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Summary 

In this report, an attempt is made to design robust linear controllers for a rotary electro- 
mechanical actuator, which was proposed as a benchmark problem in [7]. For this purpose, 
controllers are designed based on the concepts of R,-optimization and p-synthesis, the key 
ideas of which are briefly explained. 

Meeting the tracking specifications in the presence of control input saturation, persistent load 
disturbance, and Coulomb friction appeared to  be impossible. Only for the system without 
saturation, controller design was satisfactory. 

The reason that the design is not successful is believed to  be twofold. Firstly, incorporating 
nonlinearities such as saturation and Coulomb friction in the linear control system set-up is 
not always possible or straightforward, and might introduce conservativeness into the design. 
Secondly, controller design takes place in the frequency domain, while the specifications for 
the rotary actuator are formulated in the time domain. For this reason, frequency domain 
equivalents have to be found for the time domain requirements. Unfortunately, meeting the 
frequency domain specifications is not a guarantee for meeting the time domain specifications. 
As a consequence, designing controllers by RH,-optimization and p-synthesis largely becomes a 
trial-and-error procedure: modifications of the type and the parameters of weighting functions 
have to be evaluated by closed-loop responses repeatedly. 
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Chapter 1 

Introduction 

In modern control system design, robust performance is a major issue. This means that 
the controller must guarantee that the system remains stable and meets the performance 
objectives (e.g., tracking, attenuation of disturbances and measurement noise), even in the 
presence of uncertainties (modeling errors). This property will be explained in more detail in 
Chapter 2. 

Several robust control design methods can be employed, see, e.g., [ 6 ] .  Provided that the 
system model is linear and that the uncertainties are co-norm-bounded, robustly performing 
linear controllers can be designed by ‘H,-optimization and p-synthesis. The key ideas of these 
methods, which are the focus of this report, are outlined in Chapter 2 as well. 

The benchmark problem proposed iii [ i ] ,  control of a rotary electro-mechanical actuator, will 
serve to illustrate both approaches for controller design. One characteristic of the system 
is “Coulomb friction” or “slip-stick friction” [ 5 ] ,  which is a highly nonlinear phenomenon. 
As a consequence, special measures must be taken to  account for friction in the necessarily 
linear control system set-up. A second nonlinearity in the system is due to  saturation of the 
input signal. The system model, the model of the Coulomb friction, and the performance 
specificaticm are discussed in Chapter 3. 

Controller design and closed-loop control system evaluation is considered in Chapter 4. Start- 
ing with a relatively simple, “peeled-off’ control problem, additional design requirements are 
introduced step-by-step. However, it is emphasized that the goal of the study reported here 
is not to search for the ultimately performing controller for the particular system, but rather 
to  illustrate the (im)possibilities of ‘H,- and phased controller design methods, to compare 
both methods, and t o  illustrate some of the typical problems which may occur when designing 
controllers in this way. 

Finally, the main findings with respect to Xm- and phased controller design methods are 
listed in Chapter 5. More specific conclusions for the actuator design example are drawn as 
well. 
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Chapter 2 

Key ideas of fioo-optirnization and 
p-synt hesis 

In this chapter, the fundamentals of two robust controller design methods t o  be used for the 
actuator control problem will be discussed. 

2.1 Standard control system set-up 

The staiidard framework of an uncertain linear time invariant control system is shown in Fig. 
2.1. Block C represents the generalized plant, which includes the system to be controlled (the 
“plant”), possibly extended with weighting functions reflecting performance specifications and 
weighting functions which characterize the amount of uncertainty. The controller is denoted 
Ir‘. Uncertainties (modeling errors) are represented by A,. A fictitious perturbation block 
Ap is introduced to account for performance specifications. In the sequel of this report, it 
is assumed that A, and Ap are stable and that by weighting functions they are scaled such 
that llA,llw 5 1 and llApllm 5 1, with the co-norm of a Transfer Function Matrix (TFM) T 
defined as follows [8, Section 5.5.21: 

The inputs to the generalized plant G are: the output p of the uncertainty block A,, the 
exogenous input w*, e .g . ,  disturbances, measurement noise and reference signals, and the 
input u generated by the controller. The outputs of the generalized plant are the following: 
the input q to  the uncertainty block A,, the control objectives z * ,  formulated such that z* is 
ideally zero, and the measurements y .  So, the plant has an open-loop TFM G such that: 

L - 

2 



2.1. STANDARD CONTROL SYSTEM SET-UP 3 

W* r4-J-l 

= ‘ ,”* L M 

[i] = z  

Figure 2.1: Standard control problem set-up 

Figure 2.1(b) is obtained by closing the control loop in Fig. 2.l(a).The closed-loop TFM M 
can be written as a so-called lower Linear Fractional Transformation (LFT) of G and I ( :  

z =  [ ;*] =[E;; z;] [ ,=] =Mw. 
The feedback system is said to  be well-posed as long as ( I  - G221<)-’ is nonsingular [S,  Section 
6.3.31. Furthermore, A = diag(A,, A,). 

The goal of both ‘Ft,-optimization and p-synthesis is to  find a controller K ( s )  which, firstly, 
(robustly) stabilizes the closed-loop system, and, secondly minimizes the “norm” of the closed- 
loop TFM M from w to z ,  see Section 2.2 and 2.3 .  In order to design such a controller with the 
MATLAB “Robust Control Toolbox” [2] (abbreviated “RC-Toolbox”) or with the “p-Analysis 
and Synthesis Toolbox” [ 11 (abbreviated “p-Toolbox”), a state-space representation of G is 
needed: 

where z is the sta.te of the system. Note that G‘ must be proper for a state-space description 
to exist. 
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2.2 E,- Optimizat ion 

The control system in Fig. 2.1 is said to achieve Robust Stability (RS) if the system remains 
stable even in the presence of uncertainties A,. A necessary and sufficient condition for 
RC Under GI:  jwl pertUrhatims o, with "O,//, II 5 1 is, that J !  is nemir.afly stable, 2nd 
jjMlljjw < i. 

In analogy, a control system is said to achieve Robust Performance (RP) if the system remains 
stable and meets the performance specifications in the presence of uncertainties. Necessary 
and sufficient for RP is that M is robustly stable, and that the co-norm of the perturbed TFM 
from w* to z* in Fig. 2.l(a) is less than 1 for every A, with IlA,ll, 5 1. This in turn, is 
equivalent to the condition that M is nominally stable, and that the augmented perturbation 
model of Fig. 2 . l ( a )  is stable  for every Au  and Ap, both with co-norm less than or equal 
to 1 [8, Section 5.8.21. So, by introducing the fictitious perturbation Ap,  the RP problem is 
translated into a RS problem. Note that when Ap is not present, the R P  problem reduces to  
the original RS problem, while in the absence of A, a Nominal Performance (NP) problem 
is considered. A thorough discussion on RS, NP, and RP can be found in [4]. 

A necessary and suficient condition for RS of the system in Fig. 2.l(b) is the following: 
provided A4 is nominally stable, A4 is robustly stable for all full perturbation blocks A with 
llA1lm 5 1 if and onlyif Iln"'llw < 1. For the RP problem, A is restricted to  the block-diagonal 
structure diag(A,, Ap), hence the following suficient condition for RP can be formulated: 

Robust performance of the closed-loop system under all perturbations A with 
ilA,llw 5 1 and llApilw 2 1 is achieved if 

1. the closed-loop system A4 is nominally stable, and 

By explicitly accounting for the fact that the off-diagonal blocks in A are zero, a necessary 
a / i d  suffzczerit coiiditioii for RP can be forriiulated. This will be discussed in Section 2.3. 

Since it can not be expected that it is always possible (or necessary) to  design a controller 
A' which stabilizes the entire closed-loop system, the requirement that K stabilizes M is now 
interpreted as the more limited requirement that  it stabilizes the loop around G22, i.e., that  
it stabilizes the system in Fig. 2.2 [S, Section 6.3.21. 

The goal of the sub-optimal îfw control problem is to design a stabilizing Ir' which achieves 
jlMjlw < 1, while the goal of îlw optimal control is to  find a stabilizing K which minimizes 
llMllw. Using one of the MATLAB toolboxes, numerical problems can be circumvented if a 
sub-optimal controller is designed instead of the optimal one 16, Section 4.2.1.31. 

When the controller design is ba.sed on the state-space representation in (2.4), the following 
conditions must hold for the MATLAB algorithms to find a solution [8, Section 6.5.71: 
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Figure 2.2: The loop around G22 

1. ( A ,  B2) is stabilizable and (C2, A )  is detectable. 
comment: This assumption ensures that the whole feedback system is stabilized, not 
just the loop around G22. 

2 .  D12 has full column rank, hence Dl2 is tall, and D21 has full row rank, hence is wide. 

A - ju' B2 1 has full column rank for ail w E IR. 

A -ju' B1 ] has full row rank for all w E IR. 

The controller design requires solving two Riccati equations, the solutions of which define an 
observer cum state feedback law, see, e.g., [8, Section 6.5.71. A stabilizing controller Ii which 
achieves llMlloo < 1 for all full perturbation blocks A with llAllco 5 1 exists, i f  and only ifthe 
solutions to the Riccati equations are positive semidefinite, the spectral radius of the product 
of the two solutions is less than 1, and, finally, if 3 ( D l i )  < 1 [2, Chapter 13. In case A is 
not a full perturbation block, e.g., if A = diag(A,,Ap), these conditions are not necessary 
anymore, but only suficient. 

App!icatim ~f ene ~f the hefcze-meritiunerl J\IIPTLAR t001h0xes w i l  yield a priper controller. 
According to [8, Section 6.61, two types of solutions to  the î-f, problem of finding a K such 
that ~ ~ M ~ ~ m  < y are encountered: 

1. Tgpe A solution. The controller is stabilizing for all y 2 yo, with yo the lower bound of 
IIMll,, i.e., 11M11, 2 yo. In this case, the optimal solution is obtained for y = yo. Note 
that for the 3-1, control problem formulation in this report it is required that y 5 1. 

2 .  Type L3 solution. The controller A' is destabilizing for y < yopt with Topt 2 yo. 

For the type B solution, the optimal controller is found for y = yopt. A disconcerting phe- 
nomenon for this case is, that  large coefficients occur in the state-space description of K .  To 
avoid numerical problems, the optimum shouldn't be approached too closely. 
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In general, an ‘FI, sub-optimal controller has the same order n as the augmented plant G in 
(2.4). An ‘?ím optimal controller can be computed having at  most ( n  - 1) states [2, Chapter 
i]. A final important property of the optimal controller is, that the largest singular value 
a ( M ( j w ) )  of the optimal closed-loop TFM A4 is constant as a function of the frequency w. 
This is known as the “equalizing property” of optimal solutions [S, Section 6.6.11. 

2.3 p-Synthesis 

In Section 2.2, a necessary and sufficient condition for RS of the control system in Fig. 
2.l(b) was formulated: provided M is nominally stable, A4 is robustly stable for all fuZl 
perturbation blocks A with llA/lw 5 1 if and only if 11M11, < 1. However, if llA(l, 5 1 
is the only specification for A, this leaves the perturbation block completely unstructured, 
which may lead to an overly conservative controller design, in the sense that the amount of 
uncertainty accounted for is unnecessarily high. In the case of a RP problem, A is a structured 
perturbation block, since A = diag(A,,Ap). An 2, controller design as discussed in the 
previous section, does not take into account the zero off-diagonal blocks in A, but it assumes 
that perturbations may occur in these blocks as well. As a result, quite conservative estimates 
are obtained of the stability region for structured perturbations. 

While in general the “performance block” A, is unstructured, the uncertainty block A, itself 
may be structured. So, not only the RP problem (with at least two unstructured blocks), but 
also the RS problem may ask for a controller design method based on a structured perturbation 
representation A. For this purpose, the concept of “structured singular value”, commonly 
referred to  as “p”, was proposed by Doyle [3]. In this approach, the overall perturbation A 
has the following block-diagonal form: 

Given this perturbation model, D is defined as the class of constant complex-valued matrices 
of the same form as ( 2 . 5 ) ,  with the diagonal blocks A,, of the following form: 

o Aut = Si, with 5 a real number. If I has dimension 1 this represents a real scalar 
variation. Otherwise, it is a repeated real scalar perturbation. 

o A,, = S I ,  with S a complex number. This represents a scalar, or repeated scalar, 
dynamic perturbation. 

o O,? (and A p ) ,  a complex-valued matrix. This represents a multivariable dynamic per- 
t ur  bat ion. 
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Unfortunately, the p-Toolbox is restricted to  structured dynamic perturbations. As a con- 
sequence, a real scalar perturbation must be represented by a scalar dynamic perturbation, 
potentially leading t o  a more conservative controller design. The RC-Toolbox does suggest a 
method to account for real parametric uncertainties, though the algorithm is not automated. 
However, this toolbox does not handle repeated perturbations. 

The structured singular value pun(T) of a- complex-valued matrix T with respect to  the per- 
turbation structure in A is now defined as follows [i, Chapter 21: 

1 
:= min{F(A) : A E D, det(1- TA) = O}' 

unless no A E D makes ( I  - T A )  singular, in which case p a ( T )  = O. 

So, the structured singular value p*(T) is the inverse of the largest singular value of the 
smallest perturbation A within D that makes ( I  - TA) singular. Thus, the larger ~ A ( T ) ,  
the smaller the perturbation A which is needed to make (I - TA)  singular. In case of an 
unstructured A block, p a ( T )  = a(T). For more details on the structured singular value, the 
reader is referred to  [S, Section 5.71. 

The use of the structured singular value for robustness analysis and robust controller design 
will be explained below. For this purpose, the p-value for a TFM T is defined as the maximum 
value of p over all frequencies [6, Section 4.2.21 (compare with (2.1)): 

In fact .  IITlln is not a norm, since it does not satisfy the so-called triangle inequality, see, 
e.g., [S, Section 5.4.21. 

A necessarg and suficzent condition for RP of the control system in Fig. 2.l(b) is derived 
in [8, Section 5.7.31: 

Robust performance of the closed-loop system under all structured perturbations 
A E D satisFjkìg [[Allm 5 1 is achieved if end only if: 

1. the closed-loop system M is nominally stable, and 

2. IIMlla < 1. 

The goal of p-synthesis is now to design a controller Ii' which stabilizes the nominal feedback 
system and makes (IMllA < 1, or minimizes IlMlln with respect to  all stabilizing K'S. Note 
that A in Fig. 2.1 represents knowledge of the structure and co-norm of A; additional 
information on A must be incorporated in G by means of weighting functions. 

Unfortunately, exact p-synthesis and -analysis are currently unsolved due t o  computational 
difficulties with p n ( M )  for 3 or more uncertainty blocks [i, Chapter 21. Instead, an ap- 
proximate solution to the p-synthesis problem is used. The approach used in the MATLAB 



8 C H A P T E R  2. I<EY IDEAS OF  OPTIM TI MI ZAT ION A N D  /L-SYNTHESIS 

toolboxes will be referred to as D-K iteration. This approach relies on the property [8, Section 
5.7.41 : 

with D and D diagonal scaling matrices. Suppose that the i-th diagonal block of A has 
dimension m; x ni, then the i-th diagonal blocks of D and D are given by: 

pa(&! )  5 á ( D M D - l ) ,  (2.8) 

(2.9 j 

with d; a positive real number. If repeated perturbations are considered as well, the scaling 
matrices should take a different form, see, e.g., [i,  Chapter 21. In this report, repeated 
perturbations do not play a role. 

-- 1 The problem ofminimizing IlMlln is now replaced by minimizing the upper bound (1DMD 
where for each frequency w the matrices D(jw)  and D ( j w )  are chosen such that the bound 
is tightest possible. Minimizing IIDnilD-lll, with respect to  Ir‘ is a standard 7-1, problem, 
provided D and D are rational stable matrix functions. 

(Ico, 

The D-A’ iteration, see, e.g., [8, Section 6.9.3.11, is now performed as follows: 

1. Choose a n  initial controller that stabilizes the closed-loop system ( e . g . ,  by an 7-1, con- 
troller design for an unstructured A block), and compute the corresponding nominal 
closed-loop TFM M .  

2. Evaluate the upper bound 

(2.10) 

with D and ID diagonal matrices over a suitable frequency grid. The maximum of this 
upper bound over the frequency grid is an estimate of IIMlla. If IlMlla is “small enough” 
(depends on specified tolerance), stop, otherwise, continue. 

3. On the frequency grid, fit stable minimum phase rational functions t o  the diagonal 
entries d, of D and D, and replace the original data in D and D with their rational 
approximations. The fit is only in magnitude, and the freedom in the phase allows the 
rational functions to be defined as stable and minimum phase. 

4. Given D and D, minimize l lDMD-l[lm with respect to all stabilizing controllers. De- 
note the minimizing controller as li and the corresponding closed-loop T F M  as M ,  and 
return to step 2. 

So, the D- fl- iteration is in fact an intertwined X,-controller design and p-analysis sequence. 
The D - I í  iteration continues until the p-value doesn’t change significantly anymore between 
two iterations. Convergence of this algorithm is not always guaranteed. Moreover, the com- 
bined D- l i  iterakion procedure is not convex, so in general the resulting p-synthesis controller 
is sub-optimal. The controller order is in general equal to  the order n of the generalized plant 
G(s) plus twice the order of D ( s )  [2, Chapter 21. Since the controller order must often be 
restricted due to  implementation limits (see, e.g., [ io]) ,  it may be advisable t o  use low order 
scalings. Another option is to  apply order reduction to the computed controller. 



Chapter 3 

Actuator control problem 

The system to  be controlled and the performance specifications, obtained from [7], will be 
described in Section 3.1. In Section 3.2,  one way to  model the Coulomb friction as proposed 
in [5] will be discussed. 

3.1 System description and performance specifications 

The use of electro-mechanical actuators is widely spread, e .g . ,  in robots for car manufacturing. 
A block diagram of the model of the rotary electro-mechanical actuator to be considered is 
presented in Fig. 3.1. In this figure, the signals have the following meaning: 

o u commanded input, 

o xl position, 

o IC:! angular velocity, 

o Ml persistent load disturbance. 

The model employs the following simplifications. It 

o neglects the dynamics of the electrical motor, 

o ignores the load dynamics, and it 

o neglects viscous friction. 

The Coulomb friction model accounts for both “slip” and “stick”, see Section 3.2. The model 
parameters are partially uncertain and are presented in Table 3.1.  

9 
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I 

! 44: 

-1 Js I 

Figure 3.1: Model of a rotary electro-mechanical actuator 

Par amet er Symbol Value Unit 
moment of inertia J 400 [kg mm21 

Coulomb friction (slip) M ,  0.3. .  .0.8 [Nml 

maximal input urnax 4.0 [Nml 
minimal input urnan -4.0 [Nml 
maximal position range ~ 1 , ~ ~ ~  f 15 [mml 

cinversiin factir -_  hrg 7.04 yE7/2?nad] 
static load Ml 1.5 

Coulomb friction (stick) M h  2Mc 5 M h  5 3n/l, [Nm] 

Table 3.1: Model parameters 
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The main task of the system is to  make 2 1  follow a desired step-wise change in position of 
3.5 [mm]. For this task, the specifications are as follows: 

1. the settling time T98 must be less then 50 [ms], i.e., within 50 [ms] 2 1  must reach and 
remain within 2 percent of the step size, 

2.  the final position accuracy must be better than û.û4 [mm], 

3. overshoot is not permitted. 

Furthermore, the system should also fulfill the first two requirements for step-wise changes in 
the required position of small magnitude, e.g., 0.1 [mm], and of large magnitude, e.g., from 
-7.5 [mm] to 7.5 [mm] [7]. 

The time between two step-wise changes of the desired position is a t  least 60 [ms]. 

The controller must be implemented as a digital one with a sampling frequency of no more 
than 2 [kHz]. The only measurement is the position, available with an accuracy of 12 binary 
digits, related to the maximal range ~ 1 , ~ ~ ~ .  

Comments: 

The following illustrates that fulfilling the requirements for step-wise changes from -7.5 
[mm] to 7.5 [mm] is impossible. If, from standstill, the maximum input u,,, is applied to  
the system without friction and static load, the maximum displacement within T98 [SI equals 
-p 
2Jumaz(S98)2 z 14 [mm]. For this reason, a different specification will be used: the system 
should fulfill the first two requirements for step-wise changes from -6 [mm] to  6 [mm]. 

However, it remains questionable if the specifications for large step-wise changes can be met, 
as will be shown next. The fastest way to move z1 from O to w* within T98 without overshoot, 
is to accelerate with full force in the first part of the traject, and to decelerate using full force 
in the second part. Suppose M j .  = Mcsign(z2), Mc = 0.8 and w* > O. A simple calculation 
shows that w* is now maximally 6.8 [mm]. In case w* < O, Iw*l is maximally 4.7 [mm]. For 
this reason, it is expected that meeting the requirements for step-wise changes larger than 
4.7 [mm] is very hard, even though overshoot is allowed for large step-wise changes. 

3.2 Coulomb friction model 

Friction is often responsible for many problems associated with the control and accuracy of 
mechanical systems. For example, it may cause large tracking errors, and limit cycling around 
a final position. As a consequence, in Chapter 4 it is attempted to  take friction into account 
during controller design. 

Generally, Coulomb friction is represented as a nonlinear function of the relative velocity of 
two bodies in conta.ct. The Coulomb friction force (or Moment) M j T  acts opposite to  the 
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Figure 3.2: Coulomb friction model 

direction of the relative velocity 22, see Fig. 3.2, which is a part of Fig. 3.1. Two cases must 
be distinguished: 

1. 

2. 

The relative velocity 22 of the bodies is zero. This will be referred t o  as the “sticking” 
phase of friction. If a force is applied on a body at rest, it will not move until the 
applied force exceeds the peak stiction force Mh. For the electro-mechanical actuator 
2Mc 5 Mh 5 3Mc, with Mh the constant Coulomb friction moment in motion ( 2 2  # O). 
In [ 5 ] ,  it is made plausible, that in sticking mode the friction is best described by a 
position-dependent relation. 

The relative velocity 22 of the bodies is not equal to  zero. This will be referred t o  as the 
“slipping” phase of friction. When a body is moving at a certain velocity, a force M ,  
will act on it, in the opposite direction of 52. Especially at low speeds, the magnitude 
of this force depends on 22. However, to  simplify the Coulomb friction model, M ,  will 
be chosen constant as in Fig. 3.2. 

In [ 5 ] ,  a Coulomb friction model is proposed which is stated to be well-suited €or simulation 
purposes. It is stated that it is numerically efficient, nevertheless retaining the essential 
features of Coulomb friction. The model is easy to implement (as will be shown) and only 
needs 22 ars the input (as in Fig. 3 . 2 ) .  An a,uxiliary integrator is used to  represent stiction. 
Since the input to  the integrator is turned off under certain conditions; the Coulomb friction 
model is called “reset integrator”. It is described as follows: 

if  (22 > O and p 1 p o )  or (22 < O andp 5 -po)  

else 

end 

p = 0  (slip 1 
p = 22 (stick) 

if IPI < Po 
FJT = A( 1 t $>P t PP 

MJT = AP (slip) 

(stick) 
else 

end 

i 
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Here, p is the position variable which is internally generated (state variable) by the Coulomb 
friction model. Note that the sticking friction is represented as a function of bot the position 
p and the velocity p .  As soon as Ipl reaches po the system enters into slipping mode and 
?j = O. An S-function block in S IMULINK is used to represent the friction model. 

in the Coulomb friction model various parameters play a role, the use of which is explained 
below: 

o po:  This parameter defines the maximum amount of motion during sticking. It seems 
best to make po small relative to the smallest positional increment of interest, which 
is 27r .0.04/11'~ [rad] for the actuator considered here. For instance, po might be set to 
10% of this value. 

o A: This constant determines the amount of slip friction. If X = MC/po ,  the amount of 
friction M j ,  during slip equals M,. 

o $: Generally, the maximum stick friction Mh is larger than the amount of friction in 
slip mode Mc. Parameter ?,!J is used to account for this. Suppose Mh = aMc,  then .J, 
must be set o - 1. 

o ,O: A damping term B p  is introduced to eliminate undamped oscillations only when in 
sticking mode. These oscillations would occur if the model is used in a system with no 
other damping. In the absence of any information characterizing this damping, p can 
be set to  $1/2 [ 5 ] .  However, by simulations it is observed that if p $I O, the maximum 
stick friction may be substantially larger than specified by ?,!J. For this reason, ,û will 
fixed at  zero for simulations with the electro-mechanical actuator. 

In Fig. 3.3, the influence of Coulomb friction for the actuator system in Fig. 3.1 is illustrated 
for Ml = O and u a sinusoid with amplitude 4 [Nm] and frequency 1/T98 [Hz]. From the 
left figure, it is concluded that for t < 10 [ms], when the system is in sticking mode, M f T  
approximately cancels u. Once Ipl > po,  M j r  drops back to M,, the inertia J begins to slide 
and 22 $ O anymore, see right figure. The effect of B = O is also clearly visible. For more 
details on the friction model, the reader is referred to [5]. 
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Chapter 4 

Csnt roller design and evaluation 

In this chapter, Rm- and p-based controllers will be designed for the electro-mechanical 
actuator. The control problem will be augmented step-by-step. First, a continuous controller 
with one input y will be designed and evaluated for the system without Coulomb friction M f T ,  
without load Ml, and without saturation (Section 4.1). Secondly, control input saturation will 
be addressed in the controller design and incorporated in the simulation model (Section 
4.2), followed by design and evaluation for the constant load and Coulomb friction, but in 
the absence of saturation (Section 4.3).  Finally, Section 4.4 is devoted to  the design and 
evaluation of controllers with 2 and 3 inputs y respectively, for the complete problem. 

4.1 Design and evaluation for nominal tracking 

To gain insight in the controller design methods of Chapter 2, the simplified problem in Fig. 
4.1 will be studied first. Comparing this figure with Fig. 2.1, it is concluded that q = O ,  p = O 
(so, A, = O )  and that: 

with S = (1 + PIC)-' the so-called sensitivity function, and T = PI<( 1 + PI<)-' the comple- 
mentary sensitivity function. Obviously, this is a Nominal Performance ( N P )  control problem 
aiming at minimizing llM1loo, which is the m-norm of the closed-loop transfer function be- 
tween the reference signal w* and the weighted tracking error z*. Note that for this case 
A = Ap, which is a one-dimensional block without structure. So, p-synthesis and Rm- 
optimization come down to the same problem. Satisfactory performance is said t o  be obtained 
if IS1 < JSspecl = IW;l(, or, equivalently, if IIMlloo < i. 

In order to achieve the time-domasin specificaiions formulated in Section 3.1 (settling time, 
no overshoot etc.), Sspec must be chosen suitably. So as to limit the order of G, and therefore 

15 
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Figure 4.1: Control system including weighting function for tracking error 

First setting Second setting 
S s p e c , ì  S s p e c , ~  

a = 100 a1 = 100 a = 100 
UZ = (0.04 * ~ 1 ) / ( 1 2  * K )  

Table 4.1: Parameters for sensitivity specifications 

the controller order, Sspec’s of order 1 will be used, for example: 

The parameters of Sspec,1 and Sspec,2 are listed in Table 4.1. In both cases, K is fixed at  1. For 
Sspec,l the settling time specification is met, without overshoot, if a 2 -ln(O.O2/~)/T98 x 78. 
Note that Sspec,l(0) = O, specifying that steady-state errors are not allowed. Less demanding 
specifications for S ,  at  least for low frequencies, might be imposed by using Sspec,2: u1 is set 
to  meet the settling time specification, e.g., al = 100, while a2 is set to obtain a final accuracy 
of 21 better then 0.04 [mm] for the “worst case” situation that a step-wise change of 12 [mm] 
occurs: a2 = (0.04 - a l ) / (  12 K ) .  

A straightforward design of an ‘lim controller for the system in Fig. 4.1 is not possible, since 
the second and fourth standard assumption in Section 2.2 are not satisfied: D12 = O ,  so it 
does not have full column rank, and the plant G(s) has at  least two poles a t  s = O, so the 
fourth assumption is not satisfied at  w = O. 

To resolve the first problem, a very small weight on u is imposed: W, = lo-’, yielding 0 1 2  = 
[O The second problem is solved by using a special type of “bilinear transformation”, 
see, e . g . ,  [2, Chapter i]. The eigenvalues of A - j u l  on the imaginary axis are shifted to  the 
( -a  + ju)-axis by modifying A to A - a l .  The positive real number cr must be chosen so the 
behavior of the plant is not significantly changed in the frequency range of interest, i.e., in 
the frequency range between 0.01 and 1000 [rad/s]. If a = the singular values of the 
original plant and  of the modified plant are “the same” in this frequency range. With these 
modifications, a n  Xm controller can be designed. After the computation, the system matrix 
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Frequency [rad/sec] Frequency [rad/sec] 
Figure 4.2: left plot: magnitude of the controller in (4.3); right plot: sensitivity and specified 
sensitivity 

Al; of the controller A’ must be transformed back to Ah. + a i l .  The resulting controller is a 
sub-optimal solution to the original ?iw control problem. 

In both this section and the following olies, controller design is aimed at  minimizing y such 
that either JJMIJ, < y (%,-optimization), or ]!MlIn < y (p-synthesis). For the specified 
goal to  be achieved, e.g., NP, RS, or RP, y must be 1 or smaller. With Sspec,l and Sspec,2 
according to  the first setting in Table 4.1, controllers are computed for which y is slightly 
larger than 1, ie., N P  is not guaranteed. 

If K. is raised, the requirements on S become iess severe, and NP is easier achieved. For 
instance, if K. = 2, retaining the same settings for a ,  a l ,  and a2, the designed controllers make 
.(M) flat in the frequency range of interest and achieves y = 0.51. Note that these Sspec7s 
still represent the time domain specifications of interest. With Sspec,l,  the following strictly 
proper controller is computed with the p-Toolbox: 

- 

3.40. lol’s2 + 1.01 . 103s - 5.66. 10’ 
K ( s )  = (4.3) ~3 + 4.39.104s2 + 9.57.108, - 1.84.10-5‘ 

The left plot of Fig. 4.2 shows the magnitude of this controller. Obviously, the coefficients in 
the numerator and denominator polynomials are very large, which indicates that  the solution 
is of type B, see Section 2.2. However, fixing “ t o l ”  at 0.1 instead of 0.01 [i, hinfsyn], in this 
way trying to prevent approaching the optimal solution too close, the controller coefficients 
remain large. On the other hand, if tol is set smaller than 0.01, the coefficients become even 
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larger than in (4.3). In the right plot of Fig. 4.2 it is shown that the sensitivity specification 
is met with controller (4.3). 

In Fig. 4.3, results for a closed-loop simulation for the system in Fig. 4.1 are displayed. 
The desired trajectory w* is chosen so all step-wise changes of interest are incorporated, by 
which all time dnmah sprrificatiens ia Secticm 3.1 c m  be checked. During the simulation, 
to* takes 4 diflerent values other than zero: w’=3.5 [mmj (I), w*=-6 [mm] (11), w*=6 [mm] 
(111), and w*=O.1 [mm] (IV). The time between two step-wise changes in w* is always 60 
[ms]. Within the settling time, q must be and remain within 2% of the step size of interest. 
The corresponding “target zone” for the tracking error y is indicated by the dashed line in 
the lower plot of Fig. 4.3 (0.02 6w*). The times at which 2 1  must be and remain inside this 
zone are indicated by a “*”. 

For this controller design, NP is achieved: overshoot does not occur, the settling time speci- 
fications are met (see Fig. 4.3, lower plot), and the final position error y is smaller than 0.04 
[mmj. In fact, y asymptotically approaches zero, because S ( 0 )  = O. 

I t  is emphasized that large control inputs u are required during this simulation. At the time 
instants that w* changes, peak values of u with an order of magnitude of lo3 [Nm] occur. 
A simulation shows that if the system input sa.turates for controller outputs u larger than 4 
[Nmj, the performance specifications are not achieved with the proposed controller (4.3). For 
this reason, the next section is devoted to controller design taking saturation into account. 

4.2 Design and evaluation for saturation 

In this section, controller design and evaluation will be performed for the system with con- 
troller output saturation. Two distinct ways to  account for saturation will be studied. In the 
first approach (Section 4.2.1), u is simply weighted, ie., a weighted version of the controller 
output u is added to  z*. In the second approach (Section 4.2.2), the nonlinear saturation 
element is modeled as a sector bounded uncertainty, see, e .g . ,  [2, Chapter i] and [8, Section 
5.5.51, The latter approach makes the A block structured, by which +-synthesis becmnes 
worth while. 

4.2.1 Weighting the controller output 

Consider Fig. 4.4, in which the weighted input z; is an additional control objective. Com- 
paring this figure with Fig. 2.1, it is concluded that q = p = O (A, = O ) ,  z* = [z; z,”IT, and 
that: 

(4.4) 
I 
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Figure 4.3: Results of a simulation with controller (4.3) 
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Figure 4.4: Control system including weights on tracking error y and control input u 

with R = li(1 + the so-called input sensitivity function. Again, this is a N P  con- 
trol problem with A, a 1 x 2 unstructured block. For the SISO S and R considered here, 
minimizing Ilnir((, comes down to minimizing [S, Section 6.21: 

with respect to  all stabilizing controllers K .  The solution often has the equalizing property, 
i . e . ,  the frequency-dependent function whose peak value is minimized is a constant y (which 
must be smaller than 1 for the control problems in this report): 

I ~ y ( j w ) S ( j w ) I z  + IWu(ju)R(jW)12 = y2. (4.6) 

So, for the optimal solution: 

By choosing the weighting functions W, and W, correctly, the functions S and R niay be 
made small in appropriate frequency regions. 

Performance is said to  be satisfactory if IS1 < ISspecl = IW;'l and if IR1 < /Rspec I  = IW;ll. 
The sensitivity will be specified by Sspec,l in (4.2). To start  with, the parameters of the second 
setting of Sspec,1 will be used, see Table 4.1. In order to avoid high frequency components in 
u,  which occur for step-wise changes in w* and cause saturation of u,  high frequencies in u 
must be penalized. This is accounted for by the following choice of Rspec: 

As it will appear (Fig. 4.7), IWy(jw)S(ju)I dominates a t  low frequencies, where W, is large, 
while lM'u(jw)R(jw)( dominates a t  high frequencies, where W, is large. 

The parameters and b in Rspec must be chosen so the time domain specifications are achieved 
under control input saturation. Parameter b is used to indicate the frequency above which u 
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First setting 
S s p e c J  R s p e c  

K = 2  c = i i o o  
a = 100 b = 27r/(10. 

21 

Second setting 
Sspec , l  R s p e c  

K =  3 c = 1100 
U = 100 b = 27r/(10. 
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Figure 4.5: Closed-loop response for the main task w* = f 3 . 5  [mm] 

Table 4.2: Parameters for inverse weighting functions 

must be penalized. Because of the settling time requirement (T98 = 50 [ms]), control signals of 
20 [Hz] must be allowed. It seems reasonable to fix b at 27r/(10. [rad/s], i.e., frequencies 
in u above 100 [Hz] are penalized most severely. Unfortunately, finding a good setting for C 
is not straightforward, but based on a trial and error procedure. 

Computing an X, controller with < = 1 yields y = 4.97, so NP is not guaranteed. This 
y can be reduced by increasing i, which implies that, compared with S, less demanding 
specifications are imposed on R over the whole frequency range. For C > 1000, y's are found 
which are smaller than 1. For the first setting in Table 4.2, y = 0.98. However, a closed- 
loop simulation shows, that although the frequency domain specifications are met, the time 
domain specifications are not, see Fig. 4.5. This illustrates, that  due to  the limited possibility 
to  translate time domain specifications into equivalent frequency domain specifications, an 
'Hm controller design is not always solved straightforwardly. 

It is now aitempted to  get a better performance by iteratively cha.nging parameters in Sspec,1 

and Rspec. For K = 3 instea.d of K = 2 [second setting in Table 4.2), y = 0.71 is achieved for 
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Figure 4.6: Magnitude plot of controller (4.10) 

the following fourth order controller that is obtained with the p-Toolbox: 

1.49. 106s3 + 9.37. loss2 - 9.80 . 1 0 - 3 ~  - 1.15 
I < ( S )  = (4.10) 

The magnitude of this controller is depicted in Fig. 4.6. Note that the controller provides 
integral action only for frequencies below 5 IO-’ [rad/s]. With the RC-Toolbox, a different 
controller is computed achieving y = 0.85, which might be due to  distinct solution procedures 
in the MATLAB toolboxes. Moreover, the Bode plots for both controllers are different for 
frequencies below 

~4 -+ 2.39.103~3 + 5.48 .105~2 + 5.61 . 107s - 5.08. 

[rad/s] and above lo2 [rad/s]. 

In Fig. 4.7 it is illustrated that the frequency domain specifications are met with controller 
(4.10). As expected, IW,(jw)S(jw)( dominates for low frequencies (u < 100 [rad/s]), while 
IWZL(jw)R(jw)I dominates for high frequencies (w > 100 [rad/s]). 

Simulation results with controller (4.10) for w* = 3.5 [mm] and w* = -3.5 [mm] (main task) 
are depicted in Fig. 4.8. The time domain specifications are met, except for a slight overshoot 
when returning from 21 = 3.5 [mm] to 2 1  = O [mm]. For stepwise changes of magnitude 0.1 
[mm] all specifications are met (not depicted). 

Unfortunately, for stepwise changes of 6 and 12 [mm] the specifications are not met, see Fig. 
4.9. Frorn this figure it is concluded, that sa.turation also occurs for w* = f 3 . 5  [mm] (I), 
but that it does not cause trouble in this case. A striking phenomenon is, that  2 1  does not 
reach w* = -6 [mm], though the input is well between the saturation bounds (part (11) of the 
traject). This is probably due to the fact that 21 is in the low-frequency region for which the 
controller gain is very small, see Fig. 4.6. Another remarkable result is, that  right after part 
(111) of the traject 21 does not return to zero. The input u seems unnecessarily large and 21 
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Figure 4.7: Satisfaction of frequency domain specifications 
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Figure 4.8: Simulation with controller (4.10) for w* = f 3 . 5  [mm] 
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Figure 4.9: Simulation with controller (4.10) 

shoots through to -3.6 [mm]. Moreover, for w* = 0.1 (IV) u is almost zero, although 21 is 
far from its desired value. Again, the latter phenomenon is due to the fact that  the controller 
provides “integral action” only in the frequency region below 5 - [rad/s]. 

If it is attempted to improve the response to step-wise changes of 6 [mm] ( e . g . ,  by raising C 
in Rspec, l ) ,  the response to  smaller step-wise changes deteriorates, in the sense that overshoot 
occurs. 

4.2.2 Saturation as a sector bounded uncertainty 

In this section, input satura.tion will be accounted for in the controller design by modeling 
the nonlinear saturation element in Fig. 3.1 as a bounded uncertainty, see, e.g. ,  [8, Section 
5.5.51 and [2, Chapter i]. 

In Fig. 4.10, the saturation element is modeled as the parallel connection of a gain (0.5) and a 
so-called “sector bounded” uncertainty A,. The perturbation A, is a nonlinear operator that  
maps the signal u1 into the signal u = A,ul. For this mapping holds that llAuul 112 5 0.511~1112 
for every input u1 to  A,. Because of this relation, the perturbation Au is called sector 
bounded, and has an “canorm” which equals 0.5. The basic stability robustness results of 
Chapter 2 also apply for this type of perturbation. 
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The control problem formulation is now based on the representation in Fig. 4.11. Comparing 
this system with Fig. 2.1, it is concluded that z = [ q  .*IT and w = [ p  w*JT. The  generalized 
plant G and the closed-loop TFM M can be written as follows: 

P -  l o  1 (4.11) 

M = [  -W,PK( 1 + 0.5PK)-' WUI(( 1 + 0.5PK)-l 

O 

I L -P I -u.Jr 
-VVyP Wy -0,5WyP , 

nrzn I 
J 

u -  

(4.12) 

The weight W, = 0.5 is chosen so Ilpll2 = llAuq112 5 11q112. Obviously, this is a Robust Perfor- 
mance (RP) control problem with a structured 2 x 2 perturbation block A = diag(A,, A,). 
Compared with the approach discussed in Section 4.2.1, there is now only one weighting func- 
tion to be specified. This might be an advantage in an iterative design procedure, since fewer 
parameters have to be considered. The inverse of Sspec,l (4.2) will be used as W,. 

Wy( 1 + 0.5PK)-1) 1 * -W,P( 1 -t 0.5PIi)-' 

The D-A' iteration procedure discussed in Section 2.3 will be applied for p-synthesis. For 
this purpose, an initial stabilizing X, controller will be designed. Since it is expected that 
fewer iteration steps have to  be made if y for the initial controller is close to  1, R and a in 
Sspec,1 are set accordingly. For the controller design, the p-Toolbox will be used. With the 
RC-Toolbox problems occur, as will be indicated. 

With K = 10 and a = 150 an 'FI, controller is computed that achieves y = 9.54. The 
structured singular values p* (M)  for successive controller designs are depicted in Fig. 4.12. 
For a good fit and a fast convergence, the order of the approximate diagonal scaling D should 
be high during D-í; iteration. However, for implementation reasons the controller order is 
desirably low, and, consequently, the order of the fit must be low, see Section 2.3. For this 
reason, the order of the fit to  D is fixed at 1 for the first iteration steps (if it is set higher, 
numerical problems occur during D - K  iteration), except for the final iteration, when it is set 
to O. So, like the generalized plant, the controller K ( s )  computed for the third iteration has 
order 3: 

9.15 * 1 0 ' ~ ~  + 3.81 . 10IOs + 7.24 * lo1' 
Ir'(s) = 

s3 + 7.95.104s~ + 1.48.107s +- 6.62.10-2. 
(4.13) 

T$-  1 1  

between controller (4 .13)  and controller (4 .10) ,  whose magnitude is depicted in Fig. 4.6. 
1-ct lc,li yLvu -Int of Fig. 4-13, shows the magnitude of this controller. Note the large difference 

From the right plot in Fig. 4.12, i t  is concluded that for successive designs p * ( M )  is flattened 
over the frequency range of interest. The peak value of p * ( M )  decreases, while it shifts to  
higher frequencies. Unfortunately, RP is not guaranteed for controller (4.13), since IIMlln = 
2.07. Continuing the D-Ii iteration, it seems that IJMIIA can not be reduced further than 
about 1.33. Ultimately, p n ( M )  equals 1 for the whole frequency range, except for a small 
bump for frequencies above 100 [rad/s]; IIMlln = 1.33 at  w = 1000 [rad/s]. However, for this 
continued D-K iteration numerical problems occur, and the resulting controller cannot be 
relied upon. 

As it is clear from Fig. 4.12, for low frequencies the structured singular value is equal to one 
for all controllers designed during D-I< iteration. It appears that this is due t o  the modeling 
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singular value of Ivi for four successive designs: initid design (-1, f i r s t  iteration ( . a > >  second 
iteration (- -), third iteration (-.) 
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of the saturation element: if W, is set to CU 0.5, p ~ ( M ( 0 ) )  equals CY.  It is also noted, that 
for the final design )Mll(jw)l in (4.12) equals one in approximately the same frequency region 
as p A ( M ( j w ) )  does. For this reason, it seems that lMlll is restrictive for controller design, 
i e . ,  IA4111 seems to prevent that y can be made smaller than 1. Suppose that  for s z O 
the controller K ( s )  is given by K ( s )  = As’. Transfer function M l l ( s )  can then be written 

f l ’  
)M11(0)) = 1. Apparently, designing a controller with k 2 2 is impossible. On the other 
hand, if tracking performance is excluded during controller design (W, = O), the RP problem 
becomes a RS problem, and A4 reduces to Ml1 = -0 .5PK( l+  PK)-I in (4.12). In this case 
a robustly stabilizing controller K ( s )  = O is computed achieving y N O. Thus, robust stability 
(represented by Mil) seems to be restrictive only in combination with tracking performance. 

,-(2-*! - 1  with c = &. SO, a controiier with i; 2 2 yields i ~ l l ( ~ > l  < I, otherwise 

It is emphasized that a sound explanation for not meeting the frequency domain specifications 
is lacking at  the moment. Anyway, the source of this problem seems to be the suggested way of 
accounting for saturation, which is probably too conservative, and leads to overly demanding 
design specifications. 

In Fig. 4.13, some simulation results for controller (4.13) are depicted. Obviously, the time 
domain specifications are not met, not even for small step wise changes. It is remarkable, 
that for W* = f3.5 [mm] input saturation occurs for a relatively large time interval after a 
change in w* (compare with Fig. 4.9). 

In case the RC-Toolbox is used for controller design [2, musyn], it is noted that  the order of 
the controller does not necessarily equal the order of G ( s )  plus twice the order of D. For 
instance, if first order diagonal scalings are used, a fifth order I< is expected, but higher 
order controllers might be computed during D - K  iteration. The difference with the results 
obtained with the p-Toolbox might be due to distinct methods of finding the diagonal 2 x 2 
scaling TFM D ( s )  = diag(dl(s),dz(s)): in the p-Toolbox, the second diagonal entry d 4 s )  is 
normalized to  one, hence need not be fitted, while in the RC-Toolbox both d l ( s )  and &(s) 
are fitted. 

4.3 Design and evaluation for load disturbance and Coulomb 
friction 

In this section, the control problem is focussed on achieving set-point tracking under load 
disturbance Ml and under Coulomb friction M j T ,  see Fig. 3.1. For the purpose of controller 
design. Ml and M j r  have to be incorporated in the standard plant setting of Fig. 2.1. It is 
emphasized, that controller design and evaluation are performed in the absence of saturation. 

The static load disturbance is represented in the exogenous input w*, while a “shaping filter” 
VI is added to G to account for the nature of Ml. For a constant disturbance like Ml, this is 
done by choosing Vi = p l M ~ / s ,  where pi js used as a design parameter. 

Incorporating the highly nonlinear Coulomb friction in the linear standard control problem 
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Figure 4.13: Simulations with controller (4.13) for w* = 5 3 . 5  [mm] and tu* = f O . l  [mm] 
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Figure 4.14: Control system including shaping filter for load disturbance and Coulomb friction 

set-up is less straightforward. The friction characterization must be linear, possibly accom- 
panied by a bounded perturbation on that linear description. However, in [9] i t  is shown that 
this is impossible, which is due to the discontinuity for 2 2  = O. For this reason, an alternative 
“solution” is proposed in 193, which resulted in a successful application for an inverted pendu- 
lum. The Coulomb friction is now modeled as an external disturbance moment by adding it 
to  w* and adding a shaping filter V2 to the plant G. Note that the knowledge of the feedback 
nature of the friction is lost in this way. Only where the friction moment acts on the system 
is emphasized. In order to account for both slip (“step”) and stick (“impulse”), V, is chosen 
a5 follows: 

Mc P2Mc + p3Mhs 
v2 = p2-  (slip) + p3Mh (stick) = 

S S 
(4.14) 

Shaping filters VI and V2 are now added up, so shaping filter V in Fig. 4.14 is described as 
follows : 

(4.15) PlMl t p2Mc t p3Mhs 
S 

V =  

For the control system in Fig. 4.14, the generalized plant G and closed-loop system M are 
given by the following relations: 

G = [  1 -PV - P  , M =  [ w,s - W y P S V ] .  (4.16) I w, -W,PV -W,P 

Again, this is a NP control problem with a 2 x 1 unstructured fictitious perturbation block 
Ap. In order to  meet the rank condition on 012, a small weight on u is added (Wu = lo-’). 
Before it is attempted to design a controller achieving //Mllm < 1, it is emphasized that 
controller (4.3) does not achieve the time domain specifications under load disturbance and 
Coulomb friction, which indicates the need to account for these phenomena. 

During controller design W, = S;ec,i in (4.2) will be used with K = 2 and a = 100, see 
Table 4.3. Finding the “best” settings for the design parameters in V is again an arduous 
trial-and-error procedure. To start with, pi, p 2 ,  and p3 are set to  guarantee a fast rejection 
of Ml, while limiting the displa.cement xl. It i s  noted, that llMll, < 1 is easier achieved and 
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 spec,' v 
~ = 2  M l =  1.5 
U =  100 M,  = 0.8 

k f h  = 3 * &.fc 
pi = 107 
p2 = i o 7  
P.? = o 

TabIe 4.3: Parameters for sensitivity specification Sspec,l and shaping filter V 

1051 . i i . i . i . I - .  i . 
1 O-* 1 o+ 1 Od Frequency 1 o-2 [rad/s] 1 oo 1 o2 1 o4 1 o6 

Figure 4.15: Ma.gnitude plot of controller (4.18) 

better disturbance rejection is obtained if V is replaced by V* = V W . '  = VSspec,l. With 
this modification, the closed-loop system M in (4.16) reduces to: 

(4.17) 

An additional advantage of this modifica.tion is, that weighing PS (influence of u): on z")  can 
now be performed independently of the weight on S (influence of wy on 2"). 

Studying various simulations, the "best" compromise between tracking on the one hand and 
rejection of Coulomb friction a.nd load disturbance on the other hand, seems t o  be achieved 
with the settings in Table 4.3. Note that p3 is fixed at  zero, since it is observed that a non- 
zero p3 does not improve performance. With the p-Toolbox the following controller achieving 
y = 0.56 is computed: 

1.73. lolls3 + 1.03. 1014s2 + 2.97. 10l6s + 2.12. IO1' 
I+) = (4.18) 

s 4  + 3.22 104.~3 + 4.96. loss2 + 4.92. 1O1Os + 9.91 * lo3' 

The magnitude of this controller is depicted in Fig. 4.15. 
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Figure 4.16: Closed-loop behavior with controller (4.18) 
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Figure 4.16 shows some results of a simulation with (4.18), for which the following friction 
parameters are used (see Section 3.2): po = 0 . 1 . 2 ~  O.O4/IL‘,, Mc = 0.55, X = Mc/pO, ?L, = 
2 (Mh = 3Mc), ,8 = O (it is observed that if p # O the Coulomb friction model does not 
always work correctly, in the sense that the maximum stick friction might be larger than the 
slip friction even if .II, = O). The symbol “0)’ in Fig. 4.16 indicates the time at  which Ml starts 
to act on the system. 

Obviously, the third time domain specification is not met, since overshoot occurs. Note that 
the influence of Ml on the tracking error is only marginal. The same applies for the influence 
of MjT: if the response in Fig. 4.16 is compared with the one resulting from a simulation 
without Coulomb friction, it is concluded that these responses are approximately the same. 
Apparently, rejection of load disturbance and Coulomb friction is more restrictive for con- 
troller design than tracking specifications, i.e., 1 - PSV*J dominates over IW,Sl. In order to  
avoid overshoot, Ml1 (tracking) must be emphasized during controller design. Unfortunately, 
a controller with only one input y which leads to better performance than the one in (4.18) 
has not been found. 

4.4 Multi-input controllers 

In this section, it is attempted to obtain better performance by designing controllers with 2 
and 3 inputs respectively. Firstly, a controller with 2 inputs as depicted in Fig. 4.17 will be 
studied. While the input for the previously studied controller was the difleerenCe between the 
desired position and the real position, i.e., the tracking error, a controller will now be studied 
which uses the desired position wT and the real position 2 1  as two independent inputs. The 
generalized plant for Fig. 4.17 is described as follows: 

w, -W,PV -W,P 

G = [  O 1 PV O P 
(4.19) 

Ir? order to make 0 1 2  full column rank. a very small weight is imposed on u. In addition, a 
very small “measurement error” on z1 is used to have D21 full row rank. With the parameters 
for Sspec,l and V as in Table 4.4, an ‘Ifw controller is designed with the p-Toolbox achieving 
y = 0.51. It is remarked that a controller obtained with the parameters in Table 4.3 meets the 
frequency domain specifications ( a n d  the time domain specifications) as well. However, this 
design leads t o  unnecessarily large controller gains, which can be circumvented by reducing p1 

and p 2 .  In Fig. 4.18, the frequency-dependent singular value of the computed 1 x 2 controller 
K ( s )  is depicted. 

With this controller the time domain specifications are (easily) achieved, see Fig. 4.19. The 
Coulomb friction parameters are the same as in the previous section. If Mc is raised to  0.8, 
maintaining Mh = 3 .  M,, the specifications are still met. Moreover, the influence of the static 
load disturbance and the Coulomb friction appears to be neglectable, since a simulation with 
Ml = MjT = O shows approximately the same tracking error behavior as in Fig. 4.19. 
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Figure 4.17: Controller with two inputs y1 and y2 

Figure 4.18: Singular value of the controller with two inputs y1 and y2 

Table 4.4: Parameters for sensitivity specification Sspec,l and shaping filter V 
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Figure 4.19: Closed-loop beha,vior for the controller with two inputs 
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Figure 4.20: Controller with three inputs y1, y2 and y3 

Note, that this result is obtained in the absence of controller output saturation. If the sim- 
ulation model is extended with the saturation element, and saturation is accounted for by 
weighing the controller output, as it is done in Section 4.2.1, a two-input controller design 
is not successful. A good response was only achieved for wT = f O . l  [mm]. Therefore, a 
final attempt to design for saturation is made by modeling the saturation element as a sector 
bounded uncertainty, see Section 4.2.2. For this purpose, a controller with three inputs as 
depicted in Fig. 4.20 will be designed by p-synthesis. 

Three signals are fed back to the controller JC(s): the desired position w:, the real position 
2 1 ,  and the output of the saturation block, i e . ,  the applied input. Comparing Fig. 4.20 with 
Fig. 2.1, it is concluded that this is a RP control problem with z = [ g  z*] ,  w = [1, wT w;], 
and with a structured perturbation block A consisting of a 1 x 1 block A, and a 3 x 1 block 
Ap. The generalized plant G is given by: 

(4.20) 

Designing a controller with the parameters in Table 4.4, a fourth order controller is designed by 
p-synthesis. After two iterations, p n ( M )  is flat for the whole frequency range of interest, and 
equals one. As in Section 4.2.2, the p-value depends on the value of W,. A sound explanation 
for this phenomenon has not been found. Although the frequency domain requirements are 
not met (IIMlln = I ) ,  a simulation with the computed controller is performed. It is concluded 
that the closed-loop behavior is only satisfactory for w; = f O . l  [mm]. For w; = f3.5 [mm] or 
w; = f6 [mm], all time domain requirements are violated, which is due to input saturation. 
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Figure 4.22: Closed-loop behavior for W T  = f3 .5  [mm] for the controller with three inputs 

It is attempted to make the design more “robust” to saturation by raising W, to  2 and 
maintaining the parameters in Table 4.4. A 1 x 3 controller achieving pA(M( jw) )  = 4 is now 
computed, the frequency-dependent singular value of which is depicted in the left plot of Fig. 
4.21. The structured singular value of A4 for successive controller designs is depicted in the 
right plot. The response for the main task (w; = *3.5 [mm]) indeed improves, see Fig. 4.22, 
although the specifications are not met. In fact, this behavior is the best which has been found 
for a number of designs in which both W, and the parameters in V and Sspec,l were changed 
iteratively. Note, that  the controller output still saturates for a large time interval after a 
stepwise change in w;. For w; = kO.1 [mm] or w; = f6 [mm], the response is somewhat 
worse. 



Chapter 5 

Conclusions and recommendations 

In this report, ?im- and p-based controller design methods were studied. The main findings 
with these approaches are discussed in Section 5.1. Conclusions and recommendations with 
respect to the electro-mechanical actuator control problem are in Section 5.2. 

5.1 Tt,-opt imizat ion and p-synt hesis 

Performance specifications for control systems are often formulated in the time domain. Con- 
trary to  the case of frequency domain specifications, it might then be difficult to  find suitable 
weighting functions for controller design, since it is not always trivial to translate time domain 
specifications into frequency domain equivalents. Moreover, meeting the frequency domain 
specifications does not imply that the time domain specifications are met as well. Conversely, 
if the frequency domain specifications are not met, the time domain specifications might still 
be met. In case of frequency domain requirements, e .g . ,  for a pure disturbance attenua- 
tion problem, the choice of weighting functions is rather straightforward. In order to  avoid 
high-order cmtrollers, !ow-vrder weighting fmctions are advisable. 

The algorithms for controller design in both the RC-Toolbox and the p-Toolbox require 
the generalized plant G(s) to be proper. This puts restrictions on the type of weighting 
functions to be used, since they must be chosen to meet this requirement. For example, a 
non-proper output-disturbance weight (specifying roll-off for high frequencies) might cause 
G(s) to be non-proper (in [8, Section 6.71 it is explained how this particular problem can be 
circumvented). 

In order to  design controlIers with the M A T L A B  toolboxes, the standard assumptions in Section 
2.2 need to be satisfied. In the first place, the rank conditions on 0 1 2  and 0 2 1  are not 
always satisfied. To “solve” this shortcoming, it might be necessary to introduce artificial 
control objectives in z and a,rtificial external inputs in w. Due to this modification, controller 
design becomes sub-optimal. Conservativeness of the controller must be limited by imposing 

39 
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very low weights on the artificial signals. Another frequently encountered problem is due to 
eigenvalues of G on the imaginary axis (see Section 4.1), by which fulfillment of the third 
and fourth standard assumption is endangered. This problem can be solved by a bilinear 
transformation on the generalized plant, by which the eigenvalues are shifted, followed by 
standard controller design. This modification results in a sub-optimal controuer, which is not 
always a problem. 

Performing p-synthesis with one of the MATLAB toolboxes is sometimes troublesome. Firstly, 
the p-value may increase for successive designs in D - K  iteration. Secondly, numerical prob- 
lems in solving the associated Riccati equations might occur during 7t, controller design for 
the scaled system (fourth step in D - K  iteration). Moreover, a satisfactory fit to  D is not 
always possible due to  numerical conditioning problems of the D scales, and a lower order fit 
must be used (third step of D-Ii' iteration). In this report, the controller order was restricted 
by using a zero order fit in the final iteration, provided that the p-value did not increase. An 
alternative is to  apply order reduction to  the final design, see, e.g., [8, Section 6.10.71. If the 
RC-Toolbox is used, it is noted that the order of the controller is not always equal to  the 
order of G(s) plus twice the order of D ( s ) .  The reason for this is unclear. 

5.2 Controller design for the electro-mechanical actuator 

Designing a controller which meets the time domain specifications appeared t o  be infeasible. 
Only for the system without saturation, satisfactory performance was achieved. Moreover, 
design for tracking, load disturbance and Coulomb friction was only successful for a controller 
which uses the desired position and the measured one as two individual input signals. In case 
the difference between those signals (the tracking error) is fed back to  the controller, the 
time domain specifications were only met in the absence of saturation, load disturbance, and 
Coulomb friction. Again, it is emphasized that the choice of the type and the parameters 
of the weighting functions and the shaping functions was not straightforward; modifying 
parameters or applying different types of weights might result in significant differences in 
closed-loop behavior. 

In order to account for input saturation, the nonlinear saturation element was modeled as a 
sector bounded uncertainty. Unfortunately, p-synthesis was not successful, since the require- 
ments in both the time domain and the frequency domain were violated. The p-value appeared 
to  depend on the conic sector parameter W,. A sound explanation for this phenomenon is 
currently lacking and needs further attention. 

For the purpose of controller design the Coulomb friction was modeled as an external input 
disturbance. In the absence of saturation, this approach proved to be successful. Nevertheless, 
a recommendation is to search for a way to incorporate Coulomb friction in the linear control 
system set-up which accounts for its feedba.ck nature. 

In the original control problem formulation in [ï], the controller to  be implemented should 
be a digital one, making use of a quantized measurement. However, since the specifications 
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could not even be achieved with a continuous controller making use of exact measurements, 
no attention has been paid to this aspect. Only if the problem is solved for the continuous 
implementation, studying the effects of a digital controller seems worthwhile. For the same 
reason, accounting for additional modeling errors as mentioned in Section 3.1 is not useful a t  
the moment. 

I 
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