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Partitioning and eigenvalues 

Willem Haemers 

Let A be a complex hermitian matrix of size n, which is partitioned into 

b L,ck-matrices: 

... 
A 

such that A .. is a square matrix for all 1 ~ i 
1.1. 

m. Let B be the matrix of 

size m, any element b of which equals the average rowsum of the block A ..• 
1J 

Then the eigenvalues of A and B are real numbers, and it is known that the 

eigenvalues of B lie between the largest and the smallest eigenvalue of A, 

cf. [I J, [3J where this fact used under the name Higman-Sims technique. 

Here we prove a more general result: 

Theorem. The eigenvalues a
l 

~ 

of B satisfy 

~ an of A and the eigenvalue 6} ~ ~ a 
~m 

a .::; S. n-m+1 j 
for all 1 ::; i ::; m • 

Tht.s property is often expressed as lithe spectrum of B interlaces the spec­

trum of A". 

Proof. Let d. be the S1.ze of A ..• Consider the m x m matrix D. and the m x n 
-- 1. 1l. 

matrix S defined by 

d 

r ol 
n 1. ... 1 J 

!~ I J 
D := Idl; s ;= D -1\ 

0 d I C) L ffiJ I 
I , 
L 

d
J 

d 
~ '1 \ m 

~ 

0 0 

°1 I L .•• 11 
1 I .... 11 

C) 0 -
-II •••. lIj 

Then we have B I, as can easily be verified. 



Let T be a matrix of Slze (n - m) x n, whose rows torm an 

of the orthogonal complement of the row-space ot S, then 

RH n-l C . RAR- 1 b' ::., • omputlng we I) taln 

SATl 

TATHI • 
...J 

orthonormal basis 
'I c i ~ .-

R :"". I satlst 
IT 

Now the theorem is proved, because the spectrum of any principal submatr 

of a hermitian matrix interlaces the spectrum of that matrix, cf. [2J, p. 119. 

Indeed, B is cospectral to SASH, which lS a principal submatrix of the 
-I 

tian matrix RAR , which is cospectral to A. 0 

Remark 1. If any block A .. ha.8 a constant rm.rsum then AS~ "" sHDB, as can 
1J 

easily be verified. If in addition B has eigenvalue B~ whose eigenspace. is 

spanned by the columns of X, say, then we have AX :::: EX, :\SHDX = S~BX" ASHDX. 

Hence the column-space of SHDX is an e of A belonging to the eigen­

value B. So in this case the spectrum of 73 is a sub(multi)set of the spectrum 

of A (note that in thi cuse we do not need to take A hermitian), 

Remark 2. Let B, D and S be defined analogous to B, D and S, but with respect 

to another partition of A, which is a refinement of the above partitioning. 

Th,>u the spectrum of B interlaces the spectrum of B (note that in an extremal 

case we have A = B). This can be proved in a similar way as above: f st rea­

lize that DBD- 1 = SSHnBD-lssH~ and SSHsSH '" I, then let SSH do the job. 

Remark 3. Of course everything remains valid if "rowsum" 

"columnsum". 
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