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Abstract. Flow- induced  res idual  stresses tha t  arise du r ing  the inject ion m o u l d i n g  of a m o r p h o u s  thermo-  

plast ic  po lymers  are ca lcula ted  in bo th  the filling and  post-f i l l ing stage. To achieve this  a compress ib le  
vers ion of the Leonov  mode l  is employed.  Two techniques  are invest igated.  Fi rs t  a direct  app roach  is used 

where the pressure p rob lem is fo rmula ted  using the viscoelast ic  mate r ia l  model .  Secondly,  general ized 

N e w t o n i a n  ma te r i a l  behav iour  is assumed,  and  the resul t ing flow k inemat ics  is used to calcula te  no rma l  

stresses employ ing  the compress ib le  Leonov  model .  The la t ter  technique  gives comparab le  results, while  

reduc ing  the c o m p u t a t i o n a l  cost  significantly. 

N o m e n c l a t u r e  

a = scalar  0 = re laxa t ion  t ime 
a - vector  q = viscosity 
A = tensor  p - densi ty  

A c = con juga te  of A v - specific vo lume 
A d = devia tor ic  par t  of A a r = t ime-dempera tu re  shift factor 
a . a  = dot  p roduc t  of two vectors  cp = specific hea t  at  cons tan t  pressure 
a .  A = d o t  p roduc t  of vector  wi th  second order  J = vo lume change factor  

tensor  N~ = first no rma l  stress difference 
ab = dyad ic  p roduc t  p = pressure 

A.  B = do t  p roduc t  of two second o rde r  tensors  r = in ternal  heat  source 

tr(A) = trace of A V = grad ien t  ope ra to r  with respect  to current  
A : B = trace of A.  B conf igura t ion  

de t (A)=  de t e rminan t  of A V 0 - g r a d i e n t  opera to r  with respect  to re- 

(z) = co lumn  ference conf igura t ion  
(_.)T = t ranspose  of a co lumn h = heat  flux 

(-) = ma t r ix  v = veloci ty 
( ' )  = mate r ia l  t ime der ivat ive  x = pos i t ion  vector  

( ')e = elastic pa r t  o f ( ' )  a = Cauchy  stress tensor  
(')p = plast ic  pa r t  of ( ' )  • - ext ra  stress tensor  

D - ra te  of s t ra in  tensor  
}, = shear  ra te  F = de fo rmat ion  tensor  

e = specific in te rna l  energy B = left C a u c h y - G r e e n  tensor  
~. = heat  conduc t ion  coefficient L = veloci ty grad ien t  tensor  
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1. Introduction 

Injection moulding is a commonly applied processing technology for plastics. In the 
past decade, attention in numerical simulations of the injection moulding process has 
been focused on the filling stage. The key items in these calculations are the prediction 
of pressure and temperature distributions and the progression of the flow front in 
complex-shaped, thin-walled geometries. Numerous commercial codes are available 
nowadays, e.g. Boshouwers and v.d. Werf [,1], Sitters [-2] and Manzione [-3]. 

More recently, the prediction of residual stresses (and molecular orientation) in 
injection moulded products has attracted attention. Knowledge of residual stresses is 
essential to predict dimensional and shape inaccuracies of a product. Roughly, there 
are two sources of residual stresses. First, due to the viscoelastic nature of the 
polymeric melt, normal stresses develop during the filling, packing and holding stage. 
Usually, these so-called flow-induced stresses are relatively small. However they give 
rise to large molecular orientations which affect the mechanical and optical (birefrin- 
gence) behaviour of a product. They also give rise to differences in (post-) shrinkage 
behaviour in directions perpendicular and parallel to the flow direction. The second 
cause of residual stresses is the rapid increase in rigidity of the material as it passes 
through the glass transition point (or region). Across the product wall a highly non- 
uniform temperature distribution exists. Therefore each material point solidifies at a 
different time, leading to differential shrinkage causing thermally induced stresses. 

Initial investigations by Isayev and Hieber [4] show the potential capabilities of the 
so-called Leonov model, first published by Leonov [5], to predict flow-induced 
residual stresses during the filling-stage. Birefringence measurements of Wimberger- 
Friedl and Janeschitz-Kriegl [,13] in Compact Discs and Isayev and Hariharan [15] 
indicate that molecular orientation is not only introduced during the filling but also 
during the post-filling (packing and holding) stage of the injection moulding process. 
The traditional incompressible version of the model as applied by Isayev and Hieber 
[4] is slightly modified to include compressibility effects; an essential feature in the 
packing stage. By following Stickforth [-6] and Simo [-7], a kinematic split of the 
elastic deformation tensor into a volumetric and a deviatoric part is defined and a 
compressible version of the Leonov model is derived. As the model reduces to that of a 
linear viscoelastic medium for small deformations, only linear viscoelastic measure- 
ments are required to determine the material properties. 

Two approaches are investigated to calculate flow induced residual stresses by 
means of the compressible Leonov model. Firstly, the viscoelastic material behaviour 
is taken into account to derive the so-called pressure problem (Sitters [-2]). This is 
called the direct approach. Secondly an indirect method is developed, where the 
pressure problem is derived employing a generalized Newtonian model, while the 
resulting flow kinematics is used as input for the viscoelastic constitutive equation to 
calculate flow induced residual stresses. The latter approach reduces computational 
time considerably. 
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2. Governing equations 

The three dimensional governing equations are: 

1. Continuity equation, representing the conservation of mass 

h 
~- + V . v  = 0 (2.1) 
P 

where p represents the density (the inverse of the specific volume v), V the gradient 
operator, and v the velocity field. 

2. The momentum equation 

V.~ + p f =  pv (2.2) 

where ~ is the Cauchy stress tensor and f the body force per unit mass. 

3. The energy equation 

p~ = o : D  - V . h  + pr (2.3) 

where e is the specific internal energy, D the rate of deformation tensor, h the heat 
flux and r an internal heat source. 

This set of equations can not be solved as such, constitutive equations for the density, 
the Cauchy stress tensor, the specific internal energy, the heat flux and the internal 
heat source must be given, accompanied by appropriate initial and boundary 
conditions. This is the object of the next section. 

However, some remarks can be made here. First, due to the extremely high viscosity 
of the material compared to the velocities, inertia effects are neglected in the 
momentum equation. Body forces can be neglected and no internal heat source is 
assumed to be present. Further, solving the full three dimensional theory would be 
highly uneconomical, and would bypass the typical geometrical properties of the 
product, such as narrowness and weakly curvedness. With a few suitably chosen 
kinematical assumptions a much more workable theory is derived. 

3. Constitutive models 

3.1. The compressible Leonov model 

Constitutive models are given to describe the thermodynamic behaviour of isotropic 
amorphous polymers. First a model is presented to characterise the thermo- 
mechanical behaviour. Thereafter, thermal properties are briefly discussed. 
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The mechanical behaviour in shear dominated flows (as in injection moulding) can 
be described reasonably well with the so-called Leonov model, as shown by for 
example, Upadyay et al. [8]. During the filling stage, compressibility effects may be 
neglected, as opposed to the post-filling stage where compressibility is one of the key 
phenomena. 

The basic kinematical assumptions of a compressible version of the Leonov model 
are briefly discussed. The prime assumption made by Leonov [5] is that the 
deformation tensor F, relating the current to the reference configuration, can be 
multiplicatively decomposed into an elastic ( F e )  and a plastic (Fp) part: F - -  F e . Fp; see 
Leonov [5, 9] and Stickforth [6], Secondly it is assumed that the polymer cannot be 
given a plastic volume change, i.e. Jp = det(Fp) = 1 and J~ --- det(F~) = det(F) = J. 

Following Simo [7], volumetric changes embedded in Fe are separated from the 
deviatoric responses by defining the kinematic split 

Fe = J 1/3Fe. (3.1) 

The Finger strain tensors associated with F, F e and Fe are 

B = F .  F c, n~ = F~. F~, B~ = F~. F c. (3.2) 

If L = (Vv) c is the velocity gradient tensor, then L = ~'. F -  1. It is common practice to 
decompose L additively into an elastic and a plastic part: 

L = L e q- Lp, Le : [Te. Fe  1, Lp = Fe.[Tp.F -1. (3,3) 

These are used to define spin (W~) and deformation rate (D,) tensors 

L = = D ~ + W = ,  D ~ = D ~ ,  W ~ = - W =  (c~= - , e , p ) .  (3.4) 

In accordance with Leonov [5], Wp is chosen equal to the null tensor. Finally, it can 
be shown that 

fie = ( Ld - Dp). Be + [~. (L dc -- Dp). (3.5) 

The Cauchy stress tensor g is split into an elastic part (fie) and a plastic part (%): 
= %  + crp. First the elastic stresses are defined, then the plastic part is given. 

Thereafter the temperature dependence of the material parameters is discussed. 

Elastic stresses. It is common practice to decompose fie into a hydrostatic and a 
deviatoric part: ae = - p I  + %. In the multi-mode case, the elastic extra stress tensor 
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~e is chosen as 

r/k Bd (3.6) T'e ~ - -  ek" 
k= l Ok 

For each mode k, the unimodular Finger t e n s o r  B e k  is calculated from (3.5), hence a 
relation for Dpk needs to be given. By analogy with Leonov's [51 proposal, the 
following form is chosen: 

1 - d  
Dpk = ~ (Beg -- Bekd). (3.7) 

Substitution of (3.7) into (3.5) yields for each mode k 

~ek=Ld .  Bek+Bek. LdC 1 ( - _ -  ) -- 2~k f3ek" f]ek -- I -- 3X(tr(Bek) - t r ( B e k l ) ) B e k  . (3.8) 

Note that, in contrast with the incompressible Leonov model, for plane flow 
tr(Bek) ¢ tr(B~kl). 

A relation for the pressure p remains to be given. This is done implicitly by taking a 
suitable relation for the specific volume. The so-called Tait equation is a successful 
model for amorphous polymers Zoller [10]) and is given below: 

v(p, T ) = ( a o + a l ( T - T g ) ) ( 1 -  0.08941n(1 + P ) ) ,  (3.9) 

where T o is the pressure dependent glass transition temperature, i.e. To(p) = Tg(0) + sp, 
and B(T) = B o exp(-- B 1T). 

Plastic stresses. The plastic part of ~ is chosen as 

% = 2t/'(T, p)D d. (3.10) 

Time-temperature superposition. Thermorheological simple behaviour is assumed, 
implying that 

ilk = ar(r)qgo, Ok = ar(T)Oko, r / '= ar(T)r/;, (3.11) 

where ar  is the shift factor and t/k o and OkO are the viscosity and relaxation time at a 
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reference temperature, say T o. The shift factor is governed by the WLF equation if 

T >~ TO, i.e. 

C l ( T -  To) 
log a t ( T )  - C2 + T -  T O ' (3.12) 

while, below T o 

a t (T)  = at(To). (3.13) 

3.2. Thermal behaviour 

To calculate the temperature distribution in the polymer, constitutive equations for 
the heat flux and the specific internal energy are given. 

Heat f lux .  The heat flux vector h is assumed to obey Fourier 's law, that is 

h = -2VT.  (3.14) 

Specific internal energy. Using the results of Stickforth [6] it is easily shown that for 
the Leonov model the specific internal energy can be written as 

0ae 
p+ = ~ :  (D - Dp) - pc~T - ~ ' ( O  - Dr), 

/ 
/ \ 

. 7  
. /  N 

/ • 

Midplane 
Fig. 1. Definition of the local basis O1. 
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where c~ is the specific heat at constant pressure. However, in this paper the energy 
equation is derived assuming generalized Newtonian material behaviour, where the 
extra stress tensor z is written as ~ = 2#D a, with # the steady state viscosity of the 
Leonov model. In this case, Sitters [2] has shown that 

= ceT" --  pv tr(D) -- T ~ p ,  (3.15) 
6 1  

where cp is the specific heat at constant pressure. Hence, the energy equation is written 
a s  

pcp~F= V.,~VT + z:D d - - -  
T c~p . 
p c3T p" (3.16) 

4. Thin film approximation 

4.1. I n t r o d u c t i o n  

In this section the set of balance equations and constitutive equations of the previous 
sections are simplified considerably by introducing a number of geometrical as- 
sumptions. Only narrow, weakly curved cavities are considered such that the thin film 
approximation holds (see Fig. 1). For  generalized Newtonian material behaviour this 
procedure is well described in for example, Sitters [2]. Here a viscoelastic material 
model is used. Still the assumption that shear flow dominates is adopted. 

Pre l im inar i e s .  At each point Xg of the midplane R, a local orthonormal basis 
01 = {el, e2, %} can be defined, such that e 1 and e 2 are tangent to R, and e3 is normal 
to R, e.g. e3 = n. The position vector of a particle along n that emanates from x R is 
denoted by x. Now, let A be an arbitrary second order tensor and a some vector, then 
the components of A, respectively a, with respect to 01 follow from Ai~ = A: ejel, 
respectively a i = a .  el, i = 1, 2, 3. 

4.2. P r e s s u r e  p r o b l e m  

A s s u m p t i o n s  

1. With respect to 01, it is assumed that the contribution of the normal stresses in the 
momentum equation can be neglected. This can be made plausible by noting that 
gradients in the thickness direction are far superior to the in plane gradients. 

2. The pressure is independent of the e 3 direction. 
3. Thermal conduction tangent to the midplane R is neglected. 
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Due to these assumptions the momen tum equat ion is approximated by (with respect 

to 01) 

~p  = - -  z, (4.1) 
~X 3 ~ 

p = p(xl ,  x2), (4.2) 

with 

~Vr= gxl  gx2 and z r = [ z 1 3  %3]. (4.3) 

The above approximat ion is often referred to as the thin film or lubrication theory. 
Employing the viscoelastic model  (3.6) it follows from t~ = ilr e + Ilrp, ~e  = - p I  + % 
and (3.10) that  

, ~vl ~ t/k 
zi3 t/ ~ x  3 + e e = 2., Ba . i = 1, 2. (4.4) 72i3, T'i3 - -  ek" e3ei~ 

k = l  O k 

With respect to 01 the continuity equat ion (2.1) is written as 

~v3 [9 v r Iv1 v2]. (4.5) ~Vrv + - ~ = 
~x3 p '  

F rom this the so-called pressure problem can be derived (see Appendix A): 

P E  Given T(x, t), find p(x 1 , x 2, t) >~ 0 such that 

f ]+  " dh 7 r ( S g P  + i)  = - PP-dx3 - (p ~> 0), (4.6) 

fs  s + i X3 
S = - J 2 + j ~ ,  Ji = _ ~ - d x 3 ,  ( i = 0 , 1 , 2 ) ,  (4.7) 

e fs~+ X 327e3 ~Ci3 j J1  i s+ ~;-ux3 + dx3, (i = 1,2). (4.8) i T  : [913 i 2 3 ] '  i i3  : - -  J 0  J s -  - ~ -  

In this, S is the so-called fluidity coefficient, and s + and s -  denote the locations of the 
solidified layers. Fur ther  ~ represents the contr ibut ion of elastic effects, S~+ + ig/p dx3 
represents compressibility and dh/dt  accounts for mould  elasticity. Note  that for 
symmetric flow J1 = 0. The pressure p is not  allowed to drop below zero, because as 
soon as p becomes zero the material  loses contact  with the mould. 

Equat ion  (4.6) is taken as a starting point  for the finite element implementation.  
Various aspects of this implementat ion can be found in for example, Sitters [2]. 
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4.3. Temperature equation 

With the use of (3.14) and (3.15) the energy equation (2.2) is written as 

pcv~= V . A V T  + r:D d___T Op . p aT p" (4.9) 

To take dissipation into account without having to deal with viscoelastic phenomena, 
in (4.9) is taken to represent the generalized Newtonian behaviour of the material. 

Hence ~ = 2#(i, T)D a, where ) is the shear rate (i = ~ ) .  The viscosity f/ is 
obtained from the steady state behaviour of the incompressible Leonov model [-5] at 
simple shear 

2q k 
#(i, T) = 1/' + 

k=l I+XR 
Xk = X/(1 + 41202). (4.10) 

Further, the conduction along the channel is neglected due to the thinness of the 
cavity compared to it's length. Hence with respect to O 1, the temperature problem to 
be solved is 

PT  Given v(x, t) and p(xl, x 2, t), find T(x, t) such that 

T 0p . 
p c3T p" (4.11) 

5. Computational aspects 

In all cases the implicit Euler scheme is used for temporal discretization. At each time 
step first the temperature and pressure equation are solved independently, where 
coupling is enforced by the iterative scheme. That is, the sequence of problems to be 
solved at each time step is: PT-- ,  PE ~ P T - o  PE ~ ... until convergence. The 
pressure problem PE is solved by employing the Finite Element Method (FEM) with 
linear elements. The non-linearity of the resulting set of equations is dealt with in this 
section. The temperature problem PT is solved with a Finite Difference (FD) scheme 
where the differential grid is centered at each element. Four  computational aspects are 
dealt with in more detail: the solution of the pressure problem PE, the method of 
characteristics to handle the material derivatives, the calculation of the shear rate in 
case of viscoelastic material behaviour, and the calculation of B~k- 

Solution of the pressure problem. The system of equations (4.6) is highly non-linear 
and is solved with a two step procedure. A fully implicit scheme is used in the time 
domain. 



150 F.P.T. Baaijens and L.F.A. Douven 

Step 1. An initial estimate for the pressure p, and associated properties such as 
velocity and shear rate fields, are found by solving for generalized Newtonian material 
behaviour. The viscosity is taken as the steady state viscosity of the incompressible 
Leonov model. Then PE reduces to 

PV Given T(x, t), find p(xl, x2, t) ~ 0 such that 

~r(g7p) = _ _ dx 3 -- ~ - ,  (19 ~> 0), (5.1) 

Tz ? s + i 

- - : z  + - ~ ,  J i =  | X@dx3, ( i - 0 , 1 , 2 ) .  (5.2) g =  
ao j~- t/ 

Equation (5.1) is solved with a Picard iteration scheme, assuming dh/dt = 0 

s + s +  ~ i s + 

fs- \P gPP Op'~idx3[gi+l w ~T (,i~,pi+l) = _ ;_  (p) dx3 + f _  ( l  ap'~idx3Di,t~p ] (5.3) 

"~' = -- a-~ + ~ o '  J-~ = - dx3' (j = 0, 1, 2), (5.4) 

where the superscripts i and i + 1 respectively refer to the previous or the current 
iteration. 

Step 2. Given an estimate of the pressure, shear rate field, etc. by step 1, PE is finally 
solved with the Newton iteration process. Within the finite element context, the 
element stiffness matrices are determined by numerical differentiation. 

Method of characteristics (Pironneau [11] and Morton et al. 1-12]). Consider the time 
interval t ~ [t,, t,+ ~], and let At = t,+ 1 - t,. The time derivative ib is approximated by 

p ( x ,  t . + 0  - p ( s . ,  t . )  
/' - A t  ' (5 .5 )  

where s, designates the position at time t, of the material particle currently located at 
x. The material time derivatives of T and Bek are treated likewise. 

Calculation of the shear rate. To calculate Bek, the shear rate needs to be known. 
Equation (A.2) constitutes a non-linear relation for the shear rate. It is solved 
pointwise with a secant-method, such that Bek and ~v/~x 3 are calculated 
simultaneously. 

Calculation of [~ek" The k'th mode unimodular elastic Finger strain tensor B~k is 
calculated from (3.8). A variable-order variable-time step backward difference scheme 
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Line gate 

Fig. 2. Ske tch  of  the  cavi ty,  str ip of  80 x 50 x 2 m m .  

is used to integrate (3.8) over a certain time interval. During each time interval, say 
t,--* t ,+l ,  L is assumed constant and the initial value of Bek is Uek(Sn, tn). 

6. Example 

As an example polystyrene (PS) is injected into a cavity of 80 x 50 x 2 mm (length, 
width, height), see Fig. 2. Along A a line gate is assumed. The material properties of PS 
in case a viscoelastic constitutive model is used are given in Table 1. Mould elasticity 
is neglected in this example. 

Processing conditions PS. The material is injected with an average velocity of 
120 mm/s at 200°C. This velocity is maintained at A until the holding pressure of 

Table 1. P a r a m e t e r s  for  PS  

Parameters W L F  equation: ( f rom Isayev  et al. [4])  

T O = 1 3 4 o c  

C1 = - 8 . 8 6  

C 2 = 101.6°C 

Thermal properties: ( f rom Isayev  et al. [4])  

cv = 1840 J / (kg  K)  

2 = 0.13 J / (sm K) 

Visco-elastic properties: ( f rom F l a m a n  [14])  

q' = 0 .08795 M P a s  

01 = 1147 s ql  = 7.5908 M P a s  

02 = 38.71 s r/z = 2 .0930 M P a s  

Tait parameters: ( f rom Zol le r  [10])  

s = 0 . 5 1 ° C / M P a  
T~(0) = 100°C 

sol id 

ao = 972  

a 1 = 0 .224 

B o = 353.4 

B 1 = 2.999 10 . 3  

mel t  

972 m m 3 / g  

0 .544 m m 3 / g K  

252.1 M P a  

4 . 0 8 1 0  3°C 
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Pressure (MPa) 
6O 

0 
0 2 4 6 8 10 

Time (s) 

Fig. 3. N u m e r i c a l  p ressure  t r ace  for  PS,  viscoelast ic  m a t e r i a l  mode l .  

50 M P a  is reached. The holding pressure is maintained at A until all material at A has 

solidified. The mould  has a temperature of 50°C. 

Results for PS. Calculations were done with both  the viscoelastic and the viscous 

model. Figure 3 ~" . . . . .  s ,ow~ the calculated pressure history at x 1 = 8 m m  and x 1 = 56 m m  

for the viscoelastic case. They virtually coincide with the results of the viscous model. 

Dur ing  the filling of the mould,  for t ~ [0, ty = 0.67] s, the pressure gradually rises. 

Then a short compression stage follows where the pressure rapidly increases to 

50 MPa.  Hereafter, due to cooling, the pressure slowly decays, until at time tg s = 6.3 s 

o 

o o.o 

Oistor, 

5 1.0 

Fig. 4. N~ at  e n d  o f  fil l ing s tage,  t = 0.67 s. 
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Distooce 

Fig. 5. N 1 at end of compression stage. 

the gate has solidified completely. After solidification of the gate the pressure decays 
further until the product is ejected from the mould. 

In Figs. 4-8  the evolution of the first normal stress difference N1, defined as 

N1 = z~ 1 - ~3,  for the viscoelastic (direct) case is shown. N~ is shown at 5 times: at 

the end of the filling stage t I = 0.67 s, at the end of the compression stage tc = 0.71 s, 
and at t c + 1.5, tc + 3.0 and t~ + 6.0 s. During the compression stage most of the flow 
induced normal stresses relax because the flow rate is low and the temperature at the 

core of the cavity is still quite high, compare Figs. 4 and 5. This does not apply to 
regions close to the walls, because there the temperature has dropped below T o and 

relaxation is virtually stopped. During the post-filling stage shear rates are orders of 

O•'• 

- t O  

DistOrse 

Fig. 6. N1 at t = 2.21 s. 
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Fig. 7. N ,  a t  t = 3 . 7 1 s .  

1 
, 1 .0  

magnitude smaller than in the filling stage. However, due to the decreasing 
temperature as time proceeds, small shear rates may still introduce considerable 
normal stresses as is clearly demonstrated in Figs. 5-8. Figure 8 shows the final N1 
distribution because at that time all material has solidified. 

These results can be compared with calculations obtained with the indirect method, 
where the kinematics of the generalized Newtonian model is used to calculate flow 
induced residual stresses with the compressible Leonov model. The N1 distribution 
thus obtained after solidification of the entire product is shown in Fig. 9. Figures 10 
and 11 compare Nz obtained with both techniques at two different locations in the 
mould. Qualitatively the results are in very good agreement, while the computation 
time of the indirect method is less than 1/10 of the direct method. 
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Fig, 8. N1 a t  t = 6 . 7 1  s. 
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7. Conclusions 

The evolution of flow induced stresses during injection moulding in both the filling 
and the post-filling stage is investigated numerically. A compressible version of the 
Leonov model was developed and applied. 

The calculations clearly show that a substantial portion of the flow induced residual 
stresses arise during the post-filling stage. This is in agreement with experimental data 
[13]. The direct (viscoelastic) approach does not significantly differ (results mostly 
agree within 10%) from the much cheaper indirect method. In this latter method the 
pressure problem is derived with generalized Newtonian material behaviour, and the 
resulting kinematics is supplied to the viscoelastic constitutive equation. This 
approach is a valuable tool to give a quick and fairly accurate indication of the 
molecular orientation in an injection moulded product (provided that one assumes 
that flow induced stresses are a measure of molecular orientation). 

Appendix A. Derivation of the pressure problem 

Substitution of (4.4) into (4.1) gives 

= 0 x 3 \  ~x3 + ~ ' ~ = I-'c13 ~3]" (A.1) 

Step 1. Integrating (A.1) with respect to x3 yields (note that p = p(xl, x2)) 

~x 3 - (x3V.p + c - ~  ), (A.2) 

where c is an integration constant column. 

Step 2. The velocity v is found by integrating (A.2) from s-  to x3 

v Js-  0x3 dx3 = ds-t / |  w (x3~p A- c - ~e)dx3. (A.3) 

This holds because at x3 = s-v = Q. Because ~ = Q at x3 = s + as well, it follows that 

J~ L ~ s + ' ~  e 
C = - - - -  ~r dx3. (A.4) 

Jo gp  + Jo Js 
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Step 3. I n t e g r a t i n g  the veloci ty wi th  respect  to x 3 once  m o r e  gives (after repea ted  use 

of ~ fg,x dx : fg  - S f xg  dx) 

fsS+ ( j2) j1 Cs+ Te ~+x3Te 
v = + 1 _ ~7dx3 + ~ - d x 3 .  (a.5) _ ~dx3  - J 2  Z ~ p  J o J s -  

Step 4. I n t e g r a t i o n  of the c o n t i n u i t y  r e l a t ion  (4.5) f rom s -  to s +, the use of(A.5)  a n d  

the r ecogn i t i on  tha t  

dhd.__t f f  +- dV3 = ~x3 dx3 = Va(S +) - Va(S-) (A.6) 

gives the f inal  result .  
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