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Abstract

Different placement of actuators in mechanical systems results in different system
behavior. In this discussion the placement of the actuators is optimized in order
suppress resonant vibrations as good as possible. Vibrations in actual experimental
facilities are common and have to be avoided. There is a method that helps avoiding
this, which involves the use of the controllability- and observability gramians and this
will be applied.

The theory behind this approach will be explained, followed by an application

on a test system. This proved encouraging results and therefore this method was
applied a more sophisticated system, subject to this discussion. For this system some
extra influences were examined as well. In conclusion this approach for vibration
control will be tested and validated.
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Introduction

This traineeship is part of a much larger project and is subject of this discussion. The
larger project entails control of a beam, with movable actuators and sensors. The
beam itself is supported, the main goal is to try and suppress the beams resonant
behavior. In mechanical systems usually actuator and sensor locations are kept at a
fixed position and are known beforechand. The idea in this discussion is to optimize
these positions with respect to the dynamical behavior of the system.

S T

A method to optimize actuator and sensor locations in motion and vibration
control of flexible structures is based on the use of the controllability- and
observability gramians. These gramians represent a quantitative measure of
controllability and observability. For linear flexible systems it will be shown that this
is not computationally intensive; only the eigenvalues of the gramians are needed and
calculating these can be done very efficient for only the systems modal behavior is
needed. In applying this method one is looking at the mechanics of the system, not
needing any knowledge of the used controller. First the gramian theory will be
explained in greater detail. Then this will be applied on a mass-train system via
simulation to confirm and understand the method. This will be applied on a model of
the beam system, used in the larger project. Here extra influences will be examined as
well. .

The goal of this discussion is to examine if this type of knowledge of system
behavior depending on actuator and sensor placement can be used to improve system
performance. The performance criteria will be defined later. Finally some conclusions
and recommendations will be given.
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Chapter 1: Gramians

§ 1.1 Introduction

In flexible systems eigenmodes are inherently present. When placing an actuator in
the vicinity of a nodal point of an eigenmode, the actuator will need unrealistic large
forces to control this mode. Placing a sensor here would not yield useful information.
The importance lies in the fact that when a system is already under a control law, this
law will be unable to control this mode! It is therefore useful to take into account the
systems modal behavior. The complete system response is usually determined by a
few of the lower modes. Using a method based upon the gramians it is possible to
choose how many and which specific eigenmodes are included for the actuator and
sensor placement optimization.

In reference [1] it is reported that only the lower eigenmodes have to be
considered since higher modes (in a physical system) are harder to excite. The
bandwidths of sensors and actuators cannot respond to the highest frequent modes and
also the computer capacity is limited. The gramian theory, the basis for this
discussion, will be explained here.

§ 1.2 System

A lumped mass-spring-damper system is described as follows
Mj+B,g+Kq=f, (1.1)

where state vector g is (n,1). M, B, and K are respectively the mass-, damping- and
stiffness matrix all having size (n,n).

The vector g can be seen as a superposition of all eigenmodes as represented by below
as a result of the expansion theory

g(®) =wm () +...+u,n, () '—'iéuiﬂi(t) - (1.2)
q(t) = @n(?)

In this Equation @ is the eigenfunction matrix and is the solution of the eigenvalue
problem consisting of the differential Equation (1.1) without the damping term as
seen in the following Equation

(K —0*M)-® =0. (1.3)

This can be used in writing the system into normal form. For small damping this form
is allowed. This assumption is made through this entire discussion and later on some
additional reasons will be stated for why damping should be small. For writing this
system into normal form, Equation (1.2) is substituted in Equation (1.1) yielding the
following




q(®) = Pn(1);4(1) = @7(2);4 (1) = D7j(t)

M®7i(t) + B, (1) + KOn(t) = f(2) (1.4)

Pre multiplied by @ standardization occurs to the system matrices, which results in
the normal form presented below

O MOij(f) + OB, D1(t) + D' KD 7(r) = DT £ (2)

(1.5)
M. ii(0) + C,i(0) + K,n(1) = D" £(2)

By normalizing to the mass matrix, the modal mass matrix becomes a unity matrix:
®"M® =M, = 1. The damping and stiffness matrix both become diagonal matrices.

The system can be written as is seen below
;1(771 +2§ia)i7'7i +a)i277i = cDTif(t)) . (1.6)

This can be done only if C,, is chosen diagonally with 2Z;@; on the diagonal. The term
¢ [-] denotes the choice for modal damping. All equations of motion are now
decoupled and are similar to a set of independent 2™ order equations.
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Figure 1.1: 2™ order mass spring system

In [2] the system is converted into state space form, with state vector q as
I. . T ;
q:l.nl’a)lnl""’nn,wnnn] ’u_—.[ 17""fn]T’ (17)

with the advantage that modal displacement and modal velocity corresponding to each
mode are now about the same magnitude. This has computational advantages and is
therefore implemented. This yields a state space representation as stated below,
written for single input single output system at position p

gq=Aq+B u
nr (1.8)
v,=C4q

where the system matrices are defined as follows




. li_zé’iwi _wiii
A=diag(4,);4; = 0 ; (1.9a)
_q)l(p)_
0
B,=| i C=[0 o(p)/w .. 0 @, (p)e,] (1.9b)
,(p)
L. O -

Suffix p in Equations (1.9a) and (1.9b) denote the actuator position. Currently matrix
C represents position sensors. If velocity sensors are used the matrix has to be altered

slightly.
§ 1.3 Controllability Gramian

An actuator in a structure should be placed in such a way that the structure can be
controlled with minimum effort and disturbances can be controlled optimally. This
minimum effort can be calculated by solving the following minimum energy problem

[3]

Minimize T(u) = [T u” (Ou(t)dt, (1.10)

as known as the optimal control problem to change the system from x(0)=x, to
x(T)=xr. Here T denotes a terminal time or.end time. With this terminal time a
terminal constraint is given, which yields that this problem is numerically solvable
([3]. The terminal time is related to the systems response (e.g. speed of response) and
is usually unknown this early stage in the design process. Equation (1.10) can be
expanded to take into account boundary values of systems input and state during
transition. These conditions will effect this terminal time ([3]).

For a system is positioned towards a desired state as a result of an input u(%).
The optimal solution for this problem is given by the following Equations as seen in
[2] and [3]

Uy = BT OW N (TYe™ x, — x;)

. (1.11)
Doin = (eATxo - xT)T w (T)(eATxo —Xr)

Equation (1.11) for minimum control energy (I'min ) contains the term win). w

represents the controllability gramian and is defined as follows [2] and [4]

W) =] e*BB e dr . (1.12)

Since the reciprocal of the gramian appears in the minimal control energy it means
that if W (T) is small, some states can be positioned from x; to xy only if very large
inputs are used. If W/(T) is small it means its eigenvalues are small because of de
decoupled nature of this system. Also this is almost the same as stating its diagonal -
elements are small, since it is (almost) a diagonal matrix provided modal damping
ratio (£) is low. An extra condition is that the eigenvalues have to be well spaced. This
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is explained in more detail in [2]. When these assumptions hold the energy transfer to
specific modes is high for larger values of the eigenvalues of the gramians then for
low values.

In Appendix A4 it is proven that Equation (1.13) holds for 7' — oo, given that
the system matrix 4 is asymptotically stable

AW, +W, A" +BB" =0. (1.13)

W, denotes a steady state solution as seen in Appendix A. This is a Lyapunov
equation of which the result is the time independent controllability gramian W for t -
oo It is proven, [2], that when taking the terminal time 7" — oo the term W(7) will
equal this constant .. The choice of T influences the modes and by taking an infinite
terminal time this dependency is eliminated. This has a number of advantages as
mentioned in [2]. However choosing an infinite terminal time has a huge consequence
on the optimal input seen in Equation (1.11).

The link between the controllability gramian and the system is of importance
for it will result in an optimal location for actuators. From [2] it follows that the
system energy (kinetic and potential) can be written as a sum of energetic '
contributions from each mode

B, = )y S0E, =}y Z o (1.14)

Both expressions in Equation (1.14) can be expanded as seen in [2]. It can be proven
that the eigenvalues of the controllability gramians are equal to these expanded
expressions added together to form the total energy of the system (kinetic and
potential energy). This is true if damping ratio is small and the eigenfrequencies are
well spaced. It means the assumptions taken still guarantee the gramians reflect
systems energy. V

§ 1.4 Criterion for Actuator Location

A criterion is needed to easily see if an actuator is ill placed on a specific location or
not. This performance index should drop sharply around the nodal points of a mode. If
the first few eigenmodes are taken into account in actuator/sensor placement, more of
these drops will occur. In [2] a performance index is suggested, which is in fact
energy based. This performance index is presented here

P[=(§,1jjzn/ﬁ/1j : (1.15)

Here A represent the eigenvalues of the controllability matrix. If an eigenvalue tends
to zero, it means an actuator is close to a nodal point and the PI should drop sharply.
An advantage of this index is the use of the product. If only one gramian eigenvalue
(representing an eigenmode) is small the PI will drop as it should.
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§ 1.5 Observability Gramian

For the sensor location the solution for optimizing position is very similar to that of
the actuator. Observability can be seen as the quality a mode can be measured from
the system. This means the contribution of individual modes should be high to
warrant high observability in a specific position. If the system is released from
x(0)=xp with u(1)=0 and ¢ > 0 output energy is defined in the following Equation

[y @yt = x5 0x,, (1.16)
where Q is the observability gramian [2], which is shown in the following Equation
0= e CTCe™dt. 1.17)

This gramian is also nearly diagonal, which means the observability gramian is nearly
singular (one or more eigenvalue(s) nearly zero) some initial inputs have little effect
on the output. Again the solution (appendix A4) for time to infinity

A'Q +0.A4+C"'C=0, (1.18)

holds given the fact that system matrix 4 is asymptotically stable. Similar as for the
controllability matrix the eigenvalues represent the observability. Because of the
similarity only the performance index is given. The 4 seen in Equation (1.15) now
represents the eigenvalue of the observability gramian.

§ 1.6 Numerical simplification

There is a way of computing the eigenvalues of the gramians directly from the modal
properties of the system. It is stated that modal damping must be low for Equation
(1.3) to hold. The gramians have terms on the diagonal values, which are proportional
to 1/{. All other terms of the matrix are either independent or proportional to {
meaning that for a low modal damping the gramians turn into diagonal matrices.
Eigenvalues are the diagonal element of diagonal matrices. Therefore we can simplify
the gramians

4c.0; A0, ‘ (1.19)
P ’ )
Bi=>.2,(p)®:(p,)
g=1
C .. C ;.
O, =diag ["—Eﬂ_a"—@“]
45,@,- 4é,ia)i (1.20)
-~O0,(p)0,(p,)
e = Z P (p,
k=1 col.a)i

This means that the eigenvalues needed for the performance indexes (Equation (1.15))
can be directly calculated for any actuator and sensor location. The information




needed are the modal parameters: eigenvalues, eigenfunctions and damping
coefficients. This provides with a simpler numerical way for calculating the

performance indexes.

10



Chapter 2: Applying Gramians

§ 2.1 Introduction

Chapter 1 explained the theory idea behind the gramians. Before applying the
gramians to the more complicated beam structure, first a simpler system is used. This
is done to get a feeling in using the gramians.

2.2 Test Syst

o«

X1 X2 X3 X4
b > b » b » b »
T m —— m — m —— m
o — . 00— ] 72—
k k k k

Figure 2.1: Mass train (4 masses depicted)

The system is fixed to the existing world with a weak spring and damper. This damper
spring combination is needed to guarantee the modal form is indeed decoupled.
Without this first damper conmecting the mass train to the fixed wall &'D,® will not
be diagonal.

This system is written in the state space formulation as stated in Equation
(1.7). The specific second order differential equation for this system stated in
Equation (1.1), will be written in normal form as mentioned earlier. First only one
actuator and sensor are applied. The first nine eigenmodes of this system are depicted
in Figure 2.2.

11
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Figure 2.2: First nine eigenmodes; ylabel: scaled displacement eigenmode, xlabel: beam elements.
The first eigenmode (rigid body mode) can be seen in top left of Figure 2.2. The
gramian theory is applied for the first and second mode (Figures 2.3 and 2.4).

x 10

x 1¢°

1.38

PIO.G., noe =30

.68

ot

£
35 --r? i
gz”
3.45 : : 13 3 :
10 20 30 g 10 20 30
Elements Elements
scaled Pis eigen mode
PR flcosata SEEOBROEEDE0RE
G5t
g6+
0
G4 5
0zl 0.5
0 ; i : ; " ; ; ; H i
5 10 15 20 30 5 10 15 20 25 30
Elements Elements

Figure 2.3: First eigenmode gramian result; C.G is Controllability Gramian, O.G. is Observability

Gramian

12
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5 T . : :

Elements Elements
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05¢
0
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0 g 4 i i i i : ’
15 3G 5 10 % 20 25 30
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Figure 2.4: Second eigenmode gramian result, the second eigenmode is depicted in the right bottom
figure; n.o.e is number of elements.

In these performance indexes only the eigenmode represented in the lower right plot
of the figure was considered. The diagonal elements were used here instead of the
eigenvalues of the gramian matrices. When taking the eigenvalues, using the
eigenvectors is needed for coupling these values to the original states. This is
numerically easier, and provides the same results theoretically. It has been verified
and for small damping both methods are equal. However coupling the eigenvalues to
the corresponding states proves difficulty. This will be explained in detail in Section
6.3.

Before interpreting Figures 2.3 and 2.4 first what should be expected is
mentioned. The first mode (Figure 2.3) is a rigid body mode. This eigenmode has no
nodal point and therefore all positions of the beam should result into the same value
for the performance index of controllability as well as observability. The results show
this, the scaled performance indexes give the best representation. The rigid body
mode is not completely rigid; this is seen in the eigenmode (Figure 2.2) and in the
performance indexes. This is due to the small spring-damper that connects the mass
train to the existing world. The second mode has a nodal point in the center. As
explained in Chapter 1, the performance index should be zero at this point. From just
off the middle position till the start (or end) of the masstrain the eigenmode starts to
increase in absolute value (represented scaled) and so should the performance indicis.
As seen in Figure 2.4 this is correct and shown. For higher order eigenmodes the
results also confirm the theory.

For two actuators and two sensors a three dimensional representation can be given of
the gramian results with on the two axis the first and second actuator / sensor location
and the performance index on the remaining axis. Figure 2.5 and 2.6 are the
representations of the second and third mode seen in Figure 2.2.

13



ahndhe

3D surface scaled Picg

g

,,
!

Pl

0 Actuator 1

Actuator 2

Figure 2.5: 3D gramian results 2 actuators / sensors mode 2 Figure 2.2,
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Figure 2.6: 3D gramian results two actuators / sensors mode 3 Figure 2.2.

14




t elndhoven

Tu gge serhnische yniv

These two 3D representations in scaled form equal the results obtained in the case of
one actuator / sensor if only the two diagonal positions are viewed (a crosscut of
Figure 2.5 and 2.6). As seen the results again confirm what is theoretically expected.
On the nodal points the performance indexes equal zero, around the nodal points the
performance index slightly increases. On points of great excitation the performance
index goes towards a scaled value of 1. As can be seen in Figures 2.2, 2.5 and 2.6 the
number of nodal points in the eigenmode is the same as the number of dips on the
diagonal of Figures 2.5 and 2.6. Also the scaled performance indexes of the
observability and controllability are equal.

15



Chapter 3: Bernouilli-Euler Beam

§ 3.1 Introduction

In this Chapter gramian theory is applied to a model of a beam structure. The beam
system will first be defined, and then the gramian theory will be applied. The chosen
position of actuator / sensor will have consequences for the system with respect to
mass for instance. This will also be extended on here.

§ 3.2 Beam system
The beam system is represented in the Figure 3.1 and consists of Bernoulli-Euler

elements.
W1 61 Wo 62 W3 93 Wy 94 Wy 95

He e e 12 1]¢

1]

Figure 3.1: Beam system; 4 elements, 10 degrees of freedom depicted

In [5] this type of element is mentioned with explanation about its make up. The
resulting element matrices are stated in as follows

156 221 54 —13I 12 6 -12 6l
_pdl | 220 47 130 =30 > g 4> -6l 20° G.1)
420 | 54 131 156 2217 P o|-12 -6 12 -6l|

~131 31> -221 4 6/ 21 —61 47

where

p = material density [kg/m’];

A = element cross-section [m’];

1 = element length [m];

E = Material Young’s Modulus [Pa];

I = element second moment of inertia [m*].

The damping matrix is chosen to be a factor 10~ times the stiffness matrix. The
mathematical background that defines this type of element is given in Appendix B,
which is based upon [5], [6] and [7]. The coordinate vector for this system is stated in
Equation (3.2) with suffix » the number of elements

g=[w,9%,w,,9,,...w. 8. (3.2)

n2>~n

16
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§ 3.3 Gramians Applied

Applying these gramians to this beam system is very similar to the application on the

mass train system discussed earlier. The eigenmodes are depicted in Figure 3.2.

Figure 3.2: Beam system first nine eigenmodes presented in translation form. Rotational form si
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The results for the third eigenmode (the first two are rigid body modes) are presented

below.

17
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Figure 3.3: Beam system Performance Indexes only the third eigenmode considered; 1 actuator and 1

The eigenmodes in Figure 3.3 are represented in a translational and rotational way and

individually plotted. The performance indexes again confirm what is expected based

upon the eigenmode.
Applying the gramian theory upon the beam a three dimensional
representation of the indexes with two actuators and two sensors is presented. This is

done for the fourth eigenmode containing three nodal points. These can be found in
Figure 3.4.

18
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3D surface scaled Pl cg

Plcg

Actuator 2 6 ¢

Actuator 1

Figure 3.4: Beam system Performance index only the fifth eigenmode considered; 2 actuators and 2
Sensors.

§ 3.4 Modal Damping Influence on Gramians

As mentioned earlier and in [2] damping must be very small to ensure the gramian
matrices to be diagonal. As indicated in Section 2.2, there is a difficulty in taking
along the eigenvalues of the gramians instead of the diagonal elements. The
connection between diagonal elements to the modes chosen is easy as seen in
Equations (1.19) and (1.20). When eigenvalues are calculated, they are the solution of
a characteristic equation. The eigenvalues become a solution of a polynomial. This
means the connection between the modes is gone. Taking along the eigenvectors of
the gramians this connection is regained. When the system has the modal damping as
is currently used in this system (the damping matrix is a factor 10~ times the stiffness
matrix) almost all eigenvectors have an empty vector with one value 1.0 [-]
abbreviated. Very few eigenvectors even now have two somewhat larger elements
(0.8 [-] and 0.2 [-], the rest 0.0 [-]). For the standard case with low damping, this does
not result in a problem and there is no difference in taking along the diagonal
elements or the eigenvalues connected to the modes by means of the eigenvectors.
When system damping is increased, these eigenvectors contain two or more larger
elements. These are however both in the same order of size and the connection is lost
again. Also with larger damping the diagonal elements no longer equal eigenvalues
because the gramian matrices are no longer diagonal. The connection between the
eigenvalues and the modes is therefore not conclusive, meaning gramian theory
cannot be used for large damping as also indicated earlier and in [2].

19
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§ 3.5 Mass influence actuator on Gramians

The data sheet of the actuator is given in Appendix C. It is a coil, which can be used
to apply force as a result of current applied on it. It is interesting to see the influence
the mass has. The effect on the gramians will be examined and an explanation is
sought.

Mass can be added numerically in several ways. For instance one can add a
point mass on the exact node on which the actuator is placed or increase the mass of
elements left and right of the node the actuator is placed. Both give about the same
result as will be shown. There is a difference in absolute mass addition sense in the
two approaches because it is hard to exactly equal point mass and element mass. The
shapes are the same and represented in Figure 3.5. Further mass is added along the
beam for one actuator only.

xi0° PG, no.e =10

PIC.G., noe. =10

0.2

DOF

Figure 3.5: Performance indexes with mass influence, higher graphical line consists with higher mass
in the top two plots of the figure.

The results show two important aspects for this first mode (this mode is
chosen to easily see the influences). The controllability performance index shows a
higher value at the ends for a higher mass and the value is the same for the middle
position. This result should reflect what is seen in the eigenmodes presented in Figure
3.6.
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Figure 3.6: System eigenmodes with varying actuator mass position

Figure 3.6 shows the eigenmodes in succession of 1 actuator placement along the
beam. As can be seen the eigenmode for the middle position of the actuator is almost
rigid body. This can be seen in the upper left of Figure 3.5 because the value of the PI
is the same. At the ends the eigenmodes per mass position are higher then at the
without the mass added. From the eigenmodes this is what can be expected. At the
end the mass added yield the largest deviation of the eigenmode. These gramian
results are a representation of this meaning the results are as they should be. Also the
eigenfunctions are squared in the gramians, which explains the curvature. The shape
for the observability gramian performance index does however show a difference at
the middle position seen in the top right of Figure 3.5. This difference is a bit harder
to see and therefore we turn to the mathematical background, which describes all
effects.

The mathematical background is described in Equations (1.19) and (1.20). It
states that all information needed for the performance indexes is given by the
eigenvalues, eigenfunctions and damping coefficients of the system. When adding
mass one is changing the eigenmodes and eigenfrequencies of the system. This can be
numerically countered by using the eigenfrequencies when no actuator mass is added.
Indeed it can be shown that the observability and controllability results are again the
same shape (and equal when scaled). This means, the offset the observability gramian
shows is a result of the changed modal properties.

In Figure 3.6 one actuator is moved along the beam and its mass is added on
two adjoining elements of the beam model (nine different systems). A three
dimensional view of this can be presented where mass is added on for both actuators
in the same manner. This is done in Figure 3.7.:
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3D surface Pl cg

2 2
Actuator 1

Actuator 2

Plog

2 2
Actuator 1

Actustor 2

Figure 3.7: top: 3D Performance index controllability with mass influence on both actuators unscaled.
bottom: the same for observability. The top planes represent added mass.

When placing actuators symmetrically the first eigenmode of this system will be

nearly rigid. This is represented in Figure 3.7 by the diagonal crosscut that does show
the elevation due to mass addition in the observability PI. However on the sides of
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this cross cut the mass less situation is resembled. The other crosscut resembles the
-case where one mass is moved along the beam only twice as much (two actuators).
For this mode the influence is shown and an explanation is found. The same
can be done for other modes and the explanation can be sought in the systems modal
behavior.

§ 3.6 Stiffness Influence Actuator on Gramians

The same background that has been described in the previous Section can account for
the results of stiffness variation. Here the same way the mass can influence the total
beam system; now the stiffness is changed at the actuator position. The two
surrounding elements to the actuator position have added stiffness modeled. For the
actual system this would mean flexibility would change locally on position of actuator
connection. Again a two dimensional and a three dimensional representation are
given, respectively in Figure 3.8 and 3.9. Figure 3.8 presents the case for a single
actuator resembling the diagonal crosscut of Figure 3.9 (the line where actuator 1 and
2 have equal position). What can be seen clearly from the scaled representation of the
performance indexes in Figure 3.8 is the small difference. The three dimensional
representation for the added stiffness does show a less smooth graphical
representation (lower green plane). This again is a consequence of the modal
behavior.

w10t PIC.G., noe =10 x 10 PICG, noe =10

3.964

02}~ ¢

2 4 8 & 10
DOF

Figure 3.8: Performance indexes with stiffness influence, higher graphical line consists with higher
local stiffness.
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3D surface Pl cg

Actuator 2 Actuator 1

Actuator 2 2 2

Actuator 1

Figure 3.9: top: 3D Performance index controllability with stiffness influence on both actuators
unscaled. bottom: the same for observability. Top planes represent added stiffness.
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Chapter 4 Gramian Validity

§ 4.1 Introduction

Adding a controller to the system will enable it to follow a certain trajectory.
Vibration control entails that disturbances on a system must be dealt with and this is
dependent of the actuator/sensor placement. In motion control, the goal is different as
will be shown. In this Chapter a controller for tracking will be derived. This will be

followed by the application of motion control and looking at this from both control

and a vibration point of view. Concluding the results will be given regarding the value
and usability of vibration control.

§ 4.2 Vibration control versus motion control

Experimental setups experience disturbances that can excite eigenmodes. Such
disturbances can then result in a vibration that cannot be influenced by actuators.
From a vibration control viewpoint these nodal positions have to be avoided. In
motion control this is different. Actuating a system to track a certain path, the modal
coordinates reveal the amount of error of each eigenmode. If one eigenmode is
dominant and the actuators are placed at the nodal point of that particular mode, then
the belonging modal coordinate will be negligibly small. This mode will not be visible
in the systems behavior. Nodal points are thus preferable in motion control. This
means there are contradiction demands for vibration and motion control.

§ 4.3 Creating Controller
To ensure equal bandwidth of the open loop system with different actuator placement

the controller should be adjusted per position. This is because of the difference in
system due to actuator placement. This is shown in the following Figure.

25



=
5] ho IR
) QT by
= .m v
_.M g m =} mm
<] W v =2 =}
B 5] w =2 m T E
T T T ot | = Py [pupal: Suisloiu: papupey Spui bege
! &0 = 7 et cEEC b e ek B - AEREE S i
Y : i) SERAN I e cooor
Sa® A s e S o T e :
EE® g ©g§ELg vl q
AISMH m o n.rv ﬂ’fm T L e Y I B .ﬂ
SRR ) He= o © |
[sJo s Q — =5 O w Fzozss £zcoz3
Z22Z @ 8 @ 0T =3 FZZiZzzoiz3spezsy =~ Ezis iz::
ol , e ey 95 S @ fooii
H y 8 1mu o S04y beeesaooooofooood Laoo 1
O M v [o m I I - (R S
E— QBSOS Eg o feedeied L :
Q [ "
£ TES IS pebeif b
£8 < cws Loioodo v L. !
, 8 ©—~0.87 FEEEE S
............................................................... . s g8 A ERLC Fooozamooiopiiooo H Selebets eieiebed et e
............. A = . 7 < 8= B A
7 Q = = m O o N R I . e i
e O 5 8 »  3r----- e et
v H5& OBow @ 5|l I
! 3 a7 m.l o o a9l 2 T !
£ m m rﬁ“ oy & _ b !
llllllllllllllllll [ F-Z-Z2IZ222
s o8& WoTW ST mEif & F:ti
% o o 2B o BRI 3 foitt
~E @8 3 o JIi g [
by 2N m n Z Zheee-- o be--2
SR - T - 5PV B e A S g :
o @ o O g Im Lo fa o L Lo
A < T o R o= T
0 B ORI ) :
% o] < 9= o Lo L1
2 8 5 .- 2.4 Q FzZz:s SEEEE:
Lo FEAFE [ SRS SR R
. SE BBR B [l b :
% aw S 835 7 e P R I
=] Q]
- 5 O v O0C I L IR, AR ST (R '
£ RBELSY ;
g2 83 M e S R I IO T I "
: & v 5 2 S Wo FIIIIRTIiI: Fz-z3zazs
7 rm matm.M.l E - fozzz
: 0 O S aiautute Suiebtots I Mol it S
. m 2 2 0 5§ S e T e e S IR T
: /.g : ; 8 S R R = B~ e s it I st i S Hi
i I I i i i i i BN i Sth%mf.m ......... [ S
g 8 8 8 ° 88 8 8 8 8 8 - ¢ 273 ° 8§ " ]
(3] — = 1 Rrd o~ o o [0 — QL on e m |21 | ! b
ap opnubew _ . . _ < HEESER? g g = & 3 af
i o — < W n 8 1% =] B B 5
e a p— 1
.mb b5 m 1onuu G m,. m {gp] uen [Bap] eseud
= T loEBESS

26

Frequency [Hz]
Figure 4.2: Tuning the system to a desired bandwidth as seen in open loop behavior

! Only the general idea of controlling is presented. The resonance peak around 42 [Hz] can be dealt

with.
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For controller a simple lead lag is chosen, this provided enough for system stability.
The exact controller used is seen in Equation (4.1). The frequencies are chosen
logarithmically symmetric around 10 [Hz] resulting in a stabilizing phase advantage
at that frequency

where

P =100 [-];

fi=10/3 =3.33 [Hz];
f,= 10*3 =30 [Hz].

§ 4.4 Motion Control

Two actuators will actuate the beam system symmetrically and in the same direction
under the same control law. This means certain modes will not be able to be excited.
The mode shapes are shown in Figure 3.2 and it is easy to understand the second
mode will not be able to be excited because of the symmetric actuator. Simulations
also reveal this, the second?, fourth, sixth, etc. modal parameter is, when plotted
against time, negligible small. The system will follow the desired path as seen in
Figure 4.3. The path is obtained from the larger project in which this is desired.

2

-
(3]

—t

pos [m or rad)

=
n

Figure 4.3: prescribed motion path

In Appendix D the first eight modal coordinates are presented. As can be seen the
fifth modal coordinate has the same order as the third. In a system containing 23
elements the (closest thing to) nodal points of mode 3 lie at node 6 and 19. Mode 5
has its two peaks or maximums there.

The tracking behavior when deviating actuator position is depicted in
Appendix E. Two motion control situations are simulated and tracking control is
compared. The choice of the two situations will be further explained in Section 4.5.
The first situation is when the actuators are placed in the nodal positions (Node 6 and
19). The second situation is moving the actuators to the edges. Comparing Figure E.2
with E.4 confirms what is to be expected based upon motion control. The error is the

21, is of order 10”* but multiplied with its eigencolumn its effect negligible on physical coordinates.
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smallest when actuators are placed in the nodal points. In addition the edge positions
yield a controlled system, which when compared has a higher cross over frequency.
The systems transfer function is the top one in Figure 4.1 so it is logical that when
using the same controller as in the nodal situation cross over frequency is higher.
Even with this higher cross over frequency the system performs worse in the edge
positions. This confirms that tracking can be done best when actuating in nodal
positions.

Important to realize is that the number of elements and thus the number of
points is discrete. This means that when a node is picked it can be simply very near
the nodal point but not exactly on it. This can be seen in Appendix D where the third
modal coordinate is not negligible but in the order of 1*1 07. This discrete problem
remains even when taking 100 elements. When the nodes closest to nodal positions
were taken (large matrices thus large computational time) node 23 and 79 had their
‘almost negligible’ eigenmode deviation in the opposite direction of the deviation in
eigenmodes at those nodes at the fifth eigenmode (Figure 3.2). Node 24 and 78 had
this deviation in the same direction. This can be seen in Figure 4.4. This small discrete
step reversed the modal influence. Keeping the same system description it is to be
accepted that the exact nodal points will not be excited. This is important when
validating the gramian theory.

wagt Node 23 and 78 w400 MNode 24 and 78
5 ‘a 1
f 05
mb“ 0 L ; m;‘ G % f :
05 b
-5 L . -1 .
& 0.5 1 15 2 0 a5 1 1.5 2
-4 -4
0
6 ¥ 10 s X1
4 4
H
2 2
= o 0
o -
2 = 2
Wy
-4 B}
B . -8
4 2 g as q 1.5 2

Time’f[sec}
Figure 4.4: Visualizing the discrete problem when taking along 100 elements
§ 4.5 Vibration control
As Equation (1.2) states, the physical coordinates are summations of the modal

coordinates. The modal coordinates will be seen as a ‘cause’ and as such can be used
in the performance indexes. When applying vibration control a choice in actuator
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placement should be able to suppress the lower modes should. The performance index
when taking along the third and fifth mode is given in Figure 4.5.

PIC.G. noe =30 x10® PIO.G. noe =30

14 25

Progl-]

&
b

0 10 sca@fplis 30 40 0 10 20 30 40
- _ DOF

15 20
DOF

Figure 4.5: Performance indexes with the third and fifth mode (30 elements used for good
. representation).

It is then assumed the fourth mode will not be noticed. Testing the system on an
impulse force however also the fourth mode will be noticed and therefore taken under
consideration. Figure 4.6 shows the three dimensional view of this. The three
dimensional view for considering the third, fourth and fifth eigenmode is shown in
Figure 4.7. As seen in the middle the shown performance index is lower. This is
because the fourth eigenmode has a nodal point there. With both actuators exactly in
the middle position of the beam the index shows a sharp drop. Now the end positions
clearly show the best result and that is why these positions are chosen in validation -
and compared with the nodal point of the third mode.
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3D surface Plcg
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Actuator 2 6 g Actuztor 1

Figure 4.6: Perfbrmance indexes with the third and fifth mode, 3D representation

3D surface Pleg
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60 .

Pleg

40

20

Actuator 2 0 5

Actuator 1

Figure 4.7: Performance indexes with the third, fourth and fifth mode, 3D representation
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§ 4.6 Validation Vibration Control

Appendix F shows the results of a simulation with an ‘impulse’ force (of 0.01
sec and an amplitude 10 [N]) placed on the middle of the beam. The beam is then left
to settle again to the original condition. The chosen two situations are with the
actuators on the beams edges and in the mentioned nodal positions of the third
eigenmode. Figure F.1 shows the first four modes for both situations. The third modal
coordinate is important for it shows the validity of this gramian theory. In the nodal
position the influence of this mode is smaller in size, but as can be seen especially in
the enlarged Figure F.2, the mode is less damped. The oscillations in this mode go on
longer then in the situation where the actuators are placed on the edges. When the
actuators are placed here the third mode is more easily suppressible. This concludes
proving the validity of the gramian theory.
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Conclusion

The theory of controllability and observability gramians is shown to have a
representative view on system behavior. However a number of assumptions about the
system have to hold such as well-spaced eigenfrequencies and low modal damping.
These assumptions and their consequences have been confirmed and seen as valid
assumptions. They even gave some numerical advantages and these advantages did
not lower accuracy, which is important since it simplifies calculation. Taking along
actuator mass and stiffness is possible and showed logical results. The concepts
motion and vibration control are very different as has been shown. Both concepts
have been presented and shown to work or act as expected. Since the gramains are a
representation of modal information about the system they can always be taken into
account when vibrations are noticed or anticipated. However an experimental modal
analysis would be required in application.

The problem that remains now is where does one place emphasis; tracking
behavior or vibration behavior. They cancel each other out meaning a sort of balance
between the two is either case dependent or kept as variable in the control problem.
When keeping it as variable one could chose to switch actuator positions when the
influence of the vibration becomes too large. However this will give rise to other
problems, e.g. the time needed to switch between 2 actuator positions will have to be
looked at more thoroughly.
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Appendix A: Proof Gramian Approach

The following basic mathematical statement is used in proving Equations (1.13) and
(1.18)

f(x) =15 F(y)dy

i . Al
d]:(f) =15 diff’) dy+F(0) = F(y)|, + F(0) = F(x) (A
Ua W}’
In proving Equation (1.13) the following holds
W =[' e"BB e ds, (A2)
At T A%t
iy =1 X BB ) g o) =
s (AeA’BBTeAT’ +e*BB "' 4" }h +BB" = . (A.3)

Al e*BBTe”" + [ e“ BB e”" - A" + BB =
AW +WA" + BB”
This results in a time dependant relation. For time going to infinity the system, if 4 is

asymptotically stable, will settle. Thus #(z) will go towards a constant ‘steady state’
W.. If W(t) goes to a constant its time derivative goes to 0

W(t)=0=AW +WA" + BB", (A.4)

and this is the same as stated in Equation (1.13). In proving Equation (1.18) the
- following holds which is very similar to what is mentioned above

0= e*'CTCe" dt, , (A.5)
i d eATtCTCeAt

00 =11 i 00) -

I (ATeA”cTCe‘" + eAT’CTCeA’A)a’t +C'c= . (A.6)

AT [ e?CTCe® 41 e*'CT Ce - 4+ CTC =

A"0+04+C'C

Again for time goes to infinity the system, if 4 is asymptotically stable, will settle.
Then the time derivative goes to 0 as seen in the following equation

0(t)=0=A40+04" +C"C. (A7)
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Appendix B: Euler-Bernoulli Element

The mathematical background for the Euler-Bernoulli element will be explained here
meaning its mass and stiffness matrix will be derived. However there is, for the
definitions of the mass and stiffness matrix, a theoretical background concerning
equations of balance®. These can be found in [4] and [7] but will not be discussed
because it is not needed for this discussion.

9!

Figure B.1: Euler-Bernoulli element.

Thé basic build up of aBernoulli-Euler beam is seen in Figure B.2. The displacement r
depicted below: r(x,z) = -zg. An extra assumption of small deformations is needed

will means tan ¢ = ¢.

% Deformed beam element

_’-—‘d_.‘ﬂ-'

I

| ~

bt ——— piai

Undeformed beam element

Figure B.2: Hypotheses for Bernoulli-Euler beam

The displacement u(x) (the z direction in Figures B.1 and B.2) for this beam is
presumed third order in local parameter x which is stated in Equation B.1. Vector a

holds the coefficients of the displacement

u(_x)=[1 x x x3_Ha1 a, a, a4]T=x-aT. | B.1)

The degrees of freedom ¢ = [w;, %, w,, %, | are depicted in Figure B.1. This with

Equation (B.1) yields the following Equation
w, =u(0) = g,

9 =u'(0)=aq,
w, =u(Ly=a, +a,L+a,l’ +a '’
9, =u'(L) = a, +2a,L+3a,L’

(B.2)

3 In dutch this is the “gewogen afwijkingen formulering”
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which can be represented as below

1 0 0 O
01 0 O r ;

qg= VLI a =M -a . (B.3)
0 1 2L 37

This means that a” = C™'q, which in turn means that u(x) = xC™'q = Ng . This

transforms the degrees of freedom into a continuous displacement formulation. This is
also known as the method of Galerkin, which creates a discrete displacement function.
The vector N contains the interpolation functions for displacement. From [4] a

definition for the mass matrix is given and is stated in the following Equation
L
M = j PN NdV = | pN(x)" N(x) Adx . (B.4)
Vv 0

Vector N can be derived by multiplying x and C ! which yields the following
Equation ‘

x2 x3 x2 x3 x2 x3 x2 x3
N(x)=|1-3"322 x-2-- 4+ 3__22_ 47| B.5
) [ rr L 2 @ r L I (B-5)

Combining Equation (B.5) and Equation (B.4) then yields the element description as
stated in Equation (3.1). For the stiffness matrix the special notation of the equations
of balance (weighed difference method) has to be manipulated. This is described
excellent in the first chapter of [7] and will therefore not be presented here. The result
for the equation of the stiffness matrix is stated in the following Equation

K= j B(x)" EI - B(x)dx. (B.6)

This is Vector B is defined as the second derivative of vector N with respect to x. This
yields for vector B:

1 v
6 12x 4 6x 6 12x 2 6@ B

Bx)y=\-—+— ——+—5 —S——F —Tt+t5
(){Lz L L 2 2 r L I?

Combining Equations (B.7) and Equation (B.6) then yields the element description as
stated in Equation (3.1).

36



37

Figure C.1: Data sheet actuator
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Appendix D: Modal coordinates

Modale coordinate i1

08+

04l

0.24|

0 05 1 15
Tijd [sec]

x10°  Modale coordinate n3

G 05 1 15
Tiid [sec]

2

-4

6

0 %3 1 1.5 2

x 10t Modale coordinate n2

Tid {sec]

4™ Modale coordinate n4

05 1 1.5 2
Tijd [sec]

Figure D.1: Modal coordinate 1 through 4 of the beamsystem with two actuators given a desired path

w1g?  Modale coordinate 13

_5 N . :
o 05 1 15
Tijd [sec]
i x40°  Modalecoordinate n7
11
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o
05}
At
15 : ; ?
0 05 1 15

Tiid [sec]

given in Figure 4.3.

g  Modale coordinate nb
i
i
& b
_10 .
-15 : 2 :
¥} 05 k| 15 2
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10" Modale coordinate nd
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-5 i i :
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Figure D.2: Modal coordinate 5 through 8 of the beam system with two actuators given a desired path

given in Figure 4.3.
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Appendix E: Tracking behavior

Actuators at nodal positions
2.5 H El H N H H H t

displacement [m]
- i
{ 3
i i

©
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05 1 i i ) ! i H H
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Time [sec]

Figure E.1: Position beam nodes with actuators at nodal points
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Figure E.2: Tracking error with actuators in nodal points (node 6 and 19, 23 beam elements).
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Actuators on edge positions
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Figure E.3: Position beam nodes with actuators on edge positions
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Figure E.4: Tracking error with actuators on edge positions
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Appendix F: Impulse Response
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Figure F.1: System response under impulse force on middle node. First four model coordinates
depicted. Actuators placed on the nodal positions (red) and on the edge positions (green)
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Figure F.2: Third mode enlarged for gramian validation.
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