
 

Differential algebraic equations

Citation for published version (APA):
Wijckmans, P. M. E. J. (1992). Differential algebraic equations. (RANA : reports on applied and numerical
analysis; Vol. 9302). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/290611dd-6380-4d8d-8092-197079b16780


EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

RANA 93-02
January 1993

Differential Algebraic Equations
by

P.M.E.J. Wijckmans



Reports on Applied and Numerical Analysis
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands
ISSN: 0926-4507



Differential Algebraic Equations

A.M.S. Classifications
Keywords

by

P.M.E.J. Wijckmans

65L05
differential algebraic equations, multistep methods,
Runge-Kutta methods, numerical methods.



1.1 Introduction

We shall focus on problems which are of the general form of an implicit differential equation

1 Theory of Differential Algebraic Equations

(1.1)

(1.3)

(E.1.2a)

(E.1.2b)

1

Az+By+q

Cz+Dy+r

f(t,x(t),x'(t)) = 0,

dz
=dt

o =

Ax'(t) +Bx(t) = get),

Example 1.1

Abstract

Differential Algebraic Equations (DAE's) arise in many applications, such as mechan
icalsystems with constraints, the modeling of electrical networks, flow of incompressible
fluids. This class of problems presents numerical and analytical difficulties which are
quite different from Ordinary Differential Equations (ODE's). In this paper the theory
and the numerical solution of DAE's are examined.

P.M.E.J. Wijckmans

January 18, 1993

In this system the algebraic constraints appear explicitly in equation (E.1.2b). Note,
that this system can easily be rewritten as an ODE if the matrix D is nonsingular.

Differential Algebraic Equations

where the function f : JR2n+1 -+ JRn is assumed to be sufficiently often differentiable, and
x E JRn. The partial derivative a f / ax' may be singular. This class of differential equations
includes ordinary differential equations (ODE's) as a special case. If the Jacobian aflax'
is nonsingular, equation (1.1) is a system of ordinary differential equations. However, if
the Jacobian is singular, equation (1.1) is in fact a system of differential algebraic equations
(DAE's). ODE's. In a system of DAE's there are algebraic constraints on the variables.
Consider the following example

1.2 Linear DAE's with Constant Coefficients

The simplest and best understood problems of the form (1.1) are linear differential algebraic
equations with constant coefficients
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Theorem 1.3 For A, B E JRnxn the DAE

(1.5)

(1.4)

(1.6)

x(t) = exp(>.t)xo,

det(>.A +B) = O.

x'(t) = _A-1Bx(t) +A-1g(t),

lead to the relation

is solvable if and only if the matrix pencil >.A + B is regular.

Proof. Suppose the matrix pencil >.A +B is singular. Choose an arbitrary set of n + 1
distinct >'i and Vi :/; 0, i = 1,2, ... , n +1 such that (>'iA +B)Vi = O. There is a nontrivial
combination Ei~"l aiVi = 0, but Ei~"l ai exp(>'it)Vi ~ O. For that reason, the problem
Ax' +Bx = 0 with x(O) = 0 has two different solutions, namely Ei~l ai exp(>'it)Vi and O.
Therefore the DAE (1.3) is not solvable for a singular matrix pencil >.A +B.

Assume the matrix pencil is regular. The polynomial p(z) = det(zA +B) has degree
k ::; n and the unicity of the solution is obvious. 0

where A, B E JRnxn, and g E JRn. We study these systems to give insight in the behaviour
of solutions of DAE's.

Consider equation (1.3) with a nonsingular matrix A. This system can be rewritten as

Ax'(t) + Bx(t) = get)

lCampbell [8], and, Griepentrog and Muz [21] use the term tractable instead of solvable.

It is therefore useful to consider the matrix pencil >.A + B. This matrix pencil is called
singular if >.A +B is singular for all values of >., otherwise it is called regular.

Definition 1.2 The vector Xo E JRn is said to be a consistent initial vector associated with
to E JR if problem (1.9) with initial value x(to) = Xo possesses at least one solution. If the
initial value problem possesses a unique solution for all consistent initial vectors associated
with to, then the problem is called solvable.1

Solvability of a linear DAE with constant coefficients can be characterized by the following
theorem.

which is just a (familiar) explicit ordinary differential equation. Hence, we concentrate on
the case of singular matrices A. For homogeneous equations (1.3) solutions of the form

In the following we assume that the matrix pencil >.A + B is regular. Problems of the
form (1.3) can be solved using the Weierstrafl-Kronecker canonical form.

Theorem 1.4 Suppose the matrix pencil >.A +B is regular. Then there exist nonsingular
matrices P and Q such that



and the transformation

1
o

-'

(1.8)

of dimension m"

3

m-l
vet) = L(-l)'N's(i)(t).

,=0

where N =diag(N}, ... ,Nk)' Each matrix N, is a Jordan block of the form

o 1

o

[
ret) ]

Pg(t) = set) .

and C can be assumed to be in Jordan canonical form.

This theorem is proved by Gantma.cher [15] in 1954. Historically, the work of Gantmacher [15]
has been an inspiration for the use of matrix pencils in studying DAE's. It induced the
concept of the so called index of DAE's. This is the most important concept in classifying
DAE systems. The notion of index of nilpotency of a matrix pencil can be defined as follows.

Definition 1.5 The matrix pencil -XA + B has index of nilpotency ni = m, where m =
ma.xl<'<k m" i.e. m is the smallest integer for which N m = O. The DAE (1.9) has index of
nilpote;cy ni.

In the special case that matrix A is nonsingular, system (1.3) has index of nilpotency O. The
DAE (1.3) can be solved, using the Weierstra:6-Kronecker canonical form of Theorem 1.4, as
follows: premultiply (1.3) by P and define the coordinate change

= set) - N s'(t) +... +(_l)m-l Nm-1s(m-l)(t) + (_l)mNmv(m)(t).

Since Nm =0, the solution vet) of (1.7b) can be written as

System (1.3) can be written in decoupled form as

u'(t) +Cu(t) = ret), (1.7a)

Nv'(t) +vet) = set), (1.7b)

with initial value [ : ] = Q-1zo. Equation (1.7a) is an ODE. For any initial value .. and

any continuous function r(t) it has a unique solution. However, equation (1.7b) is not an
ODE. Suppose that DAE (1.3) has index ofnilpotency m (such that Nm-l :f. 0 and N m = 0),
then we find from (1.7b) by differentiation

vet) = set) - Nv'(t)

= set) - N s'(t) +N 2v"(t)
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Example 1.6 Consider the linear constant coefficient DAE

(1.9)

(E.l.I0a)
(E.l.I0b)

(E.l.I0c)

z~ +Zl = 91,

Z; +%2 = 92,

%s = 9s·

%1 = 91 - g~ + 9~,

%2 = 92 - 9~,

%s = 9s.

m-l

vo = E (-1)iNii i)(to).
i=O

Thereby, the initial value vo must satisfy

• higher index DAE's can have hidden algebraic constraints.

This last point can be seen from the following example.

From the solution v of problem (1.7b) one can conclude that the solution depends on
derivatives of order m - 1 of function s.

For linear DAE's of the form (1.3) where A and B are time dependent the local index of
the pencil >.A +B is defined as the index of nilpotency of this pencil at any time t. However,
this local index doesn't necessarily determine the structure of these DAE problems as in the
case of linear DAE's with constant coefficients. This local index, on the other hand, will play
an important role in solving DAE's numerically (as we shall see).

For DAE's ofthe form (1.3) Campbell [8] derived an explicit expression for the solution
z in terms of the Drazin inverse of A and B. This expression doesn't give further insight
than the results already noted above. The case of rectangular matrices A and B has also
been studied by Campbell [8].

There is one explicit algebraic constraint, namely equation (E.l.I0c). However, the DAE has only the
solution

• the initial value Zo has to be consistent,

• the solution can involve derivatives of order m -1 of the forcing function 9 (or at least s)
if the DAE is of higher index (Le. m ~ 2),

This means that equation (1.7b) with initial value v(to) = vo only has a solution if the
initial values are consistent, Le. if vo satisfies (1.9). From the derivation process of the
solution v(t) (1.8) of equation (l.7b) it is obvious that not all components of v are necessarily
differentiable.

There are some properties, in which DAE's behave differently compared with ODE's,

• the solution x may be only continuous in some components,

Apparently there are two hidden algebraic constraints.



1.3 Nonlinear Systems

Next, we consider general DAE's of the form (1.1). It is obvious that the definition of the
index ofnilpotency (cf. Definition 1.5) has to be extended for these systems. This can be done
in various ways. The first and probably most important extension is the so called differential
index (first defined by Gear [16]).

Definition 1.7 Consider the general DAE f(t,x(t),x'(t» = O. This DAE has differential
index di =m if m is the smallest number of differentiations such that the system of equations

f(t,x(t),x'(t» = 0,
df(t, x, x')

dt = 0,

(1.11)
dm J(t, x, x')

= 0,dtm

uniquely determines the explicit ODE x' = g(t,x). This explicit ODE is called the underlying
ODE (UODE).

It is obvious that an ODE has index O. The index is a measure of the degree of singularity
in the system. In general, the higher the index the more complex the problem and the more
difficulties we are likely to encounter in solving the DAE by a numerical method (as we shall
see). For linear DAE's with constant coefficients the index of nilpotency and the differential
index are equal, Le. ni = di. Consider system (1.7b). After m-1 differentiations the solution
v of (1.7b) is obtained. So, after one more differentiation the UODE for v is obtained. This
means that di = m = ni. Further, the initial value x(to) = Xo at to is consistent for
equation (1.1) if system (1.11) in the separate variables x',x(2), ... ,x(m+l) at t = to and
x = Xo has a solution x' = x'(to,xo). System (1.11) shows that every differentiation of the
original DAE reduces the index of the new system by one. So, equation g = 0 has index
m-n.

Hairer, Lubich and Roche [23] introduced the so called perturbation index as a measure
of the sensitivity of the solutions with respect to perturbations of a given equation (1.1).

Definition 1.8 Equation (1.1) has perturbation index pi = m, along a solution x on [0, T],
if m is the smallest integer such that for all functions y having a defect

f( t, y(t), y'(t» = <5(t),

the difference on [0, T] is bounded by an estimate

IIx(t) - y(t)1I ~ K(lIx(O) - y(O)1I + max 1I<5(e)1I +... + max 1I<5(m-l)(e)ll),
O~~~t O~~~t

whenever the expression on the right-hand side is sufficiently small. The constant K depends
only on f and the length of the interval. Further we say that equation (1.1) has perturbation
index zero, if

IIx(t) - y(t)1I ~ K(lIx(O) - y(O)1I + max 1I<5(e)1I + max II f~ <5(t)dt ID.
o~~9 0~~9 Jo
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f(t,x(t),x'(t)) =a~(t,x)x' +b(t,x) =0,

the perturbation index and the differential index coincide, Le. pi =di.

(1.13)

(1.14)

(1.12a)

(1.12b)
x' = f(x,y),

o = g(x, y),

For system (1.7b) v(t) depends on the (m - l)th derivative of s(t). Therefore, for a linear
constant coefficient DAE the perturbation index and the index of nilpotency are equal, Le.
pi = mi.

Gear [17] showed that for general DAE's the following relation holds between the per
turbation index and the differential index,

di $ pi $ di +1,

for problems (1.1) for which both the differential index and the perturbation index exist. For
DAE's that have integral form, i.e.

x' = f(t,x,y),

o = g(t,x,y),

illustrate that DAE's can be considered as systems of differential equations combined with
algebraic equations. These algebraic equations define a manifold to which the solution is
constrained. Therefore, DAE's can be interpreted as differential equations on manifolds (cr.
[30]). For semi-explicit DAE's the variables can be divided into differential variables and
algebraic variables. In the equation above, for example, x is the differential variable and y is
the algebraic variable.

The simplest form of a nonlinear DAE is a semi-explicit index one DAE of the form

1.4 Semi-Explicit Systems

DAE's of the form (1.1) are called fully-implicit DAE's.
There are several special classes of implicit DAE's. These subclasses can easily be

recognized and they often appear in applications. Their structure is relatively simple, whereas
fully-implicit DAE's are very complicated. Semi-explicit DAE's of the form

with ~ nonsingular. The solution of this system lies on the manifold defined by (1.12b).
Differentiation of the algebraic equation (1.12b) gives

o= {)g x' + {)g y'.
{)x {)y

After substitution of (1.12a) for x', equation (1.13) yields

y' = -( {)g )-1 {)g f
{)y {)x'

because the Jacobian ~ is nonsingular. Together, equation (1.12a) and equation (1.14) form
the DODE (cr. Section 1.3) for x and y. By Definition 1.7 the differential index di is one in



this case. Consistent initial values must satisfy 0 = g(zo, Yo). Hairer, Lubich and Roche [23]
showed that DAE (1.12) has perturbation index pi one.

Consider the semi-explicit system

7

has differential index (and perturbation index) three. After differentiation of equation (1.17c)
one gets

where ~U is nonsingular. Differentiation of equation (1.15b) and substitution of equa
tion (1.15a) for z' yields

(1.16)

(1.15a)

(1.15b)

(1.17a)

(1.17b)

(1.17c)

0= ::f.

z' = f(z,y),
o = g(z),

z' = fez, y),
y' = k(z,y,z),
o = g(z),

As in the case of DAE (1.12) we see that system (1.15) has differential index one if ~U
is nonsingular. Because of this, equation (1.15) has differential index two. The solution of
DAE (1.15) is not only constrained to lie on the manifold (1.15b), but also on the mani
fold (1.16). Now, initial conditions are consistent if they satisfy both equation (1.15b) and
equation (1.16). Again, for this system the perturbation index coincides with the differential
index as shown in [23].

Under the assumption that ~U~ is nonsingular, the problem

o= og f. (1.18)oz
Compare system (1.17a), (1.17b), (1.18) with DAE (1.15). Clearly, system (1.17a), (1.17b),
(1.18) is an index two system, so DAE (1.17) has index three.

In general, the differential index is the most important and most often used definition
of the index of a DAE. Therefore, in the following index stands for differential index, and,
the index shall be denoted as 11.

1.5 Applications

DAE's arise in many applications. They occur in connection with the dynamical analysis of
mechanical systems. They also arise in the study of nonlinear circuits and in the study of
optimal control problems. Further, DAE's are important in investigating the.structure of the
solutions of singular perturbation problems. In this subsection some of these applications are
briefly described.

M ultibody Systems

The motion of a system of rigid bodies can be described using concepts of classical mechanics.
Let q E JRR be a vector of generalized coordinates and v E JRR a vector of generalized



This system has a unique solution for the accelerations vand the Lagrange multipliers .x, viz.

(1.21)

(1.20)

(1.22)

(1.23)

(1.24)

(1.19a)

(1.19b)

(1.19c)

(1.25a)

(1.25b)

x' = f(x, y),

EY' = g(x, y),

q = v,

M(q, t)v = g(q, v, t) +9:.x,
o = 9(q, t),

v = M-1(g - ~: .x),
.x = (9qM-19:)-1(~qM-lg - i).

and the acceleration constraint

9 qij = -(~qq)qq - 2~qtq - ~tt == ;,

respectively. Combining equations (1.19b) and (1.21) results in

where M(q,t) E JRnxR denotes the positive definite mass matrix and the vector g(q,'V,t) E
JRR the applied forces. Further, the unknown Lagrange multipliers .x E JRm account for
the unknown constraint forces. Moreover, assume that the Jacobian matrix 9 q =*has
constant rank m. This system of equations forms a DAE of index three, as will be explained.
Differentiating the constraint (1.19c) twice with respect to time one obtains the velocity
constraint

velocities. Assume that the rigid bodies are connected by m holonomic constraints which
can be expressed as 9(q, t) = O. The equations of motion for this multibody system can be
written as

Substitution of the expression (1.24) for .x into equation (1.23) yields the UODE. Hence,

• DAE (1.19) with position constraint has index three,

• DAE (1.19a),(1.19b),(1.20) with velocity constraint has index two,

• DAE (1.19a),(1.19b),(1.21) with acceleration constraint has index one,

and the equations of motion can be formulated as a DAE of index three, index two, or index
one. All these formulations are mathematically equivalent if the initial values are consistent.
The initial values qo, 'Vo and .xo are consistent if the position constraint (1.19c) and the
velocity constraint (1.20) are satisfied and if .xo is determined by (1.24).

Singular Perturbations

There is a close relationship between singular perturbations and DAE systems. Consider for
example the problem

8



where x(t) E lR"', yet) E lRm and f and 9 are sufficiently smooth vector functions ofthe same
dimensions as x and y, respectively. Setting E = 0 in (1.25b) one obtains the reduced DAE

x' = f(x,y),

0= g(x, y).
(1.26a)

(1.26b)

2 Multistep Methods

(2.1)

(2.2)

(1.27)

(1.291)

(1.28a)

(1.28b)

x' = f(x,G(x)).

= fx(xo, YO)XI + fy(xo, Yo)Y/ + It'/(xo, Yo,···, x/_I, Y/-1),
= 9x(Xo, YO)X/ + 9y(XO' Yo)Y/ + tP/(xo, Yo,· .. , xl-h Y/-1)'

x(t) = Xo(t)+EX1(t)+E2x2(t)+ +ENxN(t)+O(EN+I),

yet) = yo(t) +EY1(t) +E2Y2(t) + +ENYN(t) +O(EN+I).

x' = f(xo, Yo), (1.29a)°0 = g(xo, Yo),

x' = fx(xo, YO)X1 + fy( Xo, YO)Y1, (1.29b)1

!Io = gx(xo, YO)X1 +gy(xo, Yo)YI,

x~

14-1

Suppose that the Jacobian ~ is invertible in a neighbourhood of the solution. Then sys
tem (1.26) has index one (as explained in Subsection 1.4). By the Implicit Function Theorem,
equation (1.26b) possesses a locally unique solution y = G(x). Substitution of this solution
into equation (1.26a) results in the ODE

This is the so called state space form.
It is well known that system (1.25) possesses a power expansion in E [26] with smooth

E-independent coefficients Xk and Yk

Ax' +Bx = q, t ~ 0,

9

System (1.29a) is an index one DAE, system (1.29a), (1.29b) is a DAE of index two, and,
DAE (1.29) has indexl +1.

Consider the index 1 DAE

Substitution of equations (1.28a) and (1.28b) into system (1.25) leads to the following system
of equations

Applying Euler forward to problem (2.1) yields the equation



where h = tn - tn-I! and because A is singular this equation is not solvable. However,
application of the implicit Euler method to the above problem results in

(2.3)

The matrix pencil >.A +B is nonsingular for all >. -:f O. Therefore, equation (2.3) is solvable
for h -:f O.

The method above can easily be extended to k-step backward difference formulae (BDF)
by replacing the derivatives by a backward difference PXn =E~=o aiXn-i. This yields equation

(2.4)

2.1 Constant Coefficient DAE's

For linear DAE's with constant coefficients it is easy to prove the following theorem (cf. [6]).

Theorem 2.1 The k-step BDF method (k ~ 6) with constant stepsize applied to linear
DAE's with constant coefficients of index v (v ~ 1) is convergent of order O(hk ) after
(v - 1)k + 1 steps.

So, the numerical solution converges in an interval bounded away from the initial time. This
convergence result is not easily extendable to variable stepsizes, because the error estimates
used in BDF codes are not realistic for DAE's of higher index; moreover the solution is not
accurate at the first two steps after a change in the stepsize as can be seen from the following
example. In particular, the backward Euler method fails to converge at the end of the first
step following a change in the stepsize, as can be seen from the following example [6].

Example 2.2 Consider the index three problem

x' = X2,1

Z~ = Zs,

0 = Zl - f(t).

Applying Euler backward results in

= f(t n ),

1= h
n

(f(tn) - f(tn-l»,

= ~(f(tn) - f(tn-l) _ f(tn-l) - f(tn-2\
hn hn hn - l

where hn =t n - tn-l' Notice that ZS,n is a wrong approximation of f"(tn-d, because of the division
by hn instead of (1/2)(hn + hn - l ). This results in an error given by

This means that ZS,n converges to f"(t n ) with accuracy O(h~) if the stepsize is effectively constant,
Le. hn =hn-l(l +O(hn-d). However, if hn =O(hn_l ) with hn :f hn- l then this results in an error
0(1) and Euler backward does not converge.

10



However, Gear et al. [18] showed for variable stepsize BDF methods that if the ratio
of the adjacent steps is kept bounded, then the global error in the numerical solution for the
k-step BDF method applied to linear DAE's with constant coefficients of index v is O(h'tna:&) ,
where q =min(k,k - v +2). Therefore, Euler backward will fail integrating even a simple
linear constant coefficient DAE of index 3, because of a global error of 0(1).

The foregoing can be generalized to general problems of the form (1.1). Application of
the k-step BDF method leads to the following difference equation

(2.5)

11

(2.7)

(2.6a)

(2.6b)

Ie

h Ef3f(zn-i,'Jln-i)
i=O

Ie

o = h~f3g(Zn-i,Yn-i)
i=O

Ie

EaiZn-i =
i=O

This equation is solvable if the local matriz pencil >"f:& +/:&' is nonsingular for most>.. =F o. In
this case, the local indez at t" denoted as VI, is the index ofthe local pencil >"f:& + f:&' at t,.

2.2 Index One Systems

Due to the close relationship between singular perturbations and DAE's (cf. Subsection 1.5)
a multistep method (Le. the so called direct approach) for semi-explicit DAE's of index 1
can be obtained from applying a multistep method to the singular perturbation (1.25), and
afterwards letting e -+ 0 (cf. [22]). This results in the difference equations

and the following theorem (cf. [22]) holds.

Theorem 2.3 Suppose that system (1.12), has a nonsingular Jacobian ~. Consider a mul
tistep method of order k which is stable at the origin and at infinity and suppose that the error
of the starting values Xi, Yi for j = 0,1, ... , k - 1 is O(hle ). Then the global error of (2.6),
satisfies

It follows from the Implicit Function Theorem that for the indirect approach Theorem 2.3
holds and the condition that infinity is in the stability region of the multistep method may
be dropped. Therefore, even explicit methods can be applied.

Another important class of index one systems is the class of uniform indez one systems,
Le. fully-implicit index one systems (1.1) with constant rank {Jf/{Jz' and whose index is
identically equal to one in a neighbourhood of the solution. Gear and Petzold [20] proved
the following result for these uniform index one DAE's.

for tn - to = nh ~ Const.

In this direct approach Xn , Yn will usually not lie on the constraint g(x, y) = 0, because of
equation (2.6b). However, in the indirect approach (2.6b) is replaced by



where f and 9 are assumed to be sufficiently differentiable, and where gxfll is assumed to be
invertible in a neighbourhood of the solution. Hence, the DAE (2.8) has index 2. Again, a
linear multistep method for this DAE system can be applied in two different ways, viz.

2.3 Semi-Explicit Index Two Systems

For higher index systems it is impossible to obtain convergence in general, even for backward
Euler. Therefore, attention has been focused on higher index systems of a special structure,
such as semi-explicit index two DAE's and index three systems of Hessenberg form (cf. Sub
section 2.4). In this subsection the behaviour of multistep methods applied to semi-explicit
index two problems is studied. Let

This last equation is the analogue of equation (2.6b).
Hairer and Wanner [22] showed that a multistep method (2.9) of order p applied to

DAE (2.8), yields a local error O(hP+t) for the x component and a local error O(hP) for the
y component.

For BDF methods the study of convergence is simpler than for general multistep meth
ods because the x- and Y- component can be treated separately (due to ,80 = ... = ,8k-1 = 0).
For BDF methods the following convergence result holds (cf. [6]).

Theorem 2.5 Suppose the nonlinear semi-explicit index two DAE (2.8), is to be solved by
the k-step BDF method (k ~ 6). Then the k-step BDF method is convergent of order k, i.e.,
X n - x(tn ) = O(hk), Yn - y(tn) = O(hk), after k +1 steps, whenever the initial values satisfy
Xi - X(ti) =O(hk+t), for i =0, ••• ,k-1.

(2.8a)

(2.8b)

(2.10)

(2.9a)

(2.9b)

x' = f(x, y),

o = g(x),

k

h L fJi/(Xn-i, Yn-i),
i=O

o = g(xn ),

k

o = L,8i9(Xn-i).
i=O

k

LQiXn-i =
i=O

or replacing (2.9b) by

Theorem 2.4 Let (1.1) be a uniform index one DAE, and assume that f is differentiable
with respect to x and x'. Then the solution of (1.1) by the k-step BDF method with fixed
stepsize for k ~ 6 converges to O(hk) if all initial values are COrTeCt of order O(hk).

It can be shown [19] that if variable stepsize BDF methods are implemented in such a way
that the method is stable for ODE's, then the k-step BDF method (k ~ 6) is convergent for
fully-implicit index one DAE's. Griepentrog and Marz [21] studied the application of general
linear multistep and one-leg methods to index one DAE's. They obtained convergence results
for several different formulations of the multistep methods applied to fully implicit index one
DAE's.

The codes DASSL [27] and LSODI [25] are developed to solve DAE's of index zero and
index one numerically.

12



(2.11)

If variable stepsize BDF methods are implemented in such a way that they are stable for
ODE's, then the k-step BDF method (k $ 6) converges for semi-explicit index 2 DAE's (c!.
[19]).

The main result for general multistep methods of the form (2.9), is the following re
sult [22].

Theorem 2.6 Consider the indez 2 system (2.8), where g:z;fy is assumed to be invertible
in a neighbourhood of the solution. Assume that the k-step multistep method is stable and
strictly stable at infinity. If the k-step multistep method has order p ~ 2, then the global error
satisfies

z" - z(t,,) =O(hk
), y" - Yet,,) =O(hk

),

whenever the initial values satisfy

Zi - z (ti) = O(hk+l ), for i = 0, ... , k - 1.

The previous results can easily be extended to the second approach, with equation (2.9b)
replaced by (2.10)

2.4 Index Three Systems of Hessenberg Form

In previous subsections it was noted that BDF methods converge for fully implicit index one
systems, semi-explicit index two systems and for linear constant coefficient DAE's of arbitrary
index with the same accuracy as for standard ODE's. In the following, convergence results
for Hessenberg systems of size three are discussed.

In general, DAE (1.1) is in Hessenberg form of size m if it can be written as

z~ = h(Zll Z2, ... ,Zm,t),
Zl = h(zl, Z2,"" Zm-ll t),2

z~ = fie Zi-ll Zi, ..• ,Zm-ll t),
(2.12),

o = fmC Zm-1, t),

where the matrix 8fm/8zm- 18fm-1/8zm- 2 ... 8fd8zm is nonsingular in a neighbourhood
of the solution. Assume that the Ii are sufficiently smooth. Then the Hessenberg system of
size m has index m and is solvable. Apparently, Hessenberg index 3 systems can be expressed
as

z~ = h(ZllZ2,Z3,t),
z~ = h(zll Z2, t), (2.13)

o = h(Z2,t),

where the matrix 8h/8z28h/8z18h/8z3 is invertible in a neighbourhood of the solution.
Multibody systems are Hessenberg index 3 systems, since they can be written as

M(p, t)q' = I(p,q,t) +aT>..
pi = q (2.14)

0 = g(p, t),

13



3 Runge-Kutta Methods

Theorem 2.7 Suppose the Hessenberg index three system (2.13) is solved by a k-step BDF
method (k :5 6) with constant stepsize. Let the initial values be consistent of order k +1, i.e.

for i = 0,1, ... ,k - 1, and the algebraic equations be solved with accuracy O(hk+2) for k ~ 2,
and O(hk+3 ) for k = 1. Then the k-step BDF method is convergent of order k +1 after k +1
steps.

= O(hk+l),

=O(hk+l),

= O(hk+2),

IIXIJ - xl(tj)1I

IIx2,j - x2(tj)1I

IIh(x2J,tj)1I

where G =Dg/ f)p.
Brenan and Engquist [7] showed that BDF methods converge of order O(hk ) for suffi

ciently accurate initial values.

For semi-explicit index two systems the convergence results could be extended to variable
stepsizes (cf. the previous subsection). However, for Hessenberg index three systems the
above convergence result cannot be extended to hold for variable stepsizes, because a new
boundary layer of reduced convergence rates is initiated each time the stepsize is changed. In
particular, the backward Euler method fails to converge at the end of the first step following
a change in the stepsize, as can be seen from Example 2.2.

In the previous it is shown that BDF methods with constant stepsize applied to several classes
of DAE systems converge of order O(hk ), provided the initial values are consistent and the
functions are sufficiently smooth. BDF codes with variable stepsize can be used to solve
these DAE's. However, there occur some difficulties. For systems of index m the iteration
matrix used by the code has a condition number of O(h-m ). By scaling the variables and
the equations this problem can be remedied. The convergence test and error test must also
be modified to allow a BDF code to solve this type of problems. For a detailed discussion we
refer to [4] and [5].

In this section the numerical solution of DAE's by Runge-Kutta methods (RK) is studied.
A class of problems where RK methods because of their one step nature are potentially
advantageous over multistep methods, such as BDF methods, is the class of DAE systems
with frequent discontinuities. Also, RK methods can be used to generate starting values for
higher order BDF methods. Therefore, problems as in Example 2.2 where the first order
BDF method (i.e. backward Euler) fails to integrate a DAE of index three ( or higher)
can be avoided. Further, it is important that it is possible to construct high order A-stable
RK methods, whereas there are no A-stable multistep methods of order higher than two.
A disadvantage of RK methods is that, in general, the amount of work per time step is
much more than for multistep methods. Therefore, it is important to consider RK methods
that are efficiently implementable (such as diagonally-implicit (DIRK's) or singly-implicit
RK methods (SIRK's».
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Application of an m-stage implicit RK method (IRK) to DAE system (1.1) results in
the following system of equations

m

X n = Xn-l +hL: bikni,
i=l

where

f(tni, Xni, kni) = 0, i = 1, ... ,m,
and the internal stages are given by

m

Xni = Xn-l +h L:aijknj.
j=l

Further h and tni are given by

tn = tn-l +h, and,

tni = tn-l +Pih, 0 ~ PI ~ .•• ~ Pm ~ 1.

This method can be displayed by the Butcher diagram

(3.1a)

(3.1b)

(3.1c)

~=

PI an a12

P2 a2l a22

Pm amI am2

In the following, A is assumed to be nonsingular. For the understanding of RK methods it
is important to consider the simplifying assumptions

B(p) ' ",m b'pq- l - 1 q - 1 p'. "-'i=l 'i - q' -, ... , ,
q

C('7): Ed=l aijpr l
=~, i = 1, ... , m, q = 1, ... , '7; (3.2)

D«() ·. ",m b'pq-la" - ~(1 pq) J' - 1 m q - 1 (."-'i=l 'i 'J - q - j' -, ... , , - , ... , ,

Condition B(p) means that the quadrature formula with weights bl , ... ,bm and nodes
PI, ... ,Pm is of order p, and therefore, it integrates polynomials up to degree p - 1 ex
actly on the interval [0, :I.]. Condition C('7) means that the quadrature formula with weights
ail, ... ,aim integrates polynomials up to degree at least '7 - 1 exactly on the interval [0, Pi],
for each i.

Another important subject is the stability function R(z) of the RK method. It is defined
by the concept of A-stability: application of the RK method to equation x' = AX yields
Xn+t = R(hA)xn , where the stability function R(z) is given by R(z) = 1 + zbT(I - zA)-ln,
where n= (1, ... , 1)T. The RK method is called A-stable if

IR(z)1 ~ 1, for Re(z) ~ O.

The limit of the stability function at 00 plays an important role for DAE's. For nonsingular
matrices A it is given by

R(oo) = lim R(z) = 1- bTA-ln. (3.3)
%_00

For linear constant coefficient DAE's the following theorem [6] can easily be obtained.
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where kd is the order of the method for nonstiJJ ODE's and ka ,,, is the largest integer such
that

Theorem 3.1 Suppose the IRK method {S.l} satisfies the strict stability condition IR(00)1 <
1 and has a nonsingular matrix A. Then the IRK method applied to a linear constant coeffi
cient index v DAE {l.S} converges of order k", i.e.

(3.4)

(3.6a)

(3.6c)

(3.6d)

(3.6b)

m

Xni =Xn-1 +hI: aijknj,
i=1
m

Yni = Yn-1 +hI: aijlnj,
j=1

with k" = min (kd' ka i-V +2),
ISiS" '

kni = f(Xni, Yni),

o = g(Xni, Yni)'

m

Xn = Xn-l +h I:bikni,
i=l

m

Yn =Yn-1 +hI: bilni,
i=1

where

3.1 Index One Systems

As in Subsection 2.2 an IRK method can be applied in two different ways to a semi explicit
index one DAE (1.12). Here, the direct approach leads to the system of equations

bT .04-"p"-i
bTA-in = (v _ i)!' i =1,2, ... , v - 1, and (3.5a)

bTA-"pi = i(i-1) .. ·(i-v+1), i=v,v+1, ... ,ka,,,, (3.5b)

hold, where pi is defined as pi = (14., ... ,pim)T • The above means that ka,,, is the algebraic
order of the IRK method applied to index v constant coefficient canonical algebraic systems
of the form (1.7b)

And therefore, for higher index DAE's it is more difficult to find implicit Runge-Kutta meth
ods that are convergent in all variables.

(Notice that the second equation of (3.6b) determines lni uniquely if the RK matrix A is
nonsingular.) In this direct approach (xn, Yn) usually will not lie on the algebraic constraint
g(x, y) =O. However, if (3.6d) is replaced by

o= g(xn , Yn), (indirect approach) (3.7)

then the constraint is fulfilled not only at tni but also on tn' If the RK method is stiffly
accurate (Le. bi =ami, i =1, ... , m) then 1/n =Ynm and the direct and the indirect approach
are equivalent. These stiffly accurate methods are L-stable, Le. R(00) = O.

For both approaches IRK methods applied to semi-explicit index one DAE systems
achieve the same order of accuracy in the x variable for DAE's as for nonstiff ODE's, Le.
Xn -x(tn ) =O(hP), where p is the classical order ofthe RK method. In the indirect approach
the same convergence result is obtained for the y variable, i.e. Yn - y(tn ) = O(hP) (because
of the Implicit Function Theorem, cf. (1.27)).

For the direct approach the following convergence result [23] holds.
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Theorem 3.2 Suppose that system (1.12) has a nonsingular Jacobian ~ in a neighbourhood
of the solution, and that the initial values are consistent. Consider a Runge-Kutta method
of order p, stage order q and with invertible matrix eA. If IR(00)1 :5 1, then the numerical
solution of (3.6a)-(3.6d) converges globally with an error

Yn - y(tn ) =O(hr
), for tn - to =nh :5 Const, (3.8)

where
a. r = p for stiffly accurate methods,
b. r = min(p, q +1) if the stability function satisfies -1 :5 R(00) < 1,
c. r =min(p -I,q) if R(oo) =1.

Otherwise if IR(00)1 > 1 then the numerical solution diverges.

Hence, IRK methods whose solution does not satisfy the constraint can generally suffer an
order reduction in the algebraic variable y. For fully implicit index one DAE's there is an
extra loss of accuracy which can occur because of mixing between the errors in the differential
and the algebraic parts of the DAE system. Therefore, IRK methods are, in general, less
accurate for fully implicit index one DAE's than for semi-explicit index one DAE systems [6].

Theorem 3.3 Suppose DAE (1.1) is a uniform index one DAE and suppose the Runge-Kutta
method satisfies the stability condition IR(oo)1 :5 1. Assume the starting values are O(hr )

(r > 1), and the errors in terminating the Newton iterations are O(hr+s), where 6 = 1 if
IR(00 ) I=1 and 6 =0 otherwise. Then the global error satisfies

(3.9)

3.2 Semi Explicit Index Two Systems

In this subsection a study is given of the behaviour of Runge-Kutta methods applied to
semi-explicit index two problems of the form

corresponds to the order conditions for IRK methods applied to linear constant coefficient
index one DAE systems (Le. ka,l = q iff Al (q) d. (3.5b».

This result gives a lower bound for the order of an IRK method applied to nonlinear
index one DAE's. There exist methods which achieve a higher order of accuracy than the
lower bounds predict (d. [6] for some numerical experiments which confirm this statement).
The strict stability condition IR(00)1 < 1 is very important. Symmetric methods such as the
implicit midpoint rule (which satisfies R(oo) = -1) can be unstable for this class of problems
(d. [6]).

(3.10)

(3.lla)
(3.llb)
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x' = f(x, y),

o = g(x),

if C(q) and B(q),
ifC(q), B(q+ 1) and -1:5 R(oo) < 1,
ifC(q), B(q +1), A1(q +1) and R(oo) = 1,

q,
q +1,
q +1,

r= {

where

Here,



where

ef. (3.5a) and (3.5b).

(3.13)

(3.14)

(3.15)

(3.16)

(3.12c)

(3.12a)

(3.12b)

m

Yni =Yn-l +h L aii1ni'
i=1

m

Yn = Yn-l +h Lbi1ni'
i=1

m

X n =X n-l +h L bikni,
i=1

m

Xni = X n-l +h Laijknj,
i=1

where

kni = f(Xni, Yni), 0 =g(Xni)

and the internal stages are given by

_ { q, if C(q), B(q), A1(q),
r - q + 1, if C(q), R(q + 1), A1(q + 1), A2(q + 1),

The first convergence results for RK-methods applied to index two systems are obtained by
Petzold [28]. Replacing Y in (3.11a) by z' transforms the index two system (3.11), in an
index one system. Because of this close relationship between semi-explicit index two systems
and uniform index one systems the global error in the differential variable x is given by
Theorem 3.3.

For methods satisfying the strict stability condition IR(00)1 < 1, a lower bound for the
global error in the y component is given (ef. [6]) by

where g~f'll is assumed to be invertible in a neighbourhood of the solution. For this class of
problems the direct approach of Subsection 3.1 yields the difference equations

eXh(t) = O(hq+1), P(t)6Xh(t) = O(hmin(P+l),(q+2»,

eYh(t) =O(hq
),

where pet) is a projector given by

pet) =1- Q(t), Q(t) = (f'll(g~f'll)-lg:c)(X(t), y(t».

where A2 are the order conditions for IRK methods applied to linear constant coefficient
index two systems and are given by

Hairer, Lubich and Roche [23] improved this result. They showed that, if the RK method
(3.12) with invertible RK-matrix .A satisfies R(p) and C(q) (p ~ q), then the local error
satisfies

However, if the RK-method is stiffiy.&ccurate then

6Xh(t) = O(hmin(P+I),(9+2». (3.17)

The main results are the following two theorems (ef. [23]) for the global error of the x
and the Y component, respectively.
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Theorem 3.4 Suppose that 9zf" is invertible in a neighbourhood of the solution (x(t), yet»~
of (9.11) and that the initial values are consistent. Suppose further that the RK-matrix.A is
invertible, that IR(00)1 < 1 and that the local error satisfies

(3.18)

(3.19)

with pet) as in (9.16). Then the method (9.12)is convergent of order r, i.e.,

x" - x(t,,) =O(hr) for t" =nh ~ Const.

If in addition 6Xh(t) = O(hr+l), then 9(X,,) = O(hr+l).

This shows that for methods, which satisfy in addition to the invertibility of.A and IR(00)1 <
1, the conditions B(p) and C(q) (p ~ q), the order of convergence of the x component is at
least r = q +1.

The order of convergence for the y component is given by the following theorem.

Theorem 3.5 Consider the index two DAE (3.11) with consistent initial values and assume
that the RK-matrix .A is invertible and IR(00)1 < 1. If the global error of the x component
is O(hr), 9(X,,) = O(hr+l) and the local error of the y component is O(hr), then the global
error satisfies

19

then zn is the projection of X n onto the constraint. For stiffly accurate RK-methods the
projected and unprojected RK-methods coincide. Now, stability and order are recovered by
means of this extra projection onto the constraint, and for projected collocation methods
superconvergence can be proved.

If the conditions B(p) and C(q) (p ~ q) are satisfied, then the order of convergence for the y

component is at least r = q.
The results summarized here give only a lower bound for the order of convergence.

Hairer and Wanner [22] give a complete set of order results based on a nontrivial extension
of Butcher's theory of rooted trees. In [22] order results are given for the case of a singular
RK-matrix, for Rosenbrock methods and for extrapolation methods.

Here, convergence results are not presented for methods which satisfy IR(00)1 = 1. The
order of convergence for the y component is generally quite poor for these methods (cf. [23]).
A more serious problem is that these methods can suffer from oscillations and instabilities [1].
This problem of instability, oscillation and order reduction can be solved by applying so called
Projected Implicit Runge-Kutta methods [2] to semi explicit index two systems:

Let X n be the numerical solutions of IRK method (3.12), and zn and ~ be defined by

(3.20)

(3.21a)

(3.21b)
Zn = Xn + f,,(zn, Yn)~,

o = 9(zn),

Yn - y(tn) =O(hr) for tn =nh ~ Const.



with

where g:&f"kz is assumed to be invertible in a neighbourhood of the solution. Application of
a RK-method to Hessenberg system (3.22) yields

For this class of problems the local error of the RK-method (3.23), which satisfies B(p) and
C(q) (p ~ q +1, q ~ 2), is given by

8Xh(t) =O(hq+l), (1 - U"S)(t»8Xh(t) =O(hq+2),
8Yh(t) = O(hq), (1 - (Sf,,)(t»8Yh(t) = O(hq+l), (3.24)
8zh(t) = O(hq- 1 ),

(3.22)

(3.23a)

(3.23b)

m

Zni = Zn-l +h LaijUnj. (3.23c)
j=l

m

Zn = Zn-1 +hI: biUni,
i=1

m m

X n = X n-1 +hI: bikni' '!In = 1/n-1 +hI: bilni,
~1 ~1

m m

Xni =Xn-1 +h L aijknj , Yni =1/n-1 +h L aijlnj,
j=1 j=l

3.3 Hessenberg Index Three Systems

Hairer, Lubich and Roche [23] studied convergence of RK-methods applied to Hessenberg
Index Three Systems (d. Subsection 2.4). Let

x' = f(x,1/),
1/' = k(x,1/,z),
o = g(x),

where

kni = f(Xni, Yni), lni = k(Xni, Yni, Zni), 0 = g(Xni),

and the internal stages are given by

S = kz(g:&f"kz)-lg:&. (3.25)

Convergence of this RK-method applied to DAE (3.22) is given by the following Theorem
(d. [23]).

Theorem 3.6 Consider the Hessenberg index three system (3.22) with consistent initial val
ues and assume that the RK-matrix A is invertible, that IR(00)1 < 1, and that the conditions
B(p), C(q) hold with p ~ q +1 and q ~ 2. Then the global error satisfies

Xn - x(tn) =O(hq), Yn - y(tn ) = O(hq), Zn - z(tn) = O(hq- 1
), (3.26)

for tn =nh $ Const.

It is important to note that for all reasonable methods, Le. the methods of Gauf3like type,
estimates for the x component can be improved by at least one power of h.

In this section convergence results are discussed for implicit Runge-Kutta methods with
constant stepsize applied to several classes of DAE's. It is shown that these methods can
suffer from order reduction and therefore care must be taken in choosing a RK method
appropriate for DAE's. Implementation of RK methods in a code for solving DAE systems
gives the same problems [23], with respect to poor conditioning and error estimation, as for
BDF methods (cf. 2.4).
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4 Solution Techniques For Higher Index DAE's

In this section integration schemes for the equations of motion generated by multibody sys
tems are discussed. In Sections 2 and 3 the numerical solution of DAE's by multistep and
Runge-Kutta methods is studied. These methods can generally not be applied to higher
index (v ~ 2) DAE's, since most of them are convergent for index one problems only. An
other problem is the loss of the approximation order of the algebraic variables. This causes
standard techniques of error estimation and stepsize selection to fail. These problems can
be avoided by differentiating the DAE v-I times with respect to time. Mterwards this
index-reduced system can be solved numerically by multistep or Runge-Kutta methods, for
example. This approach gives rise to two problems. Firstly, the numerical solution of the
index-reduced system does not fulfill the original constraints on every step, and because of
error propagation the numerical solution tends to drift away from the algebraic constraints
(cf. [12]). Secondly, the stability of the DAE with respect to perturbations in the solution
may change due to the index transformation (cf. [13]).

In the following, several methods especially designed for solving the equations of motion
for multibody systems are discussed.

4.1 Regularization Methods

The regularization of a DAE can be interpreted as the introduction of a small parameter
into the DAE such that the solution of the perturbed system approacheds the solution of the
original DAE as the parameter tends to zero. In this subsection several approaches which
can be interpreted as regularization methods are described.

The oldest regularization method for circumventing the problem of drifting off the
constraints ~ = 0 (1.19c) was introduced by Baumgarte [3]. He introduced stabilizing con
trol terms into the index one DAE (1.19a),(1.19b),(1.21). Now, instead of the acceleration
constraints i = 0 (1.21) a linear combination of i (1.21),4> (1.20), and ~ (1.19c)

i + 2a4> + fJ2~ = 0, (4.1)
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This index one DAE can be solved by integration techniques which are convergent for index
one DAE's. Numerical evidence shows that the drift-off from the algebraic constraint be
comes essentially weaker than in the original case. However, a problem is the choice of the
Baumgarte parameters a and fJ. Choosing them too large results in a stiff system, because
extraneous eigenvalues are introduced into the system. Choosing the parameters too small

with parameters a and fJ is used. Here, DAE (1.19a),(1.19b),(4.1) has index one. The
Baumgarte parameters a and fJ in (4.1) are chosen such that the resulting system damps
errors in satisfying the constraint equation, i.e. ~ == 0 is a stable solution of equation (4.1).
This yields a > o. Often one chooses a = {3, which corresponds with the aperiodic limit case
(or the critical damping condition).

Baumgarte's approach results in the following DAE

(4.2)
v,
g(q, v, t) +~i,x,

i +2a4> +fJ2~.

q =
M(q, t)iJ =

0 =



minimizes the stabilization effect. The question of the choice of a and f3 has never been
cleared sufficiently. But, this approach is quite general and has proven to be useful in several
applications.

Other regularization techniques were proposed by Lotstedt, Knorrenschild and Hanke
and have been compared by Eich and Hanke [10], who showed that these methods are very
similar. Lotstedt introduced penalty functions which lead to the equation

4.2 Generalized Coordinate Partitioning

Using a differential geometric approach [30] DAE's can be interpreted as differential equations
on manifolds. Therefore, DAE's can be parametrized, at least locally, as differential equations
on manifolds. The constraints can be used to define this local parametrization, which defines
a local bijective correspondence between the state variable and the variable on the parameter
space. Wehage and Haug [32] and Rheinboldt [30] developed differential geometric techniques
to determine this local coordinate system, where the ODE is integrated by standard methods.
It is illustrative to describe the generalized coordinate partitioning method developed by
Wehage and Haug [32]. Consider the equations of motion (d. also Subsection 1.5)

(4.4)

(4.3)

(4.5)

(4.6a)

(4.6b)

(4.6c)

q = v,

M(q,t)v = g(q,v,t)+t;,X,

o = t(q, t),

Mij = 9 - E-
1
".

Applying Knorrenschild's approach yields

Mij = 9 + t:'X,
o = t(q+(E+#l)q+#lEM-l(g+~T,X)),

while Hanke's regularization technique results into

q = v +#lV,
Mv = g(q,v,t) + tiA,

o = t(q +Eq +ItEM-I(g +tT,X)).

Eich and Hanke showed that the methods of Baumgarte, Knorrenschild and Hanke differ only
in higher order terms in E, p,.

together with the velocity and acceleration constraints

(4.7)

and,

tqij =",/, (4.8)

respectively. The Jacobian matrix t q = *has full row rank ffl. So, there is at least one
nonsingular submatrix of t q of rank ffl. Vector q can be partitioned as

(4.9)
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(4.13)

(4.12)

such that ~u is the submatrix of ~q corresponding to u. Here, u denotes the dependent
generalized coordinates, and, v denotes the independent generalized coordinates. The implicit
function Theorem assures that there exists a twice differentiable function h = h(v, t) such
that

u =h(v, t), (4.10)

is the solution of (4.6c) for u as function of v and t. By relation (4.10) the equations of motion
can be rewritten in terms of the independent generalized coordinates v. After elimination
of the Lagrange multipliers, the equations of motion can be expressed as an ODE for the
coordinates v, Le.

M(v,t)iJ = g(v,iJ,t). . (4.11)

This ODE can be solved numerically by standard methods. Given the complexity of matrix
Ii and vector 9 of (4.11) as functions of v and 8, direct discretization of (4.11) would be
very complicated and impracticable. Therefore, consider DAE (4.6a),(4.6b) ,(4.7). From this
system q= [uT,iiT]T can be solved. Now, ii can be integrated, by any explicit ODE solver,
to find iJ and v. Afterwards u and ucan be obtained by solving (4.6c) and (4.7), respectively.
This can be continued to the final time, as long as partitioning (4.9) does not need to be
changed. However, if ~u becomes ill conditioned, then the generalized coordinates q should
be repartitioned. The partitioning of q can be carried out by e.g. Gaufi-Jordan reduction
with complete pivoting or by SVD or QU factorization. Haug and Yen [24] also developed
an implicit DAE solver based on generalized coordinate partitioning.

4.3 Projection Methods

Drifft-off from the constraints can be avoided by numerically solving a DAE with lower
index and afterwards projecting the solution back on the original constraints. Eich et al. [11]
showed that these projections can be divided into two classes depending on whether they rely
on stabilizing projections of position and velocity variables (coordinate projection methods)
or on projections of residuals (derivative projection methods).

Gear et al. [19] introduced stabilizing Lagrange multipliers p. to simultaneously reduce
the index and satisfy the position constraint and the velocity constraint

q = 11 + ~iJ.t,
M(q,t)iJ = g(q,v,t)+ ~:A,

o = ~(q,t),

o = ~q(q, t)v.

A solution of (4.12) exists only if the additional stabilizing multipliers p. satisfy J.l = o. Hence,
(4.12) and the original system have the same solution. DAE (4.12) has index two and can
be integrated numerically. Fiihrer and Leimkuhler [14] extended this idea to the index one
system. Therefore, two additional multipliers p. and v have to be introduced to satisfy the
position constraint, the velocity constraint and the acceleration constraint

q = v+~:p.+[vT~q]T'7,

M(q,t)iJ = g(q,v,t)+~:A+~:'7,

o = ~q(q,t)q-1,

o = ~q(q, t)q - v,
o = ~(q, t).
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(4.15)

This DAE has index two and the index two variables p. and II have to be equal to zero to assure
existence of a solution. These two approaches can be interpreted as derivative projections
onto state space forms, since they project the derivative f onto the constraint manifolds. One
can show that the coordinate projection methods [32] (d. Subsection 4.2), the differential
geometric approach [29] and methods using overdetermined DAE's (discussed in the next
subsection) can be seen as derivative projection methods.

Coordinate projection methods do not project the derivative f onto the constraints,
but they project the computed solution of the state space form or the index one DAE onto
the constraint manifold. Shampine [31] first described this technique for one step methods
and Eich [9] gave a convergence proof of this method in the context of multistep methods.

4.4 Overdetermined Differential Algebraic Equations

Another approach is taken by Fiihrer [12]. To circumvent the problem of drift-off from the
constraints, not only the position constraints (1.19c), but also the velocity (1.20) and the
acceleration constraints (1.21) are used. Together with equations (1.19a) and (1.19b) this
yields an overdetermined system of DAE's (ODAE)

q = v, (4.14a)

M(q,t)v = g(q, v, t) + t;A, (4.14b)

0 = I q(q, t)q - "Y, (4.14c)

0 = Iq(q, t)q - II, (4.14d)

0 = I(q, t). (4.14e)

This ODAE has index one. For consistent initial values this ODAE has a unique solution. This
solution is identical to the solution of the original DAE (4.14a),(4.14b),(4.14e). Discretizing
this ODAE by e.g. BDF results in

pqn - Vn
M(qn, tn)pvn - g(qn' Vn, tn) - tq(qn' tn? An

0= Iq(qn,tn)pvn-"Yn
Iq(qn' tn)pqn - lin

I(qn, tn)

However, the discretized version (4.15) of this ODAE does not have a unique numerical
solution. Therefore, this system has to be solved in a least squares sense. In other words,
the numerical solution must satisfy equations (4.14) in a generalized inverse sense. Fiihrer
and Leimkuhler [14] showed that there exists a generalized solution, the so called ssf-solution,
which is (in the linearized case) numerically equivalent to the reduction to state space form
of the linearized equations of motion. Moreover, using the ssf-solution of (4.15) within a BDF
method is equivalent to solving the following stabilized problem with the same BDF-method,
i.e.

q = v + lip. + [vT l q]T 17,
M(q,t)v = g(q, v, t) +IiA+Ii",

0 = I q(q, t)q - "Y, (4.16)
0 = Iq(q, t)q -II,

0 = I(q, t).
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Gear et al. [19] introduced the additional Lagrange multipliers 7](t) and p(t) E JRm and
in order to stabilize the equations of motion. They showed that the algebraic variable .>t
in equation (4.16) is an index one variable, while 7] and J.L are negligible for the numerical
integration.
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