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COMMONALITY  AND SAFETY STOCKS* 

K. van Donselaar and J. Wijngaard 
Eindhoven University of Technology, Eindhoven (The Netherlands) 

ABSTRACT 

Introducing or increasing commonality in 
product structures is advocated frequently. 
However, introducing commonality gives rise to 
two questions: "Is it advantageous (in terms o f  
service level) to keep common items at stock?" 
and "How shouM stocknorms be determined for 
divergent systems?" It will be shown that in the 
cases of  stationary demand, no lot-sizing and 

unlimited capacity, the main deterioration of  
the service level is due to retaining common 
items in a depot. The impact o f  imbalance 
between inventories on the service level will 
appear to be negligible. This observation will 
lead to a rule to determine stocknorms for 
divergent systems which is as simple as the clas- 
sical rule for the one-stockpoint case. 

1. INTRODUCTION 

Commonal i ty  is a concept which is of  inter- 
est in several areas of  inventory control. In this 
paper two of  those areas are considered: distri- 
bution and production. Commonali ty occurs if 
one type of  product is shipped to several loca- 
tions or if one type of product (the " c o m m o n "  
component)  is used to produce different types 
of products. 

Both kinds of  commonal i ty  are encountered 
in the Consumer Electronics Factory treated in 
[ 1 ]. Figure 1 sketches an example of  the type 
of production process that may occur. The 
process starts with the procurement of two 
types of  raw materials: specific components like 
a teletext-module called TXT and non-spe- 
cific components  called COMMONS. These 
components  are used to produce two types of  
television sets: one with (TV1) and the other 
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Fig. 1. The production process in the Consumer Electronics 
Factory. 

without a teletext-module (TV2).  These tele- 
vision sets are transported to several National 
Sales Organizations. Procurement,  production 
and transportation require, respectively, L3, L2 
and L1 periods. 

The Consumer Electronics Factory aims at 
(increased) commonality.  One of  the main 
advantages of commonali ty is the well-known 
reduction of  uncertainty: the forecast error in 
the total demand for television sets is rela- 
tively smaller than the forecast error in the 
demand for a specific type of  television set. 
This reduction in uncertainty yields lower 
safety stocks. 

0167-188X/87/$03.50 © 1987 Elsevier Science Publishers B.V. 
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Implementing this commonality gives rise to 
the following two questions: 
(1) Is it advantageous (in terms of service 

level) to keep common items at stock? 
(2) How should stocknorms he determined? 
Both questions will be dealt with in this paper. 
In doing so the attention will be focussed on 
two-level inventory systems. The multilevel 
case will be briefly discussed in Section 5. 

As far as the first question is concerned, to 
keep common items at stock, the system serv- 
ice level is influenced in two ways. On the one 
hand, the service level is increased, because 
there is more inventory left in the depot to 
allocate to the different products (or loca- 
tions). So if the order which arrives at the 
stockpoint for common items isn't large enough 
to bring the inventories of  all products to an 
equivalent level, the commons  in stock can be 
used for this. In that way it is possible to 
improve the balance of  the inventories of  the 
different products. This has a positive effect on 
the service level. On the other hand, the serv- 
ice level will decrease, since some inventory is 
retained at the depot. 

The second question has been studied by 
several authors, see e.g. refs. [ 2-6 ]. In all these 
papers (as well as in the present one) it is 
assumed that the inventories are perfectly bal- 
anced. It is not obvious however, what the con- 
sequences of this assumption are for the service 
level. These consequences will be investigated 
by means of  simulation. Results will be pre- 
sented in the subsequent sections. Related 
results are those of  Eppen and Schrage [ 4 ] and 
Federgruen and Zipkin [ 7 ]. Eppen and Schrage 
indicate the probability that the inventories are 
balanced. Federgruen and Zipkin report exten- 
sive simulation results for the system without 
a stockpoint for common  items. Their results 
indicate the influence of imbalance on expected 
cos t .  

In Sections 2 and 3 the influence of unbal- 
anced inventories on the service level is stud- 
ied. Systems without and with a stockpoint for 
common items (called a depot) will be consid- 

allocation L1 ~ 7  

Fig. 2. A divergent system without depot. 

ered. Whereas in those sections the demand of 
the lower level products are assumed to be dis- 
tributed identically, Section 4 deals with non- 
identical distributions. 

It will be shown that the effect of unbalanced 
inventories is l imited if demand  is stationary 
and the ordering policy is lot-for-lot. This result 
will lead to two conclusions: 
(1) Keeping common items at stock will yield 

little improvement  (if  any at all) in the 
service level. 

(2) To determine stocknorms for common 
items, there is little harm in assuming that 
the inventories are perfectly balanced. 

This last result will be worked out in Section 
5 and result in a method to determine stock- 
norms which is as simple as determining a 
norm for one stockpoint. Finally, some sugges- 
tions for further research will be given. 

2. A DIVERGENT SYSTEM W I T H O U T  A 
CENTRAL DEPOT: THE IMPACT OF 
UNBALANCED INVENTORIES ON 
SERVICE LEVEL 

Consider a divergent system as depicted in 
Fig. 2. This system can be interpreted as rep- 
resenting the production and transportation 
process of  TV2 in the Consumers Electronics 
Factory. In this system a product  (TV2) is 
produced and then allocated and transported 
to N identical locations (National Sales Orga- 
nizations). These locations experience demand 
from customers out of the system. The demand 
at location j is assumed to be distributed nor- 
mally with mean #j=/~ and standard deviation 
a j=  a. The leadtimes for production and trans- 
portation are L2 and L 1 periods. 



TABLE 1 

The probability that the inventories in the system without 
depot are balanced for various values of N and # /a  

N # a  

0.5 1.0 1.5 2.0 2.5 

2 40.5 67.5 86.3 95.3 98.8 
3 23.6 55.0 79.7 93.4 98.0 
4 14.2 46.7 74.3 91.0 96.9 
5 8.1 37.1 70.0 88.5 96.9 
6 5.1 31.0 65.1 87.4 96.4 
7 3.3 25.6 60.1 85.1 96.0 
8 1.7 21.5 54.5 82.4 95.2 

The ordering policy for the system is an 
"order every period up to" policy. The order- 
up-to level (see ref. [4]) is denoted by S and 
equals: 

[ ~ =  )2"~g2j~l1112 S=(LI+L2)  aj+k L1 aj a~ j~ 1 I "~ 

The safety factor k is determined by qb(k) = 7, 
where ~, is the service level of the system, which 
could be achieved if the inventories were per- 
fectly balanced and qo( ) is the standard nor- 
mal distribution function. The goods which 
arrive at the allocation point are sent to the 
locations with the lowest expected service level 
in order to keep the inventories as balanced as 
possible. In case of identical products these are 
just the locations with the lowest inventories. 

Eppen and Schrage [ 4 ] showed that the pos- 
sibility that the inventories are balanced is 
approximately zero if there are many locations 
and if the variance of the demand is relatively 
high. Simulation results corresponding to those 
of Eppen and Schrage are shown in Table 1. In 
the simulation, L 1 and L2 are both chosen to 
be 3. The safety factor k is set equal to 1.645. 
All tables in this paper are in percentages. 

Table 1 might suggest that the performance 
of the divergent system can be very poor. To 
check this, the system has been simulated for 
5000 periods. The service level for each of the 
Nlocations was defined as the probability that 
demand can be met. The system service level, 
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TABLE 2 

Service level for the system without depot for various values 
of N and ~ a  

N # a  

0.5 1.0 1.5 2.0 2.5 

2 94.0 94.5 94.9 94.8 95.0 
3 93.5 94.6 94.9 94.9 95.0 
4 93.3 94.5 94.8 94.9 94.9 
5 93.2 94.6 94.8 94.9 94.9 
6 93.2 94.6 94.8 94.9 95.0 
7 93.2 94.6 94.9 94.9 94.9 
8 93.1 94.5 95.0 94.9 95.0 

25 93.2 94.6 94.9 94.9 94.9 

equal to the average of these N service levels, 
has been used as a performance indicator. The 
systerh service level, which could be achieved 
if the inventories were perfectly balanced, 
always is set equal to 95%. This corresponds 
with a safety factor k equal to 1.645. The results 
are summarized in Table 2. 

The results are clear: even if the probability 
that the inventories are balanced is low, the 
impact on service level is limited. This is due 
to the fact that the service level not only 
depends on the probability that the system is 
unbalanced, but also depends on the size of 
imbalance. If there are many products, the 
probability that one of them gets out of bal- 
ance will be large. However, with many prod- 
ucts the size of imbalance will always be 
limited, since the amount of inventory avail- 
able to be allocated is more regular. This results 
in the fact that the service level hardly depends 
on the number of products N. 

3. A DIVERGENT SYSTEM WITH A 
CENTRAL DEPOT: THE IMPACT OF THIS 
DEPOT ON IMBALANCE AND SERVICE 
LEVEL 

Again the system in Fig. 2 is considered, but 
with one distinction. Now there is also a cen- 
tral depot, which may hold back inventory. 
This system is depicted in Fig. 3. 
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L2 depot 1~ V 

Fig. 3. A divergent system with central depot. 

All ordering policies are "order every period 
up to" policies. The order-up-to level for thef t  
th location, S I ( j )  equals L1 ~tj+kl x / ~  aj 
with kl any safety factor. The order-up-to level 
for the system as a whole is the same as S in 
Section 2. 

The impact of  holding back inventory in the 
central depot is twofold: (1) the probability 
that the system is balanced will increase, and 
consequently the service level will also increase; 
(2) the service level will decrease, since some 
inventory is held back and not yet made avail- 
able for the locations. 

The system was simulated to get an indica- 
tion of the probability that the inventories are 
balanced (see Table 3). Both safety factors 
were set equal to 1.645. All other parameters 
were set as in the previous section. 

Tables 1 and 3 show that holding back 
inventory substantially increases the probabil- 
ity that the inventories balanced, particularly 
if N is large and I.z/a is small. This has a posi- 
tive effect on the service level. As ment ioned 
earlier, retaining inventory in the depot has 

TABLE 3 

The probability that the inventories in the system with depot 
are balanced for various values of N and/a/a 

N Wa 

0.5 1.0 1.5 2.0 2.5 

2 86.9 94.8 98.5 99.6 99.9 
3 79.8 89.9 96.6 99.0 99.9 
4 73.7 85.1 94.4 98.4 99.5 
5 70.0 81.4 91.5 97.4 99.5 
6 65.0 78.5 90.1 96.7 99.3 
7 64.3 75.4 87.8 95.8 99.0 
8 62.6 71.7 85.0 94.7 98.9 

25 55.0 57.5 63.4 82.0 94.3 

also a negative effect on the service level. The 
interesting question now is what the total effect 
will be. 

The first column in Table 4 shows the impact 
on the service level of  retaining inventory in 
the depot. These figures were obtained numer- 
ically by means of the formula in Section 4.2 
of  ref. [3 ]. They are based on the assumption 
that the inventories are perfectly balanced. The 
only influence which remains then is the influ- 
ence of  retaining inventory in the depot. The 
service level would have been 95% if no inven- 
tory were held back at the depot and if the 
inventories were perfectly balanced. The 
remaining columns in Table 4 show the total 
effect of  holding back inventory in the depot. 
These figures were obtained by simulation. 

Comparing the first column with the other 
ones makes it clear that the main deterioration 
of the service level is due to retaining inven- 
tory in the depot. The fact that inventories are 
not perfectly balanced deteriorates the service 
level only slightly. 

From Tables 2 and 4, two conclusions can be 
drawn: (1) it appears that holding back inven- 
tory in a depot yields a lower service level than 
passing through all inventory; (2) since the 
increased ability to keep the inventories bal- 
anced has limited influence on the service level, 
there is.little harm in assuming that the system 
is perfectly balanced. 

It should be noted, that in the system above 
an "order every period up to" policy was used. 
So, implicitly, it was assumed that lot sizes were 
small. In addition, the demand distribution was 
stationary and the safety-factors were equal. 
These factors may influence the conclusions 
just drawn. 

4. NON-IDENTICAL DEMAND 
DISTRIBUTIONS FOR THE LOCATIONS 

In the previous sections it was assumed that 
all locations had identical demand distribu- 
tions. In practice this is never the case. In most 
cases there are many items with a low average 



TABLE 4 

Service level for the system with depot for various values of  N and #/tr 
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N Balanced /t/a 
inventories 

0.5 1.0 1.5 2.0 2.5 

2 92.6 
3 92.9 
4 93.1 
5 93.3 
6 93.4 
7 93.5 
8 93.6 

25 94.2 

92.4 92.4 92.5 92.5 92.6 
92.7 92.8 92.9 92.9 92.7 
92.8 93.0 93.1 92.9 93.1 
92.9 93.2 93.1 93.3 93.3 
93.0 93.4 93.3 93.5 93.3 
93.1 93.4 93.5 93.4 93.6 
93.1 93.4 93.6 93.5 93.7 
93.7 94.1 94.1 94.1 94.2 

TABLE 5 

Service level, derived by assuming that inventories are per- 
fectly balanced or by simulating the system 

No depot Depot 

Balanced inventories 95.0 93.5 
Simulation results 92.4 92.7 

demand and a relatively high variation in 
demand (called slowmovers here) and only a 
few items with high average demand and a rel- 
atively small variation (called fastmovers 
here). 

These considerations have led to the follow- 
ing model to investigate the impact of  non- 
identical products on system service level: 
- the number  of products; N -  10, 
- the number  of  slowmovers; Nslow= 8, 
- m e a n  and standard deviation for the 

demand of the slowmovers; 
p j=  10, a j=20 ,  

- m e a n  and standard deviation for the 
demand of  the fastmovers; 
p j= 160, a j=80 .  
The service level of the lower level products 

are weighted with ,u/Zltj to yield the system 
service level. The analytical and simulation 
results for the system service level are sum- 
marized in Table 5. 

As opposed to the system with identical 
products considered in the previous Sections, 
the model used here yields a higher service level 

for the system with a depot. The difference 
however is marginal. 

Another interesting result from the simula- 
tion is the fact that the average service level for 
slowmovers and fastmovers is above and 
respectively, below the average service level for 
the whole system. For the system without depot 
the service levels for the slowmovers and the 
fastmovers are respectively, 95.4% and 91.6%. 
For the system with depot these figures are 
93.7% and 92.5%. 

Of course it is possible to define the system 
service level by means of any other weight fac- 
tors than those ment ioned above (ltj/Xtlj). It 
should be noted that the weight factors used 
here give a relatively high weight to the service 
level of the fastmovers. So the system service 
level may be relatively low compared to the one 
which would result from other weight factors. 

5. DETERMINING STOCKNORMS 

According to Sections 2 to 4 it may be better 
to have no central depot if the attention is 
restricted to the effects on service level. In 
practice there may be more reasons to retain 
inventory. One of  these reasons is lower hold- 
ing cost due to a lower added value at the inter- 
mediate level or a less voluminous size. Below, 
it will be indicated how stocknorms can be 
determined for systems with and without a 
depot. 
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For a system without a depot only one stock- 
norm is needed and this stocknorm can be 
determined in the way suggested by Epen and 
Schrage [ 4 ]. That means that the stocknorm S 
may be of  the form S=]Adiv'q-kadiv, where •div 
( = average demand during the leadtime) and 
adiv are determined by ]Adi v = ( L  1 + L2) 27#j and 
a2iv =L1 (27aj) 2 + L 2  -ra y. The safety factor k 
is derived directly from the equation ~ ( k )  = y, 
where y is the desired service level. Their 
method assumes that the inventories are per- 
fectly balanced and it has been shown in Sec- 
tion 2, that even if this assumption is violated, 
the impact on service level remains limited. 

However if there is a depot, stocknorms have 
to be determined for each of the consecutive 
stockpoints. Clark and Scarf [2] use dynamic 
programming to determine these stocknorms. 
Their objective is to minimize the expected 
holding and penalty cost. What is needed how- 
ever is a simple rule for determining stock- 
norms for consecutive stockpoints, such that 
the corresponding service level is equal to a pre- 
specified level. 

Using the results in Sections 2 through 4 and 
in ref. [ 3 ] it is possible to construct such a rule, 
which is of the same form and therefore as 
simple as the rule for the one-stockpoint case. 
It can be used for convergent, linear and diver- 
gent systems (for mixed systems: see remark 
number  3 below). 

A convergent system can be treated as a lin- 
ear one (see ref. [ 8 ]). A linear system is a spe- 
cial case of a divergent system (N =  1 ). So all 
that is needed, is a rule for a divergent system. 
Consider the divergent system in Fig. 3. To 
determine stocknorms of  the form 
S=]-/di v-~ k adi v for the N lower level products 
as well as for the whole system, it is necessary 
to indicate how/tdiv, k and aa~v should be cal- 
culated to yield a prespecified service level. The 
stocknorms for the N lower level products are 
determined as in the one-stockpoint case. So 
SI ( j )  = L I / z j + k l  x/rL~ aj. For the system 

stocknorm it is obvious that/~div should equal 
N 

(L1 +L2)  ~ #j. As Eppen and Schrage already 
j = l  

suggested e2iv should be equal to: L2 (_ray) + 
L1 (-raj) 2, that is: L2 periods centralized 
demand and L1 periods non-centralized 
demand. 

According to Sections 2 to 4 there is little 
harm in assuming that inventories are bal- 
anced every period. This assumption was used 
in [3] to demonstrate, that the resulting sys- 
tem service level for safety factors kl and k 
equals ~u(kl,k;p), where V(.,.;P) is the stan- 
dard bivariate normal distribution function 
with correlation coefficient p. In this case p 
equals [x/(L1 ( ,~a j )E)] /aoiv  . If both safety 
factors are equal (kl  = k ) ,  the system service 
level can be approximated by ta2+  (1- / )or ,  
where a =  qb(k) and t=x / (1  _#2).  This means 
that for any desired service level y, the simple 
quadratic equation y = ta2+ (1 -t)ot has to be 
solved for a.  This yields 

( t -  1) + x / I ( l - t )  2 +4 ty] 
oL= 

2t 

if t ¢ 0 and a = y if t = 0. The resulting a deter- 
mines the safety factor k, as in the one-stock- 
point  case, by the relation ¢ ( k ) = a .  Some 
remarks on this method should be made: 

(1) Until  now only two systems were con- 
sidered: system with a depot and equal safety 
factors and the system without a depot. The last 
system can be seen as a system with depot and 
safety factors kl = ~ and k such that ~ ( k )  = y. 
It may be desirable to have a system with depot 
and different safety factors for different prod- 
uct-levels. In that case the approximation for 
the system service level in ref. [ 3 ] is no longer 
valid. An alternative seems to be: 

System service level -~-tO/la 2 -~-(l--t) min 
(oq,a2),  where a~ and o~ 2 are used to deter- 
mine the safety factors for the lower level 
products, and for the whole system. 
Min(a~ ,a : )  stands for the min imum of  a l  
and a2. 

This aproximation has not yet been fully tested, 



but the first tests indicate an absolute error for 
the service level, which is smaller than ( I - 7) 2. 

(2) In practice demand is never stationary. 
In case of non-stationary demand/tdiv should 
be 

N LI + L 2  

~, Dj(t,t+i), 
j - - l  i = 1  

where Dj(t,t+ i) is the forecast for demand in 
period t+  i made in period t for productj. Here 
adiv should be measured as follows: 

N 
2 2 

O ' d i v = O ' L 2  Jr- ~ O ' 2 1 ( j ) ,  
j = l  

where a~z is the variance of the following fore- 
cast error: 
L2 N 

~ [Dj(t,t+i)-Dj(t+i)] 
i--1 j = l  

LI N 

~. ~ [Dj(t,t+L2+i)-Dj(t+L2,t+L2+i)] 
i = l j = l  

and where tr21 (j) is the variance of the fore- 
cast error: 
LI 

[Dj(t+L2,t+L2+i)-Dj(t+L2+i)]. 
i = 1  

In these formulas Dj(t) stands for the actual 
demand for product j in period t. Assume next 
that the inventories before ordering will never 
exceed their stocknorm for the next period. 
This assumption is valid if demand is not too 
dynamic. Then it can be proven that the sys- 
tem service level will be the same as in the sta- 
tionary case. If demand becomes very dynamic, 
stocknorms will also be very dynamic and the 
content of the system before ordering may 
incidentally exceed the stocknorm. As a con- 
sequence the average inventory and service 
level will be too high. These effects remain to 
be studied. 

(3) Figure 1 depicts part of a real-life pro- 
duction system. It shows that a product struc- 
ture is usually mixed: TV1 in Fig. 1, for 
example, is part of a convergent structure (both 
COMMONS and TXT are components) as 
well as of a divergent structure (COMMONS 
is also used for TV2). In case of a mixed struc- 
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ture, stocknorms cannot be determined by 
simply combining the results for divergent and 
convergent systems. Further investigation is 
required here. 

(4) The general method mentioned above is 
developed for two consecutive stockpoints (e.g. 
one depot and N locations or products). Sys- 
tems with more consecutive stockpoints can be 
approximated by subsequently taking the last 
two consecutive stockpoints, approximating 
their service level with this method and then 
replacing them by one stockpoint. It is not 
known yet how well such an approximation 
works. 

6. CONCLUSIONS AND SUGGESTIONS 
FOR FURTHER RESEARCH 

Unbalanced inventories, due to variation in 
demand, have little impact on system service 
level. Thanks to this observation, a rule to 
determine stocknorms for consecutive stock- 
points could be suggested for convergent, lin- 
ear and divergent systems. This rule is as easy 
to understand and implement as in the one- 
stockpoint case. 

However, just as in the one-stockpoint case, 
there are more factors which influence the 
service level. Perhaps the most important ones 
are lot-sizes and limited capacities. These fac- 
tors, together with those mentioned earlier, 
constitute a wide field of research. 
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