce the validity of a property on the concrete program 
from its validity on the abstract program and 

• the compositionalityresults allowing to compute an abstract program by composing abstractions 
of its components. 

We illustrate all the definitions and results on a small buffer example. In Section 4.3, we give a set 
of temporal logic formulas guaranteeing that whenever a system satisfies it, then it is a "sequentially 
consistent memory" [Lam79]. This set has been chosen in such a way that its satisfaction on a given 

42 



program can be deduced from the satisfaction of a finite number of representatives. In Section 4.4, 
we verify this set of properties on the distributed cache memory system. It turns out that, using our 
method, this verification is almost as simple as the verification of the tiny buffer, as we need almost 
the the same abstract operations. 

4.2 A verification method using abstraction 

4.2.1 A program description formalism 

We adopt a simple program formalism which is not meant as a real programming language but which 
is sufficient to illustrate our method. A complex system is a parallel composition of basic programs 
of the following form 

Name: 

Variables: 

Transitions: 

Initial States: 

P 

:1:1: Til ... ,:I:1/-: 1~~ 

(C 1) act.ionl (:l: I , "":/:m ;l;~, ... ,x~J 

(C1-') acl:ionp (:1:I, ..• ,:t: m ;r~, ... ,:l:~J 

init,(:1; I, ... , :l:n) 

where P is an identifier used to refer to the program in a composition expression, Xi are variables 
of type Ti and Lp = {fl' ... , f,,} is the set of program labels. Each actioni is an expression with 
variables in the set of program variables and a set of primed variables which is a copy of the set of 
state variables; as in [Pnu86, Lam95], act.ioni represents a transition relation on the domain of the 
program variables by interpreting the valuations of Xp = (x" ... , xn) as the state before, and the 
valuations of X;, = (,,:~, ... , ',,:J as the state after the transition. We denote the set of valuations of 
Xl' by 11 a{(X 1'). 

Semantics: Program P defines in an obvious manner a transition system S p = (Q p, Rp) where 

• Q I' = 11 aJ( X 1') is the set of states, 

• 11.1' C;; Q P x Q p is a transition relation defined by Rp = {( g, g') I 3i . actioni( q, q')}. 

The predicate i7lil defines the set of initial states. It is used in the formulas specifying the program: 
properties are in general of the formi,nil='>1> where 1> expresses the property one wants to verify. 

We do not distinguish variables representing inputs as they need not be treated in a particular 
manner. However, we annotate in the programs the variables which are meant as inputs as this makes 
programs easier to read. 

Labels are used to name "events" or "actions". If fi is a label and ('/I, '/I') a pair of valuations such 
that action;( v, v') is true, then the transition from state v to state v' is an event f. If e is the valuation 
of the "input" variables extracted from v, then we call this event also fi(e), Events are used for the 
expression of propert'les. 

Example 4.2.1 (an infinite lossy buffer) The following program represents an unbounded buffer 
taking as input elements e of"ome data domain elem. The event J11tsh( e) enters e (ifit has never been 
entered yet) into the buffer or arbitrarily "loses" it, and J1oJ1(e) takes e out of the buffer if it is itsfirst 
element. 

43 



Name: lossy buffer 

Variables: e : elem (Input) 
E : sel. of elem (already occurred events push(e)) 
B : buffc'" of elem 

Transitions: (push(e)) allollJed( c, E, E') f\ (append( B, e, B') V uneh( B)) 
(pop(e)) firsl.(B, c) f\ l.ail(B, e, B') f\ uneh(E) 

Initial States: empl.y(Ii) 

E contains the elements e such that push( e) has already occurred, and allowed( e, E, E') is necessarily 
false if e E E. All other predicates have the intuitive meanings: append(B, e, B') holds if B' is 
obtained by appending element e at the end of the buffer 13; tail( B, e, B') holds if B' is obtained by 
eliminating e from Il if c is its first element (first(ll, e) is true) otherwise B' = B; empty(B) is true 
if l] is the empty buffer. uneh(X), where X = "1, ... ";n is a tuple of program variables, represents 
the transition relation which lets all variables in X unchanged, i. e., uneh(X) = A(,,; = "i). 

We use predicates of the form nppwd(B, e, B') instead of 13' = Append( B, e) where Append is 
a function, as abstract operations are in general nondeterministic. This is also the way of representing 
operations which is proposed, e. g. in [CGL92, Lam95]. 

Composed programs: In [GL93] we obtain our results for more general parallel composition 
operators, but here we need only asynchronous composition. If PI and P2 are programs defined on 
a tuple of state variables XI, respectively X 2, then PI III P2 is the parallel composition of PI and P2 
defining the transition system S = (Val(XI U X2), R) where 

R = ill', f\ unch(X2 - Xil V lI.h f\ unch(XI - X2) 

Each transition of PI III P2 is either a transition of PI which leaves all variables which are declared in 
P2 but not in PI unchanged or the other way round. 

4.2.2 Abstract programs 

As proposed in [CGL92, LGS+94], given a program P and a predicate {! on the variables of P and a 
tuple of abstract variables X A = (",1, ... ,,;~,), representing a relation between the concrete and the 
abstract domain (a function in [CGL92]), then an abstraction of P is a program pA defined on X A 

that can "simulate" any transition of P: 

Definition 4.2.2 (Abstract programs) 
Let P be a program all variables X al1d {! a predicate on X and a tuple X A = (,,1, ... x~) o[abstract 
variables; then, uny program pA defined Oil X A, such that for each action action of P there exists 
all action (f.cl.ionA o/13A with the same llibel, such that 

:J)C3X'. ('(X, X") f\ {!(X',X A') f\ (Ie/Jon(X,X') =} act.iollA (X A ,XA ') (1) and 
3X . ['(X,XA) f\ ini/(X) =} inilA(XA) 

is all abstraction or more precisely a g-abstraction of P. 

When verifying composed programs, it is interesting to compute an abstract program compositionally. 
i. e., by composing abstract component programs. From a more general result given in [LGS+94]. 
we obtain the following result which is sufficient for the verification of the distributed cache memory 
system. 

Proposition 4,2,3 Let PI and P2 he programs and Ui total functionsfrom the domain of the variables 
of Pi into some abstract domains such that {!I n {!2 i., total and PIA, P2

A are {!i·abstractions of Pi, then 

Pi! III P{\ is a (I'I n ['2)·ahstractiOlt of PI III P2. 

44 



Computation of abstract programs in practice: The idea of abstract interpretation [CC77] is 
to replace every function on the concrete domain used in the program by a corresponding abstract 
function on the abstract domain, and then to analyze the so obtained simpler abstract program instead of 
the concrete one. Consider the program ProgA obtained by replacing every basic predicate op(X, X') 
(such as tail, fiT$/., ... ) on the concrete variables by a predicate opA(XA,XA') on the abstract 
variables is a ('-abstraction of Prog if, instead of (I), for every basic operation 

3X3X'. ('(X,XA) f\ OeX',XA') f\ op(X,X') =} opA(XA,XA') (2) 

holds. If the expressions in Prog are negation free (as in our buffer), then ProgA is in fact a ('
abstraction of Prog. The definition of abstract predicates opA is the only part of our verification 
method which cannot be fully automatized. But as we will see, we only need a restricted number of 
such abstract operations in order to verify a whole class of programs. For example, in the domain of 
protocol verification, the used data structures are "messages" on which no operations are carried out, 
"memories" or "registers" in which data can be stored, integers which are mostly used as counters 
and "buffers" with the usual operations append,l.ail, fi1'sl, .. , as in our examples. 

Example 4.2.4 (An abstract lossy buffcr) To illustrate the idea, consider again the buffer of Exam
ple 4.2.1. In order to show that the hufler has the property of "order preservation" (see Example 4.2.9), 
it is sufficient to show that the order of any pair of elements (el' e2) E elem. x elem. is preserved. All 
the in/ormation we need about the content of the buffer B is, if and in which order, it contains the 
elements CI and C2. Furthermore, as each element is supposed to be put into the buffer at most once, 
we need not distinguish amongst the valuarions of B containing Ci mare than once. Similarly,jor the 
input variable e we only need to distinguish if its value is CI, C2 or any other value. Concerning the 
vallie ofE determil1atillg which events jJu .. ,h(e) are still allowed, we only need to know if the event 
]ll/sh( CI), respectively ]llIsh( C2) is still possihle or not. This leads us naturally to the abstract domain 
defined by the ahstmct variah/es, 

eA : ele1ll71 = {O, I, 2} 
EA : sel. (){ eielJl'71 
Ell: lruJ fel~1 = {r,eJ,e2,ej. c2,e2. ell.l} 

and the following ahstraction relation g2 d~fining the correspondence between the concrete and the 
abstract variables 

(!2(e,E, 11, fA,_t~.1,jJA) = [l~lem(c~eA) 1\ Q;eLof_elem(E,EA) 1\ 

I!~"J J ,,.(Ii, Ii A) 

'rtlhere for c : clC'ln and CA : clem.;! 

1!;'o,,(e,eA) =((eA = 0) = (e ~ {el,ed» f\ 

((eA = I) = (e = cJ)) f\ 

((eA = 2) = (e = C2» 

for E : set. of elc·/Il. and l~,j : scI. of cle·m.~, 

!';,LoJ_elo,,(E, EA) =(1 E E,ll = (CI E E) f\ (2 E EA) = (e2 E E) 

and for Ii : buff £1' (){ etCIII and Ii A : buJf er;1 
l!i"JJe,(B,1iA) =((13A = E) = cmpl.y(Blie\,e,})) f\ 

((BA = eJ) = (BI{el,e,) = cJ)) f\ 

((BA = e2l = (lIl{el,e,) = e2)) f\ 

((BA = CI • e2) = (liliel,e,) = CI • C2») f\ 

((lJA = C2. cJ) = (Bliel,e,) = C2. cJ) f\ 

((IiA = .L)inallothercases)) 

45 



where ill{c"c21 is the buffer B restricted to the elements el and e2' In order to construct an abstract 
program, we have to defille abstract predicatesforall the basic predicates used in the concrete buffer 
program, such as ullowed, UIJ1ICud, lail, unch, etc. 

III the case that every abstract variable is related to a single concrete variable, the abstract 
predicate associated with unch( 11) is obviously unch( VA) for any abstract variable VA related to v. 
Thefollowing ahstract predicates satisfy the condition (2). 

allowed~(eA,EA,EA') =(EA' =' E,1l II (eA = 0) V 
(I <t EA) II (I E BA') II (eA = I) V 
(2<tE,1l1l(2EEA') II (eA=2) 

ap]Jend~(BA,eA' lI',.) = (BA = Il',.) II (eA = 0) V 
(llA E {c,e2}) II (B',. = el. IlA) V (13,1 <t {c,ez}) II (13',. =.l) II (eA = 1) V 

(liA E {c,ed) II (11',. = ez. IlA) V (EA <t {c,ed) II (B',. = .l))11 (eA = 2) 

lail;1 (11 A, e A, Il;I) = ( JJ A = 11;1) II (eA = 0) V 
(IlA = E',.. CI)) II (eA = I) V 
(JJA = E',. • ez)) II (eA = 2) 

((liA E {CI,CI ocz}) =} 

((ilAE{ez,czocJ}) =} 

emplY;I(BA) = (lJA = r) 
Iirsl;I(BA,c,ll =(eA = 0) V 

(lIA E {C]'CI ocz,.L})II(CA = I)V 
(lJA E {C2,.L}) II (eA = 2) 

lail is an example of a predicate defining a function on the concrete domain, but which is nondeter
ministic on the given abstract domain; lail~ (1.., 1, B~) necessarily evaluates to true for any value of 
lJ~.j (the value of the hl(ffer in the next state). 

Using these abstract predicates, the definition of a program representing a (!-abstraction of the 
hldfer program_ hecomes trivial. We just replace variables by corresponding abstract variables and 
every occurrence of a predicate by corresponding abstract one. The resulting abstract program looks 
almost as the concrete pro!!,ram but defmes a very small finite transition system. 

Name: 
Variables: 

Transitions: 

Init: 

Abstract lossy buffer 
CA : elcm~ (input) 
EA : 3d of elC'fll~ 
11.'1 : bull er~ 

(pUSh(CA)) 
(poll(eA)) 
(lo.se( CA)) 

nllowcd~( CA, EA~ EA') II append~(BA' CA, 13',.) 
fiT .s/.~1 (11 A, CA) 111{].i.l~ (13A, eA, 13:4) II unch( EA) 
iU~1 (TJ A, c,d II delcle~ (BA, CA, 11',.) II unch( EA) 

elll1rly;\ (B A) (the translation of the concrete initial predicate) 

The useful abstractions are often obtained by using this kind of abstract domains. Here, we gave 
in detail the more complicated abstraction of a buffer particularizing two different data elements. 
But often, it is sufficient 10 particularize in the same way a single data element. The corresponding 

abstraction relations O!lem' O!eLof -elm/!.' OLlj Jer and abstract predicates allowed~. append~. tail~ •... 
can be defined by simplifying the above definitions in an obvious manner. For the verification of the 
cache memory we use also existential abstractions of buffers. The corresponding abstract predicates 
al'l'endex (e A), (,ai/,·r( e,d, ... evaluate to true if eA is an allowed value of the existentially abstracted 
buffer. In [CGL92) a similar method is proposed and in [Lon93) some "standard" abstractions are 
proposed for bounded integers and operations on them. 

46 



4.2.3 Temporal Logic 

It remains to recall the definition of temporal logic. Here we restrict ourselves to subsets of 
CTL* [EH83] for the expression of properties. The preservation results in [LGS+94] are given 
for subsets of the more powerful branching time p-calculus [Koz83] augmented by past time modal
ities. /I.-calculus and CTL* can express both branching time and linear time properties; p-calculus by 
using nested fixed points and CTL * by using explicitly state and path formulas. Our tool presented 
in [GL93, Loi94] only deals with state formulas; however formulas with nested fixed points are in 
general not very intuitive, so we prefer here for readability reasons to stick to CTL* even if we lose 
some of the expressive power. 

Definition 4.2.5 CTL * is the set of state formulas given by the following definition. 

1. Let P be a set of atomic (a) stale respectively (b) path formulas. 

2. 1f q, and 4; are (a) Mate respectively (b) path formulas then q, 1I,p, q, v,p and ,q, are (a) state 
respecti vely (b) path formulas. 

3. If q, is a path j(Jrmula then Aq, and Eq, are state formulas. 

4. If q, and';' are (a) state or (b) pathj(mnulas then Xq" q,U';J and q,W4J are path formulas. 

U is a "strong until" and W a "weak until" operator, a sequence satisfies q,W,p if q, holds as long 
no state satisfying';, has been encountered, and q,U4) expresses the same property and moreover 
the obligation that such a state satisfying 4) exists. That means that U and Ware related as 
follows: q,Wq' = ,(,Ij,U,(q,v 4')) and q,W4' = (q,U,p) v (G1», where, as usual, we use also the 
abbreviations q,1 ~q,2 denoting implication, Fq, denoting tmcUq, (expressing "eventually" q,) and 
Gq, denoting q,W false (expressing "always" q,). 

CTL is the subset of CTL * obtained by allowing in all rules only the choice (a) whereas PrL is 
the subset obtained by allowing only the choice (b) and restricting Rule 3 by allowing only the path 
quantifier A. IfCTL and IfCTL* [SG90] are the subsets ofCTL respectively CTL* obtained by allowing 
negations only on atomic formulas and restricting Rule 3 by allowing only the universal path quantifier 
A; that means that PrL is contained in IfCTL *. 

The semantics OfCTL* is defined over Kripke structures of the form M = (5, I) where 5 = (Q, R) 
is a transition system and I is a interpretation function mapping elements of P into sets of states of 5. 

Definition 4.2.6 A path ill a transition system 5 = (Q, fl.) is all infinite sequence 7r = qoq, ... such that 
for every i EN. 11('1;, '1;+1). We denote by tr n the nth state afpath 7r and by tr n the sub-path af7r 
starting in /Tn-

Definition 4.2.7 Let be M = (5,I) a Kripke structure, q E Q and 7r a path of M. Theil the 
sati~factirJ/l ( F M ) ofCTL* formulas on kJ is defined inductively as follows. 

I. Let be l' E P. Then, 
'1 FM I' iffq E I(7') and 7r FAt ]J iff7rO E I(p). 

2. Let q, and l' be (a) state respectively (b) pathfarmulas. Then, 

(a) q hI ,q, iflq FM q" q hi q, II 4' iffq FM q, and q FM 4), q FM q, v,p iff 
q FA! q,orq FAI 1'· 

(b) analogous by replacing q by 7r 

47 



3. Let q, be a path formula. Then, 
q F M Aq, ifffor every path 7r starting in g, 7r F M q, 
g F M Eq, iff there exists a path 7r starting ill g such that 7r F M q,. 

4. Let q, alld 7/' be (a) state respectively (b) path formulas. Then, 

(a) 7r FAI Xq, iff7r1 FAt q" 
7r FM q,UV; iff3n E.Ai. (7r n FM 7/)(l11dlf/.; < n. 7rk FM q,), 
7r FAI \6WV; ifflfn EN. ((If/,; :0: 11. 7rk FM ~7j;) implies 7rn FM q,). 

(b) the same definition obtained by replacing in (a) all states 7ri by subsequences 7r i. 

We say that.M F q, if and only if q F M q, for all states of 111. 

From the more general results given in [LGS+94] we obtain the following proposition concerning 
preservation of properties of IfCTL*. 

Proposition 4.2.8 (Preservation oflfcTL*) 
Let Prog be a program, 0 a total relation from the domain ofProg into some abstract domain, and 
ProgA a o-abstraction ofProg. Theil, for allY q, ElfCTL *, P the set of atomic formulas occurring in q, 
and Tan inferprelafinnjlmctiol1 mapping P into sets of states of SProg. we have 

1711.[0- 1
) 0 im[o) 0 I (1') <;: I (p) (*) forallJ! E P occurrillg 1l01l negated in q, 

implies 
(Sr.-ogA,lm[o] oJ) F q, ~ (Sprog,I) F q, 

where 1111[!!) is the imageftlllction of o. Condition (*) is called consistency of!! with I(p). 

This proposition expresses that, if q, E IfCTL* holds on a !!-abstraction of the program Prog by 
translating the interpretations of all atomic propositions occurring in the formula by I m(l!) into 
predicates on the abstract domain. and if all these predicates are consistent with fl. then we can 
deduce that q, holds on Prog. Consistency is not needed for predicates that occur only negated in 
q, as lnl.[o-I)(Jm.[o)(I(l'))) <;: I(p). We conclude that, if q, holds on ProgA using the abstract 
interpretation hn[r)(I(l')) of ~1}, then a stronger property than q, using the concrete interpretation 
I(p) of ~p holds on Prog. In particular, for the verification of a formula of the form init~q" init 
need not to be consistent with g. 

Example 4.2.9 For a buffer, the property of order preservation - that means the fact elements are 
taken out in the same order ill which they are put ill to the buffer - call be expressed on the set of 
"observable" atomic predicates 

P = {ind, cuable(pu.;h( e)), after(I'U8h( e)), enable(pop( e)), afl.el·(pOp( e)), ... }, 

by the following parameterized formula - that is a CTL ~ formula containing globally universally 

qllant~fied rigid variables: 

Ife', e E e/CIIl : inil. ~ A( [~a.fle·/'()Jn$h(e)) W afl.e1'(pllsh(e'))] ~ 
[~enable(J!oJ!(e)) W a.jte1'(pop(e')))) 

This formula can be transformed into a IfCTL formula in which only the predicates afte1'(push( e)) 
and aftel'(pojJ(e')) occur non negated. The transformation into an IfCTL* formula is immediate, due 
to the fact that for every operator exists a dual one; in order to see that they are also in IfCTL one can 
use a result given in [EH83]. In order to verify that the buffer of Example 4.2.1 has the property of 
order preservation, it is sufficient to verify the formula obtained by instanciating el for e and e2 for 

48 



e'an the small transition system associated with the abstract program defined in Example 4.2.4. In 
fact, as el and e2 represent an arbitrary pair of data values, this verification of a single representative 
of the set of formulas is sufficient. It remains to give the interpretations of the atomic propositions: 
euabie( C) is interpreted as the set of states in which event £ is possible, a predicate that is expressed 
by 3X' . actionc(X, X') iff is just a label and by 3X' . actionl(X, X')[e/ x 1 iff = l( e) where I is a 
label and e a valuation of input variables ':. afte1'( £) is interpreted as the set of states in which f has 
just occurred; in order to make this predicate expressible, we introduce an explicit boolean program 
variable after j for every proposition after(C) occurring in the formula under consideration which is 
set to t1"liC exactly after any event e and tofalse after all others. The so obtained program is equivalent 
to the original one as the values of the original variables do not depend of this new variable; this 
means that n.Jtel·j is added by superposition [CM88]. 

Now, it is easy to obtain the consistency of predicates of the form afl.er(e) by not abstracting 
the variable afle'/'I In the sequel, we suppose that for every predicate n.Jtel'(C) occurring in the 
considered formula such a variable is defined, but we do not mention it explicitly in order to keep the 
programs simple. 

4.3 Abstract specification of a sequentially consistent memory 

If we want to use our method in order to verify that the distributed cache memory defined in [ABM93] 
is a "sequentially consistent memory" [Lam79], we must give a temporal logic characterization of 
th is property, A system with observable events of the form l'endi( n., d) and writei( a, d) - where the 
index i determines the process Pi performing the event, a is a memory location and d a data element 
- is a sequentially consistent memory if any of its computation sequences projected on observable 
events can be reordered - by respecting the order of the events with the same indices - into a 
sequence of a central memory - that means a sequence in which 1'eadi( 0., d) is only possible if the 
last write event concerning location a is of the form 1Vritej{ (f., d) for some j. 

For the exact characterization of this property one needs full first order temporal logic, whereas 
we want to restrict ourselves to a set of propositional but parameterized formulas in order to be able 
to evaluate them by a model checking tool on a finite abstract model. Therefore, our characterization 
is necessarily stronger than required, In order to be able to give a convenient set offormulas we need 
the assumption - which can be made without loss of generality - that every pair of the form (0., d) 
can occur at most once as the parameter of some '//n'ile event. This is still not sufficient in order to 
express these requirements in terms the "observable" atomic propositions of the form enable( e) and 
af 1£1'( C) for observable eventsf and the predicate init .. However, suppose we can identify auxiliary 
predicates ha.i( n, d) expressing "w.,.il.e( n, d) has been taken into account by process Pi' which is 
weaker than cna.!Jle(1'wd;(a, d» but such that each wl'ile(n, d) is necessarily followed by tiai(a, d) 
in all processes and from that moment on until tiai( n, d) becomes "false forever" nothing else than 
Ii can be read on address n by process Pi, Then, the expression of "sequentially consistent with a 
memory" becomes possible. We have to express that elements written by the same process are taken 
into account in the same order by all processes; and for any two elements, even if they are not written 
by the same process, they are taken into account in all processes in the same order. 

Proposition 4.3.1 (Properties guaranteeing sequential consistency) 
Let be S a transitioll system alld the sct of predicates 

P = {ind, cnablc(rmdi( n, d)), oIlcl'(rcad,(n, d», 
enabl e( wTit.ei( (/., d)), (J..r /.e1·( 1111"it.ei( fl., d))} i:inde:c,( n,d):address x dlltum 

49 



with the interpretationjimction I defined in the previous section. If one can define an interpretation 
function L(lux/or the set a/predicates 

P (n/.J.: = {l'iai( a., d))} i:inde;r;,( (/.,d):a,ddre8s X dat1l1n 

such that !vI = (S, I U I",,,,) satisfies the following set of properties, then the program generating 
modellll is a seqlllmtia/ly consistent memory. 

(CI) V( a, d) : address X da/um,; : ;nde:!: 
;nil '* AG( enable( re(Uii( n, d)) '* Uni( n, d)) 

(C2) V(n,d),(a,d'): nd(i7-e"" x da./.u'ilI.d# d',;: inde:!: 
init '* AG(I,iai(a,d) '* A[,tiai(a,d') WAG(,hai(n,d))]) 

(C3) V( a, d) : addres., X datum" i, j : iudc;,. 
init '* AG[a,{feT(llIril.ei(a,d)) '* AF(tiai(a,d))] 

(SI) V(a, d) : addre,,8 x datum,; : ;nde:,. 
inil '* AG[ aJler(",ri!ci(a, d)) '* A(,enable( Tcadi ) W liai(a, d)) ] 

(S2) V( a, d) : (uidress X datum, i : iude:!: 
lnit. '* A(,/ini(a,d) W Vi'i",b aJtcl'(wTi/,ej(n,d))) 

(S3) V(a,d),(a',d' ): addrc"" X da/nrn.d# d',i,j: inde;>: 
init. '* A( [,nlteT(writ.ci(a,d)) W a,{ter(wTitcj(al,d' ))] '* 

[,fiai (f/ , d) W /.ini ( a' , rI') ] ) 

(S4) V(a, d), (0.', d' ) : (lfldress X datum. d # d' , i, j : index 

inil '* A( [,/.iai(a,d) W t:iai(a',d')] '* 
[,/ia, (a, d) W liai (ai, d')] ) 

Properties (C I) to (C3) express the before mentioned conditions on the auxiliary predicates tiai( a, d). 
Property (S I) expresses the requirement that in every process Pi as soon as an event writei(a, d) 

has occurred, nothing can be read anymore until this 1IITite event has been taken into account. 
This requirement looks very strong. However, the weaker and more intuive requirement that, after 
llITitei( a, el) only events Tead,( a) are forbidden until (a, d) has been taken into account in process Pi is 
not sufficient: Suppose that process PI reads (a, rl l ), then ("I, riD, then (n, dz) and then (a', d'z) which 
guarantees by (S4) that (a, dd is taken into account before (n, dz) in all processes an analogously 
for the primed pairs. If in process Pz, lIn'il,ez(a, dz) is followed by "earlz(a', dD and in process P3, 
'<UTi/,e,(a' , d'z) is followed by 1'ef"d,(a, rll), then these sequences cannot be merged and completed 
into a sequence of a central memory, but it may satisfy all the above properties when (S I) is replaced 
by the proposed weaker property. 

Property (S2) guaranties that every (a, d) is not taken into account in any process Pi before 
1111·i!.ci (a, d) has occurred for some j. This property could be weakened; what we need to express is 
that every pair (a, d) that is taken into account must be written by some process Pj, and only in Pj it 
is necessarily written before it is taken into account. 

Property (S3) guarantees that the w,.it.e events of process Pi are taken into account by any process 
Pi in the order in which they occurred: whenever ("I, d' ) is written before (", d) by process Pj, then 
(a, d) is not taken into account by process Pi before ((/.', <i') has already been taken into account. 

50 



Property (S4) expresses that in any pair of processes the write events are taken into account in a 
compatible order. 

Both (S3) and (S4) have the intended meaning only because of (C3). For example an execution 
sequence, in which process PI reads (a.' , dD then (a., d I) and then (a, d2), process P2 reads (ai, dD 
then (a.' , d~) and then ((I, d d, and process P3 reads ((I, d2) and then ((II, dD, can obviously not be 
merged and completed to a sequence of a central memory, but may be completed to a sequence which 
satisfies all the above properties except (C3), because, if in every process the pairs (a, d) which are 
not effectively read are not taken into acount, it is possible to obtain pairwise compatibility of the 
order in which write events are taken into account but this does not imply global compatibility. In 
order to obtain global compatibility, we add the requirement expressed by formula (C3) that all write 
events are taken into account in all processes. Obviously, one could weaken (C3) by requiring only 
that every write event is either taken into account by all processes or by none of them. 

Now a few remarks concerning the choice of appropriate predicates tia.i( a, d): in case of a central 
memory, tia.i( n, d) can obviously be chosen euable( 1'eadi( a., d) (i. e., M[a] = d). We will show that 
the distributed memory system that we want to verify satisfies the set of properties given above if we 
choose tia;( a, d) to be C;[a] = d where C; is the cache memory of process Pi; for this choice, the 
condition (CI) is trivially satisfied. 

All the above fonnulas can be translated into IfCTL formulas. Notice that despite of the fact thatthe 
original abstract specification does not contain an liveness condition, we need the liveness property 
(C3) in order this characterization to be sufficient. 

Proof of Proposition 4.3.1 

Remains to show that every system that satisfies the requirement of Proposition 4.3.1 is sequentially 
consistent. In order to do so, we show that every computation sequence 'If of a system satisfying this 
requirement, can be finitely reordered respecting the order of the events of each individual process 
into a computation sequence of a central memory: build the projections 'lfi of visible events of each 
process Pi and the sequence TIA of pairs (n, d) in the order defined by "the first state in which 
tiai( a, d) is true" which is the same in all sequences 'lfi by property (S4). Then, build a sequence 'If"q 

of a central memory using the following procedure. 

irug :::: (; Va: address .Iw(o) := f; nUl::::::: Fiyst.(TIA); 

b := true; 
whileb do 

b := false: 
for i : i'llde:!: 

if 3a . firsl( 7f;) = 1'( n, fw( a)) thcn ( add( 7r •• ,",J;1' s/.( 7fi): b := t1'1Ie; tail( 7f,)) ); 
if/il's/.(7f;) = W(IIIn) /\ nw = (a,d) /\ Jlj.l'(a.lw(a) E 7rj, thcn 

(add(7f.,c",fil's/'(7ri): b:= 1"lIe: l.ail(7fi): lw(a):= d: /.rI'il(TIA); nw:= first(TIA)): 
cndfor 

endwhile 
if not \;fi.emply( 7ri) then "error Slate"; 

During the whole execution, Im( a) contains the last element that has been written on address a, and 
nw contains the first element of TI A which is the next element to be written. 

51 



4.4 Verification of a distributed cache memory 

In our program formalism, the cache memory proposed by [ABM93] is described as a system of the 
form P, III P2 ... III Pn where each process Pi is defined as follows: 

Name: Pi 

Variables: Input: a : addrc",'), d : dat.um, 

Transitions: 

(<UTilei( a, d» 

(read i( a, el» 

(1/I1IIi( a, d» 

(C/li(a., d» 

(111'1'i( a., d» 

(eli(a» 

Init: 

local: 

shared: 

ADi : .,el. of addr'e88 X datnrni, (which data are already written) 
Ci : ar'/,ay[ addres,,] of dal.mll U {e} (local cache memory) 
01l.I·i : bnff er of (address X dal.mni) 
M : arTay[ruldr'es,,] of dal.nm (global memory) 

Ink: buffeT of «(rulrl!·e.5S X dal.um) X Bool), k: index 

allof/,rd«( a, d), ADi, AD;) /\ (ll'pend( Ouli, (a, d), 011.1.:) /\ 
ullch(G" M, {'II" ... In".) 

(Ci[a] = d) /\ e""pl.y(On/i) /\ e11l1'Iy(inil("dd""sxd",,,m)x,,",)/\ 
unch( /lIJi) e il Outil M, J 11.], •. .Inn ) 

fiT81(Oul.i, (a,d))/\ /.ail(Onl."(a,d),OuI.D /\ updal.e(M,(a,d),M') /\ 
VI.:: inde,,;. appcnd(Ink,((a,d),i= k),lnk) /\ ullch(ADi,Ci) 

/iTS I. (1 n" «a, d) X Boo!) /\ l.ail(J ni, «a, d) X Bool),l nil /\ 
updatc( C i , (a, d), Ci) /\ ullch( ADi, Oul.i, M, {h'j, j cF i}) 

(M[a] = d) /\ append(I 71" « n, d),faI8e ),lni) /\ 
ullch(AD"Ci,Oul.i,M,{I""j,j cF i}) 
('I c({'l'( Ci, (f., CD 1\ unch( AlJi, Outj, M, In" .. .1 11. n ) 

(Vb: addTe"" . (C,[b] = M[b] = e»/\ 
ernply(Outi) /\ cmpl.y(fni) 

where append, /ail, /ir81 and empty are as in the Example 4.2.1. updal.e is defined by 

"pdale(M, (a, d), M') '" (M'[a] = d) /\ (Vb: addr'ess . (b cF a =;. M'[b] = M[b]) 
and clear by 

clew/'(M, a, M') '" (.M'[a] = e) /\ (Vb: addrc88 . (b cF a =;. M'[b] = M[b]) ). 

The only difference between our system and the one given in [Ger95] concerns the fact tbat eacb 
pair (a, d) can be the parameter of at most one event write. The way we obtain tbis, is by defining 
the type dO./,'/I.rll by do./.",,,, = U, datum'i, such that each process "signs" the data it writes, and by 
using in each process a variable ADi of type "et. of addTess X datumi which stores tbe information 
if the event w/'ile;! a, rl) has already occurred or not, as in the example of the buffer. 

We verify the parameterized formulas of Proposition 4.3.1 on different abstract systems. Our aim 
is not necessarily to find the smallest abstract system that can be used for tbe verification of each 
formula, but we want to apply, whenever possible, the already predefined abstractions in order to 
show that the application of the method is simple and can be done systematically. The cache memory 
uses the data types and operations of the buffer of Example 4.2.1; it uses also a data type "memory"= 
(/'l'/'ay[ruldTics,,] of <Ia/./lIII" As for butfers, we use three different types of abstractions of a variable 
X of type 1l1.cnuY/'y depending on the formula to be verified: we may 

53 



• completely forget about it (we do this for all but I or 2 cache memories C;) 

• kcep information about a single pair (a,d) by taking an abstract boolean variable XA and an 
abstraction relation U~nem{Jry()(,A'A) = -,YA == eX[a] = d). 

• keep information about two pairs (a" d,) and (a2, d 2) by taking two abstract boolean variables 

-,Y1 and X~ and an analogous abstraction relation (!~nemory(X, X1, X~). 
Suppose the type clem to be (uldressxdnl.m/l. and take an abstract variable eA of type elem1 = {O, I} 
already used in the buffer example and the abstraction relation 

C!lem((n,d),cA) = (eA = 0) A ((n,d) f. (a,d)) V (eA = I) A ((n,d) = (a,d)), 

exactly as in Example 4.2.4; then, it is easy to define abstract predicates "pdate1 and clear1 by 

lI]Jdale~()\A, CA, X;\) = (fA = 0) A (X;\=}XA) V (eA = I) A X~ 

expressing that if (n, d) f. (a,d), X [a] = d can only be true in the next state if it is already true in 
the present state, and if (a, d) = (a,d), then in the next state X [a] = d, independently of the value of 
X[aJ in the present state. And similarly, 

clcaT~(XA,CA,X;\)=(cA =O)A(X~=}XA) V (eA = I)A'X~ 
We define analogously abstractions with superscripts ex and 2, concerning existential abstractions, 

respectively abstractions where information about two elements is conserved (in the case that 2 ele

ments are considcred, one has to distinguish the cases a, = a2 and a, f. a2). 

In order to obtain convenient abstractions of the buffers In;, we need also a slightly different 
abstraction of a buffer. In fact, due to the action mcmory Tend, the buffer In; may contain several 

occurrences of the pair «(I., d), one of the form (( n, d), 1.7'1lc) and severals of the form (((I., d), Inlse). 
Treating all these occurrences as «( a, tI), ITue) allows the event "cndi less often, but does not invalidate 
our set of formulas. However, we need an abstract buffer type dealing with multiple occurrences of the 
distinguished elements. We define an abstract buffer with the same abstract domain as in Section 4.2, 

but with different abstraction relation and operations. So, if e" e2 represent the distinguished elements 
((n, d) X 13(01) respectively ((a.', d' ) X BorA), then e, • e2 represents any buffers that has multiple 

occurrences of elements of the form ((n, tI) X Bool) and of the form ((n', d' ) X Bool) in such a 
way that the first element of the form (( n, d) X Boo/) occurs after the last element of the form 
((al,tI') X .11(01). The abstract operations IiT$/. and empl.y remain obviously unchanged, but the 

abstract operations append and tail change. For example, flp]Jell,d~dt( e I • e2, (( a, d), true)), B A) is 

true if iJA = e, • e2, and t{/il~'lf (e2 • e" (( II, tI), t,.lIe)), BA) is true if BA = e2 • e) or if BA = e2. 

Using these definitions and those already given in Example 4.2.1, the definition of appropriate 
abstract finite state programs of the cache memory becomes simple. 

Abstract system for property (SI): Each instance of property (S I) involves only events of a single 
process Pi. However, even if we succeed to verify it on P; we can not deduce its satisfaction on 
the composed system. In fact, if we replace all processes different from P; by the process "Chaos", 
(S I) does not hold any more on the composed abstract program. We use here another approach to 
compositionality: by Proposition 4.2.3, we can abstract each process Pj individually and build a 
global model by composing these small abstract programs. We choose the abstraction relation for all 
processes Ij with.i f. i in such a way that shared variables are abstracted in the same way as in P; 
and we forget about all local variables; this has as effect to avoid adding certain changes of shared 
variables which are not allowed by the concrete processes l~i' 

54 



Intuitively, (S I) is guaranteed by the fact that for any i E I after the event writei(a,d) the action 
)'eadi is blocked until (a,d) has traversed the buffers O"/'i and Ini and has been taken into account 
by the event CQ.8hn/"I"./,ci in the cache Ci' That means that we need to observe the cache Ci and all 
variables which may cause enabler 1'ead;(a, d) to become true, that is the buffers O"ti and I ni but 
also the global memory M which affects Ci via the action memory read (mri); it is not necessary 
to observe the butTers 011./,,; for j cp ;: as d E dat1l,mi the actions (mwj) should not be able to push 
(a,d) into 111.i' This leads naturally to the following abstraction relation for process Pi: 

g!/cm (( (1., d), t:'1) /\ (!!eLof_elem(ADi, EA) /\ 

f!!nc'ln01'y(Cil C'iA) /\ 1'1"~fec( O"/i, O"tiA) /\ 

g!nemory(M, M A ) /\ (!l~Ufer(Ini' IniA) 

and for process Vi, j cp ; we use the same abstraction as in 1'i for the shared variables and forget 
about all local variables 

(J.T 1 ((a, d), AD:;, C.'l, OU(i' M, 111.1, "0' Inn) CA, MAl IUiA) == 

O!leuJ(a,d),eA) 1\ O!nernory(M,MA) 1\ 

(!l)~:'ljer(Ini' IniA) 

from which we obtain by replacing concrete by corresponding abstract predicates as defined before, 
the following abstract program rt for index i, 

Variables: abstract input: eA: flool 

Transitions: 
("'1';/,e;(eA )) 

("eadi( e,ll) 

(171 "'i(c,11) 

(1II)'i(CA)) 

(cli( CA)) 

lnit : 

local: 

shared: 

EA,CiA: lIool 
OU/.iA : buff cr~l 
MA : Bool 
IniA: bll..ffe1'~n/t 

allowcd;t (fA, EA, LA') 1\ aJJ]Jcnd1 (O'U.t·iA, eA, Q'ut;A) t\ 

unch( GiA, MA, 1 11.iA) 

(C;I=?Ci,ll/\ em/)/'Y~l(On/i,11 /\ cm]Jty~a/t(JniA) /\ 
unch(EA, CiA, OU/iA, MA, 1niA) 

.fi1""~ (On/iA, CA) /\ /ail;\ (OutiA, eA, OU/:A) /\ 
IIpdale;l(MA,eA,M~l) /\ (/l'penrl~'It(JniA,eA,In:A) /\ unch(CiA,EA) 

fir,"t~("lt(lniA,t:4) /\ t.ail~dt·(IniA,eA,fn~A) /\ 
'updat.e1 (CiA, rA, C~A) /\ unch(EA , O'n1.iA, MA) 

(MA = e,d /\ (/P]JC'l/.d~'lt(I'l/.iA' CA,]n: A) /\ unch(EA , CiA, OutiA, M A) 

clC({''1'~,(CiA' CA, CiA) /\ unch(l~, 011·1.iA, MA, IUiA) 

and PjA for all indices different from i, 

55 



Variables: abstract input: 
shared: 

Transitions: 
(1IJTit.ej( eA), Tcadj( eA), 

eA : liool 
MA : 11001 
IUiA : bIlIfer~'1t 

C1lj(eA), m.Tj(eA), clj( eA)) unch(MA, IniA) 

(11IWj(eA)) first,:n~4) II (/ppend~alt(lniA,eA,ln:A) II update~(MA,eA,M ) 

in which we have already eliminated all abstract operations that are always true. such as append;r. 
update")." ..... Notice that the event (m:wj( t:l'lIe)) is in fact never executed as first;r( true) == false 
because the buffer Oul'j cannot contain a pair (a.d) with dE datn11li. Notice also that the composed 
system PIA 111 ... 111 Pi

' 
III : .. III p,~1 is Pi' 1111'/1. whatever the number of components is. as for all j oF i. 

the programs Pt are identical and P III l' and P represent the same transition system. 

Ahstract system for property (S2): Property (S2) expresses the fact that any event readi(a.d) is 
preceded by an event ·fll'l'il.ej(a.d) for some j. Thus. we need to observe as before the cache Ci the 
buffer Ini and the global memory M A • but also all buffers Onl-). This leads to similar abstraction 
relations as for the verification of (S I). except that we need neither unicity of write events and can 
forget about ADi disabling w'/'ifei events; however. we need abstract buffers OntjA for all indices j 
as we only assume d E dafum. Thus. the abstraction relations g.f2 are the same for all j: 

£',1'2(.11, 1), AI?j~ C,iJ Out,;' M, In], .. " In1H fA, 011,1'1.11, MAl IniA) = 

U!in,,«(A, D),(4) II 

U~ne'l/wTu(M, M A ) /\ 

gi"{,f,,.(O'utj , OuIjA) 

(!~~/fer(Ini' IniA) 

For this abstraction. the obtained global abstract transition system does depend on the number n of 
processes as we have defined n abstract variables OutjA with non-empty domain. In order to obtain 
an abstract transition system such that its size is independent of n. we can define - instead of the set 
of local abstract butfers OUIJA - a single glohul abstract buffer 01ltA defined by a relation of the 
form 

j:iwlca: 

h· h bl' h d fi b . IlyiDb 'Iyiab W Ie 0 Iges owcvcr to re c ne a stract operatIOns (u·"A • /.m"A •... 

Ahstract system for properties (S3). (S4) and (C2): For the verification of (S3) we need to 
observe events with two different parameters (a" d I) and (a2' d2). such that d" d 2 E datumj; thus. 
we use the abstraction relations with superscript 2 as for the verification of order preservation in the 
preceding section. We define abstract variables E.4 (in 1'/) in order to guarantee uniqueness of the 

observed wTilej events. OnfjA (in ptJ. Ci l , C i, (in p,A) and shared variables IniA. MA 1 and MA2 
and use the predefined abstraction relations and corresponding abstract operations. 

The resulting global abstract transition system is again independent of the number of processes as 
all the abstract programs with indices different from i,j are identical. In the case al = a2. we need 
only to consider the case in which the indices i and j are different. as the property for i = j is implied 
by (SI). 

56 



On the same abstraction, we can also verify the property (C2). 

In presence of (S3), (S5) expresses that allw1'it.e events are taken into account in the same order 
in all processes Pi, and Pi2' also when they have been issued by two different processes Pj, and Ph' 
Thus, for its verification we observe two pairs (ai, dil and (a2' d 2) such that d l E datumj, and 
d 2 E datul"'.i,· Consequently, we need abstract variables E~, E~ (in pt respectively Pj1), Outj,A, 

Outi2A (in Pj~ respectively Pi~)' Ci,l, Ci,2 (in Pi~)' Ci,l, Ci22 (in Pi~) and shared variables MAio 
MA2, InilA and In.i 2A. 

Verification of properties on abstract systems: The actual construction of global abstract transition 
systems and the verification of the formulas on them could be done automatically by our tool [GL93, 
Loi94]. By Proposition 4.2.8, we have to verify the consistency of the atomic propositions with the 
used abstraction relations. For all propel1ies, consistency is obvious as in the corresponding VcrL* 
formulas only predicates of the form a.jl.eT( f) or Uai( a, d) - which are consistent with the chosen 
abstraction relation - occur non negated. 

Verification of Property (C3): As we have already mentioned, our verification does in general not 
allow to verify liveness properties directly: there exists no finite abstract system that verifies (C3). 

But under the hypothesis that the system is fair with respect to the events mWi and CUi for all i. one 
can deduce (C3) from the induction rules used in the proof given in [JPR94] and the following safety 
properties - which can be verified by using finite abstractions: 

• afl.c1'(w1'it.ci(a, rI)) =} in(Onli, (a, el)) 

• j!u8dion(Ouli, 'II, (a, d)) =} 

AX(j108il.ion( Oll.li, n, (a, d)) V afle1'(lIIwi) 1\ posit.ion(Out" 11. - I, (a, d))) 

• enabler 1))"'i(a, el)) =} AX( cnablc(lIIl11i( a, rI)) V O..ftCl·( 1))Wi( a., d)) 1\ in(I nj, (a., d)) 

• position( Tni, 'II, (a, rI)) =} 

AX(position( Tnj, n, (a, rI)) V o.jl.c'/'( elli) 1\1)U8il.ion( 1 nj, n - 1, (a., d))) 

• enable( cni( a, rI)) =} AX( cnable( c"-i( II, rill V O..fICl'( C1Ij( n, d)) 1\ tjaj( a, rI)) 

where in and ]Josdion arc predicates with obvious meanings, 

4.5 Discussion 

What have we achieved? A first impression could be that this verification of a cache memory looks 
much like a handwritten proof. However, it is quite different: starting right from the beginning, it 
is in fact rather lengthy to define all the abstraction relations and corresponding abstract predicates, 
even in order to verify some trivial buffer program, However, having done this once, in order to 
verify the much more complex cache memory system, we only need a few more definitions obtained 
a long the same line as the already given ones, In fact, there are many examples of systems, for which 
we have to verify exactly the same type of properties and which use analogous data structures and 
operations on them, such that the same abstract domains and operations can be used. Thus. we could 
build a "library" of useful abstract domains and operations in which new definitions can be added 

57 



when necessary. A similar approach has been followed by P. and R. Cousot and more recently by D. 
Long concerning "standard" abstractions of integers and operations on them. 

The fact that for the verification of an individual property a large part of the system can be 
abstracted existentially is often necessary in order to obtain tractable global models. If the system 
is too large or the property is "too global" one can often get results by decomposing the property, 
depending on the particular system under study, as this has been proposed, e. g. in [Kur891. 

For the verification of the cache memory, an additional complexity comes from the fact that we 
also have to define the set of formulas as originally the abstract specification is not given in these 
terms. We believe however that this set of properties is interesting by itself as it can be used for 
the verification of other systems supposed to implement sequentially consistent memories. The fact 
that our characterization is stronger than required by the definition of sequential consistency, is not a 
real problem, because in any particular case, it should be easy to decide which of the properties are 
allowed to be weakened and which not. In fact, this characterization can easily be adapted to weaker 
or stronger specifications which are frcquently used in real implementations. 

Another point which makes an abstract specification given as a set of properties so attractive, is the 
fact that the modification of a single property docs not require to redo the whole verification process. 
Notice that our method is also incremcntal with respect to modifications of the program, as long as 
they allow to use the same or at least very similar abstraction relations and abstract operations, which 
is often the case. That means that exactly the time consuming and difficult part of the verification 
process need not to be redone. In the case that the obtained abstract program is not already identical 
to the previous one, the reconstruction of a model and the verification of the properties on it by means 
of some model checker poses no problem. 

Acknowledgements: I would like to thank the referees for pointing out that the initial characterization 
of sequential consistency was not sufficient, Amir Pnueli for giving me some ideas how to get a 
satisfactory solution and Denis Dams and Joseph Sifakis for fruitful discussions. 

58 



Chapter 5 

A CSP Approach to Sequential 
Consistency 

G. Lowe and J. Davies 

59 



5.1 Introduction 

In shared-memory multiprocessor systems, the time taken to perform memory access operations is 
critical. In most designs, this is reduced by equipping each processor with a cache: a local image of 
the shared store. If each cache contains a copy of the locations that the corresponding processor is 
most likely to access, then any delay due to shared memory access will be minimised. 

However, if a system contains multiple copies of the same datum, care must be exercised if the 
system is to behave in a predictable and satisfactory fashion. Whenever a processor updates some 
location, any caches which contain a copy of that location must be updated to match. This is the role 
of the consistency protocol. 

Many consistency protocols operate by marking other copies as invalid, so that subsequent access 
requires a read from shared memory. This marking must be done immediately: no further reads or 
writes can occur until all caches have been marked. In highly-distributed multiprocessor systems, the 
delay caused by such atomic 'write and mark' operations is unacceptable. Such systems require a 
more relaxed view of data consistency. 

In [Lam79], Lamp0l1 introduced the notion of sequential consistency: 

The result of any execlition is the same us if the operations of all the processors were 
executed in some sequential order, and the operations of each individual processor appear 
in this seqllcnce ill the order spec~fied hy its program. 

This notion is now widely employed in multiprocessor designs. 
In [ABM93] the authors propose an algorithm-the lazy caching protocol-for ensuring sequential 

consistency. In this paper we use the traces model of Communicating Sequential Processes (CSP) 
[Hoa85] to verify this protocol. 

In section 5.2 we give a brief overview of the syntax of CSP, and in section 5.3 we describe the 
traces model, and how it may be used to specify and verify processes. We describe the lazy caching 
protocol in section 5.4, and show how it may be encoded as a CSP process in section 5.5. In section 5.6 
we express the notion of sequential consistency as a trace specification, and in sections 5.7 and 5.8 
we verify that the protocol meets the specification: we use the proof system to derive a property that 
holds of all runs of the protocol, and show that this is enough to imply sequential consistency. 

5.2 Processes 

Communicating Sequential Processes is a language for describing patterns of communication. Each 
pattern is represented by an abstract program, or process, which records the points at which certain 
communications may take place. These processes may be combined to produce a description of a 
system in terms of its components. 

In CSP, we use abstract entities called events to model important points and actions in a history, 
or execution, of a system. We may then obtain a workable description of the system in terms of these 
events; this description may contain information about the order in which certain events may occur, 
the times at which they may occur, and how they might be blocked or prevented from occurring. 

The simplest process may pelform no events, and is written Stop. This represents the end of a 
communication pattern. We introduce events using the prefix operator -->: the process a --> Stop 
represents a system that is able to engage in a single event (I. before stopping. A choice between 
patterns of communication is provided by either of the choice operators 0 and n, representing external 
(deterministic) and internal (nondeterministic) choice, respectively. 

60 



Processes may be placed in parallel combination using the II operator; in the parallel composition 

p II Q 
A 

the two processes P and Q evolve independently, but must cooperate upon every occurrence of any 
event from the shared set A. This set represents the interface where the two meet and data may be 
transferred. If the interface consists of precisely those events that are common to the two process 
descriptions, then we will omit the shared set parameter. 

Processes may be placed in sequential combination using the; operator. The sequential compo
sition P; Q behaves as process P until that process terminates successfully, and then behaves as Q. 
We use the process Skip to mark a successful end to a pattern of communication. 

We will use indexed forms of the above operators to represent networks and series of processes: 

II Pi fE/ .. n 

denotes a parallel combination of processes with index i ranging over a finite set 1 .. n, while 

~iEl .. nPi 

denotes the same collection of processes, executing sequentially. 
In this application, processes will share only compound events, representing value-passing com

munications along named channels. A process that is ready to transmit value v on channel c and then 
behave according to the description P would be written as c!v ---; P, while a process that is ready 
to accept a value on channel c and then behave as Q would be written c?x ---; Q. The subsequent 
behaviour Q may be parameterised by :r, a variable that will be bound to the value transmitted along 
the channel c. 

We may conceal or abstract away events from a process description using the hiding operator 
\. The process P \ A behaves as P except that events from the set A are no longer visible to the 
environment of the process; they are encapsulated within. Finally. we will want to relabel processes. 
The process i. P is the same as l' except all events a are renamed to i.a. 

5.3 Traces 

A variety of denotational semantic models have been formulated for the process language of esp. In 
each model, a process is associated with the set of obscrvations that may be made during its execution. 
In the simplest model each process is associated with the set of event sequences or traces that may be 
recorded during execution. We may use this model to specify safety properties: requirements that no 
undesirable events should occur. 

5.3.1 Semantics 

If L is the set of all communication events, then the trace semantics of our language is given by a 
semantic function 

T,.aces : C S P --> P ( seq L) 

mapping processes to sets of sequences of events. As usual, the semantic function is defined by 
structural recursion upon the language syntax: e.g., 

Tmces[Slul' ] 

Traces[a -. P] 

{()} 

{()} U {(a)~I" I I,. E Tmc€s[P]} 

61 



where () denotes the empty trace and ~ denotes concatenation of traces. 
Ifwe impose an order upon the semantic model, then we may give a meaning to recursively-defined 

processes. Given an equation P = F(P), where F is a syntactic function constructed from process 
operators, we define the semantics of P to be the least fixed point of the corresponding function in 
the semantic model. For this to be a good definition, we must insist that each recursive call of P on 
the right-hand side is guarded by at least one communication event. 

The semantic model can also be used to justify a notion of equivalence for process terms: 

P '" Q ¢} Tmces[ P] = llnces[ Q] 

which leads to a complete set of algebraic laws for rewriting processes: for example, 

(a ~ Skip) ; P '" {/. ---> p 

This states that the sequential composition of the process a ---> Skip with P is equivalent to the 
process that performs ((. and then behaves as P. 

5.3.2 Specification 

Apart from ensuring consistency of process definitions, and justifying algebraic laws for equivalence 
and refinement, a denotational model may be used to support model-oriented specification. If each 
process is associated with a set of observations, then constraints upon observation sets may be used 
to express requirements upon process behaviour.. We write behavioural specifications as predicates 
upon observations. 

For example, suppose that a process P is capable of performing-amongst other events-both of 
the events {/. and h. If we wish to specify that P never performs an (/. after a b, then we have only to 
insist that in any trace /7' of process P, the event II never appears after b. Formally, 

that is, if /..,. contains a It event, then the part of /,.,. following the b (1."'2) contains no occurrences of 
event {/.. To express this final condition, we have used the trace projection operator I ' which removes 
from the trace any event that is not in the chosen set (here {a}). 

To show that a process satisfies a behavioural specification, we must show that every trace of the 
process satisfies the corresponding predicate. We define 

P sat S(t.1') ¢} II t'/'. /./' E Traces[P] => S(t1') 

Although the sat is a relation between process syntax and predicates, it may be seen as a refinement 
relation. If we identify the process P with its semantic set of observations, and the predicate S( tr) 
with its characteristic set of observations. then sat states that every observation of P is an observation 
ofS, 

5.3.3 A proof system 

The definitions chosen for the various process operators guarantee that the semantics are pointwise 
compositional: the properties of an observation of a compound process can be derived from the 
properties of observations of the components. As a result, we may exhibit a compositional proof 

62 



system for trace specifications. Each semantic equation may be inverted to yield a natural deduction 
inference ru Ie. 

Stop sat Ir = () 

The basic process Stop satisfies the specification 'the trace is empty'. 
Any non-empty trace of a prefixed process must begin with the prefixed event; this event must be 

equal to the head of the trace: 

P sat S(lr) 

a -. P sat Ir = () V he",I(lr) = a 1\ 5(lail(lr)) 

The tail of the trace must be performed by P; if we know that this process satisfies S, then we may 
conclude that 5 holds of lail(tr). 

A trace of a choice process may have been performed by either component; we are thus left with 
a disjunction of specifications: 

P sat 8( Ir) 
Q sat 7'(lr) 

PDQ sat 8(1.r) V 7'(lr) 

The parallel combinator, on the other hand, gives rise to a conjunction of specifications. In the case 
in which the interface between the components includes every event that is common to both process 
descriptions, we obtain the following inference rule: 

I' sat 8(1r) 
Q sat '1'(lr) 

P II Q sat 5(ir r oP) 1\ T(lr r oQ) 

We write 0 P to denote the set of events that appear in the description of process P. The projection 
I,' r 0 P reveals the sequence of events performed by component P in this parallel combination. 

The rule for network parallel combination is a simple generalisation of the binary case; with the 
same assumption about interfaces we obtain: 

'I i E .I .. '/I • 1'; sat 8; ( Ir) 

11;E1 .. " P; sat 'I i E 1 .. 1/. 5;(1-r r nP;) 

while the rule for hiding involves an existential quantification: 

P sat 8(11') 

P \ A sat 311'/ • Ir = 1,"/ \ A 1\ 5'(I.r/) 

We may be uncertain about the order of internal events, but we know that there must be some internal 
trace that is consistent with our observation. The hiding operator \ on traces simply strips the given 
events from the trace. 

63 



Output communication is simply syntactic sugar (the corresponding rule is a particular case of the 
rule for prefixing) 

P sat S( /1') 

c!v ---+ P sat I,· = () V hcad(t,·) = C.v 1\ S(!ail(tl')) 

while input communication is a form of choice; the subsequent behaviour remains to be determined 
by the incoming value. 

c?,c ---+ Q sat t1' = () V ~ v. hcad(/'I') = c.v 1\ Sv(t.ail(tr)) 

The rule for recursion insists that we establish a base case (showing that the specification is 
satisfiable) and then demonstrate that the specification is preserved by recursive calls: 

Stop sat S(tr) 
If X • X sat S(I1') =} F(X) sat S(l1') 

P sat S( /1') 
[P=F(P)] 

This rule is sound only if the recursive process is well-defined (it is enough to show that each recursive 
call is guarded). 

The definition of sat allows us to derive logical rules for manipulating proof obligations: for 
example, 

P sat S( /1') 

If /1' • SUI') =} 1'(11') 

P sat 1'(1.1') 

It can be shown that the resulting proof system is sound and complete with respect to the trace 
semantics. 

5.4 The lazy caching algorithm 

In [ABM93] the authors propose a novel algorithm for ensuring sequential consistency. Each processor 
cache is equipped with input and output queues, allowing (I) cache updates to be postponed, while 
the processor reads possibly out-of-date data (2) memory updates to be queued, leaving sequences of 
write operations pending at each node. A suitable system is illustrated in Figure 5.1. 

A write event docs not have an immediate effect upon the shared memory state; instead, a request 
is placed in the output queue. Whenever a request is taken out of this queue, the memory is updated 
and a cache update request is placed in every input queue. In the case of the node responsible for the 
write event, the cache update request is marked when it arrives in the input queue: we say that it is 
starred. 

A read event cannot occur until (I) the cache has a copy of the address concerned, (2) the output 
queue is empty, and (3) there are no more starred requests in the input queue. This discipline is enough 
to ensure that memory accesses are sequentially consistent throughout the system. 

To obtain a CSP process description, we define a Node process for each processor. This buffers all 
communication to and from the shared memory, and consists of three components: a local cache, an 

64 



a 
" ~ 

p 

a 
" ~ 

p 

Memory 

Figure 5.1: A lazy caching architecture 

p 

output buffer, and an input buffer. Each user process communicates with the system via two channels 
rand 111, used for reading and writing values, respectively. 

The write channel HI is connected directly to the output buffer, but the read channel is linked to all 
three components. Although the values passed on ,. are determined entirely by the cache, as we shall 
see. both buffers must agree to the communication taking place. There are three further channels in 
our description: 

• ci, used for passing values from the input buffer to the cache; 

• mi, used for passing values from the memory to the input buffer; 

• mo, used for passing values from the output buffer to the memory. 

These are internal channels, and will be hidden from the user process. The resulting Node process is 
illustrated in Figure 5.2. 

To serve a collection of n user processes, we will require a network of node processes, labelled 
from I to n. These processes communicate via a shared memory, which forwards update messages 
to all input buffers. In this section, we will use a process Melll.ory to describe the service provided 
by the shared memory interface. 

Each node process is a parallel combination of three components: 

Node Cache II In II Out 

The system contains a parallel combination of such nodes: 

Nodes II ·E ! i.Node t .. n 

where i.Node is the result of prefixing all communication events with an index i. 

65 



r w 

Cache 

ci r 

~ a 
" ~ 

'--.-
mi r rna 

Figure 5.2: Cache and queues at a single node 

The two internal channels 1II.i and 1IlO will connect the memory to the input and output buffers at 
each node, while a third channel ci will connect the cache to the input buffer. These channels are not 
part of the interface to the memory system, so we conceal them using the hiding operator. The final 
description of the system is thus 

5'yst.cm (Nodes II Memm'Y) \ 1nl.e7'11.aI8 

where Mem.ory represents the service provided by the shared store, and 

Intel'n(ll~ = {i.'mi, i.mo, i.ci liE 1 .. n} 

denotes the set of all internal communications. 

5.5 Process description 

The output buffer is a queue for data messages. Each data message takes the form a.d, where a is 
an address and d is a data value. The communication w.(I.d from the user program is an instruction 
to update address a with value d. The output buffer is always ready to receive communications on 
channel '111; these communications will be forwarded to the memory along channel rno in the order in 
which they were received. 

If we model the output buffer as a CSP process Out., then this process will be indexed by a 
sequence variable, representing the current state of the buffer. Initially, this sequence is empty; at all 
times, it consists of the sequence of data messages that have yet to be forwarded to the memory. 

Oul OulO 

66 



Outo w?a.d ----> Out(a.d) 
o 
r? a. d ----> OutO 

w?a.d ----> Out(a'.d')~,~(a.d) 
o 
mola'.d' -----t Outs 

Whenever the output queue is empty, the process will allow communications to take place on channel 
,.: the value passed is ignored by Out. 

The input buffer is always ready to accept data messages from the memory on channel mi, and 
will forward these messages to the cache on channel ci. We may model the input buffer as a process 
In, similar in form to Out above. 

In {nO 

Ino mi?a.d.f ----> In(d.j) 

o 
,·?a.d ----> InO 

The behaviour of the input buffer is slightly different to that of the output buffer. It will allow 
communications on channel I' whenever it contains no data messages that are marked with an asterisk: 
messages that have been flagged by the memory as urgent. Thus the buffer need not be empty for 
communications on 'f' to occur; it may contain any number of non-urgent messages. 

II1(a l.d l ..fI)"-'" s mi?a.d.f -; In(".d'.f')~ ,~(a.d.!) 
o 
ci!a'.d',f' ----+ Ins if stll1's( (a'.d'.f')~ s) 

mi?a.d.f ----> In(a".d'.f')~,~(a.d.j) 
o 
ci!a',rI'J' ----+ Ins 
o 
1'?a,d -----.. hl·(a.'.dl.j'}---s otherwise 

The sequence predicate slars is true iff its argument includes a flagged data message. We may define 

stars(s) ¢} ., I {i.mi.a.d.* Ii E 1 .. n II a E A II d ED} = () 

where I is the standard sequence/trace projection operator. 
If we model the cache as a CSP process, then it will be indexed by a function variable, representing 

a mapping from address to data values. Initially, this takes the value ze1'O, mapping each address to 
data value (). 

where ZCI'O is given by 

Cache 

Cacheq 

zero 

Cachczero 

ci?a..d.j ----+ Cac!tCg$a_d 

o 
"?a![/( a) ----> Cacheg 

{a>-+ () I a E Address} 

67 



At any time, the cache may be read via channel r; for any address a, it will return the value d stored 
at a., according to the local mapping g. 

Because channel communication in CSP is fully synchronous, we may represent a read commu
nication as a single event ,·.a.d. The composite notation used above abbreviates a choice construct 

r?o.!g( a) ----> ... D"EA '·.(I"g(o.) ----> ... 

where A is the set of all addresses. 
Our assumptions about the behaviour of the shared memory interface may also be described as a 

CSP process. This process accepts data messages from the output buffers and distributes them to all 
input buffers. In its initial state, the memory process will allow any communication of the form i.r .a.d: 
a read communication at node i. While the memory is distributing data, these communications are 
disabled. 

DEI i./lw?l1.d ----> Melll.o1'yOal.(; n.d) ; Mem01'Y 
~ .. n , 

o 
D iEJ .. n i.r?a.d -: ~t{e1l/.ol'y 

The distribution process is a sequential composition of n processes, each passing the data message to 
a different input buffer. 

Mellw1'yOul( ;,n .d) '.iEI. n if i =.i then U.mi.a.d.* ----> Skip) 
else U.mi.a.d ----> Skip) 

If the input buffer belongs to the same node process as the output buffer, then the memory will flag 
the data message with a star. This is the only aspect of the shared memory service that we need to 
consider. 

5.6 Sequential consistency 

We may express the property of sequential consistency as a trace specification. A trace 11' is sequen
tially consistent if there is some trace of an ideal memory such that the order of reads and writes at 
each node is the same for both traces. Formally, we define a specification Se( II') on traces which 
holds exactly when I." is a trace of a sequcntially consistent memory. 

If predicate Serial holds exactly when 1.1' is a trace of a serial memory, and the condition that two 
traces 1.1' and /.1" agree upon the order of rcads and writes as seen from each node is defined by the 
predicate COllSi8lenl.( Ir 1 tr'), then 

SC(tr) ¢} 3/.,.'. Serial(t.r') 1\ COllsistenl(lr, II") 

That is I,· is a trace of a sequcntially consistent memory exactly when there is another trace II" which 
is (I) a trace of a serial memory, and (2) consistent with I,·. 

A trace of an ideal memory is a trace in which every read communication passes the last data 
value written to the chosen address. If we write :0; to denote the prefix relation between traces, then 

Scrial(l,.') = V tro • l'I·o~(i.r.(I.d):O; i.,J => vah,.el.",."(tro) = d 

that is, for any prefix of tr' ending in an event of the form i.,' .a.d, the value d passed must be the last 
value written to II. For convenience, we write [ to denote the indexing set 1 .. n, and define 

1.111 {i.w liE I} 

68 



to denote the set of all write channels. 
The function value returns the data value last written, or 0 if no write has occurred since the 

system was initialised. 

volucc.,,(t.I') = d ¢} t·1'1 C.o.!) = () II d = 0 
V 

last(tl' I C.a.D) = c.a.d 

The function lasl returns the last element of a trace, and the set of events C .a.D marks the set of 
events 

{c.(I.d IcE C II dE O} 

for some set of channels C and the set of all data values D. Here, the set C is the set of all write 
channels r.w. 

Two traces are consistent if they agree upon the order of external events at each node: 

COllsislcnt( /.1', II") = 'if i • 11' I E; = /1" I E; 

where E; is the external interface at node i, the set {i.l', i. w}. Two consistent traces may differ in the 
order of internal communications, and in the relative order of external communications at different 
nodes. 

To show that the lazy caching algorithm guarantees sequential consistency, we must establish that 

Sysir'lll. sat SC( 11') 

that is, that every trace 11' of our implementation satisfies the specification SC defined above. 

5.7 Component properties 

As part of the verification process, we will identify the salient properties of each system component: 
the contributions that each makes towards our guarantee of sequential consistency. 

The output butTer acts as a queue: the sequence of messages output must be a prefix of the 
sequence of messages input. Furthermore, read events may occur only whenever the butTer is empty. 
We define a behavioural specification for the output buffer at node i 

i.OUT(tI') II'.IJ. i.IIIO :'0 I.!'.IJ. i.w 
II 

'if 11'0 • 11'0~(i.I'.a.d) :'0 I,· => /"'0 .IJ. i.mo = Ira .IJ. i.w 

If a read event occurs, then the input message sequence must match the output message sequence. We 
write 11' .IJ. c to denote the sequence of data messages passed on channel c during trace tl'. 

The input buffer also acts as a queue. However, read events are enabled only when there are no 
flagged data messages held in the buffer. A suitable behavioural specification of the input buffer at 
node i would be 

i.lN(t.I') /I'.IJ. i.ei :'0 II'.IJ. i . .",i 
II 

If 11'0 • 11'0~(i.I'Jl.d) :'0 t.1' => 1.'1'0 .IJ. i.ci.* = 11'0 .IJ. i.mi.* 

We write II·.IJ. c.* to denote the sequence of flagged messages passed on channel c during trace tr. 

69 



The cache acts as a serial memory. Whenever a read event occurs, the data value passed must be 
the last value written to the address in question. For node i, a suitable behaviour specification would 
be 

i.CACIIE(t.,.) = '1/'1"0. /.1"o~(i.1·.a.d):S /.1" =} valuei.,i .• (tro) = d 

where value is as defined above. 
The memory process may allow read events only when every data message accepted from any 

channel i. 1/1.0 has been redistributed to all channels of the form j. mi. In any case, the starred data 
placed onto an i .mi channel will be a prefix of the data taken off the corresponding rno channel. 

MEMOI1Y(t.1") Vi. /.1".(1. i.mi.*:S 1.1'.(1. i.rno 
/\ 

'1/'''0 • l1·o~(i.1".a.d) :S 11" =} 

V.i • 11"0 .(I. .i. 1110 = 11"0 .(I. j • mi. * 
/\ 

/·1"0 .(I.j.1l1.i = /ro.(l. I.rno 

If the input butler belongs to the source node for the current data message, then the outgoing copy 
must be flagged. 

Using the rules of the proof system, it is easy to establish that each of the sequential processes 
exhibits a satisfactory pattern of communication: i.e., that 

i.In sat i.IN(11·) 

i. Gill sat i.OUT(t.1") 

i. Cach.e sat i.CAClfE(t1") 

Memo1"Y sat MEMOIlY(I1") 

where In, Out, Cache, and Memo1"Y are as defined in the previous section. 

5.7.1 System properties 

The component specifications may be combined using the proof rule for parallel composition. In this 
way, we can establish that 

i.Cachc II i.ln sat /.,..(1. i.ei :S /1".(1. i.mi /\ 

'11'''0 • 11"0~(i.1·.(/..d):S /.,, 
=} 

Using the same rule once more, we obtain 

/'''0 .(I. i.ei.* = /'1'0 .(I. i.m.i.* /\ 

valuei.ci .(/. ( tra) = d 

i.Cache II i.ln II i.Oul. sat /1".(1. i.e; :S /.1".(1. i.mi /\ 

/.1' .(I. i .1IW :S /.1' .(I. i. w /\ 

'111"0 • 11"0~(;.1·.a.d) :S Ir 

=} 

70 

11"0 .(I. i.ci.* = Ira .(I. i.rni.* /\ 

/'''0.(1. i.11Io = 11'0 .(I. i.w /\ 

valuea., j. ci ( 1·'1'0) = d 



The rule for network parallel combination may then be applied to yield the following statement 
(recall that Nodes = Il iE !.." i.Nodc): 

Nodes sat Vi. /.I·.IJ. i.e.: :s f,".IJ. i.1I/.i /I 

t,·.IJ. i.m.o :S t,..IJ. i.IV /I 

Vtro. tro~(i.I·'(I.d):S tr 
=? 

/1'0 .IJ. i.ci.* = t,.o .IJ. i.rni.* /I 

t,.o .IJ. i.1I1O = 11'0 .IJ. i.IV /I 

valuei.ci,a (tro) = d 

A final application of the rule for parallel composition yields 

where 

Mem.01·y II Nodes sat Spec ( II') 

.5jiCC( I,.) "" Vi. I"·.IJ. i.m.i.* < I,·.IJ. i.m.o /I 

I,. .IJ. i.ei :S Ir.IJ. i.mi /I 

/r.IJ. i.m.o :S /1' .IJ. i.w /I 

VI,,·,. iI·o~(i.I·.a.d):S /.1' =? 

"'0 .IJ. i.ei.* = 1"0 .IJ. i.mi.* /I 

/"0 .IJ. i.1I/.o = /"0 .IJ. i.IV /I 

valuei,ci.a.(lrO) = d 1\ 

Vj. //'0.IJ. j.mo = f,ro.IJ. j.mi.* /I 

/.1'0 .lJ.j.1I/.i = /7·0.IJ. I.mo 

We have shown that whenever /.,. is a trace of Nodes II Memory, then /.,. must satisfy the specification 
Spec. In addition, all prefixes of I,· will also satisfy Spec. 

From our definition of sequential consistency, it is easy to see that this property is invariant 
under the hiding of internal channels In/e1'll0Is: if /,.' is such that t,. = 11" \ Internals, then 

SC(/r') '* SC(h'). 
Thus, we have reduced our proof obligation to 

(VI,.':S I,.. Spcc(t,.')) =? SC(ll') 

5.8 Verifying sequential consistency 

To demonstrate that Sper( /.rj is sufficient for sequential consistency, we will show that, for any trace 
I,.., satisfying Slice-and all of whose prefixes satisfy Spec-there is a consistent trace Ire which 
satisfies Serial. We may construct this trace by permuting t"l: 

where each M is a permutation function on traces. 
The function M, moves each read event i. ,. to a position just after the last j. rno event for which a 

corresponding i.ei event has occurred. In other words, the read is moved to a position after just those 

71 



"'0 events whose effects have filtered through node i's input buffer to have an effect on i's cache. If 
k i .ci events have occurred, then the read is moved to just after the kth mo. Formally, 

V I,' : seqL 0 I.,· \ I.,' = MrU,,) \ 1.1' f\ 

Vi 0/1', i.1' = M,.(I,·)I i.1' f\ 

V,,'O 0 1.1'o~(i.1'.a.d) ::; M,.(I1') =} 

311'; 0 1:1'; ~(i.,·.a..d) ::; 11' f\ 

#(11'; , i.ei) = #(11'0' l.mo) 

We insist that: only read events are moved; the order of read events at a particular node is unchanged; 
a read event at node i is moved back to just after the last "'0 whose effect has been seen at i. 

The function M", moves each write event i.1I1 to a position just before the corresponding i.mo 
event. In other words, write effects are moved to the point at which their effect is experienced by the 
memory. The kth i.1I1 is moved to a position just before the kth i. mo-ifthe corresponding i .mo has 
not yet occurred, then we move i.1I1 to the end of the trace. Formally, 

V II', /-1" 0 II" = M",( II') =} 

Vi 0 II'.IJ. ;.1110 ::; II'.IJ. i.'IO f\ 

II' \ 1.'111 = 1.1" \ r.w f\ 

Vi 01", i.w = II", i.I" f\ 

V 11'0 0 1·l'o~(-i.nw.o.d) ::; /./" =} loslll'o = i.1I1.o .. d f\ 

V /.1'01 1."1 • f.l'o.-..U.w.a.d),.-....t.7·j = t1' =? first. t1'1 = i.rno.a..d 
V 

11'} \ I. 'III = () 

We insist that: the function is only defined on those traces II' where the i. rna events are a prefix of the 
i.w events; only the write events are moved; write events from a particular node are not reordered; 
every 11/.0 in the resulting trace is preceded by the write event that caused it; every write is moved to 
a position where it either precedes the corresponding mo, or is followed only by other writes-the 
write events at the end of the trace arc those for which the corresponding rno event has yet to occur. 

The composition of these functions moves each write event to the point where its message is 
accepted by the memory, and each read event to the point where the last update for that address was 
placed on the corresponding In queue. In the resulting trace, each read event is placed after precisely 
those write events whose effects have reached the memory. 

Having defined the functions, we must show that 

• the composition l!1w 01111' is defined for every trace of the process Nodes II Memory; 

• any trace in the range of 1dw 0 At/). is a serial trace; 

• any trace l.,. is consistent with its image (lvfw 0 }\1r) tT'. 

The first of these requirements is easily met. The others will need some careful reasoning. 

Applicability 

To show that our permutation functions may be successfully applied to any trace of our system, we 
must show that every trace 11'} of the system is in the domain of the function Mr, and that Mr( t1'}) 
lies in the domain of function ~t{1/!. 

72 



We must show that if 1"0 ~ ( i ,". a. d) :S /", then the event i. ,'. a, d can be moved forward to follow 
k 1.1Il0 events, where k = #(1.7'0 r i.ei). This is equivalent to showing that 

#( 1"0 r i, ci) :S #( t"o r r. "'0 ) 

which is easy to establish: t"o is also a trace of the system, and so must satisfy Spec; the second and 
last conjuncts of Spec establish the result. 

We have then to show that the tmce tl'; = Mr( I" ) satisfies 

which follows from the corresponding result for t"" given that Mr only moves read events. 

Serialization 

To show that every trace in the range of AI", 0 Mr is a serial trace, we must show that an appropriate 
value is returned on every read event. We begin by showing that if Spec ( I,,,, ) then the data messages 
read during M r( II', ) agrec with the data messages passed on the 1/10 channels: i.e., that 

V /1'0 • 1,I'o~(i.I'.a.d) :S M,.(tl',) =} vallle/.Tn".a(t,.O) = d 

Suppose that 
lI'o~(i./'·a.d) :S MrUl',) 

then from the form of Mr, there exists some tl'~ such that 

tl':)~(i.)'.a.d):S t", II #(h'~ r i.ei) = #(1.7'0 r I.mo) 

From Spce( tl', ) we have that volue;";,,, (tl'{;) = Ii whence 

< 

< 

t,·~ JJ. i.ei 
I JJ.' ' tl'o L 11/.1, 

t'l';J .u. I.IIUJ 

/"; JJ.l.",o 
M"(t,,,) JJ. 1,IIlo 

(from Spee( /l'm 
(from Spee( /'" )) 
U"b :S t",) 
(definition of Mr) 

Also, since /"0 :S M", ( 1,1', ), we have 

tl'o JJ.l,1II0:S Mr(t,,!) JJ. 1,1110 

Hence I,,.b JJ. i.ei and 1.7'0 JJ. (,lifO are both prefixes of Mr(tI',) JJ. I.mo. But they are of the same 
length so they must be equal. We conclude that 

'N!.IUCl.mo.I1-(/I'O) = l}aluei.ci.a_(tr~) = d 

as required, 
We must now show that (M", 0 M,.) /1', is serial: 

V tl'o • 1:"o~(i,I',Il,d) :S M",(M,,(ll',)) =} val'lCl.""a(tl'O) = d 

Suppose that 
tJ'o·~(i,,',a.(l) :S M",(Mr(I,,',)) 

73 



From the definition of M"" there is some trace /.1'~ such that 

11·~~(i.l'.a.d):S: M,.(t.J) 11 h'~ \ l.w = tro \ I.w 

From the above, we have that valllcj .mo,a,( ll'~) = d. Also 

tl'o .IJ I.w 
1.1'0 .IJ 1.111.0 (from Spee( /:/'1)' and since Mr moves only reads) 
11'~ .IJ J. "'0 (M", only moves write events) 

We may conclude that valllCl.",., ( 1.1'0) = vrtluel,nw.,(ll';) = d. The trace is question is thus a serial 
trace. 

Consistency 

To show that M", 0 M" preserves consistency, it is sufficient to show that each of Mr and Mw preserves 
consistency when considered separately. We argue that neither Mr or M", allows reordering between 
i .1' events, or between i.w events. It is therefore enough to show that the transformations do not alter 
the relative order of i .'1' and i. III events. 

To see that 111,. cannot move an i.1' event past an i. III event, suppose that a trace of the form 
t.'f'or--.t.'I'J~(i.1')--'lr2 is transformed into l,.~~(i.r)"-'tl'~'--"'tl'~ where trj \ 1.1' = tTf \ 1.1' for 
i = O,),2,and 

#((l.l'o~ll'l) r i.ei) = #(/.I'~ r 1.1110) 

We suppose for a contradiction that the i.1' passes an i.w event; i.e. we suppose that t1'l is of the 
form tl's'---U.w.a.d)---".,,;,. Then from Spec we have 

and 
(/.1'0 ~ 1.1'3 ) .IJ i .1110 :s: (t1'0 ~ 1.1'3) .IJ i. w 

Hence there must be a i.mo.n.Ii event in 11'4' A similar argument shows that there must be i.mi.a.d.* 
and i.ci.a.rl.* events in 1.1'4 after the i.'IHo.a.d, and if the i.ci.a..d.* is the kth i.ci event, then the 
i.mo.{/.d is the h:th I.mo event. But then 

#((ll'o~h'/) I i.ei) > #(11'0 I 1.1110) = #(I1'~ I I.mo) 

since 1'1'0 \ 1.1' = l'l'~ \ 1.1', which contradicts the statement above. 
To see that M", does not alter the relative order of i.1' and i.w events, note that the function Mw 

moves each i. w event to just before the corresponding £.1/1.0 event. Suppose, for a contradiction, that 
the i. w passes a i.f' event. Then there are two cases to consider. 

Firstly, consider the case where the i.'III moves to a position before the original position of the i. 1', 

i.e. the original trace is of the form 

~(' !)~' ~ ~(' l)~ ~(' I d')~ ./''1'0 ' .. W.U.L I.1"J /''''2 ·l.1II.O.(I..(. /''',1 1..1'.(1... t1'4 

which is transformed by M,. to 

I '~(' l)~l'~(' '!')~l'~(' 1)~I.I~t' "'0 t·.w.a.t. ,1'J 1.1',(1. .c. /"2 l.mo.a.c ·1'3 ,1'4 

74 



which is transformed by Ai", to 

where 

t fl~tfl~(' 'l')~tfl~(' l)~(' d)~ fI~tfl :1'0 :1'1 Lt',a .r., ·1'2 l"l/J.a.(. 1,.1no.a. irs r4 

#((t'·o~(i.w.a.d)~t"·1 ~/.r2~(i.mo.a..d)~tr3) I i.ei) = 
#((tr~ ~(i.III.a.d)~t.,.;) I I.mo 

and t.,.; \ {I. I' , J . III} = ".: \ {I . .,., J . 111} = II'I' \ {l. ", I. w } for i = 0 .. 4. Then, using Spec, 

(!"'o~(i.w.a.d)~trl ~t"'2~(i.m.0.a.d)~/r3).(I. i.ci.*) = 
(!r~ ~(i.w.a.d)~t,·;).(I. i.1IIO 

Also from Spec: 

(. ~(' l)~ ~ ~(' l)~) ". . [1'0 1 .. W,a,(. /'1'1 1:1'2 z.1Ito.a.(. tl's, v- 'Lcz.*= 

(tro ~ (i. 111 .a.d) ~ trj ~ 1"2 ~(i .1Iw.n..d) ~/r,,) .(I. i. mo 

giving a contradiction. 
Alternatively, consider the case where the i.1II moves to a position after the original position of 

the i.r, i.e. the original trace is of the form 

/.1'0 r--, (': .w,a.d) '--""1.1"1 ,--....l.,.~,--.... (i. l' ,a', el/)'-" 1.1'3"-'" (i .mo.a.d) "'-"'tr 4 

which is transformed by Air to 

I I~(' l)~t I~(' I l')~l I~t I~(' d)~1 I :"0 l.w.a.f, "'j lo1'.O .(, ,1'2 ,1'S L17lO.a. 1'4 

which is transformed by M", to 

I fI~1 fI~(' I 1')~1 fI~'1 fI~(' l)~(' d)~t fI :"0 ,J'j 'l.1'.0 .f. :/'2 ,1'S LW,a,(. z.mo.a. ' 1'4 

where 

#((t fI~1 fI~(' I 1')~1 fI~t fI)' . ·1'0 ,I'j Lr.a.f. ,1'2 ,1'3 I 1,.'111.0 = 
#(("I'~---ll·~/''-'''(i",..al.d/)'---'tl'~''-'''tl'~) I -l.w 

and I . .,.; \ {l.r, I.w} = tr: \ {I.r, I.w} = 1.1'1' \ {I.,', l.w} for i = 0 .. 4, and 

Hence, 

(tro~(i.lII.a.d)~I'·j~tr2~(i.,·.a'.d')~t.,."~(i.,,,o.a.d)~tr4) I i.w = 
(lr;:~ I,·;/~( i. r.o'.d')~ tr;{~ tr.~~( i.w.a.d)~( i.mo.a.d)~/r41) I !.w 

#((tro~(i·w.a.d)~lrl ~1"2) I i.1IIo) 
< #((I:"~"-"'1.1·t--'(i·l·.(/.'.d')'--'I:J'~"t,I'~) I i.711,o) 

#((/ . .,.~f'------ll'?"-"'(i,,/,.({.I.d/)r--.tl';"-"'tl'~) j l:.W) 
< #(t"o~(i.III.(J.d)~I."j~t'·2) I i.w) 

contradicting Spec. 

75 



5.9 Conclusion 

In this chapter we showed that the esp process notation can be used to describe a lazy caching 
algorithm for shared memory. We also showed that the language of esp traces can be used to 
characterise the property of sequential consistency. Using the traces model of esp, we were able to 
verify that the caching algorithm guaranteed sequential consistency for a suitable shared memory. 

The trace specification provided a pal1icularly concise characterisation of sequential consistency, 
and the process notation made it easy to describe the communicating behaviour of the chosen imple
mentation. The proof that each trace of this implementation is sequentially consistent is lengthy and 
involved, but contains little or no junk: the complexity of the proof matches the complexity of the 
problem. 

The approach taken here is relatively unsophisticated. We have not shown how the process 
notation may be refined further, towards software or hardware implementations. Neither have we 
demonstrated the more powerful models of esp, which support Iiveness and timing specifications. 
But it is our hope that this chapter demonstrates the advantages of a uniform model-based approach: 
by choosing the simplest adequate notion of observation for each property, complex systems may be 
verified with a minimum of effort. 

76 



Chapter 6 

The Compositional Approach to 
Sequential Consistency and Lazy 
Caching 

w. Janssen, M. Poel, J. Zwiers 

77 



6.1 Introduction 

Adequate decompositions often simplify the analysis and understanding of distributed systems. Such 
decompositions can to a large extent be formulated in a way that is independent of the underlying 
model of distributed systems. Formal correctness proofs that exploit this decomposition can have 
a top level structure that is largely independent from the particular formalism used as well. We 
substantiate this claim by explaining the lazy caching algorithm as proposed by Afek, Brown and 
Merritt [ABM93]. 
The algorithm in [ABM93] describes the implementation of a so called sequentially consistent shared 
memory [Lam79]. The result of our investigation is that the algorithm can be decomposed into 
essentially four simple protocols. The four protocols are of more general interest than just the lazy 
caching algorithm. For instance, the protocol concerned with replication of memories suggested a 
type of memories called write-coherent memories. Write-coherent memories have the property that 
they can be replicated, while preserving the write-coherency property. Such is not the case for the 
class of sequentially consistent memories as used in the lazy caching algorithm. A second aspect 
of our replication protocol is that it allows for less (or more) replicas than the number of processors 
accessing the shared memory. The lazy caching algorithm assumes exactly one replica, in the form 
of a cache, for each processor. Such variations of the original algorithm are more easily found in a 
compositional setup, since it allows one to deal with one aspect at a time. 

The structure of the system used in the lazy caching algorithm is sketched in figure 6.1. In this 
figure we have shown a system communicating with four users, using three caches. Informally the 
algorithm behaves as follows. A number of user processes i communicate via channels Wi, Req;, 
and Ret; with a memory system. Write actions are sent via the W; channel and are queued in separate 
so called Out queues for all users. At the bottom level of the system we have a number of cache 
memories and a general memory. The caches have queues connected to them as well. When writes 
leave the Out queue they are distributed to all caches (where they are queued again in queues [nj), 

and to the memory component. Reads are requested via Req; channels, and the values requested are 
returned via the Ret; channel. The protocol is such that read requests of user i are forwarded to the 
caches only if there are no queued writes in the Out queue of process i, and there are no writes by 
user i in the In queue connected to the cache it reads from. 
Finally, the cache components can request values from the memory when needed. This models the 
fact that caches can have limited capacity only, whereas the memory always stores the latest values 
of all addresses. The values requested are put into the In queue connected to the cache as well. 

As stated above, the top level of our proof does not depend on a particular formal model. As a 
consequence, we could make a choice which style of reasoning to use for the more detailed proofs 
concerned with the our four simple protocols. The fact that sequential consistency is always formulated 
in terms of traces strongly suggested a trace based model. A second consideration was that partial 
order methods, as we have exploited them in a shared variable setting [ZJ94, JPZ91], have proven 
themselves as techniques that yield considerable insight. Moreover, the distinctions between coherent 
memories, sequentially consistent memories, and write-coherent memories can be explained quite 
well by mcans of partial orders, and the related concept of dependency relations between the various 
communication channels of such memories. The model that we have chosen is a partial order version 
of the quiescent trace model advocated by Chandy and Misra, and Jonsson [Mis84, Jon85]. The 
model can specify both safety and liveness properties, yet has a very simple compositional rule for 
parallel composition; in essence, parallel composition of systems can be seen as logical conjunction 
on the level of trace specifications. 

The model we use is based on the models and ideas underlying la-systems [1on85, Jon87] and 

78 



Figure 6.1: Structure of a lazy cache system with 4 users and 3 caches. 

79 



la-automata [LT87], though reformulated in a partial order style taken from [ZJ94, JPZ91]. 
Informally, a component of a parallel system communicates with other components via directed 
communication channels. For each system execution IJ the communication events associated with 
some particular channel c form a linear history that we denote by IJ I c. Communications along 
different channels c and d say, are not ordered unless a so called dependency relation exists between 
the actions along the two channels. Conceptually speaking one might think of such dependencies 
as being generated by a set of observers, each of which is capable of observing communications, 
including their relative ordering, along some given set of channels. 
The idea of observers is of paramount importance to our view on the differences between coherent 
memories and sequentially consistent memories: For coherent memories one postulates a single, 
"global" observer at the interface between memory and user processes. For sequentially consistent 
memories there is no such global observer, at least not at the interface level. Ratherthere is an observer 
associated with the read and write actions issued by each particular user process. Consequently, read 
and write actions issued by a single user process are ordered, whereas actions stemming from different 
users processes remain unordered at the memory interface. 

Our partial order model is inspired by the work of [Pra86, Gis84, Maz89]. It is similar to the 
models that we used in [ZJ94, JPZ91] except that here we focus on a communication based model, 
rather than on a shared memory model. The main reason for a communication based model is that 
interaction between various system components such as queues, busses or caches, is conveniently 
modeled by synchronizing communication actions. 

The outline of the paper is as follows. After introducing a simple language for networks of 
processes we informally introduce the four protocols in our decomposition, and the memory types 
used. We show how the four protocols are composed to give a sequentially consistent system in the 
style of Affek, Merritt and Brown. Thereafter we introduce our specification language, and formally 
specify the memory types. Finally the formal proofs of the protocols and their properties are given. 

Note and acknowledgement. This paper originates from a joint draft with Shmuel Katz. His 
contributions to the decomposition idea are gratefully acknowledged. 

6.2 Networks of processes 

6.2.1 The process language 

In this section we introduce the process language and the model we use for describing networks of 
communicating processes. The process language appears later on as a sublanguage of the mixed term 
formalism we use for specification and design. 

A network or system consists of the parallel composition of a number of processes. Processes 
communicate asynchronously via directed channels. The alphabet a( P) of a process P is the set of 
channels connected to that process. This set alP) is the union of the input channels I(P) and the 
set of output channels 0(1'). For networks of parallel processes it is allowed that more than two 
processes are connected by a common channel, say c. In that case, only one process P can have c 
as an output channel. Any message sent by this P process is received by all others connected to c. 
If c is an input channel of process Q, then it is assumed that Q is always able to accept input via 
c. As a consequence, deadlock behavior as in CSP style process languages is not possible at all. A 
network of processes can reach a so called quiescent state: no output actions are possible anymore, 
at least until more input messages have been received. As described in [Mis84, Jon85], the semantics 
of such networks is adequately described by quiescent traces: sequences of communications along 
channels, corresponding to quiescent states. Below we introduce specifications 5 for quiescent traces. 

80 



We take such specifications S, together with a declaration of input and output channels, as the basic 

components of networks. That is, we do not provide an algorithmic language for basic components, 
but rather we admit process specifications S as basic components. As usual, we do not make a 
formal distinction between processes and networks of processes and we use "process" to refer to both 
basic components and networks. Channels c of a process P can be renamed into d by means of the 
renaming construct P[d/ cJ. A set of channels 0' of a network P can be made local to that network by 
the hiding construct P\n. The syntax of out process language is as follows. It has been taken from 
[10n85]. 

P ::= (1,0 : S) I PI II P2 II ... II P" P\o: I P[d/cJ. 

The input and output channels, J (P) and O( P) of processes P are defined in the following table. In 
all cases, the alphabet niP) is defined as J( P) u O( Pl. 

P r( P) O(P) 
(I,O:S) I 0 
PI II ... II P n (I( Pd u .. , u I(P,,)) \ (O(Pd u ... U O(P,,)) 0(P1 ) U··· U O(P,,) 
P\n I( P) \ n O(P) \ 0: 

P[rI/ cJ I(P)[d/cJ O(P)[d/cJ 

The syntax of specifications S is spelled out in more detail below, where we introduce a mixed 
formalism, unifying processes and logic specifications. At this point it suffices to state that such 
specifications are predicate formulae with occurrences of so called trace projections of the form 
II r n. Such trace projections denote the (specified) trace, projected onto the alphabet n. It is assumed 
that for process (I, 0 : S) all trace projections II r n are on alphabets n such that n ~ [U O. 

6.2.2 The model 

Processes P are interpreted as sets of traces of communication actions. Single communication actions 
a have the form (;,110, ... ,11,,), where c is the name of a channel, and where vo, ... , v" are one or 
more values or attributes, sent along this channel. A trace H is then defined as a (finite or infinite) set 
of occurrences of communication actions, called events, together with an order among those events. 

More precisely, a trace is a directed, acyclic graph (V, ---» where V is a set of events, and where 
"--->" is what is called the causal ordering relation on events. We assume a symmetric and irreflexive 
dependency relation "",-," on events. 

Traces are required to be strictly dependency closed, which means that two events e, e' E V are 
ordered if and ani y if they are dependent events, i.e.: 

e f"V e' jff e ---+ e' or e' ---+ e. 

We use His( u) to denote the set of all possible traces over alphabet (Y. 

The model that we use here is consistent with the (more complicated) models in [ZJ94]. The 
simplified model that need here has several isomorphic counterparts. For instance, we will often 
identify a trace of the form ( Ii, ---» with the partial order ( V, ---> +), where "---> +" is the transitive 
closure of "--->". In fact, because of the strict dependency closure condition, a set of traces can also 
be represented by the set of all possible linearizations of those traces. (For the models in [ZJ94] 
this is not the case.) Much of what follows has been formulated neutrally in this respect, i.e. it can 
be understood both in the partial order and the isomorphic interleaving model. (When we come to 
specifications and in particular to the actual correctness proofs the concepts of partial orders turn out 
to be quite essential to clarify matters however.) 

81 



Process P with alphabet « is interpreted as a subset of llis( a). To simplify notation, we identify 
here the term P and the set of traces it denotes. For a basic component that has the form of a 
specification (I, 0 : 5(11)), with free (trace-typed) variable II, this is the set of all traces over I U 0 
that satisfy formula 8(11). To define parallel composition of processes P and Q we rely on the 
projection operation 11 ra. 

P II Q '~f {H E His(a(P) U a(Q)) I H l'a(P) E P,H I'«(Q) E Q}, 

Hiding is simply defined by means of projection: 1'\(3 denotes P ~ a(P) - (3). Finally, renaming 
P[ d / c] is defined as usual, simply by renaming all occurrences of channel name c in P traces into d. 
We require that for a process P[d/c] the channel d has the same dependencies within P as c does. 
This ensures that the resulting system is again strictly dependency closed if Pis. 

6.3 Memory types and interfaces 

Our analysis of the lazy caching protocol is based on three different types of shared memories: 

(i) Coherent memories, 

(ii) Write-coherent memories, 

(iii) Sequentially consistent memories. 

In order to clarify the differences between these memory types one must consider the the interface 
between user processes and memory modules. We found it very useful to make a distinction in 
terms of so called dependency relations between the various forms of read and write actions. In our 
partial order model, dependency has a precise meaning in that it indicates which sort of events will be 
ordered and which ones will remain unordered. Within interleaving models, that could have been used 
instead, independence of actions can be understood thus: If two actions, say a and b are independent 
for system P, then the specification for P leaves the direct order of a and b unspecified. 

All types of memories have the same interface, except for dependencies between the actions, 
There are N user processes Po, ... , I'N -1, that can execute read and write actions. Write actions are 
executed simply by sending a memory address and a value to be written along channel W;. A read 
access is executed by sending an address along read request channel Reg;, followed by receiving the 
value read via a read return channel Re/.;. It is assumed that user process P; will wait after doing a 
request until the corresponding return action is received. Within models that allow for synchronized 
actions it is possible to combine read requests and read returns in one "joint" action. For models like 
10 automata, orthe quiescent trace model that we use here, such is not possible due to requirement that 
input actions must always be enabled. The interface as described is essentially taken from [ABM93] 
except that we have left out "write return" actions. (Write return actions in [ABM93] do not carry 
any information; it appears that they have been included only to have a more symmetric protocol.) 

Reads and writes are both parameterized with an address a and a value to read or to be written d. 
Thus every memory type has the same alphabet n:(let n = N - 1 and I = {O, . .. , n}.) 

clef 
n = {Wi, Reqi, Reti liE I} 

with different dependencies. (See figure 6.2.) 
Conceptually speaking, each user process attached to a coherent memory observes the order of 

read and write actions performed by itself and all other user processes. So all memory accesses 

82 



· * .. * ... t .... j .. -+-... t ..... :.~ .... t .. * ... t. 
Memory 

Figure 6.2: Interface of memory types. 

appear to be totally ordered, in one globally interleaved trace. The precise specification of a coherent 
memory can be found in section 6.4.2, in the form of a predicate formula CM(II) on traces II 
of read and write accesses. These details are not needed to understand sequential consistency and 
write-coherency. 

For sequentially consistent memories we relax the global ordering condition on memory accesses. 
For such memories we only assume that a user process Pi can observe the order of its own read and 
write actions, and only indirectly, via the values returned by its read actions, it can observe the values 
that were written by other processes. But it cannot observe, in a direct sense, the order of its own 
actions with respect to actions performed by other processes Pj. Let lJ r Ai denote the projection 
of trace IJ onto the (read/write) actions Ai executed by process Pi. Each of these trace projections 
If r A i can be seen as a totally ordered sequence, though no ordering is assumed between actions in 
11 r Ai and actions in 11 r Ai for i # .i. The specification of sequentially consistent memories has the 
form of a predicate formula SCM( tr): 

SCM (II) holds for 11 iff there exists a (totally ordered) trace II' such that CM(If') 
and, moreover, If r A i = ll' r Ai, for all processes Pi that access the memory. 

In other words, H is sequentially consistent if there is a trace If' of a coherent memory that is 
equivalent to 1I in the sense that the two traces are identical if we omit from H' the ordering between 
actions that are independent from the sequentially consistent memory point of view. 

Another interesting form of memory, that we use in the derivation of the caching algorithm, is 
so called write·coherent memory. This is a memory model "in between" coherent and sequentially 
consistent memories: All write actions are mutually dependent - similar to the case of coherent 
memories - but read actions for process Pi are dependent only on write actions for the same process 
Pi, i.e. they are "ot ordered with respect to read or write actions by other user processes. The trace 
based specification WCM(IJ) is as follows. Let, Ai denote the read and write accesses or process 
Pi, and let IV denote the combined set of all write accesses. 

Wc!H( TIl holds for H iff there exists a (totally ordered) trace If' such that CM(II'), 
II r A ,: = ll' r Ai, for all processes Pi that access the memory, and moreover, 
HrW=lI'r W . 

6.3.1 A memory builders toolkit 

We discuss how memories of various types can be built from other memory modules and a few basic 
components like queues. We show that the caching algorithm by Afek, Brown, and Merritt can be 
constructed in this way and so we prove that it implements a sequentially consistent memory, indeed. 
Our approach makes it easy to consider variations of their algorithm. Moreover, it becomes easier 

83 



to consider related applications outside the realm of memories. One such application is that of a 
distributed databases with replicated data. 

Queueing 

An important ingredient of the caching algorithm by Afek, Brown, and Merritt is the queueing of 
write actions. According to the different memory models (coherent, write-coherent, or sequentially 
consistent) we distinguish three different queueing protocols. 

For coherent memories queueing is not really important. Coherent memories are "normal" 
memories that behave as simple sequential algorithms. One can view such a coherent memory as a 
sequential memory with a single queue for writes for all user processes, and read returns to be allowed 
only if there are no pending writes. This queueing however is by no means vital for the behaviour. 
The only potential difference that one could observe at the interface is in terms of real-time properties: 
a read request after a series of writes is answered only after some delay. 

For sequentially consistent memories read and write actions for one process P; are, at the interface 
level, independent from similar actions stemming from other processes Pj. Consequently, queueing 
write requests for sequentially consistent memories is achieved by introducing separate queues, one 
for each user process. Process P; enters its write requests and read requests in queue Q;, and must 
wait after having made a read request until the corresponding read return is received. (Indeed it need 
not wait for any pending requests made by other processes.) Finally, it is possible to queue read return 
actions, too. Such queueing is not present in [ABM93], yet it seems a useful idea when a remote user 
process is reading a number of memory locations one after another. In section 6.5.1 we prove the 
following theorems: 

(I a) A module consisting of a sequentially consistent memory SCM with N queues for read and 
write requests, and N queues for read returns, conforming to the protocol as described above, 
behaves as a seqllentially consistent memory for IV user processes. 

(I b) Replacing the sequentially consistent memory in the protocol above by a coherent module still 
yields a sequentially consistent memory. 

Figure 6.3: A coherent memory with WR-protocols. 

The correctness proofs given in section 6.5 are straightforward. Construction (1) for instance, 
follows almost from the definition of sequential consistency: the coherent memory behaviour that the 
definition asserts, is actually present here at the (internal) interface between the coherent memory and 

84 



the queuing protocol. Moreover, this latter protocol ensures that for each individual process Pi the 
behaviour at the interface between Pi and the queues is essentially the same as that at the interface 
between the queues for Pi and the coherent memory. 

Finally we discuss a second type of queues on top of coherent memories. Considering write 
requests, one sees that because of the total ordering of these at the interface level, we must have a 
single queue for for all of these requests, just like the situation for coherent memories. The protocol 
for read actions is more complex, since read actions for process Pi are ordered with respect to write 
actions for Pi only. A possible queuing protocol here is to tag write requests in the queue that were 
issued via channel Wi by the index i. Read requests via Regi are delayed until no write requests 
tagged by i remain in the queue. This protocol is used within the design by [ABM93]. There, it is 
combined with replication so that each module has N writers, but only one reader Pi. Consequently, 
it is not necessary to tag by means of process indices, but rather a simple star "." is attached to the 
write requests made by Pi. 

We have the following important property, proven in section 6.5.3: 

(2) A module consisting of a coherent memory plus a single queue for tagged write requests, 
conform the protocol as above, behaves as a write-coherent memory itself. 

In fact, one could even replace the coherent component in the module above by a write coherent 
component, while retaining the write coherent behaviour. 

Figure 6.4: A write-coherent memory. 

Replication 

A write-coherent memory WClI1 for N user processes Pi, 0 ::; i < N, can be obtained by replication 
of write-coherent memories as follows. Assume that WCAl, is write-coherent, for 0 ::; I < J(. (The 
number of replicas, 1\, need not be equal to the number of user processes N.) 

A write action along the Wi channel of WCM is impleme~ted by issuing atomically similar 
write actions via the Wi channels of all WCAl, memories. 

All read requests and returns for user Pi are executed by issuing the same actions at only one 
of the WCM, memories. Moreover, for a given user Pi, all read actions must be executed at 
one and the the same WCM, memory. 

We prove the following theorem in section 6.5.2: 

85 



Caches 

,Wfj$ 

" 
~ 

, replication of write~erent memories, connected to N user processes as described 
;haves as a write-coherent memory itself. 

••••••• ~ •• , ••••••• ••••••• ~ ••••• •••• '" ••••••••••••••• Mr •••••• ••••• ~ • •• ••• ~ .~, •• ~ 

Wi Wi Wi 

WCMo 

, , , 
• • • , 
• • • , 
• • • • • , , , 
• , 
• . , •.....•.....•..•...........•..•...•.......•••................. ~ ....................... -.. -.. -~ 

Figure 6,5: A replicated write-coherent memory with N '" 4 , J( '" 3, 

Coherent memories are obviously writeocoherent, so one or more of the memories in the replication 
construction discussed in the previous section could be coherent memories, Assume that Mem is 
such a coherent replica, We intend to use Mem as a kind of "back up" copy in case one or more of 
the other WC'MI memories would lose the value that it stores for some data item Q, say, Such a "loss" 
of data is used to model the behaviour of cache misses, A data replication action or cache update 
for WC'kf consists of requesting the value of some data item" from Mem, combined (atomically) 
with a write action of the corresponding value d for n. at one replica WCM/. 

(4) Such a cache update action does not change the externally observable behaviour of the system 
as a whole, that is, the system still behaves as a write-coherent memory, 

We prove this fact in section 6,5.4, 

· : 
• • : 

Wi 

--.--. __ .... • .... , ····0.·0 .. • .... 0 __ ••••••••••••• "'0' 0 ..... 0 ••••••••••••••••• 

Wi Wi Wir-'-..L...L-L.., 

WCM'o WCM'I WCM', Mem 

L~I~I"~I .. , ... ~~ .. _ ..... __ ... _ ..... _¥ ........ __ .,.. ............ _ .... _ .. __ .. __ ....... ............................ ,. ................. 0 ..... 0 .. 0 ..... 0 .. 0 ...... .. 

Figure 6,6: A replicated write-coherent memory with cache updates 

86 



6.3.2 The lazy caching protocol: top level proof 

We have discussed memories, queues, and properties of the different types of memories. These 
components can now be combined in a number of steps, with as a result, a sequentially consistent 
memory along the lines of Afek, Brown, and Merritt. We sketch the different steps in the proof. 

I. At the heart of the algorithm we have N cache memories Cache;. These cache memories are 
coherent, that is, they are ordinary memories, possibly with limited capacity. Since coherency 
implies write-coherency, we may treat these caches as write-coherent memories. We can put 
queues "In" on top of these, while preserving write-coherency, as explained in the sections 
above. 

2. Moreover, we can regard each of these Cache/In c'ombinations as one replica of a combined 
module that, according to the theorems above, still is a write-coherent memory. 

3. The theorem on caching above implies that a coherent memory "Mem" can be added to these 
replicas, and that in case of cache misses, a copy from Mem to one of the caches can be made, 
while preserving write-coherent behaviour. 

4. Finally, we can put simple queues "Out" for write/read requests between the user processes and 
the (replicated) write-coherent memory. Again, we rely on the theorems above, and conclude 
that the result is a sequentially consistent memory. 

In fact, besides the above top-level proof of sequential consistency of the lazy caching algorithm, 
we have similar proofs for a number of generalizations as a result of our decomposition as well. These 
include the use of mUltiple "back up" memories, different number of caches and users, and queuing 
of read return messages. 

6.4 Specifications and proofs 

6.4.1 The mixed term language 

To specify processes we use a specification language inspired by similar languages for trace based 
reasoning [Zwi89]. The main difference with specifications for interleaving traces is that trace 
indexing is only allowed for sub traces that are guaranteed to be linearly ordered, and that an explicit 
precedence relation for events is used. (We remark that for fully interleaved traces such a precedence 
relation can be seen as a convenient abbreviation.) 

We introduce trace expressions Te:l:pr, event expressions EvenLexpr, and integer expressions 
InLexpr. We assume given sets of (typed) variables H, It, e, i and channels c, d. A set of channels 
is denoted by u. For indexed traces I.e( ic), we require that all channels in the trace alphabet a( I.e) 
(defined below) are mutually dependent. This guarantees that Ie denotes a totally ordered trace. 

87 



te E Trace J::I:Pl' , 

I.e ::= 

ee E E'venLe:l:pr, 

< ee >, 
H ra, h rn 
teO·tel, 

I.e r a, 
I.e[d/clo 

single event trace, containing only ee, 
projected trace variables 
layer composition 
projection of te onto a 
trace te with channel c renamed into d 

ee ::= e, event variable 
I.e( ie) 

ie E In./._c:/:Pl', 

indexed trace expression: 
the i-til event in trace teo 

lC::= O,l, ... integer constants 
integer variables 

#/,e the number of events in trace te 
ieo + iel , . .. standard arithmetical operations 

The only unusual operation in Trace_expr that needs explanation is layer composition teo. tel' 
We define this operation here only when /.eo denotes a finite trace. In essence, teo. tet is the disjoint 
union of /.eo and tel, with the order augmented such that events e in teo causally precede dependent 

events e' in /.el. For a trace /.e that denotes a run h (~f (V, -+) we define #te = I VI, that is, #te 
denotes the number of events in te. 

For event attributes such as channel names, communicated values, memory addresses etc., we 
assume that there are corresponding classes of expressions, containing at least the following: 

(I.e E A ti1' _e:l:pr, 

ae :;= addr( ee) 
val( eel 
chan( eel 
(J.,V,C 

address attribute of event ee 
value attribute of event ee 
channel attribute of event ee 
constallls of appropriate type 

For trace expressions I.e we define their alphabet a(te): 

I.e a( tel 
{ec} chan( ee) 
j{ r a 0' 
teo. tel a(l.eo) U O'(l.el ) 
te r a' 0'( te) n ,,' 
te[d/c], n(tc)ld/c] 

Finally we define a class of "mixed term" specifications, and an auxiliary class of quiescent trace 
specifications. This class is a unification of trace based specifications and processes. For a term of 
the form P( II r (1 ) we require that 0

' 
<;: o( Pl. By convention, we use P( II) for P( II r a( P)). For a 

process of the form (I, 0 : 5) we have a condition, stated below, that 5 actually specifies a quiescent 
trace set over input and output channels 1 and O. 

88 



8 E 5'pec, 
8"- pUna) processes as "predicates" 

lco = l.ej, ceo:::: eel, equality a/traces. events 

ceo -+- eel 

teo::; I.el, 

(I.Co :::: UCj, ieD :::: ic} 

80 II 5'1,5'0=,.81, 
3h : His(a).s(h), 
3e E l.e . .,(e), 
3i E Nat . .,(i) 

P E qs"cc, 
P ::= (l,O:8(ll) 

Po II 1'1, 
P\a, 
P[a/c] 

event precedence 
trace prefix relation 
equality of integers, attributes 
boolean connecti ves 
quantification over traces 
quantification over events in a given trace 
quantification over integers 

Specifications with input/output channels 
Parallel composition 
Hiding of the channels in a 
Renaming of channel c into d 

For mixed terms 8 and trace variable 11. we define the base (3( S, h) as the union of all channel sets 
" such that II, ret occurs within S, for some free occurrence of h. When specifying some particular 
process P say, the variable "1{" is used (by convention) to refer to the traces of P. Within this context 
we usually write P rather than P( ll), (3(8) for (3(8, f/) etc. 

Most of this language is interpreted as usual for (typed) predicate logic. We interpret all relations 
between expressions, including equality, strictly in the sense that the result is "false" whenever some 
of the operands are undefined. 

In the sequel we will use the following abbreviations: 

#e: For a channel c, #c denotes the number of events in the projection onto c: 

#c '~f #(11 r c). 

e(j): For a channel e, c(.i) denotes the j,h event in the projection onto c: c(.i) ~ (H r c )(j). 

c( ee): For a channel c and an event ce, c( ee) denotes the predicate that the channel attribute of ee is 
. clef ( .. ) c: e( cc) = c/w.n(ee) = c . 

last(H): For a linear finite trace Il, lasl( ll) the last event of 11: Insl(II) = II(#II). 

ceo ~ eel: Two events cCo and eCl are dependent, denoted by CCo ~ eel, if eeo precedes eel or visa 
clef . ) versa: ceo""'" ee, :::: (eco--+-ec) Veej-+-cco. 

c ~ d: Two channels (' and d arc dependcnt, denoted by c ~ d if each communication event along 

channel c is dependent on each communication event along channel d: c ~ d ~f Vi, j. (ll r c)( i) ~ 
([flr/)(:i)· 

Dep = {Ao,A" .. . An }: FOI'each set of channels A; in Dep we have that all channels in A; are mutual 

dependent: iJcl' = {A a , A I , ... A,,} ug Vi, () :c; i :c; n, V c, d E A;. c ~ d. As a consequence 
If r C is a linear trace if C <;; A; for some i. 

89 



In our model we always assume as a global model property that every channel is dependent of 
itself, i.e. let Chan be the set of all channels then 

'Ie E Chan. e ~ e 

As a consequence H r c is a linear trace for a channel c thus (if r c)( i) is well-defined for 1 ::; #c. 
Quiescent trace specifications, too, are treated as predicate formulae, where the process con

nectives are treated as abbreviations. We define the following translation from quiescent trace 
specifications to logic specifications: 

(1,0: 5(11'))(11) is translated to S(if), 

(Po II P, l(ll) abbreviates Po(H) /\ P,(H), 

(P\ n)( H) abbreviates 3H' : His(f3(P, H)). (P( H') /\ H = H' 1'(f3( P, H) \ a), 

(P[d/c])(H) abbreviates 3H' : His(f3(P,H)). (P(H' ) /\ H = H'[d/c]). 

Another imp0l1ant abbreviation here is the "sat" relation between mixed terms: 

So(ll) sa/ S, (TI) abbreviates '111 : lIis({l(So) U (l(SI )). So ~ 51. 

Quiescent trace specifications are, informally, specifications of processes P that are always enabled 
for input along all input channels J (1'). A process P is in a quiescent state iff it cannot produce any 
more output unless it receives more input. A quiescent trace is a trace of communications (possibly) 
leading to a quiescent state, or an infinite trace. As is known from the literature [10n85] both safety 
and liveness properties can be specified in terms of the quiescent traces of processes. Moreover, in 
[10n85] it is shown that within this context parallel composition can be (essentially) seen as logical 
conjunction. In order that a specification of the form (J, 0 : S( IT)) defines a proper set of quiescent 
traces we require two conditions (taken from [1on85]): 

(i) In any state (not just quiescent ones), any input action e is enabled, and 

(ii) From any state, a quiescent state can be reached by means of (possibly infinitely many) output 
actions alone. 

Put formally: For any event e with e/",.n( e) E 1: 

VII,iI: Hi8(JU 0). (S(1I) /\ h::; 11 /\#h < 00) ~ 3h' : lli8(0). S(h.{e}.h' ) 

'Ill, II: 1h8(1 U 0). (S(ll) /\ II ::; JJ f\ #h < 00) ~ 311' : llis( 0). S(h. hi). 

6.4.2 Specifying sequential consistency 

In this section we will give some examples of specifications. First take a buffer process Buff with 
input channel EIl'l and output channel De'l. Since Bulf must always be input enabled, it only can be 
a infinite or zero-place buffer. A usual eSP-style specification of this buffer is 

Vh::; H. (va/(h l'De'l) ::; val(h l'En'l)) 

90 



That is, the values sent along channel Deq must be prefix of the values sent along channel Enq. For 
Buff to be quiescent it must be empty (if not it is output enabled), i.e. 

val(H I'Deq) = val(H l'Ellq). 

or equivalently, using the first assumption 

#Deq = #Ellq 

In general the channels Ellq and Deq are not dependent, but nth message along channel Ellq must 
precede the nth message along channel Deq. Recall that as a global model property any two different 
events which correspond to communications along the same channel are dependent. Summarizing 
the above remarks we see that the specification consists of two parts. The first part is a trace/run 
specification, in this case 

clef 
TraceBuff( H) = 

Vh ~ IT. (vol(h I'De'l) ~ val(h IBn'l)) /I #Dcq = #Ellq 

The dependencies are specified in the sccond part 

D B fl
' <lof 

ep l{. ::::: 

Dcp = {{Dc'l},{En'l}} /I Vj,O <.i ~ (#Enq).(Enq(j)-+-Deq(j)) 

Along the same lines one can specify a coherent memory CM with write channels Wi, read
request channels Reqi (both input channels) and read-return channels Reti, i E I, as follows, The 
trace specification is 

Tm.ccCM( ll) ~f 

'Ill': lIi8({ Wi, IIrqi, lid; liE f}). (#/1' < 00 /I II'. Reli(d, 0) ~ II =} 

d = vol(la$l(/J'f{W/(',a)}))) /I 

(Vh ~ !l.( add,.(h f Rei;) ~ odd,.(" l'1Ie'l;))) /I addr'(IT l'Heqi) = addr(IT j'Reti) 

Observe again that the last clause specifies quiescence. The dependency specification is 

def DepCM(IJ) = 
Dc]! = {{Wi, /Irq;, lIet, liE I}} /I Vi E 1,Vj,0 <.i ~ #Reti. (Req,(j)-+-Reti(j)) 

Now the total specification is 
def 

CM = TraceCM /I DepCM 

Given the specification of a coherent memory, we can specify a sequentially consistent memory SCM 
by 

lhICCS'CM( ll) '~f 

31I'. (1'mccCM(Il') /I Vi E T. (Il NWi,Rcq;,llc1i) = H'I{W"Reqi,Reti}) 

DepS'CM (II) ,~ 

DCjJ = {{Wi. /Ie,!;. 1Ie1;) liE f} /I Vi E 1,Vj,0 <:i ~ #1Ieti. (Reqi(j)-+-Reti(j)) 

91 



Note the difference between the channel dependencies for CM and SCM: for i # j Wi is independent 
of Wj, in DepSCM but not in DepCM. Now the total specification for SCM reads 

SCM '~f TraceSCM 1\ DepSCM 

Along the same lines one can specify a write-coherent memory WCM in which all the write channels 
arc dependent. Let 

and 

WI ~ {Wi liE!} and RI d~r {Reti, Reqi liE l} 

. dcf 
T1'lIccWCM(1l) = 

311 ' : His( WI U II,). (T/'accCM( TT') 1\ lJll' WI = H I' WI 1\ 

Vi E T. (H' f{ Wi, lie'!;, Rei;) = lll{ Wi, Req;, Ret;}) ). 

Dejl WCM(l1) ,~r 

Del' = {{ Wi, Req;, Ret;} liE I} U {{ Wi liE I}} 1\ 

Vi,),O <) :S #lleti' (Req;(j)-+- Rct;(j)) 

6.5 Correctness proofs 

In this section we give detailed proofs of the claims made. 

6.5.1 Queueing and sequential consistency 

In this section we look at the behavior of a (;ohcrcnt or sequentially consistent memory with certain 

"queuing-protocols" on top of it. More precisely, we have a coherent memory or a sequentially 
consistent memory with write 111;, read-request Iieq i' and read-return channels Reti for every user i, 
i E I. This memory is composed in parallel with separate, so called WR-protocols, which forms for 
each user i the interface between {Wi, Reqi, Reti} and { W;, Reg;, Ret;}, see figure 6.7. 

This protocol can be seen as the specification of two separate infinite queues: one queue which 
queues the write and read-request actions, and another queue which queues the read-return actions. 
Such a write-read protocol satisfies the following specification HlllP. For a channel e let e( k) 
denote the kth communication along channel c, i.e. elk) = (ll Ic)(k) We have input channels 
{ W, Req, liet}, output channels {IV, R~q, Ref}. The specification of WRP consists of two parts: the 
trace specification :l'mce WNP, and the dependency specification DepWRP. 

TraceWRP(H) ,~r 

Vh:S If. (hf{W,lleq}:S hf{W, Req} 1\ hl'Ret:S hl'Ret) 1\ 

#W = #11i 1\ #lIcq = #R~q 1\ #Ret = #Ret, 

DeI'WRP(H) ~r 

Del' = {{ Wi, Rerli, lIe1i} , { 1·\/;, lie" i, Ret; }} 1\ 

Vf) <.i :S # lVi, (W;(.i)-+- \11;U)) 1\ Vf) <.i :S #Reqi· (Req;(.i)-+-lleqi(.i)) 1\ 

VIJ < .i :S #Ucl" (lIeti(.i)-+-IIc1i(.i)) 

92 



The total specification is given by: 

WRP <!gf TraceWRP 1\ DepWRP 

Observe that the first part of the TraceWRP specification is like a CSP (prefix) specification, and 
is needed to ensure the input enabledness. The second part of TraceWRP defines the quiescent states. 

Assume that every user i which communicates by the interface WRP; with the memory along the 
channels Wi, Req;, Ret; always waits after a read-request for the corresponding read-return before 
executing another write or read-request action. Thus user i should satisfy 

. ) der 
User;(H = 

(Va, (1.' E II. (Req( a) 1\ (W( a') V Req( a')) 1\ a-+ a') => 
(3,,11 E 1/. (nct.( a") 1\ (1.-+ a" --+ a'))) 1\ 

Del' = {{ Wi, Req;, Reli}} 

For a specification S let ,5' ,~r Sic/c ICE a(S)], i.e. every channel c in the alphabet of Sis 

renamed into c. Similarly, for a set of channels A,;I ~f {a I a E A}. (We assume ii = ii.) 
For two runs, say II and H', we use the notation II == JI' defined as II = jj', where again JI' is 

the run JI with every channel c renamed into c. 
Now take a sequentially consistent memory SCM which has input channels {Wi, Reqi liE I} 

and output channels {1I~el'i I ; E I}. Assume that every user i communicates with this memory via 
the interface HI liP;, where 

tie[ --- ---
WRP; = WRPIW;/W, Req;f Req, Ret;! Ret, W;fW, Req;/ Req, Ret;! Ret], 

as given in figure 6.7. Moreover assume that the behavior of each user i satisfies User;. Then the 
claim is that after projection on the external channels {W;, Req;, Ret; liE I} this composed process 
behaves like a sequentially consistent memory. 

Figure 6.7: A coherent memory with WR-protoeols. 

tlef 
To put it formally let A; = {W;, Req;, Ret;} and A = Ui Ai 

Theorem 6.5.1 Sequentially consistent memories with WR-protocols 
Let A = {W;, Req;, Ret; liE I} 

tier ~ -
P = (SCM II WRPo II ... II WRP,,)\A, 

93 



then under the assumption A Useri(H 11Wi, Reqi, Reli}) we have 

P sal SCM 

o 

Proof. First observe that the dependency specifications of P and SCM are correct, i.e. P =} DepSCM. 
Thus it is sufficient to show that P =} TraceSCM 

P(11) 
=} { by the definition of hiding and parallel composition} 

3IIo : Hi.,(A U A). IT I'A = Ifo IA /I SCM(IIo I'A) /1/\ WRP;(Ho I(Ai U Ai)) 

=} {by definition of S;CAf } 

3110 : 'lis(A U A), 3lTl : lli8(A). CM(IIl I'A) /I II IA = IIo I'A /I 
lfiEi.(HoIA,=Ifl lA, /I WRP,(lIol(A,UAi)) 

=} { by the lemma below No I Ai = IIo I i1; } 
3110 : lTis(A U A). 3111 : His(il). CM(IIl I'A) /I H IA = Ho I'A /I 

Ifi E I. (llo fA, = III fAi /llIo fA, = lIo fA i) 
=} { by the identities 11 fA = /1 0 fA and ITo f Ai = ITl I Ai} 

3110: l1is(A U il). 3lT} : /lis(A). CM(1fl I'A) /I 

Ifi E I. (lTo fAi = 11) fAi /I If fAi = HI fA,) 
=} { propositional calculus} 

3H} : /lis(A). eM(II! I'it) II Ifi E i. (II I'Ai = II! l'Ai) 
=} { by renaming} 

3fT2 : fTi8(A). CM(lf21'A) /I Ifi E 1. (ll IAi = II2 1'A i ) 

=} { by definition of SCM} 

TmccSCM (HI'A). 

Left to prove, in the above setting, the identity 

Lemma 6.5.2 
Let Ho be a run such that 

I. HofAi = H! fAi /I CM(H! fA) 

2. H fA = Hoi A /I Useri(H I'A) 

3. WRPi(Hof{Wi, Wi,Reqi,Reqi,Re!i,Reli}) 

Then 

o 

94 



The proof of this lemma can be found in section 6.7. 
Since every coherent memory is also a sequentially consistent memory. i.e. CM =? SCM we 

deduce as a corollary from the above theorem: 

Corollary 6.5.3 
A module consisting of a coherent memory CM with input channels {Wi.Reqi liE I} and output 
channels {Reti liE l}. such that every user i satisfies Useri and communicates with this memory via 
the interface WRPi. behaves as a sequentially consistent memory. 0 

6.5.2 Replication of write-coherent memories 

In the informal explanation we argued that write-coherent memories can be replicated in some sense. 
again resulting in a write-coherent memory. This replication is done by mapping writes of a process 
i to writes on all memories. and by mapping any request/return pair of a process onto a request/return 
pair on a single. fixed memory. The number of memories and the number of users need not be the 
same. 

The structure of the system. as an example with three memories and four user processes is shown 
in figure 6.8. The user processes read from one of 1\. 1\ > (). write-coherent memories. WCMI 

r~~~""'" --- ---- -----------.- ---- .-- ------.--------- --- .-.- ------- -- ---.- ___ I_I' · . · . · . · . · . · . · . · . · . 
: Wi Wi Wi ! · . · . · . · . 
: WCMo WCMJ WCM2 ! · . · . · . · . 
'. ----- ---.' -- ---- -----'. - -- --- ---- --- _.' - -- --- ---- --- --- '.- --- --- -------- --------------------~ 

Figure 6.8: A replicated write·coherent memory with N = 4, [{ = 3. 

for II ::; { < J{. Different users can read different memories, but every process reads from a fixed 

one. So a component WCMI has an interface WI, R./" i.e. WCMI ~f WCM r( WI U RJ/). where 

R.I, ,~r {Reqi, Reti liE 1I} • .11 <;; J, and .11 n ./1' = 0 for { i {'. Furthermore 

UPI I Ii ::; { < K} = J. (6.1 ) 

We now have to prove that the replicated system as a whole behaves as a write-coherent memory. 

Theorem 6.5.4 Replicatio/l of write·coherent memories 
Let Rep{ be the replicated system, i.e. 

def 
Repl = (WCMo II WCMI II ... II WCMK_ / ), 

then 
Repl sat WCM. 

o 

95 



Proof. By the definition of parallelism we have the following proof obligation 

1\ WCM(IJ f( WI U RJ,)) =;. WCM(JI ~ WI U RI)) (6.2) 
05,1</\· 

Observe that by equation 6.1, Repl=;.DepWCM. Thus it is sufficient to show that 

Repl=;. TraceWCM. 

By the definition of WCM(lf) we must show the existence of a run H' such that CM(H') holds 
and some ordering is preserved. Informally, we take the order of all writes from H', and the order 
of requests and returns Reqi and Reti with respect to all writes W; at the memory WCM/, such that 
i E .ft. As the order of writes at all memories is the same, this defines a coherent run. 

We use the following merging lemma for runs (proven in section 6.7. 

Lemma 6.5.5 
Let Ho = (Ao,-->o) and H, = (A,,-->,) be two runs, and letA = Ao nA,. If HofA = H} fA, and 
Ho fA is linear in the sense that for any two actions there exists a chain between them, and furthermore 
(Ao - A) and (A} - A) are independent, we have the following. For 

de[ (H H ) H = oU ,,--'oU --'} . 

H is a run, and H f Ai = Hi, for i = 0, I. o 

We furthermore use the following corollary for runs of a coherent memory. 

Corollary 6.5.6 
Let Ho : His( W} U Ri ), Ho = (Ao, -->0) and H} : His(W} U RJ'), H} = (A}, -->}) such thall n J' = 0, 
and assume Ho and H, are both runs of a coherent memory, and Ho fW} = H} fW}. 

ocr 
Then for H = (Ao U A" --'0 U -->,), we have that H is a run, CM(H) holds, and Hf(W} URi) = 
Ho f(W} URi) and H feW, U RJ'J = Ho f(w} U RJ'). 

Proof. We apply lemma 6.5.5 to Ho and H}. (Linearity on W} follows from the fact that all Wi 
are dependent, and therefore ordered, and Ri and RJ' are independent.) This gives that H is a run. To 
see that CM(H) holds, let H'. Reti(d, a) :S H. Assume i E J. Then, by monotonicity of projection 

(H'. Reti(d,a)) I(W/ URi) = (H'I(Wt URi)). Reti(d,a):S Ho, 

which gives by CM(Ho) that 

v"{(last(H',W}(-,a))) = val(last((H'~W}URi))'W}(·,a)) = d. 

The case for i E J' follows by symmetry. The prefix properties follow directly from the fact that 
H' f RJ = Ho f Ri and H' f RJ' = Ho ,RJ', plus the fact that CM( Ho) and CM( H}) hold. 0 

Now we continue with the proof of the theorem. 

=;. {definition WCM } 

3110: His( WI U R.Jul. CM(Tlo) II lTD PVI 

96 



Vi E .lo. Ifo I{Wi,Rcqi,Ret;} If I { Wi, Reqi, Ret;} /I 

3If/{_1 : TTis(WI U RJK_l)' CM(1h-d /I Ih-II'WI = HI'WI /I 

Vi E ·h-l. H',_l I{ Wi, Relfi, Reti} = If I{ Wi, Reqi, Ret;} 

'* {corollary 6.5.6 } 

3fJ' : IlL,( W, U Rll. CM(Il') /I II' I' WI = II PVI /I 

V()::; 1< 1\. Vi E .l{. Il'I(Wi U R;) = II~Wi URi) 

'* {equality 6.1 } 

3 TI' : Ifis( WI U RI). CM(lf') /I II' I'WI = IlI'WI /I 

ViE I. H' I( Wi U R;) = II I( Wi U R;J 

'* { definition of WCM } 

1'1'fICC WCM ( TT) 

6.5.3 Queuing and write coherency 

In the previous section we used write-coherent memories as blocks to be replicated. How do we get 
these write-coherent memories? Afek, Brown, and Merritt [ABM93] use a coherent memory CMi 
where all processes write into, but only a single process reads from, and a special queue for the writes, 
the so-called in-queue. In this queue the writes of process i are tagged with a star, and read-requests 
of process i on the memory will only be executed when there are no starred writes in the queue. 

We take a more general approach and show that the combination of a coherent memory with N 
writers and possibly N readers plus a special interface gives a write-coherent memory, under the 
assumption that every user always waits after a read-request for the corresponding read-return before 
executing another write or read-request action. The interface queues all writes in a single queue, the 

read-requests as well as the read-returns in separate queues for each user. Moreover a read-request of 
process i will only be transferred by the interface to the memory when there are no i-labeled writes 
in the write-queue. 

The proof that this results in a write-coherent memory resembles the prooffor sequential consistent 
memories. We give a specification of the tagged queue behaviour, and a specification of the coherent 
memory, and show that the result satisfies WCM. The structure of the system in sketched in figure 6.9. 
The formal specification InQ of the interface is as follows. 

Tmce TnQ( 11) def 
1I I WI == (II I WI) /I 

Vi E T. (7'mcc WRfi( JJ If Wi, ~j!i' Reqi, Reqi, Reti, Reti}))' 

and 
DeplnQ"",' Del' = {{Wi liE I}, {Wi,Reqi,Re1i liE In /I 1\ DepWRPi• 

Thus 
dcf 

InQ = TracelnQ /I DeplnQ 

Furthermore the memory module satisfies (by renaming) CM (Il), so the system as a whole is 
given by 

, def ( - )\ QCM = CM II [nQ (WJuRJ) 

where again RJ = {Reqi, Reti liE I}. 

97 



Wo Reqo Reto WI Req, Refl Wn Reqn Rein 

............. ~ ......•.....•....... :::.... ., ....•••... 

InQ 

CM 

Figure 6.9: A write·coherent memory. 

Theorem 6.5.7 Write coherent memories 
ln the above setting and under assumption I\i Useri(H I{Wi, Reqi, Reti}) we have 

QCM sat WCM 

o 

Proof. First observe that 

DepIIlQ\rWIUR[j =} DepWCM. 

Hence it is sufficient to prove that 
QCM =} TraceWCM 

By the definition of hiding, this leads to the following proof obligation. 

~H() : His(A U ,4). H I'A = Ho I'A f\ CM(Ho) f\ InQ(Ho) =} WCM(H). 

The proof can be given along the same lines as the proof for the WR'protocols, Theorem 6.5,1. 
Define Ai. Ai. etc. as in section 6.5.1. 

~lIo. II ~ WI U Ill) = 110 r( WI U HI) f\ CM(Ilo) f\ Il1Q(lTo) 

=} {by definition InQ( lIo) } 

~llo : l1i,,(A U A). CM(Ho I'A) f\ IT I'A = 110 I'A f\ lTo 1'11'1 ~ Ifo I'WI f\ 

Vi E ]. (WRPi(Il I(Ai U .4i» 

=} {By lemma 6.5.2 Ilo r Ai ~ JIo rAj} 
~Ho : 1Ii8(.4 U II). CM(JTo I'A) f\ Il I'A = 110 I'A f\ 110 PVI ~ lIo I'WI f\ 

Vi E 1. (Ho rAi ~ lIo rAil 
=} { By the indentity If r A = lIo r A } 

~IIo : I1i.,(A U ;1). CM(llo I'A) f\ IT I'WI ~ flo /'IVI f\ 

Vi E T. (In Ai ~ ITo r 11i) 

=} { by projection and renaming} 

~HI : lTi,,(A). CM(lIl I'A) f\ 11 pV[ = II, pV[ f\ 

Vi E I. (II rA i = III rAil 

=} {by definition WCM( H) } 

'/'mce WCM (Il) 

98 



6.5.4 Adding cache misses 

Up until now we assumed every (write-coherent) memory can immediately access any address. In 
the actual cache memories this need not be the case. Due to limited storage capacity, some addresses 
might be removed from the cache, in favour of others that are needed. In that case however, we need 
some "back up" memory that still has the most recent values of all memory locations, from which we 
can fetch that value if it is requested by some read action. The invalidation of cache addresses is not 
modeled explicitly. 

We therefore add an extra f( plus first memory component Mem to the system, which models that 
back up memory. We assume it behaves as a coherent memory, except for some renaming. We cannot 
use a write-coherent memory for this purpose as the order of all read request/return pairs and writes 
must be preserved. Different updates for different caches should all give the most recent value. It has 
N write ports W;, for i E 1, and JI read request and read return ports, called CReqj and CUi, for 
() :; j < Ii". CU stands for Cache Update, as the reads are needed to update missing cache addresses. 
In fact, we could have several such back up memories, with fewer than ]{ caches reading from each 
of them. Here we use a single back up memory, but the proof for multiple back up memories is 
almost literally the same. An example of a system is given in figure 6.10. We have to modify the 

-.. ---~--------- ----t---~--------------- ---J-.--~------- - --~.----------------------

W ; 1 r' W; ., W; '. W; 1 .... 
WCM·o WCM· I WCM·, Mem 

CRClfo CUo CReq, t CUI CReq, I t CU, 1+ 

: 
• : • • • • • • • • • : • • • • • 
i • • • : 
• • • • • • • • _. _______________ • _____ • ________ • ____________ • ________ ___________________________________________________ .J 

Figure 6.10: A replicated write-coherent memory with cache updates 

write-coherent memories WCMI slightly. They get an extra request port CReql and cache update port 
CUI as well, which behaves as a write, that is, it is dependent on all W;, and any Ret; reads the last 
value written by a write or by a cache update. We call such a component WCMf. 

We have that the combination of a number of such WCMf components and a memory component 
behaves as a write-coherent memory. We do so for the combination of a single WCM' and a memory. 
The general case can be proven analogously, using the replication result. 

The specification of WCM' is as follows, cf. section 6.4.2 

clef , I 
WCM' = TraceWCM A DepWCM 

with 

TraceWCM'(H) '~f 3H' : His({ W, CU, CReq, Req,Ret}). 

99 



and 

(T,."ceCJl1'( ",) /\ H' If w, CU} = H If w, CU} /\ 

(1J'f{W,lIeq,ReI} = HlfW,lIeq,Ret})), 

Del' WCM' (H) (~f 

Dep = {{ W, CU}, {CU, CReg}, {W, Ret, Reg}} /\ 

'10 <.i :S #Ret. Req(j)-+- Rel(.i)) /\ '10 <.i :S #CU. CReq(j)-+-CU(j) 

The coherent memory CM' is defined by 

TraceCM'(H) (~ 

Vh.Rrf(d,n):S fl. a = va{(las/(lIlfW(·,a),CU(-,a)})) /\ 

(Vh:S [[.( add,.(h fRet):S fII{d,.(h 1'lIeq))) /\ add,.(l! I'Reg) = addr(H I'Ret) 

and 

IJC]}CM' ~f Del' = {{ W, CU, Heq, Rei}} /\ '10 < .i :S #CU. CReq(j)-+-CU(j) 

Thus 
CM' ~f TraceCM' /\ DepCM' 

The memory component Mem of the system is a coherent memory with alphabet {W, CReq, CU} and 
is given by following specification: take [ = {O} in the specification for CM, then 

Mem (~f CM[WIWo, CReglReqo, CU IReto] 

We prove that 

(WCM' II Mem)\{CReq,CU} sat WCM. 

First observe that 
(WCM' II Me/11) \ {CReq, CU}=".DepWCM, 

thus it is sufficient (0 show that 

(WCM' II Mem)\{CReg,CU}=".TraceWCM 

The proof is given as follows. Let C = {W, Req, Ret, CReg, CUl, 

(WCM' II Melli )\{ CHeq, CU} 

=". { by definition } 

3110: lIis(C). HI{W,lIeg,Rel.} = l!olfW,lIeq,llel} /\ WCM'(Ho)/\Mem(Ho) 

=". { definition WCM', Mem } 

3110 : lIis( e). II I{ \Ii, lIeq, Rei} = flo If W, lIeq, Ret} /\ 

3111 : lIis( C). CM'( Ill) /\ HI I{ w, CU} = ][0 I{ HI, CU} /\ 

(1[1 f{ IV, Heq, lief} = lTo If IV, Heq, Ret}) /\ 

Vh. CUrd. a):S Ho· a = v([{(lasl(Ho f{ We am) 

100 



=> { definition CM', calculus } 

31l/ : lIis( C). II I{ lV, /Irq, Ret} = ll/ I{ lV, Req, Ret} /\ 

ll/ rpV, CU} = Il r{ lV, Clf} /\ 

Vh.ReI(d,a):S lf l . (/ = val(lasl(1II I{W(·,a),CU(·,o)})) /\ 

V" • CU (d, 0) :s III . a = val(lasl( HI r W (', a))) 

=> { calculus } 

3111 : l/is(C).11 I{W,Req,Re/} = IlII{W,Req,Ret} /\ 

III r{ w, CU} = If r{ w, CU} /\ 

Vh.HcI.(d,o):S 1//. 0 = val(lasf(i111·W(·,a))) 

=> { take H2 = H/ r{W, Req, Rei} } 

3Rt : IlisC {lV, /leq, Ret}). CM( /12 ) /\ lll{ IV, Req, Het} = JJ2 1{ W, Req, Ret} 

=> { by definition } 

'l1ncrWCM 

which finishes the proof. 

6.6 Conclusion 

We have introduced a threefold classification of shared memories: 

• Coherent memories can be thought of as memories where read and write accesses are executed 
atomically, in some arbitrary, but totally ordered sequence. 

• Sequentially COllsislellf memories are described by partially ordered traces: read and write 
accesses stemming from one processor are totally ordered, but accesses stemming from different 
processors are unordered, at least at the external interface of the memory module. Moreover, 
each of these partially ordered external behaviours can be "linearized" into a behaviour of a 
coherent memory. 

• Write-coherent memories are in some sense "in between" coherent memories and sequentially 
consistent ones. For write accesses, a single linear order is defined at the external interface. For 

read accesses stemming from some processor P only the relative order with respect to write 
accesses from P is defined, i.e. P's rcad accesses are independent of read or write accesses 
from other processors. 

We have decomposed the lazy caching algorithm from [ABM93] into four simple protocols that 
explain how to build various forms of memories from other memory modules: 

• Fifo queues for write accesses and read requests between a processor and a sequentially con
sistent memory preserve sequential consistency, 

• Write-coherent memories can be replicated, while preserving write-coherency. 

• When a write-coherent memory is implemented by means of replication, and some replica 
is actually a coherent memory, rather than just a write-coherent memory, then it one can 
allow ill/emat actions that copy data from that coherent replica to any other replica. This 
transformation preserves write-coherency for the system as a whole. 

101 



• A joint queue can put in between a write-coherent memory and the processors accessing the 
memory. This queue should act as as a joint fifo queue for write actions, and moreover 
as a an individual fifo queue for the write actions and read requests stemming from each 
processor individually. This transformation, once again, preserves write-coherency of the 
memory module. 

The correctness of these protocols has been shown based within a partial order quiescent trace 
model. It is clear from the actual proofs that most other trace based formalisms could have been used 
as well, such as interleaved quiescent traces or CSP style failure traces. In fact, although the detailed 
proofs would have been quite different, it seems that proofs based on simulation relations between 
state-transition systems or automata should work too. In all cases, the top level structure of our proof 
can be retained. 

6.7 Proofs of some lemmas 

This section gives the proofs of two lemmas, which were omitted from the main text. 
First of all we prove lemma 6.5.2: 
Let 11" be a rUIl such that 

I. 110 lA, = /11 lA, II CM(lll IA) 

2. H IA = Ho I A II User;(H I'A) 

3. WRP,(Hd{ W,' Wi, Re'l" Re'l" Ref;, Ret,}) 

Then 

Ho I{W;, Req"Ret,} == HoI1W"Req"Ref;} 

Proof of the lemma, Because of the assumptions Ho I{W;, Req,} == Ho I'{W;, Re'l;} andHo ,Ret; == 
Ho I'Ret; we oilly have to prove that the rcad-request actions are ordered consistently. That is 

Va, a' E Ho I{W;, Req;}.((a-+-Ref(k)-+-a') =} (ci-+-Ret(k)-+-ci') 

where ii. (ii.') the actioll in llo I{ 111" Ileq;} corresponding to (/., a' respectively. We will divide the 
proof in two cases 

First case, assume 
Ref(k)-+-a' 

with a' E Ho I{ Wi, Req;}. Then by WRY;, both 0' and Rel( k) exists and moreover a'-+-ii', 
Ret(k)-+-Rel(k), cf. figure 6.11. As liel(k) ~ ii.' and 1iel(k)-+-+o', we get the arrow 1 in 
figure 6.11, i.e. lfel( k)-+- ii'. Ordering the other way would result in a cycle. Informally we use the 
transitivity of the ordering in the run to deduce the arrow j, as the resulting trace must be acyclic and 
dependency closed. 

For the second case, assume, 
a-+- Rel( k) 

with a E Ho I{W;, Req;} , cf. figure 6.12. Then by HlIlP;, both ii and Ret(!.;) exists and moreover 
a-+-ii, Ret(k)-+-Rel(k) (arrows I in figure 6.12). 

Now by assumption I of the lemma, we deduce the existence of Ileq(k) and Req(k)-+- Ret(k) (ar
row 2). By assumption 3, Re'l( k) exists and Req(k )-+-Re'l(k), hence by "transitivity" Re'l(k)-+-Ret(k), 

\02 



lIet(k) - (/.' 

r 1 
liet( h') 

I 
(~, -

Figure6.11: The case ReI(k)->a' 

" Ret( k) 

~ lIeq(h') /' 

I 1 J 

/ lIcq(h')~ 

(i, lIc/(k) 

Figure 6.12: The case a--> Hel.( k) 

Now we claim that a-+-Req(k) (arrow 3). This claim is proven at the end. Hence by assumption 3, 
Ii-+- lIeq( k) (arrow 4). Now by "transitivity" we get that ii -+- Jiel( /,;) and we are done. 

Left to prove that a-+-Req(k). Assume Req(k)-+-a, then by assumption 2 of the lemma there 
exists a read-return, say RetUJ, with Req(k)-+-Ret(j)-+-a. Since a-+-Ret(k) we deduce j < k. 
Thus we get the situation ReqUJ-+-Req(k)-+-RetU). Again we deduce the existence of a read
return Ret(i) with ReqUJ-+-Ret(i)-+-Req(kJ, thus i < .i < k. Now we are back at a similar 
situation Req(i)-+-Req(j)-+-Ret(i), but now i < .i < k. Hence by well-foundedness the situation 
a-+-Req(k) cannot occur. 
This finishes the proof of the lemma and the theorem. 0 

Secondly we prove lemma 6.5.5: 
Let 110 = (A (i, --> 0 ) and ff / = (A 1 ,--> / ) be two runs, and let A = A 0 n A 1. If 110 fA = 111 fA, 

and H 0 f A is linear in the sense that for any two actions there exists a chain between them, and 
furthermore (A 0 - Il) and (11 1 - A) are independent. we have the following. For 

If is a run, and II fA i = IIi, for i = II, j. 

103 



Proof. The projection property follows directly from the definition of Hand the equality Ho I A = 
H} I A. 
To prove that 11 is a run we must prove dependency closedness and acyclicity. As for the former, let 
0, bE (Ao U A}), and assume 1/ ~ b. Then {o, b} <;; Ao or {o, b} <;; A}. Thus a and b are ordered 
either by "-+0" or "-+}", respectively. 
Now assume H contains a cycle. It must be the case that this cycle contains an action ao E Ao and 
an action a} E AI' Furthermore there exist actions 0, a' E A such that 

+ + + I + ao ---->'0 a ---'-J (1.1 .....--..tj a ---+0 aD· 

But due to linearity of lIo f A we also have 

+ I ,+ a ----;. 0 a, or a ---+ 0 (I.. 

The former case gives 
+ + I + (fa ---+0 a ---+0 a ---+0 {/.o, 

whereas the latter gives (using ITo fA = 111 fA) 

+ ,+ + 
(1.1 ---+ 1 (f ---+ 1 a --+ 1 0.1, 

that is, both result in a cycle in either flo or HI. This contradicts the fact that Ho and HI are runs. 0 

104 



Chapter 7 

Proving Refinement Using Transduction 

B. Jonsson, A. Pnueli and C. Rump 

105 



7.1 Introduction 

Distributed computer systems can be specified at many levels of abstraction. For instance, a specifi
cation of a computer network can at one level describe an abstract file transfer service, and at another 
level include a description of a protocol for transmitting data over a physical link. An important 
problem is to verify that a (more concrete) lower-level specification correctly implements, or refines, 
a (more abstract) higher-level one. 

Several criteria for the correctness of refinement have been suggested in the literature. A common 
criterion is based on the idea that a specification denotes a set of allowed observable behaviors, 
corresponding to different runs of a system. Refinement then corresponds to inclusion between sets of 
observable behaviors. A verification method should establish that for each computation of the concrete 
specification, therc is an equivalent computation of the abstract one. Several proof methods have 
been suggested, notably refinement mappings [Lam83, Lam89] and (forward) simulation [Jon87, 
Jon91, LS90, LT87, Ora89, SL83, Sta8S]. These methods are not complete for the case when, 
intuitively speaking, the abstract system has a nondeterministic choice which occurs earlier than the 
corresponding nondeterministic choice in the concrete system. For example, a system which outputs 
10 a's and then decides to output either a b or a c certainly refines a system which at the beginning 
decides to output either 10 a's followed by a b or 10 a's followed by a c, but forward simulation is not 
powerful enough to verify this because at the point of outputting the first a, it is impossible to know 
which of the alternatives should be chosen in the abstract system in order to match the subsequent 
choice ·in the concrete system. The simulation method has therefore been extended with backward 
simulation or so-called prophecy variables [AL91, HHS87, Jos88, He S9, Jon91] to handle this case. 

In this paper, we present a refinement proof method called proof by transduction. The main 
idea of the method is that for a pair of a concrete and an abstract system, we establish refinement 
by constructing a tYallSducer consisting of the concrete system, the abstract system, and a queue of 
observable events. One must then prove that if the transducer runs through a concrete computation, 
then it can build up a corresponding abstract computation with some delay. The queue contains the 
sequence of concrete events which have not yet been matched by abstract ones. In the transducer, 
one can view the concrete system as a generator of a sequence of events, and the abstract system 
as an acceptor which accepts a sequences of events, generated by the concrete system, after some 
unspecified finite delay. In this way, the transducer may defer transitions in the abstract specification 
until the point in ti me whcn the relevant nondetenninistic choices have been performed in the concrete 
system. Thus the method can reduce the number of prophecy variables needed in a proof of refinement. 
For instance, in the above example, the first step of the abstract system would be delayed until the 
concrete system has made the choice between band c. 

An important generalization of the transduction method is to prove refinement modulo some 
transformation of the interface. This kind of refinement has been termed intetface refinement in 
[GKS92, BJ091]. A typical transformation could be to replace some observable event that represents 
a synchronization by a pair of request-confirm events. In the transducer, the queue between the 
concrete and the abstract system should then be replaced by a more complex component which allows 
the appropriate transformation 011 sequences of events. 

A particular case of interface refinement is partial order r"finemellt, by which we mean refinement 
that preserves only a subset of the orderings between events of a system. A typical case is sequential 
consistency in shared memory multiprocessor systems, where the ordering between events associated 
with each processor is preserved between theconcrcte and the abstract system. We present a method for 
the case of specifying and proving sequential consistency. In this method, a transducer is constructed 
in which the abstract system is an ideal serial memory, and the transducer is a component which 

106 



preserves exactly the orderings between events associated with each processor. The totally ordered 
queue of observable events is replaced by a partially ordered queue, which ensures that the ordering 
associated with each processor is maintained between the concrete and the abstract systems. In the 
case of proving sequential consistency, the partially ordered queue essentially consists of one separate 
totally ordered queue for each processor. The proof of refinement then consists in establishing that for 
each computation of the concrete system (e.g., a cache consistency protocol) there is a computation 
of the transducer where all events inserted into the queue by the transducer part corresponding to the 
concrete system are eventually removed by the part corresponding to the abstract system. 

We illustrate the method for proving partial order refinement by applying it to prove sequential 
consistency of a rather simple cache consistency protocol, the so-called Lazy Caching protocol of 
Afek, Brown and Merritt [ABM93]. The main advantage of our proof is that whereas the proof of 
sequentially consistency in e.g., [ABM93] is based on reasoning about entire execution sequences, 
our proof is more concrete, and uses assertional reasoning about the state of the abstract and concrete 
system and the queue. The transducer queue can be said to represent the bookkeeping information 
about entire execution sequences that is needed in a proof like the one in [ABM93]. Thus we feel 
that our method makes the proof of sequential consistency more concrete and more explicit, in that 
all structures used in the proof arc represented as concrete state variables in a transducer. 

The paper is organized as follows. In the following section (7.2), we introduce our system model, a 
fair named transition system as a slightly extended version of a/air transitions system, and our notion 
of refinement. The rest of the paper consists of two parts: The first part introduces the transducer and 
the proof-by-transduction method for standard language inclusion refinement (section 7.4), presents 
the rules in Temporal Logic used to do the proofs (section 7.5), and illustrates the method on a simple 
example (section 7.6). In the second part, we generalize the proof-by-transduction method to handle 
partial order refinement (section 7.7), then specialize it to treat sequential consistency (section 7.8), 
and use this to prove the Lazy Cache Algorithm (sections 7.9-7.10). 

7.2 System model and notion of refinement 

We assume a universal vocabulary V of typed variables. We write '" : D to denote that variable x is 
of type D. We definc a state", to be a type-consistent interpretation of V, assigning to each variable 
" E V of type D a value 8[ ,,] over its domain. We denote by L the set of all states. 

To express the visiblc part of the behavior of a system and compare two systems with different 
system variables, we usc a universal set of events f. Events can be viewed as an abstract representation 
of taking a transition. 

We model systems as fair named trallsition systems (f'NTS). A fair named transition system is a 
slightly extended version of a jilir transitioll system [MP91] in which each transition is associated 
with an event. Taking a transition is interpreted as an occurrence (generation) of the event associated 
with the transition. The set of events is partitioned into the set 0 of observable events and the set I 
of internal events. An observation of the system is the sequence of observable events generated by a 
computation of the systcm. 

Fair named transition system 

A/air named transition system S is a six-tuple (V, e, T, :.7, C, 0). where 

• J1 <;; V - is a finite set of system variables. 

107 



• 0 - is the initial condition. It is required that 0 be satisfiable, i.e., there exists at least one state 
satisfying 0. 

• 7 - is a (possibly infinite) set of trallsitions. Each transition T E 7 is presented as 

T : (1,( V, V') gen. OT 

where U T E r is the event generated by T, where V' is the set {x' I x E V} of primed system 
variables, and where (1,( V, V') is an assertion called the transition relation which relates a 
state s E L to its possible T-successors s' by referring to both unprimed and primed versions 
of the system variables in V. An unprimed version of a system variable refers to its value in 8 

while a primed version of the same variable refers to its value in 8'. We say that the transition 
T generates the event 0,. For example, a transition T with (I, : ,,' = x + 1 and 0T : inc has 
the effect of incrementing the value of '" and generating the event inc. Let E denote the set of 
events generated by the transitions of S. Several transitions may generate the same event. 

• J <;; 7 is a set of just transitions. 

• C ~ T is a set of compassionate transitions. 

• 0 <;; E is the set of ohservable events. Thus the set of internal events is I = E - o. 

We require that the idle transition, T" with the transition relation (IT, : V' = V and generated event 
0

1 
: idle, always be in 7 and idle E I. 
The partitioning of events induces a pal1itioning of transitions, the set of observable transitions, 

70 = {T I U, EO}, and the set of internal transitions, 7T = {T I cr, E I}. 
We adopt the convention that all system variables not explicitly mentioned as primed in a transition 

relation are left unchanged by the relation. Thus, whenever we define a transition relation by 
means of an assertion (I whose set of primed variables is U, we regard this as an abbreviation for 
(1,( V, lI') = (I( II, lI') 1\ v' = v, where v = V - u. 

The transition relation (IT( V, V') identifies a state 8' as a T-successor of state 8 if 

(s, s') F (1,( V, V'), 

where (s, s') is the interpretation which interprets '" E V as the value s[" J of" in state s and interprets 
:1:' E V' as 8'[:Z:]. A transition T is enabled on a state s, written SF En(T) if 

S F 3 V' : (1,( V, V') 

which is true iff .'3 has aT-successor. 
A scenario of a fair named transition system S is a pair (1, (3) consisting of a model 

and an infinite sequence of transitions 

satisfying: 

• Initiation - 80 satisfies the initial condition 0. 

108 



• ConsecutiOil - For all i 2: 0, the state 8i+1 is a 1'i+l-successor of the state Si' 

• Justice - For each transition l' E J, it is not the case that l' is continually enabled at all states 
beyond some position in (T but appears only finitely many times in fJ. A transition appears 
finitely many times in fJ if there are finitely many indices i l < ... < ik , such that Tij = T for 
allj = .I, ... ,k. 

• Compassion - For each transition l' E C, it is not the case that T is enabled at infinitely many 
positions in (T but appears only finitely many times in fJ. 

We refer to (T as the computation induced by the scenario, and to fJ as the behavior induced by the 
scenano. 

A run of the system is any scenario satisfying the Initiation and Consecution requirements, but 
not necessarily any o! the Justice or Compassion requirements. 

An ohservation fJ corresponding to a behavior fJ is obtained from fJ by replacing each transition 
by the event it generates and then omitting all internal events. Formally, for an infinite sequence of 
transitions tJ : 1',,1'2, ... , let Epcnts(fJ) denote the sequence of the corresponding generated events, 
O'TI ' aT", ... , and for a sequence X and a set E, let X r E denote the projection mapping of the 
sequence X onto the set E. 
Let Ob,,(8) denote the set of all observations of a system S. 

Definition 7.2.1 (Refinement) Given two systems SC and SA, to which we respectively refer as a 
concrete and an abstract system, we say that the concrete system SC refines the abstract system SA, 
denoted 

To represent infinite sets of transitions, we introduce the notion of parameterized transitions. 
Parameterized transitions are presented by a transition scheme of the form 

1'(PI,···,J!k): (IT(PI, ... ,J!k, V, V') gen. UT(PI, ... ,Pk) 

for]il E ])" ... , JIk E ])1-. where each /1; is a parameter associated with a particular domain 
Di. A transition scheme identifies a (possibly infinite) set of transitions and their corresponding 
events. Each transition and corresponding event is obtained by selecting a particular instantiation 

PI : d l E D I ,.··, Jik : dk E Dk of the parameters fi = {PI, ... , pt}. Such an instantiation gives 

rise to the transition 1'( df , ... , dkl and the event a r ( "I,' .. , dk). 
For simplicity, we assume that only finitely many fair (just or compassionate) transitions are 

enabled in cach state of a computation. This property is referred to as finite fair enableness. OUf 

results also hold for the more general case, where a countably infinite number of transitions may be 

simultaneously enabled, but the proofs will be more involved (see [JPR94]). 

A Note on Notation 

We use. to denote concatenation of sequences as well as the concatenation of a single element to a 
sequence. The length of a sequence X is denoted by IX I. 

As usual, for a sequence X of elements in some domain D, the notation Xli] denotes the i'th 
element in X provided that f :s i :s kl/!}lh(X), written i E dom(X). If i <t dom(X). Xli] is 
taken to be 1. which is different from all elements in D. 

109 



For a sequence XED' of length IXI = n > 0, we denote by head(X) the element X[i] and 
by tail( Xl the sequence X[2], . .. , X[n], obtained by removing the first element from X. If X is the 
empty sequence, then head( X) is 1-, and I.ail( X) is the empty sequence. 

For an element y E D and a sequence XED', we use the predicate y E X as an abbreviation 
for:3 i E dom(X) : Xli] = y. 

7,3 Temporal Logic 

We use linear time temporal logic [MP91] as a language for expressing properties of computations of 
fair named transition systems. We assume an underlying first-order language for expressing functions 
and relations over some standard domains such as the boo leans and the integers. A formula in the 
underlying language is referred to as an assertion. We will use a restricted version of temporal logic, 
which consists of a first-order language augmcnted by the fallowing temporal operators: 

o jJ - "1' holds at all future positions", 

o jI- "p holds at some future position", 

,,+ - "the value of variable" in the next position", 

A local formula is a formula in which the only temporal operator is the next-value operator ( )+, 
applied (once) to variables. 

The truth of a temporal formula is evaluated relative to a position j 2': 0 in a computation 
a: 80,8,,82,'" as follows: 

• For a formula 7' without temporal operators, 
((T, j) 1= P iff the state 8; at position) in CT satisfies 1'. 

• For a local formula ,,( 11, (1+) 
(CT,j) 1= 1'(11, V+) iff (s,s') 1= p(V, V'), where we interpret;r E Vas s[x] and x' E V' as 
s'[ ,,;], 

• (CT,) 1= 0 l' iff(CT, i) 1=" for all i 2': j, 

• (CT,j) 1= 0 pitT (CT, i) 1= P for some i 2':), 

Boolean operators are evaluated as usual. Two common forms of temporal formulas are 

• 0 0 P which means that Jl holds at infinitely many positions, and 

• 0(1' --'0 O~) which is abbrcviated as p=?O~, meaning that eaeh state s that satisfies pis 
followed by a state (possibly 8 itself) that satisfies q. 

For a transition r, define I.aken(r) as the local formula I'T( V, V+). We say that transition r is 
taken at position) of a computation CT if taken(r) holds at that position. Note that more than one 
transition may be considered as taken at position j. This may happen only if both taken( rJ ) and 
t.aken( r2) hold at j. 

110 



7.4 Proving Refinement Using a Transducer 

In this section, we present the construction of a transducer for proving that some concrete system Se 
refines some abstract system SA. The transducer is a fair named transition system constructed from 
SC and SA together with an interface queue of events in 0 and possibly some auxiliary variables. 
In the transducer, the concrete system acts as a generator of events which are transferred via the 
interface queue to the abstract system which in turn acts as an acceptor of sequences of events. To 
establish a refinement between SC and SA, it must be verified that each sequence of observable events 
produced by SC can be accepted (after some unbounded finite delay induced by the interface queue) 
by the abstract system SA. This property clearly implies refinement. In Theorem 7.4.2, we formulate 
sufficient conditions for this property. 

Since we are now referring to two systems, one abstract and one concrete, we use superscript A (e) 
when referring to parts of the abstract (concrete) system. Thus SC is given as (Ve, (§, Te, Je, ee) 
and similarly for SA The terms abstract and concrete are sometimes merely used to refer to the 
systems on the right-hand side and the left-hand side of the refinement relation. 

For aesthetic reasons, we refer to relations of the form P(rA) as P¢, to relations of the form p(:;A) 

as P:, and to events of the forms 0' rA and "r" as 0';4 and 0';, respectively. 

Definition 7.4.1 (The Refinement Transducer) Given concrete and abstract systems SC and SA 
such that yc n VA = 0 and OA = OC, a transducer S1' over SC and SA is a fair named transition 

system where 

• V1' = VA U yc U {Q : (OC)*} U U, i.e. the system variables consists of the system variables of 
the abstract and the concrete systems, together with a queue (sequence) Q of concrete observable 
events, and a (possibly empty) set of auxiliary variables, U. 

• eT , the initial condition, is a formula thut si:lt;sfies: 

(3 U: 0 T
) 

• TT, the set of transitions is the union of two sets Tc and TA such that each concrete transition 
TC E T C has a corresponding transducer transition:;C E TC and each abstract transition 

TA ETA has a corresponding transducer transition ;:A E T A. The transition relations are 
required to satisfy the following: 

The transition relation (I: for the transducer transition rA corresponding to the abstract 
transition TA should .,ati"fy 

;;:. P~ /I deQ( (\~) /I (V")' = v" 

where deQ( n;4) is defined a' Q = n;4 • Q' if TA is observable and Q' = Q otherwise. 

Each transition TA generates the special event null, 

- The transition relation p~ for the transducer transition:;C corresponding to the concrete 
transition T C should satisfy 

C A Q( C) A (VA)' = VA Pr "en (lr" 3U': p~ 

where enQ( 0';) i., defined as Q' = Q. 0'; if T C is observable and Q' = Q otherwise. 

E;ICh transition T C generate,,, the event n~ which is the event generated by T
C. 

III 



• ]T C JC u T A. That is, the justice set contains the transitions corresponding to a subset of 
the just transitions for the concrete level and a subset of the abstract transitions. The mapping 
';' is extended to apply to sets of transitions in the obvious way. 

• CT c;; CC uTA. The compassion set contains the tmnsitions corresponding to a subset of the 
compassionate transitions for the concrete level and a subset of the abstract transitions. 

• (11' = cf, i.e. the ,'et of observable events equals the set of observable events for SC . 

The system variables of the transducer are those of SC and SA together with the interface queue Q 
and a set U of auxiliary variables. These can be used to restrict (schedule) the occurrences of abstract 
transitions, and to simplify the proof of the verification conditions, to be presented in Theorem 7.4.2. 
The auxiliary variables arc not allowed to restrict the possible behaviors of the concrete system. This 
is the motivation for the condition on ElI', which states that for each intended initial state of the 
transducer, satisfying ElA 1\ Elc 1\ Q = A, there are values of U such that El l' holds. 

The transitions of the transducer are of two kinds: those that correspond to a transition of the 

concrete system (F·'), and those that correspond to a transition of the abstract system (T A). The 
conditions on these ensure that the proper events arc insened and removed from the interface queue 
when these transitions are taken. 

One way to understand the requirements on the transitions in T T is to see that they are satisfied 
if we 

• construct TC from TC by adding an operation that insens an observable event into Q for each 
observable transition in T C • We may also add constraints on the auxiliary variables, if these do 
not constrain the original concrete transitions. 

• construct T A from T A by adding an operation that removes an observable event from Q for 
each observable transition in TA. We may also add any additional constraints on any variables. 

Note that since new enablencss criteria on abstract transducer transitions may have been introduced 
as may new fairness requirements, it has to be verified that the transducer satisfy the finite fair 
enableness property. 

7.4.1 Soundness of the Method 

We can now (in Theorem 7.4.2) prove a soundness theorem for the transducer recipe. It says that 
given a concrete and abstract system, SC and SA , if a transducer STover SC and SA satisfies the three 
requirements of matching-progress, justice satisfaction, and compassion satisfaction, then SC I;;; SA. 
Intuitively, the matching-progress requirement states that whenever the interface queue is nonempty, 
then there will be a subsequent occurrence of a transition that removes the first element from Q. Note 
that this transition must be a transition of SA. The motivation for the justice (compassion) satisfaction 
requirement is, that since the transducer is allowed to constrain an a~ract transition rA in any way. 

the enableness criterion of the corresponding transducer transition TA may be different from those 

of rA. Thus, in general, a justice (compassion) requirement on ;A is not enough to ensure a justice 
(compassion) requirement on' TA. It must therefore be verified separately that the transducer respects 
the justice and compassion requirements for the abstract system. 

For now, we are only going to sketch the soundness proof of the refinement transducer, and then 
in section 7.7, we shall give a complete soundness proof of the partial order refinement transducer 
which is a generalization of the refinement transducer. 

112 



Theorem 7.4.2 (Soundness) If a transducer ST over SC and SA satisfies: 

1. Progress in Mntching: 
Q # A => O(Q+ = tail(Q)) 

2. Justice Satisf"ction: For each transition TA E J A, 

3. Compassion Satisfaction: For each transition TA E CA , 

then 

Proof: (Sketch only). Let 

be a behavior of Sc. We must prove that there is a behavior ')'A of SA which induces the same 

observation, i.e .. ')'C = ')'A. 

By the conditions on ST, we conclude that 8 T has a behavior j3 which is an interleaving of the 
sequence 

with transitions derived from fA. From the conditions on Q (including matching-progress) in the 
computation, we infer that the sequence of observable abstract transitions is the same as that of 
observable concrete transitions. Finally, we use the justice and compassion satisfaction requirements 
to conclude that the abstract part of j3 (with the hats C's) removed) is a behavior of SA. 0 

7.5 Proof Rules 

In this section, we present temporal proof rules that will be used to prove temporal properties of the 
form]J => 0 'I, e.g. matching progress properties of transducers. The rules can be used to infer a 
temporal conclusion from a list of non-temporal (i.e., first-order) premises. The statement made by a 
rule is that, if each of the assertional premises holds over all S-accessible states (states that may occur 
in a computation of system S), then the conclusion holds over all computations of S. This implies 
that. in establishing any of the premises, we may freely employ any previously established invariant 
of the system. The rules presented here are taken from [MP94]. 

7.5.1 A Single-Step Rule 

A single-step rule, relying on justice, is provided by rule STEP presented in Figure 7.1. 
Rule STili' can be used to prove single-step response properties, i.e., properties that can be achieved 

by a single activation of ajust transition. The rule calls forthe identification of an intermediate assertion 
'P and a just transition T},. E J, to which we refer as the helpful transition. The idea of the rule is to 
establish that each state that satisfies II is the beginning of a (possibly empty) period that satisfies 'P, 
that 'P holds as long as 'I has not become true, and that (by justice) transition Th must eventually be 
taken and make 'I truc. 

113 



For assertions p, g, r..p. and transition Th E :7, 

11. ]1----:- 'I V <p 

12. fir fI <p --> 'I' V <p' for every T E T 

13. flTh fI <p --> 'I' 

14. <p --> En( Th) 

Figure 7.1: Rule STeW (single-step response under justice). 

Premise 1 I of the rule states that, in any position satisfying 1', either the goal assertion q already 
holds, or the intermediate assertion <p, bridging the passage from I' to q, holds. The 'I-disjunct of 
this premise covers the case that the distance between the p-position and the q-position is O. The 
<p-disjunct and the other premises cover the case that the distance between these two positions is 
positive. 

Premise 12 requires that every transition leads from a <p-position to a position that satisfies q V <p. 

That is, either a position satisfying the goal assertion q is attained or, if not, then at least the intermediate 
<p is maintained. 

Premise 13 requires that the helpful transition Th always leads from a <p-position to a q-position. 
Premise 14 requires that the helpful transition Th is enabled at every <p-position. 
Note that, if we have established an invariant 7/' of the system, it is sufficient to prove the 

implication 

in order to establish a premise of the form 

r s. 

s , 

Rule STilI' can be used to establish that every state satisfying )I (p-state) is followed by a state 
satisfying another assertion q. The case where 'I expresses that some transition Tq must eventually be 
taken can be expressed by the assertion 

1) =} 0 IlIken( T q ), 

Such response properties can be proven by rule J·TAKIl of Figure 7.2 which is a variation on rule 
STEP. 

7.5.2 Combining Response Properties 

Rule STilI' by itself is not a very strong rule, and is sufficient only for proving one-step response 
properties, i.e., properties that can be achieved by a single activation of a helpful transition. 

In general, most response properties of the form jJ =} 0'1 require several helpful steps in order 
to get from a [I-position to a 'I-position. To establish such properties we may use several rules that 
enable us to combine response properties, each of which established by a single application of rule 
STEP. These rules are based on general properties of response formulas that allow us to form these 
combinations. We list some of these properties as proof rules. 

114 



For assertions P. 'P. and transitions Th E :T. Tq E T. 

11. P---+ 'P 

12. PT A 'P ---+ 'P' V PT, for every T E T 

J3. (JTh A 'P ---+ PT, 

14. 'P En( Th) 

l' =;. 0 /.o/:e1/.( Tq) 

Figure 7.2: Rule .!-TAlm(eventual activation of transition). 

For example. the following rule THNS (transitivity) infers the response property p=;.O r from 
the two response properties p=;.O q and q =;. 01"· 

Rule THNS (transitivity of response) 

P=;.Oq q=;'O'· 

Another useful propel1y of response formulas is that it is amenable to proof by cases. This possibility 
is presented by rule CASBS. 

Rule CASES (case analysis for response) 

1'=;.0" 

(1' V q) =;. 0 ,. 

7.5.3 A Well-Founded Rule 

The preceding rules can be used to establish response properties that need a bounded number of 
helpful steps. Some properties may require a number of helpful steps that depend on the state and 
cannot be bounded a priori. To handle these cases. we introduce a rule that depends on a well-founded 
domain as a measure of progress towards the goal q. 

A well-founded domain (A. »-) consists of a set A and a well-founded binary relation »- on A. The 
relation »- is called well-founded if there does not exist an infinitely descending sequence ao, aj, . .. 
of elements of A such that 

0.0 >- {/.j >- .... 
A typical example of a well-founded domain is (1'1, > ), where 1'1 are the natural numbers (including 

115 



0) and> is the greater-than relation. 
Rule WELL, presented in Figure 7.3, can be used to establish a response property requiring an 

unbounded state-dependent number of helpful steps. The rule uses a well founded domain (A,;") 
and a ranking function b mapping states to elements of A 

For assertions 1', 'I, and <p, 

a well-founded domain (A, ;..), and 
a ranking function 0: S >-+ A 

WI. p -'> q V <p 

W2. <p 1\ 6 = 11 =;. <> (q V <p 1\ 11 ;.. 8) 

Figure 7.3: Rule weLL (well-founded response). 

Premise W I states that every p-state satisfies the goal assertion q or the intermediate assertion <p. 

In the first case, the goal is achieved within 0 helpful steps. 
Premise W2 requires that every <p-state with rank 0 = 11, is followed by another state which either 

satisfies q or satisfies <p with a rank lower than 1/.. Since the domain is well-founded, the rank can 
decrease only finitely many times, ensuring that a 'I-state is eventually reached. 

Rule WELL has as its premise W2, another response formula. This allows a recursive use of the 
rule, by which the temporal premise W2 is proved either by the simpler rule STEP, or by rule WELL 

again, only applied to simpler assertions. In many cases, the premise W2 is proved directly by rule 
STEP. ]n these cases it is advantageous to replace the temporal premise W2 by the non-temporal 
premises of rule STEI'. This leads to rule S·WELL, presented in Figure 7.4. 

The rule uses an intermediate assertion <p to describe the situation between the occurrence of p 
and the resulting occurrence of q. It also uses the function h which identifies, for each <p-state, ajust 
transition which is helpful for this state. We refer to h, as the helpful function. Note that the helpful 
transition depends on the state. 

The rule uses a well-founded domain (A, >-) and a ranking function 8 mapping states into the set 
A. The ranking function measures the distance of an intermediate state from a goal state satisfying q. 
As the computation takes a helpful step, this measure decreases. Due to well-foundedness, the rank 
cannot decrease forever. Consequently, the computation must eventually reach a 'I-state. 

Premise S I requires that every p-position, satisfies q or <p. 

Premise S2 requires that the application of an arbitrary transition T to a <p-state s leads to a 
successor state 8' satisfying one of the following: 
• $' satisfies 'I, or 
• 8' satisfies <p with a rank 0(8') smaller than 0(8), or 
• s' satisfies <p with a rank o(s') equal to Ii(s), and with identical helpful transition h(s') = h(s). 
Note that in the case of no observable progress, described by the third clause above, we require the 
persistence of the helpful transition 

Premise S3 requires that the application of the helpful transition h, to a <p-state s, leads to a 
successor state s' which either satisfies" or satisfies <p with a rank lower than that of s. 

Since premise S3 covers the case of T = h, it is sufficient to establish premise S2 only for T # h;. 

116 



Sl. 

S2. 

S3. 

S4. 

For assertions p, q, and !..p, 

P 

(iT 

Ph 

<.p 

a well-founded domain (A, ~), 
ranking function 8: S t-7 A, and 
helpful function h: S ~ J 

--. 'I V <.p 

1\ <.p 
['I' V (<.p' 1\ 8 ~ b') ] 

~ 

V (<.p' 1\ 8 = 8' 1\ h = h') 
for every T E T 

1\ <.p ~ 'I' V <.p' 1\ 8 >- b' 
~ En(h) 

Figure 7.4: Rule S·WELL (well-founded response with helpful sets). 

Premise S4 requires that the helpful transition is enabled on every every <.p-state. 

7.6 The Buffer Example 

We shall illustrate the proof-by-transduction method by an example. We have chosen a very simple 
problem to show how proof by transduction can replace the use of prophecy variables. 

The example consists of a concrete and an abstract system, both of which operate on a buffer 
lJ which ranges over sequences of data messages and have two observable operations: insert and 
reI/lOVe, and one internal operation: dclcle. An insert( d) operation adds a message d to the end 
of the buffer, and a ,.,,11IOV"( d) removes element d from the front of the buffer. A delete operation 
deletes an element from the buffer. The difference between the systems is that in the abstract system 
a delete A can only remove the last element inserted to the buffer, whereas in the concrete system a 
ddet.i' (1:) removes the I:'th element, i.e. any element can be deleted. 

Proving SC ~ SA using a regular state to state refinement mapping would require use of prophecy 
variables. The reason is, that even though one can execute the corresponding abstract insertA( d) 
whenever a concrete insC1"lc (rI) is executed, it is not known by that time whether this d element will 
be deleted, which then requires immediate execution of a delel.e A operation in the abstract system, or 
not. 

We assume that messages arc taken from some data domain D. 
Besides the operations on sequences previously introduced (see section 7.2) we use the following 

operations for the systems description. 
For a sequence X : lJ*, we shall denote by d·/'Op( 1:, X), for!': E [1 .. nJ, the sequence X [1 J, ... , 

X[ k - 1J, S [k + IJ, ... , X [nJ, obtained by removing the k'th element from X. For k rf. [1 .. nJ. we 
define d1'OJI(l:,X) = S. We write 11l8t(X) for X[IXIJ and I'cst(X) for d1'Op(IXI, X). Obviously. 
lasl(X) is the last element of X and rcsl.(X) is the sequence minus its last element. 

117 



7.6.1 The Abstract System 

We define the abstract system by the following fair named transition system. SA: 

VA {HA : D'} 
eA HA=II 
yA {in.lwrA (d), removeA(d), de/eteA , IdE D} 
:fA {rellloveA(d) IdE D} 
OA {inserted), remove(d) IdE D} 

where the transitions in T A are defined by 

inserrA(d) : (HA)' = HA od gen. inserted) 
rellloveA(d): BA = do(HA)' gen. remove(d) 

deleteA : (BA)' = rest(BA) gen. delete 

Note that transition dclcleA can only remove the last element from the buffer BA, 
Since the idle transition is a standard part of any FNTS, we omit its specification from the presen

tation. 

7.6.2 The Concrete System 

The concrete system, SC, is defined by the fair named transition system: 

1'" {If' : D'} 
e" If' = II 
yC {insert" (d) , rellloveC(d),deletec(k), IdE D,k E N} 
:1" { mnove" (d) IdE D) 
tJc {il/sert(d) , re/l1ove(d) IdE D} 

where the transitions in T C are defined by 

il/sert" (d) : (/i")' = If' 0 d 
removeC(d): If' = do(lf')' 
deletec(k) : k E dOIl1(If') 1\ (if'), = dmp(k, If') 

gen. illsert(d) 
gen. remove(d) 
gen. delete(k) 

Note that transitions de/deC (I:) can delete an element at an arbitrary position of BC. 

7.6.3 The Buffer Transducer 

The transducer that proves the refinement relation between the concrete and the abstract buffer systems 
uses two auxiliary variables in addition to the interface queue Q : (OC)", ranging over sequences of 
events. 

The abstract system can only delete elements that are at the end of the buffer, Thus boolean 
variable dpend is set to T when such deletion is necessary, indicating the element at the end of BA 
should be deleted before any new element is added to BA. 

Sequence variable M : Mark" is used to contain additional information associated with the 
events listed in Q, The transducer keeps IQI = IMI so that it is possible to view M[i] as the 
information associated with the event Q[ iJ. Each entry in M ranges over the enumerated type 
MIl'rho : (nil,rem, del) with the following intended interpretation: 

118 



• For every Q[;] = I'em.oec(d), M[i] = I'em, 

• The pair Q[ i] = in8el't( d) and M [i] = nil represents an element that was inserted into Be by 
the concrete system and is still in J]e, The destiny of such an element is still undecided because 
it may still be deleted or eventually removed, 

• The pair Q[ i] = inscl't( d) and M [i] = 1'1'111, represents an element that was both inserted into 
and removed from lJe by the concrete system, Consequently, this element is no longer in Be, 
The fact that Q[ i] = insel'l( <I) implies that the abstract system has not inserted it yet into BA, 

• The pair Q[i] = ;nsc'I'/(d) and M[i] = del represents an element that was both inserted into 
and deleted from JJc by the concrete system, Consequently, this element is no longer in Be, 
The fact that Q[ i] = inscl't( d) implies that the abstract system has not inserted it yet into BA, 

Consider a sequence M, Let ii,"" h be the sequence of indices of null entries within M, i.e" 
M [i l ] = '" = M [id = nil. The function jrcCJ:(:i, M) computes the index of the j'th null entry 

within M, i,e" ii, if):O: k and returns 0, if) > ." Wedefinejil's//l'ce(M)to be/reex(l,M). 
For a sequence M, we use the notation (M[i] := ,II.) to denote the sequence which is identical to 

M in all elements except for the i'th element which equals m. 
The transducer is presented by the transition system shown in figure 7.5, We omit specification 

of the events generated by the transducer transitions, since they are determined by Definition 7.4.1. 

Transitions in.;;/A(d) and I'C';;;)C A ( d) are enabled only when dl'cnd = F. Variable dpend is set to 

T by transition ;n;:;'IA( d) whenever it inserts an element d with a corresponding M entry del which 
signifies that this element was deleted by the concrete system, Setting dpelld to T disables all other 

abstract transitiol1.!iJlnd enables dclcte A which deletes the last element of BA, 

]!ansition inscl'!,c (tI) insel1s event insel'/,( d) into Q and marks it in M with nil. Transition 

,'eIl1017Ce (d) inserts event I'e",ove( d) into Q with corresponding marking rem but also marks the first 
null entry in M with 'I'em·. As will be shown, the corresponding entry in Q contains the insert( d) 
event that was responsible for inserting into BC the element d that is currently removed. Marking it 
by rem, signals to the abstract system that the destiny of this element has just been identified and it is 
safe to insert this~ment into UA , knowing it will not be deleted, 

Transition dclctcC (I:) deletes the k'th element from JJe and marks the k'th null insert event as 
deleted. This signals the abstract system that it is now safe to insert the corresponding element d into 
nA, provided it will he immediately deleted by dele leA . 

7.6.4 Proof of the Buffer Transducer 

Four invariants are needed to prove the matching-progress and the justice satisfaction of the buffer 
transducer. To express these invariants, we introduce some additional notation. 

Consider a queue Q E (OCt and a marking sequence M E Jvfa'l'k* of the same length, Based on 
the correspondence between entries in Q and entries in M, we can classify insel't-entries as follows: 
An inscl'!.-entry is called a null insert, a remaining insert, or a deleted insert if its corresponding mark 
is nil, I'ell/., or del, respectively. An ;nscl'!.-cntry is called an undeleted insert if its corresponding mark 

is not del. We dcflne Q rllilillSeJ"1' Q IrelllillSNI' and Q r ulldelil/serl' to be the sequence of data elements that 
correspond to null illsert entries. remaining £u..,cd entries, and undeleted ins€1'l entries. respectively. 
We define Q f""",,,,,, to be the sequence of data elements corresponding to "emove-entries in Q. 

We define 

[jA if dpend then res'( [JA) else [JA 

119 



V,. VA U VC U {dpelld : Boot, M : Mark', Q : (OC)'} 
eT eA 1\ eC 1\ dpelld = F 1\ Q = M = A 

IT {ill;;;;tA(d), reI;;;;;'eA (d), de~A, 
il;-;;;;f: (d), reI;;;;;'e" (d), d;t;:;ec (k) IdE D, kEN} 

:1T {re;;';;eC(d),reI;;;;;'eA(d),ill;;;;tA(d),delet~ IdE D} 
OT {illsert(d), remove(d) IdE D} 

ill;;;;tA (d) : ,dpelld 1\ Q = illsert( d) _ Q' 1\ head( M) oF nil 1\ 

(lJA )' = BA _ d 1\ M' = tait( M) 1\ 

dpelld' = (hee/d(M) = del) 
1-eI;;;;;'eA (d): ,dpelld 1\ Q = remover d) _ Q' 1\ 

(BA)' = tail(BA) 1\ M' = tail(M) 

: dpelld 1\ (BA)' = rest( BA) 1\ dpelld' = F 

il;;:;;;1" (d) : (If:)' = If' _ d 1\ Q' = Q _ illsert(d) 1\ M' = M _ nil 

m;;;;;'eC(d):If: =d_(lf')' 1\ Q'=Q_remove(d) 1\ 

M' = (M[firs!f,re(M)] := rem) _ rem 
---- c . 

delete (k) : k E dO/ll(If') 1\ (If)' = dmp(k, If') 1\ 

M' = (M[/i'eex(k, M)] := del) 

Figure 7.5: The buffer transducer 

Thus, lJA represents a stable nA, without its last element if this element is soon to be deleted as 
indicated by a true dllend. 

The proof of the progress properties required by Theorem 7 A.2 is based on the following invari-
ants: 

I,: IQI = IMI 
12: JjA. Qrn'lI/iIl.H~r' = Qrremm'c 

/ J: Q r l/m/elillserl = Q r rell/insert • Q r lIilimerf 
14: QrllifillSl'r1 = If" 

Invariant 11 states that Q and M have equal lengths. 
Invariant I" states that the concatenation of the (stable) abstract buffer to the insert elements 

marked as remaining yields the same sequence of data elements as those associated with remove
entries in q. 

Invariant 1" states that the sequence of all un deleted inscl·t-entries in Q consists of the sequence 
of remaining insert's followed by the sequence of null insert's. It implies that all remaining insert's 
precede all null insert's in Q. 

Invariant 1j states that the sequence of elements corresponding to null insel't's is identical to the 
concrete buffer lic 

The method of proving refinement by transduction requires that we establish two response prop-

120 



erties (since we have no compassion requirements). The first requirement is progress in matching and 
the second is the satisfaction of abstract justice. We will prove each requirement in turn. 

7.6.5 Progress in Matching 

Progress in matching requires that each observable event that is currently at the head of the queue is 
eventually removed. This can be formulated by the response formula 

head(Q) =" => 0 taken(;;:'). (7.1 ) 

for n E OC. In our case, the observable events are all of the form v( d) where v E {insert, remove}. 
We will prove the progress property in several stages. 

First we show that if an observable transition is enabled, implying that the corresponding event 
must be at the head of q, it is eventually taken. This property is expressed by the following lemma: 

fOfll E {insert, remove}. 

Proof: Both cases are proven by rule .1.'I'AJ(,", taking p = 'P : En(IIA(d)) for the assertions and 

r" : IIA(d) for the hclpful transition. The only nontrivial premise is 12. Observing that premise J3 

implies premise J2 for r = r" = IIA( d), it is sufficient to prove, for each r i vA (d), the implication: 

(I, /\ £I/(;;';'(d)) -+ 
~ , 

£1/' (;-;A (d)) 
~ 

~' 

which claims that no transition othcr than IIA(d) can disable /lA(d), once it is enabled. For the 
case II = insert, the enabling condition is ,dpend 1\ head(Q) = inserted) /\ head(M) i nil, and 

it is easily seen that, once true, this can only be changed by the transition insertA(d). For the case 
[/ = remove, the enabling condition is -,dpend /\ head(Q) = remove(d), and, once true, this can only 

be changed by transition removeA(d). This establishes that, once an observahle abstract transition is 
enabled, it is eventually taken. 0 

We will proceed to show that if observable event II( d) is at the head of q then, eventually, /lA( d) 
becomes enabled. 

One possible obstacle to the enableness of the two observable abstract transitions is that variable 
dpend is true. We now establish that, whenever this happens, variable dpend eventually become false. 
This property is stated by the following lemma, which also guarantees that, when dpend becomes 
false, the same observable event n is still at the head of q. 

Lemma 7.6.2 hmd(Q) = ,,(d) /\ dpel/d => O(head(Q) = v(d) /\ ,dpend) 

Proof: By rule S·[·J·;p, using the following constructs: 

I' = 'P: head(Q) = II(d) /\ dpelld 
q: head(Q) = I/(d) /\ ,dpelld 

TIJ: de-;;;;~A 

o 

As the last step in the proof of progress in matching, we show that if 1/( el) is at the head of Q and 

dpcnd = 1-', then 1-;;' (d) eventually becomes enabled. This is stated by the following lemma: 

121 



Lemma 7.6.3 "e{ld(Q) = I/(d) A ,dpend => <)(En(0(d))) 

Proof: We consider separately the two cases: 

I) = remove. Since En(rel;;;;;'eA(d)) is ,dpend 1\ head(Q) = rernove(d), the left-hand side of the 

lemma's claim implies En(m;;;;;'eA(d)) immediately, so the claim is valid. 

11 = insert. For this case the enabling condition En( in;';;:tA( d)) requires, in addition, that head(M) i' 
nit. It is, therefore, sufficient to prove 

,dp,,,,,1 1\ "ead(Q) = inserted) A "ead(M) = nil => 
<) (,dpend A head(Q) = inserted) A head(M) oF nil) (7.2) 

By invariant '.: Q rn;t;n.''''1 ~,head(Q) = inserted) 1\ "ead(M) = nil implies head(lf) = 
d. The helpful transition removeC(d) is thus enabled, and will, when taken, append remove(d) 

to the end of Q and set M[i] to rem, whe~i is the first null insert in Q. Since inserted) is a 

null insert at the head of Q, i = 1 and remove" (d) sets M[!] to rem, achieving head(M) oF nil. 

The helpful transition TeI;;;;;'ec (d) can be disabled by transition dekrec (1), which sets M[l] to 
del, also achieving head(M) oF nil. Thus, formula (7.2) can be proven by rule STEP, with the 
following choice: 

1': ,dpend A "ead(Q) = inserted) A head(M) = nil 
'P: ,dpend 1\ "ead(Q) = in.vert(d) 1\ "ead(M) = nil 1\ head(B") = d 
q: ,dpend 1\ "ead(Q) = insert(d) 1\ "ead(M) oF nil 

Til : re;;;;;;'ec (d) 

o 

Obviously, Lemmas 7.6.2, 7.6.3, and 7.6.1 establish progress in matching, as expressed by for
mula (7.1). 

7.6.6 Abstract Justice 

The second requirement that should be proven is that if a just abstract transition (fA (the original 
transition of the abstract system, not its transducer counterpart) is enabled, then either it becomes 
disabled some time later, or the corresponding transducer transition is eventually taken. Since all just 
abstract transitions are of the form 'rrmove A ( rl), we have to prove the following formula. 

~ => <) (head( gA) 01 d V taken( re;;;;;;eA (d)) ) 

Ell ( ml/I!\'I.A (,I)) 

(note that hrarl( II A ) 01 rI is implied by IJA = A). In view of Lemma 7.6.1, it is sufficient to prove 

(7.3) 

If "earl( I3 A ) = Ii then either hc(ul( lJA) = d or dpelld = T, lasl( nA) = d, and I SAl = 1. In the 
latter case, we can use a proof similar to that of Lemma 7.6.2 to establish 

head( 8A
) = d => <) ('Jead( 8A

) 01 d V head(TJ
A

) = d) 

We can therefore proceed underthe assumption that hcad(1jA) = d. By invariant 12 , this implies that 
hcad( Q rre",,,,,) = d and, therefore, "emove( d) E Q. Assume thati is the smallest subscript such that 

122 



QliJ = 1'emove( d). By property (7.1), each element at the head of Q is eventually removed, moving 
1'em.ove( d) closer to the head of Q. Eventually, we will reach a state in which head( Q) = remover d), 

as required by property (7.3). 
This concludes the proof of the requirement of abstract justice for the buffer transducer. 
Since CA = 0 and the transducer satisfies the matching-progress and justice satisfaction require

ments, we conclude that SC ~ SA. 

7.7 Partial Order Refinement by Transduction 

In the previous section, we have used proof-by-transduction to prove inclusion between the sets of 

observations of two systems. However, our proof method can be used for more general refinement 
criteria, which are not defined simply as inclusion between sets of observations. An example is a 

refinement criterion which requires that for each observation f3c of th<:...c0ncrete system, there is an 

observation f3A of the abstract system, which is in some way related to f3c , for instance through some 
particular transformation. This more general kind of refinement has been termed inlet/ace refinement 
in the work by Brinksma, Jonsson, and Orava [8J091] and by Gerth, Kuiper, and Segers [GKS92]. 

The more restricted standard refinement criterion corresponds to the special case where the relation 
between observations is equality. 

A particular instance of interface refinement occurs when the transformation is defined to respect 
partial orderings between observable events (standard refinement respects the total ordering between 
all observable events in an observation). In this way, it is possible to specify phenomena such as 

serializability, sequential consistency, etc. The partial ordering can be defined to respect, for each 
member of some set of observers, the order of events that the particular observer can see. The 

observers can be taken as the individual processors in the case of sequential consistency, and as the 
individual transactions in the case of serializability. 

1n this section, we shall first define a general framework for partial order refinement. We then 

go on to show how the proof-by-transduction method can be generalized to a proof method also for 
partial order refinement. The idea of this generalization is to replace the interface queue by a data 
structure that can attain the appropriate transformation from sequences of input events to sequences 

of output events. In the next section we show how partial order refinement can be specialized to 
sequential consistency. 

Let E be a set of events. A dependency D 0/1 E is a reflexive and symmetric relation on E. 
For two finite or infinite equal-length sequences of events f3 : eo, e1,'" and 7J : eo, el, ... and a 

permutation 1f : {j , ... ,1f31} ~ {j , ... , 1f31} (in the infinite case 1f : N ---> N), we write 7J = 1f(f3) 
iff Ci = err(i) for every i = 0, j, ... , 1f31. We say that 7r is D-respecting on f3 if e; D ej implies 

7r( i) < 1f(.i) whenever 0 :S i < .i :S 1f31. We say that f3 and 7J are D-equivalent, written f3 ""D 7J, if 
there is a D-respecting permutation 7r on f3 such that 7J = 7r(f3). 

Definition 7.7.1 (Partial Order Refinement) Let SC and SA be fair named transition systems, and 
let D be a dependency on the .,ct 0 of observable events. Then SC is a partial order refinement of SA 

with respect to D, written SC I;;:; D SA, itf OA = 0" 'l11d for any observation f3c of SC there exists an 

observation f3A of SA "tlch that f3A ""I) f3c. 

Sometimes when the dependency is understood, we just write SC I;;:; SA. 

123 



The partial order refinement transducer 

Partial order refinement can be established by transduction in a way analogous to ordinary refinement. 
The difference is that the interface queue Q is no longer a totally ordered FIFO queue, but a partially 
ordered multi-set (pomset) (see e.g., [Pra861, [Gai891, or [Maz89]). 

We assume a universal set of events t and a given dependency relation D. 
A pomset over a set of events E is a structure of the form (C, I', <) where C is a set called 

the carrier,/" is a mapping from C to E, and < is a partial order over C. A pomset (C,Il, <) is 
D-compatible iffor every a, bE C,I/(a) f) I/(b) only if a < b or b < a. Note that we may have 
a, b, e E C such that a < b < e, 11(11.) = II(e) and I/(a) D II(b). Thus the ordering is on the 
carrier and not on the labeling events. Two pomsets (Ci , /"i, <i), i = 1,2, are isomorphic (equal 
for all practical purposes) if there exists a bijection f : C1 -> C2 such that, for every a E C1 , 

/"1 (aJ = 112 (J (aJ) and, for every a, b E C
" 

a < 1 b iff f( a) < 2 f( b). 
The empty pomsct is denoted by A. Let X = (C,,, /'.,,, <x) and Y = (C" /I" < y) be pomsets 

over E. The concatenation of X and Y, written X 0D Y, is defined if Cx and C, are disjoint (if 
they are not, use disjoint isomorphic copies) and yields the pomset (Cx U Cy , I', <) where /I is the 

combined mapping of /"x and /,., and < is the transitive closure of <x U <, U{a < b I a E Cx. bE 
Cy : III 0) D p( Ii)}. Obviously, X 0 f) Y is D-compatible if X and Yare f)-compatible pomsets. 
The restriction of X to a certain set of events 0, written X r Q, is the pomset (C~, p~, <~) where C: 
is the subset /1.; 1 (0) of C,' that is mapped (by Ilx) to events in 0, and II~ and <~ are the restrictions 

of /'." and <x to C;" respectively. 
The 0 f) operator is similar to the layered composition operator in the work by Zwiers et al. (see, 

e.g., [JZ93]) which originates from the communication-closed layers principle by Elrad and Francez 

[EF821· 
We let POIll8c1.( E) denote the class of all pomsets over the set E of events. 
This leads to the following definition of a transducer for proving partial order refinement. 

Definition 7,7.2 (The Partial Order Refinement Transducer) Given concrete and abstract sys
tems SC and SA such thm Ve n VA = 0 and OA = OC, a partial order transducer ST over SC and 
SA with dependency D i8 a fair named transition system where 

o VI' = VA U VC U {Q : POInset( (lcn U U, i.e. the system variables consists of the system variables 
of the abstract and thc concrete systcm8, together with 'I pomset Q of concrete observable events, 
and a (possibly empty) set of auxiliary variables, U. 

o eT , the initial condition, is a formula that siltisfies: 

(3 U : ef
) <-4 eA 11 ee 11 Q = /\ 

o yr, the set of transitions is the lin ion of two sets Tc and Y A such that each concrete transition 
r C E yC h'18 a corresponding tran8ducer transition;C E Tc and each abstract transition 

rA E yA has 'I corresponding transducer transition ;:A E Y A The transition relations are 
required to satisfy the following: 

The trilllsitioll reliltion p¢ for tile transducer transition rA corresponding to the abstract 
tfilllSition rA should satisfy 

p¢ p¢ 11 deQ(c.¢) 11 W'), = v<' 

where deQ( a¢) ;s defined as Q = n¢ Of) Q' if rA ;s observable and Q' = Q otherwise. 

Ench transition ;A. generate . .;; the special event null. 

124 



The transition relation f'~ for the transducer transition;C corresponding to the concrete 
transition TC should satisfy 

pc, II enQ("c,) II (VA)' = VA ,..., "3 u': p~ 

where enQ(n~) is defined as Q' = Q 0D n~ ifTc is observable and Q' = Q otherwise. 

Each tmnsition;C generates the event n~ which is the event generated by TC • 

• JT <;; JC u T A. That is, the justice set contaill8 the transitions corresponding to a subset of 
the just tmnsitio1J.' for the concrete level and a subset of the abstract transitions. The mapping 
~ is extended to apply to sets of tnlllsitions in the obvious way. 

o CT <;; cc U y;.. The compassion set contains the transitions corresponding to a subset of the 
cOJl1passionatc tram,ilions for the concrete level and a subset of the abstract transitions . 

• c)T = CJc. i.e. the 8et of observable events equals the set of observable events for SC. 

Note that this definition is almost the same as the definition of the standard transducer, the only 
difference being that the interface queue is a pomset, and that insertions and deletions to the interface 
queue are made with respect to the dependency relation. Recall that it has to be verified that the 
transducer satisfies the property of finite fair enableness. 

7.7.1 Soundness of the Method 

We shall prove a soundness theorem for the partial order refinement transducer which is as similar to 
the one for the linear case as the similarities in the transducer recipes suggest. The only difference is 
that it does not suffice to require that a non-empty Q always gets shorter, since there can be several 
minimal elements in the interface pam set Q at the same time. As a result, it is possible that infinitely 
many elements are removed from Q, yet some other elements remain continually stuck in Q forever. 
Instead we specifically make sure that each event in Q is eventually removed. 

Theorem 7.7.3 (Soundness of Partial Order Refinement) Ifa partial order refinement transducer 
ST over SC and SA with dependency D .<iltisfies: 

I. Progress in Matching: For each event n E OC. there exists an abstract transition TA E TcJ 
generating tile event 0' such that 

tl E Q ~ <> (aken(;;') 

2. Justice Satisfilction: For each transition rA E :7A , 

3. Compassion Satisfaction: For each transition TA E CA , 

then 

125 



The proof of the theorem follows below. 
The behaviors of a transducer STover SA and SC consist of transitions from the original abstract 

and concrete systems, SA and SC, but with hats ('s) on. To compare behaviors of ST with behaviors 

in SA and SC, we have to project onto Y A and iC respectively, and then (syntactically) remove 
all hats. Given a behavior 13 : Ti, T2, ... , q(f3) yields the corresponding sequence of transitions, but 
with all hats removed: q(f3) : T}, T2, .... For a scenario (T, 13) of S T, define f3c and f3A to be the 

projections of 13 onto yC and Y A respectively, and define (Tc and (TA to be the projections of (! onto 
Lf and LA respectively. For every prefix f3i of 13, the notation f3f and f3f is defined analogously. 

We let f3A refer to the sequence of observable abstract events Events(q(f3A)) r OA, i.e., the events of 

qUiA) projected onto the observable events of SA f3f, f3c, f3f etc. are defined in a similar way. We 

refer to transitions in yA or yc as abstract or concrete transducer transitions, respectively. 
Before we present the soundness proof, we prove three important lemmas that state properties of 

partial order refinement transducers,-The first lemma, Lemma 7.7.4, states the safety property of the 
transducer that holds for any prefix Iii of an observation of the transducer: For any linearization q of 

Q (i.e. a sequence of Q's elements consistent with the partial order of Q), the extension f3f • q of 

the abstract part f3f of f3i with q is D-equivalent to f3r, the concrete part of 13;. The sequence q is 
intended to represent a possible order in which the elements in Q could be removed in the future part 
of the behavior. 

The second lemma, Lemma 7.7.5, states that if a transducer satisfies the matching-progress 
property for partial order refinel~nt transducers, which says that every event in the interface pomset 

Q is eventually removed, then f3A '" l! f3c. 
The third lemma, Lemma 7.7.6, states that for any scenario (,C, ./) of the original concrete system, 

SC, there exist a scenario (T, 13) of the transducer S T, such that q(f3C) = ./, i.e., the transducer can 
generate all behaviors of the original concrete system. 

Having proved these lemmas, what is left to do in the soundness theorem is to state the necessary 
justice and compassion satisfaction requirements and then simply show that a transducer satisfying 
these requirements can generate a behavior of the original abstract system, SA. 

Before we move on to proving the lemmas, we introduce some notation. 
For a pUitial function J, let dOIl/,U) be the set of elements" for which J( x) is defined, and let 

1'(/,IIYCU) be the sct {I(;!!) 1 :/; E dO/nU)}. A portio/permutation7r is a partial, injective function 
7r : N ~: N for whichmll!]c( 7r) = {I, . .. , n} for some n E No. The cardinality of range( 7r) is 
denoted sizer 7r). 

For a sequence 13 and some II! let 131 m. denote the sequence of the m first elements of 13 (if m ;::: 1131 
then 131 m = 13)· An infinite sequence,6o, 131, ... of sequences of elements in some domain B, is said 
to converge to the sequence 13 : JJw if for all '" > 0, there exists 11 ;::: 0 such that f3d m = 131 m for all 
i ;::: n. In this case we define lim;~", 13; = 13. 

Given a transducer ST over systems SA and SC, let (a, 13) with (! : So, s}, ... and,6 : T}, T2, ... 

be a scenario of ST Define 13; = f3li. Then lim;~oo 13; = 13, and obviously lim;~oo 13; = jj. We 
refer to the value of Q in the state 8; by Qi. 

Let f3A be the sequence n1n-tot ... and let f3c be o~ n~n~ .... 

126 



Corresponding to each (3; we define a partial function 7r; : N "" N by: 

Jro o (the empty mapping) 

I
", U {k >-' 1131' 1 + l} 

7r, 

if 1134,,1 > 1131' 1 = n and there exists k such that 

k is the least kEN - dome Jr;) for whieh 
o,A - Lye "+1 - k 

otherwise 

..!"tuitively the 7ris are intended to slowly build a permutation IT that can be used to prove that 

(3A "" D (3c. Since IJ is reflexive. the permutation will always map least index to least index whenever 
two events are equal. W,:shall show that 7r; is a partial permutation for each i. and that its range is 

{I, ... , ,,} where" = Ifitl. 
For pmlial permutations 7r; and 7r.; we define 7r i S;; 7rj iff <fow( 7r;) S;; dom( 7rj) and V k E 

dOJJl(7ri) : 7rj(k) = 7ri{k). 
We are now rcady to give the first lemma. which states the necessary safety properties of the 

transducer. 

Lemma 7.7.4 (Transducer Safety) Given a partial order transducer ST over systems SA and SC 
with dependency D, let ((T, (3) be a run of ST. If (3;. 7r;. and Q; are as defined above. then for all i. 

1. 7r; is a pimial permutation and sizer 7r;) = 1(3;4 I. and 

2. for alllinearizi/tiolls q of Q;. there exists a D-respecting permutation 7r ;2 7r; on (3f, such that 

(3;4 • q = 7r((3f). 

Proof: We refer to [JPR94] for a proof of the lemma. o 

>From the definition of the partial permutations 7ri it is now straightforward to infer that the 7r i'S are 
monotone increasing: 

(7.4) 

Using this and the safety property of the transducer we can inferthat if all events added to the interface 
queue Q are eventually removed. then the transducer has the following important property: For all 
behaviors of the transducer there exists a permutation 7r such that the observation corresponding to 
the concrete part of the behavior is f)-equivalent to the observation corresponding to the abstract part 
of the behavior. 

Lemma 7.7.5 For any sceni/rio (a, (3) of a partial order transducerST over systems SA and SC with 
dependency D, satisfying thilt for each event" E OC, there exists an abstract transition rA E T 6' 
genernting the event cr slIch chilt 

(y E Q =} 0 taken{ TA ) 

there exist aD-respecting permlltution 7r on (3c slIch that 

~ ~ 

!3A = "(PC) 

Proof: We refer to [JPR94] for a proof of the lemma. 

127 

(7.5) 

o 



Next we show that given a scenario (iC ,-l) of the original concrete system SC, there exists a 
scenario ((T, (3) of the transducer such that Q((3C) = -/. The idea of the proof of this property is to 
go along and compute the transducer versions of the transitions of -l and then insert an appropriate 
number of abstract transducer transitions, or, in other words, to match an appropriate number of 
abstract transitions, between each such transition. Doing this we only have to worry about fairness 

requirements for transitions in TA. To ensure that all fairness requirements are met, we use a slightly 
modified version of a standard scheduler for justice and compassion. 

Lemma 7.7.6 Given a transducerST overSA andSc Foranyscenario(,c,'l) ofSc , there exists 
a scenilrio ((T, (3) ofST slich that ~((3c) = ,e 
Proof: We refer to [JPR94] for a proof of the lemma. o 

Let (iC , ,e) be a scenario of a transducer SC which satisfy the matching-progress, justice satis
faction, and compassion satisfaction propel1ies given in Theorem 7.7.3 above. By Lemma 7.7.6, we 
have that there exists a scenario ((T, (3) of S T such that Mf3C) = .:/. Since S T satisfies the matching

progress property I, we conclude by Lemma 7.7.5 that (3A "" D (3c It thus remains to be shown, using 
the justice and compassion satisfaction requirements, that there exists a scenario (,A, ,A) of SA such 
that q((3A) = ,A This is stated in the following lemma. 

Lemma 7.7.7 For ilny scenario ((T, (3) of a pilrtiill order transducer ST over systems SA and SC 
with dependency D, satisfying that for each trumition TA E J A, 

(7.6) 

and for each transition rA E CA , 

o <> En( TA) =:. 0 <> taken(;:A) (7.7) 

there exi.sts a scenario (,A, ,A) of SA such thllt Q((3A) = ,A 

Proof: We shall show that actually ((TA, q((3A)) is a scenario of SA. By the transducer requirements 
on transitions, 

p~ p~ A ... 

and 
3 U': p~ 

we immediately concludc that ((TA, Q((3A) is a run of SA SinceST satisfies properties (7.6) and (7.7) 
above, we conclude that ((TA, q((3A)) is a scenario of SA. 0 

It is now straightforward to deduce from lemmas 7.7.4-7.7.7 the soundness of the partial order 
refinement transducer as stated in Theorem 7.7.3. 

7.8 Sequential Consistency 

In this section, we describe how specification and verification of sequential consistency can be seen 
as a special case of pat1ial order refinement, which can be established using a partial order transducer. 

We assume that we are given two fair named transition systems SA and SC which specify systems 
that are used by a set of processes PI,' .. , Pn . The processes interact with the system by means of 

128 



events in the same set r, and do not communicate among themselves by any other means than via the 
system specified by SA or SC. Let 0; be the set of events that represent the interaction between Pi 
and the system. We assume that the sets 0 1 " • • ,0" are pairwise disjoint, and that their union is the 
set of observable events for both SC and SA. 

The system SC is said to be sequentially consistent with SA [Lam79] if for each behavior f3c of 
SC, there is a behavior f3A of SA such that 

pc reo, "'0 (JA r"" for each i = I, ... ,n 

The property of sequential consistency can be rephrased in terms of partial order refinement as 
follows. 

Theorem 7.8.1 (Sequential Consistency) Let the dependency relation D be an equivalence reiation 
which relates two events iff they belong to the same set 0; for some i. The system SC is sequentially 
consistent with SA jff SC ~ [) SA. 
Proof: Straight-forward. 0 

Theorem 7.8.1 prescribes a systematic method for verifying sequential consistency. To prove that a 
system SC is sequentially consistent with another system SA, we build a transducer comprising SC, 
SA, and a porn set Q. The pomset Q orders two events if and only if they are dependent. Since 
the dependency relation D is an equivalence relation with one equivalence class for each index i, 
the pomset Q defines a total ordering of the events indexed by i. One can therefore think of Q as 
consisting of one queue Q; for each set i. The queue Qi is a linearly ordered sequence of events in 
Oi. The queues are independent of each other. 

In Figure 7.6, we draw a schematic picture of the structure of the partial order transducer for 
verifying that SC is sequentially consistent with SA The transducer consists of the concrete and 

Ql 

Q2 r--
SC SA 

Q" r--

Figure 7.6: Structure of paJ1ial order transducer for sequential consistency 

abstract versions of the system, SC and SA. For each i, there is a FIFO queue from SC to SA that 
carries the observable events in Oi. The transducer may also contain additional auxiliary variables. 
Intuitively, the transducer may be understood as follows. 

The concrete system SC generates observable events and inserts each event into the appropriate 
queue Qi. Via the queues, the observable events are transferred to the abstract system SA. It is now the 

129 



task of the transducer to remove the observable events from the queues, in an order that corresponds 
to a behavior of SA. The FIFO nature of the queues ensure that events in a single OJ are performed 
in the same order by SC and SA. However, events in different sets of observable events may be 
performed in different orders by SC and SA. The major difficulty in constructing the transducer is 
to construct an appropriate "scheduling mechanism" which ensures that SA removes elements from 
queues in an appropriate order. Otten, this scheduling is not trivial, but must be accomplished via 
auxiliary variables. 

A proof-by-transduction of sequential consistency can be compared to other proof methods for 
sequential consistency. The proof method used in [ABM93] is directly based on the previously 
presented definition of sequential consistency. That proof shows how to inductively build a scenario 
of SA, given a scenario of SC, by direct reasoning about computations and behaviors. Typically, 
this proof will build ,A inductively, based on ,C, with each prefix of ,A being based on some 
prefix of ,c. The transduction method achieves a similar effect, but ,A is part of the behavior of a 
specified system (the transducer), for which we can use standard methods for proving invariant and 
progress properties. Put differently, the construction of the transducer contains the part of the proof 
of sequential consistency that requires more human ingenuity (e.g., ensuring proper scheduling of 
abstract actions), while checking the properties in Theorem 7.7.3 should be more routine. 

7.9 The Cache Memory Example 

We shall use the generalization of the proof by transduction method to prove the Lazy Cache Algorithm. 
We refer to [Ger95] for a description of the algorithm. We first present a formal specification of an 
idealized serial memory, thereafter a specification ofthecache protocol. We then construct a transducer 
to prove that the cache protocol is sequentially consistent (with the serial memory). 

Serial Memory 

The abstract system is a serial memory which can be presented as the following fair named transition 
system. We assume that ,uld,. is a given set of addresses of a memory system, and that data is a set 
of values that can be stored in the locations given by add,.. 

VA {MemA : Array[a(hllj of data} 
eA T 

'FA {Read/(d,a), WriteiA(d,a) I J:S i:S /l,dE data,aE addr} 
JA 0 
(JA {Readi(d,a), Write,(d,a) I/:S i:S lI,d E data,a E addr} 

Note that JA is different from the version presented in [Ger95]. 
Let d be of type rlai.a and a of type add". The notation (X [a] := d) where X is an Array is an 

abbreviation for X/[a] = d II V Ii oF a : X'[Ii] = X[Ii]. Then the transitions are given by: 

Read/(d, a): MemA[aJ = d gen. 
WriteiA(d, a): (MemA [ilJ := d) gen. 

Readi(d, a) 
Writei(d, a) 

The transition IIl'11d.;A( d, a) can be performed if location a contains data value d and does not change 
the state of the systcm. The transition Wri!.r i A ( d, a) can be performed in any state, and changes the 
content of location a to become d. 

130 



Cache Memory 

The concrete system is a cache memory which we define by a fair named transition system: 

{Men,c : Array[addr] of data, 
Ini : «datllln x addr) U (da/llm x addr x {*}))O, 
OUti : (datum x addr)' , 
Ci : Array[addr] oj" (datum U-1) [I S; is; II} 

Ill; = OUli = A A Ci = Meme 

{Read," (d, a), WriteiC (d, a), MemWrite,c (d, a), MemReadi
c (d, a), 

CaclleUpdate/' (d, a), CachelnvalidateF I J ~ i S n, dE data, a E addr} 
. c 

{MemWrite;' (d,a), CacheUl'da/ei (d,a) 
[I S; is; II, d E daw, a E addr} 

{Readi(d,a), Writei(d,a) [I S; is; n,dEdata,aEaddr} 

Intuitively, Men,," is the global memory, and C; is the local cache of process i. Foreach i, the variable 
[ni is a sequence of elements of the form (d, a) or of the form (d, a, *), and the variable Out, is a 

sequence of pairs of the form (d, (/). In the cache memory, these sequences are used as FIFO queues. 
Initially the queues are empty, and all caches are identical to the global memory. 

For a sequence In of (d, a) and (d, n, *) elements, let Itl r 0 denote the projection of In onto 
(el, (I, *) elements. Then the transitions are given by: 

c Readi (d, a) 
WriteiC (d, a) 

MemWritc/'(d, a) 

: Ci[a] = d A Ollti = A A Ini r 0 = A 
: Ollt: = GUf; .(d, a) 
: Of/Ii = (d)({).Ollf~ 1\ 

(Men{[a] := d) A 

I,,: = IlIie(d,a, *) 1\ 

\;fk oJ i: In; = In,.(d,a) 
MemRead/'(d,a) : Men1e[a] = d 1\ 111: = Ini_(d,a) 

(

Ini=(d,a).lni ) 
CacheUpdaler (d, a): V _ 

111;= (d)a)*).IIT~ 
A (Ci[a] := d) 

Cache!lIv{{lidafe/, : C; = Reslricl( Ci ) 

Note that JC is different from the version presented in [Ger951. 

gen. Readi(d, a) 
gen. Writei(d, a) 
gen. MemWri/e;(d, a) 

gen. MemReadi(d, a) 

gen. CacheUpdate'(d, a) 

gen. Cachelnvalidatei 

Intuitively, a transition of the form W·rile.c (d, a) is a write operation, which simply appends the 

pair (d, a) to the end of the 0'11/.; queue. A transition of the form Mem Writ,ci c (d, a) applies the first 

write operation in Out'i to the global memory MC1I,c', and appends the operation (d, a) to all queues 
Ink. The element appended to l"i is equipped with an extra * in order to mark that this operation 
originated from process i. This mark is used in read operations by process i. A transition of the form 
GachcUpdalciC(d, a) applies the first write operation in [ni to the local cache. 

A transition of the form Rcad i C (d, a) is a read operation which can be performed if the data 
clement in address II of the local cache is d, and two additional conditions are satisfied: (I) the queue 

Oul.; must be empty, and (2) the queue I'll; must not contain any elements of the form (dt , a.t, *), 
i.e., elements that originate from write operations by process i. These two requirements ensure that 

a read operation will read from a cache to which all past write operations by the same process have 
been applied. 

lIes/riet is any function such that G/ = lIes/Tict( G,) means that 

\f a E addr: c:lu] = Ci[aJ V Cj[a] =-1 

131 



Thus a CachcIn'OII'/idrtl.eic transition restricts the domain of the cache C;. 
A transition of the form Memllead i

c ( d, a) is a memory read operation which can be performed 
if the value of address (/. in Memc is d. It appends a (d, a) element to the In; queue. 

Cache Transducer 

We show sequential consistency for the lazy cache algorithm by proving that the FNTS SC for the 
cache memory is a pm1ial order refinemcnt of the FNTS SA for the serial memory with respect to the 
dependency relation D". Two events are dependent iff they are observable and are performed by the 
same process, j .e. 

D" {(Writei(d" a,), Writei(d" a,)), (Readi(d" a,), Readi(d" a,)), 
(Read;( d" a,), Writei( d" a,)), (Writei( d" (/,), Readi( d" (/,)) 

! I ~ i:S 11, d j , dz E data, ai, (J2 E addr} 

As described in Theorem 7.8.1, the problem of proving that SC is sequentially consistent with SA 
can be formulatcd as proving that 

We prove this refinement by transduction. 
From SC and SA, we form a transducer by adding the variable Q which is a partially ordered 

multi-set of events. In the transducer, we are only allowed to use the operator. D , defined above, 
when performing operations on Q, so the pomset Q orders two events if and only if they are dependent. 
Since the dependency relation f) is an equivalcnce relation with one equivalence class for each index 
i, the pomset Q defines a total ordering of the events indexed by i. One can therefore think of Q as 
consisting of one queue of /lend i and Write; events for each process i. The queues are independent 
of each other (see Figure 7.6). 

If we form the most straight-forward transducer with the given Q, we will not be able to prove 
the progress in matching condition needed for the correctness of the refinement. The reason is that 
if the abstract transition system consumes events in the wrong order, then it may reach a state where 
events of one of the processes can no longer be processed. As an example, consider a scenario where 
at some point the acldress II of MC1IIA and each of the caches contains the data element d. Assume 
now that some caches update the data clement in address a to d by consuming elements from the 

corresponding III queues, and that thereafter a W;:ikiA(d, a) event is performed which c~nges the 

address a to d also in MClnA If some cache Cj still has value d at address a., and a Read;(d, a) 
operation occurs, then the event lleadj ( d, a) will be added to Q. However, this event can most 

probably never be removed from Q in an abstract lI~f( d, a) transition, since the content of a in 

Mell1A has already been changed from d to d. 
The problem with the above scenario is that a W;:;:;;;;A(d, a.) operation is performed before the 

corresponding write updates are applied to all caches. Observing that all caches experience the updates 

in the same order, determined by the global order of MemW,·;/.e;c operations, we can remedy this 
by adding information to the transducer, in the form of auxiliary variables, which restrict the possible 
sequences of abstract transitions in the following way. The auxiliary variables must ensure that 

I. For each process ;, the lIe-;J;A operations and all Writef operations (for all j) must be per
formed in the same order as the cache C; experiences the corresponding concrete operations, 

132 



where Jiead;A( ,~) corresponds to R::::d;C( d, a) and where writer ( d, a) corresponds to per

forming a Cache Update} (d, a) with the element in Inj that originates from the corresponding 

W,.ite? (d, 1/) operation. 

2. A writ;; ;A( d, a) operation must not be performed before all the corresponding Cache Update7 
(d, a) operations have applied that write operation to each cache. 

Due to these conditions, we must "remember" for each process the order of all read and all write 
operations that have been applied to its cache at least as long as there is a process which has not 
applied these write events to its cache. Therefore, we introduce for each i a variable RWQ;, which 
is a sequence of Write i events, I·hite events (modelling writes performed by other processes), and 
Read; events. Intuitively, /lwq; contains all write operations that have been applied to the cache of 
process i, but have not yet been consumed by the abstract serial memory, together with read events of 
process i, so that the order of operations in HWq; is the same as the order in which the corresponding 
operations were performed on Ci. 

Formally, for the elements in the /lwq; queues, Write,( d, a) indicates that the element (d, a) 
was written by another process j,.i ~ i, and W"ile;(d, a) indicates that the element (d, a) was 
written by the process i itself. We use I to fange over {j , ... , n, e}. Thus the names of the events 
in the RWq; queues range over EfllVQ ~ EC U { W,.ite,( d, 0) IdE data, a E addr}. We use 
WI'de( d, (/.), for any d, a, as a shorthand notation for I·V,.il.e, (d, a). 

A W"ite,( d, 1/) or W"UCi( d, 0) entry is appended to mvq; whenever a transition of the form 

CacheUpdal.e/( d, a) is taken with a (d, (/) or a (d, a, *) entry at the front of In; if the (d, a) or 

(d, 0, *) entry was placed there by a MemW,'ite / or a Mem Write iC operation. Since transition 

MCll~ad;c can also add (d, a) entries to In;, it is necessary to distinguish between (d, a) entries 

placed in Ini by a Arlcm,M,£t.e/~ operation and those placed there by a Menillcad/ operation. 
To keep this distinction, we use a number of parallel M,.M",Q; queues, one for each In; queue. 

Then every time a (d, a) or (d, fI, *) element is added to Ini by a Mem WTite operation, it is marked 
with an M", in the MI'MwQi queue, whereas every time an (d, a) element is added to In; by an 
J1IC'/IIRrad operation, it is marked with an MI' in the MTMwQi queue. 

The definition of the cache transducer is shown in Figure 7.7. We omit specification of the events 
generated by the transducer transitions, since they are determined by Definition 7.7.2. 
If Readi(d, (/,) is the first event in II.WQ; and is minimal in Q, and ,I is the content of address a in 

MemA , then transition lI.e-;;;;i A (d, a) can be taken, consuming the event R.ead; (d, a) from Q and 
the head of IIWQi' Analogously, if Wl'itci(rI, 0) is minimal in Q and is at the first event in RWQ; 

and "hitc( d, a) is the first event in RWQ j for all j ~ i, then transition Writ;;i A ( d, a) can be taken, 
consuming event Wl'ite;( d, ,,) from /lwq i and q, consuming event W"ite( d, a) from all the RWQj 

queues, and performing a lFrilcjA( d, a) operation. 

Transition 1I::::d iC (rI, a) performs the operation Read/' (d, a) and then appends the event Read; ( d, a) 

to Q and to /lIFQi' Transition wrik;C(d,o) performs the operation W,.it.e;c(d,a) and ap

pends the event W,.ite;(",a) to Q. The operation MemW,'il.eiC(d,a) performs the operation 
Mcm Wl'itc iC (d, a) and appends an Mw element to all the Ml'MwQ j queues (for all j). Transition 

CachcUpdate/ (d, (/) performs the CarheUpdateiC( d, a) operation. Then if the head of MrMwQ; 
is Mw (note that this is always the case if (d, ", *) is at the head of Ini) it adds a Write;( d, a) or 
W,.;t,.( d, II) event to llWq i, depending on whether the element at the head of In; originates form 

133 



vr VA U V"U 
{Q : Pom.\·et((l"), RWQ; : £vellts(£RWQ)', MrMwQ; : (Mr U Mw)'} 

eT eC/\Q=A 

yT {R~A(d, a), W;;;;';A(d, a), R;;;;Jr (d, a), W;;;;'r (d, aJ, 
MemWrite;" (d, a), Me,;;;;;'ad;C (d, a), CacheU;date;C (d, a), 

Cachel;;;;lidater II ::; i ::; 11, dE data, a E addr} 

JT {Mell;;;'ite;" (d, a), CocheUl'datei' (d, a), 

R;;';;/(d,a) , W;;;;'/(d,a) II ::; i::; n,d E data,a E addr} 

Or {Read;(d, 0), Write;(d, a) II ::; i ::; 11, dE data, a E addr} 

-C 
Read; (eI, a) 

R;;0;A(d, a): MemA[a] = d /\ 
Q = Read;(d, a) 00 Q' /\ 
RWQ; = Read;(d, a) 0 RWQi 

Wri,;;A(d,a):Q= Write;(d,a)o[)Q' /\ 
RWQ; = Write;(d,a) o RWQi /\ 
Ifj oF i: RWQj = Write(d, a) o RWQ; /\ 
(Mem A [a] := d) 

: C;[a] = d 1\ OUti = A 1\ Illir .. = A 1\ 

Q' = Q o[) Read;(d,a) /\ 
RWQ; = RWQ; 0 Read;(d,a) 

Write;" (d, a) 

MemWritei" (d, a) 

: O"t'; = Out; o(d, a) /\ Q' = Q 00 Write;(d, a) 

: Out; = (d, a) 0 Out'; /\ 
(Me",c [a] := d) /\ 
III~ = In; e(d, 0, *) /\ 
Ifk oF i: Ill; = III,o(d,a) /\ 
If k : M rMwQ; = M rMIVQ, 0 Mw 

MemRead/(d, a) : Mell,c[a] = d /\ Ill; = IlIio(d,a) /\ MrMwQ'; = MrMwQi 0 Mr 

- " RWQ' = RWQ 0 Write(d a» 

( 

Ill; = (d, a) 0111; /\ (head(MrMwQ;) = Mw ~ 

CacheUpclale j (ti, a): V I I , 

Ill; = (d , a, *) e/n; 1\ RWQ; = RWQi. Writei(d, a) 

(C;[a] := d) /\ MrMwQ'; = tail(MrMwQ;) ---- (' 
CacheJnvalic/atej : c: = Restrict( C) 

Figure 7.7: The cache transducer. 

134 

) , 



process i o~ome other process. Finally, the element at the head of MrMwQ; is consumed. Tran

sition MemRead/( d, a.) performs the operation Memllcad,c( d, 0) and appends an Mr element to 

the MrM1I7Q; queue. Transition Cache";;;;'lidalc,c just performs the operation Cachelnvalidate/. 
We now proceed to prove the properties of the cache transducer that will allow us to use Theo

rem 7.7.3 to conclude that the cache memory is sequentially consistent with the serial memory. Since 
both JA = 0 and CA = 0, we only have to verify the matching progress property for the cache 
transducer. 

7.10 Proof of the Cache Transducer 

Before we list the invariants for the cache transducer, we introduce some useful notation. 
For a sequence of events X, we define X f IV";,, to be the projection of X onto the set of events 

of the forms Wrilc( d, a) or Wrile;( d, a). This is used to project RWQ; on all W,·ite and Write; 
events. We define projection of a sequence of events X onto a process number i, written X f" to be 
the projection of X onto events of process i. Likewise, for a pam set Q, Q f, is the projection of Q 
onto the events of process i. 

The predicate OK takes a memory Mc'III and a sequence of W"lIe events and Reodi-events, 
RWQ, and checks that for each Rcad,(d, a.)-event if the memory is updated with the preceding 
Write-events, then Mem[ a] = d: 

OK(Mem, A) 
OK(Mem, Writei(d, a) ° RWQ) 
OK(Mem, Write(d, a) ° RWQ) 
OK(Mem, Readi(d, a) oRWQ) 

T 

OK( Update(Mem, d, a), RWQ) 
OK( Update(Mem, d, a), RWQ) 
Mem[aJ = d 1\ OK(Mem,RWQ) 

where the Updalc( Melt/., d, a) denotes a memory which is like Melli except at address 0 where the 
value is d. 

The function Apply takes a memory Meln and a sequence of Wrilc-events and Readj-events, 
RWQ, and results in a memory which is updated according to the sequence of Write-events in RWQ: 

Apl'ly(Mem, A) 
Apply(Mem, Writei(d, a) ° RWQ) 
Apply(Mem, Write(d, a) ° RWQ) 
Apl'l)'(Mem, Readi(d,a) ° RWQ) 

Mem 
Apply( Update( Mem, d, a), RWQ) 
App/y( Update( Mem, d, a), RWQ) 
APf1ly(Mem, RWQ) 

In the following, we use the two basic properties of OK and Apply that are expressed in Lemmas 
7.10.1 and 7.10.2: 

Lemma 7.10.1 OK(Mem. RWQ/o RWQ,) = 
OK(Mem, RWQ/) 1\ OK(Apl'ly(Mem, RWQ/), RWQ,) 

Checking that some RWQ is Oil with respect to some memory Mem, can be split into checking that 
the first part of IIIVQ is OJ, with respect MeIn and then checking that the second part is OJ( with 
respect to the memory obtained by applying the first part to Mem. The two parts of RWQ can be 
chosen arbitrarily. 

Lemma 7.10.2 Apply(Mem, RWQ/ ° RWQ,) = Apply(Apply(Mem, RWQ/), RWQ,) 

135 



Applying some RWq to some memory Me11l can be split into applying the first part of RWQ to Mem 
and then applying the second part of mvq to the memory obtained by the first application. The two 
parts of RWQ can be chosen arbitrarily. 

We refer to [JPR94] for the proofs of the lemmas. 
The function Woul(i. X) simply converts a sequence X of (d, a)-elements to a sequence of 

IVritc i ( d, (I. )-elements. ft is used to convert an Onti sequence ( d 1 , (1.1 ), ••• , ( dm, am) into the event 
sequence IVrilei( d}, (1./), ... , lF1"itf\( lim, am). 

Wout(i,1\) 
w,mt(i, (d, a) .X) 

1\ 

Write,(d, a). Wuut(i, X) 

The function Win( i, X, MI'Mwq) converts a sequence X of (d, a) and (d, a, *) elements to a 
sequence of Write( d, ".) and Writ,ci( d, fl.) elements, while ignoring elements for which the corre
sponding element in a sequence Al1'Mwq of Mw's and M,"s is M,·. The definition assumes X and 
MrMwq to be of equal lengths. It is always applied to [ni queues and a corresponding MrMwQ 
sequence. 

Will(i, /I, /I) 
Will(i, (d, a) .X, Mr. MrMwQ) 
Will(i, (d, 1I) .X, Mw. MrMwQ) 
Will(i, (d, a, *) .X, MrMwQ) 

/I 
Will(i, X, MrMwQ) 
Write(d, a). Will(i, X, MrMwQ) 
Write,(d, a). Will(i, X, tail(MrMwQ)) 

We introduce the following shorthand notations: 

Willi 
WOlili 

WrileQi 

Will(i, /11" MrMwQ,) 
Wout(i, Out,) 
RWQi f Wrilt' • Willi 

Thus, Wini denotes the sequence of Wrile events whose parameters are currently contained in 
['IIi, while Wonti denotes a similar sequence for the buffer OUli. Sequence Win, may contain 
both Wl'ilei entries for writes initiated by process i and lVrile entries for writes initiated by other 

processes. Sequence WO"li contains only W"ite i entries. The sequence WriteQ, contains all the 
Wl'ile-events that process i has observed and that have not yet been performed by the abstract part 
of the transducer. 

For a sequence X and an element c, we define ,,,inde,,( e, X) to be the smallest index i E dom( X) 
such that X [i] = e. If c ~ X, then 11I;IId,,:I:( e, X) is taken to be I. 

7.10.1 Invariants for the Cache Transducer 

We need four invariants. The proofs are given in [JPR94]. 

Ii: WriteQ,[m] = Write,(d,a) 
3) : WriteQ)I1I] = Write/Cd, a) 1\ 'I k of) : WriteQ,[m] = Write(d, a) 

I,: QI,=RWQ;I;.Willil;.Wout, 
/J: OK(MeIllA , RWQ;) 
/4: C;[a] = d ~ Al'l'ly(MemA , RWQi) [a] = d 

[/ states that all processes experience the same order of W,.ile events and for each particular Write 
event one and only one process marks this event as its own. 

136 



For each i, [2 states that the sequence IlWQ i of process i will (eventually) mirror the experienced 
order of /leadi and Wri!.e i events of the process itself in the concrete system, as given by Q r i' This 
invariant also implies that Q r i is totally ordered. 

For each i, Is states that the sequence /lWQ i contains a sequence of Read and Write events that 
can be applied to the current version of MemA. That is, if we update the current version of MernA 
according to the sequence of Wri!.e operations then, whenever we encounter a Readi( d, a) event, the 
updated memory at this point is such that MemA[aJ = d. 

Since the transducer may perform Cacheh~lidateiC operations, the cache C; will not necessarily 
have a value at address n. The invariant '4 states, for each i, that if the current version of Ci has a 
value d for the address a then if we apply the sequence of W"ite operations contained in RWQ i to 
the current version of MemA , it will yield the same value d at address a. 

7.10.2 Proof of Progress in Matching 

We proceed to prove the matching-progress requirement for the cache transducer, using the four listed 
invariants. The invariants themselves will be proven in a subsequent subsection. 

We shall prove that all events contained in the interface porn set are eventually consumed by 
abstract transitions. In the case of sequential consistency, it is sufficient to prove for each i, that 
the first element of the linear sequence Qi that contains Oi is eventually removed whenever Qi is 

nonempty. In the case that the first element of Qi is a read event, we will show that in fact a Read;A
event is enabled, and will eventually be performed (by justice). In the case that the first element of 

Qi is a write event, the corresponding W';:;:;-;;iA-event need not be enabled, since this requires the 
corresponding Wri!.e-event to be first in each /lWQj' However, we will show that this situation will 
eventually occur, when all preceding read events have been consumed, and that then (by justice), the 

W;';;;;iA-event will be performed. After this sketchy outline, over to the proof. 
The following lemma proves that any enabled observable abstract transition is eventually taken. 

Lemma 7.10.3 FOrlii ill {Readi, Writei}, 

Ea(I/f'(d,a)) =:- 0 takea(I/f'(d,a)) 

Proof: Both cases arc proven by rule .l.TA!(E, taking p = 'P : EI1(lIf(d, a)) for the assertions and 

Til : l / rt(d,a) for the helpful transition. The only nontrivial premise to be proven is J2 which claims 

that no transition other than IIf(d,a) itself can disable "rt(d,a), once it is enabled. We consider 
separately the two cases: 

IJi :::::: Read;: For this case, 

Ea( R;:;:;;/ (d, a)) MemA [oj = d /\ 
head(Qr,) = head(RWQ;) = Readi(d,a) 

Let us asccrtain that no transition other than ReadjA(d, a) can falsify this assertion, once it is 

true. The only transition that can falsify MemA[aJ = d is some Write/(e,a) for some e ,; d. 
No Writef transitions are enabled when head(RWQi) = Readi(d,a). The only transition that 

can falsify head(Qrj) = head(RWQi) = Readi(d, a) is ReadjA itself. 

137 



/1; = Write;: For this case, 

EIl(W-;;;;';A(d, a)) head(QU = head(RWQ;) = Write;(d,a) 1\ 
\/) ic i: head(RWQ) = Write(d,a) 

We show that no transition other than W;:it;;;A( d, a) can falsify this assertion, once it is true. The 

only transition that can falsify head(Q f;) = head( RWQ;) = Write;(d, a) is W;:it;;;A(d, a) itself. 
Si~larly, the only transitions that can falsify head(RWQj) = Write(d, a) forj f. i are of the form 

Writef(d,a) for some k f. j. We will show that such a transition can be enabled only if k = i. 

For W;;;;':(d. a) to be enabled, it is necessary that head(RWQk) = Writek(d,a). However, 

En(Write;A(d,a» implies that, if k ic i, then head(RWQk) = Wrile(d,a) f. Writek(d,a). Thus, 
k = i. 

o 

The preceding lemma showed that if a transition of the form /Ir(d, a) is enabled, where Vi E 
{Read i, Write..}, it will eventually be taken. We proceed to show that if the corresponding event of 
such a transition is at the head of its respective RWQ; queue, then the transition eventually becomes 
enabled. 

For the case that /Ii = Readi, the following lemma establishes that if Readi(d, a) is at the head 

of RWQi then transition lI;;;;Ji A (d, a) is already enabled: 

Lemma 7.10.4 head(RWQ;) = Read;(d,a) =} E"(R~A(d,a)) 

Proof: The enabling condition of Read;A (d, a) is 

EIl(R~A(d, a)) = MemA[a] = d 1\ head(Qf;l = head(RWQ,) = Read;(d, a) 

The conjunct head(RWQ;) = Readi(d, 0) is given. By invariant h 

head(QU = head(RWQ,) = Read;(d,a) 

Invariant 13 = OK( MemA , RWQ;) and the fact that Read;( d, a) is the first element of RWQ; imply 

MemA[a] = d. Hence we have that head(RWQ;) = Read;(d, a) implies EIl(R~;A(d, a». 0 

Next, we consider the case that the event at the head of RWQ; is W"ite;(d, a). The enabling 

condition for the corresponding W'0k;A(d, a) transition consists of the conjunction heud( Q fi) = 
hc(ul(JlWQi) = !Vr;lci{d,a), which is implied by hcad(RWQi) = Writei(d,a) and invariant 
12 , but also of the conjunct head(lIWQj) = W"ite(d, a) for every j ic i. We will show that if 
Write; (d, Il) is at the head of TlWQ i then, eventually, hcad( RWQ j) = W"ite( d, a) for every j f. i. 

This ensures that ],V,~iA( d, (/) eventually becomes enabled. 

Let us consider some.i f. i. Invariant 11 with In = 1 implies that hcad( WriteQj) = 
Wril.e(d, a). Since WrilcQ,i = llWq, f 1-1',.;,.,. Willj, it follows that either Write(d, a) is the 
first write event in mvq j' or Wrile( d, a) is the first element of Willj and RWQ j contains only read 
operations. We deal first with the latter case. 

The following lemma establishes that if Writer d, a.) is the first element of Wi1lj then eventually 
it will move to RlVqi' 

138 



Lemma 7.10.5 head{RWQi) = Writei{d, a) 1\ head( Winj) = Write{d, a) => 
O{head{RWQi) = Writei(d, a) 1\ Write(d, a) E RWQj) 

Proof: Note that the lemma requires that when Write(d,a) moves to RWQj, then Writej(d,a) is still 
at the head of RWQi' 

To prove the lemma, we use rule STEP with the following constructs: 

1': head(RWQi) = Writei{d, a) 1\ head{Winj} = Write(d, a) 
'P: head{RWQi) = Write;{d, a) 1\ head(Winj) = Write(d, a) 1\ 

Write{d, a) rt RWQi 
,,: head('!'!"Qi) = Writei{d, a) 1\ Write{d, a) E RWQj 

Til: CacheUpdatefCd,a) 

Only premise 12 is non-tri~1. J2 claims that no transition can falsify 'P without establishing q. It is 

easily seen that only CacheUpdatef(d, a) can falsify 'P. 0 

We now handle the case that Write,(d, 0) is at the head of HWQi and WI'ile(d, 0) is the first write 
event in HWQr The entry W"ite( d, 0) may still not be the first in RWQj, in which case it is preceded 

by several !lelldf entries. The following lemma establishes that such a state is always followed by 
another state in which lVrite(d, II) is at the head of HWQj' 

Lemma 7.10.6 head{RWQi) = Write;(d, a) 1\ Write(d, aJ E RWQj => 
O{head{RWQi) = Write;(d, a) 1\ head(RWQj) = Write{d, a)) 

Proof: We use rule S·WELL, choosing constructs as follows: 

1': heod{RWQi) = Writei(d, a) 1\ Write{d, a) E RWQj 
r.p: helld(RWQi) = Writei(d, a) A mindex(Write(d, a), RWQj) > 1 
q: head(RWQi) = Wri/ei(d, a) 1\ head(RWQ;l = Write(d, a)) 

h: Read: (d" aJ) whellever head{RWQ;) = Readj(dJ, al) 

Note that h returns an enabled, just tmnsition in every 'P-state since by /1, in such a state, Writer d, a) 
is the first write entry in RWQi and its index is at least 2. It follows that the first entry in RWQj is a 
read entry which, by Lemma 7.10.4, corresponds to an enabled transition. 0 

Lemmas 7.1 O.S and 7.10.6 can be combined using rules TItNS and CASES to yield 

he(fd( RWQi) = Writei( d, a) => 
O(heud(RWQi) = Writei(d, a) 1\ head(RWQj) = Write(d, a)), 

(7.8) 

for every .i of i. 
Using this, wecan establish that once a Write i (d, 0) event is at the head of RWQ i then, eventually, 

the corresponding ",Qc,( d, n) transition will be enabled: 

Lemma 7.10.7 head(RWQi) = Writei(d, a) o En(W-;;;;;/ (d, a)) 

Proof: By induction on] of i and using property 7.8, we can establish the response property 

head(RWQJ = Writei(d, a) => 
O(head(RWQi) = Writei{d, a) 1\ /\ head(RWQ;l = Write(d, a)), 

d-i 

139 



which implies that, eventually, W-;:;;,,;( d, a) becomes enabled. To do so, it is necessary to slightly 

modify property (7.8) to ensure that, once Write(d, a) reaches the head of some RWQh' it remains 
there until the whole transition becomes enabled. The modified version of property (7.8) can be 
proven using TnNS and a proof similar to that of Lemma 7.10.6. 0 

Lemmas 7.10.4 and 7.10.7 establish that if a Rcru/ i( d, a) or a W"itci( d, a) event is at the head of 

m.vqi. then the associated transition eventually becomes enabled. Lemma 7.10.3 guarantees that 
this transition is eventually taken. 

Now we are ready to prove the matching-progress property of the cache transducer: 

v;Cd. a) E Q => 0 takell(//!'{d, a» forall v;{d,a) E 0 

Proof: According to Ie. ifIJi(d,a) E q. then //i(d,a) is in one of the queues RWqi. Wini. or 
WOUli. Using arguments similar to the proof of Lemma 7.10.5, we can show that IJi(d. a) must 

progress from WOI/Ii to Wini, and from Wini to II.wq i' 11 is therefore sufficient to treat the case that 

//i(d,a) E RWqi' Considertheminimalindexofl/i(d,a)inRWqi' Ifmindcx(vi(d,a),RWQi) = 

j then, as explained above. lemmas 7.10.4, 7.1 0.7, and 7.10.3 ensure that v:( d, a) is eventually taken. 

For the cases that mindex (1/; (d, a), II.Wq i) > 1, we will establish the response property 

mindex{v;(d, a), RWQ;) = k > I O{milldex{v;{d, a), RWQ;) = k - J) (7.9) 

To prove property 7.9 we consider the entry which is currently at the head of RWQi' By the trivial 
invariant 1/( d, (/) E IIWQ; 1/ E {lifarl i, Writei, Write}. there are three cases to consider: 

head(RWQ;) = Read;«iJ,a,) : In this case, transition lIe-::di
A( rI" ({.,) is currently enabled and, 

by lemma 7.1 0.3. will be eventually taken. decreasing the minimal index of IJi( d, a) in RWq i' 

head(RWQ;) = Write;(d" ad : By Lemma 7.1 0.7, transition W;:;;;'i A ( d1 , (1) will eventually be
come enabled and, by Lemma 7.1 0.3, eventually taken, decreasing the minimal index of Vie d, a) 
inRWQi' 

hcad( RWQ;) = Write( d" a,) : By invariant II, there exists some j oF i such that Writej (d1 , al ) 

is the first write entry in WrilcQ.i' Since Write j (d1 , a, ) can only be preceded by read entries 
in the concatenation IIWQ} • Win;. we can trace its progress until it reaches the head of RWQ j. 

Once there, it will eventually become enabled and the transition W;;t;,t( d1 , 0.1 ), eventually 

taken. Taking this transition removes the entry Write ( rl" (1.1 ) from RWQ i and decrements by 
I the minimal index of {/i (d, a) in IiWQ i' 

We can now use propcI1y 7.9 to prove premise W2 in rule WELL and establish that every vied, a) E 
IIWQ; even~ly gets to the head of IIWQi where it is guaranteed to be eventually removed by 

transition /1('( d, fl.). 0 

Since JA = 0 and CA = 0, we can finally use Theorem 7.7.3 to conclude that SC ~ SA 

7.11 Conclusion and Related Work 

We have presented a method for proving refinement between concurrent systems, called proof by 
transduction. The main idea of the method is to construct, for a given pair of a concrete and an 
abstract system, a transducer consisting of the concrete system, the abstract system, and a queue of 

140 



observable events. The concrete system inserts events into the queue, which are then removed by the 
abstract system. Refinement is established by proving that for any behavior of the concrete system, 
we can find a corresponding behavior of the abstract system, in which all events inserted into the 
queue are eventually removed. 

The main advantage of the transduction method is that the transducer may defer nondeterministic 
choices in the abstract system until the point in time when the relevant nondeterministic choices have 
been performed in the concrete system. Without such a delay, there are many cases in which refinement 
cannot be established by ordinary (forward) simulation, but one must instead use backward simulation 
[Jon91] or prophecy variables [AL91]. Thus the transduction method can often reduce the number of 
prophecy variables needed in a proof of refinement. The proof method can also prove refinement in 
many cases where the backward simulation technique would fail because of the finite-image condition 
needed when considering infinite behaviors. In the buffer example of the paper, we could construct 
a backward simulation between the concrete and the abstract system, which however would not be 
finitary, especially when the domain f) of data values is infinite. A proof of refinement along these 
lines could be constructed as a combination of several backward simulations, each ensuring infinitely 
many instances of finite image [lon91], but this would be rather cumbersome. 

One of the important features of the transduction method is its straightforward generalization to 
paJ1iai order refinement. In this way, we can reduce many instances of interface refinement, such as 
sequential consistency etc. to standard refinement, simply by an appropriate choice of interface queue. 

A proof by transduction of sequential consistency can be compared to proof methods for sequential 
consistency that arc based on direct reasoning about computations and behaviors (e.g., as in [ABM93]). 
Typically, such a proof will build an abstract behavior inductively, based on successively longer 
prefixes of a given concrete behavior. The transduction method makes the structure and bookkeeping 
involved in such a proof explicit, representing the unmatched portion of the concrete behavior as the 
value of the interface queue. 

The transduction method can be seen as a generalization of proof by simulations. In e.g. the 
work by Jonsson [Jon87], a method for establishing ordinary forward simulation between systems 
is presented, in which the concrete and abstract systems are combined, but without the queue. 
This method can be regarded as a special case of proof by transduction, where the queue of the 
transducer is always empty. Several other presentations of standard simulation are found in e.g. 
[AL9I, LT87, LS90, Sta88, Ora89]. 

The definition of sequential consistency originates in the work by Lamport [Lam79], but the 
interest in weaker consistency models for shared memory has become much larger in recent years, 
due to the development of multiprocessor systems such as the DASH multiprocessor [LLG+90]. 
A framework for describing memory models, e.g. sequential consistency has been developed by 
Dubois, Scheurig, and Briggs [DSB86]. This framework is based on auxiliary definitions concerning 
the propagation of write and read operations between different processors, which would be difficult to 
formalize in an existing framework for verification of correctness. Definitions of and reasoning about 
memory models can be based on the definition of dilferent ordering constraints between memory 
operations [SS88, GAG+92]. Other frameworks, e.g. by Afek, Brown, and Merritt [ABM93] and 
by Collier [Col92] describe memory models in terms of how the processors view complete execution 
histories. 

141 



Chapter 8 

Sequential Consistency Using Global 
Equivalence Proofs and Temporal Logic 

S. Katz 

142 



8.1 Introduction 

Temporal logics have been defined that exploit information on partial order among events in a 
distributed system. The temporal logic we consider is based on the idea of a partial order computation 
(also called a rUI1) which is simply a maximal set of occurrences of operations (called events) of a 
distributed system that have some partial ordering among them. The ordering includes any causality 
required among events, and may have additional restrictions. Events which are ordered are called 
dependent, and the others are independent. A program or system defines a collection of such runs. In 
the version of this approach to be shown here, presented previously in [KP90, KP92b, KP92al, the 
collection of all linearizations of the events that are consistent with the partial order are considered 
in a temporal logic framework. Each such linearization is viewed as generating a sequence of 
alternating events and global states, that represents an execution sequence. All such execution 
sequences generated from a given run are called an interleaving set and are considered equivalent. 
Here 'equivalence' is used in the sense that the only difference between the execution sequences in 
an interleaving set is that strictly independent operations are executed in a different order. 

In the temporal logic fSTL *, a branching time assertion is interpreted as being lme fora distributed 
system, if it is true for every interleaving set of the system. (This is analogous to the standard 
interpretation of a linear temporal logic assertion being true of a system if it holds for every execution 
sequence.) Then it is easy to express that each equivalence class has some execution sequence 
satisfying a property 1', simply as Fl'. Such propcI1ies are often natural for distributed systems and 
allow expressing specifications for problems such as database serializability, distributed snapshots, 
and, as will be shown below, sequential consistency of cache-based shared memory systems. 

In addition, for many properties it is true that 81' =;. AI', i.e., if I' is true of one execution in an 
interleaving set, then it is true for all the others in that set. For such properties, verification can be 
made more efficient by showing generically that II is a property for which Ep =;. AI', then explicitly 
showing El'. and using modus ponens to conclude Ap. 

Thus properties of the form EI' can arise in a variety of contexts, and proof rules have been 
presented that allow concluding Ep. In such rules there are actually two tasks that are mixed together. 
One task is to show that II is true for the executions that are identified as the ones to be explicitly 
considered, and the other is to show that sufficient executions have been chosen to 'cover' all of 
the equivalence classes with at least one representative. The motivation for showing both properties 
at once is to allow a classic iterative proof on the computation, maintaining compositionality and 
modularity in the proof. At each step we can assume both that p is true for (some extension 01) the 
parts of the computations considered so far, and that sufficient computations are being considered. 
This allows compositional proofs and proof rules to be used, but has the price of complicated proof 
rules[KP92b, PP901. In the inductive step, it is necessary to show that the states reached so far all 
have a possible next state that will both maintain]l and extend the existing computations to sufficient 
representatives. 

Here a complete separation is suggested between showing that each of a chosen set of compu
tations (called the convenient computations) fulfills the needed properties, and showing that every 
computation is equivalent to one of the convenient ones. The proof of the first aspect uses the usual 
iterative approaches, whi Ie the proof of the second aspect is global, and uses temporal logic assertions 
about the entire computation, along with formulas that encode which operations are independent of 
each other. The advantage of this separation is that different kinds of reasoning can be used for the 
two aspects, each most natural for the problem at hand. 

This approach is demonstrated in the context of refinements of distributed systems, gradually 
replacing high level atomic operations by a collection of lower level operations that loosen the 

143 



synchrony among distributed processes, but still maintain some key properties. Each refinement 
is divided into two independent proof stages. The first stage shows that convenient executions of 
operations from the next lower level are a simple refinement of executions from the upper level, and 
can be demonstrated correct using standard refinement mappings. 

Then we show that every additional execution sequence at the lower level is equivalent to one of 
the convenient ones. This stage could be considered as a 'loosening' of the ordering imposed by the 
convenient executions. The two-step reasoning at each level saves having to directly relate each lower 
level sequence through a mapping to an upper level one. Although such a mapping exists, it may 
require the use of history and prophecy variables, and be extremely difficult to express and justify. 
This is because the collection of lower level operations that can be considered the 'implementation' of 
an upper level one are interleaved with an arbitrary number of operations that implement other higher 
level operations. Thus it is difficult to obtain an iterative proof that is uniform for all the computations 
when a direct mapping is required. 

As a first example of this approach, we treat the replacement of an abstract sequential global 
memory by a less synchronized version with queues between the processes and the global memory. 
In the abstract version, each process can execute atomic read and write operations directly from the 
memory. In the lower level version, a process can only write to a local queue, while later the head of 
the queue is written to the memory internally. This is one basic step in a series of refinements that 
can be used to derive a lazy caching protocol that maintains what is known as sequential consistency. 
Intuitively, this means that the projection of local events of each process is consistent with use of the 
serial memory, even if a version with queues and local caches is being used instead. 

The cache consistency protocol we treat is presented in [ABM93) and in the introductory paper of 
this issue. It has served as the basis for a variety of attempts to prove its correctness, in the framework 
of the Esprit REACT project [Ger93). Sequential consistency seems, by its very definition, to favor 
the interleaving set view that considers the set of all total orders of events that are consistent with a 
partial order, as the semantic object to be considered. 

Once we introduce queues, it is easy to define convenient executions for them and show that 
these implement the more abstmct level. The fact that each other lower level execution sequence 
is equivalent to some convenient sequence is of course a crucial aspect of the correctness proof. It 
will be necessary to restrict the use of the queues on the implementation level, in order to guarantee 
this property. This will be expressed as another term in a temporal logic formula. As we shall see 
below, care must be taken in defining which events are dependent, in order to obtain the appropriate 
equivalence relation and/or partial ordering. 

The rest of this paper is structured as follows. We tirst explain in more detail the idea of 
(convenient) interleaving sequences and the dependency relation. The implications for independence 
of queue operations are also examined. The version of temporal logic used is then briefly described. 
Section 8.4 explains the conjuncts that define the independence relation and other temporal formulas 
that describe the lower level execution sequences for the first refinement. In Section 8.5 these are 
summarized and used in a semantic version of the proof, basically a description of the temporal 
reasoning necessary to show that other executions are equivalent to the convenient ones. In Section 
8.6 further steps in deriving the cache consistency algorithm are described, again in terms of temporal 
formulas that express independence and restrict the possible execution sequences. 

144 



8.2 Defining dependencies and convenient executions 

The convenient executions at the lower level are precisely those where the lower level operations 
that implement a higher level one are all done sequentially, with no other lower level operations 
interspersed. These are legal lower level executions, even if they are unlikely to occur in practice 
because the operations arc distributed in a collection of asynchronously executing processors. A 
mapping function from each convenient execution to some abstract computation is generally simple 
and iterative. After this first stage, we have only shown that every convenient execution sequence is 
a refinement of some higher-level abstract execution. The loosening stage requires precise reasoning 
about which operations are independent in which states. Each operation is viewed as a guard c 
(i.e., a condition for applicability on the state s) followed by a command / that is simply a function 
of s (with the operation written c ~ fl, as in [ABM931. Note that such an interpretation of an 
event is reasonable only when a state is assumed as a semantic object, as part of the definition of an 
execution sequence. Then two operations, say 0]11 and 0/12, are independent in a state s, denoted 
8 '* I( "pi, 01'2), if beginning in state 8 neither affects the truth of the other's guard, and the result 
of executing them in either order is the same, i.e., 

ells) '* (c2(/1(8)) ¢} C2(8)) 

C2(8) '* (c1(/2(8)) ¢} cJ(s)) 

(eI(s) /\ c2(s)) '* (/1(/2(8)) = /2(/1(8))) 

The definition above is known as conditional illdependence[KP92al because a pair of operations 
may be dependent in some states, and independent in others. The states in which two operations 
are independent are defined by a state predicate. Two execution sequences are considered equivalent 
if they differ only in that independent operations were done in a different order, but all dependent 
operations arc done in the same order. The reasoning used to show theequivalence of two computations 

is quite different from that used to show the mapping from a higher to a lower level. If we are given a 
collection of independent operations in various states, then two sequences are equivalent if they differ 
only by interchanging two adjacent operations beginning at a state where they are independent. The 
equivalence class we consider is the transitive closure of this 'exchange' relation. 

When more complex data structures are assumed, the dependencies become more complicated, 
and the extra freedom is exploited by the lower level implementation. 

As a particularly relevant example, we consider the dependencies for a queue q with operations 
clll]Jl.y( q), jlul.( q, c), and gd( 'I, e), where e is a data element. 
When the queue is non-empty, then ]!"ut.( 'I, t) is independent of yel( q.!): 

('C1/11'l.y(q)) '* J(pt1/.,yel.) (8.1 ) 

When the queue is empty, a 1m/. and a yrl. operation will be dependent: 

ClIIpt.y(q) =? '/(]Jut.,get.) (8.2) 

All adjacent pairs of jlut.'s are dependent: 

,( 1(!Jul., ]Jul)) (8.3) 

All adjacent pairs of gel's are dependent: 

,(I(ye!., gel.)) (8.4) 

145 



The first rule is intuitively true because a put and a get. by different processes on a nonempty queue 
are done at opposite ends of the queue, and never involve the same item, while this is not so when the 
queue is initially empty. In that case the get. operation must follow a put. 

The other rules follow from the fact that the contents of the queue differs according to the order 
of put's, while the states of the rest of the system differ if get's are done in a different order. A formal 
proof of these dependencies could be based, for example, on an algebraic specification of the queue 
axioms. 

8.3 The logic 

The version of temporal logic used in this paper will be briefly summarized. This is an adaptation of 
the logic ISTD' introduced in [KP90], with additions to facilitate showing equivalence of execution 
sequences. Most of the operators are those of CTL' [EH86], but interpreted as true for a system if they 
hold for each interleaving set. An interleaving set is defined as an equivalence class of computations 
under exchanges of operations that can be done when the independence relation I holds. The syntax 
is thus standard, and the semantics (implicitly) universally quantifies over the interleaving sets: 
All - for every computation in each interleaving set, p is true 
Ep - for some computation in each interleaving set, Jl is true 

Fp - eventually for some state, l' is true 
Gp - for every state from the present, I' is true 
XI' - for the next state, p is true 
pUq - p is true until q becomes true (and q does become true) 

In order to faci litate reasoning about sequences of operations, we add some conventions. First, an 
operation name also serves as a state predicate that is true precisely when that operation was executed 
in the transition from the previous state. (An alternative temporal logic that treats operations more 
directly can be seen in Lamp0I1's TLA [Lam95]). Then sequences of operations (or other predicates) 
can be denoted as 
"8; t" - defined as X( 8/\ ),1) (in the next state 8 holds, followed by a state with t). This expression 
relates to a single execution sequence and can be preceded by E or A. 

Note that in the starred version of the logic, there is no restriction on which combinations of the 
temporal operators are allowed. When temporal logics are used in model checking of finite state 
programs, as is done for CTL, it is common to restrict the combinations in order to facilitate efficient 
checking. In particular, the modalities E and A are known as state modalities because they deal with 
all of the possible continuations from a given global state. Such modalities are required to alternate 
with the other modalities, known as path modalities since they deal with restrictions on a given path. 
Although many aspects of the specification below can be treated in ['5TL with alternating state and 
path modalities, here we do not treat whether such restrictions allow sufficient expressibility, since in 
any case, model checking techniques are not used. 

Additional information on I within the temporal descriptions of computations means that more 
execution sequences can be proven equivalent. In some sense the equivalence classes are demonstrably 
larger and fewer convenient executions are required to guarantee that each equivalence class contains 
a convenient execution. 

8.4 Expressing independence and allowed computations 

The definition of sequential consistency used in this paper can be stated as follows. 

146 



A memory AI is sequentially consistent with respect to a serial memory M"rial, iff 

Beh(M) is the set of execution sequences associated with a system M, and Beh(M"rial) is the set 
where read and write operations are atomically done on the global memory. The above asserts that 
the projections on each process are the same as those in some execution using a serial memory, even 
though the general behavior may have extra internal steps associated with the memory, so that a write 
operation may not affect the memory directly. This statement suggests the interleaving set approach, 
since it closely relates to the idea of convenient sequences: the behavior of the serial memory will 
be viewed as consisting of lower level convenient sequences, where all lower level executions are 
equivalent to such a convenient execution. That is, if we now view M"rial as a temporal logic 
predicate true of the lower level serial computations, we require E M,,,ial' 

We must define an independence relation so that the system is sequentially consistent if every 
execution is equivalent to a convenient serial one. That is, we require formulas in ISTL* that express 
the independence of adjacent operations (i.e., when (is true), that characterize the convenient serial 
computations, and that characterize every computation (including restrictions on when values can be 
read). Once these have been defined, we need to show that assuming the formula that defines the 
independence of operations, and the formula that defines all computations, E M"rial is true. 

In defining the independence relation so that it reflects sequential consistency, the local operations 
of each processor must be unchanged in the equivalent convenient version. Thus we assume a total 
order among local operations of a single processor. Since this order must be maintained for all 
equivalent execution sequences, we obtain the identity of local projections for every two equivalent 
execution sequences, as required in the definition of sequential consistency. For any two operations 
(I; and h;, executed by process i, we therefore require 

,{(n"b;) (8.5) 

Of course, local operations fl, and b, of difj£ere"l processes are independent: 

(8.6) 

We consider how to refine abstract read and write actions. An abstract write action can be implemented 
by adding to the end of a queue the pair consisting of the value to be written and the memory address, 
later removing that pair from the head of the queue, and then writing it in the memory. Ifwe denote the 
action of putting the value-address pair in the queue by W (d, v), and the action of removing the pair 
from the head of the queue and writing to the memory by MW (d, v) (standing for Memory Write), 
such a pair is the implementation of the abstract write. Thus W is associated with a put operation, 
and MW combines a (lei with a memory write. 

Similarly, an abstract read could be implemented by reading from the memory, adding the value
location pair to another queue, and later reading the value-address pair from the head of that queue into 
the local process. However, the treatment of reads will be postponed to a second level of refinement, 
so for the present we assllme a direct atomic read action denoted Jl( d, v), meaning that value d is 
read from address (or variable) v. 

In order to capture the intuition of reading and writing into memory, we express that the value 
returned for a variable or memory location:" in an action fi( c, a:) is the last value written into it by a 
MW( d, ",) action, in the assel1ion: 

(MW(d,v)1I (,MW(b, v)lUR(c,v))) '* c = d (8.7) 

147 



This is known as read/write consistency and is a fundamental assumption when truly atomic reads 
and writes are being used. However, when reads and writes occur at different processes, and are not 
atomic, we can weaken the requirement. 

This requirement does not seem to appear explicitly in [ABM93]. However, the operations there 
are defined using a Memory data structure (an array representing the contents of memory), and the 
effects of the atomic operations are defined so that a value can be returned for a variable only if it 
is the latest value written to that variable. Thus the same consistency requirement is simply given 
implicitly. 

If we now replace the abstract read and write actions of the serial memory by the lower level 
actions above, we arrive at a situation that can be viewed as the addition of abstract write queues to the 
serial memory. Since we have a collection of such write queues, the "lower" level involves operations 
on an 01lt; queue between the processor i and the central memory, for each processor. Since there 
now is a queue for each processor, wc denote a write to the end of the ith queue by W;, and removing 
an element from the head of that queue plus writing to the memory by MW;. Reading by process i is 
denoted by Il;. All of these have the same parameters as previously, namely the value and the address 
(or variable name). The events that are considered local to a process i are not independent, and these 
include all occurrences of W; and R;, but not MIV;. On this level only the NIW; and R; operations 
directly involve the memory and are required to satisfy read/write consistency. 

In the convenient executions, items are inserted by the process i using Wi operations into the 
corresponding 0'11/; queue and immediately removed and copied to the central memory by the NIW, 
action. In these very paJ1icuiar computations, every W; is immediately followed by writing into the 
memory using MW;, with no intervening operations anywhere in the system. The queues are thus 
always empty except when a single item has just been put in and has not yet been written to the 
memory in the ncxt step. In temporal logic we can state the requirement for a convenient computation 
as simply 

C( W;(c, ;,,) ¢} XMW;(c,,,)) (8.8) 

That is, throughout the computation, if a W; has occurred, it is immediately followed by the cor
responding M W;, and every MW; is preceded by a W; with the same parameters. Every adjacent 
W;; M W; pair is clearly a trivial implementation of the direct write on the abstract level. Since the 
read events R; are still atomic, all convenient execution sequences can be easily shown to implement 
the abstract sequences, by a trivial induction on the sequence. 

Then we need to claim that every execution of the lower level satisfying the queue axioms and 
the memory consistency assumptions is equivalent under the independence relation I to one of the 
convenient executions. This is almost true, but we need to restrict the read operations of the lower 
level to maintain the total order among local actions of a single process. Consider a situation where 
a process has written a pair (Ii, ,,;) to its Out. queue, then executes a read operation (implemented as 
an R.) on :I;, and only then does a M W execute on that queue, changing the memory. The value read 
is clearly whatever was in the memory before the last MlY. This implies that there is a linearization 
consisting of 

W;(d, :I;); Ili( e,:I;); MW;(d,,,) 

with die. BLlt SLlch a computation is not consistent with the dependency requirements, because 
we claim that it is not equivalent to any convenient computation. If we wish to find a convenient 
execution to which this one is equivalent, we must show that the R. operation can be exchanged, either 
with the following M W or the preceding IV. The former exchange would lead to 

W;(d, :I;); MW;(d, ,,); Ri(e, ,,) 

148 



This is not a convenient execution, since it violates the restrictions on the value read being the last 
one written in the memory location (read/write consistency). Exchanging the Ri and Wi operations 
would lead to 

This is a convenient sequence, but is not equivalent to the original one, because it does not have the 
same total order of the local operations in process i. 

This difficulty is solved by simply requiring that the lower level operations be restricted so that 
any read operation by a process i, Hi, is 'delayed' until the Outi queue is empty, i.e., until all of 
the 'pending' MWi operations have been done. In that case the problematic computation described 
above is simply declared impossible. Of course, there is no such restriction for reads and writes from 
different processes. The restriction on the implementation is again a temporal logic formula and can 
be expressed in several ways. One approach treats the actions directly, using a # symbol to denote the 
number of times an operation has occurred: 

AG(Hi =? (#Wi =#MWi )) 

That is, no Hi is between a Wi and an M Wi, because every Wi before Ri has a corresponding MW; 
that also appears in the execution sequence before fli. Another way to express this is to define a 

predicate empty that is tru" when the queue is empty and simply state that 

A C(lli =? ell'jlly( Outi)). (8.9) 

Such a predicate can be defined using temporal formulas derived from well-known algebraic axioms to 
first define 111Imbet· in terms of each operation (incrementing when an item is inserted and decrementing 
when one is removed) so that ell/ply can be seen as a derived predicate true when number = O. 
We shali assume that expressions defining such predicates have been detined, and use the second 

alternative. 
The independence relations define what exchanges of operations can be made, and thus which 

computations are equivalent. This needs to be introduced into the logic explicitly, through the formula 

AC( 1(II,b) =? «"II;b")¢}("b;a"))) (8.10) 

In words, if 1( a, It) holds in a state, then the sequences that begin in that state and then have "a; b" 
are equivalent to those with "b; /I". at that point. 

8.5 Proving refinements 

The proof requirements of showing a refinement that satisfies sequential consistency are obtained by 
using the relations from the previous section. The independence relations for queues (1-4) will have 
Wi corresponding to val and MlVi to yet. for each queue Ouli. We also have the independence 

and dependence relations on ali local actions in each process (5-6). To these we add the read/write 
consistency rules for simple memory locations (7), the delay condition on reads defined above (9), and 
the formula connecting 1 and equivalence. We then claim that an execution sequence satisfying these 
dependencies must be equivalent (under the relations 1) to one where ali W - MW pairs from the same 
queue are adjacent (8), i.e., to one of the convenient sequences. Note that the convenient sequences 
are assumed to have already been shown to correspond to abstract atomic read/write consistency. In 
terms of I.'iTE*, the restrictions on the possible lower level computations must imply EConvenient, 
where CO/l.'ocnienl is the tcmporallogic definition of the convenient sequences. 

149 



queues, for process i: 
(~em.pl,y(OIlI;)) => f(W;,MWi) 

e1ll.]lly( 0111;) => ~I( Wi, MWi) 

locality, for a, b operations W or II in processes i,.i: 

,T(w b·) 1, I,. 

read/write memory consistency, for all processes i, j, and k: 

AC( (MW;(d, v) 1\ (,MWj(b, v))Ullk(c, v))) => C = d) 

delay of reads, for process i: 

AC(lIi => elllply(Onti))' 

independence and equivalence, for operations a and b: 

AC( J(a., b) => (("a; b") ¢} ("b; a"))) 

Figure 8, I: Conjuncts in the correctness formula of a refinement 

The conjuncts in the correctness formula are summarized in Figure 8.1. With the restrictions we 
have added, this implication is not difficult to prove, Consider any sequence satisfying read/write 
consistency and read delays, Assuming the other formulas in Figure I (that define independence), we 
want to show 

£C(lI'i(C,,,) ¢} XMWi(c,,,)). 

We prove by induction on the number of states (or operations, since the two alternate) between a 
W;( d, ,,) - MW;( d, ,,:) pair that correspond to putting a value in the Outi queue and later removing 
it. If the two are adjacent, this pair is part of a convenient execution. If there is one state between 
them, and in that state M Wj ( C, 1/) for anY:i, c, and y, the independence relations show that there is an 
equivalent computation with the M Wj before the W;( d, a:). The same is true of any Rj or Wj where 
:i oj i. If in that state there is another W; it can be exchanged with the following MWi( d, x) (and recall 
that there cannot be an II;). In general, note that there cannot be a 'matching' pair between another 
such pair from the same process, because that would violate the queue axioms. Assume that for all 
pairs with n states between them, we can find equivalent computations where the pairs are adjacent. 

For a pair with f) + 1 states between them, if the first state is anything except Wit c, V), the action 
and the resultant predicate can be exchanged with the previous W;(d, x), using the independence 
assertions, and the inductive hypothesis can be used. Otherwise, we have a situation of the form 

W,(d,:,,); W;(c, y);..:.:;; MWi(d,;") 

" 
Again using the inductive hypothesis, the", remaining actions can be exchanged either after the 
MWi( Ii, :/:), or before the pair of actions Wi (rl, :I:); Wit c, y) because any action (except R; 's, which 
are excluded by assumption) that can be exchanged with Wild, xl can also be exchanged with 
Wi (c, y). Finally, the Wit C, .'I) can be exchanged with the MW;( d, :/:), since they are independent. 

150 



The proof here is simply a systematic analysis of which pairs of operations are independent under 
what conditions, in order to show that any computation is equivalent to a convenient one. We show 
exchanges that bring a general computation 'closer' according to some measure to a convenient one. 

Just as for the abstract write actions, we could refine read actions into a pair of actions MR;( c, x) 
and 11.; (c, ,,), where in this case the memory read MR; reads from the main memory and puts the 
pair read at the end of a queue, while the process read action R; takes from the head of the queue and 
reads the pair into the process. Note that the MR; must precede the 11.;. The convenient sequences 
would have MR;( c, x); R;( c, x) subsequences. In fact, the reading is handled in another way in the 
cache consistency algorithm, seen in the following section. 

8.6 Further refinements 

Further top-down development of the lazy caching algorithm could similarly be divided into a series 
of refinements, with each described first by a convenient sequence, followed by a loosening stage 
to the rest of the computations at that level. Note that the convenient executions are lower level 
implementations of allY computation from the upper level, and not just the convenient upper level 
ones. Although we will not treat the other levels in as great detail as above, the convenient executions 
and the type of reasoning necessary is described in this section. The idea of the implementation 
described in the introductory paper and in [ABM93] is that a local cache memory of bounded size is 
associated with each process, and updates to the global memory are also inserted in a queue for each 
process, from which they are transferred to the local memory. 

On this level, En queues are used. A lower level MW; operation, in addition to removing an 
element from the head of the 0'111; queue and writing it to the memory, now also adds the update 
requests to the In queue of each process. Alternatively, we could view this strengthened MW; 
operation as simply the previous M W; that only wrote to the main memory, followed immediately 
by an automatic AIR operation for each process, that adds that same value to the end of the In queue 
of the process. We prefcr to treat the operation in this way because such a view maintains the option 
of later additional refinements that loosen the atomicity of writing to the In queues. The temporal 
predicate that describes the possible computations for now will simply require that every needed 
MW / AIR sequence appears atomically with no intervening operations. That is, we have 

A C U; event removes an update request from the head of the Ini queue, and writes in the cache 
according to the update. A read request R; is now from the local cache rather than from the central 
memory or from an abstract queue. Thus read/write consistency must hold for the central memory 
between MW and Mil operations, and within each cache for CUi and Ri. That is, for each process 
£,j,andl.:, 

A G( (MW;( d, v) t\ (,MWj ( b,")) UM1Ik( c, ,,))) * c = d) 

.4 G( ( CU;( d, ,,) t\ (, CUi( b, ,,)) Ull;( c, ,,))) * c = d ) 

The convenient sequences for this level are simply those computations for which every MW; event 
and the subsequent MR's for each process are immediately followed by a subsequence with a single 
CUi event for every process .i. That is, again the queues will be empty, have one item inserted, 
and immediately use that item to write in the local caches. We view a "AfHl -subsequences of MR's 
and CU's" as the implementation of a simple MW which only wrote to the central memory, and a 
subsequent MR. In this case, for these convenient execution sequences, each cache is the same as 

151 



the central memory when outside such subsequences. By the considerations above for the convenient 
sequences, a read from the cache will give the same result as the higher level read from the central 
memory. 

The CR; read actions of a process i will again be restricted in order to allow showing equivalence 
to convenient sequences. Recall that this is intended to prevent local inconsistency where a process 
could sense that a W; action has not yet 'taken effect' when a subsequent local read is done. As 
before, read actions of process i cannot occur while 01lti is nonempty. Similarly, those items in the 
In; queue that represent updates that were originally initiated by process i itself, must be removed 
from the in; queue and written to the cache before a read of that variable by process i. This is needed, 
just like the flushing of the Onl. queue required before a memory read operation by that process, in 
order to guarantee local total order. In the description in the introductory paper, these are the 'starred' 
items in the in queues. In terms of operations, R; occurs in an execution only after all CUi events 
that correspond to prev'lOus local W; actions have occurred. This will simply be an assumption true of 
executions in the implementation. Once again there are several possible ways to introduce this into the 
logical assertions. For simplicity, we assume that the stars explained in the introduction are associated 
with elements in the In; queue that were inserted immediately as a result of a MWi operation, and 
that a predicate hasstars is true when there are such items in the queue. Simple assertions that define 
this predicate in terms of the operations are again assumed. Then we have 

A G( R; =} (cmply( OUI;) 1\ ~h(lsslQ.1·s(Jni)) 

Note that the restrictions on read operations are trivially true for the convenient executions, because 
in those the Out and In queues are always empty when a cache read occurS. 

In a real cache consistency algorithm, the possibility of cache misses must also be treated. The 
idea behind cache misses is that the cache has limited capacity and can therefore not mirror the whole 
of the central memory. Sometimes variables are removed from the cache so that values for other 
variables can be put into the cache. This is modelled by adding internal cache invalidate actions Cli 
that remove value-address pairs from the cache, i.e., 

Note that this is pal1 of the assertions that define the E predicate, and that the other assertion defining 
E is 

A C( CUi( c,:r) =} (c,:I:) E Cliche;). 

A cache read Hi (d, ",) can only occur if the pair (d, :r.) is in the cache. If there is no value for x in the 
cache because of a cache invalidate action, the read must be delayed until the needed pair is retrieved 
from the central memory. This is done by repeating Mil operations to read a value for a variable from 
the central memory and putting it into the In queue of only the process that had the CI event, so that 
the pair eventually is put back into the cache by a cache update. As previously, this description can 
be captured by a temporal logic assertion further restricting when an il can occur: 

A G(1I.;( d, :c) =} (ri,:I:) E Cachei). 

The assumptions about possible computations and independence are summarized in Figure 2. 
Convenient sequences at this level now consist of sequences where all MR and correspond

ing CU actions immediately follow one another, and each C1i(") is followed immediately by 
MR; ( c, :c); C U;( c, :c) for the val ue c in the central memory, whenever there is a later Ri( c, x) 

152 



(i.e., whenever the value is subsequently needed for reading from the cache). If there is no subsequent 
cache read of that variable, a CIi (,,) event does not have to be followed by any other related event. 

As previously, assuming these temporal formulas, (and straightforward but tedious formulas that 
define the predicates ""'I,ly and !tassta1') we must show that E Convenient holds, where Convenient 
is now a tempoml formula describing the computations with writes that take immediate effect in all 
caches, and cache misses that are immediately rectified by reading from memory at arbitrary points. 
In showing that the convenient executions correctly implement the higher level, the subsequences 
CI; ( ,,); M Hi ( C, ,I'); C (fi( C, ,,) that wi II occur after a cache miss (whenever x is still needed in that 
cache) in these convenient executions can be mapped to not having done anything on the abstract 
level. The value read from the central memory after a cache miss in this case is always the same as 
the one just erased because for the convenient executions the Out and In queues are always empty 
when a Cl event occurs. 

Of course, in a more realistic description, the capacity of the cache would be given, and in that 
case a CI operation may not be followed immediately by retrieving the value just removed, since then 
the space could not be used for the value of a different variable that is needed for a read operation first. 
In that case the convenient sequences could have the MH i ( C, ,,); CU;( c, x) later than the CI;( x), and 
immediately preceding the Hi ( C, ",). That is, the needed value is retrieved just before it is read from 
the cache, and again the queues are always empty except when one element has just been put in and 
is about to be removed. 

It remains to show that all other executions are equivalentto some convenient one. Again, all of the 
independence relations must be precisely analyzed. Note that when the Cli ( x) operation is followed 
by other operations, and a Mni(", ,,:) occurs only after there have been intervening MW operations 
that change the main memory, the value read will be different than the one erased. However, since 
there is already evidently an entry in the Tn queue with the update, this is equivalent to first doing the 
update, and then the invalidate CT. Clearly, the relation I( CI;, M Wj ) holds for all i and j. In fact, it 
can be shown that an OCCUITence of CTi(:") is independent of every other following operation except 
the last CUi( c,:1') before the next nil c,:r). This can be used to show that each general sequence that 
satisfies the formulas is equivalent to one of the convenient ones, again using a proof by induction on 
the distance from the position of key operations (in this case, CJ's) in a general execution sequence 
to their position in a convenient onc. 

8.7 Concluding remarks 

In this paper we showed how to prove correction of the lazy caching algorithm through a series of 

refinements, stUl1ing from the definition of serial and sequentially consistent memory. Reasoning in 
terms of convenient sequences and their equivalence classes seems to be well-suited for this purpose. 
The independence relations and restrictions on possible implementations are easily expressed using 
IS 1'/'*. At each refinement, a two-stage proof is used, first showing that the convenient sequences are 
a simple refinement using usual mapping functions, and then separately showing every lower level 
computation equivalent to one of the convenient ones. 

The steps in sllch proofs of equivalence are uniform. First, predicates are needed that make the 
independence of adjacent operations explicit. These can be justified from the underlying semantics 
of the model, or by propel1ies of the data structures used. In the case of sequential consistency, the 
independence is further restricted by the problem specification, namely that there is a total ordering 
among local process writes and reads. These properties can often be shown once for a large collection 
of related problems. 

153 



Second, the properties of the general computations are described as global temporal logic predi
cates. These follow from a description of the implementation level. In the case of cache consistency, 
these include restrictions on when a read action is possible. 

Next, the convenient computations are described, also using the temporal logic. 
The claim to be proven is that under the equivalence defined by J, with the assumptions on the 

possible computations, E Convenient is true. The proof of this fact is done by induction showing that 
each computation is equivalent to one that is 'closer' to a convenient one. A systematic examination 
of which operations can be exchanged is done using the independence information. This aspect seems 
amenable to automation, since it involves a large number of very simple assertions. 

In the example given, the main concern is on showing equivalence, and the convenient sequences 
are chosen so that the refinement proof is particularly easy. This does not always have to be the 
optimal division, and sometimes more effort will have to be devoted to showing that the convenient 
executions indeed satisfy the needed property. 

Acknowledgement: Job Zwiers and Wil Janssen suggested the gradual refinement stages and showed 
connections to algebraic partial oreiers, and Rob Gerth helped to clarify the cache consistency protocol. 

154 



queues, for process i: 

(,Clllpty(Out;)) =} I(W;, MW;) 

cmJlty( Ont;) =} ,I( Wi, MW;) 

(,ellll'ty(in;)) =} I(MII;, CUi) 

cmpty(Jn;) =} ,[(MR;, CUi) 

locality, for a, b operations IF or II in processes i, j: 

,I(a;, b;) 

i of.i =} I(a;, bj) 

read/write memory and cache consistency, for all processes i, j, and h:: 

A C( (MW;(d, Ii) II (,MW;( b, Ii)) UMlIk( C, 11))) =} c = d) 

11 C( (CU; (d, v) II (, ClJ;( b, 11)) UR;( c, 11 ))) =} c = d ) 

delay of reads, for process i: 

;I C(1I.; =} (emp/.y( Ollt;) II ,/wsst({/,S(Ini)) 

11 C(lI;(d,:/') =} (d,") E Cache;). 

effect of cache invalidate and write, for process i: 

A (,'(CI;(,,) =} (lfc.,(c,,,) E Cachei)) 

11C(CU;(c,:"j =} (c,,,) E Cache;) 

independence and equivalence, for operations {/ and b: 

AC( I(a, b) =} (("a; bOO) ¢} ("b; a"))) 

Figure 8.2: Conjuncts for computations with cache misses 

155 



Bibliography 

[ABM93] Y. Afek, G. Brown, and M. Merritt. Lazy caching. ACM Transactions on Programming 
Languages and Systems, 15(1): 182-206, 1993. 

[AL91] Mm1fn Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical 
Computer Science, 82(2):253-284, 1991. 

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification language 
LOTOS. Computer Networks and ISDN Systems, 14:25-59, 1987. 

[BBLS92] A. Bouajjani, S. Bensalem, C. Loiseaux, and 1. Sifakis. Property preserving simulations. 
In Workshop on Computer-Aided Verification (CAV), Montreal, volume 630 of Lecture 
Notes in Computer Science. Springer Verlag, lune 1992. 

[BFKR92] H. Burkhardt, S. Frank, B. Knobe, and 1. Rothnie. Overview of the KSRI computer 
system. Technical Report SR-TR-9202001, Kendall Square Research, Boston, 1992. 

[BI091] E. Brinksma, B. 10nsson, and E Ora va. Refining interfaces of communicating systems. In 
Abramsky and Maibaum, editors, Proc. Call. an Combining Paradigmsfar Software De
velopment, volume 494 of LeC/lire Notes in Computer Science, pages 297-312. Springer 
Verlag, 1991 . 

[BoI92] T. Bolognesi. Catalogue of LOTOS correctness preserving transformations. Technical 
Report Lo/WPI/TI.2/N00451V03, Esprit Project 2304 Lotosphere, April 1992. 

[Bri92] Ed Brinksma. On the uniqueness of fixpoints modulo observation congruence. Lecture 
Notes in Computer Science 630, pages 62-76. Springer-Verlag, 1992. 

[BW90] J.C.M. Baeten and w.P. Weijland. Process algebra. Cambridge University Press, 1990. 

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis 
of programs by construction or approximation of fixpoints. In 4th POPL, January 1977. 

[CGL92] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. In Sympo
siuIII 011 Principles o/Programming Languages (POPL 92). ACM, January 1992. 

[CM88] K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, Massachusetts, 
1988. 

[CoI92] W. W. Collier. Reasonillg about Parallel Architectures. Prentice Hall, 1992. 

[DSB86] M. Dubois, C. Scheurig, and EA. Briggs. Memory access buffering in multiprocessors. 
In Pmc. 13th Allnualillt. Symp. 011 Computer Architecture, pages 434-442, June 1986. 

156 



[EF82] T. Elrad and N. Francez. Decomposition of distributed programs into communication 
closed layers. Science of Computer Programming, 2,1982. 

[EH83] E. A. Emerson and 1. Y. Halpern. 'Sometimes' and 'not never' revisited: On branching 
versus linear time. In 10th ACM Symposium on Principles of Programming Languages 
(POPL 83). ACM, 1983. also published in Journal of ACM , 33:151-178. 

[EH86] E.A. Emerson and J.Y. Halpern. Sometimes and not never revisited: on branching versus 
linear time temporal logic. Journal of the ACM, 33:151-178, 1986. 

[GAG+92] K. Gharachorloo, S. Adve, A. Gupta, J. Hennessy, and M.D. Hill. Programming for 
different memory consistency models. Journal of Parallel and Distributed Computing, 
15:399-407, Aug. 1992. 

[Gai89] Haim Gaifman. Modeling concurrency by partial orders and nonlinear transition systems. 

[Ger93] 

[Ger95] 

In J.W. de Bakker, W.-P. de Roever, and G. Rozcnberg, editors, Linear Time, Branching 
Time and Partial Order in Logics and Models for Concurrency, volume 354 of Lecture 
Notes in Computer Science, pages 467-488. Springer-Verlag, 1989. 

R. Gerth(editor). Verifying sequentially consistent memory. Technical report. Esprit 
React rep0l1, 1993. 

R. Gerth. Introduction to sequential consistency and the lazy caching algorithm. Dis
tributed Computing, This issue. 1995. 

[Gis84] J. L. Gischer. Partial Orders ond the Axiomatic Theory of Shuffle. PhD thesis. Stanford 
University, 1984. 

[GKS92] R. GCl1h, R. Kuiper, and J. Segers. Interface refinement in reactive systems. In 
R. Cleaveland, editor. Proceedings of the third International Conference on Concur
rency Theory (CONCUR). volume 630 of Lecture Notes in Computer Science, pages 
77-94. Springer Verlag, June 1992. 

[GL93] S. Graf and C. Loiseaux. A tool for symbolic program verification and abstraction. In 
Conference on Computer Aided Verification CAV 93, Heraklion Crete. volume 697 of 
Lecture Notes in Computer Science. Springer Verlag, 1993. 

[He 89] He Jifeng. Process simulation and refinement. Forma/Aspects of Computing. 1 :229-241. 
1989. 

[HHS87] C.A.R. Hoare, He Jifeng, and l.W. Sanders. Prespecification in data refinement. Infor
mation Processing Letters. 25:71-76, 1987. 

[Hoa85] 

[Jon85] 

[Jon87] 

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall. 1985. 

B. Jonsson. A model and proof system for asynchronous networks. In Proceedings 4th 
ACM Symposium Oil Principles of Distributed Computing. pages 49-58. ACM. 1985. 

B. Jonsson. Modular verification of asynchronous networks. In Proc. 6,h ACM Symp. 
all Principles of Distributed CompUlillg, pages 152-J 66. Vancouver. Canada. 1987. 
Extended Version as SICS Research Report R900 I O. 

157 



[lon91] 

[Jos88] 

[JPR94] 

[JPZ91] 

[JZ93] 

[Koz83] 

[KP90] 

[KP92a] 

[KP92b] 

[Kur89] 

[Lam79] 

[Lam83] 

[Lam89] 

[Lam95] 

[Lar90] 

B. Jonsson. Simulations between specifications of distributed systems. In Proc. CONCUR 
'91, Theories o[Concurrency: Unification and Extension, volume 527 of Lectare Notes 
ill Computer Science, Amsterdam, Holland, 1991. Springer Verlag. 

M.B. Josephs. A state-based approach to communicating processes. Distributed Com
puting, 3:9-18, 1988. 

Bengt Jonsson, Amir Pnueli, and Camilla Rump. Proving refinement using transduc
tion. Technical report, Department of Applied Mathematics and Computer Science, The 
Weizmann Institute of Science, Rehovot, Israel, 1994. . 

W. Janssen, M. Poel, and J. Zwiers. Action systems and action refinement in the devel
opment of pamllel systems. In Proc. afCONCUR '91, pages 298-316. Springer-Verlag, 
LNCS 527,1991. 

W. Janssen and J. Zwiers. Specifying and proving communication c10sedness in protocols. 
In Proceedings of 13th IFIP symp. on Protocol Specification, Testing and Verification. 
N0I1h-Holland, 1993. 

D. Kozen. Results on the propositional JI-calculus. In Theoretical Computer Science. 
North-Holland, 1983. 

S. Katz and D. Pcled. Interleaving set temporal logic. Theoretical Computer Science, 
75:263-287,1990. 

S. Katz and D. Peled. Defining conditional independence using collapses. Theoretical 
Computer Science, 101 :337-359, 1992. 

S. Katz and D. Peled. Verification of distributed programs using representative interleav
ing sequences. Distrihuted Computing, 6: I 07-120, 1992. 

R.P. Kurshan. Analysis of discrete event coordination. In REX Workshop on Stepwise 
Refinement of Distributed Systems, Mook, volume 430 of Lecture Notes in Computer 
Science. Springer Verlag, 1989. 

L. Lamport. How to make a multiprocessor that correctly executes mUltiprocess programs. 
IEEE Transactions on Computers, C-28:690-69 I , 1979. 

L. Lamport. Specifying concurrent program modules. ACM Trans. on Programming 
Languages alld Systems, 5(2): 190-222, 1983. 

L. Lamport. A simple approach to specifying concurrent systems. Communications of 
the ACM, 32( I ):32-45, Jan. 1989. 

L. Lamport. The temporal logic of actions. ACM Transactions on Programming Lan
guages {lnd System.I, 1995. To appear. 

Kim Guldstrand Larsen. Compositional theories based on an operational semantics of 
contexts. In 1. W. de Bakker, W. P. de Roever, and Grzegorz Rozenberg, editors, Stepwise 
Refinement of Distributed Systems - Models, Formalisms, Correctness, volume 430 of 
Leallre Notes in Computer Science, pages 487-518. Springer-Verlag, 1990. 

158 



[LGS+94] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving 
abstractions for the verification of concurrent systems. To appear in Formal Methods in 
System Design, 1994. 

[LLG+90] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-based 
cache coherence protocol for the DASH mUltiprocessor. In Proc. 17th Annual Int. Symp. 
011 Computer Architecture, May 1990. 

[LLG+92] D. Lcnoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, 
M. Horowitz, and M. S. Lam. The Stanford Dash multiprocessor. IEEE Computer, 
pages 63-79, 1992. 

[Loi94] C. Loiseaux. Verification symbolique de programmes reactifs it I'aide d'abstractions. 

[Lon93] 

[LS90] 

[LT87] 

[Maz89] 

[MiI89] 

[Mis84] 

[Mos93] 

[MP91] 

[MP94] 

[Ora89] 

Thesis, Veri mag, Grenoble, January 1994. 

D. E. Long. Model checking, abstraction and compositional verification. Phd thesis, 
Carnegie Mellon University, July 1993. 

S. S. Lam and A. U. Shankar. Refinement and projection of relational specifications. 
In de Bakker, de Roever, and Rozenbcrg, editors, Stepwise Refinement of Distributed 
Systems. Models, FOr/lwlisl1ls, Correctness, volume 430 of Lecture Notes in Computer 
Science, pages 454--486. Springer Verlag, 1990. 

N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed algo
rithms. In Proc. 6'" ACM Symp. Oil Prillciples of Distributed Computing, pages 137-151, 
Vancouver, Canada, 1987. 

A. Mazurkiewicz. Basic notions of trace theory. In J.W. de Bakker, W.-P. de Roever, 
and G. Rozcnbcrg, editors, Linear Time, Branching Time and Partial Order in Logics 
and ModelsF)r Concurrency, volume 354 of Lecture Notes in ComputerSc;ence, pages 
285-363. Springer-Verlag, 1989. 

R. Mi Iner. Communicatioll and COllcurrellcy. Prentice-Hall, 1989. 

J. Misra. Reasoning about networks of communicating processes. In INRIA advanced 
Nato stl/dy institute on logics and modelsi"r verification and specification of concurrent 
systems, Nice, France, 1984. 

D. Mosberger. Memory consistency models. ACM SIGOP Operating Systems Review, 
27( I): 18-27, 1993. 

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: 
Specificati{!/1. Springer-Verlag, New York, 1991. 

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems. Springer-Verlag, 
New York, 1994. To Appear. 

F. Orava. Verifying safety and deadlock properties of networks of asynchronously com
municating processes. In Protocol Specification, Testing, and Verification IX, pages 
357-372, Enschede, The Netherlands, 1989. IFIP WG 6.1, North-Holland. 

159 



[P1081) 

[Pnu85) 

[Pnu86) 

[PP90) 

[Pra86) 

[SG90) 

[SL83) 

[SS88) 

[Sta88) 

[vG93) 

[ZJ94) 

[Zwi89) 

G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI 
FN-I 9, Computer Science Department, Aarhus University, 1981. 

A. Pnueli. In transition from global to modular temporal reasoning about programs. In 
Logics and Models for Concurrent Systems, volume 13 of NATO, ASI Series F. North
Holland, 1985. 

A. Pnueli. Specification and Development of reactive Systems. In Conference IFf?, 
Dublin. North-Holland, 1986. 

D. Peled and A. Pnueli. Proving partial order liveness properties. In Proc. of 17th ICALP, 
pages 553-571. Springer-Verlag, LNCS 443, 1990. 

V. Pratt. Modeling concurrency with partial orders. International Jornal of Parallel 
Programming, 15( I ):33-71, 1986. 

G. Shurek and O. Grumberg. The Modular Framework of Computer-aided Verification: 
Motivation, Solutions and Evaluation Criteria. In Conference on Automatic Verification 
(CA VJ, Rutgers, NJ, volume 531 of Ll'{:llIre Notes in Computer Science. Springer Verlag, 
1990. 

A.U. Shankar and S.S. Lam. An HDLC protocol specification and its verification using 
image protocols. ACM Trans. 0/1 Computer Systems, I (4):331-368, Nov. 1983. 

D. Shasha and M. Snir. Efficient and correct execution of parallel programs that share 
memory. ACM Transaction.l· on Programming Longuages and Systems, 10(2):282-312, 
April 1988. 

E. W. Stark. Proving entailment between conceptual state specifications. Theoretical 
Computer Science, 56: 135-154, 1988. 

Rob.l. van Glahbcek. The linear time - branching time spectrum II. LectureNotes in 
Computer Science 715, pages 66 - 81. Springer-Verlag, 1993. 

J. Zwiers and W. Janssen. Partial order based design of concurrent systems. In J.W. 
de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proceedings of the REX 
School/Symposium "A Decade of Concurreny", Noordwijkerhout, 1993, Lecture Notes 
in Computer Science. Springer-Verlag, 1994. 

J. Zwiers. COl11positiunality, CO/lcurrencyand Partial Correctness, volume 321 of Lecture 
Notes ill Computer Science. Springer Verlag, 1989. 

160 



Computing Science Reports 

In this series appeared: 

91/01 D. Alstein 

91/02 RP. NederpeJt 
H.C.M. de Swart 

91/03 J.P. Katoen 
L.A.M. Schoenmakers 

91/04 E. v.d. Sluis 
A.F. v.d. Stappen 

91/05 D. de Reus 

91/06 K.M. van Hee 

91/07 E.PolI 

91/08 H. Schepers 

91/09 W.M.P.v.d.Aalst 

91/10 RC.Backhouse 
P.J. de Bruin 
P. Hoogendijk 
G. Malcolm 
E. Voennans 
J. v.d. Woude 

91/11 RC. Backhouse 
PJ. de Bruin 
G.Malcolm 
E.Voennans 
J. van der Woude 

91/12 E. van der Sluis 

91/13 F. Rietman 

91/14 P. Lemmens 

91/15 A.T.M. Aerts 
K.M. van Hee 

91/16 A.J.J .M. Marcelis 

Department of Mathematics and Computing Science 
Eindhoven University of Technology 

Dynamic Reconfiguration in Distributed Hard Real-Time 
Systems, p. 14. 

Implication. A survey of the different logical analyses 
" if... ,then ... " , p. 26. 

Parallel Programs for the Recognition of P-invariant 
Segments, p. 16. 

Pcrfonnance Analysis of VLSI Programs, p. 31. 

An Implementation Model for GOOD, p. 18. 

SPECIFICATIEMETHODEN, een overzicht, p. 20. 

CPO-models for second order lambda calculus with 
recursive types and subtyping, p. 49. 

Tenninology and Paradigms for Fault Tolerance, p. 25. 

Interval Timed Petri Nets and their analysis, p.53. 

POLYNOMIAL RELATORS, p. 52. 

Relational Catamorphism, p. 31. 

A parallel local search algorithm for the travelling 
salesman problem, p. 12. 

A note on Extensionality, p. 21. 

The PDB Hypennedia Package. Why and how it was 
built, p. 63. 

Eldorado: Architecture of a Functional Database 
Management System, p. 19. 

An example of proving attribute grammars correct: 
the representation of arithmetical expressions by DAGs, 
p. 25. 



91/17 A.T.M. Aerts 
P.M.E. de Bra 
K.M. van Hee 

91/18 Rik van Geldrop 

91/19 Erik Poll 

91/20 A.E. Eiben 
R.V. Schuwer 

91/21 J. Coenen 
W.-P. de Roever 
J.Zwiers 

91/22 G. Wolf 

91/23 K.M. van Hee 
L.J. Somers 
M. Voorhoeve 

91/24 A.T.M. Aerts 
D. de Reus 

91/25 P. Zhou 
J. Hooman 
R. Kuiper 

91/26 P. de Bra 
G.!. Houben 
J. Paredaens 

91/27 F. de Boer 
C. Palamidessi 

91/28 F. de Boer 

91/29 H. Ten Eikelder 
R. van Geldrop 

91/30 J.C.M. Baeten 
F.W. Vaandrager 

91/31 H. ten Eikelder 

91/32 P. Struik 

91/33 W. v.d. Aalst 

91/34 J. Coenen 

Transfonning Functional Database Schemes to Relational 
Representations, p. 21. 

Transfonnational Query Solving, p. 35. 

Some categorical properties for a model for second order 
lambda calculus with subtyping, p. 21. 

Knowledge Base Systems, a Fonnal Model, p. 21. 

Assertional Data Reification Proofs: Survey and 
Perspective, p. 18. 

Schedule Management: an Object Oriented Approach, p. 
26. 

Z and high level Petri nets, p. 16. 

Fonnal semantics for BRM with examples, p. 25. 

A compositional proof system for real-time systems based 
on explicit clock temporal logiC: soundness and complete 
ness, p. 52. 

The GOOD based hypertext reference model, p. 12. 

Embedding as a tool for language comparison: On the 
CSP hierarchy, p. 17. 

A com positional proof system for dynamic proces 
creation, p. 24. 

Correctness of Acceptor Schemes for Regular Languages, 
p. 31. 

An Algebra for Process Creation, p. 29. 

Some algorithms to decide the equivalence of recursive 
types, p. 26. 

Techniques for designing efficient parallel programs, p. 
14. 

The modelling and analysis of queueing systems with 
QNM-ExSpect, p. 23. 

Specifying fault tolerant programs in deontic logic, 
p. 15. 



91/35 F.S. de Boer 
1.W. Klop 
C. Palamidessi 

92/01 1. Coenen 
1. Zwiers 
W.-P. de Roever 

92/02 1. Coenen 
1. Hooman 

92/03 J.C.M. Baeten 
1.A. Bergstra 

92/04 1.P.H.W.v.d.Eijnde 

92/05 1 .P.H. W. v .d.Eijnde 

92/06 1.C.M. Baeten 
1.A. Bergstra 

92/07 R.P. Nederpelt 

92/08 R.P. Nederpelt 
F. Kamareddine 

92/09 R.C. Backhouse 

92/lO P.M.P. Rambags 

92/11 R.C. Backhouse 
1.S.C.P.v.d.woude 

92/12 F. Kamareddine 

92/13 F. Kamareddine 

92/14 1.C.M. Baeten 

92/15 F. Kamareddine 

92/16 R.R. Seljee 

92/17 W.M.P. van der Aalst 

92/18 R.Nederpelt 
F. Kamareddine 

92/19 1.c.M.Baeten 
1.A.Bergstra 
SASmolka 

92/20 F.Kamareddine 

Asynchronous communication in process algebra, p. 20. 

A note on compositional refinement, p. 27. 

A compOSitional semantics for fault tolerant real-time 
systems, p. 18. 

Real space process algebra, p. 42. 

Program derivation in acyclic graphs and related 
problems, p. 90. 

Conservative fixpoint functions on a graph, p. 25. 

Discrete time process algebra, pA5. 

The fine-structure of lambda calculus, p. llO. 

On stepwise explicit substitution, p. 30. 

Calculating the Warshall/Floyd path algorithm, p. 14. 

Composition and decomposition in a CPN model, p. 55. 

Demonic operators and monotype factors, p. 29. 

Set theory and nominalisation, Part I, p.26. 

Set theory and nominalisation, Part II, p.22. 

The total order assumption, p. 10. 

A system at the cross-roads of functional and logic 
programming, p.36. 

Integrity checking in deductive databases; an exposition, 
p.32. 

Interval timed coloured Petri nets and their analysis, p. 
20. 

A unified approach to Type Theory through a refined 
lambda-calculus, p. 30. 

Axiomatizing Probabilistic Processes: 
ACP with Generative Probabilities, p. 36. 

Are Types for Natural Language? P. 32. 



92/21 F.Kamareddine 

92/22 R. Nederpelt 
F.Kamareddine 

92/23 F.Kamareddine 
E.K1ein 

92/24 M.Codish 
D.Dams 
Eyal Yardeni 

92/25 E.Poll 

92/26 T.H.W.Beelen 
W.J.J.Stut 
P.A.C.Verkoulen 

92/27 B. Watson 
G. Zwaan 

93/01 R. van Geldrop 

93/02 T. Verhoeff 

93/03 T. Verhoeff 

93/04 E.H.L. Aarts 
J.H.M. Korst 
PJ. Zwietering 

93/05 J.C.M. Baeten 
C. Verhoef 

93/06 J.P. Veltkamp 

93/07 P.D. Moerland 

93/08 1. Verhoosel 

93/09 K.M. van Hee 

93/10 K.M. van Hee 

93/11 K.M. van Hee 

93/12 K.M. van Hee 

93/13 K.M. van Hee 

Non well-foundedness and type freeness can unify the 
interpretation of functional application, p. 16. 

A useful lambda notation, p. 17. 

Nominalization, Predication and Type Containment, p. 40. 

Bonum-up Abstract Interpretation of Logic Programs, 
p. 33. 

A Programming Logic for FOl, p. 15. 

A modelling method using MOVIE and SimCon/ExSpect, 
p. 15. 

A taxonomy of keyword pattern matching algorithms, 
p.50. 

Deriving the Aho-Corasick algorithms: a case study into 
the synergy of programming methods, p. 36. 

A continuous version of the Prisoner's Dilemma, p. 17 

Quicksort for linked lists, p. 8. 

Deterministic and randomized local search, p. 78. 

A congruence theorem for structured operational 
semantics with predicates, p. 18. 

On the unavoidability of metastable behaviour, p. 29 

Exercises in Multiprogramming, p. 97 

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32. 

Systems Engineering: a Formal Approach 
Part I: System Concepts, p. 72. 

Systems Engineering: a Formal Approach 
Part II: Frameworks, p. 44. 

Systems Engineering: a Formal Approach 
Part III: Modeling Methods, p. 101. 

Systems Engineering: a Formal Approach 
Part IV: Analysis Methods, p. 63. 

Systems Engineering: a Formal Approach 



93/14 1.C.M. Baeten 
I.A. Bergstra 

93/15 I.C.M. Baeten 
1.A. Bergstra 
R.N. Bol 

93/16 H. Schepers 
I. Hooman 

93/17 D. Alstein 
P. van der Stok 

93/18 C. Verhoef 

93/19 G-1. Houben 

93/20 F.S. de Boer 

93/21 M. Codish 
D. Dams 
G. File 
M. Bruynooghe 

93122 E. Poll 

93/23 E. de Kogel 

93/24 E. Poll and Paula Severi 

93/25 H. Schepers and R. Gerth 

93/26 W.M.P. van der Aalst 

93/27 T. Kloks and D. Kratsch 

93/28 F. Kamareddine and 
R. Nederpelt 

93/29 R. Post and P. De Bra 

93/30 I. Deogun 
T. Kloks 
D. Kratsch 
H. Miiller 

93/31 W. Korver 

93/32 H. ten Eikelder and 
H. van Geldrop 

Part V: Specification Language. p. 89. 
On Sequential Composition. Action Prefixes and 
Process Prefix, p. 21. 

A Real-Time Process Logic, p. 31. 

A Trace-Based Compositional Proof Theory for 
Fault Tolerant Distributed Systems. p. 27 

Hard Real-Time Reliable Multicast in the DEDOS system, 
p. 19. 

A congruence theorem for structured operational 
semantics with predicates and negative premises. p. 22. 

The DeSign of an Online Help Facility for ExSpect, p.21. 

A Process Algebra of Concurrent Constraint Program
ming. p. 15. 

Freeness Analysis for Logic Programs - And Correct
ness? p. 24. 

A Typechecker for Bijective Pure Type Systems. p. 28. 

Relational Algebra and Equational PJ:Qofs, p. 23. 

Pure Type Systems with Definitions. p. 38. 

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems, p. 31. 

Multi-dimensional Petri nets, p. 25. 

Finding all minimal separators of a graph, p. II. 

A Semantics for a fine A-calculus with de Bruijn indices, 
p.49. 

GOLD, a Graph Oriented Language for Databases, p. 42. 

On Vertex Ranking for Permutation and Other Graphs, 
p. 11. 

Derivation of delay insensitive and speed independent 
CMOS circuits. using directed commands and 
production rule sets, p. 40. 

On the Correctness of some Algorithms to generate Finite 
Automata for Regular Expressions, p. 17. 



93/33 

93/34 

93/35 

93/36 

93/37 

93/38 

93/39 

93/40 

L. Loyens and J. Moonen 

J. C.M. Baeten and 
J.A. Bergstra 

W. Ferrer and 
P. Severi 

J.C.M. Baeten and 
J.A. Bergstra 

J. Brunekreef 
J-P. Katoen 
R. Koymans 
S. Mauw 

C. Verhoef 

W.P.M. Nuijten 
E. H.L. Aarts 
D.A.A. van Erp Taalman Kip 
K.M. van Hee 

P.D.V. van der Stok 
M.M.M.P.J. Claessen 
D. Alstein 

93/41 A. Bijlsma 

93/42 P.M.P. Rambags 

93/43 B.W. Watson 

93/44 B.W. Watson 

93/45 E.J. Luit 
J .M.M. Martin 

93/46 T. Kloks 
D. Kratsch 
J. Spinrad 

93/47 W. v.d. Aalst 
P. De Bra 
GJ. Houben 
Y. Komatzky 

93/48 R. Gerth 

ILIAS, a sequential language for parallel matrix 
computations, p. 20. 

Real Time Process Algebra with Infinitesimals, p.39. 

Abstract Reduction and Topology, p. 28. 

Non Interleaving Process Algebra, p. 17. 

Design and Analysis of 
Dynamic Leader Election Protocols 
in Broadcast Networks, p. 73. 

A general conservative extension theorem in process 
algebra, p. 17. 

Job Shop Scheduling by Constraint Satisfaction, p. 22. 

A Hierarchical Membership Protocol for Synchronous 
Distributed Systems, p. 43. 

Temporal operators viewed as predicate transformers, 
p. II. 

Automatic Verification of Regular Protocols in PIT Nets, 
p.23. 

A taxomomy of finite automata construction algorithms, 
p. 87. 

A taxonomy of finite automata minimization algorithms, 
p.23. 

A precise clock synchronization protocol,p. 

Treewidth and Patwidth of Cocomparability graphs of 
Bounded Dimension, p. 14. 

Browsing Semantics in the "Tower" Model, p. 19. 

Verifying Sequentially Consistent Memory using Interface 
Refinement, p. 20. 



94/01 P. America 
M. van der Kammen 
RP. Nederpelt 
O.S. van Roosmalen 
H.C.M. de Swart 

94/02 F. Kamareddine 
RP. NcderpeJt 

94/03 L.B. Hartman 
K.M. van Hee 

94/04 J.C.M. Baeten 
J.A. Bergstra 

94/05 P. Zhou 
1. Hooman 

94/06 T. Basten 
T. Kunz 
J. Black 
M. Coffin 
D. Taylor 

94/07 K.R Apt 
R. Bol 

94/08 O.S. van Roosmalen 

94/09 J.C.M. Baeten 
J.A. Bergstra 

94/10 T. verhoeff 

94/11 J. Peleska 
C. Huizing 
C. Petersohn 

94/12 T. Kloks 
D. Kratsch 
H. Miiller 

94/13 R Seljce 

94/14 W. Peremans 

94/15 R.J.M. Vaessens 
E.H.L. Aarts 
J. K. Lenstra 

94/16 RC. Backhouse 
H. Doornbos 

94/17 S. Mauw 
M.A. Reniers 

The object-oriented paradigm, p. 28. 

Canonical typing and IT-conversion, p. 51. 

Application of Marcov Decision Processe to Search 
Problems, p. 21. 

Graph Isomorphism Models for Non Interleaving Proeess 
Algebra, p. 18. 

Formal Specification and Compositional Verification of 
an Atomic Broadcast Protocol, p. 22. 

Time and the Order of Abstract Events in Distributed 
Computations, p. 29. 

Logic Programming and Negation: A Survey, p. 62. 

A Hierarchical Diagrammatic Representation of Class 
Structure, p. 22. 

Process Algebra with Partial Choice, p. 16. 

The testing Paradigm Applied to Network Structure. 
p. 31. 

A Comparison of Ward & Mellor's Transformation 
Schema with State- & Activitycharts, p. 30. 

Dominoes, p. 14. 

A New Method for Integrity Constraint Checking in 
Deductive Databases, p. 34. 

Ups and Downs of Type Theory, p. 9. 

Job Shop Scheduling by Local Search, p. 21. 

Mathematical Induction Made Calculational, p. 36. 

An Algebraic Semantics of Basic Message 
Sequence Charts, p. 9. 



94/18 F. Kamareddine 
R Nederpelt 

94/19 B.W. Watson 

94/20 R B100 
F. Kamareddine 
R. Nederpelt 

94/21 B.W. Watson 

94/22 B.W. Watson 

Refining Reduction in the Lambda Calculus, p. 15. 

The performance of single-keyword and multiple
keyword pattern matching algorithms, p. 46. 

Beyond I3-Reduction in Church's ",->, p. 22. 

An introduction to the Fire engine: A C++ toolkit for 
Finite automata and Regular Expressions. 

The design and implementation of the FIRE engine: 
A C++ toolkit for Finite automata and regular Expressi
ons. 

94/23 S. Mauw and M.A. Reniers An algebraic semantics of Message Sequence Charts, p. 
43. 

94/24 D. Dams 
O. Grumberg 
R Gerth 

94/25 T. Kloks 

94/26 RR. Hoogerwoord 

94/27 S. Mauw and H. Mulder 

94/28 C.W.A.M. van Overveld 
M. Verhoeven 

94/29 I. Hooman 

94/30 I.C.M. Baeten 
I.A. Bergstra 
Gh. ~tefanescu 

94/31 B.W. Watson 
R.E. Watson 

94/32 U. Vereijken 

94/33 T. Laan 

94/34 R Bloo 
F. Kamareddine 
R. Nederpelt 

94/35 J.C.M. Baeten 
S. Mauw 

94/36 F. Kamareddine 
R. Nederpelt 

Abstract Interpretation of Reactive Systems: 
Abstractions Preserving '<1CTL *, 3CTL * and CTL *, p. 28. 

KI,3-free and W,-free graphs, p. 10. 

On the foundations of functional programming: a 
programmer's point of view, p. 54. 

Regularity of BPA-Systems is Decidable, p. 14. 

Stars or Stripes: a comparative study of finite and 
transfinite techniques for surface modelling, p. 20. 

Correctness of Real Time Systems by Construction, p. 22. 

Process Algebra with Feedback, p. 22. 

A Boyer-Moore type algorithm for regular expression 
pattern matching, p. 22. 

Fischer's Protocol in Timed Process Algebra, p. 38. 

A formalization of the Ramified Type Theory, p.40. 

The Barendregt Cube with Definitions and Generalised 
Reduction, p. 37. 

Delayed choice: an operator for joining Message 
Sequence Charts, p. 15. 

Canonical typing and n -conversion in the Barendregt 
Cube, p. 19. 

r 



94/37 T. Basten Simulating and Analyzing Railway Interlockings in 
R. Bol ExSpect. p. 30. 
M. Voorhoeve 

94/38 A. Bijlsma Point-free substitution. p. 10. 
C.S. Scholten 

94/39 A. Blokhuis On the equivalence covering number of splitgraphs. p. 4. 
T. Kloks 

94/40 D. Alstein Distributed Consensus and Hard Real-Time Systems. 
p.34. 

94/41 T. Kloks Computing a perfect edge without vertex elimination 
D. Kratsch ordering of a chordal bipartite graph. p. 6. 

94/42 J. Enge1friet Concatenation of Graphs, p. 7. 

94/43 R.C. Backhouse Category Theory as Coherently Constructive Lattice M. 
Bijsterveld Theory: An Illustration, p. 35. 


	Abstract
	Contents
	1. Introduction
	2. Cache Consistency by Design
	3. Sequential Consistency as Interface Refinement
	4. Characterization of a Sequentially Consistent Memory and Verification of a Cache Memory by Abstraction
	5. A CSP Approach to Sequential Consistency
	6. The Compositional Approach to Sequential Consistency and Lazy Caching
	7. Proving Refinement Using Transduction
	8. Sequential Consistency Using Global Equivalence Proofs and Temporal Logic
	Bibliography

