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Abstract

In distributed shared memory architectures, memory usually obeys weaker constraints than that
of ordinary memory in (cache-less) single processor systems. One popular weakening is that of
sequential consistency. Proving that a memory is sequentialy consistent does not easily fit the
standard refinement and verification strategies. This paper takes a sequential consistent memory—the
lazy caching protocol—and verifies it using a number of verification approaches. In almost all cases,
existing approaches have to be generalized first.
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Chapter 1

Introduction

R. Gerth




In large multiprocessor architectures the design of efficient shared memory systems is important
because the latency imposed on the processors when reading or writing should be kept at a minimum.
This is usually achieved by interposing a cache memory between each processor and the shared
memory system. A cache 1s private to a processor and contains a subset of the memory; hopefully
containing most of the locations (variables) that the processor needs to access; i.e., the ‘cache-hit’
probability should be high. Such caches induce replication of data and hence there is a problem of
cache consistency: if one processor updates the value at some location, all caches in the system that
contain a copy of the location need to be updated. This is often done by marking the location in
the caches so that a subsequent access causes the location to be fetched from shared memory again;
variations exist, though. Clearly, changing a location and marking that location in other caches must
be done as one atomic operation if memory is to behave as expected.

If the multiprocessor architecture is also distributed then such ‘write and mark® operations cause
unacceptable latencies. For instance, the DASH [LLG192] and KSR1 [BFKR92] architectures
envisage up to 10000 workstations to be connected and to operate on a conceptually shared memory.
Atomic write-and-marks produce massive network congestion because at any time there will be many
Writes in progress.

The approach taken in such distributed shared memory architectures is to relax the constraints on
the behavior of a standard shared memory. Many of these relaxations are patterned after Lamport’s
proposal of sequential consistency [Lam79). In a standard memory the value that is read at a location
must be the value that has last been written to that location. A sequentially correct memory satisfies
a less stringent requirement: in Lamport’s words

the result of any execution {of the memory/ is the same as if the operations [memory
accesses | of all the processors were executed in some sequential order, and the operations
of each individual processor appear in this sequence in the order specified by its program.

The challenge that sequentially correct memory poses is not so much the verification of yet another
complex protocol but rather the fact that sequential consistency does not comfortably fit the patterns
of standard refinement strategies (trace inclusion, failure or ready trace equivalence, testing pre order,
hisimulation, etc.).

The aim of this paper is to appraise how verifying sequential consistency can be accommodated
for in a number of refinement methods. We do this by actually verifying a sequentially consistent
memory-—the lazy caching protocol of [ABM93]—using a variety of approaches. Although the
pratocol is proven correct in that paper, the proof is on a semantical level and is not grounded in a
verification methodology. This makes the proof quite hard to follow and hard to generalize to more
complex protocols such as release consistent or non-blocking memory.

In the next section we explain and define sequential consistency. The lazy caching protocol is
introduced in the Section 3. The heart of the paper is formed by Chapters 2 till 8 which contain the
various proofs.

In Chapter 2, process algebraic notions such as bisimulation and action transducers are used to
derive the caching protocol through a number of refinement steps. Chapter 3 interpretes sequential
consistency as a form of interface refinement and gives a direct refinement proof. Abstract interpre-
tation techniques are used in Chapter 4 to reduce the verification problem to one that is amenable to
automated verification ustng model checking techniques. In Chapter 5 CSP process notation and a
trace based proof system is used to supply an assertional proof. The proof in Chapter 6 also uses step-
wise refinement, but on a more abstract, conceptual level. The refinement proofs are based on partial
order based techniques. Chapter 7 develops refinement transducers as a verification methodology and
uses this to verity the caching protocol. These transducers can be seen as a syntactic elaboration of



the techniques of Chapter 4. Finally, Chapter 8 uses interleaving set temporal logic (ISTL) and the
idea of representative sequences to verify the protocol.

1.1 Sequential consistency

In order to understand Lamport’s definition, we first fix the behavior of a standard, ‘serial’ shared
memory. This is done in Figures 1.1 and 1.2.

ﬁl[aeria?

Figure 1.1: Architecture of M, 70

The interface of the memory comprises of read (R;(d, a)) and write (W;(d, ¢)) events for each
processor P;. The processors and the memory have to synchronize on these read and write events. The
transition system in Figure 1.2 indicates that these are the only external events that M,..;,; participates
in and that it has no internal events, A read event R;(d, a), issued by F;, can only occur if the memory
holds value d at location a: Mem[a] = d. Write events W;(d, a) can always occur with the expected
result. The external behavior of the serial memory, Beh(M,,;q1), is defined as the maximal (hence
infinite) sequences of read and write events generated according to the transition system of Figure 1.2.
Hence, the memory serializes the reads and writes of the processors.

The interface of the scrial memory (and the caching protocol) in [ABM93] differs from the one
we use. There, a R;(d, a)-cvent in either protocol is split into an (input) event ReadRequest;(d, ¢},
which is always enabled, and an (output) event ReadReturn;(d, «) that behaves as the R;(d, a)-event.
One reason for doing so is their use of I/O automata specifications in which input events must be
always enabled. However, that paper also stipulates that a process ¢ must not do otherwise than
engage in a Return event after it has issued a Request. This means that the intended interface is
synchronous so that not using I/O automata and having simple read and write external events seem to
be the conceptually clearer approach.

Two objections that might be levied against this choice of interface are: events cannot overlap
because they do not extend in time; and: read events specify the value that is read and thus do not
really model read actions. Note that the second objection applies to the [ABM93] interface as well.
The answer to both objections is that what is of importance are the points at which the memory system
changes state and the values that can be read from memory as a result of these changes. Hence, write
events should merely be viewed as the initiators of state changes while read events indicate which



values can be returned. Thus, the precise way in which a process initiates a read or a write is of no
importance to the modeling.

We can use this definition of serial memory both to characterize the sequential orders in which
the memory accesses of the processors can be executed—any order that corresponds to a behavior
of M, .iq;—as well as to characterize the order of operations of each individual processor—since a
processor belongs to the environment of M,,..;,, possible orderings are determined by the behaviors
of M erier as well.

E | Event | Allowedif | Action

v | Rild,a) | Meml[a]=d
Vv Wid, a) Memla] = d
initially: VYa Mem[a] =0

Figure 1.2: Myopia

We rephrase Lamport’s proposal of correct behavior of sequentially consistent memory (SCM)
thus

any external behavior, o, [of the SCM[ corresponds with an external behavior, T, of
M riat SO that the order in which the operations of each individual processor appear in
a coincides with order in which they appear in .

For instance, the graph below depicts a possible prefix of a behavior of an SCM and a corresponding
serial behavior:

SCM Wi(l,2) Wa(2,%) Rs(2,9) Rs(0,z) Rs(1,z)
P W1, 2)
Pa: Wz(z,y)
Pg: R3(2,y) R3(0,$) R3(1,.’B)

A/fsermf Wz(z,?}) R’l.(z,?/) Rj(o, "E) Wl(le) R3(1:I)

Time flows from left to right. In particular notice that, although P, sets @ to 1 before P; accesses
that location, the first read of I retrieves 2’s initial value 0. The effect of writes are thus seen to
propagate slowly through the system. This is typical of sequentially consistent memory. Also notice
that this SCM behavior is not possible for serial memory.

For completeness sake, we mention that the foliowing behavior of the individual processes cannot
be accommodated for by SCM:

P Wi(1,2)

Pz: Wz(z,.'l:)

Py Rsy(1,2) Ra(2,z)

Py R4(2,:L) R4(],$)

The problem is that 3 and Py ‘observe’ the writes of P| and & in different order.
Sequential consistency has been the canonical distributed memory model for a long time. In prac-
tice, however, different, still weaker memory models tend to be implemented as the synchronization




overhead of SCM is still too large. For instance, the processor consistency model would allow the
above behavior at the processors. See [M0s93] for an overview of distributed memory models.

A formal definition

Let - [« denote the operation on behaviors of removing the events that do not originate from process
P; or that are not external. Then we have

A memory M is sequentially consistent w.art, Mepar, M .60 Myepiars 1ff

Vo € Beh(M) 37 € Beh(Myeria) Vi=1...n oli=7[i

This memory model enjoys an important advantage over its ‘competitors’: for reasoning about
a program we may ignore the fact that the program runs on a sequential consistent memory and can
assume instead that it runs on a standard serial memory. lLe., verification techniques need not be
adapted and the programming model is that of standard shared memory.

We stress that this is the case only if the program has no means of communication, either implicitly
or explicitly, other than through the memory. If a program can send messages or can sense the time at
which reads and writes occur, then differences between sequential consistent and serial memory can
be detected; see, e.g., [ABM93].

1.2 The lazy caching protocol

In [ABM93] a sequential correct memory that is not serial was proposed: the lazy caching protocol.
We use a slightly adapted version of this protocol.

The architecture of M ;. 15 depicted in Figure 1.3; the transition system in Figure 1.4. The
protocol is thus geared towards a bus based architecture. Here, too, the interface of the memory
comprises of the read and write cvents of the proccssors. Mg, however, interposes caches C
between the shared memory Mem and the processes F;. Each cache C; contains a part of the memory
Mem and has two queues associated with it: an out-queue Out; in which P;’s write requests are
buffered and an in-queue 7r; in which the pending cache updates are stored. These queues model the
asynchronous behavior of write events in a sequential consistent memory. The gray arrows indicate
the information flows from the out queues to the in queues and to Mem.

A write event W, (d, «) does not have immediate effect. Instead, a request (d, @) is placed in Qut;.
When the write request is taken out of the queue, by an internal memory-write event MW, (d, a), the
memory is updated and a cache update request (¢, ) is placed in every in-queue. This cache update
is eventually removed from the top of some queue In; by an internal cache update event CU;(d, a)
as a result of which cache memory C; gets updated. Cache misses are modeled by internal cache
invalidate events: Cl; can arbitrarily remove locations from cache ;. Caches are filled both as the
delayed result of write events as well as through internal memory-read events, MR;(d, a). The latter
events intend to model the effect of a cache-miss: in that case the read event suspends until the
location is copied from memory.

A read event R;(d, a}, predictably, stalls until a copy of location a is present in C; but also until the
copy contains a ‘correct’ value in the following sense: sequential consistency implies that a processor
F; reads the value at a location @ that was most recently written by P, unless some other processor
updated « in the mean time. Hence, a read event R;(d, a) cannot occur unless all pending writes in
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Figure 1.3: Architecture of M5

Out; are processed as well as the cache update requests from /n; that correspond to writes of 7;. For

this reason, such cache update request are marked (with a *).
The transition system in Figure 1.4 makes all this precise.
In this transition system caches are modeled as partial functions from the set of locations to the

set of values. Cache update (CU) actions produce ‘variant functions’: update(C;, d, @) stands for the
function f that coincides with C; except ‘at” @ where f(a) = d. Cache invalidate (Cl) actions yield
‘restrictions’ of functions: restricf(C;) stands for any function whose domain is included in that of
C; and which coincides with C; on its domain.

For My, there is a distinction between the external behavior, Beh( My, ) and the internal
behavior, IBeh( M s, ) that comprises the maximal sequences of internal and external events that
Miser can generate (obviously we have Beh(M ) = 1Beh(Meriar)). Observe that for s €
[Beh( Myjai,), s [+ denotes the subsequence of external read and write-events of P; in s.



E \ Event

Allowed if

Action

Ri(d, )

\/ W,-(ff, (I.:)
MW;(d, «)

MR;(d, )
CU(d, @)

Cl;
Initially:

Fairness:

Cilay=d A Qut; = {}

A no #-ed entries in n;

head{(Out;) = (d,a)

Meml[a] = d

head(In;) is either
(d,e)or (d,a,x)

VYa Memla] =0

Out; := append(Out;, (d, a))

Memla] := d,

Out; := tail( Out;);

(Vk £ ¢ i Ing = append(Ing, (d,a)));
In; := append(In;,(d,a,*))

In; 1= append(In;,(d,a))

In; := tail(In;); C; := update(Cy,d, a)
Ci 1= restrict(C)

AVi=1...n C; C Mem A In; = {} A Qut; = {}
no action other than Cl; can be always enabled but never taken

MW-—memory write
CU-—cache update

MR-—memory read
Cl—-cache invalidate

Figure [.4: M yisir




Chapter 2

Cache Consistency by Design

E. Brinksma




2.1 Introduction

In this paper we present proof for the sequential consistency the lazy caching protocol of [ABM93]
as formulated in [Ger95). The proof will follow a strategy of stepwise refinement, developing the dis-
tributed caching memory in five transformation steps from a specification of the serial memory, whilst
preserving the sequential consistency in each step. Thus our proof, in fact, presents a rationalized
design of the distributed caching memory.

We will carry out our proof using a simple process-algebraic formalism for the specification of
the various design stages. Process algebraic techniques [Hoa85, Mil89, BW90Q] are by their nature
suitable for transformattonal proofs as they concentrate on laws that equate and/or compare different
behaviour expressions. Such laws are natural candidates for design transformations. Our proof will
not follow a strictly algebraic exposition, however. For some transformations we will show the
correctness using semantic arguments directly, instead of pure syntactic derivations from basic laws.
We will also employ the less standard feature of action transducers to relate behaviours in two of our
design steps.

The structure of the rest of this paper is as follows.

e section 2 introduces the process-algebraic formalism that we use;

e section 3 explains about the use of action transducers, and introduces the notion of queue-like
action transducers in particular;

¢ section 4 gives a transformation style proof of the weak sequential consistency of the distributed
cache memory. This property takes into account only finite sequences of the observable actions
of a system;

e secrion 5 improves the result to strong sequential consistency, also taking possibly infinite
behaviour into account;

e section 6 discusses the results that have been obtained and draws some conclusions.

2.2 A simple process-algebraic formalism

We will work with a simple process algebraic formalism to specify the different design stages in
the course of our proof. Throughout this paper we will assume a working knowledge of process
algebras. TFor a good introduction to the literature of process algebras the reader is referred to
[Hoa85, Mil89, BW90]. Below, we give a short summary of those features that are essential for the
development of our proof.

The syntax and semantics of our formalism are given in tables 2.1 and 2.2, respectively. The
tables assume a given set of observable actions Act and an additional silent or hidden action 7. The
behaviour expressions defined by the syntax table define the behaviour of systems in terms of labeled
transition systems, where the transitions are labeled by elements in Acr U {r}. These operational
models can be derived for each behaviour expresston with the aid of the inference rules given in
table 2.2. For a detailed account of this so-called structured operational semantics or SOS style of
definition, we refer to [Mil89, Plo81],

The behaviour expressions are defined in an environment of process definitions of the form

{p=DB,lpeP}

10



Name Syntax B Label set L(B)
inaction 0 0
action-prefix  p.B (p € Act) {1} U L(B)
7. L(B)
choice B+ I3 L(Bi) U L(Bz)
composition  Bl{gB- L(By) U L(1})
(G C Act)
hiding B/G Ln-d
(G C Act)
renaming BIH] H{L(B))
(H : Act — Act)
instantiation n L,
(p <= By, L(B,) C L)
Table 2.1: syntax of a simple process algebraic language
Name Axioms and inference rules
inaction none
action-prefix — pu.B3 “ B
(€ Acru {7})
choice Bl BB B = B

B2 By R B+ B S By
I .u
s — -UI"_;:.EG ‘BI“G‘BZ — -BI’”G‘-BZ
I ) 1 )
”2 — Bg' F;,e(_‘; ,B] HG.BQ — .B] ||G-B.'2’

B 2 BB LB bea BilleB: & BY||aB,
hiding B = B'Fq B/G S BG
B L BheqB/G D BIG
B2 p i 50 pin
By & B bpep,p = B

composition

renaming

instantiation

Table 2.2: structured operational semantics

where P is a set of process identifiers p with action label type L, and BB, is a behaviour expression
with action label set L(#,) C L,. We will use the the notation p < B, to denote the statement that
‘p <= B, is an element of the environment of process definitions’. The environment may contain
mutually recursive process definitions. The label types L, are usually left undefined, and are implicitly
understood to be the smallest label types satisfying the static constraints of table 2.1. In the application
part of the paper we will provide concrete instances of the set of actions Act en the process definition
environment.

In addition to the process algebraic combinators introduced by table 2.1 we will use generalizations

11



(D BllgB2 = Ballc B

@ Bille(BallaB) = (BilleB2)llaBa

Gy Bill(BalleB3) = (B« B2« By where B\{[«B2 =ar Bi||1(B)n1(8y) P2
(4) (Bi]lgB2)/A = B1/A||cB2/A ifANG =§

&) (BillaB)H) = BY[H)|lcBH]  ifH[G =idgand H-Y(G) =G

Table 2.3: Some transformation laws

for the choice and composition operators. If B denotes a finite set of behaviour expressions then 3~ B
and []€ B denote the repeated application of *+” and *||¢;’, respectively, to the elements of B. E.g. if

B={DBy,..., 5} then
> B B+ ...+ B,

o
[I°8 = Bilic...licBa

This notation exploits the commutativity and associativity of the combinators ‘+” and ‘||’ that will
be justified below. If 8 = {B3;]i € I} we often write 3, B3; and Hr‘GeI B;.

The standard identity over the behaviour expressions (and labeled transition systems) will be
given by the strong bisimulation equivalence relation, which is a congruence with respect to all the
given combinators. We recall the definition.

Let BE denote the set of behaviour expressions over given sets Act and P of actions and process
identifiers, respectively.

Definition 2.2.1 A relation R C BE x BE is a strong simulation relation iff for all (B, B2) € R

and for all ¢ € ActU {r} 308 B, X B implies 1By’ B3 4 3" and (B\', By} € R.

A relation R C BE x DBE is a strong bisimulation relation iff both R and its inverse R~ are
strong simulation relutions.

Twwo behaviour expressions 13y, 11, are strong bisimulation equivalent, notation By ~ Ba, iff there

li

exists a strong bisimulation relation R with {13\, D) € R. O
The following fact is a standard result in the process algebraic literature (cf, [Mil89])

Fact 2.2.2 The relation ~ is a congruence with respect to all the combinators introduced in table 2.1
and satisfies the laws listed in table 2.3. O

We recall the following (standard) notations. Action names are variables over Act U {7} and &
denotes a string of actions | ... «,.
B LB ey 3y BuB=DBy = BA..ABy — B,=H
BE B oy BB \
BE2 B ey ABLBB S BAB = ByAB, S B
B3 B &y 3By,... . B.B=BoY3 BiA.. AB, B3 B,=F
Der(B) =4 {B'|3e0cAct"B = D'}

12



We will also need a less strict relation than ~.

Definition 2.2.3 A relation R C BE x BE is a weak simulation relation iff for all (B, B2) € R
and forall o € ActU {¢} 3B\ B; = B\ implies 3By’ B, = By and (B, B2’} € R.

A relation R C BE x B E is a weak bisimulation relation iff both R and its inverse R are weak
simulation relations.

Two behaviour expressions B\, By are weak bisimulation equivalent, notation B| = B, iff there
exists a weak bisimulation relation R with (B, ) € R. O

Again we have a standard result (cf, {Mil89]).

Fact 2.2.4 The relation = is a congruence with respect to all the combinators introduced in table 2.1
except for the choice combinator '+ (and its generalizationy ) and ~ C = (i.e. = satisfies all laws
of ~). O

Finally, let us define Traces(B) =4 {0 € Act" | 3B’ B 2 B'}, then we have the following
well-known definition and results (cf. [Hoa85, vG93]).

Definition 2.2.5 Two behaviour expressions By, Bz are trace equivalent, notation By =, B, iff
Traces( B;) = Traces( Hy). 0

Fact 2.2.6 The relation = ... is a congruence with respect to all the combinators introduced in
table 2.1 and ~ C = C e .

Fact 2.2.7 Let Ii||. B3 be defined as in Tuble 2.3.

TI’GCGS(I?]”,BQ} =
{o € (L(B) U L(B)Y | e[ L)) € Traces(By),o[L(B,) € Traces(B,)}0

2.3 Queue-like action-transducers

Action-transducers are the operational counterpart of contexts, i.e. behaviour expressions with an
open place or hole in them. Such open places, often denoted by the symbol [ T', can be regarded as
variables that can be replaced with actual behaviour expressions to obtain instantiations of a given
context. For example, the context C[ | =4 «.0 + [ ] can be instantiated by the expression b.¢.0,
yielding C[b.¢.0] = @.0 + b.¢.0.

Whereas we can use behaviour expressions to define states with transitions between them (e.g.
as defined by table 2.2), contexts define action transducers with transductions between them. Such
transductions will be denoted by doubly decorated arrows, as in

a

T — T
b
which represents the transduction of action & into action a as action-transducer (state) 7' changes into
T’. Informally, this should be understood as follows: whenever a behaviour B at the place of the
formal parameter ‘[ 1" produces an «-action transforming into B’, T B] will produce a b-action as its
result and transform into T"[ f3'].

13



Example 2.3.1

a.B|| o3[ 1le/0] 7 Bl (o)l l[a/b]
where a/b denotes the obvious renaming function replacing b by a. a

. 43 . R
The transduction T — 7 thus corresponds to the operational semantic rule
b

b a
B B rrin S B

Additionally, we also allow transducers to produce actions ‘spontaneously’ to cater for contexts like
a.] ], which can produce an a-action without consuming an action of an instantiating behaviour. This

will be denoted by transduction of the form T 5 T, corresponding to the operational semantic rule
0

FTIB) > 178
Example 2.3.2

a. Bl ] Tf B”{G]”
o

In this paper we will not give a complete formal introduction to the concept of contexts as action-
transducers. For this the reader is referred to [Lar90, Bri92]. Here, it will suffice to define systems of
action-transducers by explicitly giving sets of transducer states and transductions between them.

A last step before defining transducer systems is the extension of the fransduction notation to a
suitable ‘double-arrow’ notation. Let o, ¢’ € (ActU {r,0})*. We write ¢ < ¢’ iff o can be obtained
from a’ by erasing any number of 7- or O-occurrences in it. We define

rpy QL 1 5 sl 173l & n o I
T — 17 = df n,.... . T=9y — Ti'n.. AT, =T, =T
b|...bn b] bn

oy’
T -_—OZI? T S df Jo /o' T — T Naoyday Aoy« (T:’
o ;

az

We now proceed with the definition of the special kind of action-transducer systems that we need
for our application, viz. the qucue-like families of action transducers.

Definition 2.3.3 Let Q@ C Act. A family of action-transducers Tog = {T° | ¢ € Q™ } is queue-like iff
its tranductions are of the form:

1. VgeQ,oeQ- 77 L o
4]

2. 9€QuoeQ T L7

q

3 forOQormoreo € Q*,a € (Act — ) T” N O
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Definition 2.3.4 Let Ty = {17 | 0 € Q*} be a queue-like family of action-transducers. For each
A C Q we define the set 1Dy C Act by

Da={a€ Act|T° = T° iffo[A = ¢}
0

Definition 2.3.5 Let 7o = {17 | @ € Q"} be a queue-like family of action-transducers. We say that
Tg preserves A C Acl (ff

¥p,o0 € Act®,ve QF T° :z> TV implies p[A = cv[A
0

The following two lemmata express invariants of the observable trace transductions that are
induced by families of queue-like action transducers. Of course, a string over any subset A of the set
of actions ¢ that are subject to queing will be preserved. The lemmata indicate that A can always
be extended with D 4, the set of actions that can be passed directly ‘through’ the context when no
element of A is being queued. The intuition behind this result is that actions in D) 4 could therefore
never ‘overtake’ actions in A, or vice versa, and thus upset the ordering of clements in the string.

Lemma 2.3.6 Let Ty = {T" | 0 € Q*} be a queue-like family of action-transducers. For each
A CQ T preserves AU Dy,

Proof. Let 7° =£» 1", We carry out the proof by induction on |p) + |&|. The basic case that |p| + || = 0
a
follows trivially as it implies thal p = ¢ = v = .
Let us therefore suppose that the femma holds for all n < |p| + lo|. We can factorize T% == TV
T

fl
into 7% =% TV — T for some suitably chosen p), &y, vy, a, and b. Since, by the definition of queue-
a1 ]

tike transductions, not both « and b € {7,0} we can deduce that |p,| + |o1| < |p| + lo| and therefore that
21 f(A UDA) = U]U[[(A UDA).

. ~ " a . . » o
We now proceed by case analysis on the nature of the transductton 7' — T as given in definition 2.3.3.
b

Lav Sore =7 Loge,

] ¢
Then p[{AUDA) = piy[(AUDA) = oyog[(AU D4) = ou[(AU Da).
2. o = o,

[ q
Then p[(A U DA) = £ [(AU DA) = T l—(A U DA) = (T[(]U[(A u DA)
=ov[{A U Da).
3o v =g Sogv,

b @
This is only possible il a & ¢ and thus @ & A. Assume that also ¢ @ D 4. In that case it follows that

p[lAU DA =pra[{AU D) = qpuja[(AU D) = aiavl{(A U Dy)

=ou[(AU Dy).

In the other case that e € 4 it follows thatyy NA =vNA = .

Therefore, we get

PlAUDL) = pral(AUDa)=owae[{AUDL) = oal(AUD,)

=a{(AU D) = au[(A U D). O
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o

Lemma 2.3.7 ((preservation lemma)) Let 7o = {17 | 0 € Q*} be a queue-like family of action-
transducers. Let B continuously allow all actions in Q, i.e. for all B € Der(B) and all ¢ € Q

38" B' L B" Then forall A C Q we have
Va € Traces(T*[]) 3o’ € Traces(B) with o[(AUD4) =0o'[(AU Da)

Proof. Assume that 7<[B] 5 TV[B']. Because B continuously allows all actions in (), we have in particular
that B/ 5 B” and therefore TV[B'] = T[B”]. It follows that there exists a o’ with T° %:» T and
[

¢’ € Traces(B). The required preservation result now follows from an application of the previous lemma. . O
m]

2.4 Deriving the lazy caching memory

We start our derivation of the lazy caching protocol with a specification of the serial memory, which
is given by the process Mem(T) defined by (2.1) below. The contents of the memory is represented
by the process parameter T, which is a vector of elements in the data domain D indexed by the set 4
of memory addresses. For all @ € A z,, denotes the @ element of Z. The set 7 = {1,...,n} indexes
the number of user interaction points of the memory, i.e. the number of locations where local read
and write actions can be performed.

Mem, (T) < D Wild, a).Memg(T{d/z,}) 2.1
uEzfl?riED

+ Z Ri(z,,a).Memg.,(T)
aEA

Here, W;(d, a) represents the action of writing datum o in memory address «, and R;(d, a) reading
datum ¢ from memory location «.. It will be useful to define the sets

o W =g {Wild,a)|d € D,ae Ay and W =4 Ui, Wi
o Ry =gy {Rild,a){d € D,ac Ayand R =4 \;c; R
o Li=gWiUR and L =y ey £i

We can now formulate the correctness criterion in our setting as

Definition 2.4.1 Let I3\ and I3y be behaviour expressions with L(B;) C L. A behaviour By is weak
sequential consistent with £33 iff

Yo € Traces( B ) 3o € Traces(By) such that¥i € T o[L; = o'[£;
a

This is a weaker requirement than the originally given definition of sequential consistency, which
is concerned with maximal, and therefore possibly infinite traces (which are not in Traces( B, )). We
will first complete the design for this version of sequential consistency and will revisit the question
of infinite traces in section 2.5,
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2.4.1 Distributing the memory

QOur first step in the design is 1o create a local copy of the memory for every user. The specification
of the local memory for user 7 € I is given by the process definition of Locmem;(T) at (2.2) below.
Note that Locmem,;(T) still interacts in all actions in W, but accepts only local read actions, i.e. those

in R_;,'.

Locmem (%) < > Wi(d,a).Locmem;(T{d/z.})
a—Eafr‘;ED

+ > Ri(wa,e).Locmem;(T)
a€A

Our first refinement is now given by the process definition Refinement, in (2.3).

w —
Refinement| < H Locmem;(0)
i€l

The correctness of this step is certified by the following lemma.

Lemma 2.4.2
Memg,(0) ~ Refinement,
Proof. The rclation defined by
{{Memge (T H Locmem; (T)) | £ € D"}
i€l
is a strong hisimulation, This follows directly as for all writing actions we have
Wida
Memige, (T} ~—— Memm(.l {d/z.})
W;(d, a)

& Vi€ Locmem;(® (‘) e Locmem,(r{d/a a})

Wi{d,a}
= H Locmem; (% H Locmemj (T{d/z,})
iel jel
and for all reading actions
h‘,’(:l!ﬂ ,ﬂ)
Mem o (T} ——— Menige (T)
) Ri(vg,a)
=4 I.u('mem,(T) — Locmcml(,z)

Ri(xq ,a)
=3 H Locmen; () H Locmem;(T)
jer jel

Corollary 2.4.3 Refinement| is weak sequential consistent with Memy,,(0)

Proof. Follows dircclly from ~ C 200 (fact 2.2.6).

2.2)

2.3)



2.4.2 Introducing local caching

In the next step of our design we introduce a local cache that the user communicates with and that
is updated by the local memory. Because of its direct interface with the user this cache has a more
elaborate set of interactions that the chaches that we will ultimately design. The behaviour of the
cache at interaction point 7 € [ is given by the process definition Cache;(T) in (2.4) below. In
addition to the (Tocal) memory the caches have update actions U;(d, a). For convenience we define
U =g {Udd,a) | d € D,a € A} and U =4 Ui Us.

Cache;(T) « Z Wi(d, a).Cache;({d/zs}) 24)

fer
acAdeD

+ Y Uj(d,a).Cache;(T{d/z.})
e, deD

+ Z Ri(&y,a).Cache;(T)

alx

+ > 7.Cache;(7)

yEr(T)

Note that the local caches synchronize on all actions in }V, but accept only local read and update
actions, t.e. only actions in R ; U {4;. Cache invalidation is modelled by allowing the elements of the
memory vector T to take the undefined value T, and the introduction of the following predicate and
set:

o | Tiffx, #|
o 2(ZT) =g {T| Ve € Ayy = 2a Vya =}

Let 4 /R : Act — Act denote the renaming function that maps each read action R;(d, e) to the
corresponding update action U;(d, «) for all ¢, d, and @, and all other actions to themselves. We are
now ready to define the second refinement of our design as follows.

Refinement, < Hw(m(:memj(ﬁ) [t [R] er,uw Cache;(Fj0)) /U (2.5)
iel
for arbitrary 3, € 7(0).
The correctness of this step follows from the following lemma.
Lemma244 v c DA ger(m),jel
(Locmem (T)U [ R] |le,uw Cache;(§)) /U4 = Locmem;(T)
Proof, The relation

{{(Locment; (Z)[U JR] |l ow Cache; ())/H, Locmem;(Z)) | T € D, 7 € r(Z)}

is a weak bisimulation relation. It sulfices to consider the following cases:
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o (Locmem; (T [R] |le;ow Cache;(7))/H =
Then B = (Locmem; (TY [R] |[i1,uw Cache; (¥ )) JUwith T € r(T) where the silent transitions in =
consist of zero or more cache invalidations and/or updates. It suffices to take Locmem; (T) = Locmem; (7).

o (Locmemi (TN /R] |li;uw Cache; (7)) /U -h(—’}) B:

Then B = (Locmem;(F{d/z.})[i{/R] |lu;uw Cache;(F{d/y.}))/U. This is directly matched by
d,a)
Locmem; (T) (—> Locmem; (T{d/x4}).

{xa,8)
o (Locmeny () /R] ||ee,uw Cm'he}(u))/u ERANAENY - 2
Then B = (Locmem; (F)[M /R] ||r;uw Cache;(7))/U. This is directly matched by
Ri(na,a)
Locmem;(T) ——— Locmen; (T).
o Locmem;(T) = B
Then B = Locmem; (x). This is therefore directly matched by
(Locmem;(B)U /R lujuw Cache; (3))/U =
(Locmem; (F)[U [R] ||ir,uw Cache; (7)) /U.

W.(d,a)
o Loctmem;(T) ——

Then 3 = Locmem; (z{d/x.}). This is dircctly matched by
Wi(d,a)
(Locmem; (T [R] |[er,ow Cache; () fHf ——

(Locmem; (T {(f/la}){u/‘n] llet;uw Cachej(g{d/ya}))/U.

Bilxq,0)

o Locmem;(T)
Then B = Locmem; (T). 1f @ | i then this is directly matched by

J( ", )
(Locmem;(T)U /R) |let;ow Cache;(3))/U ——

(Locmem; (T)[U [R] ||z.r ow Cache; (F))/H.

If y, = then first a cache updaie of address @ must take place. This generates the following matching
sequence of actions:

(Locmem; (YU /R] |le;uw Cache; () /1H =

R;(2q.a)
(Locmem; (T /R |uuw Caclre;(Glaa/ya})) /U ———

(Locmem; (T)[U /R) Hu_uw Cache;j(F{wa/ye }))U

Corollary 2.4.5 Refinement, is weak sequential consistent with Mem,,(0)

Proof. Because = is a congruence relation w.r.t. the parallel combinator || (Fact 2.2.4) it follows from that
Refinement, == Refinement,. Combining this with /2 C 2 y.e (fact 2.2.6) and corollary 2.4.3 the desired result
now {ollows directly. 0

O

2.4.3 Buffering cache communication

In this refinement step we will buffer the communication of write/update actions to the cache, and
only allow read actions if there are no local write actions buffered. This can be expressed using a
family of queue-like action transducers in the sense of section 2.3,



Definition 2.4.6 The family of queue-like action transducers { K¢ {0 € (WUU;)"} isforeach j € I
completely characterized by the following set of transductions:

. 1!':; Uj(d,u;) ]i_f.Uj(d,n.)
. 0 J
o Welda) ‘ .
. ({ —— K ;'W‘(d’"') foralli el
0
. ]‘I'?-j(d’u)'a N K7 g
' UJ'(iv“)
-Wi(d,a). - ,
) A ?‘-1'(“” e _ T K7 forallie I
‘ Wi{d,a}
Ko R;{d,a}
[ ] AN

; + K5 if ¢ contains no W;-actions
R, (d,a)

The refinement is reflected in the following process definition.

Refinementy < Hw(&)cmemj(ﬁ)[u JR] Na;uw K5[Cache;(¥50)]) /U (2.6)
Jel

for arbitrary 3,4 € 7(0).
We can now prove the following lemma.
Lemma 24.7
Vi€ l,o e (WUR,;UU;)", T DA r(T)

(Locmem; (0)[14/R] ||ee,umw K§[Cache;(y;0)) /U >
o' € (WUR; UU;)

(Locmem; (0)[e4 /R] |[e,uw Cache;(¥;0)) /U L
AW UR; ) = ' [(WiUR)A a[W =a'[W

Proof. This essentially follows from the preservation lemma 2.3.7. Assume that
(Locmem; (0)[U /R] |lejuw K [Cache; (3;0)])/U =
Tt follows there must exist a oy with oy /I = ¢ and
Locmem; (04 /R] |lee;uw K} [Cache; (T;4)] e
By the propertics of ||iquw (Tfact 2.2.7) for a3 = o [(4; U W; } we have
Locmen; (0)U /R] 5 and Kf[Cache;(¥;0)] 4
By the prescrvation lemma 2.3.7 there is a o with Caclie; () ;;, and

o [(W; UR ) = o [(W; UR; Y and ) [(W UH;) = o [(WUU)

which lollows by taking A = W (then Dy = R;), and A = W U U; (then D4 = ), respectively.
Recombining, we get

’

Locmenm; (0)[i4 /R] ler,uw Cache;(T;6) =
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Then taking 6” = | /i{ it follows that

(Locmem; (0)[id /R) lieuw K [Cache; (Te)D/U _;f;.

with

a[(W; UR;) = (o /) [(W; UR ) = (o [(W; UR; /U =
(e (W UR N U = (o] [UY[(W; UR;) = o' [(W; UR;)

and likewise

oTW = (a1 U)W = (o1 W)U = (e [W)id = (o} U)W = o' [W

Corollary 2.4.8 Refinementy is weak sequential consistent with Memm(ﬁ)
Proof. Assume that

w — A
H (Locmemi (B /R] {iuw Kf[Cache;(Y;0)])/UH =
M3

then according to fact 2.2.7 forcach j € T with o = o [(W U R;) we have

(Locmem; (D) /R) ljow Kf[Cache;(F;00) /14 2

Also, it follows that for all j € 7 the ¢; must agree on their common actions in W, ie. o;, [W = o, [W
for ji,j2 € I.

Using the above lemma we find o with o; [(W; UR;) = o} [(W; UR;) and o3 {W = o} [W. The latter
equality implies that for ji, j2 € I wehave o [W = o, [W = 05, [W = o}, [W. This means that we can apply
fact 2.2.7 again, in the opposite direction, combining the % and find a ¢’ with ¢'[(W UR;) = o} [(W U R;)

w _ , )
H (Locmem (O}t [R] ||ee;uw Kf[Cache;(T;001) /U Z
i€l

It follows that ' [(W; UR;) = o [(W; UR;) forall j € 1, i.e. Refinement, is weak sequential consistent

with Refinement,, and thus with Memg,,{0). O
(]

We proceed with a cosmetic transformation that is not really necessary for the design, but brings
our specification closer in line with the specification given in the problem statement in [Ger95]. There,
the cache communication buffer identifies all update and non-local write interactions once they have
been buffered. The contents of tocal write interactions is marked for identification with a special
symbol (‘x’). To achieve this in our design we introduce a revised class of queue-like transducer
families.

Definition 2.4.9 The family of queue-like action transducers { LT | 0 € (WUU;)* } is foreach j € 1
completely characterized by the following set of transductions:
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Uj{d,a) o.(dya)
. L(; T Lj
VVJ,‘(({,[I.)
@ -o.{da,x)
LJ LJ ‘—‘0 » I‘_;l
Wilda) ) o
. L7 — K; i3 m]
ov(d,al), T
. Lj( a).o — LS a(d, e} € {(a,d),(a,d,*)}
J(dvﬂ}
Rj(tt,(l) .
. L7 — - L7 if @ contains no x-actions
R_.,'{ri’,ﬂ.)

The corresponding revision of the cache specification is given by the process definition of
Cache’(T) below.

Cache'(T) < Y Uj{d,a).Caché;(T{d/z.}) 2.7)
acd,deD
+ > Ri(z,,a).Cachéi(T)
alT
+ Y 7.Cachei(7)
ger(T)

The overall refinement step that is implied by these changes is given by the process definition
Refinements,.

Refinements H W(Locmemj(ﬁ)[u IR lee;ow LS[Cachel(,;0)])/U (2.8)
Jel
for arbitrary 7, € r(0).

Essentially, L$[Cache’(y;,)] differs from K{[Cache;(F;0)] only in the way in which the internal
events corresponding to the buffer-cache communication are produced; the resulting transition systems
are identical.

Lemma 2.4.10
LE[Cachel(F)] ~ KilCache;(F0)]

Proof. Lefit to the reader. ]

Corollary 2.4.11 Refinementy, is weak sequential consistent with Memm(_(j)

Proof, As~ isacongruence w.rt, the operators used and preserves traces. ]
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2.4.4 Centralizing background memory

As the local memories have served their purpose in producing the local (buffered) caches they can
now be recombined into a central background memory. Therefore, our penultimate design step is
specified as follows.

Refinementy = (Memgo(O)U /R] |leivw HWL;- [Cache}(G;0)]) /U 2.9
Jel

for arbitrary g;, € 7(0).
Lemma 2.4.12

(MmO /R Nl ] LS [Cache(F0)) /U ~
JE!

HW(Locmem_,- (0)[t4/R] Het;umw L‘E,-[CGACI"ES;@]'U)D/H
ier

Proof,
H:: ;(Locmen; (0)H /R] ||r,uw L[Cachel,(F;0)]) /U4
~  {law 4 of table 2.3}
(T2 (Locmeny )t R) s L[Cachel G0l

~  {L(Locmem;, (0)[t /R]) N L(Locmem,(Q)[td /R]) = W (41 # 72),
I{Locmem; (0} 4 /R]) N L(L5[Cache}(F;0)]) = 15 U wi

(IT; e s (Locmenm; (O)ud /R s LE[Cache; (¥;0)]) /U
~  {laws [ and 3 of table 2.3}

(H;ef Locmen; (0)[U /R] ||« H}EI L5[Cache; (T;00) /U
~  law 5 of table 2.3 and lemma 2.4.2}

(Menger (@)1 /R |1 TT; e L5 [Cache; G0l /i

~  {T{Meme (O) U /R)) N L(TT; s Li[Cachel(Fo)) = U UW,
LLS [Cachel (7;,0)) N L(LS, [Cache!, (#;,00) = W (51 # 2)}

(Memeer OV /R Nluww e, 14{Cache) (F;0))) /U

o
O

Corollary 2.4.13 Refinement, is weak sequential consistent with Mem,,(0)
Proof. As ~ preserves traces. 0
O



2.4.5 Adding the user interface

The last step in our design is the buffering of local write interactions with the users. Local read
interaction is permitted only when the local write buffer is empty. Again, this can be conveniently
modelled using families of queue-like action transducers.

Definition 2.4.14 The family of queue-like action transducers {M? | @ € W;*} is for each j € I
completely characterized by the following set of transductions:

W;(d,a) ;.
. A’f,'? ; ﬁ{ffLMJ(d'“)
: 0 J
. ﬂ{;"i"j(d_.ﬂ].a T A‘];’
: W;(d,a) ’ a
Rji{dx)
o M
) RJ(J.(I) '
o
. M7 — M7 a € {R{d,a),Wi(d,a)lj £t €1}
7 a .

The corresponding refinement is expressed by process definition Refinements below (recall that
in the beginning of this section we put I = {1, ...,n}).

Refinements < (2.10)

. — w
(Mio...0 Afl,i)[(_Mem_m,.(O)[11/7?,] ||HUWH L; [Cache}(yj(,)])/u]
J€d

tor arbitrary 77, € #(0).
Theorem 2.4.15 Foralli e |

0 w _
(Mfo...o MO[(Menm (O)U/R] luow [ LE[Cache(F;0)])/U]
i€l
is weak sequential consistent with Mem,e,(0).
Proof. By induction on 7 using preservation lemma 2.3.7 it is straightforward to show that the application of
each Mf preserves the actions in W UR,; and in W; UR; for j # 4, choosing 4 = Wy and A = 0, respectively.

The sequential consistency with Menig,(0) then follows from corollary 2.4.13. O
]

Corollary 2.4.16

(M oo M) (Mem (04 R baow ] L5l Cache (@) /U]
el

is weak sequential consistent with Mem . {0).

Proof, Takei = . a
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2.5 Strong sequential consistency

Having completed the design and proven it correct in terms of weak sequential consistency we come
back to the original formulation of the problem in [Ger95], where sequential consistency is required
with respect to the maximal observable traces, i.e. possibly infinite traces, of the systems involved.
This is a strictly stronger requirement, as can be learned from the following example.

Example 2.5.1 Consider a serial memory with only two user interfaces and only a single memory
location initially holding the value 0. Suppose now a distributed implementation displays the infinite
trace

I’VI ( 1 )(Rg(O))w ar [’V[(] )1?2(0)]?2(0)132(0) e

that is, user I writes the value | into the memory and user 2 keeps on reading the initial value 0
infinitely often.

Note that every finite prefix of this trace is weak sequential consistent with the serial memory. For
all n Wi 1)(R(0)" is weak sequential consistent with (1(0))*W (1), which is a valid behaviour
of the serial memory. For the infinite trace W(1)(R2(0)) there exists no analogous permutation,
as can be readily checked. O

The above example shows that when infinite strings are considered sequential consistency implies
a liveness property: a write by one user is eventually read by the other. In this section we will show
that the lazy caching memory in fact satisfies this stronger requirement, and will require only minor
adaptations of the proofs for weak sequential consistency.

First, let A% denote the set of finite and infinite strings over A. Then we define the set of finite
and infinite traces of a behaviour 3 as

Traces,(B) =g {00.01.02.--- € Act” | H{B:Yien B = Bo, B 3 Biyr)

Definition 2.5.2 ((strong sequential consistency)) Let B and B2 be behaviour expressions with
L(B;) C L. A behaviour 13 is strong sequential consistent with D iff

Vo € Traces, (By) o’ € Traces,, (/1) such that Vi € T a[L; = o'[L;
O

To show the correctness of the distributed caching memory it suffices to extend some of the
definitions and facts of section 2.2, We start with the equivalence corresponding to Traces,(B)
defined by

By =pyee, P iff Traces,(B)) = Traces.(Bz)

Fact 2.53 The relation =, is a congruence with respect to all the combinators introduced in
table 2.1 and = C =yce, C Ritrace- a

Fact 2.5.4 Ler By||. 132 be defined as in Table 2.3.

Traces,( D) ||.B2) =
{o € (L(B)U L{B2)Y" | a[L{B) € Traces.(B), o[ L(B2) € Traces,(B2)}
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The proofs of these facts are standard, and are left to the reader.

The last generalization that we need is the extension of lemma 2.3.7 to strings in Acr®. This is
the only part of the proof in which we will need the weak fairness assamption given in the problem
description in [Ger95]: that no read, write, orupdate action is continuously enabled but neverexecuted.

Lemma 2.5.5 ((extended preservation lemma)) Let 7 = {17 | o € Q" } be a queue-like family
of action-transducers. Let B continuously allow all actions in Q, i.e. for all B’ € Der(B) and all

Q3B B L B" Thenforall A C Q we have
Vo € Traces,(T°[B]) 3¢’ € Traces,(B) with o[{AU D4) = o'[(AU Dy)

Proof. We may assume that & is an infinite trace, otherwise the proof of lemma 2.3.7 applies. By the definition
of an infintte trace we then get that ¢ = og.07.02. - - - with

T B en 17 (Bi] B T+ [Big) with T%[Bo) = T<[B]

Factorizing these transitions into transductions of the context and transitions of (the derivatives of) B we get

Aot tien T é} T+ and B; 2 Biy
It follows from lemma 2.3.6 that (e. - - .c}) [(A U D4) is prefix of (eg. - -.a;)[(A U D, ) for all 4,

Now define ¢/ = oj.07.0%. -+ and suppose that a[(A U D4) # o'[(A U Da), then it follows that
c[(AUDA) =" [(AUDA).0c"[(AU D) forsome o with o' [{ AU D4) # €. The latter entails in particular
that o’ [A # ¢ as the clements in [, would, by construction, already occur in ¢’. Also, it follows that
a'[(A U Dy)isfinite, i.e. that there exists an N such that i [(A U D4 ) = e forall i > N. By the transduction
rules lor queue-like transducers this implies that v; is a prefix of © for all transducers T that occur in the
derivation of T% =5 TV for j > i > N.

K
Because o [A # ¢ we get that v; # ¢ from some M > N onwards. As 3 continuously allows all actions
. - - . . - . - . - T r .
in @, in particular the first element wg of vy, this action is continuously enabled as T — T% fori > M and

L]
v = ug.v'. Butit is never sclected, because 7 > N and v; is not a prefix of v’. This contradicts our fairness
assumption. Thereforc o[(A U D) = o' [(A U D). O
]

Theorem 2.5.6
_— — . w _
(MF o ..o M) [(Memg, () /R] lluow ][ L5[Cache](70)])/U]
Jel
is strong sequential consistent with Mem,.,{0).
Proof. Wec check proofs of the refinement steps for the weak scquential case:

1. distributing the memory: 1his was proved using that ~ C &ryee (see corollary 2.4.3), which can now be
replaced by the argument that ~ C 2200, -

2. introducing local caching: this was proved using that & C R0 (sce corollary 2.4.5), which can now
be replaced by the argument that & C =spqce,, -

3. buffering cache communication: an infinite trace version of lemma 2.4.7 can be proved using fact 2.54
instead of fact 2.2.7, and the extended preservation lemma 2.5.5, which leads to the strong version of
corollary 2.4.8. The subsequent modification in Refinements, can be imitated as qce, is invariant
under renaming of internal actions.

4. centralizing background memaory: this is more or less the inverse of refinement 1, and therefore follows
again by ~ C Répy0e, - and the fact that &2yee, 1S a congruence.

5. adding the user interface: this follows by using the extended version of the preservation lemma. O
a
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2.6 Conclusions

In this paper we have presented a proof of the sequential consistency of the lazy caching protocol of
[ABM93]. It is based on the application of a number of transformation steps, deriving the distributed
caching memory in several steps from the sequential memory, whilst maintaining the property of
sequential consistency. Thus the proof can also be seen as a rationalized reconstruction of the design
of the lazy caching protocol, and a a posteriori attempt at correctness by design. One of the potential
benefits of such an approach is that more general results can be obtained than the correctness of
a specific design only. In this case the factorization of the proof in separate design steps gives
substantial insight in design alternatives, and in fact provides us with correctness proofs for a whole
family of distributed caching designs. Being based on the same transformation principies the following
variations can be proven correct by minimal rearrangements of the proof:

L. user interface buffers: we can allow asymmetry between users in the sense that some may have
buffered and others imay not have a buffered user interface.

2. cache buffers: we can also allow asymmetry between caches in the sense that some may have
buffered access and others not.

3. local memories: we may choose some users to have access to a complete local memory instead
of a cache.

4. buckground memories: we may choose to have several write-synchronizing background mem-
ories for smaller user groups (e.g. to expedite cache updates).

The structured presentation of the proof also allows for a rather precise analysis of the blanket
fairness assumption (o action other than cache invalidations can always be enabled but never taken)
in general exposition in [Ger95]. Weak fairness is required in the following places:

1. processing local writes stored in the user interface buffers into the memory and the local cache
buffers,

2. processing writes and updates stored in a local cache buffer into the local cache,

3. processing memory updates into the local cache buffers.

The first two are used in (the application of) the extended preservation lemma 2.5.5; the last is
mmplicit in the proof of weak bisimulation equivalence in lemma 2.4.4. The latter exploits a notion
of fairness that is ‘built-in” in the notion of weak bisimulation equivalence. In the context of ACP it
appears as Koomen’s fair abstraction rule [BW90].

Although we have used a process-algebraic notation for the specification of the various design
stages, and have applied a number of well-known laws from the process-algebraic literature, our proof
is, in fact, heterogeneous in nature. The process-algebraic syntax is used to define labelled transitions
systems. We have allowed, however, some of the fairness requirements to be superimposed on
this representation, thercby leaving a proper process-algebraic framework. Also, we have not used
a structured syntax to define action transducers, but have defined them directly in terms of their
transductions. As already mentioned, the transducers have their syntactic counterparts in behaviour
expression contexts, i.e. behaviour expressions with open places or ‘holes’ in them. Contexts
corresponding to the transducers that we have used could be expressed in terms of our process-
algebraic formalism if we accept simple compound data types such as strings and their associated
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operations as given {otherwise one could turn to languages like LOTOS to formalize such notions
(BB87]). In these cases, however, their syntactic representation is much more involved than their
operational one, and would distract from the essential feature that figures in the proof, viz. that they are
action transducers that induce observable action-sequence transductions. As sequential consistency
is an invariant of such transductions, that is precisely the way we want to view them.

The correctness of a number of transformations has been shown in terms of direct semantic proofs,
viz. by producing strong and weak bisimulations, and by reasoning in terms of action transducers.
As a consequence, it can be disputed as to what extent our proof can be seen as one based on
the application of correctness-preserving transformations (CPTs). Although our transformations do
preserve the desired correctness criterion, this term is usually reserved for generic design principles
whose correctness has been established beforehand (ef. for example [Bol92]), to be contrasted with
the procedure of ‘invent and verify’. In addition to the applied standard process algebraic laws listed
in table 2.3, however, most other parts of the proof could retrospectively qualify as CPTs. The
formulation of our transduction based proofs, the (extended) preservation lemma, for example, is
generic in the sense that it applies to all queue-like transducers. This enables its repeated application
in proof, viz. twice in the proof of lemma 2.4.7 concerning the cache buffer, and twice in the proof
of theorem 2.4.15 concerning the user interface buffer. In order not to burden our proof with such
concerns we have foregone the formulation of a generic transformation principle corresponding to the
equivalence proven in lemma 2.4.2. The idea behind the proof is quite general, however, viz. thata
process maybe split into parts according to a partitioning of all those of its actions that do not affect
its state, where cach part should still be able to synchronize on all actions that do influence the state
in order to maintain it. We present a generic formulation of this transformation without proof.

Let p(x) be a parameterized process defined by

pla) < Z fla,z).p(gla, =)+ Z hia,z).p(z) (2.11)

aElur a&lny
where x ranges over a given domain £, Var and [nv are given index sets, and f : Var x D — Act,
g :Varx D — D,and b : Invx D — Acty {7} are functions with [ injective and rge( f)Nrge(h) = 0.

Theorem 2.6.1 Let p(x) of the form defined by (2.11) above. Let F be a finite partitioning of Inv and
define for all I & F

pr{e) <« Z fla,2).pr(gla, z)) + Z/J.((I.,.’E).])F(ﬂ:)

€ War aEcF

Then )
rge
p(z) ~ ] pr(2)
FeF
O

Sofar, we have not succeeded in formulating a suitably general formulation of the transformation
principle behind the introduction of the local caches in lemma 2.4.4. It seems that the semantic idea
behind it 1s not readily expressible in generic syntactic terms. Summarizing, we can say that the
problem of proving the lazy caching protocol correct has also served as a source of inspiration for
the formulation of new correctness preserving design transformations. Although much of our proof
can be interpreted as the application of such transformations, parts remain that rely on the ‘invent
and verify’ approach. As a whole the proof ilustrates that an opportunistic combination of different
methods can lead to an insightful example of correctness by design.
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Chapter 3

Sequential Consistency as Interface
Refinement

R. Gerth
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3.1 Interface Refinement

The proof of sequential consistency will be based on our notion of interface refinement. The approach
that we shall use is based on a much streamlined version of the one published in [GKS92]. This
section intends to supply a quick introduction to interface refinement and a {(derived) proof rule that is
specifically engineered for proving sequential consistency. A full account of the general, streamlined
approach will be published elsewhere.

We assume some general knowledge of linear temporal logic and of transition systems.

If we compare the definitions of sequential consistency
C s.c. A iff Yo € Beh(C)3r € Beh(A)Vi=1...n ali=71[t
and that of standard (trace) refinement
Cref A iff Vo € Beh(C) 37 € Beh(A) o =71
we detect a pattern:
Crefp A iff Yo € Beh(C) 37 € Beh(A) (a,7) € R

Le., these cases can be viewed as refinements, except that the way in which an abstract behavior o gets
implemented as 7 may change. Consequently, the refinement relation is parameterized with a relation
I that determines how behaviors are implemented. For example, the relation is that of equality for
ordinary refinement. This pattern is also shared by, e.g., the condition of serializebility of database
transactions and by Lamport’s “stutter closed’ refinement.

We assume that such relations are specified in some logic. Le., a relation R is now given by a
formula ¢ and (o, 1) € R iff o, 7 |= &, for a suitably defined satisfaction relation |=.

The logic will be a linear temporai logic (LTL); although we shall only use always {(O) and
eventuality (<) properties. An LTL is usually valuated on (infinite) sequences of states. To express
constraints on (internal) behaviors, we assume the logic to be extended with a Aistory variable h that
valuates at a point in a state sequence to the sequence of events that have occurred up to this point. A
second complication is that here, the LTL 15 used to compare tweo state sequences. By convention, two
(equal length) state sequences determine a single such sequence through taking the pointwise product
of the states in the sequences. In the logic we can then use projection functions to refer to the separate
sequences again. Write h,. and h, for the projections of history h; ‘¢’ for concrete and‘a’ for abstract.

We need to establish some notation. We generically assume that C and A are interpreted transition
systerns that have disjoint sets of (free) variables; see Myeriar OF Myig, for examples. Write S(A) for
the set of states of A; J{A) for its initial states; and ‘s = s’ in A" if the event « is executed in state
s of A and produces state ’. Remember that these states also valuate the variables; in particular the
variable h, so that s(h) = ¢ if s € /(A) and if s —+ & in A then &'(h) = s(h) . We often write just
& =2 & if the transition system is clear from the context. Write [A] for the set of maximal sequences
of states, obtained by repeatedly applying —— starting in some initial state of 4. We assume that
there are no finite state sequences in [A[; as is the case for e.g. Moy and My, Because states
valuate h, every state sequence o € [A] uniquely determines an event sequence, o € IBeh(A4);
hence IBeh(A) = {0 | ¢ € [A]}. For states s and ¢ write ‘sx¢’ for their product or pairing. For
(infinite) sequences of states ¢ and T write o x 7 for the sequence obtained by the pointwise product
of the states in @ and 7. Write M for the set of (finite) event sequences h, I/, .... History variables
take there value from H.
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Definition 3.1.1 (Interface refinement) Ler ¢ be some LTL formula. Then
Crety A Mf Vo € [C) 3T € [A] oxTE&.
For example, standard trace refinement, C' ref A, is defined as C ref; A by taking, e.g.,
¢ =0¢ and ¢ = last(h,) = last(h,) .

For o € [C] and 7 € [A4] we have by definition of O that o x7 }= ¢ holds just in case ax T,k = ¢
holds at every position &; i.e., for every state pairin o x 7. If sx1 is the k-th such state pair, then this
is equivalent to sx ¢ |= ¢ which holds precisely if (1) last(s(h)) = last(t(h)). Le., (sx1)(hc) = s(h)
and (sxt)(h,) = ¢(h). Thus, ({) expresses that the event that produced s in C is the same as the one
that produced ¢ in A.

3.1.1 Sequential consistency as interface refinement

For this we make a simplifying assumption
Every process issues infinitely many writes to Mgy, Stated differently, onany o € [Mgisy)
and forany i = V.. .n, o ['i contains infinitely may W; events.

This simplification is not essential for the proof; it does make it slightly easier.

Sequential consistency is a condition on maximal, hence, infinite sequences. To express this in
an LTL, we must rewrite to a condition on states, L.¢., on prefixes of the sequences, that must hold at
various points along the sequences. A first try is

Muiser 8.0 Myppiar 6 M gicar refd; M, eriar With ()-5 =0 /\i:l...n (;3-5,' and
¢ = 3H{(h,=HASH i< h,[i)

Inexr |= (/_J,:, the function of the quantification is to ‘freeze’ prefixes of the distributed behavior o
so that they can be matched against prefixes of the serial behavior r. As every prefix of o is eventually
matched against a prefix of 7 and because ¢ is infinite, we must have o [i = 7 ['i.

Another way of doing this is to associate with every prefix of 7 a prefix of ¢ that can be matched
against it. This approach leads to an easier proof. Now, however, we must make sure that we match
ever longer prefixes of o. Hence, we change ¢; by replacing the existentially quantified temporal
variable H by a “choice function” f; that maps a history to a prefix of that history. Say that f: H — 'H
increases i.o. on A iff for every chain 1’ < h'... such that lim,_., 2" = IBeh(4) we have
lim,, oo | fi(A™}| = co. Then

Lemma 3.1.2 Mdi.\‘rr' 8.0 Meoriat Uf M gisir refqﬁ M oiar with ¢ = O Ai:] o ¢‘. and
b = fllp) i < h i forsome f; that increases i.o. on Mgy, G0
For completeness sake, we supply a proof. It is basically expanding definitions:

Proof. The left to right direction is obvious. Now assume that M, s.¢. M.q is not true. So, for some

a = sos1 - € [Muiw] and forevery 7 € [M,eiat] we have a® [1 # 7¢ [ for some 4. Fix such ao, ¢ and r, and
take any f; that increases i.0. on M,
For some index j we must have (sgs) - 5;)° [¢ < 7¢ i and (508 -+ - s;4()% [ A 7 [i which is equivalent

tosi(h)[é < relibuts;,(h){i 4 7°[i. Now, consider Dg;. As f; increases i.0. on My, there is an index
% such that s;41(h) < fi(sr(h)). Butthena, 7, & = ¢; whence @, T [& ¢. Since this conclusion holds for every
7 € [Merir] and any fi, we conclude that M.y 1€f 5 Mieria cannot hold. ]
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3.1.2 A proofrule

The first step in verifying sequential consistency C' ref, A, or interface refinement in general, is to
relate behaviors in the two systems with each other. The second step is then to prove that related
behaviors satisfy the appropriate specification

A general technique for relating state sequences is that of simualation (backward or forward
simulation, possibility mappings, implementation functions).

Definition 3.1.3 (Weak simulation) Given transitionsystems C and A, a relation R C S{C) x 5(A)
is a weak simulation of C' in A, C <=, A, provided

1. forany s € [(C)there isant € I(A) such that (s,1) € R,

2. if(s,1) € Rand s == & in C then there is an t' € S(A) such that (¢ ,1) € R and either there

. 3 . , .
is an evenr 3 such that | AtinAort=1 (we say 3 = ¢ in this case)

The inductive clause (2) is illustrated in the figure 1 B t/ A
on the right. Given a state sequence 7 € [C], a weak -q\
simulation ¢ < g A constructs a state sequence 7 of A n "R
in which every state in 7 is related to some state in o. !
However, we do not necessarily have 7 € [A]. First of . _J' c
all, A may have fairness constraints which 7 may violate. 8§ g

Secondly, 7 may be finite because from some moment onwards /. relates the transitions in & with €
transitions ‘in’ 7. Fairness constraints are no problem for us, as M., will play the rble of A and it
does not have fairness constraints. Forcing 7 to be infinite will be done implicitly, later on.

R iscalled a weak simulation because A is allowed to ‘stutter’ and because there are no constraints
on the events of the transitions of ¢ and A, nor on the related states. This 1s different from more
standard forms of simulation where there are constraints on the events—e.g., o = §—or on the related
states.

In our view, such condition are really implicitly defining how behaviors must be implemented
and that is precisely what we want to avoid at this point. E.g., forcing o = 3 in related transitions is
forcing related sequences to be equal. If we set up such a stronger simulation between the states of C
and A we are showing ordinary refinement.

Given a weak simulation, ' <, A, the second step is to show that R—related sequences ¢ and
T satisfy oxX7 [= ¢. For sequential consistency this is easy, as it reduces to proving ¢; for every
= 1...ninevery related state pair,

This observation immediately suggests the proof rule in Figure 3.1,

A and ¢ are transition systems such that A has no fairness constraints':

C —p A, Ve, b (s,t) e R = sxipE¢;(i=1...n)
ECsc A

with ¢; = [:(hg) i < hy i for some f; that increases i.0. on C

Figure 3.1: Proot rule for establishing sequential consistency
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Soundness of the rule is immediate. Observe that because f; must increase i.0. on C so that ¢;
maps ever longer prefixes of [C] to prefixes of [A], the weak simulation R cannot associate a finite
state sequence of [A] to one in [C].

The proof rule for general interface refinement, C' refy A, is based on the same ideas. The first
step, again, is establishing a weak simulation. The second step changes because now ¢ need not be
of the form O¢ and it is this form that determined the second premiss in rule 3.1. For instance, if
¢ = O for some state assertion ¢, then we need to establish ¢ at infinitely many state pairs along
every pair of R-related state sequences. For this we introduce an auxiliary state formula 4 such that
C |= O0Cd and demand that (s,8) € R & s = d = sxt = ¢. In case ¢ = OOP A O¢” we would
use two auxiliary state assertions o' and d” such that C' |= OOd A Od”, etc. The normal form result
of [MP91] tells us that a finite number of auxiliary formulae always suffices. Specifically, we have that
for every TL tormula ¢ (without quantifiers) there is a propositional TL formula ¥ with propositional
variables py,. .., p,, and state formulae ¢y, ..., ¢, such that |= ¢ « W[¢\/p1,...,¢n/Pxs], where
-/+ denotes syntactic substitution; we usuvally write W(¢;,...¢,). The following proof rule applies
to the general case.

A and C are transition systems such that A has no fairness constraints; ‘¥ is a propositional TL formula
with propositional variables p, ..., p;and ¢y, ..., ¢, and dy, ..., d,, are state formulae.

}:Llj((/’h---ﬁbn)—_"/’

CEWYd,. .. ,d,)

C—pnd

sEd&(s,VeR = sxtE¢ (i=1...n)
IICI”efqg/l

Figure 3.2: Proof rule for general interface refinement

The sequential consistency proof rule is obtained by taking ¢; = true and by noting that the
formula in Lemma 3.1.2 is in normal form.

3.2 Correctness Proof of M, s.c. M, ;.

3.2.1 Constructing a weak simulation 7

The problem in defining a simulation is to decide when to ‘allow’ the serial memory to make a
transition.
In the situation indicated on the right, 3 should not

be tlhe C(?nespor}dii?g W,;(d, a)-event. Ifitis, R;(e, a)- R . M,,

actions in the distributed memory that read an earlier \

value e at location « become disabled in the serial R "R

memeory. This suggests that the corresponding serial !

write be postponed until the write has been completed, Wi(d, a) __,’ Mias
- el 1517

lFonmg[ly: [] must be closed in the sense that for any chain g® < o' < .. - for which Vi 30 € [A] a’ < o we have
lim; o o' € [A]



that is, until no processor can read an older value from

the distributed memory system, i.e., from its cache.

As a consequence, any read-action that reads the value of an uncompleted write-action is postponed
as well.

We shall define &2 inductively, using a dag <. Given a state s of M y;,;-, the minimal elements of
<s(hy» i.e., the elements that are not the target of any edge in the dag, define the actions that M, ..
can ‘safely’ execute. E.g., a write event « in s(h) cannot be minimal as long as the event is still not
completed and a read event, R;(d, a), is not minimal as long as the write event that writes value d at
location a has not occurred. Then, if (s,1) € R and s — " we take (s',#') € R for any ¢’ such that

LY where 4 1s a minimal (enabled) event in <, (h) that has not yet appeared in ¢(h) (or ¢ if there
are none).

Thus, along a state sequence g%, - - - of My, the dag <gi(hy functions as a scheduler of the
events of M.rie and forces the R-related M., computation tgf; - - - to be always compatible with
sps| - - - so that at no point we can have s;(h) [i A ({1, - --)¢ [i.

In order to formalize the above ideas, we adapt the transition system of M ;..; see Figure 3.3.
Every write-action uniquely tags the value that it writes so that cache and memory update actions can
be traced back to the specific action that ‘caused’ them.

Obviously, we still have

Lemma 3.2.1 Bch(M;‘;;‘.,,.) = Beh{M s}

This is because C;(a) = din Mg f In Ci(a) = dwxn in My, and the enabling condition of the
other events are independent from any specific value of the data.

Since actions can occur more than once on behaviors the subsequent discussion is couched in
terms of events, i.e., action-occurrences: (&, «) is the k-th occurrence of a type(e)-action in the
behavior or history under discussion, where type(a) is defined as R; or W; depending on whether
a = Ri(d,a)or a0 = W;(d, «) for some d, «. Also write addr(«) for the location that the action o
refers to, Write Act; for the i-labeled actions and Fat; for the 7-labeled external actions.

For uniformity of notation and proof, the initial values of the memory are represented as pseudo-
actions Wy(0, «} for every location «. Every M7, , -behavior is implicitly prepended with a sequence
(W (0, ), where a ranges over all locations.

From now on, h.(I") will denote prefixes of distributed (serial) memory internal behaviors

We define the following predicates. The more complex definitions are preceded by their intuitive
meaning:

¢ (k,a)occursin 2 iff o occurs in h (ie., /v = hgahy for some hy, /1) and 2 contains at least
k occurrences of type{ o )-cvents

¢ (k,«)occurs before (/,4) in L iff ({,3) occurs in /. and there is a prefix &’ of h such that
(k, o) oceurs in &' but not (/, 3) occurs in //

o (k,W;(d,a))is completed in h itf V5 = 1 .. .n CU;(dx(kxi}, a) occurs in i

¢ o completes (&, ) in 2 iff not (&, 3} is completed in /i but (k, §) is completed in ha
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E { Event Allowed if Action

Ri(d,a) Ci(a) = d+n for somen
AQut; = {}
A no +-ed entries in In;
Vv | Wi(d,a) t;=t;+ 1;
Out; := append(Out;, (dx(t;x1), a))
MW;(d,a) | head(Out;) = (d, a) Mem[a] = d;

Out; := tail( Out;);

(Vk # i Ing := append(Ing, (d,a)));
In; := append(In;, (d,a, ¥))
MR;(d, ) | Mem[a]=d In; := append(In;,(d,a))

CUi(d,a) | head(fn;)is either
(d,a)or (d,a,*x) | In; := tail(In;}; C; 1= update(Ci, d, a)

Cl; C; = restrict(Cy)
Initially: Ya Mem[a] = 0x0
AVi=1...n C;CMemAIn;={}AQut; ={}At; =0
Fairness: no action other than Cl; can be always enabled but never taken
MW-—memory write MR—memory read
CU—cache update Cl-—cache invalidate

-+ 1§ some pairing function; say nim = 27 3™,

Figure 3.3: Adapted M,

istr

¢ (k,a)is read by (/, ) in h iff (£, «) is the (unique) write-event that caused the value read
by (/, /) to be written. By convention, write-events are always read by themselves. More
formally:
({,3) occurs in h and (i) 4 is a write-event and (k, o) = (£, 3) or (ii)} # = R,(d, a) for some
i, d,a, v = W;(d, a) for some j and either j # 0 and the last CU;-event before (I, 8) in h that
refers to location a writes value dx(kxj)orj = 0, & = 0, d = 0 and there are no CU-events
before (I, 4} in I that refer to location a

o (k. W;(d,a))distributes before (I, W,(d’, a’)) in /i iff every cache ‘sees’ (i.e., is affected
by) the (&, W;(d, a))-event before it sces the second event. More formally:
k=14=d=0or(k, MW;(dx(kxi),a)) occurs before (I, MW;(d'x(lxj},a’)) in h

o (k,R;(d,a)) reads before (I, W;(¢,a}) in hiff (k, R;(d, «)) reads a value at an address that
will be overwritten by the (£, W;(’, @))-event. More formally:

for some (m,Wi{d,a)) we have that (m,Wi(d,«)) is read by (k,R;(d,a)) in & and
(1, Wi(d, a)) distributes before (I, W,(d',«))inh
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¢ (k,o)is ready in 2, i/ iff & > 0, o is the k-th type(«v)-event in A and there are precisely k — 1
type{o)-events in A/

We now state some important properties of the caching protocol. The whole correctness proof
will be based on just these properties of M giss..

Lemma 3.2.2 Let k > Oand (k, o) # (1, 3). The following formulae are invariants of M5, ,.:

. (k,Ri(d,a}) occurs inh — (I, W;(d, a)) is read by (¥, R;(d,a))inh for
some (1, W;(d, a))

S

b

. (k,a) oceurs in h A type(a) = W; — O(k,«) is completed in h
. (k,a)isread by (/, 8) in h — (k, o) occurs before (I, 8)in h

. (k,MW,(d, a)) oceurs before ({, MW,{d',¢/))inh —
=(1,CUy(d’,! a)) occurs before (k,CUs(d,a))inh

B

e

a € Act; A3 € Act; —
(k, ) reads before (/, 3)in h — (£, ) occurs before (1, 3) in h
A (K, ) distributes before (I, 3} in h -+ (k, ) occurs before (I, 3) in h

.o € Act; A B € Act; A oo = Wi(d, ) A (k, @) occurs before (1, 3)inh —
type(f) = W; — (&, o) distributes before (I, 3) in h
A type(B) = R; — (k,CU;(dx(k+i), a)) occurs before (I, 3) in h
A (1, 8) is completed in h — (&, ) is completed in h
7. (k,W;(d',a")) occurs before (I,R;(d,a))inh

A (1. Ri(d, a)) reads before (1., W;(d, @)} inh —
(k, W;(d', ")) distributes before (m, W;(d,a))inh

N

Proof. We shall not give completely lormal prools here.

(1) Every value needs 1o be written; remember the convention to prepend histories with virtuai (0, Wg(0, a)-
actions.

(2) This is a conscquence of the fairness constraint on M%_and the fact that MW,; and CU;-events are enabled

distr
as long as Qut; and /i; arc non-empty.
(3) This follows frem the unique tagging of the data being wrilien
{4) Follows from the fact that (d, @) enters queue fng betore {d’, a') does.

(5) Let @ = Ri(d,a). § = W(d',«) and let (m, ) is read by (k,o) in h with ¥ = W;(d,a). Since
(m, W;(d, a)) distributes before (I, W;(d’.)) in h by definition of reads before, (I, MW;(d'x(m=*i), a))
occurs before (k, ) in h would entail that not (1, v) is read by (k, «) in h holds: o becomes enabled only
alter Gut; is flushed and Jn; does not contain any #-cd entries bul (d’x(I+7), e, ) enters In; after (dx(m#j), a)
does. The sccond implication is proven analogously

(6) Foltows from the fact that W; events are queued in Out; and that a subsequent R; event flushes the Ou;
qucue and the #-cd entries in the frn; queue as well {; remember that a W; event eventually contributes a *-ed
entry to fi;).

(7) Let (1) (. We(d, @}) is read by ({,R;(d,a)} in h. By definition of reads before we have (n,W,(d, a))
distributes before (1, W;(d, ¢} in h. If the conscquent is fatse then we also have (m, W;(d, a)) distributes
before (k, W;(d',a")) in h. We obtain (n’, CU;{d%(n4r), a)) occurs before (n, CU; (dx(mxj), a)) in hand
(!, CU; (dx(mnxj), @)) oceurs before (&', CU; (d’x(kxi), o')) in h. As W;(d', ') and R;(d, @) both originate
in the same process, we must have (&7, CU; (d'x(kx7), a’}} occurs before ({, R;(d, a)) in h. This contradicts (1)
since this CU;-event processes a s-ed entry in ;. D
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Now we can define the dag and the simulation relation based on it:

Dag <,
Define the dag <, on the set
{(k,a) | & > 0, « is the k-th type(a)-event in A} U {1}
as the smallest relation satisfying
I. if a, 3 € Act; and (&, o) occurs before (/, 3) in & then (k, o) <, ({,3)
2. if (k,«) isread by ({,8)in h then (k, o) <y, (1, 3)

78]

. if (k, &) reads before (1, 3) in i then (k, o) <y, (1, 8)

N

. if (k, o) distributes before (1,/3)in I then (k, o) <, (1, 8)

Lh

. if not {k, ) is completed in /i then L <, (b, «)

Here, we write « <, ¥ to indicate that the dag has an edge from w 1o v,

Simulation R

The simulation relation £ is inductively defined as the smallest relation that includes the pairs (s, 1)

for initial states s of f'lf[;;ﬁ,r and ! of M,.,;. and that satisfies for all (s,¢) € R and s -2, ¢ that there

is a state ¢’ and an event 3 such that (¢',!") € Rand 1 Loy subject to the following constraint:

1B _,’q' LetT = min(<3,(h) [Rer ¢) with
\ Rao = {(k,a) | (k,«) is ready in s'(h),t(h)} U {L}.
R l'R If "' Act = @ then 8 = 7 else there is an ! such that
! ' (I,8) € T. Moreover, if « completes (n,+) in s(h) and
o W, v & Acti then (I,3) € 1'N Aet;
3 o

S0, Meriar €Xxecutes an action that is minimal in the dag determined by s'(h) from which all events
that have already occured in ((h) are removed. To ensure that M., executes actions from every
P, there 1s the additional constraint that if M., completes a P;-write action from s then M,y
must execute a F;-action from £. It is only at such points that we can be sure that there 1s a P;-action
amongst the minimal ones.

Lemma 3.2.3

1. Let (s,1) € Rand s == &' (in ML, ). Then forevery 8 # L, if(1,53) € min( < g(ny [Ryre) for
some l, then 3 is enabled in i

2. M;Ti.s‘lr ;: D((!\?,(l’) € dom(<h) - O(A, (J’) S min(<h))



We defer the proof of Clause (1); Clause (2) is a direct consequence of Lemma 3.2.2(2) and the
fact that each process issues infinitely many writes.

From the inductive definition of &, Lemma 3.2.2(2) and Lemma 3.2.3(1), we immediately conclude
that MY, g M,eriq; provided we can show that < is indeed a dag so that minimal elements
always exists.

Theorem 3.2.4 <, is adag.

The proof is based on a Lemma that relates the ordering of MW-events to the ordering of read and
write events.
Write (k, ) <;F (Z, 8) to indicatc that the dag <, admits a path from (k, a) to (, 3).

Lemma 3.2.5 Ler (k,Wi(d,a)) <} (1, 8).
o If3 =R;(d, ') then (k, MW, (dx(kxi}, o) occurs before ({, ) in h
o If =W, (d',d) then (k,W,(d, a)) distributes before (!, W,(d',a'))inh

Proof. We use induction along a path from (k, W;(d, a)) to (I, 5). Let o = W;(d, a) and § € Act;.

First assume that (£, ) <n ({, 8). Then either (i) j = ¢ and (k, o) occurs before (I, ) in h or (i) j # 7 and
(k, o) is read by (I, 3) in h or (k, «) distributes before (I, 3) in h. For case (i} the Lemma follows from
Lemma 3.2.2(6). Casc (i) follows immediately from the definitions of the is read by and distributes before
refations.

Next, suppose that (k, o) <} (m,7) <» (1,8). By induction the Lemma holds for (k,a) <} (m,7).
According to the definition of <, there are four cases. If v & Act; and (m, ) reads before (I, 8) in A, then the
result follows from Lemma 3.2.2(7). The other cases are as (i) and (ii) above., O

We are ready to show that <, is a dag

Proof of Theorem 3.2.4. Suppose that <, admits a cycle. Then, we must have (k,a) <f (7,8) and
(I, 3y <} (k,&) for some & and 3. Wlo.g., we may assume that (k,&) <u (I, 3). So, by definition of <,
there must be an (M, %) such that {7, 3) <} (v, 3) <} (X, &) and not &, 3, % € Act; for some i.

By transitivity of <jf this means that we have (A) (k, W;(d, a)) isread by (1, 8) in h and (I, B) <} (k,W;(d,q))
or (B) (k, Wi(d, a)) distributes before ({, ) in o and (I,8) <} (k,Wi(d,a)) or (C) (k, @) reads before
{1, Wi{d, e)yin hand (1, W,(d, o)) <} (k, o) with v, 8 @ Act;. We immediately obtain (k, MW, (dx(kxi), a))
occurs before (k, W;(d, a)) in /i for case (A) and by Lemma 3.2.5 (k, MW;(d « (k 1), a)) occurs before
(k, MW, (d * (k% #),a)) in h for case (B) and (/, MW;(d*(Ixi), @)} occurs before (k, o) in h for case (C).
The first two cases give immediate contradictions; the last one via Lemma 3.2.2(7) from which we infer that
(I, W;(d, a)) distributes before (I, W,(d, «)) in i which is impossible. o

There remains the proof that minimal elements of <, are always enabled. For this, we need the
following two trivial facts about M ...

1. W,(d, a) is enabled in any state,

2. R;(d, @) is enabled in state ¢ iff the last write-event in ¢(h) that referred to location a has the
form W ;(d, «) for some j
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Proof of Lemma 3.2.3(1). In the proof we refer to the figure in the definition of the simulation & on Page 37.
First observe that (k,¥) € dom({< ) implics that (£, ) oceurs in s'(h) for any (k, ). This is immedijate
from the definition ol <.

Since writes are always enabled we may assume that 3 = R; (d, a). Now, suppose that 3 is not enabled in
t. Then the last write event that referred o location a in (h) was o = W;(d', o) for some i withd’ # d ; let
this be the & — th Wi-event in ¢(h). Since (&, «) occurs in t(h), we must have (k, «) is completed in s(h) by
definition of R. As {/, 3) occurs in s'(h) we have (n, v) is read by (I, 8) in s’(h) for some n and vy = W, (d, a)
so that (2,7} <,y ({, 8). Also, since (1, ) € min{<,(n) [Ryr 1) we must have (n, v} is completed in s(h).

Now, if (1, ) reads before (k, «) in s'(h) then (1, ) <.(n) (k, o), whereas (k, o) occurs in ¢(h) but not
(1, ) occurs in 2(h). This contradicts the definition of R.

Hence, since both write actions are completed we must have (k, «) distributes before (n,v) in s/'(h). We
conclude that (k, @} <.ny (11,7) so that we cannot have (n, 7) oceurs before (k, o) int(h). As (k, o) is the
last write event referring to location a in t(h), we must have (1, v) € dom(<,«ny [Ry ) so that (1, 3) is not
minimal. Contradiction.

We conclude that v cannot be of this form and, henee, that F is enabled in ¢, O

3.2.2 Concluding the proof

For the last step of verifying that (s,1) € 2 = sxi |= ¢; forevery i = 1...n, we need to instantiate
the choice functions f; and define

L)y =0 where £/ is the prefix of /i such that |7/ = »;(h) with
n; inductively defined by n;(g) = 0 and
{ n:(h)+ 1, ifa completes (n,7)in i Ay € Act;

n;( he) ni(h), otherwise

So, the length of f;(h) is the number of completed W;-events in . This is the obvious choice
because the definition of /¢ guarantees that M4, performs a F;-action, only in case M g;54 compietes
a W;-action.

By Lemma 3.2.2(3) and the assumption that every processor contributes infinitely many writes,
each f; increases i.0. on M 4.

Now, fix some i = |...n and (s,2) € R. As ¢; = fi(h.)[i =< h, [i, we have to show that

fi(s(h)) i 2 2(h) [

Since both R and f; are defined inductively, we prove this inductively.
The base case is clear as then s(h) = #(h) = ¢ and n;{c) = 0.

For the inductive step, we may assume that f;(s'(h))[i £ ¢(h) <. We refer to the definition
of R on Page 37. Hence, we must have (i) o completes (m, ) in s(h) with v € Aet;. Let
fils'(h))TE = fils(h))Ti"8 and let § be the n-th event of type(é). Then, (ii} (n,d) is ready in
s'(h), ¢(h) must be true. By induction, it suffices to prove that § = 3, where g is the transition taken
in 7 according to K.

From Clause 2 in the definition of <, we have L st(h) (m,v) so that T'N Aet; # 0 by
Lemma 3.2.3(1). In fact |1'N Act;| = 1 as Clause (1) says that <st(h) extends the ordering on event
occurrences induced by &'(h) [4. Because (i) holds, we know from Lemma 3.2.2(6) that for any W;
event &, if (r, &) occurs in s( fi(h}) then (r, &) is completed in s(fi(h)); whence L £, (7,6).
By (ii) and the fact that L is never covered by read events, we then have (n,8) € T'N Act; and also
8 = Bsince (1, 3) € TN Aci; for some [ by definition of R.



3.3 Conclusions

We have worked out the proof in considerable detail. The proof rule demands that a weak simulation
be constructed as the first step. This can be interpreted as defining a scheduler that schedules the
appropriate event in M., for every Myp-event. For verifying sequential consistency this is a
quite natural approach because the purpose of the protocol is to ensure that the event sequences
that each process engages in can also be obtained from a serial memory. In this respect, there is a
correspondence with the verification approach of [ABM93]. An important ingredient of the proof
is the ‘delayed’ checking of sequential consistency of prefixes, which is inherent to our approach to
interface refinement. This makes the definition of <, easier, although a penalty is paid in the form of
a slightly more complex proof of Lemma 3.2.3(1). In contrast, the scheduler used in [ABM93] needs
to maintain sequential consistency of the complete history instead of (ever longer) prefixes of history.

The actual proof tries to abstract from the details of the protocol. le., <, is defined in terms
of some relations on the external behavior of the protocol and the proof is based on a number of
correctness properties of the protocol. For the same reason, we have not used auxiliary variables other
than for the purpose of making events unique. In fact, we view this proof as a first step towards a
proper analysis of sequential consistency: The dag <, characterizes the constraints that the protocol
maintains in order to generate sequentially consistent behavior. However, as is, < is defined using
internal events of AM;,,.; €.2., the distributes before relation refers to MW-events. Accordingly, one
might ask for the weakest online? scheduler defined in terms of constraints on the external events only
that maintains sequential consistency. In fact, we have already obtained more efficient protocols for
network based architectures and are generalizing the protocols towards weaker memory models such
as release consistency.
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4.1 Introduction

We propose to verify the distributed cache memory presented in [ABM93] and [Ger95] by using the
verification method proposed in [BBLS92, LGST94, CGL92, Lon93]. This method, based on the
principle of abstract interpretation [CC77], proposes to verify a set of VCTL* [SG90] formulas on
a composed program, as follows: define an appropriate abstract program, obtained compositionally
from the given program, and verify the required properties on it. Our way of computing abstract
programs is very similar to that proposed in [CGL92, Lon93], but our concept of compositionality
is different from that proposed in [Lon93] or in [Pnu85]. We construct a global abstraction of the
system by composing abstractions of its components, whereas the other method consists in deducing
properties of the composed system from properties of its components. Both approaches are useful,
but in the distributed cache memory that we want to verify the global properties cannot be deduced
easily from properties of the components. An abstraction of each component is obtained applying the
principle of abstract interpretation by means of a relation g relating the domain of its variables and
the domain of the set of some abstract variables.

In [GL93, Loi94] 15 described a tool allowing to verify finite state systems in a fully automatic
way by using this method. Here, we show that the same method is also tractable in practice for infinite
state systems wherc a complete automatization is not possible. In fact, if — depending on the formula
one wants to verify — for each component F; one can guess an appropriate abstraction relation o;
verification becomes often a relatively simple task as

+ the corresponding finite state abstract program is reasonably easy to obtain,

s the verification of the propertics on the obtained abstract program can be done fully automati-
cally.

Despite the fact that VCTL* contains also liveness properties, this method does in general not support
directly the verification of liveness properties as they do not hold on most of the finite abstractions.
Here, we verify liveness property of the cache memory by applying the induction rules given in
[Pnu8S5, JPR94] to a set of safety properties.

In Section 4.2, we recall all the ingredients we need for our verification method:
» a simple program formalism similar to that used e. g., in [Pnu86],

¢ a method to compute abstract programs, consisting in defining for each operator on the concrete
domains a corresponding abstract operator — the only step in the proposed method that cannot
be fully automated,

o the temporal logic CTL* and its fragments, used for the description of properties,

¢ the preservation results allowing to deduce the validity of a property on the concrete program
from its validity on the abstract program and

¢ the compositionality results allowing to compute an abstract program by composing abstractions
of its components.

We illustrate all the definitions and results on a small buffer example. In Section 4.3, we give a set
of temporal logic formulas guaranteeing that whenever a system satisfies it, then it is a “sequentially
consistent memory” [Lam79]. This set has been chosen in such a way that its satisfaction on a given
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program can be deduced from the satisfaction of a finite number of representatives. In Section 4.4,
we verify this set of properties on the distributed cache memory system. It turns out that, using our
method, this verification is almost as simple as the verification of the tiny buffer, as we need almost
the the same abstract operations.

4.2 A verification method using abstraction

4.2.1 A program description formalism

We adopt a simple program formalism which is not meant as a real programming language but which
is sufficient to illustrate our method. A complex system is a parallel composition of basic programs
of the following form

Name : P
Variables : IR A TR TS A
Transitions : (€1) action(xy, ..., xn, &), 2h)

() acliony(@|, ...y @ny Ty .y Th)

Initial States :  2ndt{xy, ..., 2y)

where P is an identifier used to refer to the program in a composition expression, z; are variables
of type 7; and Lp = {{y,....{,} is the set of program labels. Each action; is an expression with
variables in the set of program variables and a set of primed variables which is a copy of the set of
state variables; as in [Pnu86, Lam95], acfion, represents a transition relation on the domain of the
program variables by interpreting the valuations of Xp = (2,,...,2,) as the state before, and the
valuations of X, = (2, ..., 2]} as the state after the transition. We denote the set of valuations of
Xp by Val(Xp).

Semantics :  Program /7 defines in an obvious manner a transition system Sp=(Q p, Rp) where
e Qp = Val(Xp) is the set of states,

o Rp C Qp x Qpisatransition relation defined by Rp = {(¢,¢') | 37 . action;(q,¢")}.

The predicate inil defines the set of initial states. It is used in the formulas specifying the program:
properties are in general of the form inil=>¢ where ¢ expresses the property one wants to verify.

We do not distinguish variables representing inputs as they need not be treated in a particular
manner. However, we annotate in the programs the variables which are meant as inputs as this makes
programs easier to read.

Labels are used to name “events” or “actions”. If ¢; is a label and (v, v’) a pair of valuations such
that action;(v, v') is true, then the transition from state v to state v’ is an event £, If e is the valuation
of the “input” variables extracted from », then we call this event also {;(e). Events are used for the
expression of properties.

Example 4.2.1 (an infinite lossy buffer) The following program represents an unbounded buffer
taking as input elements e of some data domain elem. The event push{e) enters e {if it has never been
entered yet) into the buffer or arbitrarily “loses” it, and pop(e) takes € out of the buffer if it is its first
element.
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Name : lossy buffer

Variables : ¢ :elem (Input)
E : set of elewn (already occurred events push(e))
DB buffer of elemn

Transitions:  (push{e)) allowed(e, E, E') A (append(B, e, B') vV unch( B))
(pop(e)) first(B,e) Atail(B,e, B') A unch(E)

Initial States :  empty(})

E contains the elements e such that push(e) has already occurred, and allowed(e, F, E’) is necessarily
false if e € E. All other predicates have the intuitive meanings: append(#3, e, B') holds if B’ is
obtained by appending element e at the end of the buffer B, tail( B, e, B') holds if B’ is obtained by
eliminating e from f3 if e is its first element (first( B, e) is true) otherwise B’ = B; empty( B) is true
if I3 is the empty buffer. unch(X'), where X' = x|,...#, is a tuple of program variables, represents
the transition relation which lets all variables in X unchanged, i. e, unch(X) = A;(z! = 2;).

We use predicates of the form append( B, e, B') instead of B’ = Append( D, e) where Append is
a function, as abstract operations are in general nondeterministic. This is also the way of representing
operations which is proposed, e. g. in [CGL92Z, Lam95].

Composed programs : In [GL93] we obtain our results for more general parallel composition
operators, but here we need only asynchronous composition. If P, and P, are programs defined on
a tuple of state variubles X'y, respectively X3, then Py || P2 is the parallel composition of P and P>
defining the transition system .5 = (Val( X U X2), I2) where

R = RBp, Aunch{X; — X|) V fp, Aunch{X, — X>)
Each transition of P| || /% is either a transition of P, which leaves all variables which are declared in
P5 but not in P unchanged or the other way round.

4.2.2 Abstract programs

As proposed in [CGL92, LGS™94], given a program P and a predicate o on the variables of P and a
tuple of abstract variables X* = (xf,...2/}), representing a relation between the concrete and the
abstract domain (a function in [CGL92]), then an abstraction of P is a program P4 defined on X4

that can “simulate” any transition of I

Definition 4.2.2 (Abstract programs)
Let P be a program on variables X and ¢ a predicate on X and a tuple X4 = (x4, .22 ) of abstract
variables; then, any program P defined on X*, such that for each action action of P there exists
an action acliont of P with the same label, such that

AXIX'. o X, XA o( X, X)) Aaction(X,X') = action (X4, XA') (1) and

AX . o(AL XY At (X)) = it (XA)
is an abstraction or more precisely a p-abstraction of P.
When verifying composed programs, it is interesting to compute an abstract program compositionally,
I. e., by composing abstract component programs. From a more general result given in [LGSt94],
we obtain the following result which is sufficient for the verification of the distributed cache memory
system.

Proposition 4.2.3 Let Py and Py be programs and p; total functions from the domain of the variables
of P; into some abstract domains such that py N g2 is total and P]A, PZA are p;-abstractions of P;, then
PO Pt is a (o) N ga)-abstraction of Py || Pa.
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Computation of abstract programs in practice : The idea of abstract interpretation [CC77] is
to replace every function on the concrete domain used in the program by a corresponding abstract
function on the abstract domain, and then to analyze the so obtained simpler abstract program instead of
the concrete one. Consider the program Prog® obtained by replacing every basic predicate op( X, X)
(such as taxl, first,..) on the concrete variables by a predicate opA(XA,XA') on the abstract
variables is a p-abstraction of Prog if, instead of (1), for every basic operation
IXIX . o(X, XM A (X, XY Aop(X, X)) = opA(XA,XA) 2)

holds. If the expressions in Prog are negation free (as in our buffer), then Prog? is in fact a o-
abstraction of Prog. The definition of abstract predicates op? is the only part of our verification
method which cannot be fully automatized. But as we will see, we only need a restricted number of
such abstract operations in order to verify a whole class of programs. For example, in the domain of
protocol verification, the used data structures are *messages” on which no operations are carried out,
“memories” or “registers” in which data can be stored, integers which are mostly used as counters
and “buffers” with the usual operations append, tail, first,.., as in our examples.

Example 4.2.4 (An abstract lossy buffer) 7o illustrate the idea, consider again the buffer of Exam-
pled.2.1. Inordertoshow that the buffer has the property of “order preservation” (see Example 4.2.9),
it is suffictent to show that the order of any pair of elements (e, e;) € elem x elem is preserved. All
the information we need about the content of the buffer B is, if and in which order, it contains the
elements e| and e3. Furthermaore, as each element is supposed to be put into the buffer at most once,
we need not distinguish amongst the valuations of B containing €; more than once. Similarly, for the
input variable € we only need to distinguish if its value is e1, e; or any other value. Concerning the
valie of E determinating which events pushie) are still allowed, we only need to know if the event
push(ey), respectively push(es) is still possible or not. This leads us naturally to the abstract domain
defined by the abstract variables,

eqa:elem? = {0,1,2}

E4 : set of elem?

By (J‘!Lff(?’."/zzl = {¢,e1,e2,¢ 003, e30€, 1}
and the following abstraction relation p* defining the correspondence between the concrete and the
abstract variables

92(67 L, B, eq, -EA’])’A) = Oglem,(c"ﬁft) A stt_af_elem(Eﬁ EA) A
Ql%ﬂ.ffer(‘ﬂ’ BA)
where for ¢ @ elem and ¢4 @ elem?
Okrem(€r€a) =((ea = 0) = (e # {er,e2})) A
({ea=1)=(e=¢e])) A
({ea=2) = (e =e))
for E : set of elew and Iy @ set of Gle'mi,
Oretofctem 02 Ba) =(1 € 4) = (e) € E) A (2€ Eq) = (e € E)
and for B buffer of elemmand By buff erﬁ
qu.ffer(-B’-BA) =((B4 = €) = C"'"-P’"U(B|{e1,cz})) A
((Ba=e1)= (Bl =€) A
((Ba =€) = (Bife, ) = €2)) A
({Byi=cieer) = (-Bf{q,ez} =ejeey)) A
(Ba=cree) = (Bife ey =€20€1))A
((By = 1) inall other cases })
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where By, o\ i the buffer B restricted to the elements | and ;. In order to construct an abstract
program, we have to define abstract predicates for all the basic predicates used in the concrete buffer
program, such as allowed, append, tail, unch, erc.

In the case that every abstract variable is related to a single concrete variable, the abstract
predicate associated with unch(v) is obviously unch(v ) for any abstract variable v related 1o v.
The following abstract predicates satisfy the condition (2).
allmuedi(e,;, Fi B =(Fy' = Fa)y A (ea=0) Vv

(1€ ENANN € L) A {ea=1)V
(2 E )A€ Es") A (eq=2)
a,g)pe71.(l?4(BA,eA, B =(Ba=DY) Alea =0)V
(B4 € {e,e2}) A (B =€ e B4)V(Ba g {ee})A (By=L)A(ea=1)V
(Ba€ {E,E]}) A (Bh =& e BA) V (BA & {e,e,}) A (Bi% = L))/\ (eA = 2)

f‘a"il,%l(ﬁfh EA:B:'q) Z(BA = Bh) A (BA — 0) y/
((f))ft € {el':el.eﬁl}) = (BA :Bhoel))/\(e,‘ = ])V
((Ba € {e,e20e}) = (Ba =B, ee))Aleq =2)

empiyfl(ﬁ“;) = (B4 =)

firsti(Ba,eq) =(eq = 0)V
(B/l & {C|7E] 002,_1_})/\ (GA = I)V
(Ba € {e2= J-}) M (GA = 2)

tail is an example of a predicate defining a function on the concrete domain, but which is nondeter-
ministic on the given abstract domain; I.a.rfl% (4, 1,.BY) necessarily evaluates to true for any value of
B, (the value of the buffer in the next stte).

Using these abstract predicates, the definition of a program representing a p-abstraction of the
buffer program becomes trivial. We just replace variables by corresponding abstract variables and
every occurrence of a predicate by corresponding abstract one. The resulting abstract program looks
almaost as the concrete program but defines a very small finite transition system.

Name : Abstract lossy buffer

Variables : ey : 61677,31 {input)
Iy o osel ofclcqu
Dy buff 67‘31

Transitions:  (push(ea))  allowed’(ea, Eas Ea") A append’(Ba,ea, BYy)
{(pop{es)) first}(Ba,ea) AMail’ (B4, ex, ) A unch(E,)
(lose{en))  in(Ba,eq) Adeletel(Ba,eq, BY) A unch(E4)

Init : emyrﬁyi( B 4) (the translation of the concrete initial predicate)

The useful abstractions are often obtained by using this kind of abstract domains. Here, we gave
in detail the more complicated abstraction of a buffer particularizing two different data elements.
But often, it is sufficient to particularize in the same way a single data element. The corresponding
abstraction relations p!,_ ., gﬁetmfielcm, gi'm”er and abstract predicates allowed!,, appendly, taill,,...
can be defined by simplifying the above definitions in an obvious manner. For the verification of the
cache memory we use also existential abstractions of buffers. The corresponding abstract predicates
append®™(e ), tail®(ey),... evaluate to true if e 4 is an allowed value of the existentially abstracted
bufter. In [CGL92] a similar methed is proposed and in [Lon93] some “standard” abstractions are
proposed for bounded integers and operations on them.

46



4.2.3 Temporal Logic

It remains to recall the definition of temporal logic. Here we restrict ourselves to subsets of
CTL* [EH83] for the expression of properties. The preservation results in [LGST94] are given
for subsets of the more powerful branching time p-calculus [Koz83] augmented by past time modal-
ities. je-calculus and CTL* can express both branching time and linear time properties; p-calculus by
using nested fixed points and CTL* by using explicitly state and path formulas. Our tool presented
in [GL93, Lo194] only deais with state formulas; however formulas with nested fixed points are in
general not very intuitive, so we prefer here for readability reasons to stick to CTL* even if we lose
some of the expressive power.

Definition 4.2.5 CTL* is the set of state formulas given by the following definition.
1. Let P be a set of atomic (a) state respectively (b) path formulas.

2. If ¢ and o are (a) state respectively (b} path formulas then ¢ A o, ¢V Y and —¢ are (a) state
respectively (b} path formudas.

3. If ¢ is a path formula then A and E¢ are state formulas.

4. If ¢ and i are (a) state or (b) path formulas then X, pUs) and $W+fr are path formulas.

U is a “strong until” and W a “weak until” operator, a sequence satisfies W1 if ¢ holds as long
no state satisfying +» has been encountered, and ¢U+ expresses the same property and moreover
the obligation that such a state satisfying + exists. That means that U and W are related as
follows: Wi = =(=pU~{¢ v ¢}) and ¢W ) = (¢U¢) v (G), where, as usual, we use also the
abbreviations ¢ =>¢, denoting implication, F¢ denoting {rueU¢ (expressing “eventually” ¢) and
G¢ denoting ¢W fulse (expressing “always” ¢).

CTL is the subset of CrL™ obtained by allowing in all rules only the choice (a) whereas PTL is
the subset obtained by allowing only the choice (b) and restricting Rule 3 by allowing only the path
quantifier A. YCTL and VCTL* {SG90] are the subsets of CTL respectively CTL* obtained by allowing
negations only on atomic formulas and restricting Rule 3 by allowing only the universal path quantifier
A; that means that PTL is contained in VCTL*.

The semantics of CTL* is defined over Kripke structures of the form M = (5,7) where §=(Q, R)
is a transition system and Z is a interpretation function mapping elements of P into sets of states of 5.

Definition 4.2.6 A path ina transition system 5 =(Q, R) is an infinite sequence © = ggqy ... such that
Joreveryi € N. R{qi,qiv1). We denote by ., the nth state of path © and by =™ the sub-path of 7
starting in m,.

Definition 4.2.7 Let be M = (S,1) a Kripke structure, ¢ € () and © a path of M. Then the
satisfaction ( =1 ) of CTL* formulas on M is defined inductively as follows.

1. Letbep € P. Then,
¢ En o piffqee Iip)and T =p piff o € Z(p).

2. Let ¢ and «f be (a) state respectively (b) path formulas. Then,

(a) g =p1 b iffq op 6o g Er PAV Mg M dandg Em ¥, g =M SV U
q Ear dporg Ear o

{b) analogous by replacing q by =
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3. Let ¢ be a path formula. Then,

q =rm AP iff for every path @ startinging, m |=p ¢
q Enrr B iff there exists a path w starting in q such that © |Ear ¢

4. Let ¢ and i be (a) state respectively (b) path formulas. Then,

(a} m f=pr Xbiff w1 =ar ¢,
T l=p QUG fIneN . (m, Em Yand¥h <n.7mp Epm 9)
T Enm WY ifvn e N (Vh <n.mi Em ) implies T, Em @)

(b) the same definition obtained by replacing in (a) all states ©; by subsequences T

We say that M | ¢ ifand only if ¢ |=ps ¢ for all states of M,

From the more general results given in [LGST94] we obtain the following proposition concerning
preservation of properties of YCTL*.

Proposition 4.2.8 (Preservation of YCTL*)

Let Prog he a program, p a total relation from the domain of Prog into some abstract domain, and
Proga a g-abstraction of Prog. Then, for any ¢ EVCTL®, P the set of atomic formulas occurring in ¢
and I an interpretation function mapping ‘P into sets of states of Sprg, we have

TImfp~" o Imp] o T (p) €T (p) (*) forall p € P occurring non negated in ¢
implies
(Serogar dmlole TV E ¢ = (SpopZ)E ¢

where {m|g] is the image function of p. Condition (*) is called consistency of p with I(p).

This proposition expresses that, if ¢ € YCTL® holds on a p-abstraction of the program Prog by
translating the interpretations of all atomic propositions occurring in the formula by I'm(g) into
predicates on the abstract domain, and if all these predicates are consistent with g, then we can
deduce that ¢ holds on Prog. Consistency is not needed for predicates that occur only negated in
¢ as Lm[o™ ' [(Im[p](Z(p))) € Z(p). We conclude that, if ¢ holds on Proga using the abstract
interpretation f1n[o)(Z(p)) of -p, then a stronger property than ¢ using the concrete interpretation
m of —p holds on Prog. In particular, for the verification of a formula of the form init=-¢, init
need not to be consistent with g.

Example 4.2.9 For a buffer;, the property of order preservation — that means the fact elements are
taken out in the same order in which they are put into the buffer — can be expressed on the set of
“observable” atomic predicates

P = {init, enable(push(e)), afiler(push(e)), enable(pop(e)), a fter(pop(e)), ...},

by the following parameterized formula — that is a CTL™ formula containing globally universally
quantified rigid variables:

Ve'e € elem @ init = A( [-~afler(push(e)) W after(push(e’))] =
{~enable(pop(e)) W a fler(pop(e))] )

This formula can be transformed into a VCTL formula in which only the predicates a fier(push(e))
and a fter(pop(e’)) occur non negated. The transformation into an YCTIL* formula is immediate, due
to the fact that for every operator exists a dual one; in order to see that they are also in VCTL one can
use a result given in [EH83]. In order to verify that the buffer of Example 4.2.1 has the property of
order preservation, it is sufficient to verify the formula obtained by instanciating e; for e and e; for
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¢’ on the small transition system associated with the abstract program defined in Example 4.2.4. In
fact, as e, and e, represent an arbitrary pair of data values, this verification of a single representative
of the set of formulas is sufficient. It remains to give the interpretations of the atomic propositions:
enable(l) is interpreted as the set of states in which event £ is possible, a predicate that is expressed
by 3X' . actions( X, X') if £ is just a label and by X’ . action)( X, X )e/z]if £ = i(e) where lisa
label and e a valuation of input variables z. « fier({) is interpreted as the set of states in which £ has
Jjust occurred; in order to make this predicate expressible, we introduce an explicit boolean program
variable a fter_( for every proposition a fter( () occurring in the formula under consideration which is
set to {rue exactly after any event € and to fulse after all others. The so obtained program is equivalent
to the original one as the values of the original variables do not depend of this new variable; this
means that a fter_( is added by superposition [CM88].

Now, it is easy to obtain the consistency of predicates of the form a fter(£) by not abstracting
the variable a fter_(. In the sequel, we suppose that for every predicate a fier(?) occurring in the
considered formula such a variable is defined, but we do not mention it explicitly in order to keep the
programs simple.

4.3 Abstract specification of a sequentially consistent memory

If we want to use our method in order to verify that the distributed cache memory defined in [ABM93]
is a “sequentially consistent memory” [Lam79], we must give a temporal logic characterization of
this property. A system with observable events of the form read;(q, d) and write;(a, d) — where the
index @ determines the process P; performing the event, « is a memory location and d a data element
— is a sequentially consistent memory if any of its computation sequences projected on observable
events can be reordered — by respecting the order of the events with the same indices - into a
sequence of a central memory — that means a sequence in which read;{a, d) is only possible if the
last write event concerning location « is of the form write;(«, ) for some j.

For the exact characterization of this property one needs full first order temporal logic, whereas
we want to restrict ourselves to a set of propositional but parameterized formulas in order to be able
to evaluate them by a model checking tool on a finite abstract model. Therefore, our characterization
is necessarily stronger than required. En order to be able to give a convenient set of formulas we need
the assumption — which can be made without loss of generality — that every pair of the form (a, d)
can occur at most once as the parameter of some wrile event. This is still not sufficient in order to
express these requirements in terms the “observable” atomic propositions of the form enable(€) and
« fter(() for observable events £ and the predicate inil. However, suppose we can identify auxiliary
predicates tiq;{ e, d) expressing “write(a, d) has been taken into account by process F;” which is
weaker than enable(read;{«,d)) but such that each write(a, d) is necessarily followed by tia;(a, d)
in all processes and from that moment on until tia;(a, d) becomes “false forever” nothing else than
d can be read on address « by process ;. Then, the expression of “sequentially consistent with a
memory’” becomes possible. We have to express that elements written by the same process are taken
into account in the same order by all processes; and for any two elements, even if they are not written
by the same process, they are taken into account in all processes in the same order.

Proposition 4.3.1 (Properties guaranteeing sequential consistency)
Let be 5 a transition system and the set of predicates

P = {init, enable(readi{a, d)), after(readia, d)),
enable(write;(a,d)), afler(write;(a, d)) }iider,(a,dyaddress x detum
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with the interpretation function I defined in the previous section. [f one can define an interpretation
function T ... for the set of predicates

Puuaf = {“ai(a":d))}i:mde;z‘.,(u.,u’):a.u’:l"ressxduhrm

such that M = (5,7 U L. ) satisfies the following set of properties, then the program generating
model M is a sequentially consistent memory.

(C1) ¥(a,d): address x datum, i : index
il = AG(enable(readi(a,d)) = tia;i(a,d))

(C2) Y{a,d),(a,d') : address x datunm .d # d',i : index
init = AG(lig;(a,d) = A[-liai(e,d) W AG(~tia;(a,d))])

(C3) Y(a,d): address X dalwm, i, @ index
init. = AGafler(write;j(a,d)) = AF(tia;(a,d))]

($1) Y(a,d) : address x datum, i index
it = AG[after(wrilei(a,d)) = A(-enable(read;) W tia(a,d))]

{82) Y(a,d} : address x datwm, ¥ @ indew
it = A(-tie(a, ) W V00, after(write;(a, d)) )

(S3) V(a,d), (', d") : address x datum .d # d',i,7 : index
init = A( [~after(write;(a,d)) W after(write;(a/,d'))] =
[~tia;(a, dy W tia;(a’,d') ] )

(84) V(a,d), (', d'} : address x datum . d £ d')1,j : index
init. = A([Stia(e,d) W tia;(d’,d")] =
[=tia;(a, d) Witia;(«', d")] )

Properties (C1) to (C3) express the before mentioned conditions on the auxiliary predicates tia;(a, d).

Property (S1) expresses the requirement that in every process P; as soon as an event write;(a, d)
has occurred, nothing can be read anymore until this write event has been taken into account.
This requirement looks very strong. However, the weaker and more intuive requirement that, after
write;(a, d)only events read,(«) are forbidden until (@, d) has been taken into account in process P, is
not sufficient: Suppose that process P reads («, d,), then (o', ), then (@, d2) and then (o', d5) which
guarantees by (S4) that (e, d;) is taken into account before (a, d3) in all processes an analogously
for the primed pairs. If in process Ps, writez(a, da) is followed by reads(a’, d}) and in process P,
writes{a’, d5) 1s followed by reads(a, d;), then these sequences cannot be merged and completed
into a sequence of a central memory, but it may satisfy all the above properties when (S1) is replaced
by the proposed weaker property.

Property (S2) guaranties that every («,d) is not taken into account in any process F; before
write;(a,d) has occurred for some j. This property could be weakened; what we need to express is
that every pair («, d) that is taken into account must be written by some process P, and only in F; it
is necessarily written before it is taken into account.

Property (83) guarantees that the wrile events of process P; are taken into account by any process
P; in the order in which they occurred: whenever («', ') is written before (a, d) by process £;, then
(a, d) is not taken into account by process F; before (¢, d') has already been taken into account.
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Property (S4) expresses that in any pair of processes the write events are taken into account in a
compatible order.

Both (83) and (S4) have the intended meaning only because of (C3). For example an execution
sequence, in which process P reads (o', d}) then (a,d,) and then (a, d3), process P reads (o', d})
then (a’, d3) and then {a,d,), and process P; reads (a,d>) and then (a’, d}), can obviously not be
merged and completed to a sequence of a central memory, but may be completed to a sequence which
satisfies all the above properties except (C3), because, if in every process the pairs (a, d) which are
not effectively read are not taken into acount, it is possible to obtain pairwise compatibility of the
order in which wrife events are taken into account but this does not imply global compatibility. In
order to obtain global compatibility, we add the requirement expressed by formula (C3) that all write
events are taken into account in all processes. Obviously, one could weaken (C3) by requiring only
that every wrife event is either taken into account by all processes or by none of them,

Now a few remarks concerning the choice of appropriate predicates t:a;{a, d): in case of a central
memory, tia;(«, ) can obviously be chosen enable(read;(a, d) (i. e., Mla] = d). We will show that
the distributed memory system that we want to verify satisfies the set of properties given above if we
choose tia;(a, d) to be C;[e] = d where C; is the cache memory of process P;; for this choice, the
condition (C1) is trivially satisfied.

All the above formulas can be translated into YCTL formulas. Notice that despite of the fact that the
original abstract specification does not contain an liveness condition, we need the liveness property
(C3) in order this characterization to be sufficient.

Proof of Proposition 4.3.1

Remains to show that every system that satisfies the requirement of Proposition 4.3.1 is sequentially
consistent. In order to do so, we show that every computation sequence 7 of a system satisfying this
requirement, can be finitely reordered respecting the order of the events of each individual process
into a computation sequence of a central memory: build the projections =; of visible events of each
process P; and the sequence 1A of pairs («,d) in the order defined by “the first state in which
tia;(a, d) is true” which is the same in all sequences 7; by property (S4). Then, build a sequence 74,
of a central memory using the following procedure.

Tseq '= € Va @ address  lw(a) 1= ¢; nw = first(TTA);

b= true;
while b do
b= fulse;

fori: index
i 3a. first(m;) = r(a, fwia)) then (add{T,e,, first{m;); b= true; tail(7;)) );
il first(m;) = wlnw) A nw = (a,d) A Bjr(a,lw(a) € 7;, then
(add{Teoq, First{m); b= true; tadd(m); hwla) := d; tail(TIAY; nw = first(TIA));
endfor
endwhite
if not Vi_empty{w;) then “error state”;

During the whole execution, lw(«) contains the last element that has been written on address @, and
niw contains the first element of I'7 A which is the next element to be written.



4.4 Verification of a distributed cache memory

In our program formalism, the cache memory proposed by [ABM93] is described as a system of the
form Py || ... || £, where each process I is defined as follows:

Name : P
Variables :  Input:  «a:address, d: datum.
local : AD; ¢ set of address x datum,, (which data are already written)

C; : arrayladdress] of datum U {€} (local cache memory)
Out; 2 buf fer of (address x datum;)

shared : M : array[address] of datum (global memory)
Ing 2 buf fer of ((address x datum) x Bool), k : index

Transitions ;
(writej(a, d))  allowed({a,d), AD;, ADY) A append(Out;, (a, d), Outl) A
unch(C;, M, I'ny,..In,)

(T'?“'di(a‘v d)) (Ci[”‘] = d) A C"”’?““?/(O“J'i) A 67”’1”!':’/(]"1'|(ndci?'essxdutum)xtrue)/\
unch(AD;, C;, Out;, M, Iy, ... dn,,)

(mawi(a, d)) Jirst(Out;, (a, d)) A tail(Outy, (@, d), Out)) A update(M, (a,d), M’} A
Yk index . append{Ing, ((a,d), i = k), [n},) A unch(AD;, C;)

(cui(a, d)) Sirst(dn;, ((a,d) x Bool)) Atail(In, ((a,d) X Bool), Inl) A
update(C;, (a,d), CL) Aunch(AD;, Ouwl;, M, {In;,j #i})

(mri(a,d)) (M[a] = d} A append(In;, ((a,d), false), Inf) A
unch(AD;, C;, Ouiy, M, {In;, j # i})

(eli(a)) clear(C;, a, Ct) Aunch{ AD;, Out;, M, T'ny, ...1n,)

Init : (Vb : address . (C;[b] = M[b] = ¢))A
emply(Onl;) A empty(Tn;)

where append, Leil, first and empty are as in the Example 4.2.1. update is defined by
update(M, (a,d), M) = (M'[a] = d) A (Vb : address . (b # a = M'[b] = M[b]))
and clear by

clear(M,a, M"Y = (M'[a] = €) A(¥b : address . (b#a = M'[b] = M{b])).

The only difference between our system and the one given in [Ger95] concerns the fact that each
pair (@, d) can be the parameter of at most one cvent write. The way we obtain this, is by defining
the type datum by datum = |J; datwm;, such that each process “signs” the data it writes, and by
using in each process a variable AD; of type sct of address X datum,; which stores the information
if the event write;{ e, d) has already occurred or not, as in the example of the buffer.

We verify the parameterized formulas of Proposition 4.3.1 on different abstract systems. Our aim
is not necessarily to find the smallest abstract system that can be used for the verification of each
formula, but we want to apply, whenever possible, the already predefined abstractions in order to
show that the application of the method is simple and can be done systematically. The cache memory
uses the data types and operations of the buffer of Example 4.2.1; it uses also a data type “memory”=
arrayladdress] of datum. As for butfers, we use three different types of abstractions of a variable
X of type memory depending on the formula to be verified: we may
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¢ completely forget about it (we do this for all but 1 or 2 cache memories C;)

¢ keep information about a single pair (a,d) by taking an abstract boolean variable X4 and an
abstraction relation p! (X, X4)=X4=(X[a =d).

WMErHOTY

¢ keep information about two pairs (ay, d)) and (az, d2) by taking two abstract boolean variables
X1 and X3 and an analogous abstraction relation Q%LE,MW(X, XL X3).

Suppose the type elen to be addressxdatum and take an abstract variable g4 of type elem), = {0, 1}
already used in the buffer example and the abstraction relation

Oatem (), ¢0) = (ea = 0) A ((a,d) # (ad)) V (g1 = 1) A((a,d) = (a.d)),
exactly as in Example 4.2.4; then, it is easy to define abstract predicates upda‘tel‘ and clear), by
update! (XN a,e4, X)) = (a = O A (X=X 4) V (e = DA X

expressing that if («,d) # (ad), X{a] = d can only be true in the next state if it is already true in
the present state, and if («, ) = (a,d), then in the next state X [a] = d, independently of the value of
XTa] in the present state. And similarly,

clear (X a,ea, X)) =(ca = A (X4=X4) V (eq = 1) A X

We define analogously abstractions with superscripts * and 2, concerning existential abstractions,
respectively abstractions where information about two elements is conserved (in the case that 2 ele-
ments are considered, one has to distinguish the cases a; = a; and a| # az).

In order to obtiain convenicnt abstractions of the buffers I#;, we need also a slightly different
abstraction of a buffer. In fact, due to the action memory read, the buffer In; may contain several
occurrences of the pair («, d), one of the form ((«, d), true) and severals of the form ((«, d), false).
Treating all these occurrences as ((«, ), Zrue) allows the event read; less often, but does notinvalidate
our set of formulas. However, we need an abstract buffer type dealing with multiple occurrences of the
distinguished elements, We define an abstract buffer with the same abstract domain as in Section 4.2,
but with different abstraction relation and operations. So, if e;, e; represent the distinguished elements
({a,d) x Bool) respectively ((a’,d") x Bool), then e, ¢ e; represents any buffers that has multiple
occurrences of elements of the form ({«, d) X Bool) and of the form ((a’,d") x Bool) in such a
way that the first element of the form ((«,d) x Dool) occurs after the last element of the form
((a',d"} x Bool). The abstract operations first and emply remain obviously unchanged, but the
abstract operations append and tail change. For example, appendy'i(e) ¢ ez, ((a,d), true)), B',) is
true if Yy = e e e;,and m.-ilij,‘”“(eg eey, ((a,d),irue)), By is trueif By = ey ee) orif By = e3.

Using these definitions and those already given in Example 4.2.1, the definition of appropriate
abstract finite state programs of the cache memory becomes simple.

Abstract system for property (S1) :  Each instance of property (S1) involves only events of a single
process ;. However, even if we succeed to verify it on P; we can not deduce its satisfaction on
the composed system. In fact, if we replace all processes different from P; by the process “Chaos”,
(S1) does not hold any more on the composed abstract program. We use here another approach to
compositionality: by Proposition 4.2.3, we can abstract each process P; individually and build a
global model by composing these small abstract programs. We choose the abstraction relation for all
processes F); with j # ¢ in such a way that shared variables are abstracted in the same way as in F;
and we forget about all local variables; this has as effect to avoid adding certain changes of shared
variables which are not allowed by the concrete processes P;.
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Intuitively, (S1) is guaranteed by the fact that for any ¢ € I after the event write;(a,d) the action
read; 1s blocked until (a,d) has traversed the buffers Qut; and In; and has been taken into account
by the event cashupdeale; in the cache C;. That means that we need to observe the cache C; and all
variables which may cause enable(read;(a, d) to become {rue, that is the buffers Out; and I'n; but
also the global memory M which affects C; via the action memory read (mr;); it is not necessary
to observe the buffers Out; for j # i: as d € datum,; the actions (mw;) should not be able to push
(a.d) into In;. This leads naturally to the following abstraction relation for process P;:

Qf”((a,(l) AD Ciy Outy, M Ty, o dny, ea, Ea, Cia, Outin, My, Inja) =

Qé!ﬁm,((”‘! d)’ C’A) A Q.iet.,af_elcm(ADi'n‘ EA) A
Qzln.cmm'y(cii C'iA) A Qllm fer (O’U:zi, O’u‘.tiA) A
Q?H.E’?nn?‘y(M’ MA) A Qg:ftfer (I’I?.t', I?l,‘A)

and for process F;, j # i we usc the same abstraction as in p; for the shared variables and forget
about all local variables

gf‘((a,d),Jztf)‘,,-,cl,,,o?f.r.,-,M,fw..,...,_mn, ea, Ma, In;q) =

ch»lem((a" d)’ (3,1) A ernem.oTy(M‘i MA) A
Qilul:jfifﬂ (Tniy Inig)

from which we obtain by replacing concrete by corresponding abstract predicates as defined before,
the following abstract program P,-A for index 2,

Wariables : abstract input: ¢4 : Bool

M : ,E‘q, C,jA . Bool
Out;q i buf ferl,
shared : My : Bool
Friq b'r.'.ffer'j;“‘“
Transitions :
(writei(eq))  allowed!(eq, Eq, Eq') A appendy(Outig, eq, Outl ) A

unch(C;4, M4, In:4)
(readi(es))  (ea=Cia) A emplyl(Outia) Aemptyc™(Inia) A
unch( L4, Cia, Ont;q, M4, Tnig)
(mwi{ea)) .f’f'-"l"'"_lzl(o“-fz‘zh ca) Atail )y (Oulia, ea, Outl4) A
update'y(Ma, e, M) A append ®®(Tniq,eq, 10l ) A unch(C;a, Ea)

(cui(ea)) _f-zirstl{"“(hr.i,t, €1) A m-.iif‘f‘“'(fnt-,, vea, dnl ) A
updatel (Cia,ea, Chy) Aunch(Ey, Ouliq,My)
(meri(ea)) (M4 = ea) A append P (Tuia,es, Inl ) Aunch(E4, Cia, Outig, M 4)
(cli{es)) cicrm'}](Cm, eq, Ci ) Aunch( By, Outiq, Ma, Inia)
Init : ~Cia Aemplyl (Oulig) A =My A enwtyk‘“([nm)

and P]A for all indices different from i,



Variables :  abstract input: ¢4 : Bool
shared: M, : Bool
Inig i bufferlpt
Transitions :
(writej(es), read;(eq),
cuj(eA), ﬂ'l.’!‘j(c;q ), Cl_,‘(e,q )) unch(MA, I'n.i,;)

(marj{eq)) first(eq) A rr,ppen,dh""“(fn.m, ea, Inl ) A updatey, (Mg, e4, M 4)
Init : empty M {(In;4) A ~My

in which we have already eliminated all abstract operations that are always true, such as append®?,
updatety,.... Notice that the event (1w (1rue)) is in fact never executed as first (true) = false
because the buffer Owt; cannot contain a pair (a,d) with d € datwm,. Notice also that the composed
system PP | PAL P2 is PA | PA, whatever the number of components is, as for all § # 4,
the programs fPf‘ are identical and P || P and P represent the same transition system.

Abstract system for property (S2): Property (S2) expresses the fact that any event read;(a,d) is
preceded by an event wrile;(a,d) for some j. Thus, we need to observe as before the cache C; the
buffer f7; and the global memory M 4, but also all buffers Out;. This leads to similar abstraction
relations as for the verification of (S1), except that we need neither unicity of wrife events and can
forget about AD; disabling wrile; events; however, we need abstract buffers Qut; 4 for all indices j
as we only assume d € dalwm. Thus, the abstraction relations 9332 are the same for all j:

gfz(/l,_l),fll)j, C;,Out;, M, Iny, ..., I, €4, Outj0, Mg, fn,4) =

eten (( A, D), ea) A Db fer(Out, Outin) A
Qaln,ev.»un'y(M: MA) A Q;g;fer(jniafnifl)

For this abstraction, the obtained global abstract transition system does depend on the number n of
processes as we have defined n abstract variables Out; 4 with non-empty domain. In order to obtain
an abstract transition system such that its size is independent of 72, we can define — instead of the set
of local abstract buffers Owut; 4 — a single global abstract buffer Qut 4 defined by a relation of the
form 1,glob

Qbuffer( U Ou[‘ja O‘H.[.A)

Jindex

which obliges however (o redefine abstract operations n.rldff"b, !.uilf;"b,...

Abstract system for properties (83), (84) and (C2) : For the verification of (83) we need to
observe events with two different parameters (a;, d ;) and (ay, d2), such thatd,,ds € datum;; thus,
we use the abstraction refations with superscript 2 as for the verification of order preservation in the
preceding section. We define abstract vaniables F4 (in PJA) in order to guarantee uniqueness of the
observed wrile; events, Qul;a (in ]’?A ) C;,, Gy, (in PI-A) and shared vartables In; 4, M 4 and M 4,
and use the predefined abstraction relations and corresponding abstract operations.

The resulting global abstract transition system is again independent of the number of processes as
all the abstract programs with indices different from 2, 7 are identical. In the case a; = aj, we need
only to consider the case in which the indices 7 and 7 are different, as the property for ¢ = j is implied
by (S1).
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On the same abstraction, we can also verify the property (C2).

In presence of (53}, (S5) expresses that all write events are taken into account in the same order
in ali processes ;| and P, also when they have been issued by two different processes P;, and P;,.
Thus, for its verification we observe two pairs (aj,d;) and (a3, d2) such that dy € datum;, and
d; € datumy,. Consequently, we need abstract variables £, E3 (in PJ‘? respectively PJ‘-:‘ ), Outj 4,
Qutj, 4 (in Pf} respectively P?’g ) G, G Gin PP, Ciyp,y Cppz (in P{j) and shared variables M 4,,
MA 7 ['IH;A and lmy] .

Verification of properties on abstract systems: The actual construction of global abstract transition
systems and the verification of the formulas on them could be done automatically by our tool [GL93,
Loi94]. By Proposition 4.2.8, we have to verify the consistency of the atomic propositions with the
used abstraction relations. For all properties, consistency is obvious as in the corresponding VCTL*
formulas only predicates of the form « fier{(} or lia;(e, d) — which are consistent with the chosen
abstraction relation — occur non negated.

Verification of Property (C3):  As we have already mentioned, our verification does in general not
allow to verify liveness properties directly: there exists no finite abstract system that verifies (C3).
But under the hypothesis that the system is fair with respect to the events mw; and cu; for all ¢, one
can deduce (C3) from the induction rules used in the proof given in [JPR94] and the following safety
properties — which can be verified by using finite abstractions:

o afler(write;(a,d)) = n(Ouly,{a,d))

o position(Quly, n,(a,d)) =
AX(position(Cut;,n, (a, d))V after(mw) A position{Out;,n~1,(a,d)))

o enable(muw;i(a,d)) = AX(enable(mw(a, d))V after(mw;(a,d)) A in(In;, (e, d))

o position(In;, n, (¢, d)) =
AX(position(Ing,n, (a,d))V after(cu;) A position(fu;, n—1,(a,d)))

o enable(cuj(a,d)) = AX(enable(cnj(a,d))V afler(cuj(a, d)) A tia;(a,d))

where in and position are predicates with obvious meanings.

4.5 Discussion

What have we achieved? A first impression could be that this verification of a cache memory looks
much like a handwritten proof. However, it is quite different: starting right from the beginning, it
is in fact rather lengthy to define all the abstraction relations and corresponding abstract predicates,
even in order to verify some trivial buffer program. However, having done this once, in order to
verify the much more complex cache memory system, we only need a few more definitions obtained
a long the same line as the already given ones. In fact, there are many examples of systems, for which
we have to verify exactly the same type of properties and which use analogous data structures and
operations on them, such that the same abstract domains and operations can be used. Thus, we could
build a “library” of useful abstract domains and operations in which new definitions can be added



when necessary. A similar approach has been followed by P. and R. Cousot and more recently by D.
Long concerning “standard” abstractions of integers and operations on them.

The fact that for the verification of an individual property a large part of the system can be
abstracted existentially is often necessary in order to obtain tractable global models. If the system
is too large or the property is “too global” one can often get results by decomposing the property,
depending on the particular system under study, as this has been proposed, e. g. in [Kur89].

For the verification of the cache memory, an additional complexity comes from the fact that we
also have to define the set of formulas as originally the abstract specification is not given in these
terms. We believe however that this set of properties is interesting by itself as it can be used for
the verification of other systems supposed to implement sequentially consistent memories. The fact
that our characterization is stronger than required by the definition of sequential consistency, is not a
real problem, because in any particular case, it should be casy to decide which of the properties are
allowed to be weakened and which not. In fact, this characterization can easily be adapted to weaker
or stronger specifications which are frequently used in real implementations.

Another point which makes an abstract specification given as a set of properties so attractive, is the
fact that the modification of a single property does not require to redo the whole verification process.
Notice that our method is also incremental with respect to medifications of the program, as long as
they allow to use the same or at least very similar abstraction relations and abstract operations, which
is often the case. That means that exactly the time consuming and difficult part of the verification
process need not to be redone. In the case that the obtained abstract program is not already identical
to the previous one, the reconstruction of a model and the verification of the properties on it by means
of some model checker poses no problem.

Acknowledgements: I would like to thank the referees for pointing out that the initial characterization
of sequential consistency was not sufficient, Amir Pnueli for giving me some ideas how to get a
satisfactory solution and Denis Dams and Joseph Sifakis for fruitful discussions,
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5.1 Introduction

In shared-memory multiprocessor systems, the time taken to perform memory access operations is
critical. In most designs, this is reduced by equipping each processor with a cache: a local image of
the shared store. If each cache contains a copy of the locations that the corresponding processor is
most likely to access, then any delay due to shared memory access will be minimised,

However, if a system contains multiple copies of the same datum, care must be exercised if the
system is to behave in a predictable and satisfactory fashion. Whenever a processor updates some
location, any caches which contain a copy of that location must be updated to match. This is the réle
of the consistency protocol.

Many consistency protocols operate by marking other copies as invalid, so that subsequent access
requires a read from shared memory. This marking must be done immediately: no further reads or
writes can occur until all caches have been marked. In highly-distributed multiprocessor systems, the
delay caused by such atomic ‘write and mark’ operations is unacceptable. Such systems require a
more relaxed view of data consistency.

In [Lam79], Lamport introduced the notion of sequential consistency:

The result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor appear
in this sequence in the order specified by its program.

This notion is now widely employed in multiprocessor designs.

In [ABM93] the authors propose an algorithm—the lazy caching protocol—for ensuring sequential
consistency. In this paper we use the traces model of Communicating Sequential Processes (CSP)
[Hoa85] to verify this protocol.

In section 5.2 we give a bnief overview of the syntax of CSP, and in section 5.3 we describe the
traces model, and how it may be used to specify and verify processes. We describe the lazy caching
protocol in section 5.4, and show how it may be encoded as a CSP process in section 5.5. In section 5.6
we express the notion of sequential consistency as a trace specification, and in sections 5.7 and 5.8
we verify that the protocol meets the specification: we use the proof system to derive a property that
holds of all runs of the protocol, and show that this is enough to imply sequential consistency.

5.2 Processes

Communicating Sequential Processes is a language for describing patterns of communication. Each
pattern is represented by an abstract program, or process, which records the points at which certain
communications may take place. These processes may be combined to produce a description of a
system in terms of its components.

In CSP, we usce abstract entities called events to model important points and actions in a history,
or execution, of a system. We may then obtain a workable description of the system in terms of these
events; this description may contain information about the order in which certain events may occur,
the times at which they may occur, and how they might be blocked or prevented from occurring,

The stmplest process may perform no events, and is written Stop. This represents the end of a
communication pattern. We introduce events using the prefix operator —: the process a — Stop
represents a system that is able to engage in a single event @ before stopping. A choice between
patterns of communication is provided by either of the choice operators O and N, representing external
(deterministic) and internal (nondeterministic) choice, respectively.
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Processes may be placed in parallel combination using the || operator; in the parallel composition
Pl
A

the two processes I° and () evolve independently, but must cooperate upon every occurrence of any
event from the shared set A. This set represents the interface where the two meet and data may be
transferred. If the interface consists of precisely those events that are common to the two process
descriptions, then we will omit the shared set parameter.

Processes may be placed in sequential combination using the ; operator. The sequential compo-
sition P ; () behaves as process P until that process terminates successfully, and then behaves as Q.
We use the process Skip to mark a successful end to a pattern of communication.

We will use indexed forms of the above operators to represent networks and series of processes:

”iEI..n Pi

denotes a parallel combination of processes with index i ranging over a finite set 1 .. n, while

F;

Sil.n
denotes the same collection of processes, executing sequentially.

In this application, processes will share only compound events, representing value-passing com-
munications along named channels. A process that is ready to transmit value v on channel ¢ and then
behave according to the description P would be written as ¢!v —- P, while a process that is ready
to accept a value on channel ¢ and then behave as ) would be written ¢?z — (). The subsequent
behaviour ¢} may be parameterised by @, a variable that will be bound to the value transmitted along
the channel c.

We may conceal or abstract away events from a process description using the hiding operator
\. The process I” \ A behaves as P except that events from the set A are no longer visible to the
environment of the process; they are encapsulated within. Finally, we will want to relabel processes.
The process 7.7 is the same as P’ except all events « are renamed to ¢.a.

5.3 Traces

A variety of denotattonal semantic models have been formulated for the process language of CSP. In
each model, a process is assoctated with the set of observations that may be made during its execution.
In the simplest model each process is associated with the set of event sequences or traces that may be
recorded during execution. We may use this model to specify safety properties: requirements that no
undesirable events should occur.

53.3,1 Semantics

If £ is the set of all communication events, then the trace semantics of our language is given by a
semantic function

Traces » CSP — P(seqZX)

mapping processes to sets of sequences of events. As usual, the semantic function is defined by
structural recursion upon the language syntax: e.g.,

Traces[Stop] = {{}}
Traces[a — P] = {QYU{{«) " tr | tr € Traces[P]}
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where () denotes the empty trace and 7 denotes concatenation of traces.

If we impose an order upon the semantic model, then we may give a meaning to recursively-defined
processes. Given an equation P = F'(P), where F' is a syntactic function constructed from process
operators, we define the semantics of / to be the least fixed point of the corresponding function in
the semantic model. For this to be a good definition, we must insist that each recursive call of P on
the right-hand side is guarded by at least one communication event.

The semantic model can also be used to justify a notion of equivalence for process terms:

P=@Q <« Traces[P] = Traces{Q]
which feads to a complete set of algebraic laws for rewriting processes: for example,
(¢ — Skip); P = a«a— P

This states that the sequential composition of the process @ —- Skip with P is equivalent to the
process that performs « and then behaves as 7.

5.3.2 Specification

Apart from ensuring consistency of process definitions, and justifying algebraic laws for equivalence
and refinement, a denotational model may be used to support model-oriented specification. If each
process 1s associated with a set of observations, then constraints upon observation sets may be used
to express requirements upon process behaviour. We write behavioural specifications as predicates
upon observations.

For example, suppose that a process I is capable of performing—amongst other events—both of
the events « and 4. If we wish to specify that P never performs an « after a b, then we have only to
insist that in any trace fr of process P, the event o never appears after b. Formally,

Yirg dre o br =tr; " {0) "tre = trs | {a} =)

that is, if & contains a & event, then the part of ir following the b (irz) contains no occurrences of
event «. To express this final condition, we have used the trace projection operator [, which removes
from the trace any event that is not in the chosen set (here {« }).

To show that a process satisfies a behavioural specification, we must show that every trace of the
process satisfies the corresponding predicate. We define

Psat S(ir) & Virelr ¢ Traces[P] = S(ir)

Although the sat is a relation between process syntax and predicates, it may be seen as a refinement
relation. If we identify the process I with its semantic set of observations, and the predicate S(#r)
with its characteristic set of observations, then sat states that every observation of P is an observation
of §.

5.3.3 A proof system

The definitions chosen for the various process operators guarantee that the semantics are pointwise
compositional: the properties of an observation of a compound process can be derived from the
properties of observations of the components. As a result, we may exhibit a compositional proof
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system for trace specifications. Each semantic equation may be inverted to yield a natural deduction
inference rule.

Stop sat tr = {)

The basic process Stop satisfies the specification ‘the trace is empty’.
Any non-empty trace of a prefixed process must begin with the prefixed event; this event must be
equal to the head of the trace:

P sat 5(ir)

a — Psattr = ) V head(tr) = a A S{tail(ir))

The tail of the trace must be performed by P; if we know that this process satisfies 5, then we may
conclude that S holds of tail(#r).

A ftrace of a choice process may have been performed by either component; we are thus left with
a disjunction of specifications:

P sat 5(1r)
() sat 1'(1r)
PO Q@ sat S(ir) Vv T(ir)

The parallel combinator, on the other hand, gives rise to a conjunction of specifications. In the case
in which the interface between the components includes every event that is common to both process
descriptions, we obtain the following inference rule:

P sat 5{{r)
@ sat T(ir)

Pl @sat S(tr [ aP)YAT(r oQ)

We write a P to denote the set of events that appear in the description of process P. The projection
tr [ aP reveals the sequence of events performed by component P in this parallel combination.

The rule for network parallel combination is a simple generalisation of the binary case; with the
same assumption about interfaces we obtain:

Vie f..neP;sat5(tr)

llic;., PisatVi€ [ neSi(tr [ aly)

while the rule for hiding involves an existential quantification:

P sat S(ir)
P\ Asat3tr, o tr =1r; \ AAS(tr;)

We may be uncertain about the order of internal events, but we know that there must be some internal
trace that is consistent with our observation. The hiding operator \ on traces simply strips the given
events from the trace.



Output communication is simply syntactic sugar (the corresponding rule is a particular case of the
rule for prefixing)

P sat S(ir)
clv — Psatir = () V head(ir) = c.v A S(tail(ir))

while input communication is a form of choice; the subsequent behaviour remains to be determined
by the incoming value.

Ve Q) sat Sp(ir)
cle — @Qsattr = (} V Iv e head(tr) = c.v A S,(tail(tr))

The rule for recursion insists that we establish a base case (showing that the specification is
satisfiable} and then demonstrate that the specification is preserved by recursive calls:

Stop sat S(tr)
WX e X sat S(fr) = F(X)sat S(tr)

P sat S(ir)

[P = F(P))

This rule is sound only if the recursive process is well-defined (itis enough to show that each recursive
call 1s guarded).

The definition of sat allows us to derive logical rules for manipulating proof obligations: for
example,

P sat S(1r)
Vire S(tr)= T(tr)
P sat T'(tr)

It can be shown that the resulting proof system is sound and complete with respect to the trace
semantics,

5.4 The lazy caching algorithm

In [ABM93] the authors propose a novel algorithm for ensuring sequential consistency. Each processor
cache is equipped with input and output queues, allowing (1) cache updates to be postponed, while
the processor reads possibly out-of-date data (2) memory updates to be queued, leaving sequences of
write operations penading at each node. A suitable system is illustrated in Figure 5.1.

A write event does not have an immediate effect upon the shared memory state; instead, a request
is placed in the output queue, Whenever a request is taken out of this queue, the memory is updated
and a cache update request is placed in every input queue. In the case of the node responsible for the
write event, the cache update request is marked when it arrives in the input queue: we say that it is
starred.

A read event cannot occur until (1) the cache has a copy of the address concerned, (2) the output
queue is empty, and (3) there are no more starred requests in the input queue. This discipline is enough
to ensure that memory accesses are sequentially consistent throughout the system.

To obtain a CSP process description, we define a Node process for each processor. This buffers all
communication to and from the shared memory, and consists of three components: a local cache, an
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Memory

Figure 5.1: A lazy caching architecture

output buffer, and an input buffer. Each user process communicates with the system via two channels
7 and w, used for reading and writing values, respectively.

The write channel w is connected directly to the output buffer, but the read channel is linked to all
three components. Although the values passed on r are determined entirely by the cache, as we shall
see, both butfers must agree to the communication taking place. There are three further channels in
our description:

o ci, used for passing values from the input buffer to the cache;
o i, used for passing values from the memory to the input buffer;
e o, used for passing values from the output buffer to the memory.

These are internal channels, and will be hidden from the user process. The resulting Node process is
illustrated in Figure 5.2.

To serve a collection of n user processes, we will require a network of node processes, labelled
from / to n. Thesc processes communicate via a shared memory, which forwards update messages
to all input buffers. In this section, we will use a process Memory to describe the service provided
by the shared memory interface.

Each node process is a parallel combination of three components:

Node = Cache || In || Out
The system contains a parallel combination of such nodes:

i.Node

Nodes = | |,:e f.n

where 7. Node is the result of prefixing all communication events with an index :.
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Figure 5.2: Cache and queues at a single node

The two internal channels ni and 1m0 will connect the memory to the input and output buffers at
each node, while a third channel ¢i will connect the cache to the input buffer. These channels are not
part of the interface to the memory system, so we conceal them using the hiding operator. The final
description of the system is thus

System = (Nodes || Memory) \ Internals
where Memory represents the service provided by the shared store, and
Internals = {i.mi,imo,i.ci|i e l..n}

denotes the set of all internal communications.

5.5 Process description

The output buffer is a queue for data messages. Each data message takes the form «.d, where a is
an address and  is a data value. The communication w.a.d from the user program is an instruction
to update address @ with value . The output buffer is always ready to receive communications on
channel w; these communications wili be forwarded to the memory along channel mo in the order in
which they were received.

If we model the output buffer as a CSP process Oud, then this process will be indexed by a
sequence variable, representing the current state of the buffer. Initially, this sequence is empty; at all
times, it consists of the sequence of data messages that have yet to be forwarded to the memory.

Out = Ouly
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Om,() = whla.d — O'u!»(u,d)
O
rta.d — Ou.!,()

Ouleran™, = wlad — Ouligr gn™ " (a.a)
(]
mola . d' —— Out,

Whenever the output queue is empty, the process will allow communications to take place on channel
r: the value passed is ignored by Out.

The input buffer is always ready to accept data messages from the memory on channel mi, and
will forward these messages to the cache on channel ci. We may model the input buffer as a process
In, similar in form to Oui above.

n = ]’H.()
Ing = miladf — Iy,
O

rla.d — 1710

The behaviour of the input buffer is slightly different to that of the output buffer. It will allow
communications on channel » whenever it contains no data messages that are marked with an asterisk:
messages that have been flagged by the memory as urgent. Thus the buffer need not be empty for
communications on » to occur; it may contain any number of non-urgent messages.

g argn™s = milad f — Dneng gy ™0 (0. f)
a
cila' . d' fl — In, if stars({a’.d'.f"Y"s)
= HLi?(l.d.f — ]n(a'.d‘.f’)/_\gﬁ(a,.d.f)
O
cite! . d'.f! — In,
[
rld — I g gy ™, otherwise

The sequence predicate sfars s true iff its argument includes a flagged data message. We may define
stars(s) & s {imdad x|ie .. nhac ANnde D} =)

where [ is the standard sequence/trace projection operator.

If we model the cache as a CSP process, then it will be indexed by a function variable, representing
a mapping from address to data values. Initially, this takes the value zero, mapping each address to
data value 0.

Cache = Cache,en
Cache, = cila.d.f —s Cacheygarad
O

r?aly(a) — Cache,
where zero is given by

zero = {aw— 0} a€ Address}

67



At any time, the cache may be read via channel »; for any address a, it will return the value d stored
at a, according to the local mapping ¢.

Because channel communication in CSP is fully synchronous, we may represent a read commu-
nication as a single event r.a.d. The composite notation used above abbreviates a choice construct

rlalg(e) — ... = 0O, rag(a) — ...

where A is the set of all addresses.

Our assumptions about the behaviour of the shared memory interface may also be described as a
CSP process. This process accepts data messages from the output buffers and distributes them to all
input buffers. Inits initial state, the memory process will allow any communication of the form i.7.a.d:
a read communication at node . While the memory is distributing data, these communications are
disabled.

Memory = icrn bmolad — MemoryOuly; , 4y 3 Memory

O
O
DiEI..n '

aa.d — Memory

The distribution process is a sequential composition of n processes, each passing the data message to
a different input buffer,

MemoryOut(; . ¢y = S$ieq. if 1 =7 then (jmia.dx— Skip)
else (j.mi.a.d — Skip)

If the input buffer belongs to the sume node process as the output buffer, then the memory will flag
the data message with a star. This is the only aspect of the shared memory service that we need to
consider.

5.6 Sequential consistency

We may express the property of sequential consistency as a trace specification. A trace tr is sequen-
tially consistent if there is some trace of an ideal memory such that the order of reads and writes at
each node is the same for both traces. Formally, we define a specification SC(tr) on traces which
holds exactly when /r is a trace of a sequentially consistent memory.

If predicate Serial holds exactly when {1 is a truce of a serial memory, and the condition that two
traces {1 and {r’ agree upon the order of rcads and writes as seen from each node is defined by the
predicate Consistent{tr,1r"), then

SC(tr) & 3’ e Serial(tr') A Consisteni(tr, ir')

That is 17 is a trace of a sequentially consistent memory exactly when there is another trace ¢r’ which
is (1) a trace of a serial memory, and (2) consistent with ¢r.

A trace of an ideal memory is a trace in which every read communication passes the last data
value written to the chosen address. If we write < to denote the prefix relation between traces, then

Serial(tr") = Virg ¢ trg " (iorwa.d) < 0" = valuey o 1(try) = d

that is, for any prefix of & ending in an event of the form i.r.a.d, the value d passed must be the last
value written to «. For convenience, we write [ to denote the indexing set { .. n, and define

Tw = {iw]|i€l}
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1o denote the set of all write channels.
The function value returns the data value last written, or ¢ if no write has occurred since the
system was initialised.

valueg ((try=d & trf{ CaD={)nd=20
)
lasi(tr [ C.a.D) = c.a.d

The function lasi returns the last element of a trace, and the set of events C.a.D marks the set of
events
{cad|ce Cnde D}

for some set of channels ¢ and the set of all data values D). Here, the set C is the set of all write
channels [.1w0.
Two traces are consistent if they agree upon the order of external events at each node:

Congistent(tr,tr'y = Vietr| E; ="' E;

where E; is the external interface at node 7, the set {7.7, 7.w}. Two consistent traces may differ in the
order of internal communications, and in the relative order of external communications at different
nodes.

To show that the lazy caching algorithm guarantees sequential consistency, we must establish that

Systen sat  SC(tr)

that is, that every trace { of our implementation satisfics the specification SC defined above.

5.7 Component properties

As part of the verification process, we will identify the salient properties of each system component:
the contributions that each makes towards our guarantee of sequential consistency.

The output buffer acts as a queve: the sequence of messages output must be a prefix of the
sequence of messages input. Furthermore, read events may occur only whenever the buffer is empty.
We define a behavioural specification for the output buffer at node ¢

OUT(try = trllime <irdiw
A
Virg o lrg” (irad) < tr = b Jiomo = trg | iiw

If a read event occurs, then the input message sequence must match the output message sequence. We
write &r |} ¢ to denote the sequence of data messages passed on channel ¢ during trace {r.

The tnput buffer atso acts as a queue. However, read events are enabled only when there are no
flagged data messages held in the buffer. A suitable behavioural specification of the input buffer at
node ¢ would be

LIN(Y = trdeei <t donu
A
Virg @ brg” " (ir.ad) < tr = drg Jdcik=trp § i.mix

We write {1 || c.x to denote the sequence of flagged messages passed on channel ¢ during trace tr.
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The cache acts as a serial memory. Whenever a read event occurs, the data value passed must be
the last value written to the address in question. For node 4, a suitable behaviour specification would
be

LCACHE(r) = Virg o trg ™ (ir.a.d) < tr = valuei g o (trg) = d

where vafue is as defined above.

The memory process may allow read events only when every data message accepted from any
channel i.meo has been redistributed to all channels of the form 7.mi. In any case, the starred data
placed onto an 4.4 channel will be a prefix of the data taken off the comresponding mo channel.

MEMORY (ir) = Vietr{imix<tr{ i.mo
A
Yirg e try” {irad)<itr=
Vietrgl jomo=1frydj.mix
A
trg 4 j.mi = #rg I I.mo

If the input buffer belongs to the source node for the current data message, then the outgoing copy
must be flagged.
Using the rules of the proof system, it is easy to establish that each of the sequential processes
exhibits a satisfactory pattern of communication: i.e., that
i.dn sat i IN(ir)
0.0ut sat . QUT(tr)
i.Cache sat . CACHE(r)
Memory sat MEMORY (ir)

where In, Out, Cache, and Memory are as defined in the previous section.

5.7.1 System properties

The component specifications may be combined using the proof rule for parallel composition. In this
way, we can establish that

i.Cache | «.In sat v | i.ci <trlimiA
Virg o trp” (ir.ad) < itr
=
trg J t.cix=trg L 2.mix A
value; o o (trg) = d
Using the same rule once more, we obtain
i.Cache || i.dn || i.0ut sat ir | i.ci < trll imi A
tr Jiomo <trl iw A
Virg e trg {i.r.a.d) < tr
=
trg § tciox = trg | iomix A
brg b 2.mo = trg | 1w A

value, i oi(tro) = d
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The rule for network parallel combination may then be applied to yield the following statement
(recall that Nodes = H{eju,n_ i.Node):

Nodes sat YViedr|ici<irlingA
ey iomo < tr{l i.w A
Virg o trg” (ir.ad) < tr
=
trg Jicix=trgd i.mix A
tro dl iomo = try | i.w A

value; i o(trg) = d
A final application of the rule for parallel composition yields
Memory || Nodes sat  Spec(tr)
where

Spec(try 2 Vietr limix<trimoAn

el doed < tr o iomi A

irdiomo <trlliaw A

Virg e trg {ir.ad) < ir =
lrg dl tocike=tryg 4§ t.mix A
trg I i.mo = trg 4w A
value; o0 (trg) = d A
Vietrgl jomo=1trgll j.mixA

trg 4 jomi = trg § I.mo

We have shown that whenever (¢ is a trace of Nodes || Memory, then {r must satisfy the specification
Spec. In addition, all prefixes of fr will also satisfy Spec.

From our definition of sequential consistency, 1t is easy to see that this property is invariant
under the hiding of internal channels fnfernals: if tr' is such that tr = tr' \ Internals, then
SC(tr') & SCr).

Thus, we have reduced our proof obligation to

(Vir' < treSpec(tr’)) = SC(ir)

5.8 Verifying sequential consistency

To demonstrate that Spec( ) is sufficient for sequential consistency, we will show that, for any trace
tr; satisfying Spec—and all of whose prefixes satisfy Spec—there is a consistent trace trp which
satisfies Serial. We may construct this trace by permuting ¢r;

tre = (My o M,) try

where each A7 1s a permutation function on traces.
The function M, moves each read event i.» to a position just after the last 7.mo eveat for whicha
corresponding 7.ci event has occurred. In other words, the read is moved to a position after just those
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mo events whose effects have filtered through node i’s input buffer to have an effect on i’s cache. If
k i.ct events have occurred, then the read is moved to just after the £th mo. Formally,

Vir:seqZe r \ I.r = M. (tr)\ L.7 A
Vielr[ ior=MJ(tr) ir A
Virg o trg” {i.rad) < M, (tr) =
Jirg o lrpy{ir.a.d) < ir A
#(iry [ i.ci) = #(trg [ I.mo)

We insist that: only read events are moved; the order of read events at a particular node is unchanged;
a read event at node ¢ is moved back to just after the last mo whose effect has been seen at 1,

The function M,. moves each write event .w to a position just before the corresponding i.mo
event. In other words, write effects are moved to the point at which their effect is experienced by the
memory. The Lth 7.w is moved to a position just before the kth i./mo—if the corresponding i.mo has
not yet occurred, then we move i.w to the end of the trace. Formally,

Vv, bl o dv’ = M,(lr) =
Yielrdiomo < trlinwA
tr\ fow=tr"\ Lw A
Vietr[ fw=1Ir'[ iwAh
Virg o g (iomo.a.d) < ' = last trp = i.w.a.d A

YVirg,try @ trg” (fow.a.d) " try = Ir = first ir; = i.mo.a.d
A

tr; \ I.w = ()

We insist that: the function is only defined on those traces 1 where the i.mo events are a prefix of the
i.w events; only the write events are moved; write events from a particular node are not reordered,;
every o in the resulting trace is preceded by the write event that caused it; every write is moved to
a position where it either precedes the corresponding mo, or is followed only by other writes—the
write events at the end of the trace are those for which the corresponding me event has yet to occur.

The composition of these functions moves each write event to the point where its message is
accepted by the memory, and each read event to the point where the last update for that address was
placed on the corresponding I queue. In the resulting trace, each read event is placed after precisely
those write events whose effects have reached the memory.

Having defined the functions, we must show that

¢ the composition M, o M, is defined for every trace of the process Nodes || Memory;
s any trace in the range of A, ¢ M, is a scrial trace;

e any trace {7 is consistent with its image (M, o M,) ir.

The first of these requirements is casily met. The others will need some careful reasoning.

Applicability

To show that our permutation functions may be successfully applied to any trace of our system, we
must show that every trace i, of the system is in the domain of the function M, and that M, (ir;)
tes in the domain of function M.
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We must show that if #ry "~ (i.r.a.d) < {r; thenthe event i.r.a.d can be moved forward to follow
k 1.mo events, where kb = #(frg [ 7.ci). This is equivalent to showing that

#(trg [ d.ci) <#(lrg [ T.mo)

which is easy to establish: {ry is also a trace of the system, and so must satisfy Spec; the second and
last conjuncts of Spec establish the result.
We have then to show that the trace trf = M,.(¢;) satisfies

‘I . -’ r
try 4 z.omo < rp || iow

which follows from the corresponding result for #r;, given that M, only moves read events.

Serialization

To show that every trace in the range of M,, o M, is a serial trace, we must show that an appropriate
value is returned on every read event. We begin by showing that if Spec(ir;) then the data messages
read during M, ({r;) agreec with the data messages passed on the mo channels: i.e., that

Virg o trg(ir.ad) < Mo(fry) = values mo.o(trg) = d

Suppose that
tro " {ir.a.d) < M. (tr;)

then from the form of A, there exists some {rj; such that
try Tlicraadd) < tep A #(lrg [ oicci) = #(try [ T.mo)

From Spec(tr;) we have that value; .; . (1r};) = d whence

tr L i.et
< i Uionu (from Spec(try))
= by Lo (from Spec(ir;))
< try § Lo (try < try)

M.(ir;) U I.mo  (definition of M)
Also, since fry < M, {1r;), we have
trg 4 Lomo < M (tr;) | I.omo

Hence trg | i.ciand {rg || .o are both prefixes of M, (¢r;) || I.mo. But they are of the same
length so they must be equal. We conclude that

valuey pmo ol trg) = value; 5. .(try) = d

as required.
We must now show that (M, o M) 1r, is serial:

Vtrg e trg T {iriaud) < Myo(My(tr)) = valuer .o(trg) = d

Suppose that
trog ™{ir.a.d) < My (M (ir,))
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From the definition of M, there is some trace {rj such that
trg T aad) < M) A b\ Tow=trg \ L
From the above, we have that value; ,,, o(#75) = d. Also

tro | I.w
= irp | I.me (from Spec(ir;), and since M, moves only reads)
= try I I.me (M, only moves write events)

We may conclude that valuer o o(lrg) = valuer o o(tr;) = d. The trace is question is thus a serial
trace.

Consistency

To show that M, o M, preserves consistency, it1s sufficient to show that each of M, and M., preserves
consistency when considered separately. We argue that neither M. or M., allows reordering between
.7 events, or between ¢.w events. It is therefore enough to show that the transformations do not alter
the relative order of ¢.v and 7.1 events.

To see that M, cannot move an i.r event past an ¢.w event, suppose that a trace of the form
trog” try T {3.0) Tty is transformed into try T (i) try T iry where tr; \ Lr = tr! \ IL.r for
1= 0,1,2, and

#((trg e ) b i) = #(try [ 1omo)

We suppose for a contradiction that the i.r passes an Z.w event; i.e. we suppose that ¢r; is of the
form trg”(i.w.a.d) " tr;. Then from Spec we have

(tro” trs ™ (Towead) " tr ) b dono = (trg trg ™ (fwead) irg) I iow

and
(trg " tra) d domo < (trp " rg) | tow
Hence there must be a 2.mo.a.d eventin try . A similar argument shows that there mustbe i.mi.a.d.x

and i.ci.«.d.x events in i1y after the i.mo.a.d, and if the 7.ci.a.d.x is the kth i.ci event, then the
t.mo.a.d is the kth [.me event. But then

#((trg "ty ) [ odeci) > #(trg [ Tamo) = #(try [ L.mo)
since frg \ f.r = Iy \ 1.r, which contradicts the statement above.
To see that Af,, does not alter the relative order of i.r and ¢.w events, note that the function M,
moves each ¢.w event to just before the corresponding i.mno event. Suppose, for a contradiction, that
the .w passes a i., event. Then there are two cases to consider.

Firstly, consider the case where the 7.« moves to a position before the origéinal position of the ¢.r,
i.e. the original trace is of the form

g T (weadY ey Tlre T (damo.and) T trg T (dral d ) Ty
which is transformed by M, to

tro " {davead) ey T (L dY T iy T (o e d) Tty Tty
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which is transformed by M, to
trg ) T {drd ) Tty T (e d) T (fomoa d) T e T Y

where ,
#((tro " {Lw.ad) " try Tty T {(Lmo.ad) trg) [ dei) =
#H{(try " {Howad) ")) [ Tomo

and try \ {I.r,fw} = ]\ {I.r,Jw}=0"\{I.r,.w}fori= 0..4. Then, using Spec,

(trg " {{owoad)y ™ by Ttrg T (iamo.ad) trg) Y icin) =
(trp " (fawa.d) ey} Jiomo

Also from Spec .

(brp " (FavcadY ey T e T {imo.ad) trg) 4 dcix =
(tro” " (iw.a.d) ey "tre” {i.mo.a.d) trg) | i.mo

giving a contradiction.
Alternatively, consider the case where the .2 moves to a position after the original position of
the 7.7, 1.e. the original trace is of the form
tro " (dwad) "ty T ey T Gord DY T s T (Eamo.a d) Tty
which is transformed by M, to
by " {fw.ad) Tty T (Erd A T ey T ey T (fumoa d) T
which is transformed by A, to
A A C NN 1:;','ﬁlr'}’ﬁ(i.m.ﬁ..d)A(i.mo.a.d)ﬁtrf
where

#((trg "t (1o (1'.(!')“?.?"5_,”_\17”)[‘ Lo =
#H{(trg VT Er )Y T T L

and Loy \ {I.r,Jow}=t!\ {{r, Tw} =0\ {Ir,l.w}fori=0..4, and

(trp”(iaw.a.d) " tr ’-\hgﬁ(i roa . dY trs T (danoad) try ) [ faw =
(trf Tt T (e d Y T T e T (wad) T (EmoLa d) T ) T iw

Hence,
#((try " (Eav.ad) "y T e ) [ iomo)

< #H{(trf Tl T Erd AN T T ) [ tomo)
= #{(trf T Gl ) ff::/_\h?)r i)
< #(brg T {Eowad) ey T ) [ fw)

contradicting Spec,
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5.9 Conclusion

In this chapter we showed that the CSP process notation can be used to describe a lazy caching
algorithm for shared memory. We also showed that the language of CSP traces can be used to
characterise the property of sequential consistency. Using the traces model of CSP, we were able to
verify that the caching algorithm guaranteed sequential consistency for a suitable shared memory.

The trace specification provided a particularly concise characterisation of sequential consistency,
and the process notation made it easy to describe the communicating behaviour of the chosen imple-
mentation. The proof that each trace of this implementation is sequentially consistent is lengthy and
involved, but contains little or no junk: the complexity of the proof matches the complexity of the
problem.

The approach taken here is relatively unsophisticated. We have not shown how the process
notation may be refined further, towards software or hardware implementations. Neither have we
demonstrated the more powerful models of CSP, which support liveness and timing specifications.
But it is our hope that this chapter demonstrates the advantages of a uniform model-based approach:
by choosing the simplest adequate notion of observation for each property, complex systems may be
verified with a minimum of effort.

76



Chapter 6

The Compositional Approach to
Sequential Consistency and Lazy
Caching

W. Janssen, M. Poel, J. Zwiers
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6.1 Introduction

Adequate decompositions often simplify the analysis and understanding of distributed systems. Such
decompositions can to a large extent be formulated in a way that is independent of the underlying
model of distributed systems. Formal correctness proofs that exploit this decomposition can have
a top level structure that is largely independent from the particular formalism used as well. We
substantiate this claim by explaining the lazy caching algorithm as proposed by Afek, Brown and
Merritt [ABM93].

The algorithm in [ABM93] describes the implementation of a so called sequentially consistent shared
memory [Lam79]. The resuit of our investigation is that the algorithm can be decomposed into
essentially four simple protocols. The four protocols are of more general interest than just the lazy
caching algorithm. For instance, the protocol concerned with replication of memories suggested a
type of memories called write-coherent memories. Write-coherent memories have the property that
they can be replicated, while preserving the write-coherency property. Such is not the case for the
class of sequentially consistent memories as used in the lazy caching algorithm. A second aspect
of our replication protocol is that it allows for less (or more) replicas than the number of processors
accessing the shared memory. The lazy caching algorithm assumes exactly one replica, in the form
of a cache, for each processor. Such variations of the original algorithm are more easily found in a
compositional setup, since it allows one to deal with one aspect at a time.

The structure of the system used in the lazy caching algorithm is sketched in figure 6.1. In this
figure we have shown a system communicating with four users, using three caches. Informally the
algorithm behaves as follows. A number of user processes ¢ communicate via channels W;, Reg;,
and Rer; with a memory system. Write actions are sent via the W; channel and are queued in separate
so called Out queues for all users. At the bottom levei of the system we have a number of cache
memories and a general memory. The caches have queues connected to them as well. When writes
leave the Out queuc they are distributed to all caches (where they are queued again in queues In;),
and to the memory component. Reads are requested via Req; channels, and the values requested are
returned via the Ret; channel. The protocol is such that read requests of user ¢ are forwarded to the
caches only if there are no queued writes in the Out queue of process ¢, and there are no writes by
user ¢+ in the In queuve connected to the cache it reads from.

Finally, the cachc components can request values from the memory when needed. This models the
fact that caches can have limited capacity only, whereas the memory always stores the latest values
of all addresses. The values requested are put into the In queue connected to the cache as well.

As stated above, the top level of our proof does not depend on a particular formal model. As a
consequence, we could make a choice which style of reasoning to use for the more detailed proofs
concerned with the our four simple protocols. The fact that sequential consistency is always formulated
in terms of traces strongly suggested a trace based model. A second consideration was that partial
order methods, as we have exploited them in a shared variable setting [ZJ94, JPZ91], have proven
themselves as techniques that yicld considerable insight. Moreover, the distinctions between coherent
memories, sequentially consistent memeories, and write-coherent memories can be explained quite
well by means of partial orders, and the related concept of dependency relations between the various
communication channels of such memories. The model that we have chosen is a partial order version
of the quiescent trace model advocated by Chandy and Misra, and Jonsson [Mis84, Jon85]. The
model can specify both safety and liveness properties, yet has a very simple compositional rule for
parallel composition; in essence, parallel composition of systems can be seen as logical conjunction
on the level of trace specifications.

The model we use is based on the models and ideas underlying IO-systems [Jon85, Jon87] and
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W, Regy Rely W, Req, Rer, W, Rey, Ret, W; Req; Rery

Figure 6.1: Structure of a lazy cache system with 4 users and 3 caches.
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[O-automata [LT87], though reformulated in a partial order style taken from [{Z194, JPZ91].
Informally, a component of a parallel system communicates with other components via directed
communication channels. For each system execution /7 the communication events associated with
some particular channel ¢ form a linear history that we denote by H [¢. Communications along
different channels ¢ and d say, are not ordered unless a so called dependency relation exists between
the actions along the two channels. Conceptually speaking one might think of such dependencies
as being generated by a set of observers, each of which is capable of observing communications,
including their relative ordering, along some given set of channels.

The idea of observers is of paramount importance to our view on the differences between coherent
memories and sequentially consistent memories: For coherent memories one postulates a single,
“global” observer at the interface between memory and user processes. For sequentially consistent
memories there is no such global observer, at least not at the interface level. Rather there is an observer
associated with the read and write actions issued by each particular user process. Consequently, read
and write actions issued by a single user process are ordered, whereas actions stemming from different
users processes remain unordered at the memory interface.

Our partial order model is inspired by the work of [Pra86, Gis84, Maz89]. It is similar to the
models that we used in [ZJ94, JPZ91] except that here we focus on a communication based model,
rather than on a shared memory model. The main reason for a communication based model is that
interaction between various system components such as queues, busses or caches, is conveniently
modeled by synchronizing communication actions.

The outline of the paper is as follows. After introducing a simple language for networks of
processes we informally introduce the four protocols in our decomposition, and the memory types
used. We show how the four protocols are composed to give a sequentially consistent system in the
style of Affek, Merritt and Brown. Thereafter we introduce our specification language, and formally
specify the memory types. Finally the formal proofs of the protocols and their properties are given.

Note and acknowledgement. This paper originates from a joint draft with Shmuel Katz. His
contributions to the decomposition idea are gratefully acknowledged.

6.2 Networks of processes

6.2.1 The process language

In this section we introduce the process language and the model we use for describing networks of
communicating processes. The process language appears later on as a sublanguage of the mixed term
formalism we use for specification and design.

A network or system consists of the parallel composition of a number of processes. Processes
communicate asynchronously via directed channels. The alphabet a( P) of a process P is the set of
channels connected to that process. This set a(P) is the union of the input channels 7{ P) and the
set of output channels Q(/’). For networks of parallel processes it is allowed that more than two
processes are connected by a common channel, say c¢. In that case, only one process P can have ¢
as an output channel. Any message sent by this I? process is received by all others connected to c.
If ¢ is an input channcl of process (Q, then it is assumed that ¢} is always able to accept input via
¢. As a consequence, deadlock behavior as in CSP style process languages is not possible at all. A
network of processes can reach a so called guiescent state: no output actions are possible anymore,
at lcast until more input messages have been received. As described in [Mis84, Jon85], the semantics
of such networks is adequately described by quiescent traces: sequences of communications along
channels, corresponding to quiescent states. Below we introduce specifications S for quiescent traces.
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We take such specifications .S, together with a declaration of input and output channels, as the basic
components of networks. That is, we do not provide an algorithmic language for basic components,
but rather we admit process specifications .S as basic components. As usual, we do not make a
formal distinction between processes and networks of processes and we use “process” to refer to both
basic components and networks. Channels ¢ of a process F can be renamed into d by means of the
renaming construct P{d /c]. A set of channels ¢ of a network P can be made local to that network by
the hiding construct P\«. The syntax of out process language is as follows. It has been taken from
[Ton85].
Pu=(1,0:8) | PillPell- Il P | P\a | Pldje]

The input and output channels, /{ I’) and O( P} of processes P are defined in the following table. In
all cases, the alphabet o P) is defined as 7( ) U O(P).

P I(P) o(P)

(1,0:8) I 0

Prfl ool Pu | (HP) U IR N(O(P)U -G O(Po)) | O(Pr)U---U O(Py)
Pl I(P)\ O(P)\ a

Pld/c] I(P)[d/c] O(P)ld/¢]

The syntax of specifications S 1s spelled out in more detail below, where we introduce a mixed
formalism, unifying processes and logic specifications. At this point it suffices to state that such
specifications are predicate formulae with occurrences of so called trace projections of the form
H [ . Such trace projections denote the (specified) trace, projected onto the alphabet «. It is assumed
that for process {(, O : S} all trace projections T | are on alphabets « such that o« C T U O.

6.2.2 The model

Processes P are interpreted as sets of traces of communication actions. Single communication actions
@ have the form (¢, vy, ..., v,), where ¢ is the name of a channel, and where vy, ..., v, are one or
more values or attributes, sent along this channel. A trace # is then defined as a (finite or infinite) set
of occurrences of communication actions, called events, together with an order among those events.

More precisely, a trace is a directed, acyclic graph ( V', —) where V is a set of events, and where
“—""is what is called the causal ordering relation on events. We assume a symmetric and irreflexive
dependency refation “~” on events.

Traces are required to be strictly dependency closed, which means that two events e, e’ € V are
ordered if and only if they are dependent events, i.e..

e~c iffe = ¢ ore — e.

We use His(a) to denote the set of all possible traces over alphabet .

The model that we use here 1 consistent with the (more complicated) models in [ZJ94]. The
simplified model that need here has several isomorphic counterparts. For instance, we will often
identify a trace of the form { V', —) with the partial order ( ¥, —%), where “—*" is the transitive
closure of “—”. In fact, because of the strict dependency closure condition, a set of traces can also
be represented by the set of all possibie linearizations of those traces, (For the models in [Z)94]
this is not the case.) Much of what follows has been formulated neutrally in this respect, i.e. it can
be understood both in the partial order and the isomorphic interleaving model. (When we come to
specifications and in particular to the actual correctness proofs the concepts of partial orders turn out
to be quite essential to clarify matters however.)
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Process P> with alphabet «v is interpreted as a subset of I/is(a). To simplify notation, we identify
here the term P and the set of traces it denotes. For a basic component that has the form of a
specification (I, O : S(H)), with free (trace-typed} variable I7, this is the set of all traces over U O
that satisfy formula S(H). To define parallel composition of processes P and ¢} we rely on the
projection operation ff [a.

Pl QY [H e His(a(P)U(Q)) | Hlo(P) € P,H[a(Q) € O}.

Hiding is simply defined by means of projection: P\ denotes P [{a(P) — §). Finally, renaming
P|[d/c]is defined as usual, simply by renaming all occurrences of channel name ¢ in P traces into d.
We require that for a process P[d/¢] the channel ¢ has the same dependencies within P as ¢ does.
This ensures that the resulting system is again strictly dependency closed if P is.

6.3 Memory types and interfaces

Our analysis of the lazy caching protocol is based on three different types of shared memories:
(i) Coherent memornies,
(1) Write-coherent memories,
(i) Sequentially consistent memories.

[n order to clarify the differences between these memory types one must consider the the interface
between user processcs and memory modules. We found it very useful to make a distinction in
terms of so called dependency relations between the various forms of read and write actions. In our
partial order model, dependency has a precise meaning in that it indicates which sort of events will be
ordered and which ones will remain unordered. Within interleaving models, that could have been used
instead, independence of actions can be understood thus: If two actions, say @ and b are independent
for system P, then the specification for £ leaves the direct order of @ and b unspecified. ‘

All types of memories have the same interface, except for dependencies between the actions.
There are N user processes Py, ..., Py, that can cxecute read and write actions. Write actions are
executed simply by sending a memory address and a value to be written along channel W;. A read
access 1s executed by sending an address along read request channel Reg;, followed by receiving the
value read via a read return channel Ret;. It is assumed that user process P; will wait after doing a
request until the corresponding return action is received. Within models that allow for synchronized
actions it is possible to combine read requests and read returns in one “joint” action. For models like
10 automata, or the quiescent trace model that we use here, such is not possible due to requirement that
input actions must always be enabled. The interface as described is essentially taken from [ABM93]
except that we have feft out “write return™ actions. (Write return actions in [ABM93] do not carry
any information; it appears that they have been included only to have a more symmetric protocol.)

Reads and writes are both parameterized with an address @ and a value to read or to be written d.
Thus every memory type has the same alphabet oz (let v = N — 1 and [ = {0,...,n}.)

a {W;,Req;,Ret; | i € I}
with different dependencies. (See figure 6.2.)

Conceptually speaking, each user process attached to a coherent memory observes the order of

read and write actions performed by itself and all other user processes. So all memory accesses
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Wy Reqy Rety W, Req, Ret, W, Req, Ret,

Figure 6.2: Interface of memory types.

appear to be totally ordered, in one globally interleaved trace. The precise specification of a coherent
memory can be found in section 6.4.2, in the form of a predicate formula CM (H) on traces If
of read and write accesses. These details are not needed to understand sequential consistency and
writg-coherency.

For sequentially consistent memories we relax the global ordering condition on memory accesses.
For such memories we only assume that a user process P; can observe the order of its ewn read and
write actions, and only indirectly, via the values returned by its read actions, it can observe the values
that were written by other processes. But it cannot observe, in a direct sense, the order of its own
actions with respect to actions performed by other processes ;. Let H [ A; denote the projection
of trace {1 onto the (read/write) actions A; executed by process P;. Each of these trace projections
IT | A; can be seen as a totally ordered sequence, though no ordering is assumed between actions in
I T A; and actions in H [ A; for i £ j. The specification of sequentially consistent memories has the
form of a predicate formula SCM (IT):

SCM (1) holds for If iff therc exists a (totally ordered) trace H’ such that CM (H")
and, moreover, Il [ A; = H'[ A, for all processes P; that access the memory.

In other words, H is sequentially consistent if there is a trace I’ of a coherent memory that is
equivalent to /f in the sense that the two traces are identical if we omit from H' the ordering between
actions that are independent from the sequentially consistent memory point of view.

Another interesting form of memory, that we use in the derivation of the caching algorithm, is
so called write-coherent memary. This is a memory model “in between™ coherent and sequentially
consistent memories: All write actions are mutually dependent — similar to the case of coherent
memonies — but read actions for process P; are dependent only on write actions for the same process
Pi, ie. they are not ordered with respect to read or write actions by other user processes. The trace
based specification WCM(H) is as follows. Let, A; denote the read and write accesses or process
P;, and let W denote the combined set of all write accesses.

WCAM (H) holds for H iff there exists a (totaily ordered) trace H' such that CM (H"),
H T A; = H'| A;, for all processes £?; that access the memory, and moreover,
HIW = 1" W,

6.3.1 A memory builders toolkit

We discuss how memories of various types can be built from other memory modules and a few basic
components like queues. We show that the caching algorithm by Afek, Brown, and Merritt can be
constructed in this way and so we prove that it implements a sequentially consistent memory, indeed.
Our approach makes it easy to consider variations of their algorithm. Moreover, it becomes easier
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to consider related applications outside the realm of memories. One such application is that of a
distributed databases with replicated data.

Queueing

An important ingredient of the caching algorithm by Afek, Brown, and Merritt is the queueing of
write actions. According to the different memory models (coherent, write-coherent, or sequentially
consistent) we distinguish three different queueing protocols.

For coherent memories queueing is not really important. Coherent memories are “normal”
memories that behave as simple sequential algorithms. One can view such a coherent memory as a
sequential memory with a single queue for writes for all user processes, and read returns to be allowed
only if there are no pending writes. This queueing however is by no means vital for the behaviour.
The only potential difference that one could observe at the tnterface is in terms of real-time properties:
a read request after a series of writes is answered only after some delay.

For sequentially consistent memories read and write actions for one process P; are, at the interface
level, independent from similar actions stemming from other processes P;. Consequently, queueing
write requests for sequentially consistent memories is achieved by introducing separate queues, one
for each user process. Process P; enters its write requests and read requests in quene ;, and must
wait after having made a read request until the corresponding read return is received. (Indeed it need
not wait for any pending requests made by other processes.) Finally, it is possible to queue read return
actions, too. Such queueing is not present in [ABM93], yet it seems a useful idea when a remote user
process is reading a number of memory locations one after another. In section 6.5.1 we prove the
following theorems:

(Ta) A module consisting of a sequentially consistent memory SCM with N queues for read and
write requests, and N queues for read returns, conforming to the protocol as described above,
behaves as a sequentially consistent memory for N user processes.

(1b) Replacing the sequentially consistent memory in the protocol above by a coherent module still
yields a sequentially consistent memory.

W, Reqy Rerg W; Regy Ret; W, Reg, Ret,

Figure 6.3: A coherent memory with WR-protocois.

The correctness proofs given in section 6.5 are straightforward. Construction (1) for instance,
follows almost from the definition of sequential consistency: the coherent memory behaviour that the
definition asserts, is actually present here at the {internal) interface between the coherent memory and
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the queuing protocol. Moreover, this latter protocol ensures that for each individual process P; the
behaviour at the interface between P; and the queues is essentially the same as that at the interface
between the queues for P; and the coherent memory.

Finally we discuss a second type of queues on top of coherent memories. Considering write
requests, one sees that because of the total ordering of these at the interface level, we must have a
single queue for for all of these requests, just like the situation for coherent memories. The protocol
for read actions is more complex, since read actions for process P; are ordered with respect to write
actions for P; only. A possible queuing protocol here is to tag write requests in the queue that were
issued via channel W; by the index :. Read requests via Req; are delayed until no write requests
tagged by i remain in the queue. This protocol is used within the design by [ABM93]. There, it is
combined with replication so that each module has & writers, but only one reader P;. Consequently,
it is not necessary to tag by means of process indices, but rather a simple star *“x” is attached to the
write requests made by P;.

We have the following important property, proven in section 6.5.3:

(2) A module consisting of a coherent memory plus a single queue for tagged write requests,
conform the protocol as above, behaves as a write-coherent memory itself.

In fact, one could even replace the coherent component in the module above by a write coherent
component, while retaining the write coherent behaviour.

Wg Regy Retg W; Req, Ret, W, Req, Ret,
? """" $$$ """"" ¢i?
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Figure 6.4: A write-coherent memory.

Replication

A write-coherent memory WCAM for N user processes P, 0 < i < N, can be obtained by replication
of write-coherent memories as follows. Assume that WCM,; is write-coherent, for 0 < { < K. (The
number of replicas, /v, need not be equal to the number of user processes N.)

- A write action along the W; channel of WCM is implemented by issuing atomically similar
write actions via the W, channels of all WCAM; memories.

- All read requests and returns for user F; are executed by issuing the same actions at only one
of the WCM; memories. Moreover, for a given user £;, all read actions must be executed ar
one and the the same WCM,; memory.

We prove the following theorem in section 6.5.2:
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.replication of writego;erent memories, connected to NV user processes as described
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Figure 6.5: A replicated write-coherent memory with N = §, K = 3.

Caches

Coherent memories are obviously write-coherent, so one or more of the memories in the replication
construction discussed in the previous section could be coherent memories. Assume that Mem is
such a coherent replica. We intend to use Mem as a Kind of “back up” copy in case one or more of
the other WCM; memories would tose the value that it stores for some data item a say. Such a “loss”™
of data is used to model the behaviour of cache misses. A data replication action or cache update
for WOM consists of requesting the value of some data item « from Mem, combined (atomically)
with a write action of the corresponding value d for n at one replica WOM,.

(#) Such a cache update action does not change the externally observable behaviour of the system
as a whole, that is, the system still behaves as a write-coherent memory.

We prove this fact in section 6.5.4,
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Figure 6.6: A replicated write-coherent memory with cache updates
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6.3.2 The lazy caching protocol: top level proof

We have discussed memories, queues, and properties of the different types of memories. These
components can now be combined in a number of steps, with as a result, a sequentially consistent
memory along the lines of Afek, Brown, and Merritt. We sketch the different steps in the proof.

1. At the heart of the algorithm we have N cache memories Cache;. These cache memories are
coherent, that is, they are ordinary memories, possibly with limited capacity. Since coherency
implies write-coherency, we may treat these caches as write-coherent memories. We can put
queues “In” on top of these, while preserving write-coherency, as explained in the sections
above.

2. Moreover, we can regard each of these Cache/ln combinations as one replica of a combined
module that, according to the theorems above, still is a write-coherent memory.

3. The theorem on caching above implies that a coherent memory “Mem™ can be added to these
replicas, and that in case of cache misses, a copy from Mem to one of the caches can be made,
while preserving write-coherent behaviour.

4. Finally, we can put simple queues “Out” for write/read requests between the user processes and
the (replicated) write-coherent memory. Again, we rely on the theorems above, and conciude
that the result is a sequentially consistent memory.

In fact, besides the above top-level proof of sequential consistency of the lazy caching algorithm,
we have similar proofs for a number of generalizations as a result of our decomposition as well. These
include the use of multiple “back up” memories, different number of caches and users, and queuing
of read return messages.

6.4 Specifications and proofs

6.4.1 The mixed term language

To specify processes we use a specification language inspired by similar languages for trace based
reasoning [Zwi89]. The main difference with specifications for interleaving traces is that trace
indexing 1s only allowed for sub traces that are guaranteed to be linearly ordered, and that an explicit
precedence relation for events is used. {(We remark that for fully interleaved traces such a precedence
relation can be seen as a convenient abbreviation.)

We introduce trace expressions Texpr, event expressions Event_expr, and integer expressions
Int_expr. We assume given sets of (typed) variables If /i, e, i and channels ¢, d. A set of channels
is denoted by «. For indexed traces te(ic), we require that all channels in the trace alphabet a(te)
(defined below) are mutually dependent. This guarantees that le denotes a totally ordered trace.
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te € Trace_cxpr,

le i= < ee >, single event trace, containing only ee.
Hla, h[a  projected trace variables
leg o fey, layer composition
te e, profection of te onto «
te[d/e], trace te with channel ¢ renamed into d

ce € Fvent. expr,
e = e, event variable
te(ie) indexed trace expression:
the i-th event in trace te.

te € Int_expr,

wen= (,{,... integer constants
7 inreger variables
#le the number of events in trace te
ieg + iey, ... standard arithmetical operations

The only unusual operation in Trace_expr that needs explanation is layer composition teg » te; .
We define this operation here only when feg denotes a finite trace. In essence, tep o fe; is the disjoint
union of tey and fe;, with the order augmented such that events e in fe; causally precede dependent
events ¢’ in fe,. For a trace fe that denotes a run h &' (V,—) we define #te = | V|, that is, #ie
denotes the number of events in le.

For event attributes such as channel names, communicated values, memory addresses etc., we

assume that there are corresponding classes of expressions, containing at least the following:

ae € Allr_expr,
ae = addr(ee) address attribute of event ee
val(ee)  value attribute of eveni ee
chan(ee) channel attribute of event ee
i, v, constanis af appropriate type

For trace expressions te we define their alphabet o(ie):

te alte)
{ee} chan(ee)
iMa o

teg e tey | alep) Ua(tes)
te [ o a(te) Na’

te[d/c], | e(te)[d/c]

Finally we define a class of “mixed term” specifications, and an auxiliary class of quiescent trace
specifications. This class 1s a unification of trace based specifications and processes. For a term of
the form P(H o) we require that o’ C «( P). By convention, we use P(IT) for P(H [a(P)). Fora
process of the form (/, O : §) we have a condition, stated below, that S actually specifies a guiescent
trace set over input and output channels I and O.
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5 € Spec,

Su= P o) processes as “predicates”
teg = tey,eey = eep, equality of truces, events
ey —r ey event precedence
leg < tey, trace prefix relation
aeg = aey, tep = i€y equality of integers, attributes
So A Sy, S0=> 5, boolean connectives
3h 2 His(a).s(h), quantification over traces
Je € te.s(e), gquantification over events in a given trace
Ji € Nal.s(i) quantification over integers

P e QSper,
Pu= (1,0:5(H)) Specifications with input/output channels

Po || Py, Parallel composition
P\e, Hiding of the channels in o
Pld/c] Renaming of channel ¢ into d

For mixed terms S and trace variable » we define the base 3( S, i) as the union of all channel sets
o such that /i [ ee occurs within S, for some free occurrence of . When specifying some particular
process {7 say, the variable “Jf" is used (by convention) to refer to the traces of P. Within this context
we usually write P rather than P(H), B(S) for 5(S, H ) etc.

Most of this language is interpreted as usual for (typed) predicate logic. We interpret all relations
between expressions, including equality, strictly in the sense that the result is “false” whenever some

of the operands are undefined.
In the sequel we will use the following abbreviations:

#c: For a chanpel ¢, #¢ denotes the number of events in the projection onto ¢:

#e Eaiar e,

¢(j): For a channel ¢, ¢(j) denotes the j™ event in the projection onto ¢: ¢(j) ef (HTe)(j)-

cfee): Forachannel ¢ and an event ce, ¢{ ec) denotes the predicate that the channel attribute of ee is

e c(ee) o (chan{ee) = c).

last{H): For a linear finite trace H, last( ) the lastevent of 11 last(H) = H(#H).

eeg ~ eep: Twoevents ce; and ee; are dependent, denoted by eey ~ eey, if eey precedes ee; or visa

def”
versa: eey ~ ee; = (eeg—ree;) V eep —reey.

¢ ~ d: Two channels ¢ and d are dependent, denoted by ¢ ~ d if each communication event along
channel ¢ is dependent on each communication event along channel d: ¢ ~ d dsz',j. (HTe)(i)~
(T T d)Gi)-

Dep = {Ag, Ay, ... A,}: Foreach set of channels A; in Dep we have that all channels in A; are mutual

dependent: Dep = {Ay, Ap,. .. Ay} el Vi, 0 < i< nVe,d e A ¢~ d. As aconsequence
i [ Cisalinear trace if ' C A; for some 1.
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In our model we always assume as a global model property that every channel is dependent of
itself, 1.e. let Chan be the set of all channels then

Ve e Chan. c~ ¢

As a consequence /{ [ ¢ is a linear trace for a channel ¢ thus (# [¢)(i) is well-defined for 7 < #c.

Quiescent trace specifications, too, are treated as predicate formulae, where the process con-
nectives are treated as abbreviations. We define the following translation from quiescent trace
specifications to logic specifications:

(1,0 : S(11")(I1) is translated to S(H),
{(Po || P:)({1) abbreviates Po(H ) A P (),
(P\«)(H) abbreviates AH' : His(B(P,H)). (P(H') A H = H'([B(P, H)\ a),
(Pld/c])(H) abbreviates 3H' - His(8(P,H)). (P(H') A H = H'[d/c]).

Another important abbreviation here is the “sat’” relation between mixed terms:

So( H) sat S;(H) abbreviates VH : Wis(8(Sy) U B(S;1)). Se = S;.

Quiescent trace specifications are, informally, specifications of processes P that are always enabled
for input along all input channels {{/?). A process P is in a quiescent state iff it cannot produce any
more output unless it receives more input. A quiescent trace is a trace of communications (possibly)
leading to a quiescent state, or an infinite trace. As is known from the literature [Jon85] both safety
and liveness properties can be specified in terms of the quiescent traces of processes. Moreover, in
fJon85] it is shown that within this context parallel composition can be (essentially) seen as logical
conjunction. In order that a specification of the form (7, O : S(I7)) defines a proper set of quiescent

traces we require two conditions {taken from [Jon85]):
(1) In any state (not just quiescent ones), any input action ¢ is enabled, and

(i1} From any state, a quiescent state can be reached by means of (possibly infinitely many) output
actions alone.

Put formally: For any event ¢ with chan(e) € It
VH, b His(TUO) (SUIDA RS HA# < oc)= 30 His(O). S(he{e}eh')
VH b His(JUO). (S(HYANL < H A#L < 00) = 30 2 His(0). S(heh').

6.4.2 Specifying sequential consistency

In this section we will give some examples of specifications. First take a buffer process Buff with
input channel Eng and output channel Deg. Since Buff must always be input enabled, it only can be
a infinite or zero-place buffer. A usual CSP-style specification of this buffer is

Vh < H. (val(h[Deqg) < val(h[Eng))
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That is, the values sent along channel Deg must be prefix of the values sent along channel Enq. For
Buff to be quiescent it must be empty (if not it is output enabled), i.e.

val(H [Deq) = val(H [ Eng).
or equivalently, using the first assumption
#Deq = #Eng

In general the channels Eng and Degy are not dependent, but »™ message along channel Eng must
precede the n™ message along channel Dey. Recall that as a global model property any two different
events which correspond to communications along the same channel are dependent. Summarizing
the above remarks we see that the specification consists of two parts. The first part is a trace/run
specification, in this case

TraceBuff(H) el

Vh < H. (val(h|'Deq) < vel(h|'Fng)) A #Deq = #Fnq

The dependencies are specified in the second part

DepBuff &'

Dep = {{Deg}, {Eng}l} A Vi, 0 <j < (#Enqg). (Eng(j)—Deq(3))
Along the same lines one can specify a coherent memory CM with write channels W;, read-

request channels Reg; (both input channels) and read-return channels Ret;, i € I, as follows. The
trace specification is

TraceCM( 1) &

VH' : His({ Wy, Reqi, Reti | i € 13). (#11' < 0o A IT' o Reti(d, a) < I =
d = val(last(H' [{Wi(-,a)}))) A
(Vb < W addr(h [ Rel;) < addr(h{'Reqi))) A addr(H |'Reqi) = addr(H |'Ret;)

Observe again that the last clause specifies quiescence. The dependency specification is
DepCM (1) %
Dep = {{W;, Heg;, Rety | i € I} A Vi€ I, V), 0 < j < #Ret;. (Reqi(j)—r Reti(3))
Now the total specification is
cm ¥ TraceCm A DepCM

Given the specification of a coherent memory, we can specify a sequentially consistent memory SCM
by

defl

TraceSCM{H) =
A (TraceCM(H'Y A Vie I (H { Wi, Req;, Ret;} = H' |{ W;, Reg;, Ret;})

DepSCM(H) &
Dep = {{W;, Reqg;, Ret;} | 1 € T} A Vi € 1,V],0 < j < #Ret;. (Reqi(j)— Ret;(5))
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Note the difference between the channel dependencies for CM and SCM: for i # j W; is independent
of W;, in DepSCAM but not in DepCM . Now the total specification for SCM reads

SCM Y TraceSCM A DepSCM

Along the same lines one can specify a write-coherent memory WCM in which all the write channels

arc dependent. Let

def

W, S fwi |ie 1) and R, {Ret;, Req; | i € T}

Trace WCM(H ) !
1" His(Wr U Ry). (TraceCM{IT) N H'['Wr = H[ W A
Vi€ I.(H'{{W;, Reqi, Reli} = H [{W;, Req;, Ret;}) ).

and

DepWCM(H) Y
Dep = {{W,, Reg;, Ret;} | i € [YU{{W; |iel}} A
Vi, j,0 < j < #Ret;. (Regi(j)—+ Reti(7))

6.5 Correctness proofs

In this section we give detailed proofs of the claims made.

6.5.1 Queueing and sequential consistency

In this section we look at the behavior of a coherent or sequentially consistent memory with certain
“queutng-protocols” on top of it. More precisely, we have a coherent memory or a sequentially
consistent memory with write W;, read-request Keg;, and read-return channels Fet; for every user ¢,
¢ € I. This memory is composed in parallel with separate, so called WR-protocols, which forms for
each user i the interface between {W;, Reg;, Ret;} and { W;, Req;, Rel;}, sce figure 6.7.

This protocol can be seen as the specification of two separate infinite queues: one queue which
queues the write and read-request actions, and another queue which queues the read-return actions.
Such a write-read protocol satisties the following specification WRP. For a channel ¢ let ¢(k)
denote the ™ communication along channel ¢, ie. c(k) = (H [¢)(k) We have input channels
{ W, Req, Ret}, output channels {W, Req, Rer}. The specification of WRP consists of two parts: the
trace specification Thrace WR I, and the dependency specification DepWRP.

TraceWRP(H) !
Vi< H. (W W, Heq) < h{W,Req} A hi'Ret < h|Ret) A
#1W = #W A #Req=#Req A #Ret = #Ret,

DepWRP(H) &
Dep = {{W;, Req;, Ret;}, { Wy, Req;, Ret;}} A
VO < § < #W (W) —Wi(j)) A YO < j < #Req;. (Req;(7)—Req, (7)) A
VO < j < #Reli. (Ret;())— Rel; (7))
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The total specification is given by:
WRP % TraceWRP A DepWRP

Observe that the first part of the TraceWRP specification is like a CSP (prefix) specification, and
is needed to ensure the input enabledness. The second part of TraceWRP defines the quiescent states.

Assume that every user ¢ which communicates by the interface WRP; with the memory along the
channels W;, Req;, Rer; always waits after a read-request for the corresponding read-return before
executing another write or read-request action. Thus user ¢ should satisfy

User;{H) e

(Va,a’ € I. (Reg(a) A (W(a' )V Req(a)) A a—+d') =
(3a” € H.(Ret(a"y A a—a"—-d'))) A
Dep = {{W;, Req;, Rel; }}

dof S[efe | ¢ € a(S))], i.e. every channel ¢ in the alphabet of § is

For a specification § let §
renamed into &. Similarly, for a set of channels A, A ef {@|a€ A} (Weassume & = &.)

For two runs, say I/ and H’, we use the notation [T = I{' defined as H = H’, where again H' is
the run #f with every channel ¢ renamed into Z.

Now take a sequentially consistent memory SCM which has input channels { W;, Reg, | i € I}
and output channels {Fet; | i € I'}. Assume that every user i communicates with this memory via
the interface WERF;, where

WRP; & WRP(W;/W, Req;/Req, Ret;/ Ret, W;/W, Req;/ Réq, Ret;/ Ret),

as given in figure 6.7. Moreover assume that the behavior of each user ¢ satisfies User;. Then the
claim is that after projection on the external channels {W;, Reg;, Ret; | i € I'} this composed process
behaves like a sequentially consistent memory.

Wy Reqgy Rety W, Reg; Ret) W, Req, Ret,

Ret, 7=

Figure 6.7: A coherent memory with WR-protocols.

To put it formally let A; wf {W;, Req;, Ret;} and A = |; A,

Theorem 6.5.1 Sequentially consistent memories with WR-protocols
Let A = {W, Req;, Rer; | i € l}

I (SCM || WRP, || --- || WRP,\A,
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then under the assumption A; User;(H [{W;, Req;, Ret;}) we have
P sat SCM
a

Proof. First observe that the dependency specifications of > and SCM are correct, i.e. P=> DepSCM.
Thus 1t is sufficient to show that P = TraceSCM

PO
= { by the definition of hiding and parallel composition }
IHg : His(AUAY. H|'A = I, 'ANSCM(Iy | AY N N\ WRP;(Hy [{A: U A))

= { by definition of SCM }
JHy : His(AU A). 3H, 2 His(A). CM(H, [AYA T [A = Hy 'AA
Yic . (Hyl Ay = H, [A; A WRP{(H, [[A; U A)))
= { by the lemmabelow I, [A; = II; [ 4; }
Ay . His(AU A). 31, 1 His(A). CM(H; [AYA H|A = Hp AN
Vil (Hy[A; = I [A; NH [ A; & Hy 1 A)) _
= { bytheidentitiecs H[A = Hs[Aand Hy[A; = I, [ A; }
IHy : His(AU A). 3H, : His(A). CM(H, |'A) A
Vie . (HolA;i= H A, AT A; = HTA)
= { propositional calculus }
IH, : His(A). CM(II [AYAYi € 1. (H|'A; = H; |'A;)
= { by renaming }
Ay : Mis(A). CM(He [AYANE € I (H'A; = I ['A;)
= { by definition of SCM }
Trace SCM(H |'A).

Left to prove, in the above setting, the identity
Hy [{ Wi, Reg;, Ret;} = Ho [{W;, Req,, Rer;}.

Lemma 6.5.2
Let Hy be a run such that

1. Hy rA, = H, r/-i, A a_’/l{H; r;l)
2. HrA = H() FA A US(?I’,'(H I\A)
3. WRP,(HQ r{WI": Wf: RethE’qi? Retir szf,’})

Then
Ho [{Wi, Reg,, Ret;} = Hy [{W,, Req,, Ret;}
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The proof of this lemma can be found in section 6.7.
Since every coherent memory is also a sequentially consistent memory, i.e. CM = SCM we
deduce as a corollary from the above theorem:

Corollary 6.5.3

A module consisting of a coherent memory CM with input channels { Wi, Req, | i € I} and output
channels {Ret; | i € I}, such that every user i satisfies User; and communicates with this memory via
the interface WRP;, behaves as a sequentially consistent memory. m]

6.5.2 Replication of write-coherent memories

In the informal explanation we argued that write-coherent memories can be replicated in some sense,
again resulting in a write-coherent memory. This replication is done by mapping writes of a process
7 to writes on all memories, and by mapping any request/return pair of a process onto a request/return
pair on a single, fixed memory. The number of memories and the number of users need not be the
same.

The structure of the system, as an example with three memories and four user processes is shown
in figure 6.8. The user processes read from one of K, K > {, write-coherent memories, WCM;
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Figure 6.8: A replicated write-coherent memory with ¥V = J, K = 3,

for 0 < [ < K. Different users can read different memories, but every process reads from a fixed

one. So a component WCAM, has an interface Wy, Ry, ie. WCM,; “wom Wi U R,,), where

def

R;, = {Reg;,Rer; | i € Ji}, Jy C 1, and J; N Jp =@ for Il # I'. Furthermore
{0 <i<K} =1 (6.1)
We now have to prove that the replicated system as a whole behaves as a write-coherent memory.

Theorem 6.5.4 Replication of write-coherent memories
Let Repl be the replicated system, i.e.

Repl € (WCMy || WCM, || --- || WCMk_),

then
Repl sat WCM.,
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Proof. By the definition of parallelism we have the following proof obligation

AN WCM(HNW;UR.)) = WCM(H WU Ry)) (6.2)
o<I< iV

Observe that by equation 6.1, Repi=DepWCM. Thus it is sufficient to show that
Repl=TraceWCM.

By the definition of WCM () we must show the existence of a run H’ such that CM{H’) holds
and some ordering is preserved. Informally, we take the order of all writes from H’, and the order
of requests and returns Reg; and Rer; with respect to all writes WW; at the memory WCM;, such that
i € Ji. As the order of writes at all memories is the same, this defines a coherent run.

We use the following merging lemma for runs (proven in section 6.7,

Lemma 6.5.5

Let Hyp = (Ag, —¢) and H; = (A;,—;) betworuns, and let A = ApNA,;. If Hy[A = H, A, and
Hy [ A is linear in the sense that for any two actions there exists a chain between them, and furthermore
(Ag — A) and (A; — A) are independent, we have the following, For

H def (HoUH,;, —pU —-])
Hisarun,and H[A; = H fori =0, 1. d
We furthermore use the following corollary for runs of a coherent memory.

Corollary 6.5.6
Let Ho . H[S‘( W] U R_;), Hg = (Ao, —>0) and H; : H!'S(W,r U Rﬂ), H} = (A], -—->1) such that J N J’ = @,
and assume Hy and H; are both runs of a coherent memory, and Hy [ W; = H; [W,.
Then for H % (Ap U Ay, —¢ U —), we have that H is a run, CM(H) holds, and H{(W,; U R,) =
Hy r(Wj U RJ) and H [(W,r U R_[-’) = Hy r(Wl (W) Rﬂ).

Proof. We apply lemma 6.5.5 to Hy and H;. (Linearity on W, follows from the fact that all W;
are dependent, and therefore ordered, and Ry and Ry are independent.) This gives that H is a run, To
see that CM(H) holds, let H' o Ret;(d,a) < H. Assume { € J. Then, by monotonicity of projection

(H' . RGI,'((I',(!)) KW; L R_{) = (H' KW; J RJ’)) . Ret,-(d,a) < Ho,
which gives by CM(Hy) that
val(last(H' [Wy(-,a))) = val(last((H' (W U R [W(-,a)) = 4.

The case for i € J' follows by symmetry. The prefix properties follow directly from the fact that
H'[R; = Hy[Ryand H' [Rp = Hy [ Ry, plus the fact that CM(Hg) and CM(H;) hold. o

Now we continue with the proof of the theorem.
N WOM(H (WU Ry))
0<i<k

= { definition WCM }
Vi 1 Iis(Wr U Ry, CM(Hg) A Hy Wy = IT[W, A
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VielJg. Hy f{ Wi, Regy, Ret;} = H |[{W;, Reg;, Ret;} A

Mgy Wis(Wi U Rype_ ) CM(H—1) A Hi—g Wy = H['Wf A
Vi € Ji.p. Hi_y [{W,, Reqg;, Ret;} = H |{W;, Req;, Ret;}
= { corollary 6.5.6 }
34 His(Wy U Ry, CM(HY A I [Wy = I Wy A
VO <I< K.¥ieJ. H)(W;UR) = HY{W;UR;)
= { equality 6.1 }
I His(Wr U Rp). CM(H'Y A I Wy = H[' Wi A
Vie . (W, UR) = HN{W;UR;)
= { definition of WCM }
Trace WCM (I

6.5.3 Queuing and write coherency

In the previous section we used write-coherent memories as blocks to be replicated. How do we get
these write-coherent memorics? Afek, Brown, and Merritt [ABM93] use a coherent memory CM;
where all processes write into, but only a single process reads from, and a special queue for the writes,
the so-called in-quene. In this queuve the writes of process 7 are tagged with a star, and read-requests
of process ¢ on the memory will only be executed when there are no starred writes in the quene.

We take a more general approach and show that the combination of a coherent memory with ¥
writers and possibly N readers plus a special interface gives a write-coherent memory, under the
assumption that every user always waits after a read-request for the corresponding read-return before
executing anather write or read-request action. The interface queues all writes in a single queue, the
read-requests as well as the read-returns in separate queues for each user. Moreover a read-request of
process ¢ will only be transferred by the interface to the memory when there are no i-labeled writes
in the write-queue.

The proof that this results in a write-coherent memory resembles the proof for sequential consistent
memories. We give a specification of the tagged queue behaviour, and a specification of the coherent
memory, and show that the result satisfies WCM. The structure of the system in sketched in figure 6.9.
The formal specification /nQ of the interface is as follows.

TracelnQ(H) & 11wy = (I 1W)) A
Vi € 1. {TraccWRP;(H |{W;, Wy, Reg;, Req;, Ret;, Ret;})),
and )
DepinQ ® Dep = {{W; | i € 1}.{W;,Req;,Ret; | i€ I}} A J\ DepWRP;.
Thus

inQ wf TraceinQ N DeplnQ
Furthermore the memory module satisfies (by renaming) CAM (H), so the system as a whole is
given by
Y del =7
where again R; = {Reg;, Ret; | i € 1},
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Figure 6.9: A write-coherent memory.

Theorem 6.5.7 Write coherent memories
In the above setting and under assumption A; User;(H [{W;, Req;, Ret;}} we have

QCM sat WCM
0

Proof. First observe that
De/’]’IQ\(w,_uR,) = DepWCM.

Hence it is sufficient to prove that
QOCM = TraceWCM
By the definition of hiding, this leads to the following proof obligation.
3H, : His(AU A). H[A = Hy[A A CM(Hy) A InQ(Hp) = WCM(H).
The proof can be given along the same lines as the proof for the WR-protocols, Theorem 6.5.1.
Define A;, A;, etc. as in section 6.5.1,
I, H Wi U Ry = Hy (Wi U Rp) A CM(Ig) A InQ(Hy)
= { by definition InQ(H,) }
Iy His(AUA). CM(Hy [A)ANTT A =T AN Hy [ W; 2 Ho W7 A
Vi I {WRP; (I |{A; U A;))
=  {Bylemma652 Hy[A; = HyA4;}
IHy 2 His(AU &), CM(Hg [AYANH A = Hy AN g |'W; = Hy | Wi A
Vie . (HplA; & Hy [ Ay)
= { By the indentity I/ [ A = I3 [A }
AHy : His(AUA). CM(Hy PAYAH|'Wy = Hy |' Wi A
Vie I (HTA; = Hyl Ap)
= { by projection and renaming }
AH;  is(A). CM(H AYAN T Wp = H |'Wr A
Viel. (H[A; = H [ A;)
= { by definition WCM(H) }
Trace WCM ()

98



6.5.4 Adding cache misses

Up unti} now we assumed every (write-coherent) memory can immediately access any address. In
the actual cache memories this need not be the case. Due to limited storage capacity, some addresses
might be removed from the cache, in favour of others that are needed. In that case however, we need
some “back up” memory that still has the most recent values of all memory locations, from which we
can fetch that value if it is requested by some read action. The invalidation of cache addresses is not
modeled explicitly.

We therefore add an extra K plus first memory component Mem to the system, which models that
back up memory. We assume it behaves as a coherent memory, except for some renaming. We cannot
use a write-coherent memory for this purpose as the order of all read request/return pairs and writes
must be preserved. Different updates for different caches should all give the most recent value. It has
N write ports W;, for i € I, and K read request and read return ports, called CReq; and CU;, for
0 <j < K. CU stands for Cache Update, as the reads are needed to update missing cache addresses.
In fact, we could have several such back up memories, with fewer than K caches reading from each
of them. Here we use a single back up memory, but the proof for multiple back up memories is
almost literally the same. An example of a system is given in figure 6.10. We have to modify the

Wa Reqy Ret,, W, Req; Ret, W2 Req; Ret;  W; Regy Rety

SIS S 1 S N S

Y l“v vav”v nyyyy oy V“*

WCM, WCM'; WCM', Mem

CReyy, CU, CReq, T ct, CReq, (S * T

[ D gy

~

Figure 6.10: A replicated write-coherent memory with cache updates

write-coherent memories WCM, shightly. They get an extra request port CReg; and cache update port
CU; as well, which behaves as a write, that is, it is dependent on all W;, and any Rer; reads the last
value written by a write or by a cache update. We call such a component WCM/.

We have that the combination of a number of such WCM| components and a memory component
behaves as a write-coherent memory. We do so for the combination of a single WCM' and a memory.
The general case can be proven analogously, using the replication result.

The specification of WCM' is as follows, cf. section 6.4.2

WCM' ! TraceWCM' A DepWCM'
with

TraceWCM'(H) % 31« His({W, CU, CReq, Reg, Ret}).
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(TraceCM'(I'Y A H'[{W, CUY = H [{W, CU} A
(H'H W, Req, Ret} = H|{W, Req, Ret}) ),

and

DepWCM' (H)
Dep = {{W,CU},{CU, CReq},{W, Ret, Req}} A
VO < j <#Ret. Rey(j)—+Rel(7)) A VO < j <#CU. CReq(j)—CU(j)

The coherent memory CM” is defined by

TraceCM'(H) Y
Vhe Ret(d,a) < H. a = val(last(H{W (., a), CU(-,a)})) A
(Vh < 1. addr(h ] Ret) < addr{h|'Req))) A adde(IT|'Req) = addr(H |'Ret)

and
DepCM’ ! Dep = {{W, CU, Req, Ret}} A Y0 < j < #CU. CReq(5)—-CU(j)

Thus
cM' £ TraceCM’ A DepCM'

The memory component Mem of the system is a coherent memory with alphabet { W, CReg, CU} and

is given by following specification: take [ = {0} in the specification for CM, then

Mem < CM[W/W,, CReq/Reqq, CU /Rety)

We prove that
(WCM' || Mem)\{CReq,CU} sat WCM.

First observe that
(WCM' || Menm)\{CReq, CU}=DepWCM,

thus it 1s sufficient 1o show that
(WCM' || Mem)\{CReq, CU}=TraceWCM

The proof is given as follows. Let C = {W, Req, Ret, CReq, CU}.

(WCM' || MemW\{CReq, CU}
= { by definition }
3y is(C). T |{{ W, Req, Ret) = Hy |[{ W, Req, Ret) A WCM'(Hys) A Mem(Hy)
= { definition WCM', Mem }
Ity His(C). H [{W, Rey, Ret} = Ho [{W, Reg, Ret} A
T, His(C). CMPCH)Y A T [TW, CUY = Hy [{W, CU} A
(H; W, Req, Ret} = 1y |{W, Req, Ret}) A
Yhe CU(d,a) < Hy. a = val(last(Hy {{W(-,a)}))
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= { definition CM’, calculus }
IH, : His(C). [T [{W, Req, Ret} = I, [{ W, Reg, Ret} A
HINW,CUY=HI{W.CU}A
Vhe Ret(d,a) < Hy. a = ved(last(H; [{W(-,a), CU{(-,a)})) A
Vhe CU(d,a) < Hy. a = val(last(H, T W(-, a)))
= { calculus }
IH; Is(CY H [{W, Rey, Ret} = H; |{W, Req, Ret} A
W, Cuy=H1nNWwW,CU}A
Viee Ret{d,a) < ;. a = val(lasi({l; | W(-, a})}
= { take H, = H,[{W, Req, Ret} }
Iy« His({W, Req, Ret}). CM{Hg)} A 1T |[{W, Regq, Ret} = Iz |{ W, Req, Ret}
= { by definition }
Trace WCM

I

which finishes the proof.

6.6 Conclusion

We have introduced a threefold classification of shared memories:

e Coherent memories can be thought of as memories where read and write accesses are executed
atomically, in some arbitrary, but totally ordered sequence.

o Sequentially consistent memories are described by partially ordered traces: read and write
accesses stemming from one processor are totally ordered, but accesses stemming from different
processors are unardered, at least at the external interface of the memory module. Moreover,
each of these partially ordered external behaviours can be “linearized” into a behaviour of a
coherent memory.

o Write-coherent memories are in some sense “in between” coherent memories and sequentially
consistent ones. For write accesses, a single linear order is defined at the external interface. For
read accesses stemming from some processor I only the relative order with respect to write
accesses from P is defined, i.e. P’s read accesses are independent of read or write accesses
from other processors.

We have decomposed the lazy caching algorithm from [ABM93] into four simple protocols that
explain how to build various forms of memories from other memory modules:

¢ Fifo queues for write accesses and read requests between a processor and a sequentially con-
sistent memory preserve sequential consistency,

¢ Write-coherent memories can be replicated, while preserving write-coherency.

* When a write-coherent memory is implemented by means of replication, and some replica
is actually a coherent memory, rather than just a write-coherent memory, then it one can
allow internal actions that copy data from that coherent replica to any other replica. This
transformation preserves write-coherency for the system as a whole.
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¢ A joint queue can put in between a write-coherent memory and the processors accessing the
memory. This queue should act as as a jeint fifo queue for write actions, and moreover
as a an individual fifo queue for the write actions and read requests stemming from each
processor individually. This transformation, once again, preserves write-coherency of the
memeory module.

The correctness of these protocols has been shown based within a partial order quiescent trace
model. It is clear from the actual proofs that most other trace based formalisms could have been used
as well, such as interleaved quiescent traces or CSP style failure traces. In fact, although the detailed
proofs would have been quite different, it seems that proofs based on simulation relations between
state-transition systems or automata should work too. In all cases, the top level structure of cur proof
can be retained.

6.7 Proofs of some lemmas

This section gives the proofs of two lemmas, which were omitted from the main text.
First of all we prove lemma 6.5.2:
Let Hy be a run such that

I. HolA; = U, [A; A CM(H; [ A)
2. HFA = Hy rA A U.\'L’!’,'(H |~A)
3. WRP(Hy [{W;, W,, Req;, Req;, Ret;, Ret; })

Then
Hy 1{ Wi, Reg;, Ret;} = Ho [{W;, Req,, Ret;}

Proof of the lemma. Because of the assumptions Hy [{W;, Req;} = Ho [{W;, Req;} and Hp | Ret; =
Hy [ Ret; we only have to prove that the read-request actions are ordered consistently. That is

Va,a' € HyN Wi, Req;}.((a—Ret(k)—d') = (d—Ret(k)—-a')

where @ (@) the action in Hy [{ W;, leq;} corresponding to a, a’ respectively. We will divide the
proof in two cases
First case, assume
Ret(k)—-d'

with @’ € Hy[{W;,Req;}. Then by WRP;, both @ and Ret(k) exists and moreover a'—&’,
Ret(k)—Ret(k), cf. figure 6.11. As Hel(k) ~ & and Ket(k)—-1a', we get the arrow 1 in
figure 6.1 1, i.e. Ket(k)=-a'. Ordering the other way would result in a cycle. Informally we use the
transitivity of the ordering in the run to deduce the arrow /, as the resulting trace must be acyclic and
dependency closed.
For the second case, assume,
a—rRet(k)

with @ € Hy[{W;, Reg;}, cf. figure 6.12, Then by WRP;, both @ and R}zf.(k) exists and moreover
a— @, Ret(k)—-Ret(k} (arrows 1 in figure 6.12).

Now by assumption | of the lemma, we deduce the existence of Req(k)and Req(k)—- Ret(k) (ar-
row 2). By assumption 3, Reg(k) exists and Reg(k )—Req(k), hence by “transitivity” Req(k) —~Ret(k).
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Figure 6.11: The case Ret(k)—a’
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Figure 6.12: The case a— Ret(k)

Now we claim that a—-Reg(k) (arrow 3). This claim is proven at the end. Hence by assumption 3,
i—- Req(k) (arrow 4). Now by “transitivity” we get that ii—- fet(k) and we are done.

Left to prove that a—~Reg(k). Assume Reg(k)—-a, then by assumption 2 of the lemma there
exists a read-return, say Ret(j), with Reg(k)—Rer(j)—~a. Since a—-Ret(k) we deduce j < k.
Thus we get the situation Req(j)—Req(k)—-Ret(j). Again we deduce the existence of a read-
return Ret(i) with Reqg(j)—-Ret(i)—-Req(k), thus i < 7 < k. Now we are back at a similar
situation Req(i)—~Req(j)— Ret(i), but now i < j < k. Hence by well-foundedness the situation
a— Req(k) cannot occur.

This finishes the proof of the lemma and the theorem. )

Secondly we prove lemma 6.5.5:

Let /lg = (Ag,—p)and H; = (A;,— Ybetworuns,andlet A = AyNA; IfHy{A = H; [ A,
and Hy [ A is linear in the sense that for any two actions there exists a chain between them, and
furthermore (Ay — A) and (A, — A) are independent, we have the following. For

HE (Hy Ul =56 —).

Hisarun,and H [A; = Hi fori= 0, 1.
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Proof. The projection property follows directly from the definition of H and the equality Hy [ A =
H A
To prove that {I is a run we must prove dependency closedness and acyclicity. As for the former, let
a,b € (Ag U Ay), and assume a ~ b. Then {a, b} C Ay or {a, b} C A;. Thus a and b are ordered
either by “—4” or “— 7, respectively.
Now assume H contains a cycle. It must be the case that this cycle contains an action ey € Ay and
an action a; € A;. Furthermore there exist actions @, ' € 4 such that
Ta—=T o -Td-}

ay — ag.

But due to linearity of Hy [ A we also have

«—)d, ord =% a
The former case gives
ag =4 a -t d =7 ag,

whereas the latter gives (using fIy [ A = I, [ A)
@y —A}" o —>'I|' a —>T ag,

that is, both result in a cycle in either /15 or ;. This contradicts the fact that Hy and H; are runs. O
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Chapter 7

Proving Refinement Using Transduction

B. Jonsson, A. Pnueli and C. Rump

105



7.1 Introduction

Distributed computer systems can be specified at many levels of abstraction. For instance, a specifi-
cation of a computer network can at one level describe an abstract file transfer service, and at another
fevel include a description of a protocol for transmitting data over a physical link. An important
problem is to verify that a (more concrete) lower-level specification correctly implements, or refines,
a (more abstract) higher-level one.

Several criteria for the correctness of refinement have been suggested in the literature. A common
criterion is based on the idea that a specification denotes a set of allowed observable behaviors,
correspoading to different runs of a system. Refinement then corresponds to inclusion between sets of
observable behaviors. A verification method should establish that for each computation of the concrete
specification, there is an equivalent computation of the abstract one. Several proof methods have
been suggested, notably refinement mappings [Lam83, Lam89] and (forward) simulation [Jon87,
Jon91, LSS0, LT87, Ora89, SL83, Sta88]. These methods are not complete for the case when,
intoitively speaking, the abstract system has a nondeterministic choice which occurs earlier than the
corresponding nondeterministic choice in the concrete system. For example, a system which outputs
10 «’s and then decides to output either a 0 or a ¢ certainly refines a system which at the beginning
decides to output either 10 «’s foilowed by a b or 10 «’s followed by a ¢, but forward simulation is not
powerful enough to verify this because at the point of outputting the first @, it is impossible to know
which of the alternatives should be chosen in the abstract system in order to match the subsequent
choice 1in the concrete system. The simulation method has therefore been extended with backward
simulation or so-called prophecy variables [AL91, HHS87, Jos88, He 89, Jon91] to handle this case.

In this paper, we present a refinement proof method called proof by transduction. The main
idea of the methed is that for a pair of a concrete and an abstract system, we establish refinement
by constructing a transducer consisting of the concrete system, the abstract system, and a queuve of
observable events. One must then prove that if the transducer runs through a concrete computation,
then it can build up a corresponding abstract computation with some delay. The queue contains the
sequence of concrete events which have not yet been matched by abstract ones. In the transducer,
one can view the concrete system as a generator of a sequence of events, and the abstract system
as an acceptor which accepts a sequences of events, generated by the concrete system, after some
unspecified finite delay. In this way, the transducer may defer transitions in the abstract specification
until the point in time when the relevant nondeterministic choices have been performed in the concrete
system. Thus the method can reduce the number of prophecy variables needed in a proof of refinement.
For instance, in the above example, the first step of the abstract system would be delayed until the
concrete system has made the choice between b and c.

An important generalization of the transduction method is to prove refinement modulo some
transformation of the interface. This kind of refinement has been termed interface refinement in
[GKS92, BJO91]. A typical transformation could be to replace some observable event that represents
a synchronization by a pair of request-confirm events. In the transducer, the queue between the
concrete and the abstract system should then be replaced by a more complex component which allows
the appropriate transformation on sequences of events.

A particular case of interface refinement s partial order refinement, by which we mean refinement
that preserves only a subset of the orderings between events of a system. A typical case is sequential
consistency in shared memory multiprocessor systems, where the ordering between events associated
with each processor is preserved between the concrete and the abstract system. We present a method for
the case of specifying and proving scquential consistency. In this method, a transducer is constructed
in which the abstract system is an ideal serial memory, and the transducer is a component which
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preserves exactly the orderings between events associated with each processor. The totally ordered
queue of observable events is replaced by a partially ordered queue, which ensures that the ordering
associated with each processor is maintained between the concrete and the abstract systems. In the
case of proving sequential consistency, the partially ordered queue essentially consists of one separate
totally ordered queue for each processor. The proof of refinement then consists in establishing that for
each computation of the concrete system (e.g., a cache consistency protocol) there is a computation
of the transducer where all events inserted into the queue by the transducer part corresponding to the
concrete system are eventually removed by the part corresponding to the abstract system.

We illustrate the method for proving partial order refinement by applying it to prove sequential
consistency of a rather simple cache consistency protocol, the so-called Lazy Caching protocol of
Afek, Brown and Merritt [ABM93]. The main advantage of our proof is that whereas the proof of
sequentially consistency in e.g., [ABM93] is based on reasoning about entire execution sequences,
our proof is more concrete, and uses assertional reasoning about the state of the abstract and concrete
system and the queue. The transducer queue can be said to represeat the bookkeeping information
about entire execution sequences that is needed in a proof like the one in [ABM93]. Thus we feel
that our method muakes the proof of sequential consistency more concrete and more explicit, in that
all structures used in the proof are represented as concrete state variables in a transducer.

The paper is organized as follows. In the following section (7.2), we introduce our system model, a
Sfair named transition system as a slightly extended version of a fair transitions system, and our notion
of refinement. The rest of the paper consists of two parts: The first part introduces the transducer and
the proof-by-transduction method for standard language inclusion refinement (section 7.4), presents
the rules in Temporal Logic used to do the proofs (section 7.5), and illustrates the method on a simple
example (section 7.6). In the second part, we generalize the proof-by-transduction method to handle
partial order refinement (section 7.7), then specialize it to treat sequential consistency (section 7.8),
and use this to prove the Lazy Cache Algorithm (sections 7.9-7.10).

7.2  System model and notion of refinement

We assume a universal vocabulary V of typed variables. We write 2 : [J to denote that variable z is
of type 1. We define a stare s to be a type-consistent interpretation of V, assigning to each variable
u € Vof type I a value s[w] over its domain. We denote by X the set of all states.

To express the visible part of the behavior of a system and compare two systems with different
system variables, we use auniversal set of events £. Events can be viewed as an abstract representation
of taking a transition.

We model systems as fair named transition systems (rnrs). A fair named transition system is a
slightly extended version of a fair transition system [MP91] in which each transition is associated
with an event. Taking a transition is interpreted as an occurrence (generation) of the event associated
with the transition. The set of cvents is partitioned into the set (O of observable events and the set 7
of internal events. An observation of the system 1s the sequence of observable events generated by a
computation of the system.

Fair named transition system
A fair named transition svstem 8 is a six-wple (V, ©, 7, 7, C, O), where

o V. C V-isafinite sct of system variables.
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o O - isthe initial condition. 1t is required that © be satisfiable, i.e., there exists at least one state
satisfying ©.

o 7 -is a (possibly infinite) set of transitions. Each transition 7 € 7 is presented as
FipdV, V) gen a,

where «, € & is the event generated by 7, where V” is the set {2’ | 2 € V'} of primed system
variables, and where p-(V, V') is an assertion called the transition relation which relates a
state s € I to its possible T-successors ¢’ by referring to both unprimed and primed versions
of the system variables in V. An unprimed version of a system variable refers to its value in s
while a primed version of the same variable refers to its value in s’. We say that the transition
T generates the event o, For example, a transition 7 with p, : &' = ¢ + 1 and o, : inc has
the effect of incrementing the value of # and generating the event inc. Let £ denote the set of
events generated by the transitions of &. Several transitions may generate the same event.

o 7 C 7 isasetof just transitions.
o ( C 7 isaset of compassionate transitions.
o (O C s the set of observabie events. Thus the set of internal events is 7 = F — O.

We require that the idle transition, 7, with the transition relation pr, - V' = V and generated event

a, idle, always be in 7 and idle € T.

The partitioning of events induces a partitioning of transitions, the set of observable transitions,
To = {7 | oy € O}, and the set of internal transitions, Tt = {7 | . € I}.

We adopt the convention that all system variables not explicitly mentioned as primed in a transition
relation are left unchanged by the relation. Thus, whenever we define a transition relation by
means of an assertion p whose set of primed variables is U/, we regard this as an abbreviation for
peAV, VY =p(V, U AT =7, wherew = V — ],

The transition relation p,.( V', V') identifies a state s’ as a 7-successor of state s if

{s,8VEp(V, V"),

where {s, '} is the interpretation which interprets 2 € V as the value s[z] of « in state s and interprets
' € V' as ¢'[2]. A transition 7 18 enabled on a state s, written s k& En(7) if

SEIV p(V, V)

which is true iff s has a 7-successor.
A scenario of a fair named transition system § is a pair (¢, 3) consisting of a model

0T Sy 81y 8p,...
and an infinite sequence of transitions

ﬁ T T, Taye..
satisfying:

o Initiarion - 5o satisfies the initial condition ©,
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¢ Consecution - For all ¢ > (0, the state s;4; is a 7,4, -successor of the state s;.

o Justice - For each transition 7 € 7, it is not the case that T is continually enabled at all states
beyond some position in ¢ but appears only finitely many times in 8. A transition appears
finitely many times in 3 if there are finitely many indices i; < ... < 7, such that Ty, =T for
ally = 1,... k.

o Compassion - For each transition 7 € (, 1t is not the case that 7 1s enabled at infinitely many
positions in ¢ but appears only finitely many times in 3.

We refer to o as the computation induced by the scenario, and to 3 as the behavior induced by the
scenario.

A run of the system is any scenario satisfying the Initiation and Consecution requirements, but
not necessarily any of the Justice or Compassion requirements.

An observation a corresponding to a behavior 3 is obtained from 3 by replacing each transition
by the event it generates and then omitting all internal events. Formally, for an infinite sequence of
transitions 4 : 7, Te, . .., let Kvenls(f) denote the sequence of the corresponding generated events,
@y sz, ..., and for a sequence X and a set F, let X[ denote the projection mapping of the
sequence X onto the set £
Let Obs(S) denote the set of all observations of a system §.

Definition 7.2.1 (Refinement)  Given two systems S and S, to which we respectively refer as a
concrete and an abstract system, we say that the concrete system SC refines the abstract system 8#,
denoted

SC C S.A

H

iff O° = OA and Obs(SY) C Obs(SH).

To represent infinite sets of transitions, we introduce the notion of parameterized transitions.
Parameterized transitions are presented by a transition scheme of the form

T(Prseen k) s 0r(Prse s, Vo V) gen. ar(pr,. .. pi)

for p; € Dy ..., € Dy, where each p; is a parameter associated with a particular domain
D;. A transition scheme identifies a (possibly infinite) set of transitions and their corresponding
events. Each transition and corresponding event is obtained by selecting a particular instantiation
pr ody € Dyyooopg o di € Dy oof the parameters 7 = {py,...,pt}. Such an instantiation gives
rise to the transition 7(dy, ..., d) and the event a-(dy, . .., di).

For simplicity, we assume that only finitcly many fair (just or compassionate) transitions are
enabled in each state of a computation. This property is referred to as finite fair enableness. Our
results also hold for the more general case, where a countably infinite number of transitions may be
simultaneously enabled, but the proofs will be more involved (see [JPR94]).

A Note on Notation

We use o to denate concatenation of sequences as well as the concatenation of a single element to a
sequence. The length of a sequence X is denoted by | X|.

As usual, for a sequence X of elements in some domain D, the notation X [¢] denotes the i’th
element in X provided that { < i < Length{X), written { € dom(X). If i ¢ dom(X), X[{] is
taken to be L which is different from all elements in 1.
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For a sequence X € D~ of length {X| = n > 0, we denote by head(X) the element X[/] and
by tail( A) the sequence X' [2],..., X'[n], obtained by removing the first element from X. If X is the
empty sequence, then Lead( X ) is L, and tazl( X') 1s the empty sequence.

For an element y € D and a sequence X € D*, we use the predicate y € X as an abbreviation
for3ie dom(X): X[il=y.

7.3 Temporal Logic

We use linear time temporal logic [MP91] as a language for expressing properties of computations of
fair named transition systems. We assume an underlying first-order language for expressing functions
and relations over some standard domains such as the booleans and the integers. A formula in the
underlying language is referred to as an assertion. We will use a restricted version of temporal logic,
which consists of a first-order language augmented by the following temporal operators:

O » — “p holds at all future positions”,
< p—“p holds at some future position”,
zT — “the value of variable z in the next position”,

A local formula is a formula in which the only temporal operator is the next-value operator { )T,
applied {once) to variables.

The truth of a temporal formula is evaluated relative to a position j > ¢ in a computation
oSy, S;, 8e,. .. as follows:

o Fora formula p without temporal operators,
(o.7) E p iff the state & at position j in @ satisfies p.

e For a local formula p( V', V1)
(a,7) Ep(V, VYiff (s,5) E p(V, V'), where we interpret € V as s[z] and 2’ € V' as

S,["U]’.
o (o, j/)Epiff{o,i)Epforalli> j,
e (a,j) O piff (o,7) F p forsome i > j,
Boolean operators are evaluated as usunal. Two common forms of temporal formulas are
¢ [1 < p which means that p holds at infinitely many positions, and

e [I(p — < ¢) which is abbreviated as p = < ¢, meaning that each state s that satisfies p is
followed by a state {possibly s itself) that satisfies q.

For a transition 7, define taken(7) as the local formula p,(V, V1). We say that transition 7 is
taken at position § of a computation « if faken(7) holds at that position. Note that more than one
transition may be considered as taken at position j. This may happen only if both taken(r;) and
teken(Ts ) hold at j.
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7.4 Proving Refinement Using a Transducer

In this section, we present the construction of a transducer for proving that some concrete system S€
refines some abstract system S4. The transducer is a fair named transition system constructed from
8¢ and 84 together with an interface queue of events in ¢ and possibly some auxiliary variables.
In the transducer, the concrete system acts as a generator of events which are transferred via the
interface queue to the abstract system which in turn acts as an acceptor of sequences of events. To
establish a refinement between 8¢ and 84, it must be verified that each sequence of observable events
produced by $¢ can be accepted (after some unbounded finite delay induced by the interface queue)
by the abstract system S*. This property clearly implies refinement. In Theorem 7.4.2, we formulate
sufficient conditions for this property.

Since we are now referring to two systems, one abstract and one concrete, we use superscript A ©y
when referring to parts of the abstract (concrete) system. Thus S is given as ( Ve, ef, T¢, J¢,Ct)
and similarly for S#. The terms abstract and concrete are sometimes merely used to refer to the
systems on the right-hand side and the left-hand side of the refinement relation.

For aesthetic reasons, we refer to relations of the form p(r,:) as p7, to relations of the form Py

as pA and to events of the forms a4 and «v,¢ as a? and of, respectively.

Definition 7.4.1 (The Refinement Transducer)  Given concrete and abstract systems S€ and 84
such that VE N VA = () and OA = O, a transducer 87 over 8¢ and S# is a fair named transition
system where

o VI = vAUVEU{Q:(O)*} U U, ic. the system variables consists of the system variables of

the abstract and the concrete systems, together with a queue (sequence) Q of concrete observable
events, and a (possibly empty) set of auxiliary variables, U.

o OF the initial condition, is a formula that satisfies:
(FU:0") — A AQ=A

o 7T the set of transitions is the union of two sets T€ and’ T4 such that each concrete transition

¢ € T€ has a corresponding transducer transition < ¢ T¢ and each abstract transition

4 € T4 has a corresponding transducer transition 7A ¢ TA, The transition relations are

required to satisfy the following:

— The transition relation pA for the transducer transition T corresponding to the abstract
transition 7 should satisfy

.

F o deQd) A (F) =

where deQ( ) is defined as Q = a ¢ Q' if 7 is observable and ¢ = Q otherwise.
Each transition T generates the special event null.

- The rmnsition relation p< for the transducer transition 7€ corresponding to the concrete
transition ¢ should satisfy

KA enQo)y A (VY =vA w3 :;?
where enQ( o) is defined as ' = Q ool if 7° is observable and Q' = Q otherwise.

Each transition 7€ generates the event oS which is the event generated by °.
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o 7T C 7 U TA. Thatis, the justice set contains the transitions corresponding to a subset of
the just transitions for the concrete level and a subset of the abstract transitions. The mapping
“ is extended to apply to sets of transitions in the obvious way.

o CT C CC U TA. The compassion set contains the transitions corresponding to a subset of the
compassionate transitions for the concrete level and a subset of the abstract transitions.

o (0T = (¥ ie. the set of observable events equals the set of observable events for S€.

The system variables of the transducer are those of ¢ and $# together with the interface quene Q
and a set U of auxiliary variables. These can be used to restrict (schedule) the occurrences of abstract
transitions, and to simplify the proof of the verification conditions, to be presented in Theorem 7.4.2.
The auxiliary variables are not allowed to restrict the possible behaviors of the concrete system. This
is the motivation for the condition on ©7, which states that for each intended initial state of the
transducer, satisfying @4 A @° A Q = A, there are values of U such that ©7 holds.

The {['al"l\lt]()ll‘\ of the transducer are of two kinds: those that correspond to a transmon of the
concrete system (T‘) and thosc that correspond to a transition of the abstract system (TA) The
conditions on these ensure that the proper events are inserted and removed from the interface queue
when these transitions are taken.

One way to understand the requirements on the transitions in 7 7 is to see that they are satisfied
if we

e construct 7¢ from 7° by adding an operation that inserts an observable event into Q for each
observable transition in 7¢. We may also add constraints on the auxiliary variables, if these do
not constrain the original concrete transitions.

e construct 74 from 74 by adding an operation that removes an observable event from @ for
ecach observable transition in 7. We may also add any additional constraints on any variables.

Note that since new enableness criteria on abstract transducer transitions may have been introduced
as may new fairness requirements, it has to be verified that the transducer satisfy the finite fair
enableness property.

7.4.1 Soundness of the Method

We can now (in Theorem 7.4.2) prove a soundness theorem for the transducer recipe. It says that
given a concrete and abstract system, SC and 84, if atransducer ST over 8¢ and 84 satisfies the three
requirements of matching-progress, justice satisfaction, and compassion satisfaction, then St sA
Intuitively, the matching-progress requirement states that whenever the interface queue is nonempty,
then there will be a subsequent occurrence of a transition that removes the first element from ). Note
that this transition must be a transition of §4. The motivation for the justice (compassion) satisfaction
requirement is, that since the transducer is allowed to constrain an ab‘;tract transition 74 in any way,
the enab[enesx criterion of the corresponding transducer transition rA may be different from those
of 4. Thus, in general, a justice (compassion) requirement on 74 is not enough to ensure a justice
(compassion) requirement on' 7. It must therefore be verified separately that the transducer respects
the justice and compassion requirements for the abstract system.

For now, we are only going to sketch the soundness proof of the refinement transducer, and then
in section 7.7, we shall give a complete soundness proof of the partial order refinement transducer
which is a generalization of the refinement transducer.
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Theoremn 7.4.2 (Soundness)  If a transducer S over S€ and 84 satisfies:

I. Progress in Matching:

QA = OO0 = wil(Q))

2. Justice Satisfaction: For each transition ™ € T4,
En(r?) = O(En(r) V taken(TA))
3. Compassion Satisfaction: For each transition T € 4,
OOE(rY) = OO taken(t4)

then

Proof: (Sketch only). Let o

¥ :Tf.',TZL,T;-,...

be a behavior of $€. We must prove that there is a behavior v of $* which induces the same
observation, i.e., ;{ = *F‘.

By the conditions on S?, we conclude that S7 has a behavior 8 which is an interleaving of the
sequence

S
LM G
YT, Ty

with transitions derived from 74. From the conditions on @ (including matching-progress) in the
computation, we infer that the sequence of observable abstract transitions is the same as that of
observable concrete transitions. Finally, we use the justice and compassion satisfaction requirements
to conclude that the abstract part of 4 (with the hats (*7s) removed) is a behavior of SA. 0

7.5 Proof Rules

In this section, we present temporal proof rules that wilt be used to prove temporal properties of the
form p = g, c.g. matching progress properties of transducers. The rules can be used to infer a
temporal conclusion from a list of non-temporal (i.e., first-order) premises. The statement made by a
rule is that, if each of the assertional premises holds over all S-accessible states (states that may occur
in a computation of system .S), then the conclusion holds over all computations of S. This implies
that, in establishing any of the premises, we may freely employ any previously established invariant
of the system. The rules presented here are taken from [MP94].

7.5.1 A Single-Step Rule

A single-step rule, relying on justice, is provided by rule ster presented in Figure 7.1.

Rule sTip can be used to prove single-step response properties, i.e., properties that can be achieved
by asingle activation of a just transition. The rule calls for the identification of an intermediate assertion
w and a just transition 73, € 7, to which we refer as the helpful transition. The idea of the rule is to
establish that each state that satisfies p is the beginning of a (possibly empty) period that satisfies ¢,
that ¢ holds as long as ¢ has not become true, and that (by justice) transition 7, must eventually be
taken and make ¢ true.

113



For assertions p, 4, @, and transition 7, € 7,

H. o op—gvVve

2. po A — ¢V ¢ foreveryreT
!

I3. Pry Ap — g
J4&. ¢ — En(Ty)

p=> g

Figure 7.1: Rule sTep (single-step response under justice).

Premise J1 of the rule states that, in any position satisfying p, either the goal assertion ¢ already
holds, or the intermediate assertion ¢, bridging the passage from p to ¢, holds. The g-disjunct of
this premise covers the case that the distance between the p-position and the ¢-position is 0. The
w-disjunct and the other premises cover the case that the distance between these two positions is
positive.

Premise J2 requires that every transition leads from a e-position to a position that satisfies g V ¢.
That is, either a position satisfying the goal assertion ¢ is attained or, if not, then at least the intermediate
 is maintained.

Premise I3 requires that the helpful transition 7, always leads from a ¢-position to a g-position.

Premise J4 requires that the helpful transition 7, is enabled at every -position.

Note that, if we have established an invariant % of the system, it is sufficient to prove the
implication

AN r — 5,

in order to establish a premise of the form

Rule sTep can be used to establish that every state satisfying p (p-state) is followed by a state
satisfying another assertion ¢. The case where ¢ expresses that some transition 7, must eventually be
taken can be expressed by the assertion

p = O taken(r,),

Such response properties can be proven by rule s-raxe of Figure 7.2 which is a variation on rule

STEP.

7.5.2 Combining Response Properties

Rule sTep by itself is not a very strong rule, and is sufficient only for proving one-step response
properties, i.e., properties that can be achieved by a single activation of a helpful transition.

In gencral, most response properties of the form p = & ¢ require several helpful steps in order
to get from a p-position to a ¢-position. To establish such properties we may use several rules that
enable us to combine response properties, each of which established by a single application of rule
sTEP. These rules are based on general properties of response formulas that allow us to form these
combinations. We list some of these properties as proof rules.
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For assertions p, ¢, and transitions 7, € 7,7, € T,
I, p — ¢
2. pr A — ¢ Vop, foreveryreT
Boopr, A — pay
4. o — En(m)

p = O taken(r,)

Figure 7.2: Rule s-raxr(eventual activation of transition).

For example, the following rule Trys (transitivity) infers the response property p = < r from
the two response properties p = O qgand g = O o

Rule Tins (transitivity of response)

p=200 4= 0
p = Or

Another useful property of response formulas is that it is amenable to proof by cases. This possibility
is prescnted by rule cases.

Rule casis (case analysis for response)

p = O g = r

(Vv =S

7.5.3 A Well-Founded Rule

The preceding rules can be used to establish response properties that need a bounded number of
helpful steps. Some properties may require a number of helpful steps that depend on the state and
cannot be bounded a priori. To handle these cases, we introduce a rule that depends on a well-founded
domain as a measure of progress towards the goal .

A well-founded domain (A, > consists of a set A and a weli-founded binary relation > on A. The
relation > is called well-founded if there does not exist an infinitely descending sequence ag, ay,. ..
of elements of A such that

Qg > Gy = -
A typical example of a well-founded domain is (N, >), where N are the natural numbers (including

115



0) and > is the greater-than relation.

Rule weLL, presented in Figure 7.3, can be used to establish a response property requiring an
unbounded state-dependent number of helpful steps. The rule uses a well founded domain (A, >)
and a ranking function § mapping states to elements of A

For assertions p, ¢, and ¢,
a well-founded domain (A, >), and
a ranking function &: & — A
Wi. p — ¢V e

W2 o Aé=u = O(gV g Au>ib)

p = v

Figure 7.3: Rule wiLL (well-founded response).

Premise W1 states that every p-state satisfies the goal assertion ¢ or the intermediate assertion ¢.
In the first case, the goal is achieved within O helpful steps.

Premise W2 requires that every (-state with rank § = =, 15 followed by another state which either
satisfies g or satisfies ¢ with a rank lower than n. Since the domain is well-founded, the rank can
decrease only finitely many times, ensuring that a ¢-state is eventually reached.

Rule weLL has as its premise W2, another response formula. This allows a recursive use of the
rule, by which the temporal premise W2 is proved either by the simpler rule sTep, or by rule weLL
again, only applied to simpler assertions. In many cases, the premise W2 is proved directly by rule
sTEP. In these cases it is advantageous to replace the temporal premise W2 by the non-temporal
premises of rule stur. This leads to rule s-wewa, presented in Figure 7.4.

The rule uses an intermediate assertion ¢ to describe the situation between the occurrence of p
and the resulting occurrence of ¢. It also uses the function £ which identifies, for each (p-state, a just
transition which is helpful for this state. We refer to fi, as the helpful function. Note that the helpful
transition depends on the state.

The rule uses a well-founded domain (A, >) and a ranking function § mapping states into the set
A. The ranking function measures the distance of an intermediate state from a goal state satisfying g.
As the computation takes a helpful step, this measure decreases. Due to well-foundedness, the rank
cannot decrease forever. Consequently, the computation must eventually reach a ¢-state.

Premise S| requires that every p-position, satisfies ¢ or ¢.

Premise S2 requires that the application of an arbitrary transition 7 to a p-state s leads to a
successor state s’ satisfying one of the following:

o s satisfies ¢, or

o s satisfies o with a rank é(s) smaller than §(s), or

o &' satisfies o with a rank 6(s”) equal to 8(s), and with identical helpful transition A(s’) = h(s).
Note that in the case of no observable progress, described by the third clause above, we require the
persistence of the helpful transition

Premise S3 requires that the application of the helpful transition /i, to a -state s, leads to a
successor state s” which either satisfies ¢ or satisfies ¢ with a rank lower than that of s.

Since premise 83 covers the case of T = /, it is sufficient to establish premise S2 only for 7 £ ;.
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For assertions p, ¢, and ¢,
a well-founded domain (A, >),
ranking function §: & — A, and
helpful function h: & - 7
St p — ¢ Vv e
¢V (P A G E)
Vil Ab=8 A h=1)
forevery T € T
S3, pp A — ¢V Ad=Y
S4. o — En(h)

S2. pr A —

P = Og

Figure 7.4: Rule s-wiLt (well-founded response with helpful sets).

Premise S4 requires that the helpful transition is enabled on every every -state.

7.6 The Buffer Example

We shall illustrate the proof-by-transduction method by an example. We have chosen a very simple
problem to show how proof by transduction can replace the use of prophecy variables.

The example consists of a concrete and an abstract system, both of which operate on a buffer
1 which ranges over sequences of data messages and have two observable operations: insert and
remove, and one internal operation: delete. An insert(d) operation adds a message d to the end
of the buffer, and a remove(d) removes element d from the front of the buffer. A delete operation
deletes an element from the buffer. The difference between the systems is that in the abstract system
a delete” can only remove the last element inserled to the buffer, whereas in the concrete system a
delete’ (k) removes the &’th element, i.e. any element can be deleted.

Proving §€ [ § using a regular state to state refinement mapping would require use of prophecy
variables. The reason is, that even though one can execute the corresponding abstract insert?(d)
whenever a concrete insert®{d) is executed, it is not known by that time whether this d element will
be deleted, which then requtires immediate execution of a delele” operation in the abstract system, or
not.

We assume that messages are taken from some data domain .

Besides the operations on sequences previously introduced (see section 7.2) we use the following
operations for the systems description.

For a sequence X : D~, we shall denote by drop(k, X'), for k € [1..n], the sequence X[I], ...,
X[k — 1], X[+ 1],..., X[n], obtained by removing the &’th element from X. For k € [1..n], we
define dvop(k, X'} = X. We write last{ X') for X[|X|] and resi(.X) for drop(|X|, X). Obviously,
last{X') is the last element of X" and rest{ ") is the sequence minus its last element.
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7.6.1 The Abstract System

We define the abstract system by the following fair named transition system, S4:

vA = {84 D"}

04 = BY=A

T4 = {insertA(d), remove® (d}, delete® || d € D}
T4 = {remove(d) | d € D}

04 = Alinsert(d), remove(d) | d € D}

where the transitions in 7 are defined by

insert*(d) . (B*Y = B4ed  gen, insert(d)
remove (d): B* = d «(BA) gen.  remove(d)
delete®  : (BAY = rest(B*)  gen.  delete

Note that transition delete can only remove the last element from the buffer B4,
Since the idle transition is a standard part of any rnTs, we omit its specification from the presen-
tation.

7.6.2 The Concrete System

The concrete system, 8¢, is defined by the fair named transition system:

v = (8D}
e = B°=A
TC = {inserC(d), remove®(d), delete” (k), | d € D,k € N}
J¢ = | removec(d) d € D}
[ {insert(d), remove(d) | d € D}
where the transitions in 7¢ are defined by
insert€(dy . (B°) = B od gen.  insert(d)
remove® (d): B¢ = d o(BY gen. remove(d)

delete® (k) k € dom(B°) A (BYY = drop(k, B°) gen.  delete(k)
Note that transitions defete® (k) can delete an element at an arbitrary position of B¢,

7.6.3 The Buffer Transducer

The transducer that proves the refinement relation between the concrete and the abstract buffer systems
uses two auxiliary variables in addition to the interface queue Q : (¢)°)*, ranging over sequences of
events.

The abstract system can only delete elements that are at the end of the buffer. Thus boolean
variable dpend is set to T when such deletion is necessary, indicating the element at the end of B4
should be deleted before any new element is added to BA.

Sequence variable A : Mark™ is used to contain additional information associated with the
events listed in (). The transducer keeps |@] = [M] so that it is possible to view M[{] as the
information associated with the event @[i]. Each entry in M ranges over the enumerated type
Mark : (nil, rem, del) with the following intended interpretation:
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o Forevery Q[i] = remaove(d), M[i] = rem.

o The pair Q[i] = insert(d) and M[i] = nil represents an element that was inserted into B by
the concrete system and is still in 3¢, The destiny of such an element is still undecided because
it may still be deleted or eventually removed.

o The pair Q[7] = insert(d) and M[i] = rem represents an element that was both inserted into
and removed from B¢ by the concrete system. Consequently, this element is no longer in BC.
The fact that Q[] = insert(d) implies that the abstract system has not inserted it yet into B4,

o The pair Q[i] = insert(d) and M[i] = del represents an element that was both inserted into
and deleted from B¢ by the concrete system. Consequently, this element is no longer in BC.
The fact that Q[7] = insert(d) implies that the abstract system has not inserted it yet into B4.

Consider a sequence M. Let ¢;,..., % be the sequence of indices of null entries within M, i.e.,
Mi;] = --- = M[i]) = nil. The function freex(j, M) computes the index of the j'th null entry
within M, ie., 7;, if § < & and returns 0, if j > k. We define firsifree(M ) to be freex(1, M).

For a sequence M, we use the notation { M [i] := m) to denote the sequence which is identical to
M in all elements except for the #’th element which equals m.

The transducer is presented by the transition system shown in figure 7.5. We omit specification
of the events &gﬂel‘ut@d by the transducer transitions, since they are determined by Definition 7.4.1.

Transitions inscrt?(d) and removeA(d) are enabled only when dpend = r. Variable dpend is set to

r by transition insert*(d) whenever it inserts an element d with a corresponding M entry del which
signifies that this element was deleted by the concrete system. Setting dpend to T disables all other

abstract transitions and cnables delete” which deletes the last element of B,
Transition inscri®(d) inserts event insert(d) into @ and marks it in M with nil. Transition

———

removeC (d) inserts event remove({d ) into @ with corresponding marking rem but also marks the first
null entry in M with vem. As will be shown, the corresponding entry in @ contains the insert(d)
event that was responsible for inserting into 53¢ the element d that is currently removed. Marking it
by rem: signals to the abstract system that the destiny of this element has just been identified and it is
safe to insert this clement into B4, knowing it will not be deleted.

Transition delete®( k) deletes the £’th element from L€ and marks the &’th null insert event as
deleted. This signals the abstract system that it is now safe to insert the corresponding element d into
BA, provided it will be immediately deleted by delete?.

7.6.4 Proof of the Buffer Transducer

Four invariants are needed to prove the matching-progress and the justice satisfaction of the buffer
transducer. To express these invariants, we introduce some additional notation.

Consider a queue ()} € (C"z)* and a marking sequence M € Mark™ of the same length. Based on
the correspondence between entries in ¢ and entries in M, we can classify inseri-entries as follows:
An insert-entry is called a null insert, a remaining insert, or a deleted insert if its corresponding mark
is nél, rem, or del, respectively. An insert-entry is called an undeleted insert if its corresponding mark
is not del. We define Q [ni.f."n‘\'err’ Q frmuin.\‘m’r' and Q Fund:?lr'n.wr." to be the seéquence of data elements that
correspond to null insert entries, remaining msert entries, and undeleted insert entries, respectively.
We define Q[ to be the sequence of data elements corresponding to remove-entries in Q).

We define

FeHIOVE

B = ir dpend then rest(BA) else B
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(BAY = B od A M = tail(M) A
dpend’ = (head(M) = del)

I‘GI;-J:)-;G‘A((])l ~dpend A Q = remove(d)e A
(BAY = tail(BY) A M' = 1ail(M)

delete™ sdpend A (BAY = rest(BA) A dpend’ = F

fﬂj;_(‘.?lc((f) H(BYY =B ed A Q = Qeinsert(d) A M' = Menil
remove (d): BY = de(B°) A @' = Qe remove(d) A
M = (M[firsifree(M)] := rem) e rem
delete* (kY < k E dom(B) A (B°Y = drop(k, B®) A
= (M[freex(k, M)] := del)

Il

TI

Figure 7.5: The buffer transducer

Thus, I represents a stable B4, without its last element if this element is soon to be deleted as
indicated by a true dpend.
The proof of the progress propertics required by Theorem 7.4.2 is based on the following invari-

ants:

I Q| = M}

I EA «Q [r‘mm'ux(erl = Q[rmnm'e

iy Q [mldelin.\'m'f = Q fr(ﬂl.'ifl.ﬂ'(?."f *Q [ni.’iﬂxer!

e Qluitinsers =

Invariant [, states that ¢J and M have equal lengths.

Invariant f» states that the concatenation of the (stable) abstract buffer to the insert elements
marked as remaining yields the same sequence of data elements as those associated with remove-
entries in ).

Invariant 1 states that the sequence of all undeleted inscri-entries in 7 consists of the sequence
of remaining <nserl’s followed by the sequence of null dnsert’s. It implies that all remaining insert’s
precede all null insert’s in .

Invariant /; states that the sequence of elements corresponding to null insert’s is identical to the
concrete buffer B¢

The method of proving refinement by transduction requires that we establish two response prop-
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erties (since we have no compassion requirements). The first requirement is progress in matching and
the second is the satisfaction of abstract justice. We will prove each requirement in turn.

7.6.5 Progress in Matching

Progress in matching requires that each observable event that is currently at the head of the queue is
eventually removed. This can be formuiated by the response formula

head(@) = = O taken(c;}). (7.1)

for o € OF. In our case, the observable events are all of the form (d) where v € {insert, remove}.
We will prove the progress property in several stages.

First we show that if an observable transition is enabled, implying that the corresponding event
must be at the head of ¢, it is cventually taken. This property is expressed by the following lemma:

Lemma 7.6.1 En(;:“(d)) = Or(:kerr(ﬁ(d)) for i € {insert, remove}.

Proof: Both cases are proven by rule J-taxe, taking p = ¢ : En(::}(d)) for the assertions and
1, : #A(d) for the helpful transition. The only nontrivial premise is J2. Observing that premise J3
implies premise J2 for 7 = 1, = #4(d), it is sufficient to prove, for each 7 # v4(d), the implication:

pr A En(;}(d)) — En'(ljj(d))

——— N———

[ !

which claims that no transition other than ;“(d) can disable 1’7“((1), once it is enabled. For the
case # = insert, the enabling condition is —dpend A head(Q) = inserf{d) A head(M) # nil, and

it is easily seen that, once true, this can only be changed by the transition insertA(d). For the case
v = remove, the enabling condition is ~dpend A head{Q) = remove(d), and, once true, this can only

be changed by transition removeA(d). This establishes that, once an observable abstract transition is
enabled, it is eventually taken. O

We will proceed to show that if observable event 1/(«) is at the head of @ then, eventually, ;j(d)
becomes enabled.

One possible obstacle to the enableness of the two observable abstract transitions is that variable
dpend is true. We now establish that, whenever this happens, variable dpend eventually become false.
This property is stated by the following lemma, which also guarantees that, when dpend becomes
false, the same observable event v is still at the head of ().

Lemma 7.6.2  fhead(Q) = v(d) A dpend = O(head(Q) = v(d) A —dpend)

Proof: By rule stip, using the following constructs:
p=w: head(Q) = v(d) N dpend
g head(Q) = v(d) N —dpend

T delete™

O

As the last step in the proof of progress in matching, we show that if 1-(d) is at the head of {) and
dpend = v, then vA(d) eventually becomes enabled. This is stated by the following lemma:
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Lemma 7.6.3  head(Q) = v(d) A ~dpend = O(En(;;(d)))
Proof: We consider separately the two cases:

v = remove. Since En(renjt;\—)e“‘ (d)) is ~dpend A head(Q) = remove(d), the left-hand side of the
lemma’s claim implies En(remove#(d)) immediately, so the claim is valid.

v = insert. For this case the enabling condition En(in;e:;tf‘ (d)) requires, in addition, that head(M) #
nil. It is, therefore, sufficient to prove
—dpend A head(Q) = insert(d) A head(M) = nil =

¢ (—vdpend A head(Q) = insert(d) A head(M) # nil) (7.2)

By invariant Iy : QFiimeers = BC» head(Q) = insert(d) A head(M) = nil implies head(B€) =
d. The helpful transition re:@ec(d) is thus enabled, and will, when taken, append remove(d)
to the end of Q and set M[i] to rem, where i is the first null insert in Q. Since insert(d) is a
null insert at the head of Q i = 1 and removeC (d) sets M[7] to rem, n, achieving head(M) # nil.

The helpful transition removeC (¢/) can be disabled by transition deletec(]) which sets M([I] to
del, also achieving head(M) # nil. Thus, formula (7.2) can be proven by rule sTEP, With the
following choice:

P —dpend A head(@) = insert(d) A head(M) = nil
w: dpend A head(Q) = insert(d) A head(M) = nil A head(B°) =
g: —dpend N head(Q) = insert(d) A head(M) # nil
T removet (d)
a
Obviously, Lemmas 7.6.2, 7.6.3, and 7.6.1 establish progress in matching, as expressed by for-
mula (7.1).

7.6.6 Abstract Justice

The second requirement that should be proven is that if a just abstract transition o (the original
transition of the abstract system, not its transducer counterpart) is enabled, then either it becomes
disabled some time later, or the Lorlespondmg transducer transition is eventually taken. Since all just
abstract transitions are of the form remove?(d), we have to prove the following formula.

head BY=d = O (head(BA) #£dV taken(ren—@:;e-" (d)))
N—————— .

En(remove2 (o))

{note that head{ 54} # d is implied by B4 = A). In view of Lemma 7.6.1, it is sufficient to prove

head(B) =d = O (head(BA) #d V head(Q) = remove(d)) (7.3)

If head( 34) = d then either hmr[(b’ } = d or dpend = =, last(BA) = d, and }BA| = 1. Inthe
latter case, we can use a proof similar to that of Lemma 7.6.2 to establish

head(B*y =d = O(fiead(BA) £dV head(B'A) = d)

We can therefore proceed under the assumption that head(FA) = d. By invariant I, this implies that
head{ QFpmme) = « and, therefore, vemove(d) € €. Assume that] is the smallest subscript such that
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Q7] = remove(d). By property (7.1), each element at the head of () is eventually removed, moving
remove(d) closer to the head of (). Eventually, we will reach a state in which head( Q) = remove(d),
as required by property (7.3).

This concludes the proof of the requirement of abstract justice for the buffer transducer.

Since C* = () and the transducer satisfies the matching-progress and justice satisfaction require-
ments, we conclude that 8¢ C S4.

7.7 Partial Order Refinement by Transduction

In the previous section, we have used proof-by-transduction to prove inclusion between the sets of
observations of two systems. However, our proof method can be used for more general refinement
criteria, which are not defined simply as inclusion between sets of observations. An example is a
refinement criterion which requires that for each observation ﬁc of the e concrete system, there is an

observation ﬁA of the abstract system, which is in some way related to ﬁ‘ for instance through some
particuiar transformation. This more general kind of refinement has been termed interface refinement
in the work by Brinksma, Jonsson, and Orava [BJO91] and by Gerth, Kuiper, and Segers {GKS92].
The more restricted standard refinement criterion corresponds to the special case where the relation
between obscrvations is equality.

A particular instance of interface refinement occurs when the transformation is defined to respect
partial orderings between observable events (standard refinement respects the total ordering between
all observable events in an observation). In this way, it is possible to specify phenomena such as
serializability, sequential consistency, etc. The partial ordering can be defined to respect, for each
member of some set of observers, the order of events that the particular observer can see. The
observers can be taken as the individual processors in the case of sequential consistency, and as the
individual transactions in the case of serializability.

In this section, we shall first define a general framework for partial order refinement. 'We then
go on to show how the proof-by-transduction method can be generalized to a proof method also for
partial order refinement. The idea of this generalization is to replace the interface queue by a data
structure that can attain the appropriate transformation from sequences of input events to sequences
of output events. In the next section we show how partial order refinement can be specialized to
sequential consistency,

Let E be a set of events, A dependency D on E s a reflexive and symmetric relation on F.
For two finite or infinite equal-length sequences of events 3 : ey, ¢;,...and 3 : €;,€;,...and a
permutation 7 . {/,....|3]} = {1,...,|ﬁ|} (in the infinite case 7 : N — IN), we write § = 7(3)
iff ¢; = €r() forevery 7 = 0,1,...,|8|. We say that 7 is D-respecting on 3 if ¢; D ¢; implies

(1) < w(j) whenever 0 <7 < j < fﬁl We say that 5 and B are D-equivalent, written 8 ~p 3, if
there is a D -respecting permutation 7 on 3 such that § = =(73).

Definition 7.7.1 (Partial Order Refinement) Let 8¢ and S* be fair named transition systems, and
let D be a dependency on the sct (2 of observable events. Then S¢ is a partial order refinement of A
with respect to D, written 8¢ Gp SA, itf OA = (O and for any observation ﬁc of S€ there exists an

observation ﬁf" of 84 such thatﬁ/‘ ~p ﬁL

Sometimes when the dependency is understood, we just write S¢ C S4.
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The partial order refinement transducer

Partial order refinement can be established by transduction in a way analogous to ordinary refinement.
The difference is that the interface queue ¢} is no longer a totally ordered FIFO queue, but a partially
ordered multi-set (pomset) (see e.g., [Pra86], [Gai&9], or [Maz89]).

We assume a universal set of events £ and a given dependency relation D,

A pomset over a set of events I is a structure of the form (C, p¢, <) where C is a set called
the carrier, pe is a mapping from C to £, and < is a partial order over C. A pomset (C, u, <) is
D-compatible if for every a,b € C, pu(a) D p(b) only if « < b or b < a. Note that we may have
a,b,c € Csuchthat « < b < ¢, pi(a) = pu(c)and p{a) D p(b). Thus the ordering is on the
carrier and not on the labeling events. Two pomsets (C, p;, <;), i = 1, 2, are isomorphic {equal
for all practical purposes) if there exists a bijection f : C; — (5 such that, for every ¢ € C;,
i) = pe{f(a)) and, forevery a, b € Cr, e <y biff f(a) <o f(b).

The empty pomset is denoted by A. Let X' = {Cy, phe, <z) and Y = (Cy, gy, <, ) be pomsets
over £2. The concatenation of X and Y, written X ep ¥, is defined if C; and C, are disjoint (if
they are not, use disjoint isomorphic copies) and yields the pomset { Cy U Cy, g, <) where g is the
combined mapping of p, and g, and < is the transitive closure of <, U <, U{a < b |a € C, b €
Cy s pe(a) D p{b)}. Obviously, X ep Y is f-compatible if X and ¥ are D-compatible pomsets.
The restriction of X' to a certain set of events O, written X [, is the pomset (C}, i), <) where C
is the subset g ! ((7) of C, that is mapped (by ;) to events in (3, and !, and </, are the restrictions
of j¢, and <. to C7, respectively.

The e operator is similar to the layered composition operator in the work by Zwiers et al. (see,
e.g., [JZ93]) which originates from the communication-closed layers principle by Elrad and Francez
[EFg&2].

We let Pomset( I7) denote the class of all pomsets over the set IZ of events.

This lcads to the following definition of a transducer for proving partial order refinement.

Definition 7.7.2 (The Partial Order Refinement Transducer)  Given concrete and abstract sys-
tems 8¢ and 84 such that V€ N VA = () and OA = (€, a partial order transducer ST over 8¢ and
S4 with dependency D is a fair named transition system where

o VI = VAUVEU{Q : Pomser(OF)}UU, i.e. the system variables consists of the system variables
of the abstract and the concrete systems, together with a pomset Q of concrete observable events,
and a (possibly empty) set of auxiliary variables, U.

e OF the initial condition, is a formula that satisfies:

(3U:07) = A AQ=A

o T, the set of transitions is the union of two sets 7€ and T4 such that each concrete transition

¢ € T has a corresponding transducer transition 7€ € T and each abstract transition

4 € T4 has a corresponding transducer transition T4 € T4, The transition relations are
required to satisfy the following:

— The transition relation p2 for the transducer transition T* corresponding to the abstract
transition T4 should satisfy

pA A A deQ(at) A (VEY =V

where deQ( o) is defined as Q = af sp ¢ if 74 is observable and ¢ = Q otherwise.

Each transition 74 generates the special event null.
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— The transition relation p$ for the transducer transition 7€ corresponding to the concrete
transition T° should satisfy

£ A enQ(o) A (VAY = v4 o BU':;‘;

where enQ(a') is defined as Q' = Q op & if 1€ is observable and Q' = Q otherwise.

—

Each transition 7° generates the event of which is the event generated by €.
& T & Y

o 7T C JCUTA, Thatis, the justice set contains the transitions corresponding to a subset of
the just transitions for the concrete fevel and a subset of the abstract transitions. The mapping
~ is extended to apply to sets of transitions in the obvious way.

¢ CT C CC U TA, The compassion set contains the transitions corresponding to a subset of the
compassionate transitions for the concrete level and a subset of the abstract transitions.

o 7 = (OF je. the set of observable events equals the set of observable events for S€.

Note that this definition is almost the same as the definition of the standard transducer, the only
difference being that the interface queue is a pomset, and that insertions and deletions to the interface
queue are made with respect to the dependency relation. Recall that it has to be verified that the
transducer satisfies the property of finite fair enableness.

7.7.1 Soundness of the Method

We shall prove a soundness theorem for the partial order refinement transducer which is as similar to
the one for the linear case as the similarities in the transducer recipes suggest. The only difference is
that it does not suffice to require that a non-empty () always gets shorter, since there can be several
minimal elements in the interface pemset ¢} at the same time. As a result, it is possible that infinitely
many elements are removed from ), yet some other elements remain continually stuck in ¢ forever.
Instead we specifically make sure that each event in ¢} is eventually removed.

Theorem 7.7.3 (Soundness of Partial Order Refinement)  If a partial order refinement transducer
ST over S¢ and 8A with dependency D satisfies:

I. Progress in Matching: For each event o« € (O°, there exists an abstract transition T4 ¢ ’Tc“;‘
generating the event o such that

e = O mken(;z)
2. Justice Satisfaction: For each transitiont* ¢ T4,
En(+") = O(-En(t™) v taken(;z))
3. Compassion Satisfaction: For each transition 74 € (4,

OO E) = OO taken(r4)

then



The proof of the theorem follows below.

The behaviors of a transducer S 7 over $# and S€ consist of transitions from the original abstract
and concrete systems, 87 and S€, but with hats (“s) on. To compare behaviors of ST with behaviors
in $* and 8¢, we have to prOJect onto 74 and 7¢ respectively, and then (syntactically) remove
all hats. Given a behavior 8 : 7/, 75, ..., §(8) yields the corresponding sequence of transitions, but
with all hats removed: §(73) : Ti,Tg,.... Forascenario (a,f) of ST, define € and 8 to be the
projections of J onto TC and 74 respectively, and define o€ and o to be the projections of o onto
% and 4 respectively. For every prefix 8; of A, the notation 8¢ and 37 is defined analogously.

We let 84 refer to the sequence of observable abstract events Events(h(ﬂ“‘)) [oa4, ie., the events of
' (ﬂ““) projected onto the obsuvable events of §4. ﬂA [J" ﬂC etc. are defined in a similar way. We

refer to transitions in 74 or 7€ as abstract or concrete transducer transitions, respectively.

Before we present the soundness proof, we prove three important lemmas that state properties of
partial order refinement transducers. The first lemma, Lemma 7.7 .4, states the safety property of the
transducer that holds for any prefix ﬁ, of an observation of the transducer: For any linearization g of
() (i.e. a sequence of (J’s elements consistent with the partial order of (), the extension ,6;4 s g of
the abstract part 4 of Z%T with ¢ is D-equivalent to 3%, the concrete part of 8;. The sequence g is
intended to represent a possible order in which the elements in } could be removed in the future part
of the behavior.

The second lemma, Lemma 7.7.5, states that if a transducer satisfies the matching-progress
property for partial order refinement transducers, which says that every event in the interface pomset
@ is eventually removed, then ﬁf" 0 ﬂL

The third lemma, Lemma 7.7.6, states that for any scenario (s, 4¢) of the original concrete system,
&€, there exist a scenario (@, ) of the transducer 7, such that §(8°) = ~€, i.e., the transducer can
generate all behaviors of the original concrete system.

Having proved these lemmas, what is left to do in the soundness theorem is to state the necessary
justice and compassion satisfaction requirements and then simply show that a transducer satisfying
these requirements can generate a behavior of the original abstract system, S

Before we move on to proving the lemmas, we introduce some notation.

For a partial function [, let dom(f) be the set of elements & for which f(2) is defined, and let
range(f) be the set {f(#) | x € dom(f)}. A partial permutation = is a partial, injective function
7 : N = N for which range(m) = {.’,..., n} for some n € Ny. The cardinality of range(r) is
denoted size().

For a sequence 3 and some 1 let 3], denote the sequence of the m first elements of 3 (if m > ||
then 3], = £). An infinite sequence 3,,3;, . .. of sequences of elements in some domain B, is said
to converge to the sequence 3 : B if for all mn > 0, there exists n > 0 such that 3|, = B3| for all
i > n. In this case we define lim;_, f§; = 5.

Given a transducer S7 over systems 8 and S€, let (o,8) witho @ s5,8;,...and B 7;,Ts,...
be a scenario of S7. Define 3; = ;. Then lim;—., B; = /3, and obviously lim;_c, #; = E We
refer to the value of () in the state s; by ;.

Let 34 be the sequence afaz aq ... and let ¢ be a$a$al ...
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Corresponding to each 3; we define a partial function 7; : N = N by:

T = 0 (the empry mapping)
iU {k— |BA+ 1} if]84,] > |84] = n and there exists & such that
- _ k is the least k € N — dom(#;) for which
i+7 - A ¢
Wpp) = O
T otherwise

Intuitively the 7;’s are intended to slowly build a permutation # that can be used to prove that
B4 =p €. Since D is reflexive, the permutation will always map least index to least index whenever
two events are equal. We shall show that 7; is a partial permutation for each 7, and that its range is
{t,...,n} where nn = |84

For partial permutations 7; and =; we define x; C m; iff dom(w;) C dom(m;) and V& €
dom(m;) m;(k) = (&),

We are now ready to give the first lemma, which states the necessary safety properties of the
transducer.

Lemma 7.7.4 (Transducer Safety) Given a partial order transducer & T over systems 84 and S¢
with dependency D, let (o, [3) be a run of ST, If 3;, 7j, and Q; are as defined above, then for all i,

L. m; is a partial permutation and size(r;) = |34], and

2. for all lincarizations g of Q;, there exists a D-respecting permutation = 2 w; on 3¢, such that

Bt eq =m(5).
Proof: We refer 1o [JPR94] for a proof of the lemma. O
>From the definition of the partial permutations 7; it is now straightforward to infer that the 7;’s are

monotone increasing:
?T()g W;gﬂ'zg... (74)

Using this and the safety property of the transducer we can infer that if all events added to the interface
queue ¢ are eventually removed, then the transducer has the following important property: For all
behaviors of the transducer there exists a permutation = such that the observation corresponding to
the concrete part of the behavior is D-equivalent to the observation corresponding to the abstract part
of the behavior.

Lemma 7.7.5  For any scenario (&, 3) of a partial order transducer ST over systems S# and S¢ with
dependency D, satisfying that for each event « € ¢, there exists an abstract transition T4 ¢ Té“
generating the event o such that

e = Ot(rkeu(;]) (7.5)

there exist a D-respecting permutation = on 3 such that
pA = =(8%)

Proof: We refer to [JPR94] for a proof of the lemma. O
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Next we show that given a scenario (€, %) of the original concrete system S, there exists a
scenario (o, 3) of the transducer such that 'q(ﬁc) = ~¢. The idea of the proof of this property is to
go along and compute the transducer versions of the transitions of 7 and then insert an appropriate
number of abstract transducer transitions, or, in other words, to match an appropriate number of
abstract transitions, between each such transition. Doing this we only have to worry about fairness
requirements for transitions in 7. To ensure that all fairness requirements are met, we use a slightly
modified version of a standard scheduler for justice and compassion.

Lemma 7.7.6  Given a transducer 87 over S* and 8. For any scenario (<€, ~€) of €, there exists
a scenario (a,3) of 8T such that §(5°) = +°.

Proof: We refer to [TPR94] for a proof of the lemma. ‘ a

Let (¢*,7¢) be a scenario of a transducer S¢ which satisfy the matching-progress, justice satis-
faction, and compassion satisfuction properties given in Theorem 7.7.3 above. By Lemma 7.7.6, we
have that there exists a scenario (¢, 3) of 8 such that j(5°) = 4€. Since S7 satisfies the matching-
progress property 1, we conclude by Lemma 7.7.5 that 84 2 p €. 1t thus remains to be shown, using
the justice and compassion satisfaction requirements, that there exists a scenario (¢, v4) of §4 such
that §(34) = 4. This is stated in the following lemma.

Lemma 7.7.7  For any scenario (@, 8) of a partial order transducer 87 over systems S* and S¢
with dependency D, satisfying that for each transition ™ e TA,

En(r) = O(—En(+*) v taken(;}-)) (7.6)
and for each transition 7 € C4,

OCE(ry = OO mken(;j) (7.7)
there exists a scenario (s, v4) of 84 such that i ) = vA.
Proof: We shall show that actually (¢, 3(34)) is a scenario of §A. By the transducer requirements
on transitions,
p;“' — pf AL

and .
JU L — A (V““)’: yA

we immediately conclude that (a4, (34)) is arun of $*. Since ST satisfies properties (7.6) and (7.7)
above, we conclude that (o, §(84)) is a scenario of 84, |

It is now straightforward to deduce from lemmas 7.7.4-7.7.7 the soundness of the partial order
refinement transducer as stated in Theorem 7.7.3.

7.8 Sequential Consistency

In this section, we describe how specification and verification of sequential consistency can be seen
as a special case of partial order refinement, which can be established using a partial order transducer.

We assume that we are given two fair named transition systems S and 8¢ which specify systems
that are used by a set of processes P, ..., P,. The processes interact with the system by means of
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events in the same set £, and do not communicate among themselves by any other means than via the
system specified by S or €. Let (J; be the set of events that represent the interaction between P;
and the system. We assume that the sets (O, . .., O, are pairwise disjoint, and that their union is the
set of observable events for both S¢ and 4.

The system S* is said to be sequentially consistent with $4 [Lam79] if for each behavior 3¢ of
SC, there is a behavior 54 of $4 such that

B¢ [, zDE:“[@' forcachi=1,...,n

The property of sequential consistency can be rephrased in terms of partial order refinement as
follows.

Theorem 7.8.1 (Sequential Consistency) Let the dependency relation D be an equivalence relation
which relates two events iff they belong to the same set (; for some i. The system 8¢ is sequentially
consistent with S iff ¢ Gp SA,

Proof: Straight-forward. w}

Theorem 7.8.1 prescribes a systematic method for verifying sequential consistency. To prove that a
system S€ is sequentially consistent with another system S, we build a transducer comprising S€,
S, and a pomset ). The pomset ) orders two eveats if and only if they are dependent. Since
the dependency relation D is an equivalence relation with one equivalence class for each index ¢,
the pomset J defines a total ordering of the events indexed by i. One can therefore think of () as
consisting of one queue J; for each set i. The queue €); is a linearly ordered sequence of events in
;. The queues are independent of each other.

In Figure 7.6, we draw a schematic picture of the structure of the partial order transducer for
verifying that S¥ is sequentially consistent with $#. The transducer consists of the concrete and

> Q; >

Qs .

¥

- Qn >

Figure 7.6: Structure of partial order transducer for sequential consistency

abstract versions of the system, S€ and 8. For each 4, there is a FIFQ queue from S€ to SA that
carries the observable events in (%;. The transducer may also contain additional auxiliary variables,
Intuitively, the transducer may be understood as follows.

The concrete system 8¢ generates observable events and inserts each event into the appropriate
queve (J;. Via the queues, the observable events are transferred to the abstract system S#. Itis now the
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task of the transducer to remove the observable events from the queues, in an order that corresponds
to a behavior of 4. The FIFO nature of the queues ensure that events in a single (9; are performed
in the same order by 8¢ and $4. However, events in different sets of observable events may be
performed in different orders by $¢ and 8. The major difficulty in constructing the transducer is
to construct an appropriate “scheduling mechanism” which ensures that S removes elements from
queues in an appropriate order. Often, this scheduling is not trivial, but must be accomplished via
auxiliary variables,

A proof-by-transduction of sequential consistency can be compared to other proof methods for
sequential consistency. The proof method used in [ABM93] is directly based on the previously
presented definition of sequential consistency. That proof shows how to inductively build a scenario
of S, given a scenario of 8¢, by direct reasoning about computations and behaviors. Typically,
this proof will build ¥4 inductively, based on 7°, with each prefix of 2 being based on some
prefix of v¢. The transduction method achieves a similar effect, but ¥ is part of the behavior of a
specified system (the transducer), for which we can use standard methods for proving invariant and
progress properties. Put differently, the construction of the transducer contains the part of the proof
of sequential consistency that requires more human ingenuity (e.g., ensuring proper scheduling of
abstract actions), while checking the properties in Theorem 7.7.3 should be more routine.

7.9 The Cache Memory Example

We shall use the generalization of the proof by transduction method to prove the Lazy Cache Algorithm.
We refer to [Ger95] for a description of the algorithm. We first present a formal specification of an
idcalized serial memory, thereafter a specification of the cache protocol. We then construct a transducer
to prove that the cache protocol is sequentially consistent (with the serial memory).

Scrial Memory

The abstract system is a serial memory which can be presented as the following fair named transition
system. We assume that addr is a given set of addresses of a memory system, and that data is a set
of values that can be stored in the locations given by addr.

VA = [Mem? : Arvcay[addr] of data)

4 = T

T4 = {Read(d,q), Write?* (d,a) | 1 < i< n,d € data,a € addr)
JA = B

A4 = {Read{d,a), Writei{(d,a) | 1 < i< n,d € data,a € addr}

Note that 7 is different from the version presented in [Ger95].
Let d be of type date and « of type addr. The notation (X{«] := d) where X is an Array is an
abbreviation for X'[«] = d A ¥b # a : X'[6] = X[b]. Then the transitions are given by:

Read ™ (d, a): Mem*[a] = d gen.  Readi{d, a)
Write/A(d, a): (Mem?[a] := d) gen.  Write(d, a)

The transition Read;#(d, @) can be performed if location « contains data value d and does not change
the state of the system. The transition Write;#(d, @) can be performed in any state, and changes the
content of location « to become d.



Cache Memory
The concrete system is a cache memory which we define by a fair named transition system:

V€ = {Ment : Arrayladdr] of data,
In; : ((datum x addr) U (datum x addr x {+}))*,
Out; : (datum x addr)”,
C; : Array[addr] of (datum UL) [ 1 < i< n}

O = fm;=0ut=A A C; = Mem©
T¢ = {Read® (d,a), WriteS (d,a), MemWrite (d, a), MemRead € (d, a),
CacheUpdate (d, ), Cachelnvalidare’ | I < i < n,d € data,a € addr}
JY = {MemWritef (d,a), CacheUpdatef (d, @)
| I <i<n,d€ data,a € addr}
Y = {Read{d,a), Writej(d,a) | 1 < i< n,d€ data,a € addr}

Intuitively, Mem?® isthe global memory, and C; is the local cache of process i. For each i, the variable
In; is a sequence of elements of the form (d, @) or of the form (d, a, *), and the variable Out; is a
sequence of pairs of the form (d, ). In the cache memory, these sequences are used as FIFO queues.
Initially the queues are empty, and all caches are identical to the global memory.

For a sequence In of (d,«) and (d, a,*) elements, let Inf, denote the projection of In onto
(d, a, %) elements. Then the transitions are given by:

Read (d, a) (Clal=d A Outy=A AN Inil,=A gen. Readi(d,a)
Write* (d, a) : Out] = Out; o(d, a) gen.  Writei(d, a)
MemWriteS{d, @) 1 Out; = (d,a) e Ontl A gen.  MemWrite;(d, a)

(Mem®[a] :=d) A
Inf = In;e(d,a,*) A
Yk#i:in, = Ino{d,a)
MemRead® (d,a)  : Mem® [l =d A Inl =In;e(d, a) gen. MemRead(d, a)
Ini = (d,a)eln;
CacheUpdate® (d,a). | v gen.  CacheUpdate(d, o)
In; = (d, €, *) Ohl;-
A (Cla] :i= d)
Cacfwlnvu!r'd(.'re,-c : Ct = Restriet(C;) gen.  Cuachelnvalidate;

Note that [7¢ is different from the version presented in [Ger95).

Intuitively, a transition of the form l'lf-rif.c;(:(rl, a ) 1s a write operation, which simply appends the
pair (d, @) to the end of the Out; queuc. A transition of the form Mem Write;®(d, a) applies the first
write operation in Qut; to the global memory Mem®, and appends the operation (d, a) to all queues
In;. The element appended to fn; is equipped with an extra = in order to mark that this operation
originated from process . This mark is used in read operations by process . A transition of the form
CacheUpdate,©(d, a) applies the first write operation in [r; to the local cache.

A transition of the form Read (d, ) is a read operation which can be performed if the data
clement in address « of the local cache is «, and two additional conditions are satisfied: (1) the queue
Out; must be empty, and (2) the queue In; must not contain any elements of the form (d;, a;, *),
1.e., elements that originate from write operations by process 7. These two requirements ensure that
a read operation will read from a cache to which all past write operations by the same process have

been applied.
Restrict is any function such that C! = Resirict( C;) means that

Va € addr: Cila) = Cila) v Clla) =L
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Thus a CacheInvalidate; transition restricts the domain of the cache Ci.
A transition of the form Memftead;“(d, a) is a memory read operation which can be performed
if the value of address a in Mem® is d. It appends a (d, ) element to the In; queue.

Cache Transducer

We show sequential consistency for the lazy cache algorithm by proving that the rnrs S for the
cache memory is a partial order refinement of the rnrs S for the serial memory with respect to the
dependency relation D,.. Two events are dependent iff they are observable and are performed by the
same process, i.e.

D, = {(erte,-(d;,a,u), Wr‘i!ﬂ;(dz,az)), (Read,-(d;,a;),Read,'(dz, (4'2)),
(Read;(d,;, a;), Write;(da, (lz)), (er!e,'(d,v , (l;), Read,-(dg, a’z))
V1 <i<nd;,dy €data,a;,a; € addr}

As described in Theorem 7.8.1, the problem of proving that §¢ is sequentially consistent with S+
can be formulated as proving that

SL gn ‘ S.A

We prove this refinement by transduction.

From 8§ and 84, we form a transducer by adding the variable @ which is a partially ordered
multi-set of events. In the transducer, we are only allowed to use the operator ep , defined above,
when performing operations on {J, so the pomset () orders two events if and only if they are dependent. .
Since the dependency relation £ is an equivalence relation with one equivalence class for each index
7, the pomset () defines a total ordering of the events indexed by . One can therefore think of () as
consisting of one queue of Fead; and Wrile; events for each process i. The queues are independent
of each other (see Figure 7.6).

If we form the most straight-forward transducer with the given @, we will not be able to prove
the progress in matching condition needed for the correctness of the refinement. The reason is that
if the abstract transition system consumes events in the wrong order, then it may reach a state where
events of one of the processes can no longer be processed. As an example, consider a scenario where
at some point the address « of Memn* and each of the caches contains the data element d. Assume
now that some caches update the data element in address a to d by consuming elements from the

corresponding In queucs, and that thereafter a Write;A(d, @) event is performed which changes the

address a to d also in MemA. If some cache Cj still has value d at address a, and a Read$ (d, a)
operation occurs, then the event Read;(d, «) will be added to . However, this event can most

probably never be removed from ¢ in an abstract Jz’.eudf(rl, ) transition, since the content of a in
Mem* has already been changed from d to d. .

The problem with the above scenario is that a H"?'i!,e,;A(E, @) operation is performed before the
corresponding write updates are applicd to ali caches. Observing that all caches experience the updates
in the same order, determined by the global order of Mem Write;© operations, we can remedy this
by adding information to the transducer, in the form of auxiliary variables, which restrict the possible
sequences of abstract transitions in the following way, The auxiliary variables must ensure that

—— ——

1. For each process i, the Read;* operations and all Writcf operations (for all j) must be per-
formed in the same order as the cache C; experiences the corresponding concrete operations,



where Read ;*(d, «) corresponds to RRead;“(d, a) and where Writef‘ (d, a) corresponds to per-
forming a Cache Uprla.!.cf(d, a) with the element in In; that originates from the corresponding

Hﬁ-itef((l , ) operation.

2. A l'Vrii.eiA(d , @ ) operation must not be performed before all the corresponding Cache Updatef:'
(d, a) operations have applied that write operation to each cache.

Due to these conditions, we must “remember” for each process the order of all read and all write
operations that have been applied to its cache at least as long as there is a process which has not
applied these write events to its cache. Therefore, we introduce for each i a variable RWQ);, which
is a sequence of Wrile; events, Wrile events (modelling writes performed by other processes), and
Read; events. Intuitively, RIW (), contains all write operations that have been applied to the cache of
process ¢, but have not yet been consumed by the abstract serial memory, together with read events of
process ¢, so that the order of operations in W), is the same as the order in which the corresponding
operations were performed on ;.

Formally, for the elements in the RWQ,; queues, Write (d, a) indicates that the element (d, a)
was written by another process j, j # ¢, and Write;{d, «) indicates that the element (d, a) was
written by the process @ itself. We use ¢ to range over {/, ..., n,€}. Thus the names of the events
in the RWQ, queues range over £"YQ = ¢ y {Write (d,a) | d € data,a € addr}. We use
Write(d, a), for any d, a, as a shorthand notation for Write, (d, ).

A Llfz'itec((i, a) or Write;(d, a) entry is appended to RWQ; whenever a transition of the form

CacheUpdate, (d, a) is taken with a (d, @) or a (d, a,+) entry at the front of In; if the (d, a) or
(d, a,+) entry was placed there by a Mem Write;% or a MemWrite;© operation. Since transition

MemRead € can atso aEJJc_l_( d, @) entries to fn;, it is necessary to distinguisb_‘_l_)etween (d, a) entries
placed in Irn; by a Mem Weile; € operation and those placed there by a MemRead;© operation.

To keep this distinction, we use a number of paraliel MrAMw(@Q; queues, one for each In; queue.
Then every time a (d, «) or (d, a,+) element is added to fn; by a Mem Write operation, it is marked
with an Mw in the MrMwQ; queue, whercas every time an (d, a) element is added to In; by an
MemItead operation, itis marked with an Ay in the MrMdw(); queue.

The definition of the cache transducer is shown in Figure 7.7. We omit specification of the events
generated by the transducer transitions, since they are determined by Definition 7.7.2.

If Read;(d, a) is the first event in RWQ, and is minimal in ), and d is the content of address ¢ in
Mem A, then transition Read;(d, a) can be taken, consuming the event Read;(d, ) from @ and
the head of RWQ) .. Analogously, if Write;(d, a) is minimal in @ and is at the first event in RWQ;

and Write(d, a) is the first event in RWQ); for all j # i, then transition Write;A(d, a) can be taken,
consuming event Write;(d, «) from RWQ ; and Q, consumingevent Write(d, a) from all the RWQ;
A

queues, and performing a Write;”(d, a) operation.

Transition Read (. a) performs the operation Read;© (d, «) and then appends the event Read;(d, a)
to ¢J and to RW(Q, Transition I"f;;;;?ic(d,(l‘) performs the operation Wrz'te,-c(d,a,) and ap-
pends the event Write (d, ) to (). The operation ﬂJe?rzm'ite;C(d,a) performs the operation
MemWrite;©(d, «) and appends an Mw element to all the MrMw(Q; queues (for all j). Transition
C(rche‘[};duteic(d, a) performs the CracheUpdate ©(d, «) operation. Then if the head of MrMuw(Q;
is Mw (note that this is always the case if {d, a, ) is at the head of In;) it adds a Write;(d, a) or
Write(d, ) event to RW(Q,, depending on whether the element at the head of In; originates form
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Vil = vAuvy
{Q: Pomser(OF), RWQ; : Events(EFW@)* MrMw(; 1 (Mr U Mw)*}
o = " AQ=A
TT = {Read?(d,a), Write;*(d,q), Read (d, a), Write’ (d, a),
M(ermﬁc (d,a), MemRead (d, a), Cache_a;dateic (d,a),
Cachelnvalidate® | 1 <i<n,dE€data,a € addr}

JT = {Mem Write (d, a), CacheUpd(.rfe,-C (d,a),
Read* (d,a), WriteA(d,a) | 1 < i< n,d€ data,a € addr}
OF = {Read{d, a), Write,(d,a) | 1 < i< n,d € data,a € addr}

Read* (d, a): Mem*[a) = d A
0 = Readi(d.a)ep @ A
RWQ, = Readi(d, a) » RWQ!
Write, (d,a). Q= Write(d,a)ep & A
RWQ; = Write;,(d, a) s RWQ; A
Vi# i RWQ, = Write(d, a) e RW( A
(MemA[a] .= d)

Read,-c(d, o) cClal=d A Out;=A AN B[, = A A
& = QepReadi(d, &) A
RWQ! = RWQ, e Read;(d, a)
Write {d, ) 2 Outl = Our;e(d,a) A Q' = Qep Write(d, a)
MemWrite! (d,a) : Out; = (d,a) e Out: A
(Mem* [a] := d) A
Inf = Inje{d,a,*) A
Vk# i In = Inge(d,a) A
Yk MiMwQ, = MrMwQ, e Mw
MemRead S (d,a)  : MenCla) = d A In} = Inje(d,a) N MiMwQ. = MrMw(; o Mr
Iy = (d,a)sin} A (head(MrMwQ)) = Mw —
——— ! —_— . [ 2|
CacheUpdate, (d, a): v RWQ; = RWQ; o Write(d, a))
In; = (d,a,+)sIn} A RWQ! = RWQ, » Write,(d, a)
(Cila) := dY A MrMw(@, = tail(MrMw(Q;)

Cachelnvalidate’ Ci = Restrict(C;)

Figure 7.7: The cache transducer.




process ¢ or some other process. Finally, the element at the head of MrMw(); is consumed. Tran-
sition MemRead;“(d, «) performs the operation MemRead;“(d, a) and appends an Mr element to

the MrMuw(), queue. Transition CachelnvalidateC just performs the operation Cachelnvalidate €.

We now proceed to prove the properties of the cache transducer that will allow us to use Theo-
rem 7.7.3 to conclude that the cache memory is sequentially consistent with the serial memory. Since
both 74 = @ and C* = @, we only have to verify the matching progress property for the cache
transducer.

7.10 Proof of the Cache Transducer

Before we list the invariants for the cache transducer, we introduce some useful notation,

For a sequence of events X, we define X |y;,;,, to be the projection of X onto the set of events
of the forms Wrile(d, a) or Write;(d, a). This is used to project RWQ; on all Write and Write,
events. We define projection of a sequence of events X" onto a process number ¢, written X [, to be
the projection of X" onto events of process ¢. Likewise, for a pomset ¢, @[, is the projection of @
onto the events of process 1.

The predicate OK takes a memory Memn and a sequence of Write events and Read;-cvents,
RWQ, and checks that for each Read;(d, a)-event if the memory is updated with the preceding
Write-events, then Mem{a] = d:

OK(Mem, A)

OK(Mem, Write{d, ) « RWQ)
OK{Mem, Write(d, a) e RW(Q)
OK(Mem, Read;(d, a) « RWQ)

T
OK(Update(Mem, d, a), RWQ)
OK(Update(Mem, d, a), RWQ)
Mem[a) = d A OK(Mem, RWQ)

fl

where the Updatc( Mem, d, a) denotes a memory which is like Mem except at address a where the
value is d,

The function Apply takes a memory Mem and a sequence of Write-events and Readj-events,
RW}, and results in a memory which is updated according to the sequence of Write-events in RW():

Mem

Apply(Update(Mem, d, &), RWQ)
Apply(Update(Mem, d, a), RWQ)
Apply(Mem, RWQ)

Apply(Mem, A)

Apply(Mem, Write;(d, a) s RW@Q)
Apply(Mem, Write(d, a) « RWQ)
Apply(Mem, Read(d, a) « RWQ)

i

In the following, we use the two basic properties of OK and Apply that are expressed in Lemmas
7.10.1 and 7.10.2:

Lemma 7.10.1 OK{Mem, RW(Q, « RWQ,) =
OK(Mem, RWQ;) A OK(Apply(Mem, RWQ,), RWQ,)

Checking that some 2W Q) is OX with respect to some memory AMent, can be split into checking that
the first part of RV (@ is O with respect Mem and then checking that the second part is OK with
respect to the memory obtained by applying the first part to Mem. The two parts of R can be
chosen arbitrarily.

Lemma 7.10.2  Appiv(Mem, RWQ, « RWQ,)} = Appiy(Apply(Mem, RWQ,}, RWQ,)

135



Applying some RW Q) to some memory AMem can be splitinto applying the first part of RWQ) to Mem
and then applying the second part of R to the memory obtained by the first application. The two
parts of ZW () can be chosen arbitrarily.

We refer to [JPR94] for the proofs of the lemmas.

The function Woul{i, X)) simply converts a sequence X of (d, a)-elements to a sequence of
Write;(d, a)-elements. It is used to convert an Oul; sequence (dy, @7 ), ..., {dn, a, ) into the event
sequence Write;(d,,ar), ..., Write;(d,,, @ ).

Wout(i, A) = A
Wout(i, (d,a)eX) = Writedd,a) e Wout(i,X)

The function Win(i, X, MrMw@)) converts a sequence X of (d,a) and {(d, a,+) elements to a
sequence of Wrile(d, a) and Wrile;(d, o) elements, while ignoring elements for which the corre-
sponding element in a sequence MrAfw() of Mw’s and Mr’s is Mr. The definition assumes X and
Mriw@ to be of equal lengths. It is always applied to /n; queues and a corresponding MrMw(Q)
sequence.

Win{i, A, A}

Win(i, (d,a) «X, Mre MrMw(3)
Win(i,(d, ) o X, Mw e MrMw(})
Win(i, (d, c, ) « X, MrMw(?)

A

Win(i, X, MrMwQ)

Write(d, a) « Win{i, X, MrMw(Q)
Writei{d, a) e Win(i, X, taill MrMw(Q))

We introduce the following shorthand notations:

Win; = Win(i, Iniy MrMw@,)
Wt = Wour(i, Out;)
WriteQ, = RWQ,l,..» Wi

Thus, Win; denotes the sequence of Wrile events whose parameters are currently contained in
fn;, while Wout; denotes a similar sequence for the buffer Ouwf;. Sequence Win; may contain
both Wrife; entries for writes initiated by process i and Wrile entries for writes initiated by other
processes. Sequence Wouf; contains only Weile; entries. The sequence Write(}; contains all the
Write-events that process i has observed and that have not yet been performed by the abstract part
of the transducer.

For a sequence X and an clement ¢, we define mindex(e, X ) tobe the smallestindex 7 € dom(X)
such that X[i] = e. If e ¢ X, then mindea(e, X)) is taken to be 1.

7.10.1 Invariants for the Cache Transducer
We need four invariants. The proofs are given in [JPR94].

Lie WriteQ;lm] = Write,(d,a) —
3j : Write@;[m] = Writei{(d, a) A Wk # j: WriteQy[m] = Write(d, a)
1o Qf, = RWQ, [, e Win;[, e Wour;
I;: OK(Mem™ RWQ,)
I CGlal=d —  Apply(Mem™ RWQ)[d] = d

I; states that all processes experience the same order of Wrile events and for each particular Write
event one and only one process marks this event as its own.
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For each i, I states that the sequence LWQ), of process i will (eventually) mirror the experienced
order of Read; and Write; events of the process itself in the concrete system, as given by @[,. This
invariant also implies that @[, is totally ordered.

For each i, 5 states that the sequence RIW @, contains a sequence of Read and Write events that
can be applied to the current version of Mem#. That is, if we update the current version of Mem*
according to the sequence of Write operations then, whenever we encounter a Read;(d, a) event, the
updated memory at this point is such that Merprﬁ[a.] =d.

Since the transducer may perform CacheInvalidate;© operations, the cache C; will not necessarily
have a value at address «. The invanant [; states, for each i, that if the current version of C; has a
value d for the address a then if we apply the sequence of Write operations contained in RW@Q, to
the current version of Mem, it will yield the same value d at address a.

7.10.2 Proof of Progress in Matching

We proceed to prove the matching-progress requirement for the cache transducer, using the four listed
invariants. The invariants themselves will be proven in a subsequent subsection.

We shall prove that all events contained in the interface pomset are eventually consumed by
abstract transitions. In the case of scquential consistency, it is sufficient to prove for each i, that
the first element of the linear sequence ¢J; that contains (J; is eventually removed whenevex:_Q_,- is

nonempty. In the case that the first element of (); is a read event, we will show that in facta Read,-A-
event is enabled, and will eventually be performed (by justice). In the case that the first element of

Q; is a writc event, the corresponding Write;#-event need not be enabled, since this requires the
corresponding Write-event to be first in each RIVQ ;. However, we will show that this situation will
eventually occur, when all preceding read events have been consumed, and that then (by justice), the

Write;#-event will be performed. After this sketchy outline, over to the proof.
The foilowing lemma proves that any enabled observable abstract transition is eventually taken.
Lemma 7.10.3  Forv; in {Read;, Write;},

En(:?‘(d,a)) = Or(rkerz(;;(d,a))

Proof: Both cases arc proven by rule s-raxe, taking p = ¢ @ En(r:,:“(d, a)) for the assertions and
Th * 1:?‘ (d,a) for the helpful transition. The only nontrivial premise to be proven is J2 which claims
that no transition other than 17,;“((1, a) itself can disable r:,;‘(d,a), once it is enabled. We consider
separately the two cases:

v; = Read;: For this case,

En(Read*(d,a)) = Mem*[a]=d A
head(Q1,) = head(RWQ;) = Read;(d, a)

Let us ascertain that no transition other than Read;(d, a) can falsify this assertion, once it is
true. The only transition that can falsify Mem™[a] = d is some Wrt'tef‘(e,a) for some ¢ # d.
No Write}f“ transitions are enabled when head(RWQ,) = Read{(d,a). The only transition that

can falsify head(Q[,) = head(RWQ,) = Read(d, a) is Read” itself.



#; = Write;: For this case,

En(WriteA(d,a@)) = head(Q[)) = head(RWQ,) = Write;,(d, a) A
VJj # i head(RWQ;) = Write(d, a)

We show that no transition other than Wr”;;;,'“" (d, a) can falsify this assertion, once it is true. The
oaly transition that can falsify head(Q[;) = head(RWQ;) = Write;(d, a) is W;;;;A(d,a) itself.
Similarly, the only transitions that can falsify head(RWQ;) = Write(d, a)forj # i are of the form
W:i;f(d,a) for some k # j. We will show that such a transition can be enabled only if k = i.
For W;’_;;-e,j“(d._a) to be enabled, it is necessary that head(RWQ,) = Write,(d,a). However,
En(Wr:z'—z:;,-A(d,a)) implies that, if k £ /, then head(RWQ,) = Write(d, a) # Writex(d, a). Thus,
k=1

a

—

The preceding lemma showed that if a transition of the form »A(d, ) is enabled, where v; €
{ Read;, Write;}, it will eventually be taken. We proceed to show that if the corresponding event of
such a transition is at the head of its respective RW Q) queue, then the transition eventually becomes
enabled.

For the case that v; = ]Efid"’ the following lemma establishes that if Read;(d, a) is at the head

of RV, then transition .R.ead,-A(d, a) 1s already enabled:

Lemma 7.10.4  fead(RWQ,) = Read(d,a) =  En(Read?(d,a))

—

Proof: The enabling condition of Read;(d, a) is

En(Read*(d,a)) = Mem*la]=d A head(Q],) = head(RWQ,) = Readi(d, a)
The conjunct head( RWQ;) = Readi(d,a) is given. By invariant /5,
head(Q[,) = head(RWQ,) = Read(d, a)

Invariant /; = OK{Mem?, RWQ,) and the fact that Read;(d, a) is the first element of RWQ, imply
Mem#A(a) = d. Hence we have that head(RWQ;) = Read;(d, a) implies En(Read;*(d, a)). a

Next, we consider the case that the event at the head of RWQ; is Write;(d, a). The enabling

condition for the corresponding W-:"r?te,-““(d, «) transition consists of the conjunction head(Q[;) =
head(RWQ ;) = Write,(d, «), which is implied by head(RWQ,) = Wrile;(d, a) and invariant
I, but also of the conjunct head( RWQ;) = Write(d, a) for every j # i. We will show that if
Write;(d, a) is at the head of EWQ; then, eventually, head( RWQ;) = Write(d, a) forevery j # 1.
This ensures that 1’V1‘H(3,{A((l, « '} eventually becomes enabled.

Let us consider some j # 4. Invariant [, with m = [ implies that head({ Write@;) =
Write(d, ). Since WrileQ; = RWQ, [y, » Winy, it follows that either Write(d, a) is the
first write event in RWQ;, or Write(d, a) is the first element of Win; and RW@; contains only read
operations. We deal first with the latter case.

The following lemma establishes that if Write(d, «) is the first element of Win; then eventually
it will move to RWQ,.
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Lemma 7.10.5  head(RWQ,) = Write(d,a) A head(Winj) = Write(d, a) =
O(head(RWQ;) = Writei(d, a) A Write(d, a) € RWQ;)

Proof: Note that the lemma requires that when Write(d, a) moves to RWQ;, then Write;(d, a) is still
at the head of RW(Q,.

To prove the lemma, we use rule ster with the following constructs:
P head(RWQ,) = Writeld, a) A head(Winy) = Write(d, a)
w:  head(RWQ;) = Write(d, a) A head(Win;) = Write(d,a) A
Write(d, a) ¢ RWQ,;
g: head(RWQ;) = Write;(d, a) A Write(d, a) € RWQ;
i CacheUpdate(d, a)

Only premise J2 is non-trivial. J2 claims that no transition can falsify ¢ without establishing g. It is

me—

easily seen that only CaclmUpdaref(d, a} can falsify . O

We now handle the case that Write;(d, a) is at the head of RWQ; and Write(d, a) is the first write
eventin RWQ);. Theentry Write(d, a) may still not be the firstin RW (), in which case it is preceded
by several H.eudf entries. The following lemma establishes that such a state is always followed by
another state in which Wrile(d, a)is at the head of RWQ,.

Lemma 7.10.6  head(RWQ;) = Write(d, a) A Write(d, a) € RWQ, =
O (head(RWQ,) = Write{d, a) A head(RWQ;) = Write(d, a))

Proof: We use rule s-weLL, choosing constructs as follows:
P ead( RWQ,) = Writel(d, a) A Write(d, a) € RWQ;
@i head(RWQ,) = Write;(d, a) A mindex(Write(d, a), RWQ,) > 1
g: head(RWQ;) = Write(d, a) A head(RWQ,) = Write(d, a))
h: Reaaffd' (dy, ay) whenever head(RWQ;} = Read;(d;, a;)

Note that & returns an enabled, just transition in every (-state since by /;, in such a state, Write(d, a)
is the first write entry in RWQ; and its index is at least 2. Tt follows that the first entry in RWQ; is a
read entry which, by Lemma 7.10.4, corresponds to an enabled transition. O

Lemmas 7.10.5 and 7.10.6 can be combined using rules Tins and casgs to yield

head(RWQ,) = Write{d, o) =>

Olhead(RWQ;) = Writei(d, a) A head(RWQ;) = Write(d, a)), (7.8)

forevery j # i.
Using this, we can establish that once a Wrile;(d, @) eventis at the head of RW Q) ; then, eventually,
the corresponding Wrile;(d, a) transition will be enabled:

Lemma 7.10.7  head(RWQ,) = Write;(d, a) = < EH(W;:L:,'A (d,a))
Proof: By induction on j # / and using property 7.8, we can establish the response property

head (RWQ,) = Write,(d, a) =
$o(head(RWQ,) = Write(d, a) A /\head(RWQj) = Write(d, a)),
i#
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which implies that, eventually, W??fe,-(d, @) becomes enabled. To do so, it is necessary to slightly
modify property (7.8) to ensure that, once Write(d, a) reaches the head of some RW(Q; , it remains
there until the whole transition becomes enabled. The modified version of property (7.8) can be
proven using TrNs and a proof similar to that of Lemma 7.10.6, o

Lemmas 7.10.4 and 7.10.7 establish that if a Read;(d, a) or a Write;(d, a) event is at the head of
RIWQ,, then the associated transition eventually becomes enabled. Lemma 7.10.3 guarantees that

this transition is eventually taken.
Now we are ready to prove the matching-progress property of the cache transducer:

vild,a)e@ = O raken(;,}(d,a)) forall v»{d,a) € @

Proof: According to fs, if v;(d,a) € Q, then 1;(d, a) is in one of the queues RWQ;, Win;, or
Wout;. Using arguments similar to the proof of Lemma 7.10.5, we can show that v;(d, @) must
progress from Woul; to Win;, and from Win; to #IWQ,;. Itis therefore sufficient to treat the case that
vi(d,a) € RWQ,. Considerthe minimalindex of v;(d, «)in RWQ;. If mindex(vi(d, a), RWQ;) =
1 then, as explained above, lemmas 7.10.4,7.10.7, and 7.10.3 ensure that v/ (d, «) is eventually taken.
For the cases that mindex(r;(d, a), RWQ,) > 1, we will establish the response property

tnindex(vi(d, @), RWQ) =k > | = O (mindex(vi(d, a), RWQ,) =k — I) (7.9)

To prove property 7.9 we consider the entry which is currently at the head of RWQ;. By the trivial
invariant »(d,a) € RWQ,; — v € {Read;, Wrile;, Write}, there are three cases to consider:

head(RWQ;) = Readi(dy,a;):  In this case, transition Read A (d;, a; ) is currently enabled and,
by lemma 7.10.3, will be eventually taken, decreasing the minimal index of v;(d, a) in RWQ;.

head(RWQ,) = Writei(d;,a;): By Lemma7.10.7, transition Write;A(d;, a;) will eventually be-
come enabled and, by Lemma 7.10.3, eventually taken, decreasing the minimal index of v;(d, a)
in RIVQ,.

head(RWQ,) = Write(d;,a;) . By invariant I, there exists some j # i such that Write;(d;, a;)
is the first write entry in Write@?,. Since Write;(d;, a; ) can only be preceded by read entries
1n the concatenation RWQ, o Win,, we can trace its progress until it reaches the head of RWQ);.
Once there, 1t will eventually become enabled and the transition Wrz'tef(d; , @ ), eventually
taken. Taking this transition removes the entry Write(d,, ¢, ) from RWQ; and decrements by
1 the mimimal index of v;(d, «)in RV Q.

We can now use property 7.9 to prove premise W2 in rule wire and establish that every »;(d, a) €
RWQ; eventually gets to the head of RIWEQ); where it is guaranteed to be eventually removed by

transition .Uf((l, i) B

Since 74 = @ and C* = ), we can finally use Theorem 7.7.3 to conclude that S T S*4.

7.11 Conclusion and Related Work
We have presented a method for proving refinement between concurrent systems, called proof by

transduction. The main idea of the method is to construct, for a given pair of a concrete and an
abstract system, a {ransducer consisting of the concrete system, the abstract systemn, and a queue of
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observable events. The concrete system inserts events into the queue, which are then removed by the
abstract system. Refinement is established by proving that for any behavior of the concrete system,
we can find a corresponding behavior of the abstract system, in which all events inserted into the
queue are eventually removed.

The main advantage of the transduction method is that the transducer may defer nondeterministic
choices in the abstract system until the point in time when the relevant nondeterministic choices have
been performed in the concrete system. Without such a delay, there are many cases in which refinement
cannot be established by ordinary (forward) simulation, but one must instead use backward simulation
[Ton21] or prophecy variables [AL91]. Thus the transduction method can often reduce the number of
prophecy variables needed in a proof of refinement. The proof method can also prove refinement in
many cases where the backward simulation technique would fail because of the finite-image condition
needed when considering infinite behaviors. In the buffer example of the paper, we could construct
a backward simulation between the concrete and the abstract system, which however would not be
finitary, especially when the domain D of data values is infinite. A proof of refinement along these
lines could be constructed as a combination of several backward simulations, each ensuring infinitely
many instances of finite image [Jon91], but this would be rather cumbersome.

One of the important features of the transduction method is its straightforward generalization to
partial order refinement. In this way, we can reduce many instances of interface refinement, such as
sequential consistency ctc. to standard refinement, simply by an appropriate choice of interface queue.

A proof by transduction of sequential consistency can be compared to proof methods for sequential
consistency that arc based on direct reasoning about computations and behaviors (e.g., as in [ABM93]).
Typically, such a proof will build an abstract behavior inductively, based on successively longer
prefixes of a given concrete behavior. The transduction method makes the structure and bookkeeping
involved in such a proof explicit, representing the unmatched portion of the concrete behavior as the
value of the interface queue.

The transduction method can be seen as a generalization of proof by simulations. In e.g. the
work by Jonsson [Jon87], a method for establishing ordinary forward simulation between systems
is presented, in which the concrete and abstract systems are combined, but without the queue.
This method can be regarded as a special case of proof by transduction, where the queue of the
transducer is always empty. Several other presentations of standard simulation are found in e.g.
[AL91, LT87, LS90, Sta88, Orag9].

The definition of sequential consistency originates in the work by Lamport [Lam79], but the
interest in weaker consistency models for shared memory has become much larger in recent years,
due to the development of multiprocessor systems such as the DASH multiprocessor [LLG190].
A framework for describing memory modcls, e.g. sequential consistency has been developed by
Dubois, Scheurig, and Briggs [DSBE&6]. This framework is based on auxiliary definitions concerning
the propagation of write and read opcerations between different processors, which would be difficult to
formalize in an existing framework for verification of correctness. Definitions of and reasoning about
memory models can be based on the definition of different ordering constraints between memory
operations [SS88, GAG™92). Other frameworks, e.g. by Afek, Brown, and Merritt [ABM93] and
by Collier [Col92] describe memory models in terms of how the processors view complete execution
histories,
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Chapter 8

Sequential Consistency Using Global
Equivalence Proofs and Temporal Logic

S. Katz

142



8.1 Introduction

Temporal logics have been defined that exploit information on partial order among events in a
distributed system. The temporal logic we consider is based on the idea of a partial order computation
(also called a run) which ts simply a maximal set of occurrences of operations (called events) of a
distributed system that have some partial ordering among them. The ordering includes any causality
required among events, and may have additional restrictions. Events which are ordered are called
dependent, and the others are independent. A program or system defines a collection of such runs. In
the version of this approach to be shown here, presented previously in [KP90, KP92b, KP92a], the
collection of all lincarizations of the events that are consistent with the partial order are considered
in a temporal logic framework. Each such linearization is viewed as generating a sequence of
alternating events and global states, that represents an execution sequence. All such execution
sequences generated from a given run are called an interleaving set and are considered equivalent.
Here ‘equivalence’ is used in the sense that the only difference between the execution sequences in
an interleaving set is that strictly independent operations are executed in a different order.

In the temporal logic 15717, abranching time assertion is interpreted as being true foradistributed
system, if it is true for every interleaving set of the system. (This is analogous to the standard
interpretation of a lincar temporal logic assertion being true of a system if it holds for every execution
sequence.) Then it is easy to express that each equivalence class has some execution sequence
satistying a property p, simply as p. Such properties are often natural for distributed systems and
allow expressing specifications for problems such as database serializability, distributed snapshots,
and, as will be shown below, sequential consistency of cache-based shared memory systems.

In addition, for many properties 1t is true that Ep = Ap, i.e., if p is true of one execution in an
interleaving set, then it is true for all the others in that set. For such properties, verification can be
made more efficient by showing generically that p is a property for which Ep = Ap, then explicitly
showing Fp, and using modus ponens to conclude Ap.

Thus properties of the form £y can arise in a variety of contexts, and proof rules have been
presented that allow concluding Ep. In such rules there are actually two tasks that are mixed together.
One task is to show that p is true for the executions that are identified as the ones to be explicitly
considered, and the other is to show that sufficient executions have been chosen to ‘cover’ all of
the equivalence classes with at least one representative. The motivation for showing both properties
at once is to allow a classic iterative proof on the computation, maintaining compositionality and
modularity in the proof. At each step we can assume both that p is true for (some extension of) the
parts of the computations considered so far, and that sufficient computations are being considered.
This allows compositional proofs and proof rules to be used, but has the price of complicated proof
rules{KP92b, PP9(}]. In the inductive step, it is necessary to show that the states reached so far all
have a possible next state that will both maintain p and extend the existing computations to sufficient
representatives.

Here a complete separation is suggested between showing that each of a chosen set of compu-
tations {(called the convenient computations) fulfills the needed properties, and showing that every
computation is equivalent to one of the convenient ones. The proof of the first aspect uses the usual
itecrative approachces, while the proof of the second aspect is global, and uses temporal logic assertions
about the entire computation, along with formulas that encode which operations are independent of
each other. The advantage of this separation is that different kinds of reasoning can be used for the
two aspects, each most natural for the problem at hand.

This approach is demonstrated in the context of refinements of distributed systems, gradually
replacing high level atomic operations by a collection of lower level operations that loosen the
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synchrony among distributed processes, but still maintain some key properties. Each refinement
is divided into two independent proof stages. The first stage shows that convenient executions of
operations from the next lower level are a simple refinement of executions from the upper level, and
can be demonstrated correct using standard refinement mappings.

Then we show that every additional execution sequence at the lower level is equivalent to one of
the convenient ones. This stage could be considered as a ‘loosening” of the ordering imposed by the
convenient executions. The two-step reasoning at each level saves having to directly relate each lower
level sequence through a mapping to an upper level one. Although such a mapping exists, it may
require the use of history and prophecy variables, and be extremely difficult to express and justify.
This is because the collection of lower level operations that can be considered the ‘implementation’ of
an upper level one are interleaved with an arbitrary number of operations that implement other higher
level operations. Thus it is difficult to obtain an iterative proof that is uniform for all the computations
when a direct mapping is required.

As a first example of this approach, we treat the replacement of an abstract sequential global
memory by a less synchronized version with queues between the processes and the global memory.
In the abstract version, cach process can execute atomic read and write operations directly from the
memory. In the lower level version, a process can only write to a local queue, while later the head of
the queue 1s written to the memory internally. This i1s one basic step in a series of refinements that
can be used to derive a lazy caching protocol that maintains what is known as sequential consistency.
Intuitively, this means that the projection of local events of each process is consistent with use of the
serial memory, even if a version with queues and local caches is being used instead.

The cache consistency protocol we treat is presented in [ABM93] and in the introductory paper of
this issue. It has served as the basis for a variety of attempts to prove its correctness, in the framework
of the Esprit REACT project [Ger93]. Sequential consistency seems, by its very definition, to favor
the interleaving set view that considers the set of all total orders of events that are consistent with a
partial order, as the semantic object to be considered.

Once we introduce queues, it is easy to define convenient executions for them and show that
these implement the more abstract level, The fact that each other lower level execution sequence
is equivalent to some convenient sequence is of course a crucial aspect of the correctness proof. It
will be necessary to restrict the use of the queues on the implementation level, in order to guarantee
this property. This will be expressed as another term in a temporal logic formula. As we shall see
below, care must be taken in defining which events are dependent, in order to obtain the appropriate
equivalence relation and/or partial ordering.

The rest of this paper is structured as follows. We first explain in more detail the idea of
(convenicnt) interlcaving sequences and the dependency relation. The implications for independence
of queue operations are also examined. The version of temporal logic used is then briefly described.
Section 8.4 explains the conjuncts that define the independence relation and other temporal formulas
that describe the lower level execution sequences for the first refinement. In Section 8.5 these are
summarized and used in a semantic version of the proof, basically a description of the temporal
reasoning necessary to show that other executions are equivalent to the convenient ones. In Section
8.6 further steps in deriving the cache consistency algorithm are described, again in terms of temporal
formulas that express independence and restrict the possible execution sequences.
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8.2 Defining dependencies and convenient executions

The convenient executions at the lower level are precisely those where the lower level operations
that implement a higher level one are all done sequentially, with no other lower level operations
interspersed. These are legal lower level executions, even if they are unlikely to occur in practice
because the operations are distributed in a collection of asynchronously executing processors. A
mapping tunction from each convenient execution to some abstract computation is generally simple
and iterative. After this first stage, we have only shown that every convenient execution sequence is
a refinement of some higher-level abstract execution. The loosening stage requires precise reasoning
about which operations are independent in which states. Each operation is viewed as a guard ¢
(i.e., a condition for applicability on the state s) followed by a command f that is simply a function
of s (with the operation written ¢ — f), as in [ABM93]. Note that such an interpretation of an
event 1s reasonable only when a state 1s assumed as a semantic object, as part of the definition of an
execution sequence. Then two operations, say opf and op2, are independent in a state s, denoted
s = I(opl, op?), if beginning in state s neither affects the truth of the other’s guard, and the result
of executing them in either order is the same, i.e.,

cl(s) = (e2(f1{s)) & c2(s))
2(s) > (eI (J2()) & eI ()
(ct(s)Ac2(s)) = (f1(72(s)) = f2(f1(s)))

The definition above i1s known as conditional independence[ KP92a] because a pair of operations
may be dependent in some states, and independent in others, The states in which two operations
are independent are defined by a state predicate. Two execution sequences are considered equivalent
if they differ only in that independent operations were done in a different order, but all dependent
operations arc done in the same order. The reasoning used to show the equivalence of two computations
is quite different from that used to show the mapping from a higher to a lower level. If we are given a
collection of independent operations in various states, then two sequences are equivalent if they differ
only by interchanging two adjacent operations beginning at a state where they are independent. The
equivalence class we consider is the transitive closure of this ‘exchange’ relation,

When more complex data structures are assumed, the dependencies become more complicated,
and the extra freedom is exploited by the lower level implementation.

As a particularly relevant example, we consider the dependencies for a quene ¢ with operations
empty(q), put(yq, ), and gel{q, €), where ¢ is a data element,

When the queue is non-empty, then put(q, ¢) is independent of get(q, f):

(mempty(q)) = 1(put, get) (8.1)
When the queue is empty, a put and a gef operation will be dependent:
empty(q) = ~1{put, get) (8.2)
All adjacent pairs of pui’s are dependent:
=((put, put)) (8.3)
All adjacent pairs of gel’s are dependent:

=({(get, get)) (8.4)
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The first rule is intuitively true because a put and a get by different processes on a nonempty queue
are done at opposite ends of the queue, and never involve the same item, while this is not so when the
queue is initially empty. In that case the get operation must follow a put.

The other rules follow from the fact that the contents of the queue differs according to the order
of put’s, while the states of the rest of the system differ if gef’s are done in a different order. A formal
proof of these dependencies could be based, for example, on an algebraic specification of the queue
axioms.

8.3 The logic

The version of temporal logic used in this paper will be briefly summarized, This is an adaptation of
the logic ISTL* introduced in [KP90], with additions to facilitate showing equivalence of execution
sequences. Most of the operators are those of CTL* [EH86], but interpreted as true for a system if they
hold for each interleaving set. An interleaving set is defined as an equivalence class of computations
under exchanges of operations that can be done when the independence relation I holds. The syntax
is thus standard, and the semantics (implicitly} universally quantifies over the interleaving sets:

Ap — for every computation in each interleaving set, p is true

Ep —for some computation in each interleaving set, p is true

Fp —eventually for some state, p 1s true

(p — for every state from the present, p is true

Xp —for the next state, p is true

pUq — p is true until ¢ becomes true (and ¢ does become true)

In order to facilitate reasoning about sequences of operations, we add some conventions. First, an
operation name also serves as a state predicate that is true precisely when that operation was executed
in the transition from the previous state. (An alternative temporal logic that treats operations more
directly can be secn in Lamport’s TLA [Lam95]). Then sequences of operations (or other predicates)
can be denoted as
“g; 1" — defined as X' (s A Xt) (in the next state s holds, followed by a state with ¢). This expression
relates to a single execution sequence and can be preceded by E or A. .

Note that in the starred version of the logic, there is no restriction on which combinations of the
temporal operators ure allowed. When temporal fogics are used in model checking of finite state
programs, as is done for CT°L, it is common to restrict the combinations in order to facilitate efficient
checking. In particular, the modalities £ and A are known as state modalities because they deal with
all of the possible continuations from a given global state. Such modalities are required to alternate
with the other modalities, known as path modalities since they deal with restrictions on a given path.
Although many aspects of the specification below can be treated in I5TL with alternating state and
path modalities, here we do not treat whether such restrictions allow sufficient expressibility, since in
any case, model checking techniques are not used.

Additional information on [ within the temporal descriptions of computations means that more
execution sequences can be proven equivalent. In some sense the equivalence classes are demonstrably
larger and fewer convenient executions are required to guarantee that each equivalence class contains
a convenient execution.

8.4 Expressing independence and allowed computations

The definition of sequential consistency used in this paper can be stated as follows.
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A memory M is sequentially consistent with respect to a serial memory M riqs, Iff

Va € Beh(M)3r € Beh(Mseria)Wi=1...n oli=r7li

Beh (M) is the set of execution sequences associated with a system M, and Beh( M, iy1) is the set
where read and write operations are atomically done on the global memory. The above asserts that
the projections on cach process are the same as those in some execution using a serial memory, even
though the general behavior may have extra internal steps associated with the memory, so that a write
operation may not affect the memory directly. This statement suggests the interleaving set approach,
since it closely relates to the idea of convenient sequences: the behavior of the serial memory will
be viewed as consisting of lower level convenient sequences, where all lower level executions are
equivalent to such a convenient execution. That is, if we now view M,y as a temporal logic
predicate true of the lower level serial computations, we require ' M.y,

We must define an independence relation so that the system is sequentially consistent if every
execution is equivalent to a convenient serial one. That is, we require formulas in ISTL* that express
the independence of adjucent operations (i.e., when [ is true), that characterize the convenient serial
computations, and that characterize every computation (including restrictions on when values can be
read). Once these have been defined, we need to show that assuming the formula that defines the
independence of operations, and the formula that defines all computations, £ M. 1S true.

In defining the independence relation so that it reflects sequential consistency, the local operations
of each processor must be unchanged in the equivalent convenient version. Thus we assume a total
order among local operations of a single processor.  Since this order must be maintained for all
equivalent execution sequences, we obtain the identity of local projections for every two equivalent
execution sequences, as required in the definition of sequential consistency. For any two operations
a; and §;, executed by process i, we therefore require

—II(G;,{){) (85)
Of course, local operations «; and b; of different processes are independent:
i = Ia,b) (8.6)

We consider how to refine abstract read and write actions. An abstract write action can be implemented
by adding to the end of a queue the pair consisting of the value to be written and the memory address,
later removing that pair from the head of the quene, and then writing 1t in the memory. If we denote the
action of putting the value-address pair in the queue by W (d, v}, and the action of removing the pair
from the head of the queue and writing to the memory by MW (d, v) (standing for Memory Write),
such a pair is the implementation of the abstract write. Thus W is associated with a put operation,
and MW combines a get with a memory write.

Similarty, an abstract read could be implemented by reading from the memory, adding the value-
location pair to another queue, and later reading the value-address pair from the head of that queue into
the local process. However, the treatment of reads will be postponed to a second level of refinement,
so for the present we assume a direct atomic read action denoted R(d, v), meaning that value d is
read from address (or variable) v.

In order to capture the intuition of rcading and writing into memory, we express that the value
returned for a variable or memory location = in an action R(c, z) is the last value written into it by a
MW (d,x) action, in the assertion:

(MW (d, oY N (~MW (b, 0))UR(c,v)))=>ec=d (8.7)
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This is known as read/write consistency and is a fundamental assumption when truly atomic reads
and writes are being used. However, when reads and writes occur at different processes, and are not
atomic, we can weaken the requirement.

This requirement does not seem to appear explicitly in [ABM93]. However, the operations there
are defined using a Memory data structure (an array representing the contents of memory), and the
effects of the atomic operations are defined so that a value can be returned for a variable only if it
is the latest value written to that vanable. Thus the same consistency requirement is simply given
implicitly.

If we now replace the abstract read and write actions of the serial memory by the lower level
actions above, we arrive at a situation that can be viewed as the addition of abstract write queues to the
scrial memory. Since we have a collection of such write queues, the “lower” level involves operations
on an Out; queue between the processor i and the central memory, for each processor. Since there
now is a queue for each processor, we denote a write to the end of the ith queue by W;, and removing
an element from the head of that queue plus writing to the memory by M 1¥;. Reading by process { is
denoted by ;. All of these have the same parameters as previously, namely the value and the address
(or variable name). The events that are considered local to a process ¢ are not independent, and these
include all occurrences of W, and R;, but not AfW;. On this level only the MW, and R; operations
directly involve the memory and are required to satisfy read/write consistency.

In the convenient executions, items are inserted by the process ¢ using W, operations into the
corresponding Oul; queue and immediately removed and copied to the central memory by the M W;
action. In these very particular computations, every W; is immediately followed by writing into the
memory using AfW;, with no intervening operations anywhere in the sysiem. The queues are thus
always empty except when a single item has just been put in and has not yet been written to the
memory in the next step. Intemporal logic we can state the requirement for a convenient computation
as simply

G(Wi{e,x) & XMW (e, 2)) (8.8)

That is, throughout the computation, if a IV; has occurred, it is immediately followed by the cor-
responding M W;, and every MW, is preceded by a W; with the same parameters. Every adjacent
W, MW, pair is clearly a trivial implementation of the direct write on the abstract level. Since the
read events R; are still atomic, all convenient execution sequences can be easily shown to implement
the abstract sequences, by a trivial induction on the sequence.

Then we need (o claim that every execution of the lower level satisfying the queue axioms and
the memory consistency assumptions is equivalent under the independence relation [ to one of the
convenient executions. This is almost true, but we need to restrict the read operations of the lower
level to maintain the total order among local actions of a single process. Consider a situation where
a process has written a pair {d, 2) to its Oud queue, then executes a read operation (implemented as
an f7.) on x, and only then does a MW execute on that queue, changing the memory. The value read
is clearly whatever was in the memory before the last A7 W . This implies that there is a linearization
consisting of

Wild, ) Bi(e,u); MWi(d, 2)

with d # ¢. But such a computation is not consistent with the dependency requirements, because
we claim that it is not equivalent to any convenient computation. If we wish to find a convenient
execution to which this one is equivalent, we must show that the I? operation can be exchanged, either
with the following M W or the preceding 117. The former exchange would lead to

Wi(d,x); MW(d,a); Bie, 2)
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This is not a convenient execution, since it violates the restrictions on the value read being the last
one written in the memory location (read/write consistency). Exchanging the R; and W; operations
would lead to

Ri(e,n); Wild, w); MWi(d, z)

This is a convenient sequence, but is not equivalent to the original one, because it does not have the
same total order of the local operations in process ¢.

This difficulty 1s solved by simply requiring that the lower level operations be restricted so that
any read operation by a process i, IZ;, is ‘delayed’ vntil the Qut; queue is empty, i.e., until all of
the ‘pending’ M W; operations have been done. In that case the problematic computation described
above is simply declared impossible. Of course, there is no such restriction for reads and writes from
different processes. The restriction on the implementation is again a temporal logic formula and can
be expressed in several ways. One approach treats the actions directly, using a # symbol to denote the
number of times an operation has occurred:

AG(R; = (#W; = #MW;))

That is, no R; is between a W, and an M W¥;, because every 1V, before R; has a corresponding M W;
that also appears in the execution sequence before 1;. Another way to express this is to define a
predicate empty that is true when the queue is empty and simply state that

AG(R; = emply(Oudi)). (8.9)

Such a predicate can be defined using temporal formulas derived from well-known algebraic axioms to
first define rrember in terms of each operation (incrementing when an item is inserted and decrementing
when one 1s removed) so that emply can be seen as a derived predicate true when number = 0.
We shall assume that expressions defining such predicates have been defined, and use the second
alternative.

The independence refations define what exchanges of operations can be made, and thus which
computations are cquivalent. This needs to be introduced into the logic explicitly, through the formula

AGUHa, b)) = ((Ma; 0"y & (“b; M) (8.10)

In words, if /(«, &) holds in a state, then the sequences that begin in that state and then have “a; b"
are equivalent to those with “b; ", at that point.

8.5 Proving refinements

The proof requirements of showing a refinement that satisfies sequential consistency are obtained by
using the relations from the previous section. The independence relations for queues (1-4) will have
W; corresponding to pul and A V; to get for each queve Outl;. We also have the independence
and dependence relations on all local actions in each process (5-6). To these we add the read/write
consistency rules for simple memory locations (7), the delay condition on reads defined above (9), and
the formula connecting I and equivalence. We then claim that an execution sequence satisfying these
dependencies must be equivalent (under the relations 1) to one where all W — MW pairs from the same
queue are adjacent (&), i.e., to one of the convenicnt sequences. Note that the convenient sequences
are assumed to have already been shown to correspond to abstract atomic read/write consistency. In
terms of 1STL*, the restrictions on the possible lower level computations must imply EConvenient,
where Conveniend is the temporal logic definition of the convenient sequences,
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queues, for process i:
{—emply{ Ouly)) = I{W;, MW;)

emply( Oud;) = ~I(W;, MW;)
locality, for a, b operations W ar I in processes i, 7:
1 (a;, bi)
i #£J = 1(a;, b))
read/write memory consistency, for all processes 7, j, and &:
AGUMW(d, o)A (- MW;(b,0))UR(c,v))) > e=4d)

delay of reads, for process i:
AG(R; = emply( Out;)).

independence and cquivalence, for operations « and #:

AG(1{a,b) = ((“a; ") & (“bra"))

Figure 8.1: Conjuncts in the correctness formula of a refinement

The conjuncts in the correctness formula are summarized in Figure 8.1. With the restrictions we
have added, this implication is not difficult to prove. Consider any sequence satisfying read/write
consistency and read delays. Assuming the other formulas in Figure | (that define independence), we
want to show

EG{Wi(c,x) & XMW(c,2)).

We prove by induction on the number of states (or operations, since the two alternate) between a
Wi(d,w)— MW;{d, x) pair that correspond to putting a value in the Qut; queve and later removing
it. If the two are adjacent, this pair is part of a convenient execution. If there is one state between
them, and in that state M W;(c, y) forany j, ¢, and y, the independence relations show that there is an
equivalent computation with the M W; before the W;(d, ). The same is true of any R; or W; where
# # 4. Ifin that state there is another W; it can be exchanged with the following M W;(d, z) (and recall
that there cannot be an #2;). In general, note that there cannot be a ‘matching’ pair between another
such pair from the same process, because that would violate the queue axioms. Assume that for all
pairs with n states between them, we can find equivalent computations where the pairs are adjacent.
For a pair with n + / states between them, if the first state is anything except W;(c, y), the action
and the resuftant predicate can be exchanged with the previous W;(d, z), using the independence
assertions, and the inductive hypothesis can be used. Otherwise, we have a situation of the form

Wi(d,x), Wi(e,y); ; MW(d, )

Again using the inductive hypothesis, the » remaining actions can be exchanged either after the
MW;(d, ), or before the pair of actions W;(d, x); W;(c, y) because any action (except R;’s, which
are excluded by assumption) that can be exchanged with W;(d, x) can also be exchanged with
Wi(e,y). Finally, the W;(c, y) can be exchanged with the AW;(d, 2), since they are independent.
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The proof here is simply a systematic analysis of which pairs of operations are independent under
what conditions, in order to show that any computation is equivalent to a convenient one. We show
exchanges that bring a general computation ‘closer’ according to some measure Lo a convenient one.

Just as for the abstract write actions, we could refine read actions into a pair of actions ME;(¢, z)
and R;(c,z), where in this case the memory read MR; reads from the main memory and puts the
pair read at the end of a queue, while the process read action R; takes from the head of the queve and
reads the pair into the process. Note that the ME; must precede the R;. The convenient sequences
would have MR; (¢, 2); Ri(e, z) subsequences. In fact, the reading is handled in another way in the
cache consistency algorithm, seen in the following section.,

8.6 Further refinements

Further top-down development of the lazy caching algorithm could similarly be divided into a series
of refinements, with each described first by a convenient sequence, followed by a loosening stage
to the rest of the computations at that level. Note that the convenient executions are lower level
implementations of any computation from the upper level, and not just the convenient upper level
ones. Although we will not treat the other levels in as great detail as above, the convenient executions
and the type of reasoning necessary is described in this section. The idea of the implementation
described in the introductory paper and in [ABM93] is that a local cache memory of bounded size is
associated with each process, and updates to the giobal memory are also inserted in a queue for each
process, from which they are transferred to the local memory.

On this level, In quecues are used. A lower level MTV; operation, in addition to removing an
element from the head of the (Ouf; queue and writing it to the memory, now also adds the update
requests to the /n queue of each process. Alternatively, we could view this strengthened MW,
operation as simply the previous M IW; that only wrote to the main memory, followed immediately
by an automatic A/ operation for each process, that adds that same value to the end of the In queue
of the process. We prefer to treat the operation in this way because such a view maintains the option
of later additional refinements that loosen the atomicity of writing to the In queues. The temporal
predicate that describes the possible computations for now will simply require that every needed
MW /MR sequence appears atomically with no intervening operations. That is, we have

AG(MWi(c,z) = “MR,(c,z); s MRy(c,z)")

A CU; event removes an update request from the head of the In; queue, and writes in the cache
according to the update. A read request £2; is now from the local cache rather than from the central
memory or from an abstract queue. Thus read/write consistency must hold for the central memory
between MW and MR operations, and within each cache for CU; and R;. That is, for each process
i, f,and &,

AG((MW(d, 0y A (MW (b,o)YUMRH(c,v)))=> c=d)

AGUCU(d, ) A (~CUI{b,v))URi(¢,v))) => c=d)

The convenient sequences for this level are simply those computations for which every MW; event
and the subsequent M 12’s for each process are immediately followed by a subsequence with a single
CU; event for every process 7. That is, again the queues will be empty, have one item inserted,
and immediately use that item to write in the local caches. We view a “M W -subsequences of MR’s
and C'U’s” as the implementation of a stimple MV which only wrote to the central memory, and a
subsequent MR, In this case, for these convenient execution sequences, each cache is the same as
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the central memory when outside such subsequences. By the considerations above for the convenient
sequences, a read from the cache will give the same result as the higher level read from the central
memory.

The CH; read actions of a process ¢ will again be restricted in order to allow showing equivalence
to convenient sequences. Recall that this is intended to prevent local inconsistency where a process
could sense that a W; action has not yet ‘taken effect” when a subsequent local read is done. As
before, read actions of process 7 cannot occur while Out; is nonempty. Similarly, those items in the
In; queue that represent updates that were originally initiated by process 4 itself, must be removed
from the /»; queue and written to the cache before a read of that variable by process 1. This is needed,
Just like the flushing of the Qut. queue required before a memory read operation by that process, in
order to guarantee local total order. In the description in the introductory paper, these are the *starred’
items in the Irn queues. In terms of operations, R; occurs in an execution only after all CU; events
that correspond to previous local W; actions have occurred. This will simply be an assumption true of
executions in the implementation. Once again there are several possible ways to introduce this into the
logical assertions. For simplicity, we assume that the stars explained in the introduction are associated
with elements in the In; queue that were inserted immediately as a result of a M W; operation, and
that a predicate hasstars is true when there are such items in the queue. Simple assertions that define
this predicate in terms of the operations are again assumed. Then we have

AG(R; = (emply( Oul;y A ~hasstars(In;))

Note that the restrictions on read opcrations are trivially true for the convenient executions, because
in those the Out and In queues are always empty when a cache read occurs.

In a real cache consistency algorithm, the possibility of cache misses must also be treated. The
idea behind cache misses is that the cache has limited capacity and can therefore not mirror the whole
of the central memory. Sometimes variables are removed from the cache so that values for other
variables can be put into the cache. This is modelled by adding internal cache invalidate actions C1;
that remove value-address pairs from the cache, i.e.,

AG(Cli(z) = (Ve.n(e, z) € Cache;))

Note that this is part of the assertions that define the € predicate, and that the other assertion defining
€18
AG(CU{e, ) = {c,2) € Cache).

A cache read R;(d, ) can only occurif the pair (d, x) is in the cache. If there is no value for z in the
cache because of a cache invalidate action, the read must be delayed until the needed pair is retrieved
from the central memory. This is done by repeating MR operations to read a value for a variable from
the central memory and putting it into the i queue of only the process that had the CT event, so that
the pair eventually is put back into the cache by a cache update. As previously, this description can
be captured by a temporal logic assertion further restricting when an f2 can occur:

AG(R;(d,x) = (d,a) € Cache;).

The assumptions about possible computations and independence are sumimarized in Figure 2.

Convenient sequences at this level now consist of sequences where all MR and correspond-
ing CU actions immediately follow one another, and each Cl;(z) is followed immediately by
MR (¢, ); CU{c, ) for the value ¢ in the central memory, whenever there is a later R;(c,z)
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(i.e., whenever the value is subsequently needed for reading from the cache). If there is no subsequent
cache read of that variable, a CI;(z) event does not have to be followed by any other related event.

As previously, assuming these temporal formulas, (and straightforward but tedious formulas that
define the predicates emply and hasstar) we must show that £ Convenient holds, where Convenient
is now a temporal formula describing the computations with writes that take immediate effect in all
caches, and cache misses that are immediately rectified by reading from memory at arbitrary points.
In showing that the convenient executions correctly implement the higher level, the subsequences
Cli(z); MR; (¢, 2); CUi(e, z) that will occur after a cache miss (whenever z is still needed in that
cache) in these convenicnt executions can be mapped to not having done anything on the abstract
level. The value read from the central memory after a cache miss in this case is always the same as
the one just erased because for the convenient executions the Qut and In queues are always empty
when a CI event occurs.

Of course, in a more realistic description, the capacity of the cache would be given, and in that
case a4 CJ operation may not be followed immediately by retrieving the value just removed, since then
the space could not be used for the value of a different variable that is needed for a read operation first.
In that case the convenient sequences could have the Mi2;(c, z); CUi{(c, 2) later than the CIi(z), and
immediately preceding the I;( ¢, 2). That is, the needed value is retrieved just before it is read from
the cache, and again the queues are always empty except when one element has just been put in and
is about to be removed.

It remains to show that alf other executions are equivalent to some convenient one. Again, all of the
independence relations must be precisely analyzed. Note that when the CI;(z) operation is followed
by other operations, and a MR;(d, &) occurs only after there have been intervening MW operations
that change the main memory, the value read will be different than the one erased. However, since
there is already evideatly an entry in the In queue with the update, this is equivalent to first doing the
update, and then the invalidate CI. Clearly, the relation {( C1;, M W;) holds for all ¢ and . In fact, it
can be shown that an occurrence of C/;(x) is independent of every other following operation except
the tast C'U;( ¢, « ) before the next 72;(c, x). This can be used to show that each general sequence that
satisfies the formulas is equivalent to one of the convenient ones, again using a proof by induction on
the distance from the position of key operations (in this case, C/7’s) in a general execution sequence
to their position in a convenient one.

8.7 Concluding remarks

In this paper we showed how to prove correction of the lazy caching algorithm through a series of
refinements, starting from the definition of serial and sequentially consistent memory. Reasoning in
terms of convenient sequences and their equivalence classes seems to be well-suited for this purpose.
The independence relattons and restrictions on possible implementations are easily expressed using
1ST1”. Ateach refinement, a two-stage proof is used, first showing that the convenient sequences are
a simple refinement using usual mapping functions, and then separately showing every lower level
computation equivalent to one of the convenient ones.

The steps in such proofs of equivalence are uniform. First, predicates are needed that make the
independence of adjacent operations explicit. These can be justified from the underlying semantics
of the model, or by properties of the data structures used. In the case of sequential consistency, the
independence is further restricted by the problem specification, namely that there is a total ordering
among local process writes and reads. These properties can often be shown once for a large collection
of related problems.



Second, the properties of the general computations are described as global temporal logic predi-
cates, These follow from a description of the implementation level. In the case of cache consistency,
these include restrictions on when a read action is possible.

Next, the convenient computations are described, also using the temporal logic.

The claim to be proven is that under the equivalence defined by 7, with the assumptions on the
possible computations, E Conwvenient is true. The proof of this fact is done by induction showing that
cach computation is equivalent to one that is ‘closer’ to a convenient one. A systematic examination
of which operations can be exchanged is done using the independence information. This aspect seems
amenable to automation, since it involves a large number of very simple assertions.

In the example given, the main concern is on showing equivalence, and the convenient sequences
are chosen so that the refinement proof is particularly easy. This does not always have to be the
optimal division, and sometimes more effort will have to be devoted to showing that the convenient
executions indeed satisfy the needed property.

Acknowledgement: Job Zwiers and Wil Janssen suggested the gradual refinement stages and showed
connections to algebraic partial orders, and Rob Gerth helped to clarify the cache consistency protocol.
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queues, for process i:
(mempty{ Out;)) = H{(W;, MW;)

emply( Qut;) = —~1(W;, MW,)
(mempty(Ing)) = 1{(MR;, CU;)
empty(Fng) = ~I(MR;, CU;)
locality, for @, b operations W or I? in processes ¢, j:
~1(a;, b;)
i # = 1{a, ;)
read/write memory and cache consistency, for all processes 7, 7, and &:
AGU{MW(d, o)A (MW (b, o)) UMR(c,v)))=> c=d)
AGU(CU(d, ) A (~CUi(b, o)) UR{c,v)})) = c=d)
delay of reads, for process :
AG(R; = (empty{ Outy) A ~hasstars(fny;))
AG(Ri(d,x) = (d,x) € Cache;}.
effect of cache invalidate and write, for process .
AG(CL{z) = (Yen(e,z) € Cache;))
AG(CU{e,x) = (c,2) € Cache;)
independence and equivalence, for operations « and b:

AG({a,b) = ((“a;b") < (“b:a")))

Figure 8.2: Conjuncts for computations with cache misses
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