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1 Introduction. 

In experiments, it is rather the rule than the exception that instead of the parameters of interest 

only some related parameters can be measured. This immediately leads to the need of reliable regression 

methods. For example, this is the situation in the study of the influence of acid rain on tree growth. Here, 

tree ring widths are measured in order to obtain information about the variations in tree behaviour with 

the weather conditions. This might eventually yield insight in the way acid rain affects tree growth. This 

phenomenon is poorly understood yet. In the regression of tree ring series on the weather, the application 

of the so-called Kalman approach appears to be very useful. Several results have been presented in 

references [Visser and Molenaar 1988, Visser 1986]. This report is meant to give an overview of the 

theoretical backgrounds of this method. The main purpose is to clarify the ideas, but the mathematical 

details will be included in order to present a self-contained derivation of the theory. Only elementary 

knowledge of statistics and linear algebra is presupposed. 

This report is organised as follows. In sections 2 and 3 we introduce the state space model to 

be studied. In section 4 we deal with the important concept of 'innovations' and the 'orthogonality 

principle'. For the theory, it is not necessary to know the distribution of the stochastic terms in the 

model in advance. The general version of the theory is derived in section 5. If the disturbances are 

Gaussian, the derivations of the formulae can be considerably simplified. This is the sub jeet of section 6. 

One of the main aspects of the theory is the recursive form of the calculation procedure. It is interesting 

to note that in this respect a great analogy exists between the Kalman procedures and the ordinary least 

squares method in recursive form. This relation is the subject of section 7. In the Gaussian case, unknown 

parameters may be estimated by maximum likelihood estimation, which is dealt with in section 8. There, 

the maximum likelihood function is expressed in terms of innovations, which leads to remarkably simple 

formulae. In section 9, the general form of linear regression models, which are also called structural 

models, is presented. There, we also point out how the general methods, developed in this report, are 

used in the analysis of tree-ring series. 

In this report we pay no attention to the estimation of non-linear models, which need application of 

the so-called Extended Kalman filter. For an example ofthis extension we refer to [Molenaar and Visser 

1987]. 
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2 State Space Model. 

In this report, we study the following state space model: 

Yt = m'tXt + Vt, t = 1, ... ,T (1) 

The state vector Xt of dimension N is not directly observable and is to be estimated from T successive 

observations of Yt . We call (1) the measurement equation. The vector IDt of length N is, in the first 

instance, assumed to be known. The disturbance Vt represents the measurement error. The vectors x, 

are assumed to be related by the linear transition equation 

Xt = TtXt-1 + Wt (2). 

Tt is a known N x N matrix and the vector Wt of length N represents some internal stochastic process 

in the system. For the disturbances Vt and w t we assume 

cov(v, 1 ,v~,.) =Rt1 6t 1 t 2 Vt1t2 

cov(Wt1 , Wt,)= Qt1 ht1t2 Vttta 

cov(wt1 , Vt2 ) = 0 Vt1t2 (3) 

cov(w,,xo) =0 Vt 

cov(vt,xo) =0 Vt 

with' 6 the Kronecker symbol and x0 the initial value of the state. 

. For the model contained in expressions (1)-{3) the following remarks are important: 

a). The parameters mt. T,, Rt and Qt are assumed to be known in advance. In most cases of interest 

this is a real problem and some of them have also to be estimated from the data. This point is 

further dealt with in section 8. 

b). If Vt, w,, and the initial distribution x0 are normally distributed Gaussian processes, then it is clear 

that Xt and Yt are also jointly Gaussian for all t. 

· c). In most applications one takes R and Q constant. Moreover, Q is often assumed to be a diagonal 

matrix. 

d). In the univariate case studied here (i.e. Yt is a scalar), there is no need to deal with Rt (a scalar) 

and Q, separately, because all formulae in the Kalman theory depend on the quotient Qt/ Rt only. 
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3 State Estimation. 

For convenience, we introduce the notation 

(4) 

We want to find an estimator for the state x1 in terms of the components of the vector Y, •. We shall 

denote this estimator by Xtft'. The corresponding estimate 'Xcft' is then directly obtained by replacing 

Y~ by the corresponding vector containing measured values in the expressions for the estimator. In linear 

regression theories, of which the Kalman approach is an example, the estimator is assumed to be linear 

in Y t', i.e. an affine transformation of the first t observations, and thus of the form 

x,1,. = A,v,, (5) 

The matrix A, is to be determined. We have still to specify in which sense the estimator Xtft' should 

be optimal. It is appropriate to demand that Xtft' should minimise the variance var(xt - Xtft') and 

we shall call it the minimum variance estimator (MVE). Because the rows of At are to be determined 

independently, minimisation of this variance implies the minimisation of the variance of each component 

of etft' := x, - Xtft' separately. 

A well-known result of estimation theory states that the minimum variance estimate is given by the 

conqitional mean ofx, given y,,, which is denoted by E(x,IYc•) [ Bagchi 1982 ]. However, because Xtft' 

is bound to be of the form (5), this result does not hold in general for Xtft'· It is only the case if x, and 

Yt are jointly Gaussian, because then a famous theorem states that the MVE of x, is always of the form 

(5) [Sage and Melsa 1971 ]. In that case, Xtft' is not only the best linear estimate ofx1 (in the sense of 

minimum variance) but even the best of all possible estimates and we may write 

(6) 
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4 Innovations and the Orthogonality Principle. 

Equation (5) states that each component of x111, is a linear combination of the components of Y 1•. 

This suggests to interprete these components as elements of a linear vector space. This space contains all 

stochastic scalar processes with finite variances and all constants. A natural inner product for elements 

Yt and Yt' in this space is given by 

(7a) 

which induces the norm 

IIYtll = V(Yt.Yt) (7b) 

This allows for a nice geometric interpretation of the MVE. In the preceding section we concluded that 

each component Ztft' of Xtft' is chosen such that var(:r:1 - :r:11,,) = var(et/t'} is minimised with :r:1 the 

corresponding component ofx1• Because E(e1/f') = 0, it holds that var(etft•) = lle111 2
. So, we conclude 

that Ztft' is that element of the subspace spanned by the components ofY1•, which has minimal distance 

to x,. In other words, it is the projection of x1 on that subspace. Denoting this projection operator by 

Prt' we may write for all components of Xtft' at the same time : 

(Sa) 

The property that all components ofx1 -Xtft' are orthogonal to the subspace spanned by the components 

ofY,, is called the Orthogonality Principle, which can also be expressed in the form: 

(8b) 

In the following, we shall often use this kind of expression. For conciseness, we introduce for stochastic 

vectors X1, x2, with components in the linear vectorspace introduced above, the notation 

{8c) 

If Xt and X2 are scalar processes, this notation agrees with definition (7a). In analogy with the Orthogo­

nality Principle, we call Xt and x 2 orthogonal if (x1, x2) = 0. Note that, with definition (8c), the matrix 

(xt,X2) is nothing else but the covariance matrix ofx1 and x 2, provided that E(xt) = E(x2) = 0. The 

6 



matrix (xt, x2) can also be read as a tensor product. The inner or scalar product, commonly used in con­

nection with such a tensor product, is the sum of the squares of all matrix elements. The Orthogonality 

Principle expresses the orthogonality of two vectors with respect to this inner product. 

For the general derivation of the Kalman formulae it is very useful to construct a orthonormal basis 

in the following way: 

v0 = 1 

Vt == Yt - ProYt (9) 

112 = Y2 -. PrtY2 

The orthogonal basis elements Vi, i = 0, 1, ... , t are thus obtained from the elements of Y, by a Gram­

Schmidt procedure. If we define a vector N, by 

(10) 

this pr~cedure is equivalent with the transformation 

(11) 

with Lt a lower triangular matrix with ones at the diagonal. This unique orthogonalisation procedure is 

also called Choleski decomposition [ Harvey 1981b ]. We call the vi innovators and the corresponding 

realisations are known as innovations.The innovators can be expressed in terms of the estimators Xtft-l: 

= Yt - m' tXtft-1 

(12) 

because v, is, by definition, orthogonal to the subspace spanned by the elements ofYt-1· From expression 

(12) it is cleat why the innovations are also called the one-step-ahead prediction errors. To normalise the 

Vt, we rewrite expression (12) in the form 

(13) 

Introducing a matrix Ptft' by 

. p t/t' = ( Xt - Xtft' 1 Xt - Xt/t' ), (14) 

7 



we find that 

(15) 

because, in view of assumptions (3), v1 is orthogonal to both Xt and Xtft-1· In the univariate case studied 

here, ft is a positive scalar and we may normalise the v1 by 

(16) 

Fort = 0 we cannot use (15) but the normalisation is trivial in that case. 

For later purposes, we note that, from the construction of the 11't and assumptions (3), 

if t > t' (17a) 

and 

if t ;:::: t' (17b) 

Because 11't. t = 1, 2, ... are orthogonal to 11'o, which is constant, we have 

Vt > 0 (17c) 
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5 Kalman Theory: The General Case. 

In this section, we present a. general derivation of the Kalman theory. In the literature, one can find 

many approaches to this estimation problem. For example, see [Kalman 1960, Kalman and Bucy 1961, 

Sage and Melsa 1971, Jazwinski 1970, Kwakernaak and Sivan 1972, Otter 1984 ]. We prefer to present a 

self-contained derivation based on the notions introduced in sections 3 and 4. There, we established that 

the components of the estimator Xtft' are elements of the linear vector space spanned by the orthonormal 

basis vectors 1ro, 1r1, ... , 1rt'· So we may expand 

•' 
x,,,, = 2)x,, 1rs)1rs (18) 

i:O 

Using this representation we shall successively deal with the cases of prediction ( t > t'), filtering { t = t') 

and smoothing (t < t'). 

It is important to realise that the expectation value E(Xtft') is completely contained in the 1ro 

component of expression (18), because (xt.1ro)1ro = E(x,). This directly implies that the estimator Xtft' 

is unbia.Sed. Therefore, the variances of the components of x, - Xtft' are given by the diagonal elements 

of the matrix Pt/t' and these are just the quantities we are minimising. 

5.1 Prediction. 

It is easy to express Xt/t' with t > t' in terms of Xt'/t'· To that end, we substitute the transition 

equation (2) into the coefficients of expansion (18). Because of property (17b ), we have for t > i : 

(x,, 1rs) = T,(Xt-lt 1ri) + (wt. 1rs) 

= T,(xt-t.1rs) 

If we repeat this procedure we obtain the result 

For the special case of one-step-ahead prediction we have 

(19) 

(20a) 

(20b) 

Using equations {20) in definition (14) of Pt/t' we obtain a similar recurrence relation for the error 

variance matrix. In practice, only the one-step·ahead version 
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(21) 

is used. 

5.2 Filtering. 

In the case t = t', it is appropriate to separate the term with i = t' = t from the summation in (18): 

(22) 

To evaluate the inner product (xt, 1rt) we have to substitute expressions (16) and (13). From (3) we have 

(xt, v,) = 0 (23) 

From the geometrical interpretation of Xt/t-l as the projection of x, on a subspace, which does not 

contain Xt, it immediately follows that 

(24) 

by definition (14). So we arrive at 

(25) 

If we combine (22) and (25), we find that the filtered estimator Xtft is given by the prediction estimator 

Xtft-1 and a correction proportional to the innovator v1: 

(26) 

with the so-called gain K, defined by 

(27) 

It remains to express P tft in terms of P t/t-l· This is most simply performed using relations (13) and 

(26) 

(28) 
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As already noted in the derivation of expression (15), both terms in the right hand side of (28) are 

orthogonal, so we may write: 

Using definition (27) for Kt, this equation may be reduced to 

5.3 Smoothing. 

(29) 

(30) 

(31) 

Here, we are mainly interested in the fixed interval, smoothed estimator XtfM with t ~ M and M 

fixed. However, the derivations to be used can easily be extended to cover other cases such as the fixed 

lag smoothing estimator. We derive expressions for the smoothed estimator in terms of the filtering 

estimator dealt with above. 

From expansion (18) we deduce that 

M 

XtfM = Xtft + L (xt, 11';)11'i 

i=Hl 

(32) 

in which Xtft and the 11'i are already known. It remains to study the inner products (xt, 11'i) with t < i. 

In _view of equation (13) we may write for t < t1
: 

(33) 

= P(t, t')mt• 

Note that we introduce a matrix P(t, t') here, which is different from Pt/t' defined in (14). They can be 

expressed in each other. For example, it holdsthat . 

P(t,t) = Pt/t-1 {34) 

To derive a more general relation, we use the transition equation (2) and prediction equation (20b) and 

write 
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(35a) 

From filtering equation (26), we may put this in the form 

(35b) 

Substitution of (13) for Vt-l leads to 

(35c) 

If we substitute this into definition (33) of P(t, t'), we obtain a recurrence relation under the condition 

t < t1
- 1: 

P(t,t') = P(t,t' ..:...1)(1- mt-tK't-l)T't (36) 

To start the iteration, we have to study the ease t = t' - 1 or t' = t + 1 separately. From (35a), it 

immediately follows that 

P(t, t + 1) = (xt- Xt/t-l,Xt+l- Xt+l/t) 

= PtftT't+t 

Combining equations (36),(37) and (30) we find 

t' 

P(t, t') =<II Pt)T't+l 
i=t 

with Pi given by 

From this explicit representation for P(t, t'), we ded~ee that 

P(t, t') = p• 1P(t + 1, t') 

This enables us to express XefM in terms ofxt+I/AI . From (32),(33) and (16) we have 

12 
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In a similar manner it holds that 

M 

XtfM = Xtf~ + I: P(t, i)mi(h)-1vi 
i=t+l 

M 

Xt+l/M = Xt+l/t + I: P(t + 1, i)mi(fi)-1vi 
i=t+l 

Substitution of (40) into (41a) yields 

(41a) 

(41b) 

(42) 

From the orthogonality of the basis elements Vt we may immediately conclude that the two terms in the 

right hand side of (42) are orthogonal. This implies that the recurrence relation for Pt/M is given by 

(43) 

with P; given by (41). So, starting from known expressions for XM/M and PM/M we may apply (42) 

and ( 43) and work backwards to obtain successively all smoothed estimators and thus estimates. 

5.4 Summary of Algorithms. 

for convenience, we summarise here the algorithms derived until now. The expressions are in recur­

rent form and highly appropriate for numerical implementation. 

· Pt·ediction: 

The matrices T, and Q, are introduced in (2) and (3). 

Filtering: 
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The gain Kt is defined by 

and the innovators Vt and their normalization by 

Vt = Yt - m' tXtft-1 

The prediction and filtering procedures work forward and have to start with initial estimates Xofo and 

Po;o· These estimates should be unbiased and have minimum variance. In practice, these estimates are 

seldom available. See .also section 9. for a discussion of this aspect. 

Smoothing: 

The smoothing procedure works backwards and assumes that the prediction and filtering estimates have 

already been determined at the time points t = 1, 2, ...... , M. 

with the matrix P: given by 
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6 Kalman Theory: The Gaussian Case. 

In this section, we show that the derivations in the preceding section can be performed in an alter­

native, elegant manner if all stochastic processes are normally distributed. The present derivations are 

taken from [ Meinhold and Singpurwalla 1983, 1987 ].An analogous approach is presented in [ Rauch, 

Tung and Striebel 1965 ]. In the model contained in equations (1),(2) and (3), this implies that the 

initial distribution of the state x0 together with the disturbances v1 and w 1 are assumed to be normally 

distributed. Then, the same holds for x1 and Yt at all times, as already noted in remark b of section 2. 

In the following we shall make use of the following well-known theorems for normally distributed 

vectors x: 

Theorem 1. If x """ N(p, E) then· Ax ,..., N(Ap, AEA') with A an arbitrary matrix. 

Theorem 2. If 

then 

It is convenient to summarise equations (1) and (2) in the following form: 

= ( Tt I 0) ( 
m',Tt m't 1 

Xt-11 ) 
Wt Yt-1 

Vt 

with I the identity matrix. As stated in equation (6), we have in the Gaussian case 

Theorem 1 implies that 

-N {( ( 
with the E matrices given by 

Exx:: Pt/t-1 = TtPt-t/t-tT't + Q, 

(44) 

(45) 

(46) 

~=~~ M 
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Application of theorem 2 yields 

(xtiYt)"" :" {TtXt-1/t-1 + E~11 E;J-(Yt- m1tTtXt-1/t-d, Eu- Eol'11 E;J-E~11 (48) 

So we have obtained the probability density function ofxt given the data Yt. It follows that equation ( 47) 

contains the same information as contained in prediction equations (20b) and (21) and filtering equations 

(26) and (30). 

To obtain the smoothing equations ( 42) and ( 43), we have to concentrate on the joined probability 

distribution ofxt,Xt+1 and Yt+l given the data Yt. Then, we have 

( x7:1 jv,) = ( T:+l ~ gl) ( w~:l jv,) (49) 
Yt+l m't+1Tt+l m't+l Vt+l 

Successive application of the theorems 1 and 2 yields the backward recurrence relations (42) and (43). 

The formulae have been written out in appendix A of [ Meinhold and Singpurwalla 1987 ]. This Bayesian 

approach is quite attractive, because it provides information about x 1 through its distribution rather than 

just a point estimator. However, this is only possible thanks to the restrictive additional information of 

normality of all stochastic processes involved. 
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7 The Kalman Filter and Least Squares Estimation. 

It is useful to point out the relationship between Kalman estimation and the familiar least squares 

estimation. For the Kalman theory the recursive character of all calculations is an essential feature, 

whereas the least squares method is usually not put into that form. However, much insight is gained 

if also the least squares method is approached that way. Then, it is immediately recognised that this 

method is a special case of Kalman estimation. This idea has also been worked out [ Duncan and Horn 

1972, Young 1984 ]. First, let us present a brief derivation of the least squares method and study the 

regression model 

y=m'x+v (50) 

with y a stochastic scalar process, which is measured at times i = 1, 2, ... , t. The vector m of length N 

contains the regression variables mi and the vector x of length N the regression coefficients, which are to 

be estimated. They are assumed to be constant in time. The noise process v represents the measurement 

error. 

We introduce the following notation: 

with Yi the value of y measured at time i; 

(Mt)iJ=mf, j=l, ... ,N; i=l, ... ,t 

with m{ the value of mi at time i; 

with v; the (unknown) value of v at time i. 

Then, we may summarise all information up to time t in the equation 

The criterium for the estimatiQn of x is to minimise the length of the vector Vt given by 
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(55) 
i=l 

Because this length is just an estimation of the variance of the stochastic process, we may denote this as 

minimum variance estimation. From (54) we have 

= Y't Yt - x'M't Yt - Y'tMtx + x'M' tMtx (56) 

= Y',Yt- 2x1M'tYt +x'M'tMtx 

If we differentiate the latter expression with respect to x 1 and require the result to vanish, we find 

(57) 

From this equation the estimator x1 of xis obtained based on the information at times i = 1, ... , t. If the 

symmetric matrix M 1 
1M' 1 is non-singular, we arrive at the well-known ordinary least squares formula 

(58) 

For completeness, we remark that this estimator is unbiased and if v is normally distributed around zero, 

i.e. v,.... N(O,u2), then, it holds that x1 ,.... N(x, (M'1M 1)- 1u2 ) .Equation (58) for Xt is not in a recursive 

form. If t ...... t + 1 all dimensions are enlarged and the matrix inversion has to be performed anew. 

A recurrence relation would allow ns to express Xt+l in terms of x1 and the most recent information 

contained in Yt+l and mt+l· To obtain this relation we define 

and remark that 

From one of the lemmas for matrix inversion, presented in [ J azwinski 1970 J, we find that 

B-1 . I B-1 B-1 _ B-1 _ t mt+tm t+l t 

t+l -
1 (1 + m't+tBf" 1mt+l) 

(59) 

(60) 

(61) 

If we substitute this expression for B;j1 in the right hand side of (58) with t replaced by t + 1, we obtain 
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(62) 

with the matrix K given by 

(63) 

Note that the latter two equations strongly resemble equations (26) and (27) for the Kalman filter. 

This similarity reflects that the ordinary least squares method can be interpreted as a special case of 

the univariate Kalman approach. In the least squares regression method, the coefficients in the linear 

regression model are assumed to be constant. This implies that, in the transition equation (2), T, should 

be identified with the identity .matrix while Qt = 0 Vt should be taken in equations (3). Furthermore, 

we have the identification PHl/t = Ptft +-+ B;-1 as follows from equation (21) and comparison of the 

gainmatrices Kt, given in equation (27) and Kt, given above. 
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8 Maximum Likelihood Estimation. 

In many problems, the model in equations (1),(2) and (3) contains some parameters which have still 

to be estimated, together with the state Xt, from the measured data. This is possible via the maximum 

likelihood approach, if the stochastic processes Yt are jointly, normally distributed. Then, the maximum 

likelihood function L(Yt), with Yt given by (4), is [Harvey 1981b] 

logL(Yt) 
-(f + 1) 1 1 1 -

2 
log(21r)- 2/og(det(cov(Y,)))- 2y 1(cov 1(Yt)Yt (64) 

The calculation of L(Yt) for successive t points is awkward in the form of equation (64). Therefore, we 

shall present a recurrence relation for L in terms of the innovations Vt. introduced in section 4. There, 

we pointed out that the Vt are. obtained from the Yt by means of transformation (11). Because the Vt are 

orthogonal, we have that the covariance matrix of Nt. defined in {10), is diagonal with diagonal elements 

ft. given by (15). Because transformation (ll) is non-singular, we may write 

Further, we have 

det(cov(Y,)) = det{L;- 1cov(Nt)(L;-1
)'} 

= det(Li 1
) • det(cov(Nt)) · det((L;- 1

)') 

= det(cov(N1)) 

t 

=Ill· 
i=O 

(65) 

(66) 

Here, we make use of the fact that det(L1) = 1, because Lt is triangular with unity diagonal elements. 

In terms of the Vt and ft, L is given by : 

t+ 1 1 ~ vl 
logL(Yt) = -Tiog(21r)- 2 ~ {logj, +Is} 

. •=0 
(67) 

This equation is known as the "prediction error decomposition" [Harvey 198lb,1984 ]. If L(Yt-t) has 

been calculated, it suffices to calculate lit and / 1 in order to obtain L(Yt) directly. 

The unknown parameters can be evaluated by maximising L as a function of these parameters. This 

optimisation problem is strongly non-linear. In practice, this approach is tractable only if the number of 
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unknown parameters is restricted, e.g. by assuming that they are time independent. See also remark c 

in section 2. In order to gain computational speed and simplicity it is also desirable to pose, as much as 

is reliable, restrictions on the dimensions and parameters of the model. 
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9. Structural Models and the Analysis of Tree-Ring Series. 

In regression analysis, the use of so-called structural models has become widespread. Such a model 

is based on the decomposition of the measured signal Yt into trend, seasonal component, explanatory 

variables and a noise term in an additive way : 

Yt =(Trend)+ (Seasonal Components)+ (E:cplanatory Variables)+ (Noise) (68) 

This kind of model can be put in state space form and thus analysed with the help of Kalman theory. 

We refer to [Harvey 1981a and b, 1984, Harvey, Henry, Peters and Wren-Lewis 1986, Harvey and Durbin 

1986, Mettes and Visser 1987, Meinhold and Singpurwalla 1987 J. An example is the analysis of tree-ring 

series [ Visser and Molenaar 1988 ]. In this application the smoothing features of Kalman theory are 

utilised. The idea is to regress iree-ring data on weather data in order to detect possible variations in tree 

behaviour. To that end, the time dependent coefficients in a linear regression model are to be estimated. 

We make therefore the following identifications: . 

Yt represents tree-ring width or basal area increment in year t. 

mt contains the weather data at time t. 

Xt is the vector of regression coefficients. 

The behaviour of Xt in time reflects the relation between growth and specific weather conditions. An 

apparent and common choice for the components of m, is to make use of temperature and precipitation 

data averaged over one month. Note that m; must also contain weather information from the year 

preceding to year t, because a considerable delay exists between tree growth and the preparation for the 

growth processes. 

Because hardly any biological information is available about the dynamic behaviour of the coefficients 

one usually takes T = 1 in transition equation (2), so that a random walk behaviour results : 

(69) 

The prediction, filtering and smoothing formulae to be implemented in a computer program are given 

in section 5.4. The unknown variances Rand Q, which are assumed constant in time, can be estimated by 

optimising the likelihood function L given in section 8. Because starting values xo are generally unknown, 

one usually chooses an arbitrary value in combination with large diagonal elements for Po/O· As shown by 

Jazwinski (1970), the prior data are eventually forgotten and a bias stemming from initial uncertainties 
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damps out after sufficient, say N6 , observations have been processed. The first N6 iteration steps serve 

as a transient period for the filtering process. The results of the smoothing process are still reliable in 

this period. Because the likelihood function is connected with filtering, the transient time points may 

not be included into this function. Unknown parameters follow from optimising the function 

(70) 

which is called the concentrated likelihood function and is obtained from (67) by omitting irrelevant 

factors. 
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