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1 Introduction

The primary goal of this lecture is to show how computer algebra software can be used
to study concrete problems concerning Lie groups. A major, recently roughly completed,
achievement is the determination of (the isomorphism type of) finite subgroups of the given
exceptional Lie groups. Our secondary goal is to give a glimpse as to- how this was done.

In §2, we start by an outline of the classification of finite-subgroups of Lie groups of
exceptional type. For, this is the motivation for the other topics to be dealt with.

“In §3, we briefly review Weyl’s character formula. Then, in §4, we exploit it to study
elements of finite order in a given complex semisimple linear Lie group G. The outcome is
a set of severe character restrictions for finite subgroups of G. They are lmportant in the
classification of finite groups having an embedding in G.

The rest of the lecture illustrates, by means of the example of the simple group F' =
PSL(2,13) of order 1092 and the exceptional Lie group G = G3(C), how a finite group F'
can be shown to embed in G. ‘

To this end, we give explicit descriptions of PSL(2,13), together with some relevant
representation theory, in §5, and next G9(C) in §6.

The following two sections are devoted to two construction methods for embeddings
E : F — G;in §7, we find a Lie group of type G5 around F' (the easy way), and in §8, we
show how to find a subgroup of G3(C) isomorphic to PSL(2,13) (the hard way).

Tn the nractice seaaion we 11ae tha mrasrs Y38 Far+the frgt
111 vii€ praciice 8€s8si0il, We Usc e yl Ograiii wii 10T b€ 1iIrst part (dp to the dutermmauwu

of possible subgroups for G3(C)) and the systems GAP and Maple for the second part, e.g.,
for constructing an embedding of the simple group PSL(2,13) into Gz(C) The material
for this session is interspersed with the text. We shall deal with the exercises written out in
this. text, and you are encouraged to acquire a copy of the IKIEX source of this text so as to
be able to copy the displayed code as well as some undisplayed code at the end of the file.
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grateful to David for discussions regarding the content of the lecture as well as his suggestions
for improvement of early drafts.



GAP work and other programming assistance was generously supplied by Ronald de Man
and Willem de Graaf. Thanks!

2 The classification

Let F be a finite group.” We are interested in embeddings of F into a complex simple Lie
group G. We shall often study G from an algebraic point of view, and regard it as an
algebraic group (which is allowed, see [28]).

2.1 Classical groups

Usual representation theory helps us to decide whether there exists an embedding of F' into
GL(n, C). For such an embedding it is readily decided whether it leads to an embedding of
F into SL(n, C) or PSL(n, C). Suppose that F has an irreducible representation £ : F' —
GL(n, C) with character x. Then E is ' '

. equlvalent to an embedding in the closed Lie subdroup O(n, C) of GL(n, C) if and
only if ¥(x) =1, and .

e equivalent to an embedding in the closed Lie subgroup Sp(n, C) of GL(n C) if and
only if v(x) = —1 (in which case n is even).

Here, v is the so-called Frobemus—Schur index, which only takes values 0, —1 1 on irreducible

characters
V(X) Z x(g%) - x*7,1).
gEF

(The notation x2t stands for the character on the symmetric tensor (of degree 2) of the
representation F, and x2~ for the character of the skew symmetric (alternating) part, also
called the wedge product.) This roughly deals with the embedding of F in classical Lie
groups. Incidentally, the case v() = 0 occurs if and only if the character is not real valued.

Exercise 1. Prove:

1. {£1} is a finite subgroup of GL(1, C) with Frobenius-Schur index 1.
2. {&1, i} is a finite subgroup of GL(1, C) with Frobenius-Schur index 0.

3. The Frobenius-Schur index of the quaternion group inside SL(2,C) is —1. Here the
quaternion group is understood to be the following subgroup of order 8 of SL(2, C):

(20 )a(S a0 )

\* Y/J

2.2 Lie pr_imitivity
The occurrence of orthogonal and symplectic groups between F and GL(n, C) already shows
the importance of a maximality condition for E(F).

Let £ : F — G be a morphism of groups into a complex algebraic group G of positive
dimension. We say that E is Lie primitive if there is no proper closed algebraic subgroup of
G of positive dimension containing E(F). We often just speak of the image of F' under E
and call this subgroup Lie primitive.

We have seen above that if an “irreducible” embedding of F' into SL(n, C) is Lie primitive,
its Frobenius Schur index is 0.



2.3 A general structure theorem

Like many theorems involving finite groups, thé embedding problemv can be reduced to
one for simple groups. We recall from finite group theory that, for a prime number p, an
elementary abelian p-group is a direct product of cyclic groups Z, of order p.

Theorem. Let F' be a finite Lie primitive subgroup of a simple algebraic group G. Then
one of the following three assertions holds. ‘

1. F is the normalizer of an elementary abelian p-subgroup of G, where J is as in Table
1 ‘

2. F has socle (product of all products of nonabelian simple subgroups of F' which are
normal) Alts x Alts, and G has type Es,

3. F has a simple socle.

In the first case, the elementary abelian groups J that occur.are known, thanks to Alek—
seevskii [1]. He called them Jordan subgroups. :

Table 1.
. Jordan subgroups of simple complex Lie groups
G J_| Ca(J)/J | Ne(J)/CalJ)
Ay papime |27 ] Spn(p)
- Bny,n>3 3" 1 Symy,, .4
Con-1,n>2 zin 1 05.(2)
Dgn-1,n>3 z3n 1 031.(2)
Dpyi,n>4 A 1 Symg, 45
Gy Z3 1 SL3(2)
Fy Z3 1 SL3(3)
g Z3 z3 SL3(3)
Ey - zZ: 1 SL3(5)
Eg VA3 Z3i° SLs(2)
) D4.Z3 3 5
(G is not simple) Z; | 232 SLs(2)

The second, very remarkable case; is due to Borovik [4, 5].

For the third case, the Classification of Finite Simple Groups is invoked, at least for the
exceptional Lie groups, to determine the full list of possibilities. We shall go further into
that now.

2.4 The exceptional groups

Recall that the exceptional complex Lie groups all occur in Eg(C). In fact, we have
Gz(C) < F4(C) <3- EG(C) <2 E7(C) < Eg(C)

Here, 3-E(C) denotes the universal covering group of type E's, which has a center of order 3,
and similarly for Ey. If F is a simple group having an embedding in Eg(C), it may actullay
come from an embedding of a 3-fold central covering group of F' embedding in 3- Es(C) (and
hence in E5(C). Thus, it makes sense to study finite simple groups having a nonsplit central
extension embedding in one of the Lie groups occurring in the chain. Therefore, we look at
the (nonabelian) finite simple groups themselves, as well as at central nonsplit extensions.
Synoptical information régarding this category is contained in Table 2 below.



Table 2. Nonabelian simple groups L a central extension of which embeds in a complex
Lie .group of exceptional type Xn.

X. | L

G, | Alts, Alts, L(2,7), L(2,9), L(2,13), U(3,3)

Fu | Alty, Alts, Alts, L(2,17), L(2, 25), L(2,27),

L(3,3), 3D4(2), U(4,2), 0(7,2), 0%(8,2)

Ee | Altyo, Altyy, L(2,11), L(2,19),

L(3,4), U(4,3), 2Fa(2), M1, J2

Er | Altys, Altys, L(2,29), L(2,37), U(3,8), Mia

Es | Alts, Altss, Altss, Alty7, L(2,16), L(2,31), L(2,41),
L(2,32), L(2,49), L(2,61), L(3,5), Sp(4,5), G2(3), S2(8) .

The following result gives two kinds of information which can be read from this table.

Theorem. Let L be a finite simple group and let G be a simple algebraic group-of excep-
tional type X.

1. 'If L occurs on a line corresponding to X, in Table 2, then a central extension of it
embeds in G(C). :

2. If X,, is as in some line of Table 2 and L appears neither in the line corresponding to
X,, nor in a line above it, then no central extension of L embeds in G(C).

Some warnings are in order.

s The theorem does not say anything about Lie primitivity. For instance, the group
Altg embeds in a central extension of A3(C) and hence in G2(C). But there is no Lie
primitive subgroup of G2(C) isomorphic to a central extension of Alts.

e Also, no claims about the exact number of inequivalent embeddings are being made.
(In general, a group homomorphism E : F — G is said to be equivalentto B/ : F — G
if there exists ¢ € G such that E/ maps f to gE(f)g~! (f € F).) For instance, we
shall discuss below an embedding of PSL(2,13) in G5(C), but there are embeddings

" of PSL(2,13) in F4(C) that do not factor through an embedding in G2(C).

The proof of the theerem (or rather the more detailed version, where more information is
given on the possible embeddings) consists of two parts: one establishing that the groups
listed are the only ones and the other that each of the groups listed occurs. We shall illustrate
both parts. '

The result summarizes work by several people, cf. [15; 18] for surveys, and, for instance,
[17, 19, 20, 14, 12, 13, 27, 7] for details. ~

3 Weyl’s character formula

To begin, we note that images of elements of F° in G, being of finite order, are semisimple,
and hence embeddable in a torus. Thus, we can determine their character values in repre-
sentations of G by restriction. This leads us to the well-known formula for characters of a
maximal torus T of G on irreducible modules.

Let W be the Weyl group of G. Denote by P the weight lattice, and by P* the dominant
weights with respect to 7. Denote by sn the sign character of W, by p the half sum of the
positive roots. Furthermore, for p € P, write £, to denote the “formal character” p, so that
we can view the group algebra over P as the linear span of all £,. In this group algebra, we
have the formal character chy of T-on Vy, the irreducible representation of G with highest



weight A € P*; it is the sum of all ¢, for p a linear character of 7', with multiplicities given .
by the following formula.

Theorem (Weyl’s character formula) If A E P+ then

ZUEW Sn(U)Ea(A-;-p)

Ay =
D D 2

Other formulas exist for these characters. In LiE, the character of T on V3 can be obtained
via Demazure’s routine. For instance, Demazure([1,0],G2) shows that on the representa-
tion for G5(C) with highest weight [1 0], the character xy1 0} is

1X[-2, 1] +1x[-1, 01 +1x[-1, 1] +1Xx[ 0, O +
1X[ 1,-11 +1x[ 1, 0] +1x[ 2,-11

which, upon replacement of X[1,0] by A and X[0,1] by u, reads:

X, = A2 AT AT R T AT A+ AT

Corollary (Weyl’s dimension formula). If A € P* then

A+ p,
dim V3, = M.
Ha>0(p; C!)
In LiE, dim([1,0],G2) gives 7, in accordance with the value obtained from the above G2
character x[1,0] by substitution of 1 for both A and p.

Exercise 2. Show (by hand) that dimV, = 2", where n is the number of positive roots of
W. Check it for some cases using LiE, e.g., via

dim([1,1,1,1]1,D4) = 2" (n_rows(pos_roots(D4)))
or, if you prefer to loop over.some groups:

conjecture =1
for i=1 to 4 do
for j=4 to 8 do g = Lie_group(i,j);
setdefault g;
if dim(all_one(j)) == 2" (n_pos_roots)
then print{"conjecture verified for'); print(g)

ela contactt = 0~ 4 (1
else conjecture = 0; print("counterexample found £

fi
od
od

Exercise 3. It may be difficult to prove the following formula (cf. [23]):
IV, ®V, = Ay,

where r is the Lie rank of G, and g is the Lie algebra of a complex simple Lie group G, that
is, the adjoint G-module.

But you can verify it for very low-dimensional Lie groups using LiE:



verify_kostant (grp g) =
loc verify =1,
loc a = adjoint(g);
loc d = dim(g);
loc r = Lie_rank(g);
rhs = 2 * X(null(zr));
if d%2 == 0 then
for i=1 to d/2-1 do rhs = rhs + 2#*plethysm(all_one(i),a,g) od;
rhs = rhs + plethysm(all_one(d/2),a,g)
else : ‘ -
for i=1 to (d-1)/2 do rhs = rhs + 2*plethysm(all_one(i),a,g) od
fi;
lhs = 27r * tensor(all_one(r),all_one(r),g);
print ("LHS="); print(lhs); print("RHS="); print(zhs);
if 1hs == rhs then print(‘'they are equal, as required")
else print("error: not equal as required"); verify =
fi; verify

¥
verify_kostant(G2); verify_kostant(42)

#create more object hangers for bigger computations:
maxobjects 100000 :
maxnodes 100000

verify_kostant(43)

It is hard to verify the formula in this way for higher dimensional Lie algebras because
plethysm(allone(i),...) requires steeply increasing time and space as i grows:

3.1 Branching

If H is a closed Lie subgroup of G, the LiE function branch tells you how the character of G
on Vi decomposes into a sum of high weight representations of H. However, you will have
_to tell the system how the fundamental characters decompose; this is done in the so-called
restriction matrix.

‘For instance, in branching from G to its fundamental Lie subgroup of type A (whose
root system is the closed subsystem of G of the long roots), the restriction matrix is

/N 1\
01
1)
(the columns might be interchanged depending on the chosen ordeﬁng, because of the sym-
metry of the Dynkin diagram of type As). If m is this matrix, then branch(v,42,m,G_2)

gives the highest weights of the A,(C)-representation into which the G3(C) representatlon
with hlrrhest weight v decomposes.

3.2 Subtori

In LiE, the fundamental weights w; are used to describe elements of the maximal torus
T. Recall that weights (elements of P) are group morphisms T — C* (also called linear
characters). In particular, a weight A can be evaluated at an element ¢ € T; we write t* for
the resulting value. The set of fundamental weights form a complete set of coordinates in
the sense that any element ¢ € T is uniquely determined by the values t¥i fori=1,...,r.



In LiE, a 1-dimensional subtorus of 1" is given by a vector [a1,...,ar,0]; it represents the
subtorus {t(¢) € T | £ € C*} for which #(£)** = £% for i = 1,...,r. The restriction matrix
needed for such a 1-dimensional torus in branching is essentially obtained by transposition
of the vector after removal of the last component (which contains 0, for reasons as yet
unexplained). For instance, the LiE session :

¢=[1,0,0]
branch([1,0],T1,*[t-3],6G2)

gives us 1X[-2] +2X[-1] +1X[ 01 +2X[ 1] +1X[ 2], meaning that the character of the
torus t on the 7-dimensional representation for Gg is A™2 4+ 2A71 + 1+ 2X + A2,

3.3 Example: SL(n,C)

For the special linear group SL(n, C) there is a much more familiar way to describe a toral
element, namely by its diagonal entries in diagonalised form. If ¢ is a diagonal matrix with
entries (¢1,...,%,) on the main diagonal in the standard representation, then the values of

the fundamental weights w; on ¢.are given by B i
i .
i =]
i=1

Therefore let ¢ be a toral element of SL(n,C), with matrix eigenvalues [¢, ..., ], where
¢ is a parameter in C* (note that E;;I b; = 0 since t € SL(n,C)). Then ? can be repre-
sented in LiE by applying the following function mk_toral (an abbreviation for ‘make toral

element’), to the vector [by, ..., bn):

mk_toral(vec b) = {loc n=size(b);
if (b * #[all_one(n)l)[1] '= O then
print("error: not in SLn")
fi; :
for i=2 to n-1 do b[i] = (b[i-1]+b[il) od ; bIn]=0;
b
¥

Exercise 4. Compute the restriction matrix for the embedding of G2(C) into GL(7, C)
resulting from the 7-dimensional representation of G3 with highest weight [1,0].

4 lements of finite order

Elements of finite order are semisimple and embed in a torus. Since we are, for the moment,
only interested in such elements up to conjugacy, and since all maximal tori are conjugate,
we can view them as element of the maximal torus T'. :

There are two ways of describing elements of finite order, often called EFOs for short. One
way is used in LiE, the other is called Kac coordinates. Since the use of each is advantageous,

we discuss them both.

4.1 EFOs in LiE

Recall the description of toral elements given in §3.2. Although LiE cannot represent ar-
bitrary complex toral elements, it can represent torus elements for which all #*¢ are roots
of unity. To this end, a vector [ay, ..., a,, d] in LiE represents the element ¢ € T for which
Wi = g2miai/d — (3 fori=1,...,r, where (g = e2m/d ig 3 canonical d-th root of unity.

=3



It follows from this description that any a; may be taken modulo d, and that all the entries
(including the final d) may be multiplied by a common non-zero factor, without changing
the indicated toral element. v -

The use of this representation of a finite element is that we can perform two routines on
EFOs in LiE:

e the spectrum, providing its eigenvalues with multiplicities on a highest weight module

o the centr_type(t), centralizer type, which is the type of (reductive) group that the
centralizer of t is.

For instance, the following computation for a toral element ¢ of order 2 in SL(5, C):

setdefault A_4; t={1,0,0,0,2]; sr=[1,0,0,0]
spectrun(sr,t)

returns 3X[0] +2X[1], showing that ¢ has 3 eigenvalues 1, and 2 eigenvalues —1 in the stan-
dard representation. It is therefore conjugate to the element mk_toral([0,0,0,1,1],2),
which equals [0,0,0,1,2]. The element ¢ itself can be obtained as an image of mk_toral by
an appropriate permutation of the eigenvalues: we have t == mk_toral([1,1,0,0,0],2).

Continuing with this example, we find that centr type(t), returns A; A271, and that the
centraliser centr_type(t 5+0) of the one parameter subgroup contammg it'is ATy.

Exer 01se 5. Interpret these results in terms of linear aldebra

Exercise 6. Verify that the function spectrum may be simulated as follows:

spec(pol p; vec t) = loc r=size(t); branch(p,T_1,*[t-r]1)Alt[x]]

4.2 The Kac method

The second explicit description of EFOs in T is more convenient for ﬁndmg representatives
of their conjugacy classes under the Weyl group W.

The lattice Q = &_,Za;, spanned by the (fundamental) roots, is the so-called root lattice of
G with respect to T. It is a sublattice of the weight lattice P, spanned by the (fundamental)
weights, which can be canonically identified with the (alvebraw) multiplicative character
group X(T') of T..

We write t* = X(T) ®z R, and {-,-y : t* x t — R for the natural pairing of t, the real
Cartan subalgebra of g corresponding to T, with its dual t*. By definition of the W action

kg
on t* it is W-invariant. The lattices

Q:={\et|Vy € P|(y,]) € Z} = ker(exp 27i)
and R ‘ '
P:={ et|¥reQ| (1)) €2} =ker(Ad oexp2mi)

are called the coroot lattice and coweight lattice, respectively. Thus we obtain the W-

equivariant exact sequence ,
k 0—Q—t—T—1, (1)

where the third map is the morphism exp 2mi(-) The kernel of the adjoint representation is
the center Z(G) of G which is a finite subgroup of T'. Thus Z(G) = P/Q and W operates
trivially on P/Q and P/Q. Furthermore, [P : Q] = [P : Q] = |Z(G)|-



We use the above exact sequence to identify the elements of finite order in 7" with elements
in @ Q: : ’ .
Q/Q. : (2)

S

T, ={z€T|2"=1}=

Exercise 7. For an EFO z € T the smallest n such that Ad(z)" = 1, is called the
adjoint order of z. Let T*¥ denote the elements in 7" of adjoint order dividing n. Establish
T34 | = |Z(G)|n" and |T,| = n".

This presentation can be exploited to handle conjugacy. As we have seen before, all con-
jugacy classes of EFO meet T},. Two elements z = e>™% and y = ™Y, X, Y €t are
conjugate in G if and only if there is w € W such that wX =Y (mod Q). The latter

equivalence calls for the use of the affine Weyl group, W,,Which is the semidirect product
of W and (. It is the subgroup of the affine automorphisms of t generated by W and
translations by elements of (). We can now rephrase the above condition for conjugacy:

z = e and y = ™Y are conjugate in G <= 3w € W such that X =Y.

The group W is generated by W together with the feﬂection. in the hyperplane {X |

(—ao, X) = 1}, where
: r
g = Zniaiy
i=1

is the highest root of the root system A. Putting no = 1, we can write this as notg + - -+
nra, = 0. The numbers ng, ..., n, are called the marks of G.

Therefore, the simplex
F={Xet|{aX)>0,i=1,...,7 and (—ag, X) < 1} (3)
is a fundamental region for W in t, and we have a bijective correspondence

{points of %Q NF} &L {conjugacy classes of EFO in 7,,}
' ' 4)

X — 621riX

Using the fundamental coweights &1, . . ., @y, which are dual to the fundamental (also called
simple) roots @1, ..., &, We can express any element X € ﬂl—zQ, for m € N, as

Zsidji, where s; € Z. (5)

i=1

1

m
7ie

X =

Clearly the r+1 tuple (m, si, ..., 5r) is uniquely determined by X if we assume in addition
that they have no common factor, i.e., gcd(m, s1,...,s,) = 1. The element X belongs to the

fundamental region F if (a;, X) = Ls; > 0fori = 1,2,. o and (—ap, X) = 237 nis; <
1. This leads to the following definition:

Let X be asin (5) and define s := m — Z;":l n;s;. Then
XeF <= s >0fori=0,1,...,r

If X has coordinates [so, ..., s,] then the adjoint order of X is m/d where m := ) ._ n;s;
and d := ged(so, - -+, 57). (This follows from the fact that the fundamental coweights span
the coweight lattice P.) '



We shall call s = [so, ..., sr] the Kac coordinates of X, although barycentric would also be
an appropriate name. Then

=0

. T r
X :=X(s) = %Zsicﬁg where  m = Znisi.
i=1

We have found a bijection between the conjugacy classes in T.2% , the subgroup of T' of all
elements whose adjoint order is a divisor of m, and the set of r+ 1-tuples of nonnegative
integers s = [sg,...,s:] With > ;_onis; =m:

r .
{s] Znié’i =m, s; > 0} <—1—11—>T,‘:Ldj/W

=0

s — X(s)

Exercise 8. Prove that the full order of an element X € Q ® Q with coordinates s such

that ged(so,...,s:) = 1'is the least integer n such that nX € @). Since X has adjoint

order m = Y _n;s;, we see that n is a multiple of m and that d := n/m is the order of mX
(mod Q). Establish that

de det C
" ged((s1y---,8-)C~Tdet C,det C)

[Hint: In order to determine d we have to express mX = Z s;; in the basis ¢y, ..., d,. The
transpose of the Cartan matrix C describes the change of basis in t from the G-basis to the
@-basis. Now d is the smallest integer such that d(sy,.. .,5-)C~T has integer coefficients.]
Verify that the matrix (det C)C~! (mod det C) describes the center Z(G) by generators.

4.3 From Kac to LiE

For EFOs, we describe transformations back and forth from Kac’s coordinates to LiE’s for
semisimple elements. In a first reading, you can use these sections as black boxes, and
just use the transformations kac_to_ss and ss_to_kac, together with efos as indicated in
Exercise 9: )

First we give kac_to_ss, a routine for transforming Kac’s coordinates to LiE’s notation.
The special (non-linear) Kac coordinate is placed at the end of the vector.

kac_to_ss(vec kac; grp g) =

{ if n_comp(g)i=1 {i Lie_rank(gi0])i=0 then
error("Simple group required.")
fi , ’

; loc marks=high_root(g)~[1]; loc denom=(kac*marks)*det_Cartan(g)
; loc coroot_coords=(kac-(size(kac)))=* *i_Cartan(g)

#; print("Intermediate result:"); print(coroot_coords~[denom])

; loc common=gcd(coroot_coords” [denom]); denom=denom/common

; ((coroot_coords/common)¥denom) = [denom]

¥

kac_to_ss(mat m; grp g) =
{ for i=1 to n_rows(m) do m[il=kac_to_ss(m[i],g) od; m }

10



4.4 From LiE to K‘ac>

The transformation back, ss_to_kac, involves bringing an element of finite order into the
fundamental domain for W, which is essentially the algorithm of dominant for the affine Weyl
group associated to the dual of g, performed on vectors with rational coefficients. We cannot
use the built-in routine for dominant because it does not deal with affine groups. So we
implement the algorithm completely by hand. Eventually we must transform from coroot
coordinates to coweight coordinates.

ss_to_kac(vec ss; grp g) =
{ loc denom=ss[size(ss)]; loc v=ss-size(ss)
; loc r=Lie_rank(g); loc c=Cartan(g)
; loc h=high_root(g); loc e=id(r)
; loc a=h*c # high.root expressed in weight coordinates
; loc a0=h; for i=1 to r do a0[il=aO[il*norm(elil,g) od
; a0=a0/norm(h,g) # high_root™ expressed in corcot coordinates
;. loc i=1
; while 1°
“do loc level_i=v*c[i] # v evaluated on simple root alpha_ i
5 if level_i<0 then v[i]+= -level_i; if i>3 then i+= -2 else i=1 fi
else if i<r then i+=1 : :
else # now v is dominant
loc level O=v*a # v evaluated on high_ root
; if level_O<=denom then break fi # in fundamental region
; v+= -(level_0/(2*denom))*denom*a0
# translate integer multiple of a0
; level_O=v*a # or level_O=level_0%(2*denom)
;0 if level_O>denom then v+= (denom-level_O)*al fi
;- i=1 # restart dominant making loop
fi fi
od )
#; print("Representative in fundamental domain:"); print(v"[denom])
; loc s=v* *c # transform to coweight coordinates
; loc kac=s~[denom—s*h] '
# add final (non-linear) Kac coordinate
; kac/ged(kac) # eliminate any common factor

}

ss_to_kac(mat m; grp g) =
{ for i=1 to n_rows(m) do mlil=ss_to kac(m[l] ,g) od; m F

4.5 Finding EFOs in LiE

The following LiE routines are used to generate all elements of a given finite order m in
the fundamental domain. They enumerate all vectors h of non-negative numbers such that
h*high root <= m;the final Kac coordinate can then be set to m-h*high root. This gener-
ates all elements of adjoint order a divisor of m; we can filter the result to obtain all elements
of adjoint or full order exactly m.

efos(int m; grp g) = do_efo(0)
ad_efos(int m; grp g) = do_efo(1)

do_efo(int for_ad) =
{ loc r=Lie_rank(g); loc mark=high_root(g)

11



; loc h=null(r+1); loc result-null(o r+1)
; gen_efo(1l,m); result

3

gen_efo(int i,rem)=

if i>r

then hlr+1l=rem # £ill the last Kac coordinate with remainder

; if if for_ad then gcd(h)==1 else kac_to_ss(h,g) [r+1]l==m fi # filter
then result+=h
fi

else # try all values for h[i] that don’t overflow rem, and recurse
for j=0 to rem/mark[i] do h[il=j; gen_efo(i+1,rem—j*mark[il) od

fi

" Exercise 9. Use LiE to compile a list of all elements of order 5 in Eg with corresponding
centralizer type and eigenvalue decomposition in the adjoint representation. [Hint: Use
efos(5,E8) to determine the conjugacy classes of elements of order 13 in G2(C), and
kac_to_ss to bring them into shape for application of centr_type and spectrum.]

Exercise 10. Give semisimple elements u, ¢, w of G with the following spectrum (=eigen-
values with mulmphcmes) in the 8- dxmensmnal representatlon Vio,0) © Vii,0p of dlmensmn
14+7=8. Here ¢ is a primitive 13-th root of 1, and w a primitive cube root of 1.

w o 1,1,¢%,¢5,¢5,¢7, ¢85 ¢
o 1,1,-1,-1,w,0? —w, —w?.
woo: 1,1,1,1,—-1,-1,-1,-1

4.6 Implications for finite subgroups
Two strong restrictions regarding finite subgroups of G are:

1. every finite cyclic subgroup of G is embeddable in T and so the EFO theory can be
applied to find its spectrum in any of the highest weight representations of G.

2. any nilpotent subgroup is embeddable in Ng(T'), the normalizer in G of T'. (A result
of Borel and Serre [3].) The group Ng(T') is an extension of T" by the Weyl group W,
and so is well controlled. It proves for instance that Z3 is not embeddable in G5(C),
nor Z3 for p > 2. (The fact that Z3 does embed is very remarkable, see Table 1!)

Using observations of this kind, and the Classification of Finite Simple Groups, the of

VR J— na T P e g e P e ~ o mita nimbar ~AF i
bngrOupS of G with a Slrnple socle can be ca.buy muuguu down to a finite number of sin ylc

groups.

Exercise 11. Suppose PSL(2,p), with p an odd prime number embeds in the snnple Lle -
group G. Prove that (p — 1)/2 divides |W|. [Hint: use the existence in PSL(2,p) of a
subgroup of order p(p — 1)/2.] : '

Exercise 12. Suppose Alt,; with n € N, embeds in the simple Lie group G3(C). Prove
that » < 6. [Hint, you only have to show Alts does not embed. Study characters of a

possible embedding, using information about EFOs.]

5 The abstract group PSL(2,13)

QOur sample project will be to embed F' = PSL(2,13) in G'= G3(C). Thus we have to focus
on definitions of both groups involved. We start with F.

12



The group PSL(2,13) is the so-called fractional linear group over the field of order 13. It
can be defined as the quotient of the group of all 2 x 2 matrices of determinant 1 over Zi3
by its centre, which is {£/>}. When representing elements of this group, we will work with
2 x 2 matrices, identifying each matrix m, with its negative —m.

We distinguish the following three generating matrices:

B R )

These matrices satisfy the relations

uP =18 =yl = 1,
(uw)® = tut™'® = (wt)? = 1.
Moreover, this is a presentation of F' by generators and relations: F is isomorphic to the

quotient of the free group on the letters u, ¢, w by the normal subgroup generated by the left
hand sides of the above equations. )

Exercise 13. Verify this fact using a Todd-Coxeter enumeration in GAP.

5.1 Representations of PSL(2,13) |

Before studying how F' = PSL(2, 13) could possibly embed in G5(C), we recall representation
theory for F'.. Each representation is a finite sum of irreducibles. A representation is uniquely
determined by its character (that is, the composition of the representation with the trace,
whence a function on F', constant on each conjugacy class of F').

Since the character of a sum representation is the sum of the characters of the con-
stituents, it suffices to know the irreducible characters (that is, the characters of the ir-
reducibles).” There are finitely many such characters, and usually they are listed in the
so-called character table. The table for F is given below. We have written 5 for a primitive
7-th root of 1, and ¢ for a primitive 13-th root of 1. Also, we have abbreviated

a=-C-C=C--C-, b= === -
Table 3. Character table for PSL(2,13)

orders 1 13[13] 6 3 2 7 7 7
centralizers | 1092 | 13 | 13| 6 6 | 12 7 7 7
casses 1 84|84 | 182 | 182°| 91 156 156 156
1 1 1 1 1 1 1 1 1
12 |=-1}-1] 0] o 0| —p=—9° | =9* =9 | =0* - ¢*
12 1 =1]-11]10 10 0 | =p®>=5° | = =9 | —p—1n°
12 -1 -1 0 0 0 -t | —p=q° —n% =7
13 1 0.1 0 1 1 1 -1 -1 ~1
14 | 1 1 1] -1 =2 0 0 0
14 1 1 | -1} -1 2 0 0 0
7 a b =111 | =1 0 0 0
< 7 b a | —1 1| =1 0 0 0

Thus, there are irreducible characters of degrees 1, 12 (3 times), 13, 14 (twice), 7 (twice).
A familiar check is that the sum of squares of the degrees is the group order:

1243122 + 132 + 2142 4+ 2. 72 = 1092 = |PSL(2, 13)].
This character table can be found within GAP, e.g., as follows.
ct := CharTable(‘‘PSL’’,2,13);
DisplayCharTable(ct);

Exercise 14. Prove that a +b = 1 and that » = a — b satisfies 72 = 13. Conclude that a
and b are real valued and that the Frobenius-Schur indices of the irreducible 7-dimensional
representations are 1.
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5.2 The 7-dimensional representétions for PSL(2,13)

We describe one of the irreducible 7-dimensional representations explicitly. They are defined
over Q(+/13). (Observe that the numbers a and b of Table 3 belong to this field.) First we
give a representation’ defined over Q((), where ( is a primitive 13-th root of 1. (Observe
that +/13 belongs to Q(¢).) It is known how to construct such representations, see e.g., [26].
We give three 8 x 8 matrices for u, ¢, and w, respectively.

~ [%(13-—§+C2'—C3—C4+<5+C6+C7+<8_49_Clo+cll_412)7

"1 0.0 0 0 0 0 O
0 ¢ 0 0 0 0 0 0
00 ¢ 0 0 0 0 0
UHoooc7oooo
00 0 0 ¢ 0 00
0 0 0 0 0 ¢ 0 0
00 0 0 0 0 ¢ 0
00 0 0 0 0 0 1|
0 0 0 00 0 0 1]
006 0 00 0 =1 0
00 0 01 0 00
4 |00 0 00 =1 00
00 0 —-10 0 00
01 0 00 0 00
00 -1 00 0 00
10 0 00 0 0 O]

%1, %1, %2, %2, %2, %1,
%(13+C—Cz+<3+<‘*—45—46—<7—c8+<9+<1°—<“+<12)}

[%1, 204+ 2¢% 4+ 3¢ + 2¢* + 4¢° + 4¢3 + 2¢° + 3¢10 + 2¢ M 4 2¢12,
%3, %04, 4¢ + 3¢ +2¢% +2¢° +2¢° + 2" 4+ 2¢% + 2¢1° + 3¢ +4¢7,
%5,%6,%2]

{%1, %3,2¢ +4C2 + 203 4+ 3¢+ 205 + 207 + 3¢° + 2¢O 4¢C1 2012 %7,

%5, 2% + 4¢3 + 2¢* 4 2% + 3¢8 + 3¢7 + 208 + 2¢° + 4¢10 + 2¢11, %8, %2]
(%2, %4, %7, %3, %6, %8, %5, %1] E
[%2, 4C + 32 +2¢3 + ¢S + 25 + 2¢T + 9¢% + 2010 + 3¢ + 4¢12, %5, %6,
2C + 207 + 3¢5 + 204+ 4C5 +4C5 + 2¢0 + 3C1° 4+ 201 + 2¢12, %3,
%4,%1] | |

[%2, %5, 2¢% 4 4¢3 + 2¢* + 2¢5 + 3¢8 + 3¢7 + 2¢5 + 2¢° + 4¢*° + 2¢11, %8,

%3,2¢ +4¢? +2¢% +3¢* + 2¢% +2¢7 + 3¢° + 2¢10 + 4¢H + 2012, %7, %1}
(%1, %6, %8, %5, %4, %7, %3, %2]
B8 +¢ -+ G+ ==~ (T~ B+ O+ 0= +¢12),
' %2, %2, %1, %1, %1,

L %27%(13__C+C2_C3_<4+C5+C6+<~7+<8_C9_<10+Cll_412)] |
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where %1 ::_<+C2_CB_C4+<5+<6+<~7+<8_C9_€-10+<11_(12

%2 = ¢ — (2 (B (5 — (O (T (B (O (10 (1 12

%3 := 3¢ +2¢3 +2¢* +2¢5 +4¢8 + 4¢7 + 2¢8 + 2¢° + 2¢10 4 3¢12

P4 = —2¢ —4¢% — 203 — 3¢t —2¢C — 2T —3¢% — 2¢O — 4¢tt — 9012
%5 = 2C +2C2 +4¢* + 3¢° +2¢° + 2¢" + 3¢® +4¢° + 2¢1 4+ 2¢12

%6 1= —2¢% —4¢® —2¢* ~2¢% — 3¢5 —3¢7T — 28~ 2¢® —4¢10 —o¢!
%7 = —2( — QCZ _ 3<3 _ 244 _ 445 _ 4<8 = 249 . 3410 _ 2411 _ 2412
%8 = —4¢ — 3¢2—2¢2 —2¢5 — 26— 2¢T —2¢® — 2¢O — 3¢t — 4012

These have the following properties:

o they satisfy the relations u, ¢, and w specified above, and so they indeed generate a
group isomorphic to PSL(2,13); ' '

o they fix the vector e; + eg (sum of two standard basis vectors);
o they leave invariant the linear span of ey, ..., e7 and e; — eg, and so they give rise to

a 7-dimensional representation.

Exercise 15. Check that the eigenvalues of the 8 x 8 matrices for u, ¢, and w are as indicated
in the exercise at the end of §4. Use Table 3 to compute the Frobenius-Schur index (cf. 2.1)
of the 7 dimensional subrepresentation, and conclude that u,t, w generate a subgroup of

0(8, C).

6 The Cayley algebra

There are at least three ways of defining G2(C) explicitly:

1. Write out the multiplication of the Lie algebra of type G on a 14 dimensional vector
space, for instance using the Chevalley basis. Then G3(C) is the automorphism group
of this Lie algebra.

2. Write out a trilinear alternating form on a 7-dimensional vector space C7, whose
stabilizer is irreducible on the underlying space C7; then this stabilizer is G3(C).

3. Write out the multiplication of the octonions on an 8 dimensional vector space. Its
automorphism group will then be G3(C).

Below we take the latter approach. Later, we shall also consider the second approach. The
first approach has been studied in [25]. An explicit embedding can also be found in [12].
6.1 Multiplication

Recall the following classical concepts regarding the vector space C3:

o the standard inner product of z = (21,3, z3) and y = (y1,%2,¥3) Is ¢ -y = zyy1 +
Zays + x3ys. It is bilinear and symmetric.

o the standard outer product of z and y is the vector z x y = (zays — z3y2, Z3y; —
Z1Y3, T1Ya — L2y1). It is bilinear and anti-symmetric. ’
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ien

We define O(C) as the set of matrices

_ [ 1 Taza
xr =
(2567 Tg )
where z1,2s € C and 2334 = (2,23, 24), Ls67 = (L5, T6,27) € C3. 'We provide O(C) with
the usual (entrywise) vector space structure over C and with the following nonassociative

multiplication:
zy= Zy T234 Y1 Ya34
Tze7 T8 Yse7 - Ys
T1Y1 — T234 - Ys67 Z1Y234 + Ys®234 + T567 X Y567
Y1T567 + TaYs67 + T234 X Y234 T3y — T567 * Y234

1t is clear that O is an algebra over C and that

=3 9)

satisfies z1 = 1z =z for all z € O; so we may identify C with the subalgebra C1 of O.
The quadratic form @ : O — C given by

Q(z) = z178 + 234 - Toer = T1%8 + T2¥s + T3Te -+ Taz7
is obviously non—degeneraté. It has a remarkable relation with the algebra structure on O:

Lemma. The quadratic form @ on O satisfies Q(zy) = Q(z)Q(y) for all z,y € O.

Straightforward calculation will provide a proof. It is also useful to test an implementation
of the Cayley product by this rule. '

Remark. An algebra of dimension 8 over C provided with a 1 and a non-degenerate
quadratic form as in the lemma, can be shown to be unique up to isomorphism. This means
that every property of O can be obtained by merely using the identity of the lemma for
explicit computations. See, e.g., [30]. ‘ '

_Exercise 16. Verify that the following Maple code implements the Cayley algebra. [Hint:
use the above remark ]

with(linalg);
cayprod := proc(x,y) local 02,05, ans;
02 := outerprod(vector(3,[x[5],x[6],x[71]),vector(3, [y[s1,yl61,y[711));
o5 := outerprod(vector(3,[x[2],x[31,x[411),vector(3, [y[2],y[3],y[411));
ans:= vector(8, »
[x[11*y[1] - innerprod([x[2],x[31,x[41],[y[s],yl6],yl711),

x[11*y[2] + y[8]*x[2]1 + o2[1],
x[1]#y[3] + y[81*x[3] + o2[2],
x[1]*y[4] + y[81*x[4] + o2[3],
y[11*x[5] + x[8]*y[5] + o5[1],
y[11*x[6] + x[8]*y[el + o5[2],
y[11#x[7] + x[81*yL7] + o5[31,
x[8]*y[8] - innerprod([x[5],x[61,x[71], [y[2]1,y[31,y[411)]
)
evalm(ans)
end;
innerprod := proc(xx,yy) local ams, ij;

16



ans := 0;

for i to 3 do ans := ans + xx[il*yy[i] od;
ans
end;
outerprod := proc(xx,yy) local ans;
ans := vector(3);
ans[1] := xx[2]*yy[3]-xx[3]1*yy[2];
ans[2] := xx[3]*yy[1]-xx[1]+yy[3];
ans[3] := xx[1]*yy[2]-xx[2]*yy[1];
evalm(ans)
end;
quadform := proc(x) ;
x[1]*x[8] + x[2]*x[5] + x[3]*x[6] + x[4]*x[7]
end; :

6.2 Automorphisms of O
We first point out some elements of Aut O.

Obviously, for g € SL(3,. C) the map

a v a v
sg:<w b)H(g#w gb> (a,b € C;v,w e C?)

where g# = (g71)7, defines an automorphlsm of O. Here 1is another obvious automorphism

7 € Aut' O:
r:<a v)H(b 'w) (a,b € C;v,we C3).
w b v a

Theorem. The group G'= Aut (O) of automorphisms of the Cayley algebra O over C is a
simple complex algebraic group of type Gs..

A proof can be given by determining the Lie algebra of derivations which preserve the
multiplicative structure. Determining the Lie algebra is easy in view of the linearity of the
equations involved:

the Lie algebra = {8x8 matrices ¢ |V z,y € O : g(zy) = (9z)y + «(9v) }.

Exercise 17. Determine a basis for this Lie algebra. Can you also prove that it is simple
. of type G37
We shall write some elements of G as 8 x 8-matrices with Tespect to the basis suggested
above: e; is the vector z with all z; = 0 but for z;, which is 1. In particular, 1 = e; + eg is
fixed by each element of G.
A maximal torus of G comes from a maximal torus for the subgroup SL3(C) we have already
found:

T = {diag(1, A, /X%, M, 1/A, X/, /X, 1) | A, € C\{0}},

where diag means diagonal matrix with indicated entries. Compare this with the character
found for G on V}; g as an example following Weyl’s character formula (at beglnnmg of 3)!
Let us find its normalizer. Set

T = 5(12)T 5 and 73 = s(23),
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where T € ‘Syms (also) denotes the 3 x 3-matrix g determined by ge; = exs) fori=1,2,3.
Then R = {ri,r3} is a generating set of a subgroup W of G which is isomorphic to the

dihedral group of order 12, and normalizes T Since only the identity fixed T pointwise, W
is isomorphic to and acts on T" as the Weyl group of type Gs.

Exercise 18. Given the above Cayley multiplication in Maple, the following is a simple
test for membership of G2(C) for an invertible 8 x 8 matrix g (the outcome should be the
zero vector). Try it out, e.g, on parametrized torus elements, or on the matrices u and ¢ in
§5.2 (we do not recommend trying w; there are more efficient ways !

grpegs := proc(g) local x,y,z, gx,gy,gz;

X := vector(8);
y := vector(8);
z := cayprod(x,y);

gx := evalm(g &+ x);

gy := evalm(g &* y);

gz := evalm(g &* z);
evalm(cayprod(gx,gy)-gz)
“end; :

fi

Exercise 19. Let (-]-) denote the bilinear form corresponding to @Q, that is,
(zly) = Qz +y) - Q) - Q(y). -
The restriction to 1J“. of the trilinvear form
(z,9,2) = (2 - yl2)
is alternating, that is,
(z-9l2) = —(y - zl2) = (y - 2[2).
1. Prove this, and write out the form explicitly on the basis e; — es, €, ..., e7.

2. Moreover, the stabilizer in GL(7, C) of this form is Aut (O). Prove this, e.g. by
checking that the Lie algebra stabilising the form has dimension 14.

7 Building G, from PSL(2,13)

Up to equivalence (GL(7, C) orbits) there is a unique 1-dimensional space of 3-linear alter-
nating forms whose stabilizer in GL(7, C) is irreducible. It is found in the previous exercise.
The stabilizer of this form is G3(C). These facts are known from the classification of al-
ternating trilinear forms on C7, see for instance [8]. Since PSL(2,13) is irreducible and
stabilizes a trilinear alternating form, it embeds in G9(C). In this section, we turn this

existence proof into an explicit construction.

7.1 A character'computétion

The fact that PSL(2,13) has an invariant trilinear alternating form can be checked by
calculating the inner product (x37,1), where x®~ is the character of PSL(2,13) on the
linear space of trilinear alternating forms. Explicitly, for g-€ PSL(2,13),

- (g) = X9’ = 3x(g"‘()5x(g) +2x(6%)
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Exercise 20. Compute the values x*~(g) for g in PSL(2,13) and X a 7-dimensional irre-
ducible character. Conclude that it decomposes into

la + 13, + 141} +7{a Or b}

where 14; stands for the second 14-dimensional irreducible character from Table 3, and so
on. The verification that the trivial representation occurs in the third exterior power shows
that PSL(2,13) leaves fixed a trilinear alternating form. This observation suffices for a proof
that PSL(2,13) embeds in G3(C).

Hint: the following GAP commands will find the character and actually test if there is
a group invariant trilinear alternating form on the 7-dimensional representation space.

ct := CharTable("PSL",2,13);

chars := ct.irreducibles;

chi := chars[8];

sym3 := Symmetrisatioms(ct,[chi],3);

#the first component corresponds to the wedge product:

" sym3decomp := MatScalarProducts(ct,chars,[sym3[1]11)[1];
¥ P - ¥

Print("Dim of group invariant trilinear altern. forms is: ");
Print(sym3decomp) [1]) ;Print(”.\n");

7.2 Cons'tructi'ng the form

Using GAP, we shall search for the PSL(2,13) invariant form and thus find the group Gs
explicitly as an overgroup of PSL(2,13). The steps are

1. Take the three 7-dimensional matrices for u, ¢, w obtained from the 8-dimensional
ones above by chopping off the fixed vector 1 = €; + es.

2. ‘Write down the 3-linear alternating form invariant under F'.

3. If you do not wish to use the classification of trilinear alternating forms mentioned at
the beginning of this section (7), you can determine the Lie algebra stabilizer of the
form found, and decide that it is of type Go. It then follows from the computations
that PSL(2,13) acts as a group of automorphisms of this Lie algebra and so belongs
to its automorphlsm group, G2(C). ,

The second step can be carried out with the followmg code for producing the action of
u, ¢, w on the 35-dimensional space A3C7, and computing the intersection of the kernels
of u—~1,t—1, and w — 1 in this action. Here is the corresponding GAP code. The three
matrices are to be found at the end of the source file.

bw3:=Combinations([1..7],3);

normalize:=funct ion(v) local s,tmp;
=1;

1f v[il=v [2] or v[21=v[3] or v[1]l=v[3] then
return([1);

fi;

if v[1]>v[2] then
tmp:=v[1i];
v[1l:=v[2];
v[2]:=tmp;
s:=-5;

£i;

if v[2I>v[3] then

19



tmp:=v[2];
vi2]:=v[3];
v[3]:=tmp;
s:=-5;
if v[11>v[2] then
tmp:=v[1];
vi1l:=v[2];
v[2]:=tmp;
s:=-3;
fi;
fi;
return([s,Position(bw3,v)]);
end;

wedge3:=function(a) -local i,j,k,1,aw,v,X;
aw:=List([1..35],i->List([1..35],i—>0));
for i in [1..35] do
v:=bw3[i];
for j in [1..7] do
for k in [1..7]1 do
for 1 in [1..7] do ,
x:=normalize([j,k,1]);
if x<>[] then ' :
awlx[2]11[i] :=awlx[2]11 [il+x[11*alj] [v[11]*alk] [v[2]13*al[1] [v[31];
fi;
od;
‘ od;
od;
od;
return(aw);
end;

#Read the 7-dim u,t,w matrices over Q(zeta) from file
Read("L213.g");

I := IdentityMat(7);
#make wedge matrices of size 35
wu := wedge3(u); wt := wedge3(t); ww := wedge3(w);

wl := wedge3(I);

#determinde fixed spaces

ku := NullspaceMat(TransposedMat(wu - wI));
kt := NullspaceMat(Transposediat(wt - wI));
kw := NullspaceMat (TransposedMat(ww — wI));

#transform to vector spacesﬁ

vu := VectorSpace(ku,C);
vt := VectorSpace(kt,C);
vw := VectorSpace(kw,C);

#determine the intersection of fixed spaces:
formspace := Intersection(vu,vt,vw);
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if Dimension(formspace) <> 1 then
Print("surprise: expected dim to be 1\n");
fi;

form := formspace.basis.vectors[i];

Print("The invariant form found is:\n");

for i in [1..35] do if form[il <> 0 then
Print ("+",form[i],"*",bw3[il); fi;

od;

Print("\n");

8 Building PSL(2,13) inside G5(C)

We shall now start from the Cayley algebra of §6 and construct PSL(2,13) as a group of
automorphisms of it.

8.1 Spectrum analysis

Using observations of the kind displayed in §4.6, one can derive that the subgroup B = (u,t)
of order 13 -6 =78 of F' = PSL(2,13) must embed in Ng(T), with u embedding in 7.
Let us first look at the possible elements of order 6 in G, using Lik.

setdefault G2
read efo-file
m = efos(6)

for r row n do print(r); s = kac_to_ss(x);
print(s); print(centr_type(s));
print(spectrum([1,0]1,s)); print(" ")
od

[0,1,4]

[1,2,6]

A1T1

3x[0] +2x[1] +2x[5]

[1,0,3]

[2,3,6]

AT

1X[0] +2X[1] +1X[2] +1X[4] +2X[5]

[1,1,1]

[3,5,6]

T2

1X[0] +1X[1] +1X[2] +2X[3] +1X[4] +1x[5]

This spectrum analysis, compared with the eigenvalues of ¢ on the 7-dimensional irreducible
representation of PSL(2,13) (cf. 5.1), give that we must have the latter case: the centralizer
of ¢ in G must be a maximal torus. Since ¢ cannot embed in the same torus 7" in which u
is embedded, we must search for { in the W part of Ng(T'). There is, up to conjugacy, one
element of order 6 (inducing order 6 action on T'), viz. t = rir,, corresponding to the 8 x 8

matrix given in §5.2.
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Exercise 21. Perform the same spectrum analysis for u and find its centralizer in G.

Exercise 22. Verify that the 8-dimensional diagonal matrix for u given in §5.2, is the
only matrix of order 13, up to powers in T', which satisfies tut~! = u*. Conclude that the
embedding of B into G is unique up to conjugacy in G and algebraic conjugacy (interchanging
the two 6-dimensional irreducible representations of B).

So far, we have identified the subgroup B of PSL(2,13) as the subgroup of G generated by
the two matrices for u and t.

- 8.2 Finding the third transformation generating PSL(2,13) in G

We are left with finding an element w € G satisfying the defining relations for PSL(2,13)
together with the matrices for u, ¢ that were already found. To this end, we proceed as
follows: we first focus on w € G in its role of inverting ¢, that is wiw™! = ¢~L.

We can easily find an element wy € G with this behaviour:

D OO OO
O OO OOOD
SCOH OO OO
H OO O OO OoOO

C O ODDOMO

OO DO R OOD

O OO OO =R OO
I

PO OO OO O D

Then w € wyC, where C = Cg(t) is the centralizer of ¢ in G. The analysis above tells
that C is isomorphic (conjugate in fact) to a maximal torus.

All sorts of equations can now be written down for ¢ € C so that w = wyc is as required.
The obvious ones come from the defining relations of PSL(2,13). But they may be hard,
as they are of relatively high degree. One could set up a set of equations for ¢ and find an
element w := wyc such that F' = (u,%, w) is isomorphic to PSL(2,13). For instance, the
traces of elements of the form w'w can be determined using Table 3. They lead to linear
equations in the parameters for C.

However, there is a better method. We can use the matrix for w as given in §5.2. The
centralizer in GL(7, C) (the subgroup of GL(O) fixing 1 = e; + ez and 11) of B = {u,t) isa
2-dimensional group D of diagonal matrices. Since B embedsin Aut (O), one may just look
in the set of D conjugates of w for an element which is inside Aut (O). Thus, writing w; for
the matrix w of §5.2, we look for w € GL(7, C) of the from dw;d~! for some d € D, which
satisfies (we;)(we;) = w(e;e;) for 1,5 =1,...,8. This will give manageable equations for d.

Exercise nextex. Carry out this suggestion and find w € Aut(O) such that (B, w) is
isomorphic to PSL(2,13). :

Exercise 23. Can you determine the normalizer of F in G? Recall that it must be finite
for F' to be Lie primitive.

9 Concluding Remarks

9.1 Open problems
The following two questions have not been completely solved:

1. Conjugacy: how many equivalence classes are there?
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2. Minimal field: what is the minimal field over which an embeddlng in a form of G5 can
be realized?

Both problems are solved for PSL(2,13) in G3(C), but not for all embeddings. As for
Problem 1, the number is known to be finite, cf. [29]. As for Problem 2, The minimal
defining field is Q(v/13), cf. [10]. But the definition of a minimal defining field is delicate!
It comes with a particular form of the group G in which F' embeds, which need not be the
particular form over QQ one may have started with. :

9.2 Not dealt with..

For almost each of the groups appearing in Table 2, there is a paper (preprint) dealing with
its embedding. Sometimes, the embedding need not be established explicitly: just like for
our sample case, §7, one can derive from character theoretic arguments that the group must
embed in a certain Lie group. '

Sometimes the group embeds via a well controlled subgroup. For instance Altg has a 3-
" dimensional projective representation, and so a nonsplit central extension of Altg embeds in
3 - A3(C), from which we deduce that it embeds in G3(C).

But there are cases for which the analogous work of §8 has to be carried out completely in -
order to prove that it embeds. Now for bigger Lie groups than G3(C), this requires more
tricks to bound time and space of computer use than we have been able to display.

There are topicé such as integral representations of the finite groups involved, modular
representations, that is, analogous questions over finite fields (which are also relevant to
some of the construction methods for characteristic 0) that we have not touched upon and

which have been extensively studied as well.
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