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Abstract-This paper describes an algorithm for automatic rezoning of the finite element mesh, which can 
be used in adaptivity techniques where the initial topology is conserved. Difficulties like the definition of 
an adequate mesh density, its continued interpolation and the description of curved boundaries have been 
overcome successfully. The algorithm has been used in some strain localization problems. The output of 
a first analysis with a coarse, constant density mesh is used as an indicator to control the mesh spacing 
in a subsequent calculation, leading to an improved solution. The improvement of the solution upon 
remeshing is shown. 

1. INTRODUCTION 

The phenomenon of strain localization in softening 
materials can be described as the presence of a thin 
zone where the plastic strain accumulates progress- 
ively, while the rest of the structure unloads. Not all 
the possible descriptions for a continuum can be used 
to simulate a localization phenomenon. The use of a 
classical continuum description leads to a mathemat- 
ically ill-posed boundary value problem, which has 
the consequence that the results are entirely depen- 
dent on the finite element mesh spacing. A higher- 
order or rate dependent method must be used in 
order that the solution converges to a unique, physi- 
cally meaningful value upon mesh refinement. An 
overview of most of these approaches has been given 
by Sluys [I]. 

The finite element simulation of localization prob- 
lems requires a large number of degrees of freedom 
to describe the phenomenon properly. This number 
should be large in the localization zone, but can be 
lower in the rest of the structure. If the position and 
characteristics of the localization zone are not known 
a priori, the analysis needs a number of elements that 
can be prohibitively large for practical computations. 

The difficulty can be overcome by adaptive mesh- 
ing techniques. The aim is to provide an element 
density in the mesh that is locally adjusted to the 
degree of non-linearity. A preliminary analysis is 
performed with a coarse mesh; the mesh is refined 
where needed and the analysis is repeated with the 
new, improved mesh. 

Most of the adaptive meshing techniques create a 
completely new mesh, but in some formulations the 
mesh topology (i.e. the adjacency relationship of the 
elements) is conserved. An example is the so-called 
Arbitrary Lagrangian-Eulerian [2]-[4], where the 

mesh motion is independent of the material displace- 
ments. The method was primarily developed for the 
analysis of geometrical non-linearities and fluid- 
structure interaction problems. In this article, we 
shall refer to remeshing techniques as rezoning 
algorithms. 

This paper is organized as follows: firstly, a concise 
review of the requirements imposed upon remeshing 
algorithms is given; on the basis of this, an algorithm 
for mesh refinement is developed. Finally, the devel- 
oped algorithm is used in a mesh adaptivity analysis 
of a biaxial shear-band test. 

2. BACKGROUND 

The developed remeshing algorithm belongs to the 
class of rezoning methods, in which the nodal pos- 
itions are modified to accommodate the desired mesh 
density at prescribed locations, while the global mesh 
topology (i.e. the adjacency relationship of the 
elements) is conserved. Rezoning techniques consist 
of defining a weight function at each point of the 
mesh and executing an algorithm such that the mesh 
is adapted in a fashion that the elements are small 
where the weight function has a high value and large 
where it has a low value. They usually result in an 
iterative procedure. Some important points in rezon- 
ing algorithms arc: 

l The weight function is dependent on the spatial 
position. This means that its value must be 
updated after every iteration is completed. 

. The weight function is rarely available in a closed 
form, because it usually derives from a previous 
analysis. Consequently, it must be evaluated via 
interpolation with the shape functions. 
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The resulting element size must be inversely 
proportional to the given weight function. This 
means that if the weight function has a value five 
in point P and a value one in point Q, the 
element P must be five times smaller than that in 

Q. 
The shape of the resulting elements must be not 
too distorted, in order to assure the reliability of 
the analysis. This is of special importance when 
quadrilateral elements are used. 
The remeshing algorithm should impose no limi- 
tations on the shape and topology of the dis- 
cretized domain. 

Typically, rezoning is performed by solving an 
elliptical equation by means of the Finite Difference 
Method, using forcing functions dependent on the 
weight function [5], [6], or by directly imposing the 
rezoning principle mentioned above, that is, the 
weight function times the element size is constant 
throughout the mesh [5], [7]. These procedures 
usually result in long calculations and do not handle 
curved boundaries in a clear way. Another possible 
approach is the spring analogy [8], but in this case 
relative variations of the weight function are not well 
reflected in the resulting element size. As a result the 
requirement that the element size and the weight 
function should be inversely proportional is violated. 

Giuliani [9] developed a remeshing algorithm for 
large boundary motion, as for instance occurs in 
boundary layers in fluids or in free surface flows. In 
this method the position of every node is adapted so 
as to minimize the average distortion of the elements 
to which it belongs. An iterative GaufHeidel pro- 
cedure is used to determine the final nodal positions. 
The explicitness of this algorithm makes it possible to 
modify it such that mesh refinement is allowed with- 
out a significant increase of the computing time. if we 
relate the element distortion to the desired element 
size. 

3. REZONING ALGORITHM 

The developed rezoning algorithm is based on the 
technique described by Giuliani [9], as mentioned 
above, and is described in detail by Gutierrez [IO]. 

3. I. Mesh den&J 

Let R be a domain discretized in finite elements. 
Consider a subdomain AR containing An elements. 
According to Cescotto and Wu [I I], the mesh density 
at point P can be defined as 

In this fashion, the total number of elements in fi can 
be written as 

PI= i 6dR. (2) 
Jn 

Equation (2) shows that 6 cannot be chosen arbitrar- 
ily in cases where the mesh topology, and consc- 
quently the total number of elements, must be kept 
constant. Now suppose that function \r is used as 
density. Then, the total number of elements would be 

m= c wdR. (3) 
Jn 

Without loss of generality, we can write 

n =km, 

where k is a real constant, or equivalently 

(4) 

n= 
s 

kwdR. 
R 

Comparison of expressions (2) and (5) shows how the 
mesh density can be obtained from the weight func- 
tion. Among the possible choices the simplest 
solution is to require locally 

6 = kw. (6) 

From expression (5) 

k = $dn 

and consequently 

* = jn;;,. 
3.2. One-dimensional rezoning algorithm 

For line elements the rezoning algorithm is based 
on the definition of an elemental distortion in terms 
of element length, which is later globally minimized 
such that the resulting elements have a length as close 
as possible to the desired value. 

3.2.1. One-dimensional distortion metric. The deh- 
nition of a one-dimensional distortion metric is quite 
simple. It is taken as the square of the analogon of 
the strain that an L-length bar would experience if its 
actual length were i, 

L-L 2 
D= - ( > L 

(9) 

The reason for the square is to avoid the sign effect 
and to provide function D with C’ continuity. Since 
the actual length of an element is 

i =.Y2-.Y,, (10) 

where X, and .Y? are just its nodal coordinates, the 
distortion metric D results in 
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(11) 

3.2.2. Minimization of the local distortion. The 

optimal values of X, and x2 are those which make D 
minimum. 

which, using eqn (I I), is elaborated as 

[_I -;][;;]=[-;I. (13) 

System (13) is an elemental minimization of the 
distortion. 

3.2.3. Minimization sf the global distortion. Next 
consider a one-dimensional domain 

n = {x E R(x, < x < x,, } (14) 

discretized in n line elements, e,, which can be defined 
as 

where x,, /’ = O-n, are the nodal positions. and an 
optimal element length L(x) is defined on every point 
of R. System (13) can be written for every element, by 
evaluating the optimal length L at its centre, in order 
to obtain a length L, for element e,. After assembly, 
the global system is 

-1 

2 -1 

--I 2 ‘.. 

‘. ‘. 

_ 

0 

0 

where x,, and I,, have been kept fixed. Since 15, is 
dependent on .Y, _ , and x,, eqn (16) is a non-linear 
system, which symbolically can be written as 

Ax = b(x). (17) 

Since matrix A is constant, this system can be solved 
by a fixed-point iteration procedure, i.e. 

xi, + ’ = A ‘b(x’), (18) 

where k accounts for the iteration number. 

After a first analysis and an estimation of the error, 
the desired (relative) mesh density is known. System 
(16) requires that the desired element length, L, is 
known in the whole R. This can be computed from 

L=f (19) 

and 6 is known from equation (8). The value of L is 
finally interpolated by means of the shape functions. 

3.3. Tbvo-dimensionul rezoning qf a generic node 

Consider the portion of a finite element mesh 
composed of quadrilaterals which is shown in Fig. I. 
The polygon defined by the nodes connected to node 
P, via element sides is defined as the influence domain 
for node f’, (shaded in Fig. I). This influence domain 
is subdivided into triangles. The basic idea is to move 
node P, in order to minimize the average distortion 
of these triangles, measured in some sense, to be 
defined later. 

The ideal triangle is taken as isosceles, with height 
h * and basis 6, where A * is the height it is expected 
to have and 6 is the average basis of all the triangles 
in the influence domain of node P,. If h represents the 
actual height of the triangle, and d the distance 
between the projection of node P, on the basis of the 
triangle and its centrepoint A4 (Fig. 2). the local 
distortion of a triangle can be written as 

D =t(y>i+(l -t)(;)? (20) 

The first term of eqn (20) controls the triangle size 
and the second term determines its shape. Parameter 

2 -1 

-I 2 ‘.. 

‘. ._ .- 

-1 

-1 

2 

L, - L, + .qj 

L2 - L, 

L, - L, 

= 
L ‘-L, t-1 

L,-LL,+, 

L,, 1 -‘L + .y,, 

t, 0 d t < I. controls the relative influence of each 
term. For t # I the mesh density will not exactly be 
as desired, because the second term introduces a 
certain “rigidization” and forces the elements to be as 
regular as possible. For I = I the second term is 
disregarded and the mesh density will be as close as 
possible to the desired density, but some elements can 
have a bad shape in zones of low density gradient. If 
values close to one are chosen, the resulting mesh 
should match the prescribed density properly and the 
element shape is optimal in zones of low density 
gradient. 
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xp=x,+P2a 
b* 

where 

x/n = (x, + Xk I/2 

and distance d would read 

(26) 

(27) 

Fig. 1. Representation of the influence domain (shaded) of 
node P.. d = ,/(x! + 1, - x,)* + (yi + lF - y,)‘. (28) 

The distortion of the influence domain of node P, The mean basis of the triangles is (see eqn (23)) 

can simply be written as the sum of the individual 
distortion of the ri triangles which constitute the 
influence domain, that is Cb 

&=L-. 
ri 

(29) 

By using this formulation, 6 depends on I, and 1,. 
The optimal position for node P, is that which makes 
6 a minimum, 

Let I, and 1, be the components of the translation 
of node P, required to achieve its rezoning. Consider 
the generic triangle shown in Fig. 2. After rezoning 
the triangle area, a, and the basis, b, are given by [9] (30) 

a=i@l,+ql,.)+a’ 

and 

b=,,‘m 

respectively, where 

a’ = f@x, + qy, + r) 

P=Y,-Yk 

q = Xk - x, 

(23) 

r = X,Yk - &Y, (24) 

and i, j and k are the vertices of the triangle. In this 
fashion, the height h of a triangle after rezoning is 
given by 

h = 2alb. (25) 

This characterizes the first term of (20). 
We next consider the second term of eqn (20). If the 

generic triangle in Fig. 2 were isosceles, its vertex P, 
would be located at a point with coordinates 

which can be elaborated as 

{ 

s,l,+s,1,=s, 

s* 1, + sq l,, = ss 
(31) 

Using Cramer’s rule, an explicit solution can be 
obtained: 

1, = 
s3-74 - 32% 

s,s4 -s : 

Iv = 
sls5 - s2s3 

2 ’ 
SI & - s2 

d 

Fig. 2. Basic elements of a generic triangle. 

(32) 
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wherein 

s?=;$(w,P(h*b -2o’)-w,q((x,-x,ti)q 

- (Y, - Y>II)P)) (33) 

s4 = c 1 (WI q2 + W2P2) 

tib 

s,=~~(w,q(h~b-2a’)-w,p((y,-y,.)~ 

-(x, - -%k))> 

and 

w, = t/h*’ 

w2 = 4( 1 - t)/F. 

3.4. Iteration procedure 

(34) 

The mesh density should be evaluated at the centre 
of each element. This does not result in a fixed point 
upon rezoning of node P,, and system (31) would 
become non-linear. Since system (31) must be linear, 
a fixed point as close as possible to the centre of the 
element must be found. Point M (Fig. 2) is chosen for 
this purpose. The ideal area is computed as the 
inverse of the mesh density: 

A =f, (35) 

which is obtained via a restriction of equation (8) to 
the influence domain R,, 

6 = h,;dQ. (36) 

This restriction ensures that node P, will remain 
inside its influence domain after rezoning, because the 
calculated ideal area will be always smaller than the 
influence domain area. This is of pivotal importance 
for updating the weight function, as will be explained 
next. Once the ideal area A is known, the height h* 
is obtained as 

h * = 2Alb. (37) 

The global configuration of the mesh cannot be 
obtained with the Cat&Seidel procedure as has been 
used by [9], because the updating of the nodal density 

values would induce a loss of symmetry in symmetri- 
cal domains. The adopted procedure is the Jacobi 
method. When computing the new position of node 
Pi within iteration k, the new position of nodes 
P,-P,_ , is not considered. In other words, the rezon- 
ing of each node is computed on the resulting mesh 
from the previous iteration. 

When an iteration is completed, the density 
function must be updated on the new nodal positions, 
so that the rezoning may be continued. A first step 
to do so is to find the element in which a node is 
now located, and to perform an interpolation by 
means of its shape functions. This procedure can be 
reasonable in rectangular domains with structured 
meshes, where the element to which a given nodal 
point belongs can be determined via the spatial 
coordinates of the nodal point. Otherwise, it is too 
expensive, because the searching of the current el- 
ement results in a procedure which requires a number 
of operations proportional to the square of the 
number of elements. 

The constraint that a node remains within its 
influence domain via eqn (36) limits the searching to 
the elements which surround it. First, the triangle to 
which the point, with coordinates x and y, belongs is 
determined via evaluation of the quantities 

where x(i,j, k), y(i,j, k) are the coordinates of 
the vertices defined in Fig. 2. Quantities (38) account 
for the respective areas of the triangles defined by 
the point (x, y) and every side of the currently 
evaluated triangle in the influence domain. The prop- 
erties of determinants make these quantities simul- 
taneously positive if, and only if, point (x, y) is in the 
current triangle. In practice, a negative number close 
to zero (approximately - 10m9, depending on the 
machine precision) times the area of the current 
triangle is used as the tolerance, in order to overcome 
round-off errors. Any further loss of accuracy derived 
from this approximation has no importance in the 
context of a remeshing process. Once the element 
has been found, parameters 5 and q are computed 
through the inverse of the isoparametric 

transformation, 

5= 
xc1 - .Yc2 + -x,y, - x,y, + .xzyi - .X31’> 

--cs + .Yc, - .XIY4 + x,y, + x,_Yj - “LYZ 

rl= 
xc3 - yc, + .y,yz - .uzy, + .Y4_Y, - .u,y, 

- xc5 + yc, - .Y, yz + x2y, + x,y, - Xj1’4 ’ 
(39) 
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where 

c: = x, + .Y, - _YJ - _XJ 

(‘1 = .I’1 - .)‘z - J’, + _t’4 (40) Fig. 4. Decomposition of the rezoning of a boundary node. 

and x,, , _v,), n = l-4, are the coordinates of the nodal 
points. This inverse isoparametric transformation has 
not been found by inverting the direct isoparametric 
transformation, because it would have been tedious 
and complicated. It is obtained in a relatively simple 
manner by considering that point (s,, yO), the anti- 
image of (&,, no), is on coordinate lines 5 = 5, and 
q = no. Every coordinate line is linearly interpolated 
between the coordinate lines 5 = 1. 5 = - 1 and 
V) = 1, 11 = - I respectively. which give the sides of the 
element in the physical space. Since the nodal coordi- 
nates in the physical space, (.Y,,,J,,), n = 1-4 are 
known, the implicit equation of the element sides may 
be derived. The implicit equation of the coordinate 
lines may also be found. because these lines contain 
point (x,,, ~5”) and, respectively. the common point of 
the support line of each pair of opposed element 
sides. The values of 5,) and rlo are then isolated by 
considering the coefficients of both implicit equations 
interpolated between the coefficients of the element 
sides. 

Finally, the value of the weight function is 
obtained by means of interpolation with the shape 
functions, 

Fig. 3. Splitting of higher-order elements. 

3.5. Rezoning of higher-order elements 

Rezoning of higher order elements requires that a 
background mesh of linear elements is supplied. 
When the process is completed, all the auxiliary 
constructions are erased and the original topology is 
recovered. 

Nine-node elements can easily be split in four linear 
quadrilaterals, In a similar fashion, eight-node el- 
ements are split in four quadrilaterals by adding a 
central node (Fig. 3). 

Six-node triangles can be split in four linear tri- 
angles. Nevertheless, the modified rezoning algorithm 
behaves in an unstable manner when linear triangles 
are used, because the point where the mesh density 
must be evaluated (the centre of the element) does 
not remain fixed after rezoning of every node and 
system (31) would be non-linear. For this reason it 
is preferable to split six-node triangles into three 
quadrilaterals by adding a central node (Fig. 3). 

3.6. Rezoning of’ a boundury node 

The nodal points which are on the boundary must 
remain on the boundary, but not necessarily at 
the same position. A possible approach to do so 
can be found in H&ink et ul. [4], which consists 
of projecting the old nodal positions on a locally 
interpolated spline. However, in the case we are 
concerned with, the use of quadratic or higher order 
curves is not justified. since simpler methods can be 
used. The results obtained via a simple projection of 
the rezoned node on the boundary are generally 
unsatisfactory, even for straight contours. Below a 
constrained minimization of the influence domain, 
distortion will be used to achieve the rezoning of these 
nodes. 

3.6. I. Rezoning along a straight contour. The pres- 
ence of a prescribed translation direction may be 
taken as a constraint in the fashion 

al, + p, = 0. (42) 

where (-b, a) is the prescribed direction. Use of 
the Lagrange Multiplier method for minimizing the 
distortion as defined in (21) yields the system 
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with 1 the Lagrange multiplier. The solution of eqn 
(43) is given by 

I, = ac 

I,. = pc, 

where 

where 
(44) 

direction. The true rezoning of the node should 
follow a smooth curve through the previous node, the 
current node and the following node. An example is 
a curve such that the node is moved along the 
bisectrix of directions I, and I,, if it remains near its 
original position, but when it is moved further its 
direction should be closer to I,. The rezoning I can 
then be obtained as a weighted mean of I, and I,: 

(as3 + Pss 1 
c=a(Qs,+ps*)+p(cLs~+ps~)~ 

(45) 

3.6.2. Rezoning along a curved contour. Rezoning 
of a node which must follow a curved boundary may 
occur along two directions I, and I2 defined by the 
previous and the next node respectively (Fig. 4). 
Solution of system (43) yields a translation along each 

?= l-111, ( > e 

is a measure of the amount a node is moved and e is 
the distance to the next node in direction I,. This 
procedure results in a satisfactory description of the 
boundary. Only small distortions of the original 
contour have been observed in zones of high curva- 
ture and low density. These constraints are not only 
useful for rezoning at the boundaries, but also at 
material discontinuities. 

Loop on influence domain elements 

Compute system coefhcients 

Use eqn (36) for 6 

Use eqn (37) for h* 

Use eqns (33)-(34) for ~1,. . , sj, 21~1, q 

_ 

(47) 

START v 

1 Boundary node? 1 Yes 
-1 

No 

No Convergence? 

Yes 

Fig. 5. Flow chart of the developed algorithm. 
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t=1 

Fig. 6. Relative influence of the parameter t on the results. 

The organization of the algorithm is represented by 
the flow chart in Fig. 5. 

3.1. Examples 

In this section, some examples will be shown and 
the influence of parameter t will be discussed. 
Figure 6 shows the resulting meshes for different 
values of r, for a regular mesh with a linear weight 
variation, ranging from 1 at the left edge to 10 at the 
right edge. On one hand, when t = 0, a completely 
regular mesh is obtained, and no refinement is ob- 
served. On the other hand, for t = 1 the size of each 
element is in accordance with the weight function at 
its centre. An intermediate situation is obtained for 
t = 0.5. 

Figure 7 shows the remeshing of an L-shaped 
domain with a trilinear density function. The descrip- 
tion of curved boundaries is illustrated in Fig. 8, for 
a linear weight variation from five (left) to one (right). 
A slight deviation from the original contour is ob- 
served at the right side, where the mesh density is 
lower. 

4. APPLICATION TO STRAIN LOCALIZATION 

The developed algorithm will be used to improve 
the solution of a biaxial shear band test. This test 
consists of a rectangular von Mises plane-strain 
softening material specimen, submitted to a vertical 
force. Cosserat’s elasto-plasticity theory has been 
used to assure convergence to a finite shear band 

width upon mesh refinement. In the two-dimensional 
Cosserat continuum, a rotational degree-of-freedom, 
w:, is introduced in addition to the translational 
degrees-of-freedom u, and u?. While the definition of 
the normal strains is as normal, the definition of the 
shear strains is now 

This gives a difference between the macro-rotation 

(49) 

and the micro or Cosserat rotation wr equal to 

R, - co, = f(CYl - tv,). (50) 

This skew-symmetric part of the strain tensor can be 
related to the skew-symmetric part of the stress tensor 

SJr, - n,,), as follows 

(1)) 
Fig. 7. Rezomng of an L-shaped domain; (a) original mesh, 

(b) resulting mesh. 
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Fig. 8 

(b) 
Example of a curved boundary; (a) original mesh, (b) 

resulting mesh. 

with pc an additional elastic parameter. The introduc- 
tion of rotational degrees-of-freedom causes micro- 
curvatures, tcVZ and K,,, to enter the set of strain 
components: 

am, 
K,, = ax 

awl 
Krz = dy 

They can be related to the conjugate stress com- 
ponents, the couple stresses m,, and m,.,, via 

and I, have been taken as .u< = 2000 N/mm2 and 
I = 2.5 mm. The boundary conditions have been set 
such that the rotation w, is free on all sides (natural 
boundary conditions). The bottom of the sample is 
rigid and smooth (u, = 0) and a vertical force, con- 
trolled by an arc-length method, is applied on the top 
of the sample. 

4.1. Preliminary analysis 

A preliminary analysis has been performed on a 
constant density 6 x 12-mesh where each quadrilat- 
eral consists of four, crossed, quadratic triangular 
elements. The conditions given above lead to a 
uniform distribution of the stress and an imperfection 
must be made in one element to trigger localization. 
In this case, it has been applied in the middle of the 
left edge of the specimen. Figure 9 shows the equiv- 
alent plastic strain (6”) for approximately 80% post- 
peak residual force. The equivalent plastic strain is 
reproduced with a poor resolution, if we compare it 
with a reference solution obtained with a 12 x 24- 
mesh (Fig. 9). Below, we shall construct two im- 
proved 6 x 12-meshes. First, the amount of plastic 
strain is used as criterion for remeshing. Then, the 
difference between macro-rotation R, and micro- 
rotation o, is used as an indicator to improve the 
mesh spacing locally. 

4.2. Remeshing 

The indicators discussed in the previous section 
cannot directly be used as weight function, because 
they are equal to zero in large parts of the domain. 
The relation between the sizes of the largest and the 
smallest elements must be introduced. For this pur- 
pose we shall follow Eiseman [5], who obtains the 
weight function w as follows. Let R be the refinement 
indicator assumed positive, e.g. R=tP or 
R = (0, - ~~1, in a domain R; the weight function is 
then obtained as 

R 
w =r----+s. (54) 

m,“x (B) 

In this fashion, u’ is bounded 

rn,: = 2/d2K, 

and the constants r and s are chosen so that 
m,., = 2/d2K,,, 

with I a fourth elastic constant, which has the dimen- 
sion of length. A full treatment of the elasto-plastic 
Cosserat continuum, which is employed in the 
example, has been presented by de Borst [12]. 

The material properties have been taken as shear 
modulus p = 4000 N/mm2 and Poisson ratio 
v = 0.49. The yield stress is f, = 100 N/mm2 and the 
softening modulus h = -400 N/mm’. The two extra 
material parameters of the Cosserat continuum, pc, 

r+s 
__ = P> 

S 

with p the relation between the sizes of the largest and 
the smallest elements. In this case it has been chosen 
equal to five (r = 4, s = 1). 

The appearance of both meshes is quite different 
for each criterion (Fig. 10). When the equivalent 
plastic strain is used, the mesh is densified, especially 
in the lower right corner, i.e. where the largest strains 
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Fig. 9. Representation of the equivalent plastic strain fcr the 
fine mesh. 
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Fig. 10. Comparison of the results obtained with the adapted meshes according to both criteria; (a) 
equivalent plastic strain, jb) difference between macro and micro-rotation. 
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appear. In contrast, the difference between macro- 
rotation and micro-rotation yields a fine mesh along 
the shear band, but results in a somewhat coarser 
mesh in the lower right corner. This result is logical 
since compression, rather than shear, governs the 
local behaviour in this corner. 

Finally, it is mentioned that the boundary nodes 
have been allowed to move along their respective 
edge but that the corner nodes have been kept fixed. 

4.3. Analysis with the adapted mesh 

The analysis has been repeated with the adapted 
meshes. The necessary imperfect zone cannot be kept 
on its original position, because all the elements have 
been moved. Instead it has been placed in the closest 
element to the imperfect zone in the original configur- 
ation. Figure IO shows the obtained equivalent plastic 
strain for approximately 80% residual force. In both 
cases, the accuracy of the solution has been improved 
along the shear band. However, different results have 
been obtained on the lower right corner. The mesh 
which has been adapted using the equivalent plastic 
work criterion gives a good approximation of the 
reference solution. Conversely, when the difference 
between rotations is used as remeshing criterion, the 
solution is hardly improved in this area. 

5. CONCLUDING REMARKS 

An efficient algorithm has been developed for 
rezoning of the finite element mesh. The mesh is 
densified where needed, while the global topology is 
unchanged. Problems like the continued interpolation 
of the weight function and the description of curved 
boundaries have been successfully overcome. 

Mesh adaptivity has been performed in a biaxial 
shear-band test for a von Mises strain softening 
Cosserat material. The equivalent plastic strain and 
the difference between macrorotation and micro-ro- 
tation have been used as remeshing indicators. The 
results have been improved in both cases, while the 
computational cost remains constant. 
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