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Abstract

In‘tﬁisknote we show how s§me of thé basic reéﬁiféwa the claésical inéariant tﬁeory
of binary forms - "the symbolical notation", "the Clebsch-Gordan formula", "the
construction of covarianté_by transvectants, startiﬂg from the groundform(s)", "the
first and second fundamental theorem" - can be derived from the description of

functions on "Grassmannian manifolds" by Plicker coordinates.
1. On the Plicker embedding

let C be a linear space: over §. Lét V be a two dimedsional linear space ovér vahiéh
is equipped with a non-trivial alternating bilinear form < , > : V'x V+ € - short: a
2-plane with form. Let S be the group of auﬁomorphisms of V respectiﬁg this form.
Define the affins variety Y = Y(C) to be the space Hom (V,C) of linear maps —‘unless

~ stated otherwise we élways consider only linear maps with finite dimensional support
- from V to C.

2 al bi

<(,.)s (b2)>= a] by - a2 b

(1.1) Remark. In terms of coordinates: V a
2

]
(%]

n
<

and S = S2.€. If dim C = d ¢ = then Y(C) c.

2



For each affine variety X we let A(X) aenote its affine coordinate ring. If X is a
linear space considered as an affine space then A(X) is of course the éame thing

as S(X*), the symmetric algebra of the dual of X; furthermore, we then

let (A(X))n denote the n-part of A(X), that is, the space of hﬁmogeneous polynomial
~ functions on X of degree n. We consider CA C , the alternating product of C with

itself, as an‘affiné space. The quadratic polynomial functions
aanb.scad+bac.and+cnana.bad

% ,
with a, b, ¢, d & ¢* in the coordinate ring A(C A C );= S((C A C) ) generate ‘a prime

ideal. We define the affine variety Z = Z(C) €« (C A C) to be the vanishing set of

these functions. We define a.morphism'¢ : Y»> Z by
( v, w2 ¢(f) = £(v) A £(W)
for all fe Y, v, we V. We let the group S act on thé variety Y by
) 21
(sf) (v) = f(s W)

for all s e S, £fe€ Y, ve V. This induces an action of S on A(Y); let A(Y)S denote

the S-fixed part.

(1.2) Theorem. The morphism ¢ : Y +» Z induces an ismorphism A(Z) = A(Y)S.
Proof. This can easily be proved, using for example the techniques from [G & A]

p 94-99 and it is probably a well-known result. E.



(1.3) Remark. For a geometrical intefpretation 6f the constructions of ¢ above we
observe that it is - a variant of - the Plﬁckér embedding of Grassmannians. To be

- more precise, it gives a bijection between the set of "2-planes in C with form" and -
the set Z - LQ}’ thch is an affine variety with one point deleted. For each
injective f in Y we get a 2-plane in C with form, by transporting structure via f.
This induces a bijection between the set of S—orbits of injectiye'f in Y and the set
of 2-planes in C with form. Moreover ¢ induces a bijection between the set of S-
orbits of injective f in Y and the set Z - {9}, All together, Qe thus get the

promised bijection. :

2. The symbolical notation

We define, for each finite set D, the €-algebra S(D), "the symbolical algebra on the

alphabet D", by

generators (a,b) a,be D a# b

and
relations (i) (ab)= - (ba) Va, beD
(ii) (ab) (ecd) + (Ec) (ad) + (ca) (bd) = O

Va, b, ¢, de D

Each product of elements of type (ab) is called a symbolical product. For each

symbolical product ¢ in S(D) its valehcy'is defined to be the

vector n = (na) where n, is the number of occurrences of a in o. Both of the

ae€D _ .
defining relatioas are between symbolical products of the same valency. Therefore if



we write Sn (D) = the subspace of S(D) spanned by the symbolical products of

valency n, then

S(D) =& 5 (D)
B. —
For each finite dimensional vectorspace C with chosen basis C we
let Q* = {c*lc € Q} denote the dual basis of C*; the dual space of C. The coordinate

ring A(Z(C)) of the variety Z(C) is then - by definition - canonically isomorphic to

- the algebra §(C")
We write V. = (A(V)) .
n n

’

(2.1) Theorem ("Symbolical notation'"). Let A and B be disjoint sets. Then one Ean

construct a canonical isomorphism of linear spaces

Homg ( e V.o, @ an) =8 (AvB) forallg-= (n,) .
ach a be B - ae AvB
where we have written n « = Ty for all b e B.
: b

Proof. The promised isomorphism will be constructed by taking the composition of a

number of canonical isomorphisms which are standard

Hom ( & A(V) , 8 A(V)) =
aeé be}}

Hom (A( & V), A( ® V))
N ach beg



Hom (A (V. 8 A), A(V ® B))
*
A(VeA) ©®A(VSB)
* * :
‘A(V ® A) € A(V® B
x %
A(VOA @&VeaB)
(using the canonical isomorphism V* = V)
* * ,
A(ve(aen)
' *
A (Hom (V, A" @ B))
Taking S-fixed parts and using theorem (1.2) we get

v * - %
Homg (8 a(v), ® A(V)) = A(z(A @ B)) =S (AVB)
L agh beB

One readily verifies that this isomorphism restricts to an isomorpism

H (e v e v )=5 (AuB)
om , = Av
S acA na beB nb z

for all n = (n ) + 8

Sometimes we will use the classical convention to write

é= {a’b)cy"}‘ and E* = {x,y,z,.-}



(2.2) Examples

(1) (ax)n €S ({a,x}) corresponds to the identical map on Vn

(11) (ab)i (ax)uri (bx)n—i e § ({a,b,x}) corresponds to the unique linear

- map T

: V. @V =+ V which sends
i m n .

3 mn-21
() e (85)° to (a,8)* ()™t (87)7

* *
for all a, B £ V. Here for each a« &V the element a € V 1is defined
*
by @ (B) = < a, B > for all B e V. (We observe here that the image of the

. .
map V * Vp: a > (a )p spans the linear space Vp)'

(2.3) Remark. Once one has seen example (ii) abdve, it is not hard to guess what the
eiplicit definition of the inverse of the isomorphism of the'corollary looks like in
general. It is moreover easy'to Verify”this by w:iting down explicitly all the

isomorphismsbused in the proof of the corollary.

3. The Clebsch - Gordan formula

(3.1.) Theorem ("The Clebsch - Gordan formula"). V_ is an irreducible ¢[S}=module
_ . [s]

for all n € mo and one can construct a canonical isomorphism of €[ S]- modules

min (m,n) »
Vm © Vn B i?O Vm+n—2i for éll m, new,



Proof. To prove that V, is irreducible, we have to show

HomS(Vn, vn) =Cid, .

‘By,thecrem (2.1) and example (2.2)(1i) this is equivalent to

' n
Sn,n ({a,x}) = ¢ (ax)
the truth of which is evident.

Moreover, again by theorem (2.1) we have

({a,b,x});

Homs (Vm & Vuo Vﬁ+n—21) - S;,n,m+n-21

to determine this space we have to find the symbolical products (ab)P (ax)q (bx)T
withp+q=m , p+r=nand q+ T =m+n - 2i; there is one and only
one: (ab)l (ax)m_'i (bx)™ 1, so the space above is

¢ (ab)! (@)™t (p)? R

Let T, denote the element of Homg (Vm eV vm+n—21) which corresponds (
i m-i n-i -
to (ab)" (ax) (bx) 3Ty = 0 - see example (2.2) (ii) above - so as
Vm+n—21 is an 1rreducible.module, T, is surjective. In fact we can even
conclude that the morphism of €[ S] - modules @ Ty from Vm 8 Vn to
i

min(m,n)

L] v is surjective and so, by dimension counting, also injective K.

1=0 m+n—-21

We mention without proof that the &S] modules W which are isomorphic to direct sums

of modules V, with n variable can be characterized by the property that the defining



map S x W+ W is rational. Therefore such modules are called rational. Now we give a
description of the ring Rg of virtual characters of "rational" representations.

We write

Q02
(1-xx+Y) =7 f(X ¥
n=0 "

(3.2) Corollary. There is a unique isomorphism of rings RS = Z X} for which the

charater p_ of V, corresponds to £ for all ne N_.

Proof. On the one hand one has £ =1, f = Xand £ =X f§ - £ for all n 5 2,
o 1 n n-1 n-2

on the other hand, by theorem (3.1) one has

po = ] and pl pn_1 =p. + pn_2 sop = pl o} - pn_2 for all n > 2. So the morphism

n n n—-1

of rings i: 2{X] » R_ which is defined by i(¢(X)) = ¢(p,) for all ¢(X) ¢ ZX] has the

S
property that i(fn) = ¢n for all ne Na.

Moreover, by induction, fn is a polynomial of degree n with leadingkcoefficient.l.
Therefore the f, form a Zbasis of Z[X]; as fﬁrthermore the Pa form a Z-basis of Rg

énd i(fn) = pn'for all ne No’ we conclude that i is an isomorﬁhism iy

4, Construction of the covariants by transvectants, starting from the groundform(s).

Let C ‘denote the linear space of S—eqhivariant polynomial maps from Va to ¥y

n,p,d
which are homogeneous of degree d, that is, C = ((A(V N, @V )S. Its elements
n,p,d n’’d P

are called-homogeneous-covariants of level n, order p and degree d. Covariants of

order p=0 are called invariants. The direct sum Cn = @ Cn b,d is a subalgebra of
P’d v .

the algebra of maps from V, to A(V); it is called the algebra of covariants of

level n.



(4.1) Examples of covariants

on 1 ("the groundform")
b b .

(ii) if § € Cn and.¢ ?»Cn e then, for

’q’

»P,d

all 0 < i € min (p,q), their i-th transvectant (¢,¢)i €

be the composition

where A denotes the diagonal map x *> x ©® X.

. , defi
n,prq-21 ,d+e is defined to

It is convenient to define 7, and so ( , )i to be the zero map if i > min (p;q). Thus

i

one can extend the i-th transvectant to a bilinear map ( , )i : Cn X Cn > Cn . If we

write

n,-,d n,-,d

C = & C ' so C = (A(Vn)d ® A(Vj)s,

n,p,d
pelN :

. then ( , )j restricts to a map



-10-

(4.2) Proposition. C =€ idv and the linear map

n,~,1 0

-] Cn,—,d e Cn,-,e > Cn,-,d+e defined

by (¢i e ¢i)i > % ¢i @ ¢i is surjective for all 4, e ¢ N .

Proof. The first statement is obvious - see theorem (3.1) and example (1) above -
. \ . ~

and, using that ;he canonical maps A(Vn)d ] A(Vn)e > A(Vn)d+e are surjective, it

suffices for the proof of the second statement, to show that the map

Fn * 0 LS(M,A(V)) o L(MAM) > L (M 8 N,AM)

given bg FM,N (? fi 8 gi) = % T 0 (fi e gi)

* *
is surjective for M = (A(Vn)d) and N = (A(Vn)e)

Now, for irreducible modules M = Vp , N = Vq the map F,‘1 N is equal, by tﬁeorem (3.1),
M, _

to the map
o cocs"0"" ¢ derined by (x.8 y,) (x,7,) which 1
> efined by (x.8 y. ). oo > (X¥;) , ch is
isNo’ i=o 17 7i/ieN 171/ o<ikmin(p,q)

clearly surjective. It follows that FM N is surjective for arbitrary ratiomal ¢S] -

rmodules M, N B

(4.3) Corollary

(1) Cn has no proper subspace B with idV € B and (B,B)i c B for all i € No
’ n .
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or equivalently

© (i1) Define inductively the sets of covariants

Al = {14, }

n
Ak+1 = Ak\J {(¢,¢)i ‘¢,¢ € AL, i< min(order¢,order¢)} for all keiN.

Then C, is spanned by the union of all Ay.

5. The first and second fundamental theorem.

For each finite group G and each €[ G] - module A we let AG denote the largest
submodule of A on which G acts trivially and we let A, denote the largest quotient
module of A on which G acts trivially. We recall that the map AG > AG which 1s the

composite of the canonical injection AG

+ A and the canonicalvsurjection A > AG is
an isomorphism. »

Let A and X be diéjoint finite sets with ]é! =d and X = {x}. Let Z(é)_be tﬁe gréup
of all permutations of A. Then 2(5) acts on the algebra S(A U X), which was defined

in section 2, via its action on é.and the trivial action on X:
o(ab) = (oa ob) for all o e Z(é) , a, be Au X.

. o . \7= v .
We will write B (a5 = (8, (AU

d times
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(5.1) Theorem (''the first and second fundamental theo:em"). One can construct a

canonical isomorphism

Cn)P,d N Sn,p’d(é;X).

Proof. C
. n,p,d

= (A(Vn))d ] Vp )S (by definition)

= ' * S
. ((a:A V)i @ V)

y * \Z(A) S
= e Vv ~7 9V
((as'é ) 5

* e
= (( @ Vn ) 2 Vp )S x Z(8) (as the actions of S and Z(éQ commute)
aci

= Hom ( & V_, V )S x I(8)

atA n P

~

= (Homs (e v Vp))

ach £(4)

= Sn,--.,‘n”p (‘\A‘ v {X}JZ(AA')
~ -
d times

Sn,p,d(é;X) Y]
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(5.2) Remark. As far as explicit formulas are concerned, it will suffice to give one

example:
= o1 Bl e |
(ab)" (ax) (bx) " e ﬁn,n,Zn—Zi ({a,b,x})
iéorréépouds to the composition of the map
vV +V @V which sends u to u @ u for all ue V
n n n n

"~ and the unique linear map

V8V >V, , which sends @H e B9 o (@, @™ 5!

for all @, B € V, with notations as in section 1.

\ (5.3) Remark. The surgectivity of the inverse of the isomorphism of theoren (5 1) is
usually called "the first fundamental theorem of invariant theory" and its

‘injectivity "the second fundamental theorem of invariant theory".

(5.4) Remark. Everything in this and the previous section generalizes without

difficulty to "covariants of several ground forms". It will suffice to give here only

some of the definitions. Let G be a finite set. Let n = (n ) and d = (d) be
‘ - g geC - g’ geG
vectors with all coefficients in N6 and let pemb. Let Cn p, d denote the
linear space of S—equivariant polynomial maps from Vn = 1 Vn to V_which
| 3 o,ec T . .

are homogenecus of degree d . Its elements are called - homogeneous -
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covariants of level n , order p and degree d . For each geG, let ﬂg be the

projection from Vn onto Vh and let e g be the vector'(ag Kronecker
- : ’

n honec @ =

delta). Then ﬂg e_Cn' n e ° The n_ , geG , are called the ground forms of
2 Bgr E o g
level n .
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