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Abstract

Let (H,G,U) be an irreducible unitary representation of a homoge-
neous Lie group G and H a sell-adjoint operator on H associated with
a positive Rockland operator. We derive upper and lower bounds on
the eigenvalue distribution of H in terms of volume estimates on the
coadjoinl orbit corresponding to the representation U. Hence we de-
duce bounds on the partition function g +— Try(exp(—pH)). An ap-
plication is given to the spectrum and eigenfunctions of the general
anharmonic oscillator.



1 Introduction

Our purpose is to derive spectral estimates for Rockland operators H in each irreducible
unitary representation of a homogeneous group (. These estimates are expressed in terms
of the symbol of the differential operator H and are similar in spirit to the estimates of
the spectra of quantum-mechanical Hamiltonians in terms of classical phase space integrals
(see, for example, [Siml], [Fef]). The estimates extend recent results of Levy-Bruhl and
Nourrigat [LBN] and Levy-Bruhl, Mohamed and Nourrigat [LMN1] for sublaplacians on
stratified groups and are related to Weyl’s classical results on the asymptotic distribution
of eigenvalues of the Laplacian on bounded regions. Our proofs partially rely upon the
work of the above authors. Similar results for strongly elliptic operators have also been
given by Manchon [Manl], [Man2] although his methods are quite different.

A differential operator H on a homogeneous group G is defined to be a Rockland
operator if it is right-invariant, homogeneous and injective in each nontrivial irreducible
unitary representation. The theory of Rockland operators began with Rockland’s analysis
of differential operators on the Heisenberg group [Roc]. Helffer and Nourrigat [HeN1]
proved that a Rockland operator on a graded group is hypoelliptic and in addition they
derived several inequalities between the norm on the (C"-spaces and the operator norm.
Then Miller [Mil] showed that one can replace a graded group by a homogeneous group
in the Helffer-Nourrigat theorem. Subsequently, Folland and Stein [FoS] used the proof
of an carlier theorem of Nelson and Stinespring [NeS] to deduce that a positive Rockland
operator is essentially sell-adjoint on the space C(G). Moreover, they established that
the closure generates a continuous semigroup with a kernel which is in the Schwartz space
over the group. Hence it follows by a general structural theorem for nilpotent groups (see,
for example, [CoG] Theorem 4.2.1) that the operators exp(—BH), 8 > 0, are trace class
i each irreducible unitary representation. Our aim is to estimate the partition functions
B Z(B) = Tr(exp(—BH)) for each such representation. This problem is closely related
to the estimation of the number N(A) of eigenvalues of H with values less than or equal
to A, because Z is the Abel transform of N.

Throughout the sequel we adopt the notation of [AER], in which we used the general
votation of [Rob], but to make this paper more self-contained we repeat the main defini-
tions. Let (¢ be a connected, simply connected, homogencous group with Lie algebra g and
let (A", (G, U7) denote a strongly continuous, or weakly*, continuous representation of G on
the Banach space .U by bounded operators g — U(g). If ¢; € g then A; (= dU(a;)) will de-
note the generator of the one-parameter subgroup ¢ — U(exp(—ta;)) of the representation.
Let (7¢)i>0 be a family of dilations on g, i.e., a one-parameter group of automorphisms of
the form

(@) = ¥

for some basis ay,...,aq of g and some positive numbers wy, . . ., wq, which we call weights.

We always assume that the smallest weight is at least one. Let ||| - ||| be a homogeneous
norm on g%, i.e.,, a norm such that ||[y;7()||| = t||J]|| for all ] € g* and ¢t > 0. A
homogeneous norm can be constructed as follows. Let || - || be the dual norm on g* of a
Euclidean norm || - || on g. Define ||| - |||:g* — R by

Al = ind{A >0 Jlvipdl <1}



One readily verifies that ||| - ||
Next we introduce a multi-index notation. If n € Nj let

J(d) = B, ..., d}*
k=0

is a homogeneous norm.

and set -
J(d) = | Ju(d) .
n=0
Then if a = (i1,...,i,) € J(d) we denote the Euclidean length n of & by || and the
weighted length by

n
lladl = 3 wi,
k=1
If n € N we define X, = Vo (U) = Naeu, @ P(AY) and
a9 —_— a2 |"’ a/
lalln = max JA%][
| <n

where A* = A, ... A;, if @ = (t1,...,1,). Similarly we define the weighted C"-spaces

X =XU)= [ DA%
a€J(d)
llali<n

tn

for all n € R with n > 0. Now, however, it can happen for a given n that there are no
multi-indices a such that ||a]| = n. Therefore the corresponding norms and seminorms are
given by

max, |A%x|| if there exist o € J(d) with |lef| =n
aEJia
la]ll, = llelly, = § felism
0 otherwise ,
max ||A%|| if there exist o € J(d) with [lef| =n
a€J(d)
]\,’711‘(;[7) —_ ex||=n
0 otherwise

Note that if by, ..., by is another basis for g which satisfies v;(;) = 1"b; then the weighted
C"-space with respect to the basis bi,...,bs equals the space A}, and, if there exists an

a € J(d) with ||a]| = n the norms are also equivalent. Moreover, let Ao = Xoo(U) =
> X,. It follows by a line by line extension of Lemma 2.4 of [EIR1] that the Garding

space, and in particular the space A, is dense in X, for all n > 0. The density is with
respect to the weak, or weak*, topology corresponding to the continuity property of the
representation. Further we let [ denote the left regular representation on Ly(G).

Let m € (0,00) and let C:J(d) — C be such that C(a) = 0 if ||| > m and there
exists at least one o € J(d) with ||a]| = m and C(a) # 0. We call C' a form of order m.
We write ¢ = C(a). The principal part P of C is the form

Pla) = { Cla) il |af|=m

0 if o <m



We say that C is homogeneous if C = P. The formal adjoint C* of C is the function
C'1: J(d) — C defined by
Cl() = (=) Clev)

where o, = (2y,...,%1) if @ = (¢1,...,%,). We consider the operators

dU(C) = ¥ caA”

aeJ(d)

with domain D(dU(C)) = A)..

If P is the principal part of a form € we call P a Rockland form if the operator dU(P)
is injective on the space A, (U/) for every nontrivial irreducible unitary representation U
of G. It follows then from the Helffer-Nourrigat theorem [HeN1] that dL(P)|cs(e) is
a hypoelliptic operator. In fact the Helffer—Nourrigat theorem is formulated for graded
groups. But it follows from Propositions 1.3 and 1.4 of [Mil] that the existence of a
Rockland form ensures that the order m of P is an integer multiple of the smallest weight
and all weights are ratioual multiples of this smallest weight. Therefore G is a graded
group if one rescales the original weights by a large enough constant. (Actually there is a
small gap in the proof of Proposition 1.3 in [Mil] where Miller applies his L.emma 1.2. For
the operators that we consider we prove a stronger theorem in the spirit of Proposition 1.3
of [Mil]. This proof requires a lemma, Lemuma 2.2, which also fills the gap in [Mil].)

A Rockland form P is called a positive Rockland form if dL(P) is symmetric and
(v, dL(P)p) > 0 for all ¢ in the Schwartz space on G (see [FoS], page 129). Throughout
this paper we assume that (" is a form of order m and that the principal part P of C is a
positive Rockland form. We call dL(P) a positive Rockland operator.

We study operators dU(C) where U is a irreducible unitary representation. The ir-
reducible unitary representations of a nilpotent Lie group are described by the Kirillov
theory (see [Kir], [CoG], [Puk]). There is a one-to-one correspondence between the orbits
in g under the coadjoint action and the unitary dual of G. For an irreducible unitary rep-
vesentation U we denote by Op the corresponding orbit in g* and let py be the canonical
invariant measure oun Op (see [CoG] Section 4.3).

At this point we can state a theorem which indicates the nature of our results.

Theorem 1.1 Let (H,G,U) be an irreducible unitary representation of G and C a form
of order m whose principal part P is a positive Rockland form. If there exists an w > 0
such that dU(C) > wl then there is a ¢ > 0 such that

c—1/ dup (1) el < Tl.H(e—ﬁH) < c/ dﬂu(l) |

OU OU

Jor all B > 0. Moreover, these estimates are valid uniformly for all irreducible unitary
representations whenever C is a positive Rockland form.

Note that the condition dU(C) > wl automatically implies that dU(C) is a positive
operator, and hence a self-adjoint operator. The theorem automatically applies to positive
Rockland {orms because the estimate dU(C') > wl is a direct consequence of the injectivity
hypothesis. The ensuing uniformity over the irreducible representations will be a conse-
quence of the proof. It relies upon a scaling argument. The estimates can be rephrased in



terms of Euclidean integrals and symbols of differential operators by using more details of
representation theory. These estimates, which will be derived in Section 4, are the direct
analogue of the classical phase space estimates for quantum-mechanical partition functions.

The bounds for the partition function given by the theorem can be evaluated in greater
detail in particular cases. As an illustration we consider spectral properties of the anhar-
monic oscillator in Section 5. We establish that the eigenvalues of the operator P% 4 Q%
satisfy the bounds cy*n2*/0+F) < X, < ¢n?*/(+¥) and the corresponding orthonormal
eigenfunctions ¢, can be extended to entire functions on the complex plane satisfying
growth bounds '

. ol GR35 bl G+
ol +iy)] < et kIO 4

for some a, b, ¢ > 0, independent of n.

2 Positive Rockland operators

[n this section we prove some additional regularity theorems for operators H = dU(C)
associated with a (not necessarily unitary) representation (X', G,U) and a form C whose
principal part is a positive Rockland form of order m. In particular we prove that H
satisfies a Garding inequality if U is a unitary representation. Next recall that Theorem 3.4
of [AER] establishes that the closure H of H generates a continuous semigroup S which is
holomorphic in the right half-plane and has a representation independent kernel K which
depends only on the form C.

Proposition 2.1 Let (X, G,U) be a (general) continuous representation of G, C a form of
order m whose principal part is a positive Rockland form, H = dU(C) and S the semigroup
generated by H.

1. Ifne€ N and 1 <k <mn then D(H") C A} and there exists ¢ > 0 such that
Jell, < eIz + e el
Jor all v € D(H") and ¢ € (0,1]. In particular

Ao = ﬁ D(H")

n=1
and S maps into the smooth elements, i.e., ;X C Xy for all t > 0.

. Ifk €N then there exists ¢ > 0 such that
ISl < et o
forallt € (0,1] and x € X.
III. X is a core for H.

Proof Let M,p > 0 be such that ||[U/(g)]| < Me’#!' for all ¢ € G, where |- | is a

homogeneous modulus on G. Tt follows as in Appendix A of [EIR2] that the resolvent

5(1)
A\

kernel R\ defined by

= ey [
0
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belongs to L{,,,_1(G) and ||R(;")H‘1’:m,,b_1 < eA~tem=k)/m for all sufficiently large A. Here K,
is the kernel of Sy (see [AER]) and LY, _,(G) is the space of weighted C™"~'-vectors with
respect to the left regular representation of G in Ly(G; e/l'dg) with norm || - ||§’:nm_1. So
(A + H)™ = U(R\") maps A’ into A7 and

NOT + H) el S IR [ llo]) < A0/ o]

Iynm—1

for all @ € A'. The proposition now follows as at the end of the proof of Theorem 2.6 of

[EIR3]. Note that the constant ¢ depends on the representation U only through the values
of M and p. 0

The next lemma is slightly stronger than Lemma 1.2 of Miller [Mil] and should be used
in Proposition 1.3 of [Mil].

Lemma 2.2 Let g be a homogeneous Lic algebra with dilations (y:)iso. Then there exist a
basis by, ..., by of g, v1,...,04 > 1 and d' € {1,...,d} such that [g,g) C span{by41,...,b4},
and y¢(b;) = t7b; for all i € {1,...,d} and all t > 0. Moreover, by,...,by is an algebraic
basis for gq.

Proof Thereexist 1 <wuy < ... < u, and non-trivial subspaces g, ,...,q,, of gsuch that
g = P09, and y(a) = t“afor alli € {1,...,n},t > 0 and a € g,,. Define g, = {0} if
w g {ur,...,un}. Then [g,,9,] C g,q, for all u,v > 1. Forallz € {1,...,n} let b, ..., b
be a basis for

g, N (span |J [o.r0.))

utv=v;
and let by gy, ... iy, € @, be such that by, ..., bigr, bigra1, - - -, big; is @ basis for g,,,. Then
obviously [g,g] € span{b;; :7 € {1,...,n}, j € {d.+1,...,d;}} since g = ®}_,q,,. Let b
be the Lie algebra generated by {b;; 17 € {1,...,n}, j € {1,...,d'}}. Then it follows by
induction on N that $Xg,. € hand hence ) = gand {b;; : i € {1,...,n}, j € {1,...,di}}
15 an algebraic basis for g. Now a basis with the required properties is given by the
combination by, ..., bl,[;, ol b, by ATy brdys -y Dt 41y v s nd,,- O

We will call a basis by, ..., by,...,b; an adapted basis {or the homogeneous Lie algebra
and vy, ...,v4 the corresponding weights if it satisfies the conclusion of Lemma 2.2. Note
that the v; are a permutation of the w;.

Example 2.3 Let g be the 4-dimensional homogeneous Lie algebra defined by
[(”17 (1’2] =az+aq , 71?((1'1) =tay , ’Yt(a'?) =tay , 775((13) = t2(l3 5 7t(a4) = t2a4
Then one can take by = ay, by = ay, by = az and by = az + a4.

Lemma 2.4 Let C be a form of order m whose principal part is a positive Rockland form
and let by, ... by, ..., by be an adapted basis with weights vy,...,vq. Then m/v; is even for
ali e {1,....d}. In particular there cxist o € J(d) such that ||a| = m/2.



Proof We may assume that C is homogeneous of order m. Fix j € {1,...,d'}. Define

U: G — L(Lx(R)) by
d
(U(exp(3 &ba))F) (1) = f(t+£5)

n=1
Then it follows from the inclusion [g,q] C span{by41,...,0q} and the Campbell-Baker-
Hausdorff formula that U is a unitary representation. Then B; = D, the differentiation

operator, and By = 0if & # 5. Let H = dU(C) and

Cla) if m/v; € Nand o = (j,...,7), ||ef =m,
c =
0 if m/v; € N.

Then H = c¢D™%. Since D(H) = L, (R) by Theorem 3.6 of [AER] we have ¢ # 0,
so m/v; € N. Moreover, H is self-adjoint since it is symmetric and the generator of
a holomorphic semigroup by Theorem 3.4 of [AER]. But as generator of a continuous
semigroup it has to be lower semibounded. So eD™/% must be lower semibounded and

this is only possible if m/v; is even. N

It is now fairly standard to prove the Garding inequality. An important tool is that an
operator dU(C) is self-adjoint if the representation U is unitary and C = C*,

Theorem 2.5 Let C be a form of order m whose principal part is a positive Rockland
form. Then there exist p > 0 and ¢ € R such that for each unitary representation U

Re(dU(C)a,x) = p(llxll}./2)* = ¢ li=]l®

Jor all @ € D(AU(C)). If the form C is homogeneous then there exists p > 0, where the
value is independent of U, such that

Re(dU(C)a,a) > ])]\77',1_/2(.1?)2
Jor al @ € D(AU(C)).

Proof We may assume that the basis ay,...,aq,...,aq is an adapted basis. Let C; be
the form such that
dUC)= Y (=1)ll glose)

a€J(d)
lleddi<n/2

for any representation (X', G,U). Then the principal part P; of Cy is a positive Rockland
form. Indeed, if (X', G,U) is a nontrivial irreducible unitary representation, z € Xoo(U)
and dU(Py)x = 0 then (dU(P1)x,z) = 0 and therefore A%z = 0 for all o with [|af = m/2.
Hence by Lemma 2.4 one deduces that A;x = 0 for all 7 € {1,...,d'}. Since aq,...,aq is
an algebraic basis this implies that £ = 0. So

lU(C e = (U(Cr)e,) = Y (A%

a€J(d)
lledli<m /2

for all @ € D(dU(C)). Since Xy is a core for A, /o and dU(Cy), by Proposition 2.1.111,
it is also a core for dU(Cy)'/%. 1t then follows that D(dU(Cy)}?) = A, ,, with equivalent

norms.



We may as well assume that the C' is symmetric, i.e., C = C'. Then dU(C) is self-
adjoint. Since it is the generator of a semigroup it has to be lower semibounded. Let A > 0
be such that dU(C)+ M > 0. Then both dU(C)+ M and dU(C,) are positive self-adjoint
operators with the same domain (see [AER] Theorem 3.6), so by Kato [Kat] one deduces
that D((dU(C)+AI)Y2) = D(dU(C;)"?), with equivalent norms. Thus there exist p,q¢ > 0
such that '

252 < pI1AU(C) P2l + ¢ |l2]
for all € A7, /5. Then

(Il ) = llel® < p*IAU(C)22l* = p*(dU(C)z, @)

for all x € D(AU(C)).

The independence of p and ¢ from the representation U follows because the kernels of
the semigroups generated by dU(C) and dU(C,) are independent of U and all constants
involved can be expressed in terms of these kernels. Moreover, the Kato theorem involves
only a global constant.

If C is homogeneous then one can scale the lower order terms away (see [EIR3] Corollary

3.4). 0

Corollary 2.6 Suppose (X,G,U) is a unitary representation, C' is a form whose principal
part is a posilive Rockland form of order m. Then

I. For all n € N and all large X > 0 one has
D((U(C) + AD)™2) = X

with equivalent norms, with factors independent of the representation.

II. - If C is homogeneous then dU(C) is a positive self-adjoint operator. Moreover, for
all n € N the seminorms x — ||dU(CY?z|| and N,,./2 are equivalent, with factors
independent of the representation.

III. Ifn e N and by, ..., by,..., b is an adapted basis for g with weights vq,...,v4 then
d’ 2
mn/2 - ﬂ D 2 ’

where B; = dU(b;).

Proof Statement I has been proved for n = 1 in the proof of Theorem 2.5. The general
case can be dealt with similarly. The second statement follows again by scaling from the
first. The proof of the third statement is analogous to the proof of Theorem 5.8.IV in

[EIR4]. O

3 Spectral Estimates

In this section we derive some preliminary estimates on the eigenvalue distributions of
certain self-adjoint operators. Let H and Hy be a self-adjoint operators satisfying H > H,



in the sense of quadratic forms. If exp(—gH,) is of trace-class for some 3 > 0 it follows
that exp(—FH) is also of trace-class and

Tr(e_ﬁH) < Tl.(e—ﬁHo)

Moreover, if N(A) denotes the number of eigenvalues of H which are less than or equal to
A, counted according to multiplicities, and if Np(}) is the corresponding measure for Hp
then

N(A) < No(XA)

for all A. Both these conclusions are direct consequences of the minimax theorem. Thus
the eigenvalue density N of H and the trace of the semigroup generated by H can both
be estimated from above by the introduction of a comparator Hy. Similarly they can be
estimated from below with the aid of a comparator H; satisfying H < H,. These various
estimmates arve all closely related and we next give some general results of this nature which
will be useful in the sequel.

First we describe two comparison results of Levy-Bruhl and Nourrigat [LBN] which
allow the estimation of the eigenvalue density. These results are formulated in terms of
a {family ol ‘coherent states’. Thus we assume that H is a separable Hilbert space, that
(X, p) is a o-finite measure space and that there exists a measurable map  — 1, from X
nto H satisfying the following properties:

(1)  thereis a N > 0 such that ||| = K for all z € X,
(i) = / dp(@) (¢, )b, for all ¢ € H, in the weak sense.
X
The {t', : © € X } are the coherent states.

Proposition 3.1 Let H be a self-adjoint operator on H with compact resolvent and D a
core of H. Further let hy be a positive measurable function over X with the property that
p{r € Xt ho(x) S p}) < oo forall p>0. If

[ det@) s ) hal) < (9, Heo) + Ml
forall o € D and some A > 0 then the eigenvalue density N of H satisfies
NA) <207%p({x € X : ho(z) < 4r})

This statement is contained in Théoreme 1.1 of [LBN] and we refer to this paper for
the proof. 1t is based on the use of approximate spectral projections in the sense of Shubin
[Shu]. There is a second complementary result which gives a lower bound on the eigenvalue
density.

Proposition 3.2 Let H be a self-adjoint operator on H with compact resolvent, D a core
of H and hy a positive measurable function over X such that p({x € X : hi(z) < p D <oo
for all ¢ > 0. Assume

(0. He) < [ dple) (,352)]" ()

Joral e D.



Then for all v > 0, C > 0 and o > 0 there exists an R > 0 such that for all A > 0 with

/X dp(@) |(ey )| R, )2 < C(ha(2)/0)°

where
h(z,y) = max (hl(m), hl(y))/min (hl(:c), hl(y)) ,

one has

N(R)) > 27 'K?p({x € X : hy(z) <rr})

Again this statement is contained in Théoréme 1.1 of [LBN] and we refer to this paper for
the proof.

Next we examine the relations between estimates on the eigenvalue density N of H
and the trace of the semigroup generated by H. We do this in a general measure-theoretic
setting. Specifically we compare the properties of two functions related to positive Borel
measures g, ¥ on Ry = (0,00). These functions are defined by

7(8) = [ dila) e

and

N, (A :/ dul:
;( ) 0] l‘(f)

for all 4, X > 0, with similar definitions for Z, and N,. If the measures are purely atomic
these functions arve divectly comparable with the traces and the eigenvalue densities dis-
cussed above. Note that

ﬁ/o TN\ e =g /0 ~ du(z) L e P = 2,(8)

Thus Z, is the Abel transform of N,. This relationship allows one to relate ordering
properties of the Z and N.

Lemma 3.3 Let y and v be posilive Borel measures on Ry. If N,(A) < N,(A) for all
A> 0 then Z,(8) < Z,(8) for al > 0.

Proof This follows because the Z are the Abel transforms of the N and the measures
are positive, N

This argument can also be adapted to give a version of the lemma which relates the
small 8 behaviour of the Z to the large A behaviour of the N.

Lemma 3.4 Let p and v be non-zero positive Borel measures on Ry. If Z,(B) < oo for
all >0, ce R and
lim ML)/, =

then

lim Z,(P)Z,(B) =c



Proof Let & > 0 and choose § > 0 such that (e’ — 1)(c+¢) < . There exists Bo > 0
such that N,(6/8) < (c+ )N.(6/8) for all B € (0, Bo]. Therefore

§03—1

3 /0 w dr N (z)e P < N,(8/8) /0 dx e P*
<(c+e)(1—e")Nu(6/5)
< (c+e)(1—e YN, (6/B) B /5;‘ da B

< (¢ —1)(c+e) ﬁ/S:_I de N, (z) e < e Z,(B)
for all B € (0, Bo]. Alternatively,

4 de N,(x)e” ‘—/ dx N, (
§3-1

< (C+E)/5 de N,(z/8)e”

o0

=(c+e)B o dx N,(z) e P < (c+¢€)Z,(8)

Therefore
Zu(B) < (c+2€) Z,(B) (1)
for all 8 € (0, Bo]. Since Z,(8), Z,(B) > 0 for all B > 0 it follows that limg_o Z,(8)/Z.(8) =
0if ¢ =0.
If ¢ # 0 then it follows from (1) that Z,(3) < oo for all 8> 0 and one can interchange
i and » and deduce that there exists #; > 0 such that

Z,(B) < (¢ +25) Z,(P)
for all B € (0, 1]. So limg_o Z,(B)/Z.(8) = c. [

In some situations Lemma 3.4 has a converse. If dv(x) = 2%~ 'dx then one can establish
that limg_o Z,(8)/Z,(8) = ¢ implies limy_., N,(A)/N,(X) = ¢ (see, for example, [Sim]]
pages 107-109). Another special case, with dv(x) = v(z)dz and v(z) ~ z7%(log z)™! as
¢ — 0, occurs in [Sim2].

4 Spectra of positive Rockland operators

Let G be a connected simply connected homogeneous Lie group and C a positive Rockland
form of order m. If U is a irreducible unitary representation of G then the operator dU(C)
has a discrete spectrum. For A > 0 we denote by N(\,U,C) the number of eigenvalues
(counted with multiplicity) of the operator dU(C) which are less than or equal to A.
Since any two homogeneous norms on g* are equivalent we may work with a specific
one. For A > 0 let
No(A,U) = ({1 € O+ Il < A))

The next theorem extends results of [LMN2], [LBN].
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Theorem 4.1 If C is a positive Rockland form of order m then there exists ¢ > 0 such
that
T No(MU) < N U, C) < e No(M, U)

uniformly for all A > 0 and all irreducible unitary representations U of G.

Proof An irreducible unitary representation is represented in a one dimensional or an
mfinite dimensional Hilbert space. If the space is infinite dimensional then the represen-
tation is unitarily equivalent with a representation U in Ly(R*) for some k € N such
that every infinitesimal generator dU(a) has the following form: there exist polynomials
Y, X1, ..., Xi: RF x g = R such that

(dU(a)f)(x) =Y (z,a +ZY (z,a) e ](T) (2)

for all « € g, f € S(R*) = D®(U) and = € R* (see [CoG] page 125 and Corollary 4.1.2).
[t the Hilbert space is one dimensional one has to make the obvious changes and k£ = 0.
So it suffices to prove the theorem for representations I/ with infinitesimal generators of
the form (2). Therefore, from now on we only consider this type of representation in the
prool. Moreover k € N will always be such that U/ is represented in Ly(R*).

Next for every @ € R*¥ and ¢ € R* define the symbol lg, ;8 — R of the partial
differential operator dl/(a) by

k
l:lzj,t’(a') =Y(v,a) + Z Xj(z,a)§;
=1
Then
(x,€) — [Yg
is a bijection from R*¥ x R* onto Op. A proof can be given along the lines of proofs in
[HeN2], e.g., the proof of Proposition VII1.5.1, or [Nou] Theorem 2.13. Moreover,

. . e U _
/Mm da de F(IY.) / duw(l) f
for every positive measurable function f on Q. Hence
No(A\,U) = 7({(2,€) € R* - |[|iIl < A})

for all A > 0, where 7 denotes (2*£!)~? times the Lebesgue measure on R*. Let || - || be
the dual norm on g* of a Euclidean norm || - || on g. For every representation U define

p(e,&,U) = ||l for all 2,¢ € R*. Next for all A > 0 and all representations U (of the
form (2)) define the representation Uy by Ux(g) = U(6:(g)) for all g € G, where 6, is the
dilation on (G obtained via the exponential map. Then p(z,¢, U\) = ||'y\lg§|| Hence if

Oy # {0} and ¢, A > 0 then [||IY,]]| < eX if, and only if, ||71//\(l ¢)|l < cor, if, and only if,
- opla, & U, /,\) < ¢. Here we have chosen for the lomogeneous norm on g* the norm defined
m the troduction. In particular:

No(eM, U) = 7({(x,€) € R¥* : p(x,&,Uspn) < })
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for all ¢, A > 0.
Let w be the largest weight. Then
X C A, C A

nw

for all n € Ny. Let n € N be such that w < nm. By Corollary 2.6.1 there exists ¢; > 0
such that

||f||;7,nm S €1 ”(,(J(C)"f”

uniformly for all unitary representations U and f € A (U). We next need the following
proposition of Lévy-Bruhl and Nourrigat ([LBN] Proposition 4.1).

Proposition 4.2 There exists ¢ > 0 such that for every unitary representation U of G in
Ly(RF) there exists a continuous function (x,€) v Py ev from RF x R into S(R*) such
that ||tee vl = (27)~*? for all z,£ € RF,

f= /Rﬂ' de d& (e v, [) Vv
forall f € Ly(RY), in the weak sense, and

/R,Zl« da d€ plz, &, U,)2|(7/"'m,£,lfv f)|2 <c ||f||%11
wniformly for all f € Xu(U).

Now with ¢ > 0 the constant in Proposition 4.2 one has
o oD U (e, 1) S el
R2H )

< e([1fllo)* < el fllum)® < ectlldUC)" f*

for all U7 and f € S(R¥). Next let S be the multiplication operator with the func-
tion (@,¢&) = p(,& U)? on Ly(R*™). Then the map T: D(dU(C)") — D(S) defined by
(T, &) = (Yueu, [) 15 continuous with norm bounded by eci. Hence by interpolation
([Kat]) it follows that T is bounded from D(dU(C)Y?) into D(SY(?") and the norm is
bounded by a constant which depends only on cc?. Then with Theorem 2.5 one deduces
that there exists a constant ¢y > 0 such that

S @0 A p(, & U)o, N < (1, dUC)N) + 1)

uniformly for all U and f € S(RF). In particular, for all A > 0 and U one obtains the
inequalities

[ 40 DL, & U ) (b DI < (£, ANV + 111

= (A (£,dU(©)) + 1117)

and

[ e N plas €U g 1P < (1 AU(ONF) + A7 FIP)
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Then by Proposition 3.1 one obtains
NO™ U, C) < 202m) % r({(x,€) € R* - ;" A™p(z, €, Uy )™ < 4A™))
= 202m) Fr({(0,€) € R* < pla, &, Usyp) < (de2)"})
= 2(27) " F No((4¢2)" A, U)
for all A > 0.

The next proposition gives an inequality in the opposite direction.

Proposition 4.3 There exists ¢ > 0 and, for all y € R, a ¢, > 0 such that for every
‘unitary representation U of G in Ly(RF) there exists a continuous function (z,€) — P eu
from R* x R¥ into S(RF) with the following properties

L. 4w evlle = (27)7F% for all 2, ¢ € RF,
II. f= /R% de dé (Yug v, £)Ywgu  for all f € Lo(RF), in the weak sense,

L |(f,dU(C)f)

e [ dvde (L4 pla, & V)™ \(bng, I for all | € S(RE),

. % y k .
IV. ./R‘-’L dy dy (h.(_r(at,{,y, 77))”,(1/;@5’[,,1/)y’,,,UJ| < ¢y ((1 + p(=, &, U)) uniformly for all
@, & € RY, where
1 + max(p(x,&,U), p(y,n,U))
I+ min(p(z, &, U), p(y,n,U))
Proof These properties follows from [LBN] Propositions 6.8 and 6.7. O

hou(e,&y,m) =

Iu particular, if A > 0, U is a representation in R* and f € S(RF) then

/\—m.|(f, dl]((:’)f” — |(]" ([l/l//\(C)f)’ S C/R2k d.’[’ d{ (]- + P(m,fa Ul/z\))m+k|("/}$y§vull}\’ f)|2
and hence
|(f,dU(C) )| < /R?k da dé e A™ (1 + p(a, &, Ul/A))’”'*'k|(1/)$,5,Ul”, HE .

It then follows from Proposition 3.2, applied with y = 271 + k(m + k)~! that there exists
c; > 0 such that

/ dy d (1 * ma'x(p(‘”’f’Ul/,\)m(y,n,Um)))#%
Lty an ]+mill(])(:zr»f,Ul/,\),p(y,yl,Ul//\))

|(%a,,01 )20 P

< e (CA"‘(l + P(a;f, UI/A))’"‘”’“) AT

uniformly for all U, all z,£ € R* and A > 0. Therefore, by Proposition 3.2 one deduces
that there exists ¢z > 0 such that

N(esA™ U, 0) > 271 2r) Fr({(2,€) € R¥ : eA™(1 + p(x, &, Uy )™ < 2™ amY)
=271 2m) " ({(w, ) € R* : p(x,€,Uyp) < 13)
=271 (27)F No(), U)

for all A > 0. This completes the proof of the theorem. 0
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Corollary 4.4 Let (H,G,U) be an irreducible unitary representation of G and C a form
of order m whose principal part P is a positive Rockland form. If there exists an w > 0
such that dU(C) > wI then there is a ¢ > 0 such that

¢INo (7PN U)Y S N, UL C) < eNo(ed, U)
for all A > 0.

Proof Since P is a Rockland form the operator dU(P) is strictly positive and there exists
an wo > 0 such that ||2]|? < wo(dU(P)z,x) for all z € X. Now 2P — (' is a form whose
principal part is a positive Rockland form. So by Theorem 2.5 there exists a ¢ > 0 such
that

(dU@2P - C)z,x) > ~q||z|]?

for all + € Y. Hence
(dU(C)x,x) < 2(dU(P)x,a) + q||z])* < (2 + qwo) (dU(P)z, x)
for all w € A'o. By assumption one similarly has
(dU(P)z,x) < 2dU(C)a, ) + ¢ ]2 < (2 + ¢w™) (dU(C)e, )
for some ¢’ > 0, uniformly for all & € X.. Then by the minimax theorem one obtains
N((24 guo) "\, U, P) < N\, U,C) S N((2+ ¢'w ™A, U, P)
for all A > 0. Now the corollary follows from Theorem 4.1. O

These estimates for the eigenvalue density can be converted into estimates on the par-
tition function of H = dU(C) by the observation of Lemma 3.3. First for 8 > 0, m > 1
and 7 an irreducible unitary representation of (& define

. m R _ U
Zo(B,m, ) = /q dpy (1) e~ P QkA:!/kaRk dadfe Atz

Ly

Corollary 4.5 Let (H,G,U) be an irreducible unitary representation of G and C a form
of order m whose principal part P is a positive Rockland form. If there exists an w > 0
such that H = dU(C) > wl then there is a ¢ > 0 such that

 zo(eB,m,U) < Trr(e ") < eZo(c™'B,m, U)

uniformly for all B> 0. Moreover, these estimates are valid, uniformly for all irreducible
unitary representations whenever C is a positive Rockland form.

Proof We shall prove that

Zo(B.m,U) = B / A\ No(AV/™ 1) =P
JO
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for all # > 0 and irreducible unitary representations U. The equality follows from Fubini’s
theorem since

o« m - _ e -8B
ﬂ/(; A No(A™, U) e —ﬂfo d/\/ou dpu (1) Lgeoyisxmy (D) €

= ﬁ/ dpy (1) /m d) e=PA
Oy e
:/ dpp (1) e =PI — Zo(B,m,U)
Ou

Now the corollary easily follows from Corollary 4.4 and the fact that 8 +— Try(exp(—BH))
is the Abel transform of N. See Lemma 3.3.

The estimates of Corollary 4.5 are potentially useful for calculating the behaviour of
the partition function for small 8. In the next section this will be achieved for the simplest
example, the anharmonic oscillator on the Heisenberg group. The general case appears
more intractable and requires understanding the behaviour of A — No(A, U) for large A.

The large # behaviour of the partition function is much easier to establish. If A; is the
smallest eigenvalue of H then limg_ o €#*1 Try(exp(—BH)) = ny, where n, is the multiplic-
ity of the eigenvalue A;. It is an interesting question whether n; = 1 for homogeneous C.
For non-homogeneous C' the spectrum of H need not be simple and in general ny > 1. An
example i1s the operator

(PP+ Q%) —4(PP+ Q% +31 ,

where P and @ are the usual self-adjoint operators in Ly(R), see Section 5.

The simplicity of the lowest eigenvalue is olten established by positivity arguments
based on some variation ol the Perron-Frobenius theorem. But this type of reasoning is
in general not applicable in the present setting. Although the semigroup ¢ — exp(—tH)
has a kernel A" it is usually not positive. It follows from [Rob], Chapter III, Section 5,
that the semigroup kernel K¢ on the group corresponding to the form C is positive if
and ouly il C' is second-order, in the unweighted sense, with real coefficients and with
the principal coefficients satisfying an ellipticity condition. But positivity of K¢ does not
imply positivity of the kernel K on R* x R* corresponding to the semigroup generated
by H = dU(C) even for homogeneous, real, second-order C. An example is given by the
operator (P + @)* + %, which is a sublaplacian for the algebraic basis a; + a3, a; of the
Heisenberg algebra, but as a second-order operator on Ly(R) it is not even real.

5 The anharmonic oscillator

As an application we consider the general anharmonic oscillator.

Let GG be the simply connected Heisenberg group, U the standard irreducible unitary
representation of G in Ly(R) and ay, ay, a3 a basis in the Lie algebra g of G such that
[ar,a3] = a3, Ay = —iP, Ay = iQ) and A3 = ¢I, where P and @ are the self-adjoint
operators in Ly(R) such that (Pf)(x) = if'(x) and (Qf)(z) = xf(z) for all f € CX(R)
and @ € R. Then

lg,it-((l,l) =¢ lg,;-(ag) =z , li.{g((ig) =1

15



Fix j, k € N. There are dilations (,);>0 on g such that v,(a1) = t*ay, 11(az) = t?a; and
Yi(as) = ti**az for all 1 > 0. Let C be the positive Rockland form of order m = 25k such
that

H=dU(C) = (—1) AY + (=1) A% = P¥ 1 Q*

Define the modulus ||| - |[|:: g* — [0, 00) by
i = (Han)¥ + (a2)* + l((,,3)21k/(j+k))1/(2jk)

Then there exists a ¢ > 0 such that

T I < < el

for all I € g*, so in Theorem 4.1 we may as well replace ||| - ||| by [|[ - |[lx. Now [[iZ]|I7" =

£2 + 2% 4+ 1. Then an elementary estimate shows that there exist A > 0 and ¢ > 0 such
that
I < r({(w,€) € B2 ([l < A) < AV

for all A > A, where 7 now denotes the Lebesgue measure on R and o = 25k/(y + k).
So if N()) denotes the number of eigenvalues of H which are less than or equal to A one
deduces that there exist A > 0 and ¢ > 0 such that

IV < N(A) < eNl/e

for all A > A and then, by increasing the value of ¢, for all A > A; where A; is the strictly
positive lowest eigenvalue of H. Next let \; < A; < ... be the eigenvalues of H, repeated
according to multiplicity. Then for all small ¢ > 0 and n € N with A, > A one has

cHA, — 5)1/" <NA —e)<n< N\ L c)\}l/" ,

50
(¢ 'n)” <A, <(cn)’

lor all A,, > A. By increasing ¢ one concludes that
cln® <\, < enf

for all » € N. This proves a conjecture in [EIR4] page 40.
In [EIR4] we proved that the eigenfunctions ¢, corresponding to H with eigenvalue A,
belong to the Gel’fand-Shilov space Sf//((f:,f)), which consists of all infinitely differentiable

functions ¢ on R for which there exist a,b,c > 0 (depending on ¢) such that

[e" () (@)] < ca” bt/ GHR) gk GHR)

for all ;s € Ny and = € R, or, equivalently, which consists of all functions ¢ on R which
can be extended to entire functions (also denoted by ¢) into the complex plane satisfying
the growth bounds

(@ + iy)| < cemol IO AT

for all @,y € R, {or some constants a,b,c > 0, depending on ¢, or, equivalently,

b|z|GHRN G+R)3

p(2)] < ce ()] < ce™l!
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for all z € C and « € R (see [EIR4] Section 7).

For the eigenfunctions ¢1, @3, ... we next show that the constants a, b, c do not behave
wildly if n varies. Tor the harmonic oscillator P? + Q? this was proved before by [Zha],
equation (2).

Theorem 5.1 Let j,k € N and let \; < Ay < ... denote the eigenvalues of the operator
P% 4 Q% repeated according to multiplicity, with ¢y, @2, ... a corresponding orthonormal
basis of eigenfunctions. Then there exists C > 0 such that

C—lnﬁk/(j-i—k) < /\n < Cn2jk/(j+k)

for all n € N. Moreover, there exist a,b,c > 0 such that
|27 (2)| < ar bl GHR) g/ litE)
untformly for alln € N, r,s € Ng and v € R.

Equivalently, each p, can be extended to an entire function and there ezxist a,b,c > 0

such that

J —ala|(IHR) 4 bly|(+R)]
lon(z +1y)| < e ale|(3+R) 3 4 bly|(T+R)/3

untformly for all v,y € R and n € N, or, equivalently,

(+k) 5 (G+k)/s

e (2)] < cretlel lpn(2)] < el
uniformly for all - € C. 2 € R and n € N.

Proof We have already proved the existence of the constant C for the eigenvalue esti-
mates. Then for all n € N one has

HHl%Hz — /\i < ((771,2.ik/(j+k))l < (62jk/(j+k))n O 129k1 (G+F)

for all I € Ny. If one now traces all the constants in [EIR4], [Wlo] §29.5 and [GeS] Section
1V.3.3 one obtains the uniform estimates of the theorem.

Finally the partition function Z(8) = Tr(exp(—FH)) can be bounded above and below
by use of the eigenvalue estimates. One has

Y \°° AN e < Te(e™PH) < of :o A X =P

where again o = 2jk/(j + k). Alternatively one obtains bounds
1AM < Tr(e™PH) < ¢, min(B77, e7PM)

by straightforward estimations of the integral.
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