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the Netherlands 

Abstract 

The behavioral approach to linear systems provides an alternative framework for 
studying the notion of balanced representations. A new definition for balanced repre­
sentations is proposed that is one-to-one related to a set of system invariants that is 
obtained by assuming a specific Hilbert space structure on the system behavior. This 
notion of balancing is more general than the prevailing notion of balancing in that it is 
well-defined for non-stable systems, and is independent of a particular (input-output) 
representation of the system. It is shown that Lyapunov, LQG, and Hoo balanced rep­
resentations are obtained as a special case. An application for the problem of model 
approximation is discussed. 
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1 Introduction 

This paper addresses the concept of balancing for dynamical systems. Since the intro­
duction in 1978 [9], balanced representations of linear time-invariant systems have proved 
to be extremely useful in a wide range of applications including model reduction, signal 
processing, controller design, stochastic realization, system identification and problems 
related to data reduction. The usual concept of balancing amounts to making a specific 
choice of coordinates in the state space of a linear time-invariant dynamical system so that 
the controllability and observability gramians of the system are equal and diagonal [9], 
[10]. In balanced coordinates, the state of the system is structured in the sense that each 
state component quantifies to what extent it contributes to the interaction of the system 
with its environment. 

This concept of balanced model representations has led to a straightforward method of 
model approximation. Without performing further calculations, approximate models may 
be obtained by discarding those state components of a balanced representation that con­
tribute least to the dynamical relationships between the exogenous variables of the system. 
See, e.g., [16]. Other applications include the theory of optimal Hankel norm approxima­
tions [2], [5], stochastic realization theory [1], and the study of canonical forms [13], [14]. 

An important drawback of the prevailing concept of balanced representations is that it is 
only applicable for asymptotically stable systems. Obviously, the stability hypothesis is a 
very restrictive assumption and prevents applications for many models considered in areas 
such as controller design, filter design, identification, etc. In the recent past, alternative 
notions of balancing have been introduced to circumvent this problem. Among these, the 
most important ones include LQG and Hoo balanced representations. See, e.g., [3], [4], 
[15], [12]. 

In this paper we discuss the concept of balanced representations using the behavioral 
framework for linear systems as a starting point. We refer to [19], [21] and the references 
therein for a detailed account on this framework. The main advantage of the approach 
taken here is that it avoids to study the concept of a balanced state space starting from 
particular representations or assumptions on representations of dynamical systems. For 
the class of finite dimensional linear time invariant systems we show that a Hilbert space 
structure on the exogenous trajectories of a system leads to state space representations in 
which external characteristics of the system can be naturally reflected by balanced state 
variables. This leads to an abstract and more general notion of a balanced state space 
that can be viewed independent of the equations that define a state space representation. 
Since no reference to a particular state space representation needs to be made this concept 
applies equally to standard input-state-output systems, systems in descriptor form, driving 
variable state space representations, etc. Both LQG (or Riccati) balancing, as well as the 
more recent notion of H 00 balancing, are obtained as special cases of our setting. 

The paper is organized as follows. In section 2 we introduce some notation and we briefly 
review various concepts from the behavioral framework. In section 3 we consider the model 
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class consisting of square integrable trajectories of linear time-invariant finite-dimensional 
systems. For this class of systems the notion of a balanced state space is defined by 
considering operators defined on the external behavior of the system. The structure of 
specific state space representations is analysed in section 4. In particular, in section 4 we 
derive LQG, H 00 and Lyapunov balanced representations as a special case. An application 
to the problem of model approximation is given in section 5. 

2 Preliminaries 

2.1 Dynamical systems 

Following the framework introduced by Willems in [19], [20], a dynamical system is a triple 
E = (T, W, B) with T ~ n the time axis, W the signal space, and B ~ WT the behavior, 
a subset of the family of all trajectories w : T ..... W. In this paper we will restrict the 
attention to continuous time systems with time set T = n. For the signal space we take 
the q-variate real vector space W = no with q > 0 a fixed number. The system (n, no, B) 
is said to be time-invariant if ,,'B = B for all tEn, where ,,' : WT ..... WT is the t-shift 
,,'w(t' ) = w(t + t'). We call it linearif B is a linear subspace of (nO)ll. 

We will be interested in systems that can be described by a finite number of differential 
equations. Let R(s) E n'XO[a] be a polynomial matrix with a finite number of rows, q 
columns and with real coefficients. Consider the behavioral differential equation 

(2.1) 

This yields the linear time-invariant system E = (n, nO,B(R)) with 

B(R):= { w: n ..... no I w E £Ioc and (2.1) holds }. 

Here, £Ioc is the class of locally integrable vector valued functions and the differential 
operator R( f.) is viewed as an operator defined on the space of q-dimensional distributions 
on n. The class of systems which we will study in this paper is given by all such behaviors 
and will be denoted by B, i.e., 

B := {B 13R E n.XO[sJ such that B = B(R)} 

The restrictions w- := wl(_oo,o) and w+ := Who,oo) of a trajectory w : n ..... no are called 
the past and future of w respectively. Similarly, n - and n + will denote the half lines 
(-00,0) and [0,00), respectively. The past and future behavior of a dynamical system E 
are defined as B- := BI( -00,0) and B+ := Bho,oo), where B is the behavior of E. 
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For a trajectory wEB, we denote by B+(w-) the set of continuations of the past w­
of w that belong to B. The set of antecedents of the future w+ in B will be denoted by 
B-(w+). Formally, 

B+(w-) .- {wEB+lw-flowEB} 

B-(w+) .- {wEB-lwflow+EB} 

Here, fI, denotes the concatenation product 

ift' < t 
if t' ~ t 

Hence, B+(w-) consists of all futures which are compatible with the past of w, while 
B-( w+) consists of all past trajectories which are compatible with the future of w. Finally, 
a time-invariant behavior B is called controllable if for all w- E B- and w+ E B+ there 
exists awE Band T ~ 0 such that w- = w- and w(t) = w+(t - T),t ~ T. 

2.2 State space systems 

State space systems will play an important role in the sequel. We will view a state space 
system as a special case of a system with latent variables. As opposed to external (or 
manifest) variables, latent variables should be viewed as internal (or auxiliary) quantities 
that serve to provide an implicit description of a system. We formalize this as follows. 
A quadruple E, = (T, W, L, Btl, with T, W as before, L a set of latent variables and 
B, ~ (W X L f is called a dynamical system with latent variables. If E, is such a system, 
then the system E = (T, W, B) with 

B:= {w E W T 131 E LT such that (w,l) E B,} 

is said to be induced by E,. Consider a time-invariant latent variable system E, and 
consider the set 

B(lo):= {w E W T 131 E LT,I(O) = 10 , (w,l) E B,}. 

Then clearly B(lo) ~ B(lo)- flo B(lo)+. In case equality holds we have the property that 
a trajectory w := w- flo w+ E B(lo) whenever w- E B(lo)- and w+ E B(lo)+, i.e., the 
variable 10 will split the trajectories w- and w+. A system with this property is called a 
splitting variable system. This is of course closely related to the intuitive notion of state. 
Let E. = (T, W,X,B.) be a dynamical system with latent variables. We will call E. a 
state space system with state space X if the following implication is satisfied 
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A state space system ~. = (T, W,X,B.) is said to represent a system ~ = (T, W,B), if ~ 
is induced by ~ •. In that case, we call ~. a state space representation of~. Hence, any 
splitting variable system that satisfies (2.2) will be viewed as a state space system. 

The state x in a time-invariant state space behavior B. is called past induced (future 
induced) if there exists a partial map f- : WT- --+ X (resp. f+ : WT+ --+ X) such that 
for any (w,x) E B. the restriction w- is in the domain of f- and x(O) = f_(w-) (resp. 
w+ E Dom(f+) while x(O) = f+(w+)). In fact, Theorem 3.2 shows that each system 
B E B admits a state space representation which is both past and future induced. That 
is, it has the property that 

We emphasize that in our definition of a state space system, no reference to specific 
equations is made. In fact, this level of generality turns out to be a useful starting point 
to define a concept of a balanced state space. It will be shown that systems in the model 
class B admit a wide variety of linear time-invariant state space representations. In section 
4 of this paper we will consider a few specific ones. See ([20]) for more details. 

3 Balanced Representations 

Let ~ = (n, nq , B) be a dynamical system and assume that B E B. We will distinguish 
between the past and future behaviors B- and B+ in that we examine the relative effect 
of past trajectories w- E B- on their associated set of continuations B+(w-). For this 
purpose, we equip the past and future behavior of B with the structure of a Hilbert 
space and we introduce two operators which, in a sense, reflect the minimal dynamical 
effect which a past (future) trajectory exhibits on its set of compatible continuations 
(antecedents ). 

Consider the subsets B- and B+. Introduce inner products 

(-. .)_ B- x B- --+ 1l 

(', .)+ B+ x B+ --+ n 
on B- and B+, and assume that both (B-, (-..}_) and (B+,(-.·}+) are Hilbert spaces. 
Hence, we assume that both (B-, (-, .)_) and (B+, (-..)+) are complete positive definite 
inner product spaces. The induced norms on B- and B+ will be denoted by II . 11_ and 
II . 11+, respectively. 

Let f _ : B- --+ B+ and f + : B+ --+ B- be defined as 

f -(w) .- arg min {II 'Iii 11+ I 'Iii E B+(w) } 

f+(w) .- argmin{II'liiIl_I'liiEB-(w)}. 
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Hence, r _ assigns to a trajectory wE 8- the 'optimal response' or 'optimal continuation' 
W E 8+ which is compatible with w-. A similar interpretation applies for r +. The 
operators r _ and r + are unambiguously defined as is claimed by the following result. 

Theorem 3.1 r _ and r + are well defined, linear, bounded and continuous. 

For a proof we refer to [17] or the proof of Theorem 3.4. Since 8 E B, the system I; 
admits a linear time-invariant state space representation I;. = (n, no, x, 8.) with finite 
dimensional state space X = nn. See, e.g., [19]. Let I;. be such a representation and 
consider its state behavior 8 •. Let Xo E X and denote by 8( xo) the set of all trajectories 
in 8 whose corresponding state trajectory passes through Xo at time t = O. Formally, 
define 

8(xo):= {w E 8 13x: (w,x) E 8. and x(O) = xo} 

Clearly, 8(xo) may be empty in case no state trajectory passes through Xo E X. Note 
that 

8", Uzex8(x) 

and it should be observed that 8(xd and 8(X2) may have a non·empty intersection when· 
ever Xl i X2· 

We first claim that for minimal state space representations of I;, each w E 8 uniquely 
determines an element Xo E X such that w E 8(xo). This means that we can retrieve the 
state vector x(O) from observations on the external trajectories only. In fact, the state 
x(O) can be retrieved from both past and future observations on the external trajetories, 
as is shown in the following theorem. 

Theorem 3.2 Let I;. = (n, no, nn,8.) be a linear time-invariant state space representa­
tion of(n, no, 8), where 8 E B. If the dimension n of the state space X of I;. is minimal 
among all state space representations of 8, then there exist linear surjective mappings 
f - : 8- ...... X and f + : 8+ ...... X such that for all xo E X 

Proof. First observe that state minimality of I;. implies that 

{8(Xd = 8(X2)} => {Xl = X2}. 

Infer from (2.2) that 'lxo E X, 8(xo) '" (8(xo))- 110 (8(xo))+. Consequently, 

{(8(XIW = (8(X2W} => {Xl = X2} 

{(8(xd)+ = (8(X2))+} => {Xl'" X2}. 
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Equivalently, there exist mappings 1- : B- --+ X and 1+ : B+ --+ X such that (3.3) holds. 
Obviously, 1- and 1+ are linear by linearity of E. and surjective as 

{xo E X} =} {B(xo) -I 0} 

by state minimality of E •. o 

The mappings 1- and 1+ have the interpretation to access the state of the system from 
past and future trajectories in the manifest (or external) behavior. Note that, since 
B = UrexB(x), the equivalence (3.3) implies that 

(3.4) 

which shows that the common features of both past and future trajectories of Bare 
reflected by means of the mappings 1- and 1+. 
Let E. be a state minimal representation of E and suppose that the mappings 1- : B- --+ X 
and 1+ : B+ --+ X are given as in Theorem 3.2. Let x· be the algebraic dual of X, i.e., X· 
consists of all bounded linear functionals defined on X. Then, clearly, the dual mappings 
I: and I; are well defined on X·. We will be interested in the composite maps 

I-r- X- --+ X 
1+1; X- --+ X. 

The following result will be used to define a balanced state space. 

Theorem 3.3 Let 1- and 1+ be as in Theorem 3.2 and let B- and B+ be Hilbert spaces. 
Then the compasite maps I-I: : X· --+ X and 1+1; : X· --+ X are nonsingular. 

Proof. Consider I-I: : x· --+ X and let x· E X· be such that I-/:x· = o. It suffices to 
show that x· = O. To see this, observe that 

U-/:'x· = O} =} {(J:'x·,/:'x·)_ = O} =} U:'x· = O} =} {im 1- ~ ker x·} =} {x· = O} 

where the last implication follows by surjectivity of 1-. Hence, I-I:' is nonsingular. The 
non-singularity of 1+1; follows in a similar way. 0 

Hence, by Theorem 3.3, we have that 

p 

Q 

(J_/:.)-1 
(1+1+)-1 

X --+ X· 
X --+ X· 

(3.5) 

(3.6) 

are well defined, real symmetric and positive definite operators. Hence, the mappings 
I-I: and 1+1; together with their inverses induce a natural identification between the 
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state space X and its dual X'. This leads in a natural way to inner products on the state 
space X by defining the quadratic forms 

(Xl,X2)P .- xI PXl 

(Xl> X2)Q .- xI QXl 

We will refer to P and Q as the past and future gramian of !: •. We claim that both r _ and 
r + have discrete spectra whose nonzero elements can be expressed in terms of eigenvalues 
of the gramians (3.5) and (3.6). 

Theorem 3.4 Let f- and f+ be as in Theorem 3.2 and let the gramians P and Q be 
given by (3.5) and (3.6). Then, 

1. L = J:'t(i+f;)-1 f-. 

2. The spectrum IT(r _) of r _ is a pure point spectrum and the non-zero spectral values 
of r _ are given by ).1/2(P-1Q). 

3. r + = /':.(/_/':.)-1 f+. 

4. The spectrum IT(r +) of r + is a pure point spectrum and the non-zero spectral values 
of r + are given by ).1/2(PQ-l). 

Proof. The proof is based on various results in least squares optimization theory. To 
prove statement 1, let w E B- and define x := f-(w). Then B+(w) = (B(x))+ are the 
continuations of w and, by Theorem 3.2, {Iii+ E B+(w)} ¢> {/+(Iii+) = x}. Define 

w':= f+(i+m- 1x = J+(i+m-1f-w 

which is well defined by Theorem 3.3, and observe that for any Iii E B+( w), Iii f. w', 

(Iii, Iii)+ - (w', w')+ = (Iii, Iii)+ - 2 Re(Iii, w')+ + (w', w')+ - 2 Re(w' - w, w')+ 

= (w-w', w-w')+ > 0, 

where we used that (Iii - w', w')+ = O. Hence, w' is the unique element in B+(w) with 
the property that 

w· = arg min {II Iii 11+ I Iii E B+(w)}. 

(In fact, this shows that r _ is well defined as claimed by Theorem 3.1). As w E B- is 
arbitrary, this yields that r _ = f;(/+I;)-I f- as claimed. 

2. Infer from statement 1 that r _ = f;Qf- is a finite rank operator. Consequently, 
the spectrum of r _ is a countable set and every spectral value 0 f. IT; E IT(r _) is an 
eigenvalue of r _. (See [6]). Suppose that IT; is a singular value and Wi is a corresponding 
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singular vectorofr~.r_,i.e., r~.r_w, = O",w,. Let x,:= f_(w,) and note that PQ-Ix, = 
f_r~.r_w, = O"iXi. Hence, O"(r~.r_)!; O"(P-IQ). The converse inclusion is shown by 
observing that f: PXi is an eigenfunction of r: r _ corresponding to an eigenvalue O"i of 
P-IQ. This yields the result. 

Statements 3 and 4 are proven analogously. o 

As the spectra of r _ and r + are defined by the inner product spaces (8_, (-, .}_) and 
(8+, (., .}+), it follows that the eigenvalues A(P-IQ) constitute a set of invariants asso­

ciated with 1:. Note that O"i := A:/
2
(P- IQ}, i = 1, ... , n, are the singular values of r_, 

as they appear as the eigenvalues ofr:r_. Similarly, 0";-1, i = l, ... ,n are the singular 
values of r +. 
A balanced state space is defined as follows. 

Definition 3.1 Let 8 E B and suppose that 1:, is a minimal state space representation 
of 1: = (R, Rq, 8). The state space X of E, is balanced with respect to the inner products 
(., .)_ and (-, .)+ if the past and future gramians (3.5) and (3.6) satisfy Q = p- I = 
diag( 0"1,0"2, ••• , O"n), with 0"1 ~ 0"2 ~ ••• ~ O"n > o. 

Thus, in a balanced state space the contribution of a state x E X to the future behavior, 
as expressed by the quantity xT Qx, is relatively large if and only if its contribution to the 
past, as expressed by xT Px is relatively small. 

The following algorithm is well known (see e.g. [2]) and provides a straightforward way to 
obtain a balanced state space. 

• Given the past and future gramians P and Q as defined by (3.5) and (3.6). 

• Factorize Q as Q = Sf SI· 

• Define PI := SIP-I Sf and let PI = 52A5r be a singular value decomposition of PI 
with A = diag( AI, •.. ,An) where AI ~ A2 ~ ... An > o. 

• Define 5:= 5i"152AL 

Then 5 is non-singular and it is easily seen that the basis transformation x -+ 5- l x results 
in the simultaneous congruence transformation 

(P,Q) -+ (5Tp5,STQ5) = (A-t,At). 

In particular, this proves the following 

Theorem 3.5 Let 8 E B. Then for every pair of Hilbert spaces 

(8-,(·,·}_) and (8+,(·,·)+) 

there exists a state space representation 8, of 8 which is balanced with respect to (-, .)_ 
and (-,.)+. 
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4 Structure of balanced representations 

In this section we examine specific inner products on the past and future behaviors of a 
system E. It is sbown how the past and future gramians can be explicitly evaluated by 
means of solutions of Riccati equations. Given these gramians, a balanced state space is 
obtained by applying the balancing algorithm of section 3. 

Consider a state space system in driving variable form which is described by the equations 

x = Ax+ Bv; 

w Cx+ Dv 

(4.1) 

Here, x : n -> nn is the state, v : n -> nm denotes the driving variable and w : n -> no 
is the external variable. (A, B,C, D) are real matrices of appropriate dimensions. This 
defines the behaviors 

8 •. - {(w,x): n -> no x nn I x is abs. cont. and 3v E £Ioc such that (4.1) holds} 

8 ._ {w: n -> no 13x: n -> nn such that (w,x) E 8.} 

Clearly, 8 E B and it is, by definition, represented by 8 •. Conversely, every 8 E B admits 
such a state space representation [19]. We will assume that 8 is controllable and that (4.1) 
is a minimal state space representation of 8 (in the sense that nand m are simultaneously 
minimal). As is shown in [17], this assumption is equivalent to the algebraic conditions 
that 

1. D is injective, 

2. (A, B) is controllable and 

3. the pair (C + D F, A + B F) is observable for all F. 

Let £2 denote the Hilbert space of square integrable vector valued functions defined on 
n. Define the £2 behaviors associated with (4.1) as 

B~ .- B. n £~+n 
B2 := Bnq 

Due to minimality of (4.1), it is possible [17] to prove that 

B~ = {(w,x) E 8.1 w E 8 2}. 

In other words, the state x E £~ whenever W E 8 n £~. Moreover, the quadruple 
(A, B, C, D) defines a minimal representation 8. of 8 if and only if it defines a mini­
mal representation 8~ of B2 • In the equivalence class of all (A,B,C,D) that represent 8 2 

one can choose A such that 0"( A) n in = 0. In that case, for all vEe; there exists a 
unique (w,x) E £~+n such that (4.1) holds. In particular, this means that 8~ (and hence 
8 2 ) can be represented as the image of a map. See [17] for more details. 
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4.1 Riccati balancing 

Consider the past and future £2 behaviors B2 and Bt together with the usual inner 
products on £2{n-, nq) and £2{n+, nq), respectively. Associate with the quadruple 
(A, B, C, D) the algebraic Riccati equation 

The gramians of the state space system B~ are then characterized as follows. 

Theorem 4.1 If (4.1) defines a minimal state space system L~ = (n, nq, nn,B~), then 
its past and future gramians are given by 

P = -IL and Q = K+ 

respective/y, where K+ = Kr > 0 is the unique positive definite solution of (1.2) and 
K_ = K!. < 0 is the unique negative definite solution of (4.2). 

Proof. By Theorem 3.3 and minimality of L~, the map i+ : B+ ..... X is surjective. 
Therefore, Q:= u+t:n-1 > O. Let (w,z) E B~, z(O) = Zo and observe that 

z~Qzo =11 L(w-) 112= _ min II w+ 112. 
wE8,(r.) 

Note that the right hand side of this expression defines a standard LQ problem. It is well 
known [18] that 

where K+ > 0 satisfies (4.2) and wop' is generated by the state feedback 

v = _(DDT)-l(BT K+ + DTC)z. 

Since K+ is the unique supremal solution of (4.2) [18], it follows that Q = K+. A similar 
reasoning yields that P = - K _. 0 

The positive numbers <7; := .x:/2{P-lQ), i = 1, .. . ,n, with P and Q defined in Theorem 
3.5 are the LQG singular values of the system. We emphasize that these numbers are 
system invariants that only depend on the choice of the inner products defined on the 
past and future behavior. In particular, the LQG singular values are independent of the 
particular state space representation (4.1) and will therefore be the same quantities for 
state space systems in descriptor form, input-state-output form, driving variable form, etc. 

LQG singular values have been first introduced by Opdenacker and Jonckheere in [15]. 
They considered input-state-output representations, and showed that the positive square 
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roots of the eigenvalues of K+K:t are system invariants. In [15J K+ and K_ occur as 
solutions to a linear quadratic control and filter problem. The relation of K+ and K_ to 
LQ optimal control theory is easily seen by observing that for all Xo EX, 

min II w II~+ 
wE82 (ro)+ 2 

min II w II~-
weo.(zo)- , 

We emphasize that from our analysis it follows that not the state space representation, 
but the inner products associated with B2 and B! define the LQC singular values. Ric­
cati balanced representations associated with these singular values have found various 
applications in e.g. controller reduction. See [3J or [12J for more details. 

4.2 Hoo balancing 

Consider the ubiquitous input-state-output system described by the equations 

x = A'x+B'u 

y = C'x + D'u ; 

(4.3) 

and assume that utA') C C- := {s Eel Re(s) < OJ. With w:= col(u,y) viewed as the 
external variables, this defines the behavior 

B := { (u, y) E C10c I 3x abs. continuous such that (4.3) holds} 

Suppose that B is controllable and assume that (4.3) defines a minimal state space repre­
sentation of B. This is equivalent to assuming that the pair (A, B) is controllable and the 
pair (C,A) is observable. Let H: n -+ nmxp be the convolution kernel 

H(t):= { ~' exp(A't)B' + D'II(t) for t ;:: 0 
for t < 0 

and let C(s):= C'(Is - A,)-t B' + D' be the transfer function associated with (4.3). Fix 
"f > 0 such that the H 00 norm 

Here, '*' denotes convolution and y := H * u is a well defined element of C; for all 
u E Cr. Define the C2 behavior of (4.3) as B2 := B n C~ and consider a trajectory 
w = col(u, y) E B2 • Minimality of the state space representation (4.3) implies that the 
corresponding state trajectory x belongs to C2 and is uniquely determined by 

x(t) = 1'00 exp(A'(t - t'))B'u(t')dt', tEn. 
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Consequently, we can write 

y(t) = C'l"" exp(A'(t - t'»B',,(t')dt' + D',,(t), t < 0 (4.4) 

y(t) = C' exp(A't)x(O) + C' 1.' exp(A'(t - t'))B',,(t')dt' + D',,(t), t;:: 0 

which shows that the past y- of the output is a function of "-, whereas the future y+ is 
a function of,,+ and the state x at time t = O. 

Consider the past and future behaviors B2" and Bj and let w- = col(,,-, y-) E B2" and 
w+ = col(,,+,y+) E Bj. Then, by (4.4), w+ can be uniquely decomposed as 

(4.5) 

where, for t ;:: 0, 

yit(t) .- C' exp(A't)x(O) and 

y;t(t) .- C' 1.' exp(A'(t - t'))B',,(t')dt' + D',,(t) 

Note that both col(O, yit) and col("+, yt) are elements of Bj. Using this decomposition, 
we make B2" and Bj normed spaces by introducing 

II w-II: 
II w+ II! 

It is easy to see that, by definition of 'Y, these indeed define norms on B2" and Bj, respec· 
tively. We obtain the Hilbert spaces (B-, (., .)_) and (B+, (', .)+) by putting 

(WI, W2)- := (II WI + W2 II: - II WI - W2 11:)/4 
(WI, W2)+ := (II WI + W2 II! - II WI - W2 1I!)/4. 

In order to characterize the past and future gramians we introduce the algebraic lliccati 
equation 

AIT K + KA' + (BIT K + DITCYb2[ - nIT D')-I(BIT K + DlTc') + clTc' = 0 (4.6) 

A solution K of (4.6) will be called stabilizing (anti-stabilizing) if 

I1(A'- h 2[ - DITD')-I(B'TK + DtTC'» c C- (resp. c C+) 

Furthermore, let the observability gramian M associated with (4.3) be defined as 

M:= fa"" exp(AlTt)C,T C' exp(A't)dt 

The past and future gramians of this system are then characterized as follows. 
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Theorem 4.2 Suppose that the equations (1.3) define a minimal state space representa. 
tion of E = ("R., "R.q , B2 ). Its past and future grnmians are given by 

respectively, where [(+ = [(r is the unique stabilizing solution of (,1.6) and [(_ = [("! is 
the unique anti-stabilizing solution of (1.6). 

Proof. Let [( be a solution of (4.6). Differentiating xT [( x along solutions of (4.3) yields 
that 

Let Xo E X and consider the decomposition (4.5) of w+ = col(u+,y+) E Bt(xo). Then, 
II V6 IIc+ = xl; M Xo and we find that , 

II w+ II~ = X&(J( + M)xo 
+ II (-./ 1- DIT D,)-1/2u - (-y2 1- DIT D')-3/2(BIT J( + DIT C')x lI~t 

Consequently, the future of w E B2(XO) has minimal II . 11+ norm if and only if 

u = (-y2I_ DITD')-I(BIT[( + DITC')x, 

belongs to ct. Equivalently, if [( = J( + = [(r is the stabilizing solution of (4.6). Since 
Xo E X is arbitrary and II L(w-) II~= X&Qxo = xl;([(+ + M)xo, it follows tbat Q = 
J( + + M. A similar argument yields that P = - [( _. 0 

As for Riccati balanced representations, we remark that -y;:= A:/2(P-IQ), i = 1, .. . ,n, 
with P and Q defined as in Theorem 4.l are system invariants that coincide with the non­
zero spectral values of r _. The positive numbers b;};=I, ... ,n are called the Hoo-singular 
values of the system. 

Remark. The Hoo singular values, defined in this way, denote open-loop quantities in the 
sense that a compensator for E is not taken into consideration. In [12] and [ll] closed-loop 
configurations are considered and H 00 singular values are defined as the positive square 
roots of the matrix product XY, where X and Yare the unique positive definite solutions 
of 

AIT X+XA'_(I_-y-2)XB'BITX+CITC' = 0 

A'y + Y AIT - (1 - -y-2)yCITC'Y + B' BIT = 0 

where it is assumed that D' = 0 and the maximal eigenvalue Al(XY) < -y2. 
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Remark. A similar analysis can be carried out for anti-stable systems, Le_, for systems 
with l1( A') c C+. More generaJIy, one can define a set of Coo singular values related to 
the state space system (4.3) if l1(A') n iR = 0- In that case, the analysis of this section 
will be symmetric with respect to the sets B:; and Bt _ However, we will not pursue the 
details here. 

4.3 Lyapunov balancing 

Consider again the state space system described by (4_3). Suppose that the system is 
minimal and asymptoticaJIy stable, i.e., l1(A') C C-. Define the controllability and ob­
servability gramians Wand M as the unique positive definite solutions of the Lyapunov 
equations 

A'W + WAIT + B' B'T 

A,T M + M A' + CIT C' 
o 
o 

(4.7) 

It is well known that the eigenvalues of the product W M are similarity invariants and 
that their square roots, {/L;};=l, ... ,n, /Ll ~ /L2 ~ _ .• ~ /Ln, are the Hankel singular values 
[2] of the Hankel operator induced by the input-output map (4_3). We will show that the 
Hankel singular values /L;, i = 1, __ ., n, can be obtained as a special case of our setting_ 
For this purpose, let £ > 0 and define the following norms on the past and future behavior 
B:; and Bt-

II w II: _- II" II~- +£2 II y II~-, , 
II wilt .- ~ II " II~++ II y II~+ -£ , , 

Like in section (4_2), B:; and Bt can be given a Hilbert space structure using these norms_ 
Note that for £ = 1 we obtain that the singular values of r _ coincide with the LQG 
singular values defined in section 4. L 

A similar analysis as before shows that for £ > 0 the past and future gramians associated 
with (4.3) are given by 

(4.8) 

where K; and Ki are, respectively, the minimum and the maximum solution (in the 
sense of real symmetric matrices) of the Riccati equation 

AIT K + KA' - (BIT K + DITCY(DIT D' + ..!..I)-I(BIT K + D'TC') + cITc' = 0 
£2 

The following result claims that for £ -> 0 the past and future gramians of a stable input­
output system converge to the classical controllability and observability gramian W and 
M_ 
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Theorem 4.3 Let the equations (1.3) define a minimal state space representation of 
(n, no, 8 2 ) and let <T.(£), i = 1, ... ,n, denote the singular values ofr _. Suppose that the 
singular values are ordered according to <TI(£) ~ <T2(£) ~ .,. ~ <Tn(£) > O. If <T(A') C C­
then 

lim p. = W- I ._0 
limQ. = M . 
• _0 

Moreover, in that case lim._o <T.(£) = Jl.. for all i = 1, ... , n. 

Proof. Let E > 0, x E X and note that 

min II w- 11:= min II u II~_ +£2 II y II~-
wEB,(x)- wEB,(x)- 2 , 

( 4.9) 

min II w+ II!= min ~ II u II~+ + II y II~+ . 
wEB,(x)+ wEB,(x)+ E , , 

( 4.10) 

First observe that, for any x EX, xT p.x and xT Q.x are, respectively, nonincreasing and 
non decreasing if £ --> O. Second, note that by taking £ = 0 in (4.9), and u = 0 in (4.10), 
we obtain that xT p.x ~ xTW-1 x and xT Q.x :=; xT M x. Conclude from this that both 
Iim._o xT p.x and lim._o xT Q.x exist. Interchanging the order of 'lim' and 'min' then 
yields that V x E X 

lim xTp.x = xTW-I", and lim xTQ.x = xTMx. 
e_O ~_o 

Symmetry of p .. W, Q. and M then yields the result. o 

From Theorem 4.3 we conclude that the classical controllability and observability 
gramians W > 0 and M > 0 associated with the minimal state space system (4.3) can be 
obtained as a limiting case of Riccati balanced systems. Note that, for any "'0 EX, 

min lIull'-
(u •• )EB,(xo) c, 

= min II y 112 + • 
(O,y)EB,(xo) c, 

(4.11) 

(4.12) 

In order to define Lyapunov balanced state space systems in a behavioral context, equa­
tions (4.11) suggest a more direct approach by taking the norms II u lie- on the past , 
behavior 8:; and II y IIc+ on the future trajectories in , 

B2 n {w = (yT,uT)T I u = O}. 

For asymptotically stable systems II u lie- induces a Hilbert space structure on B:;. How-, 
ever, (Bi, II y IIc+) is not a normed space so that no Hilbert space structure can be induced , 
on Bi in this way. 
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5 Model approximation 

In this section we discuss the model approximation problem for systems in B and develop 
approximation procedures which are based on balanced representations. 

Consider the model class B. For B E B, let c(B), the complexity of B, denote the minimal 
dimension of the state space among the set of all state space representations of B. The 
model approximation problem in B then amounts to reducing the dimension n = c(B) of 
the state space of a system B E B, so as to obtain an approximate system Bred E B of 
complexity k = C(Bred) < n that is, in some sense, close to B. 

We will derive results for model approximation based on the method of balanced trun­
cations. A major criticism for this heuristic technique is that it is not clear wbether the 
resulting reduced order models are optimal in some metric defined on B. However, we will 
provide bounds on specific distance measures between the given and the reduced order 
system. 

Consider a minimal driving variable state space representation (4.1) of a system B E B 
and let K+ = Ki > 0 be the maximal solution of the algebraic Riccati equation (4.2). 
Define 

And let R E nmxm be any non-singular matrix such that RRT = (DT D)-'. It is then 
easy to verify that the driving variable system 

i = A'x + B'v (5.1) 

w = C'x + D'v 

with A' = A + BF, B' = BR, C' = C + DF and D' = DR also represents B. Moreover, 
(5.1) is a minimal representation of B and it has the property that for all v E £T there 
exist a unique pair (w,x) E £~+n such that (5.1) is satisfied and II v 1Ic,=1I w lie,. That 
is, the mapping q, : v E £T -+ w E £~ defined by the equations (5.1) is isometric. Stated 
otherwise, the transfer function G(s) := G'(ls - A,)-IB' + D' is inner, i.e., it is stable 
and G*( iw )G( iw) = I for all wEn. Let this state space system be given and assume that 
its state space is balanced with respect to the standard inner products of £2(n-, nq) and 
£2(n+, nq) defined on the past and future behavior of B, respectively. (See section 4.1). 

Hence, the singular values of the operator r _ are given by the LQG singular values 
{0";};=1 •...• n> 0", ~ 0"2 ~ .•• ~ O"n > 0 as defined and characterized in section 4.1. Let 
n:= c(B) and let k < n. Partition the state vector x of (5.1) as 
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where Xl E'Ilk. Partition (A',B',C') conformally as 

A' - (A\I Ab) B' - ( B;) C' - (C' C') - A' A' , - B' , - 1 2' 
21 22 2 

(5.2) 

Write X = XI 6) X 2 with XI = 'Ilk and observe that the subspace Xl C X of the state 
space of (5.1) contains those states XI for which both xr PXI is relatively small and xr QXI 
is relatively large. This suggests that the subspace X 2 is ofless relevance in assessing the 
relative contribution of state space components to the interaction between the system and 
its environment. The driving variable system 

XI = A;lxI+B;v 

w = C;x+D'v 

(5.3) 

will be called a k-th order balanced approximant of B •. Let B.(A\1>B;,q,D') denote 
its state space behavior. Its induced external behavior Bred is regarded as a feasible 
approximant of B. Clearly, C(Bred) :s; k. 

Remark. This method is obviously asymmetric with respect to time. Indeed, a similar 
reasoning may be applied when considering the operator r +, in which case the subspace 
X 2 is regarded as to determine the dominant subspace of the state space. 

In the next theorem we show that for the k-th order balanced approximant Bred an explicit 
upperbound can be given on the L2 norm of the error system. 

Theorem 5.1 Suppose that the state space system B • . - B.(A',B',C',D'), defined by 
(5.1), is balanced with singular values 

and suppose that the associated transfer function G( s) = C'(I s - A,)-l B' + D' is inner. 
Let B.( A;l, B;, q, D') be a k - th order balanced approximant of B.. Then, 

1. B.( A\ I , B; , q, D') is balanced with respect to the standard inner products on £2 and 

.ct· 
2. The transfer function Gred(s) := CHIs - A\I)-I B; + D' is inner, •. e., it is stable 

and G;ed( iw )Gred( iw) = I for all wE'll. 

3. With G(s):= C'(Is - A')-I B' + D', there holds that 

n 

II G - Gred IIH~:S; 2 L: u;(l+ ul)-~. 
i=k+l 
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Proof. 1. It is straightforward to verify that for any k·th order balanced approximant 
8.(A~l>Bj,Ci,DD the Riccati equation 

admits real symmetric solutions 

K+ = diag(u" ... ,Uk) and K_ = -diag(uJ', ... ,u;;I). 

The driving variable state space representation 8.(A~I,B;,G;,DD is then balanced by 
Theorem 4.1. 

2. It is well known (see, e.g., Theorem 5.1 in [2]) that Gred is inner if and only if u(A~,) C 
C- and for some K = KT there holds 

(5.4) 

Clearly, DITD' = I. Next, consider the future gramian Q = diag(u,,···,un ) and observe 
that, by construction of (A', B', G' , D'), 

From this expression it follows that (5.4) holds for K = diag( u,,· .. , Uk). It therefore 
remains to show that u(A~tl C C-. To see this, we apply a result of [16] on standard 
(Lyapunov) balanced truncations. Let W = WT > 0 and M = MT > 0 be the control­
lability and observability gramians associated with the triple (A', B', G' ). We have seen 
that Q = M = diag(u" ... ,un ). Moreover, it is straightforward to verify that the past 
gramian P = W-I - Q. Infer from this that 

p-IQ = diag(u~, ... u~) = (I - WM)-'WM = (M-IW- ' - I)-I. (5.5) 

In particular this observation implies that W M = diag( -Il,···, 1'~), where 1 2: 1'1 2: ... 2: 
1'n > 0 where 

1 
li=(1i(l+ul)-~, i=I,···,n. 

As P-' Q is diagonal and positive definite, we first conclude that 1 > 1'1' Now, consider 
the balanced approximant (A~I,B;,Ci,D'). Since, by assumption, Uk> ukH, it follows 
that also 1'k > 1'kH' From [J6] we infer that u(A~I) c C-, as desired. 

3. The last statement of the theorem follows from the observation that, by (5.5), the 
state space system defined by (A', B', G' ) satisfies W M = diag(')'~, ... , 1'~), while M = 
diag( UI, ... , un). Hence, also W is a diagonal matrix and a state space transformation 
x ..... S-I x with S = (I + M2)1/4 achieves that M = W = diag(,)", ... , 1'n). Since 
S is a diagonal matrix, the state space Xk of the k-th order balanced approximant 
8.(A~l> Bj, G;' D') coincides with the state space obtained from a k-th order balanced 
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truncation of a Lyapunov balanced representation of B. This implies that a k - th 
order truncation of a Lyapunov balanced representation of B also coincides with tha 
quadruple (Ah,B;,q,D'). Consequently, the controllability and observability grami· 
ans Wk and Mk, associated with the triple (A'1l,B;,GD satisfy WkMk = diag('"d, ... ,1'l). 
and (AlI, BI, q, D') defines a standard input·state-output system with corresponding 
(Hankel.) singular values 1'1, ... , 1'k. The result then follows from [2J, Theorem 9.6. 0 

It follows from the proof of Theorem 5.1 that whenever the state space system 

B.(A',B',G',D') 

is balanced with respect to the standard inner products on Cj and ct, then the k-th 
order balanced truncation (All' BI, q, D') coincides with the k-th order system which is 
obtained by truncating the standard (Lyapunov) balanced triple (A', B', G') for which the 
associated controllability and observability gramians Wand M are equal and diagonal. 
In the notation of the above theorem, the positive real numbers 

(1 2)_1 Ii := CTj + Cfj 2, i = 1, ... ,n 

are, in fact, the square roots of the eigenValues of the matrix W M. This interesting connec· 
tion between balanced truncations of LQG balanced state space systems and truncations 
obtained from Lyapunov balanced representations has been pursued by several authors. 
See, e.g. [14J [8J for more details. 
We finally remark that the transfer function Gred in statements 2 and 3 of Theorem 5.1 
has the interpretation of a generator of a graph of a reduced order system. That is, the 
trajectories of the external behavior associated with Gred are given by the image of Gred 

when viewed as an operator G red : L2 -+ L2 defined as w = Gredv. where w and v are to 
be interpreted in the frequency domain. 

6 Conclusions 

In this paper we developed the concept of a balanced state space using the behavioral 
framework of systems theory. The intrinsic property of state is to split the past and 
future behavior of a linear time· invariant system. This property is formalized in a set 
theoretic context and is used to introduce a concept of balancing without reference to 
specific equations that describe the dynamic behavior of the system. Apart from the 
generality of this set·up, this has the advantage that the property of a balanced state 
space is well defined for a wide variety of state space representations, including input· 
state-output representations, descriptor systems, state space systems in driving variable 
form, etc. The past and future behavior of a system have been viewed as Hilbert spaces in 
which the corresponding norms quantize the effect that past trajectories exhibit on their 
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continuations and the effect future trajectories exhibit on their antecedents. We showed 
that this quantification naturally leads to an identification between the state space of the 
system and its algebraic dual by means of two gramians: the past and the future gramian 
of the system. In a balanced state space these gramians are required to be diagonal and 
each others inverses. It has been proved that for the class of linear time-invariant and finite 
dimensional systems, balanced representations always exist. In fact, the so called lliccati 
balanced state space representations appear in a very natural and convincing way using 
this framework. H 00 balanced representations have been introduced and we discussed how 
the prevailing notion of (Lyapunov) balanced representations can be obtained as a special 
case of our set ting. 

The concept of H 00 balancing can be generalized so as to incorporate non-stable systems. 
In the line of section 4.2 one can easily formalize an extension to define an Coo balanced 
state space representation. Other generalizations can be made to infinite dimensional 
systems, dissipative systems or non·linear systems. However, these generalizations have 
not been pursued here and are the topic of future research. 
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