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by 

A. Blokhuis and J.J. Seidel 

I. Symmetric functions 

The elementary symmetric polynomials in d variables and their generating 

function are defined by 

Ak <.~) := L x. x. . .. x. for k :S d, zero for k > 

jl< .. ·<jk J 1 J 2 J k 

k d 
A t (~) := L Ak t n (1 + x. t) 

k~O i=1 1 

The homogeneous symmetric polynomials and their generating functions are 

defined by 

s (x) : = 
t -

L x. x .... x . 
• < < • J 1 J 2 J k J 1- " ·-Jk 

Theorem 1.1. A /!) S -t (~) 1 • 

Proof. 

1 d d 

A (x) n 
1 - x. t n L 

-t - i=l 1 i=l k~O 

( 1 ) 

k (x. t) s (x) . 
1 t-

d 
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Formula (1) generalizes in various ways. We have 

where 

A (V) s (V) 
t -t 

( 2) 

for the exterior powers Ak(V) and the symmetric powers Sk(V) of a vector 

space V, whose definition will be recalled later. 

A further generalization of (1) holds in the Grothendieck ring (R(G),e,~) 

consisting of the G-modules V of a finite group G and, more abstractly, 

in the theory of A-rings. Thus (2) follows from (1) by general abstract 

nonsense. 
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2. Tensor algebra 

Let V denote a vector space of dim. d, with inner product (. ,.). The tensor 

algebra TV, consisting of all tensors on V, is a graded algebra with 

00 

TV p (t) (\ _ d t) -\ . 

The tensors of the form ~l ® ••• ® ~ form a basis for Tk V, and the inner 

produc treads 

(~l ® ••• ® ~ ':l.\ ® ••• ® ~) 
k 

= n 
i=l 

(x. ,v.) . 
-1 L.1 

The exterior algebra AV, consisting of all skew symmetric tensors, is graded 

with 

AV 

A basis for Ak is provided by the skew tensors 

and the inner product reads 

p( t) 
d 

(\ + t) . 

The symmetric algebra SV, consisting of all symmetric tensors, is graded with 

00 

SV p( t) 
-d 

(\ - t) . 
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A basis for Sk ~s provided by the symmetric tensors 

and the ~nner product reads 

Let ~1""'~ denote any orthonormal basis for V. The corresponding ortho

normal basis for Ak consists of the 

k 
e- k I + ..• + kd k 

The corresponding orthonormal basis for Sk consists of the 

k . 

k 
e-

/ k! k 
elements k' k' e- , 

I' ... d' 

k kl, .•• ,kd Ell, 

with e. ~ := e. v ... v e., k. times. Thus we use the same notation for both 
-~ -~ -~ ~ 

cases. It is convenient to abreviate k\! ... kd! by~! and k1 + '" + kd by 
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3. Exterior and symmetric powers of a matrix 

Let A v ~ V denote a linear map of V. We define its k-th exterior power by 

Ak (A) : Ak V ~ Ak V : ~I " ••• " ~ 1+ A ~I " ••• " A ~ , 

and its k-th symmetric power by 

Sk V ~ Sk V ~ I v .•. v ~ 1+ A ~ I v ••. v A ~ • 

We calculate the entries of the power matrices with respect to the standard 

basis. We use the following notation, which applies for both Ak and Sk' For 

~ and 3: wi th I~I = 13:1 = k the matrix A(~ 1.8:.) is the k x k matrix which is 

obtained from the d x d matrix A by repeating k. times row i, and t. times 
~ J 

column j, for i,j 1,2, .•. ,d. 

Theorem 3. I. 

det A(~ 1 .8:.) 
per A(~ 1 3:) 

Let A have the eigenvalues a
l
,a 2 , ••• ,a

d
. The eigenvalues of Ak(A) are the 

(~) elementary, those of Sk(A) the (d +~ - I) homogeneous polynomials of 

degree k in al, •.. ,ad . 

Theorem 3.2. 

det(1 + t A) Y. t k trace Ak (A) = I t I~I det A(~ 1 ~) 
k=O k 

-I k _ 1 k 1 l'er A(~ 1 ~) 
det (I - tA) I t trace Sk(A) - kL t- k! 

k~O 
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Proof. The first result simply amounts to 

deter + t A) I + t 

d 

I 
i=1 

2 
a .. + t 

11 I 
i<j 

a .. 11 
a .. 

1J d 
+ ..• + t det A . 

a .. a .. 
J1 JJ 

Both results are easily proved by considering the eigenvalues on both sides, 

and by using the proof of Theorem 1.1. 

For the generating functions 

the theorem implies 

-I 
deter + t A) = trace !I. (A) = trace S (A) 

t -t 

and I A t (~) s _ t (~), 1n agreement wi th Theorem I. I . 
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4. MacMahon's master theorem 

Q, k 
Lemma 4.1. The coefficient of x- 1n (A x)- equals 

Q,I! per A(~ I .~) . 

Proof. Convince yourself by writing out A(~ I!) in block form. 

k k 
_Th_e_o_r..;.e_m_4..;. • ..;...2 (MacMahon). The coefficient of x- in (A ~)- equals the coefficient 

of xk in 

l/det(1 - Af.,(~)), where f.,(x) 

Proof (I.G. Macdonald). Lemma 4.1 and Theorem 3.1 imply that the coefficient 

of ~~ in (A ~)~ equals the (~,~)-entry in the k-th symmetric power Sk (A), 

where k = I~I. Hence it is the coefficient of ~ in trace Sk(Af.,(~)). But 

I trace Sk (A f., (~)) 
k~O 

1/ de t (I - A f., (~)) 



5. Bebiano's formula 

Theorem 5.1. 

exp(~,A X) t 

Proof. The formula 

k 
(~,A y) 

k! 

oo 

L tk 

k=O 
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I~I =f!1 =k 

k x- Ry-

k R-
x- r-
k! "iT per 

k! ~! per A(~ I .8:) 

A(~ I!) 

~s obtained by taking the inner products of the symmetric tensors on the 

left and on the right hand sides of the following formulae 

I!t=k 

Indeed, we have 

(x v ... v ~, ~ v .•. v z) (x ~ ® z) 

Reference 
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6. Fredholm's determinant 

Fredholm's integral equation 

1 

u(x) f(x) + A f K(x,t) u(t) dt 

o 

1S approximated by the set of matrix equations 

(I - AM )u = f 
d- -

d 1,2, ..• , 

as follows. The interval [O,IJ is devided into d equal parts by 

1 d - 1 o < d < '" < -d- < I, and! (= !d) 
i 

has components fi = fed)' whereas Md 

-1 i 1.' 
has entries Md(i,j) = d K(-d' d)' 

Fredholm's determinant 1S defined as follows: 

I 

I - A J 
o 

1 

K(t,t)dt + ~~ f f 
o 0 

K(tl,t l ) 

K(t 2 ,t)) 

+;~ fff+···· 
It is the limi t, for d + 00, of 

K(t l ,t2
) 

K(t
2
,t

2
) 

d d 
+ (- 1 ) A x de t M d 
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As a consequence of (3) and (4) we have 

This is in agreement with (2). Thus, Fredholm's equation may be solved in 

terms of permanents. 
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