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Diversity systems for mobile communication in a large room 

G. Dolmans 

Abstract 

In this report. wave propagation inside a perfectly conducting room with two homogeneous dielectric 
walls has been studied. The thicknesses and losses of the dielectric walls are arbitrary. therefore it is 
possible to model wave phenomena inside various indoor environments. Green's function technique is 
used to calculate the electric fields excited by point sources and half wave dipole transmitters. In order 
to design an optimal receiver, the interaction between the electromagnetic fields and the receiving 
antenna must be modelled. The Lorentz reciprocity theorem is used to predict the received voltage, 
which depends on the location of the receiver inside the room. 

The fluctuations of the received voltages inside the room can be reduced by using diversity techniques. 
Switching diversity, selection diversity, equal gain combining and maximal ratio combining have been 
compared to each other. Finally, the signal-to-noise ratio and the bit error rate of a DECT receiver 
have been presented. 
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Chapter 1 

Introduction 

Inventions such as radio, television and telephones have a great impact on the lives of people. The 
continuous growth of information generates a need for communication devices usable at every place 
and each moment. One way of providing in these communication services is to use a mobile radio 
system. Mobile radio is one of the great successes in recent years and there is a constant need for 
sophisticated equipment and services. 

In this report, the fundamental processes of wave propagation inside a room will be discussed. In 
such a configuration, a variable signal level will be received by the mobile radio unit. It is important 
to study the electromagnetic fields inside a room in order to obtain a better understanding of the 
problems that can arise. It is not sufficient to study electromagnetic fields only, because the received 
signal depends on the type of receiving antenna also. Therefore, a Thevenin representation is used for 
modelling the interaction between the electromagnetic fields and the receiving antenna. The received 
voltage at the port of the antenna is obtained by using the Lorentz reciprocity theorem. The electro
magnetic fields and the received voltage depend strongly on the location of the receiver inside the room. 

The maximum errorless rate of data transmission over a mobile radio channel is determined by the 
amount of thermal noise. The signal-to-noise ratio can be calculated from the absolute value of the 
received voltage and the noise power levels. The probability of error (digital transmission) depends 
on the signal-to-noise ratio of the telecommunication link. The bit error rate of a DECT (Digital 
European Cordless Telephone) receiver as a function of the position inside the room is presented in 
this report. 

The structure of this report is as follows: 

In chapter two, the Green's function technique has been used for modelling the electromagnetic fields 
in a room with two lossy, dielectric walls. The properties of the dielectric walls can be changed, 
which can be used to study the scattering and absorption of electromagnetic waves at various material 
interfaces (for example concrete walls or walls made out of bricks). Green's functions are solutions 
of the electromagnetic fields caused by a point source, subjected to boundary conditions. The Green's 
functions for this configuration are described by double series. The infinite series have to be replaced 
by partial sums for calculating the electromagnetic fields on a computer. An estimate is given for 
the accuracy of the fields. It is shown that the computational time is independent of one dimension 
of the room. This means that propagation in a large room can be calculated very efficiently with the 
presented Green's function. The point source is not the only transmitter that has been analysed, in 
section 2.6 the electromagnetic fields caused by a half wave dipole antenna are discussed. 



2 Introduction 

The interaction between the electromagnetic field and the receiving antenna is described in section 2.7. 
For this purpose, a Thevenin representation of the receiving antenna is obtained by using the Lorentz 
reciprocity theorem. The antenna is modelled as an accessible port for which a voltage and a cur
rent is defined in the network sense. The received voltage is calculated analytically for a half wave 
dipole receiver, which improves the required computational speed of the calculations. A measure of 
performance is given by the signal-to-noise ratio at the receiver output. The signal-to-noise ratio is 
calculated from the signal power absorbed in the load of the antenna and the noise power level. The bit 
error rate of a DECT (Digital European Cordless Telephone) receiver depends on the signal-to-noise 
ratio. The probability of error of this receiver is presented in section 2.7.3. 

In chapter three, the electric fields, the received voltages, the signal- to-noise ratios and bit error 
rates for various configurations are presented. In section 3.2, it is shown that the electromagnetic 
field caused by a point source vanish at some points in the room. The electromagnetic field inside 
a room with two dielectric walls is compared to the field levels inside a perfectly conducting room. 
Furthermore, the electromagnetic field generated by a half-wave dipole antenna is analysed in section 
3.3. The electromagnetic fields and the received voltage (section 3.4) for the two types of sources 
are very irregular inside the room. In section 3.5, methods for reducing these signal fluctuations are 
considered to obtain acceptable transmission of data, speech or other services. The effect of fading is 
reduced by transmitting a signal from a single antenna to a number of receiving antennas. This kind 
of diversity is called space-diversity reception. 

Four space diversity receivers are described; switch diversity, selection diversity, equal gain combining 
and maximal ratio combining. The gains obtained by the four diversity receivers are compared to the 
conventional half-wave dipole receiver. The maximal ratio combiner gives the greatest improvement 
in received signal power. Switch diversity yields the slightest improvement in performance; however, 
this diversity technique is easy to implement. 

Finally, the signal-to-noise ratio of a DECT receiver inside a large room is presented in section 3.7. 



Chapter 2 

Green's functions of a perfectly 
conducting room with two dielectric walls 

2.1 Introduction 

In [Dolmans 95], wave propagation inside a perfectly conducting room has been studied. As a first 
step, tbe transmitting antenna was modelled by a point-source. The electromagnetic fields transmitted 
by a point-source are described by Green's functions. It is shown in [Dolmans 95] tbat tbe Green's 
functions of a rectangular perfectly conducting room consist of double series. In [Kant 94], Green's 
functions for a perfectly conducting room with one lossy, dielectric wall have been described. 

In this chapter, the concept of [Kant 94] will be used to obtain the Green's functions of a per
fectly conducting room witb two dielectric walls. It will be shown that the Green's functions for this 
configuration are again described by double series. These infinite series are replaced by partial sums 
for implementation on a computer. An estimate is given for the accuracy of the electromagnetic fields 
(calculated with the partial sums). Also, some error estimates for various configurations are presented 
in section 2.5. 

In practice, dipole antennas are often used as transmitting or receiving devices for indoor telecom
munication links. The electromagnetic fields generated by an antenna are obtained by performing an 
integration of the Green's functions weighted by tbe surface currents on the antenna. In section 2.6, 
these electromagnetic fields are calculated analytically which will improve the computational speed 
of the calculations. 

The signal-to-noise ratio and the bit error rate are important parameters for characterizing the quality of 
an indoor telecommunication link. The bit error rate depends on the signal-to-noise ratio (influenced 
by tbe modulation scheme and the error coding). The signal-to-noise ratio can be calculated when 
the noise temperature, noise bandwidth and the port voltage at the receiving antenna are known. The 
receiving port voltage is a function of the electromagnetic fields inside the room, but also depends on 
tbe type of used antenna system. The interaction between an antenna system and the irregular indoor 
fields is an important issue which will be extensively studied in this report. In section 2.7, a Thevenin 
representation of a receiving antenna is given by using the Lorentz reciprocity tbeorem. Using tbis 
Thevenin representation, the port voltage of a half-wave dipole is calculated analytically. 

3 



4 Green's functions of a perfectly conducting room with two dielectric walls 

2.2 Model description 

The geometry of a perfectly conducting room with two dielectric walls is shown in fignre 2.1 and 
figure 2.2 along with the used notation. 

The dimensions of the room in the X-, y- and z- directions are denoted by a, band c, respec
tively. The boundary 5 is made of perfectly electric conducting walls ( (J -+ 00). The volumes VI 
(enclosed by 51 and 5) and V3 (enclosed by 52 and 5), consist of lossy dielectric material. The vol
ume V2 (enclosed by 5, 51 and 52), which occupies the largest amount of space, consists of free space. 

The volumes are described by the following mathematical expressions: 

VI :={r E lR? 10< x < dl, 0 < y < b, 0 < z < c}, 

V3 :={r E ll~? I d2 < x < a, 0 < y < b, 0 < z < c}. 



2.3 The magnetic vector potential 5 

The first dielectric wall is bounded by the surfaces Sand SI, the thickness of the wall is denoted by 
dl • The second dielectric wall is bounded by the surfaces Sand S2 and the thickness of this wall 
is given by a - d2. The normal unit n to the surface S is oriented away from the volumes Vi. The 
normal unit n to the surfaces SI and S2 is directed to the dielectric walls. 

In a future publication, the Green's functions of another configuration (two rooms divided by a 
dielectric wall) will be analysed. Therefore, three permittivities will be used for the description of the 
three layers. In this way, the analysis for the two configurations can be constructed using the same 
procedures. Furthermore, the results can be compared to the results described in [Dolmans 95] and 
[Kant 94] more easily. 

The permittivities of the three regions are given by 

c(T) = (2.1) 

The permeabilities of the three regions are presented by 

I . /I 

1'1 = 1'1 - )1'1' 

I'(T) = I . II 

1'2 = 1'2 - )1'2' (2.2) 

I . /1 

1'3 = 1'3 - )1'3' 

The coordinates of the source, which is located in volume V2 , are given by r, = (x" y" z,). 

2.3 The magnetic vector potential 

The electric field E(T) and the magnetic field H(T) satisfy Maxwell's equations: 

\7 x Ei(T) = -jWI'iHi(T), r E Vi, (2.3) 

\7 x Hi(T) = jWciEi(T) + J.,(T), r E Vi, (2.4) 

\7. ciEi(T) = Pe(T), rE Vi, (2.5) 

\7. I'iHi(T) = 0, r E Vi, (2.6) 

where i = 1 ,2,3. The electric charge density and the electric current density are denoted by the symbols 
Pe and J." respectively. Furthermore, a harmonic time dependence of the form ejwt is assumed, where 
W is the angular frequency. 
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The vector wave equations are obtained by taking the curl of equation (2.3) and substitution in (2.4): 

(2.7) 

where ki = WJEi!"i denotes the wave number of the region i. The boundary conditions for the perfect 
conductors are given by: 

rE S, (i=I,2,3). (2.8) 

The electromagnetic fields at the intersection of the volumes Vi satisfy the following relationships: 

(2.9) 

(2.10) 

A magnetic vector potential is introduced to solve equations (2.7) - (2.10). Using \7 . (!"iiii) = 0, the 
magnetic fields can be written in terms of the magnetic vector potential Ai 

- I -Hi(TJ = -\7 x Ai(TJ. 
!"i 

(2.11) 

The electric field is written in terms of the magnetic vector potential Ai and the scalar potential <1>i by 
using (2.3) and (2.11) 

Ei(TJ = -jwAi - \7<1>i. (2.12) 

The scalar potential <1>i can be related to the divergence of the vector potential Ai using the Lorentz 
gauge 

(2.13) 

Substituting the Lorentz gauge ([Harrington 61], p. 77) in equation (2.12) yields 

- [- I - 1 Ei(TJ = -jw Ai(TJ + k[ \7\7. Ai(i') . (2.14) 

Using the previous results, we may conclude that the electromagnetic fields can be obtained from the 
magnetic vector potential. 



2.3 The magnetic vector potential 

The vector potentials are solutions of the following partial differential equations: 

\72 A2(T) + k~A2(T) = -ML(T), 

\72 A3(T) + k~A3(T) = 0, 

7 

(2.15) 

In the remainder of this section, the vector potentials will be solved for arbitrary directed electric 
point-sources. The point-sources are located at the coordinates is = (x" y" zs) inside region two. 

The vector potential can be expressed in tenns of the dyadic Green's function G A (i, is) 

(2.16) 

where Vs is a volume that encloses the source current. In general, the dyadic Green's function can be 
written in the following fonn: 

G Aixx G Aixy G Aixz 

GAi = G G G Aiyx Aiyy Aiyz 
(2.17) 

G Aizx G Aizy G Aizz 

For our configuration, not all of the components of the Green's dyad are needed to calculate the 
electromagnetic field. In case the transmitter is a x-directed point-source (perpendicular directed 
to the dielectric walls), only one component of the vector potential is needed to solve the set of 
differential equations. For point-sources directed along the dielectric walls, two components of the 
vector potential are necessary to solve the Helmholtz equations for this configuration. Therefore, 
these two cases will be described separately in this chapter. The dyad can be expressed as: 

G Aixx G Aixy G Aixz 

(2.18) 

case 1: electric source in the x-direction 

The volume current distribution for a x-directed dipole is given by 

L(T) = ex t5(x - xs)t5(y - ys)t5(z - zs). (2.19) 

Only a single component of the vector potential is needed for a x-directed source; Ai( T) = G Aixxex' 
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Using the boundary condition for the perfectly conducting wall (2.8), the boundary conditions of the 
vector potentials are written as [Kant 94], [Sommerfeld 64]: 

GAixx(X,O,Z) = 0, GAixx(X, b, z) = 0, 
(2.20) 

G Aixx(X, y, 0) = 0, G Aixx(X, y, c) = 0, 

8
8 GA1XX(X,y,z)1 = 0, 
x x=o 

(2.21 ) 

(2.22) 

with i=1,2,3. At the interfaces between the various materials, G Aixx satisfies the following boundary 
conditions [Kant 94]: 

(2.23) 

(2.24) 

(2.25) 

1 1 
-GA2xx(d2,y,Z) = -GA3xx(d2,y,Z). 
M2 M3 

(2.26) 

As stated earlier, the assumption is made that the electromagnetic fields can be obtained from one 
component of the vector potential. This implies that the vector Helmholtz equations are reduced to 
scalar Helmholtz equations: 

(2.27) 

,PG A2xx(f, is) + k~G A2xx(i, is) = -11-26(X - xs)6(y - y,)6(z - zs), (2.28) 

(2.29) 

Equations (2.27) and (2.29) are homogeneous differential equations. Therefore, the solutions of these 
equations can be expressed as a linear combination of elementary functions. Using the theory of 
Fourier series and the boundary conditions (2.20) gives 

00 00 

GAlxx = L L sin(kymY) sin(kznz)Flmn(X), (2.30) 
m=l n=l 

00 00 

GA3xx = L L sin(kymY) sin(kzn z)F3mn (x), (2.31) 
m=l n=l 
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where ky= = ";,~ and kzn = nc~. A convenient way to solve the inhomogeneous equation (2.28) is to 
first look at the homogeneous solution: 

00 00 

GA2xx = L L sin(ky=y)sin(kznz)F2=n(x). (2.32) 
m=ln=l 

The right-hand side of (2.28) can be written as a Fourier series [Morse 53): 

00 

8(y - Ys) = L A= sin(ky=Y), Y E [O,b), 
m=1 (2.33) 
00 

8(z - zs) = L Bn sin(kznz), z E [0, c). 
n=I 

The coefficients Am and Bn are found by solving the following orthogonality relationships: 

fb n7r 00 (b m7r n1r 
in sin( -,;y)8(y - ys)dy = L Am in sin(-b-y) sin( -,;y)dy, 
o m=l 0 

(2.34) 

In
c m1f 00 inc mn n1f 
sin(-z)8(z - zs)dz = L Bn sin(-z) sin(-z)dz. 

o C n=l 0 C C 

(2.35) 

The coefficients Am and Bm are given by 

2 . 
Am = b sm(kymYs), (2.36) 

The source current is now expressed as 

8(i - is) = ~ f: f: sin(kymY) sin(kymYs) sin(kzn z ) sin(kzn zs)8(x - xs). 
m=l n=l 

(2.37) 

Substitution of (2.30) - (2.32) and (2.37) in equations (2.27) - (2.29) results in the following set of 
one-dimensional differential equations: 

(2.38) 

(2.39) 

(2.40) 

where klx = Jki - kZm - k~n' k2x = Jk~ - kZm - k~n and kJx = Jkj - kZm - k~n' 
The solutions of the inhomogeneous differential equation (2.39) will be divided into two parts: 

(2.41) 

Xs < x < d2 
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Using the boundary conditions for the vector potential (2.21) and (2.22), the solutions of (2.38) -
(2.40) are linear combinations of elementary functions: 

Fimn(x) = Aimn COS(k2x(X - dIll + Bdmn sin(k2x{x - dill, 

Ffmn(x) = A~mn COS(k2x(X - d2)) + Bimn sin(k2x{x - d2)), 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

Note that four boundary conditions (2.23) - (2.26) are still unused. The two complementary boundary 
conditions, needed to solve the six unknowns in (2.42) - (2.45), are obtained from the differential 
equation (2.39). If F2mn(X) is a solution of (2.39), F2mn (x) has to be continuous at x = XS' The 
derivative of F2mn(X) has a jump of size -~ sin(kymYs) sin(kznzs) at x = XS' Therefore, the two 
boundary conditions at x = Xs are given by: 

(2.46) 

d
d Fimn(x) I - dd Ffmn(X)1 = - 4bIL2 sin(kymYs) sin(kznzs). 
x x=xs x x=x s C 

(2.47) 

At this point, six boundary conditions are available for solving the six unknowns in (2.42) - (2.45). 
First, the boundary conditions of the dielectric interface at x = dl (equations (2.23) and (2.25)) will 
be used. Consequently, the following two equations are obtained: 

Substitution of (2.48) in (2.49) results in the following relationships between Almn and Blmn: 

BI Zimn Al 
2mn = -k-- 2mnl 

2x 

where Zimn = -~ tan(klxdtJ· The solution for Almn can be obtained from 
01 

JLI Al 
Almn = ) 2mn' 

/L2 cos( klxdl 

(2.48) 

(2.49) 

(2.50) 

(2.51 ) 

The boundary conditions of the dielectric interface at x = d2 (namely (2.24) and (2.26)) will be used: 

(2.52) 

k3x . ((d )) k2x 2 --2 A3mn Sill k3x 2 - a = -2 B 2mn · 
k3 k2 

(2.53) 
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Substitution of (2.52) in (2.53) gives 

2 Z2mn A2 
B2mn = -k- 2mn) 

2x 

where Z2mn = - £';" tan( k3x (d2 - a)). The solution for A3mn is obtained from 
3 

A2 
A 1'3 2mn 

3mn = 1'2 COS(k3x(d2 - a))· 

11 

(2.54) 

(2.55) 

To obtain the relationships between the coefficients Aimn and A~mn' the boundary condition at x = x, 
(2.46) and equations (2.50), (2.54) will be used: 

Al _ A2 k2x COS(k2x(X, - d2)) + Z2mn sin(k2x(x, - d2)) 
2mn - 2mn k2x COS(k2x(X, - dt)) + Zlmn sin(k2x(x, - d l ))· 

(2.56) 

The second boundary condition at x = Xs (2.47) and equations (2.50), (2.54) results in the second 
relationship between the coefficients Aimn and A~mn: 

(2.57) 

A~mn (-k2x sin(k2x(x, - d2)) + Z2mn COS(k2x(Xs - d2))) - ~ sin(kymYs) sin(kznz,). 

Elimination of Aimn from (2.56) and (2.57) gives 

A2 __ 4/L2 sin(kymYs) sin(kznzs) [k2xcos(k2x(Xs - dt)) + Zlmn sin(k2x(xs - dt))] (258) 
2mn be sin(k2x(d2 - dt))( -k~x - ZlmnZ2mn) + COS(k2x(d2 - dt))(k2xZlmn - k2xZ2mn)· . 

The coefficient Aimn is given by 

Al = _ 4/L2 sin(kymYs) sin(kznzs) [k2x COS(k2x(Xs - d2)) + Z2mn sin(k2x(xs - d2))] (259) 
2mn be sin(k2x(d2 - dt))( -k~x - ZlmnZ2mn) + COS(k2x(d2 - dt))(k2xZlmn - k2xZ2mn)· . 

All six coefficients (Al mn , Aimn, A~mn' Bimn, B'imn and A3mn) are given by the equations (2.50), 
(2.51), (2.54), (2.55), (2.58) and (2.59). The component GAixx of the Green's dyad can now be 
calculated: 

Interval 1: 0 <::: x <::: d l 

4 00 00 

GAlxx = - :Cl L L sin(kymY) sin(kymys) sin(kznz) sin(kznzs)· 
m~l n=l 

COS(klxX) [k2x COS(k2x(Xs - d2)) + Z2mn sin(k2x(xs - d2))] 
Dmn COS(klxdt} 

(2.60) 
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Interval 2: d1 < x ~ Xs 

G~2xx = - 4:C2 f: f: sin(kymY) sin(kymYs) sin(kznz ) sin(kznzs) D I k . 
m=l n=l mn 2x 

Interval 3: Xs < x ~ d2 

G~2xx = - 41-'2 f: f: sin(kymY) sin(kymYs) sin(kzn z ) sin(kznzs) D \ . 
be m=l n=1 mn 2x 

[COS(k2x(X - d2)) (k~x COS(k2x(Xs - dl) + k2xZlmn sin k2x(Xs - dIl) + 

sin(k2x{x - d2)) (k2xZ2mn COS(k2x(Xs - dIl) + ZlmnZ2mn sin k2x(Xs - dIl)] 

Interval 4: d2 < x ~ a 

with 

4 00 00 

GA 3xx = - 1-'3 L L sin(kymY) sin(kymYs) sin(kznz) sin(kznzs)· 
be m=l n=l 

COS(k3x(X - a)) [Zlmnsin(k2x(Xs - dIl) + k2xcos(k2x(Xs - dIll] 
Dmn COS(k3x(d2 - a)) 

klx = Jkl - U7f.)2 _ (~)2, 

k2x = Jel. - (!7ff _ (~)2, 

k3x = Jk~ - ('7,,,)2 - (n,n2, 

(2.6\) 

(2.62) 

(2.63) 

(2.64) 

At this moment, the solution for one of the five unknown components of the Green's dyad has been 
found. We will now consider the situation of a point-source directed parallel to the dielectric walls. 
For this case, it is not sufficient to use one component of the magnetic vector potential. Instead, two 
components of the vector potentials are needed to solve the Helmholtz equations and the boundary 
conditions. 
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case 2a: electric source in the z-direction 

The electric current density of a z-directed point-source can be expressed as: 

ie(T) = ez8(x - x,)8(y - y,)8(z - zs). (2.65) 

Using (2.16), the vector potential is now written as: 

GAixz 

Ai(T) = 0 (2.66) 

GAizz 

The scalar Helmholtz equations for all components of the magnetic vector potential are given by 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

(2.72) 

Two situations will be distinguished; A) solutions for G Aizz and B) solutions for G Aixz 

A) Calculation of G Aizz 

In order to solve the set of differential equations (2.67) - (2.69), it is necessary to derive the boundary 
conditions for the magnetic vector potential. For this purpose, the relation between the electric field 
and the vector potential (2.14) is substituted in the boundary condition for the perfectly conducting 
walls (2.8). In this way, the boundary conditions for G Aizz are obtained [Kant 94] 

GAizz(X,O,Z) = 0, GAizz(x,b,z) = 0, i = (1,2,3), 

aa GAizz(X,y,z) = 01 ' 
z z=o aa GAizz(X,y,z) =01 ' 

z z=c 
i = (1,2,3), (2.73) 

GAlzz(O,y,Z) = 0, GA3zz(a,y,z) = O. 
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At the interfaces between the volumes Vi, the boundary conditions for G Aizz are given by 

(2.74) 

(2.75) 

I 8 I 
18

1 --8 GA2zz(X,y,z) = --8 GAlzz(X,y,z) , 
fJ..2 x x=d, J.L 1 X x=d, 

(2.76) 

I 8 I --8 GA2zz(X,y,z) 
/1-2 x x=dz 

I 8 I --8 GA3zz(X,y,z) . 
J.L3 x x=dz 

(2.77) 

The solution of (2.67) - (2.69) can be expressed as a linear combination of elementary functions: 

00 00 

GAizz = L L sin(kymy)cos(kznz)Fimn(X), i = (1,2,3). (2.78) 
m=l n=O 

Rewriting the right-hand side of (2.68) into a Fourier-series, the following set of one-dimensional 
differential equations is obtained 

d2 

dx2 Hmn(x) + krxF1mn(x) = 0, (2.79) 

d
d22F2mn(X) + kixF2mn(X) = - 2/L2EOn sin(kymYs)cos(kznz,)6(x - x,), 
x ~ 

(2.80) 

(2.81) 

where EOn is called Neumann-factor. EOn = I forn = o and EOn = 2forn # O. ThefunctionF2mn(x) 
will again be divided into two parts; Fimn(x) for dl < x :::; x, and Fimn(x) for Xs < x :::; d2. The 
solution of F/mn (x) is given by 

Fimn(x) = A1mn COS(k2x(X - dIll + B4mn sin(k2x(x - dIll, 

Fimn(x) = Aimn COS(k2x(X - d2)) + Bimn sin(k2x(x - d2)), 

The two boundary conditions at x = x, are given by: 

(2.82) 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

(2.87) 

Six boundary conditions (namely (2.74) - (2.77), (2.86) and (2.87» are available for solving the 
equations (2.82) - (2.85). 
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The procedure for solving the linear equations is essentially the same as described in case 1 (electric 
source in the x-direction), therefore it will not be repeated here. The component G Aizz is given by 

Interval 1: 0 ::; x ::; d 1 

2 00 00 

GAlzz = - :CZ 
L LEOn sin(kymY) sin(kymYs) cos(kznz) cos(kznzs)' 

m=1 n=O 

Yl mn sin(klxx) [k2xYZmn cos(kzx(xs - d2)) + sin(k2x(xs - dz))} 
Jmn sin(klxdll 

Interval 2: d1 < x ::; Xs 

G~Zzz = - 2:cz f f EOn sin(kymY) sin(kymYs) cos(kznz ) cos(kznzs) J 1 k . 
m=l n:::::Q mn 2x 

[sin(kzx(xs - dz)) + kZxYzmn COS(k2x(Xs - dz))} 

Interval 3: Xs < x ::; d2 

G~Zzz = - 2t f f EOn sin(kymY) sin(kymYs) cos(kzn z ) cos(kznzs) J 1 k . 
C m=l n=O mn 2x 

[kZxYZmn COS(k2x(X - dz)) + sin(kzx(x - dz))} . 

Interval 4: dz < x ::; a 

2 00 00 

GA3zz=- M L LEonsin(kymYlsin(kymYs)cos(kznz)cos(kznzs)' 
be m=l n=O 

YZmn sin(k3x(X - a)) [sin(kzx(xs - dll) + k2xYlmn COS(k2x(Xs - dill} 
Jmn sin(k3x(d2 - all 

(2.88) 

(2.89) 

(2.90) 

(2.91) 
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with 

k - Jk2 (m1r)2 (n1r)2 3x- 3-T-c' 
(2.92) 

B) Calculation of G Aixz 

The magnetic vector potential G Aixz will now be calculated in order to complete the analysis for 
a z-directed current source. The boundary conditions for G Aixz are obtained by combining (2.14) 
with (2.8) - (2.10). Note that the differential equations for G Aixz are homogeneous, this means that 
no boundary conditions are needed at x = XS' The boundary conditions for G Aixz at the perfectly 
conducting walls are given by [Kant 94) 

GAixz(X, 0, z) = 0, 

G Aixz(X, y, 0) = 0, 

: GAlxz(X,y,z) =01 ' 
uX x=o 

GAixz(x,b,z) = 0, 

GAixz(X, y, c) = 0, 

:xGA3XZ(X,y,z) =o,"=a' 

At the dielectric interfaces, the boundary conditions for G Aixz are expressed as 

i = (1,2,3), 

i = (1,2,3), (2.93) 

(2.94) 

(2.95) 

(2.96) 

(2.97) 
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Notice that the equations (2.96) and (2.97) relate the vector potential G Aixz to the vector potential 
G Aizz. Therefore, the results obtained in the previous sections will be used to calculate the potential 
G Aixz' The solution of (2.70) - (2.72) is expressed as a Fourier series: 

00 00 

GAixz = L L sin(kymY) sin(kznz)Fimn(X). 
m=l n=1 

Using the boundary conditions (2.93), Fimn(X) is given by 

(2.98) 

(2.99) 

(2.100) 

(2.101) 

Notice that Fimn(X) consists of three parts (instead of four parts in the previous analysis) due to 
the fact that Fimn (x) results from homogeneous differential equations. Four boundary conditions 
(2.94) - (2.97) are available for solving the equations (2.99) - (2.101). The final expressions for G Aixz 
are given by 

Interval I: 0 ::; x ::; dl 

4 0000 1 
GAlxz =....!!2 L L mr sin(kymy)sin(kymy,) sin(kznz) cos(kznz,) cos(klxx)-K . 

be m=l n:::l C mn 

(2.102) 

Interval 2: d I < X ::; d2 

(2.103) 
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Interval 3: d2 < x ::; a 

GA3xz = 4
b
J13 f: f: mr sin(kymy) sin(kymys) sin(kznz) cos(kznzs) COS(k3x(X - a))-_I . 
C m=l n=l C Kmn 

with 

klx = jki - (¥)2 _ (~)2, 

k2x = jk~ - (¥)2 _ (~)2, 

k3x = jk~ - (";,,,)2 - ("",,)2, 

/11 
Ylmn = -k- tan(klxdtl, 

f.1.2 I x 

/13 Y2mn = -k- tan(k3x(d2 - a)), 
/12 3x 

case 2b: electric source in the y-direction 

(2.104) 

(2.105) 

Two components of the Green's dyad (; Ai are still unknown, namely GAiyy and G Aixy. It is possible 
to calculate these functions using the analysis of the previous section. However, the y-directed source 
is, just like the z-directed dipole, positioned along the dielectric interface. Therefore, it is more 
convenient to make use of the symmetry of the problem. The functions G Aiyy and G Aixy can be 
obtained from the functions G Aizz and G Aixz by using the substitutions 

c := b, b := -c, Zs := Ys, Ys := -Zs, z := y, y := -Z, ez := ey and ey := -ez (2.106) 
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In this way, the geometry has been rotated along the x-axis. One problem that remains unsolved is 
the correct expansion of the delta-distribution into a Fourier-series. In (2.37), the assumption is made 
that the room dimensions represented by band c are positive. Therefore, it is necessary to change the 
factors tc (occurring before the summations) into the factors I~'I' 

All components of the Green's dyad G.1i are now known. In the next section, the electromagnetic 
fields will be calculated using the dyad G Ai. 

2.4 Electromagnetic fields 

As stated earlier, the electromagnetic fields are obtained from the vector potential by using the 
following expression 

_ [- I -] Ei(f') = -jw Ai(f') + kl V'V'. Ai(f') . (2.107) 

where the vector potential may be written in terms of the dyadic Green's function G Ai( i,rs). 

(2.108) 

Substitution of (2.108) in (2.107) gives 

(2.109) 

The electric field generated by an unit point-source can also be written in terms of an electric dyadic 
function G Ei (T, is) 

Ei(f') = -jw J J J GEi(T,rs)' J:(Ts)dVs' (2.110) 

The electric Green's dyad is represented by a 3 x 3 matrix of the following form 

G Eixx G Eixy G Eixz 

GEi = G G G Eiyx Eiyy Eiyz (2.111) 

G Eizx G Eizy G Eizz 

The previous analysis implies that the electric dyadic Green's function G Ei can be found from 

G= (--) G= (--) I""", . ., G= (--) Ei T,Ts = Ai T,Ts + 2v V' Ai T,Ts . 
ki 

(2.112) 

The nine components of the electric Green's dyad can be calculated by using the results from the 
previous section. The functions G Eixx, G Eiyy and G Ei" need some further consideration. 
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For example, the function G Eixx is obtained by 

(2.113) 

where 

00 00 

GAixx = L L sin(kymY) sin(kzmz)Fimn(x). (2.114) 
m=l n=1 

From (2.47), it is c1earthatthe derivative of the function Fimn(X) has ajump of size ~ sin(kymYs) sin(kznzs) 
at x = Xs. Therefore, the second derivative of Fimn(X) must contain a delta distribution. In order to 
calculate G Eixx correctly, F2mn (x) is written in the following form [Signalen I] 

F2mn(X) = Fimn(x) [I - u(x - x,)] + Fimn(x) [I - u(xs - x)] , (2.115) 

where 

II, 
U(x) = 

0, 

for x > 0 
(2.116) 

forx < 0 

The first derivative of F2mn(X) with respect to x is 

d F () dFimn [I ( )] dFimn [ ( )] dx 2mn X = ~ - u x - x, + ~ I - u Xs - x . (2.117) 

The second derivative of F2mn (x) is given by 

d2 d2 p,l d2 p,2 
dx2F2mn(X) = d:;,n [I - u(x - x,)] + d:;,n [I - u(xs - x)] 

- 4:C2 sin(kymYs) sin(kzn zs)8(x - x,). 

(2.118) 

The function G Eixx is now written as 

1 0000 ~ 
G Eixx = GAixx + k2 L L sin(kymY) sin(kzn z ) dx2Fimn(X) 

t m=l n=l (2.119) 

In a similar way, the functions G Eiyy and G Eizz contain also delta-function dependencies. It is not 
practical to present all nine components of the electric Green's dyad, because this would result in 
many pages of formulas. Therefore, two components of the dyad have been selected, namely G Eixx 
and G Eixz. The function G Eixx is presented in the appendix. This function results from the relative 
simple expression of G Aixx. The function G Eixz is also presented in the appendix. G Eixz has a more 
complicated form, because the function G Aixz has to be used for the calculation of G Eixz. 
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The magnetic fields can be expressed in terms of the vector potential by 

- 1 -Hi(T) = -\7 x Ai(TJ, 
f.Li 

(2.120) 

where the vector potential can be written as 

(2.121) 

Substitution of (2.121) in (2.120) results in 

(2.122) 

,!,he magnetic field generated by a point-source is written in terms of a magnetic dyadic function 
G Hi (i,f',) 

(2.123) 

The magnetic Green's dyad is represented by a 3 x 3 matrix 

GH; = G G G Hiyx Hiyy Hiyz 
(2.124) 

So the magnetic Green's dyad G A can be found from 

(2.125) 

Two components of the magnetic Green's dyad are presented in the appendix, namely G H zx and 
G Hyz. These two functions are selected, because of the differences in complexity between the two 
functions. The function G Hyz has a more complicated form than G Hzx. 

Numerical results of the electromagnetic fields due to a point-source are presented in chapter 3. 
The electromagnetic fields generated by a half-wave dipole are calculated analytically in section 2.6. 
These fields are obtained by evaluating the equations (2.110) and (2.123). Some results for this type 
of source are given in chapter 3. 

2.5 Estimate of the truncation error 

In the previous sections, it has been shown that the electromagnetic fields inside a perfectly conducting 
room are described by double series. We will use a computer to obtain numerical results for the 
electromagnetic fields of several rooms, various sources, etc. In computations, we work with a finite 
number of digits and use finitely many steps. Therefore, the numerical result is an approximate value 
of the (unknown) exact result. 



22 Green's functions of a perfectly conducting room with two dielectric walls 

Depending on the source of errors, we can distinguish between 

• Experimental errors. (for example errors in input data) 

• Round-off errors. (caused by the process of rounding off during computation) 

• Programming errors (errors in software or mistakes from the programmer) 

• Truncation errors (errors caused by prematurely breaking off a series of computational steps) 

We will further investigate the consequences of truncation errors in this section. The infinite series, 
describing the electromagnetic fields in a room, are replaced by partial sums for implementation on 
a computer. First, the relatively simple case of a perfectly conducting room will be considered. For 
this configuration, an accurate estimate can be given for the accuracy of the computed electromag
netic fields. A numerical study will show that the actual error is in the same order as the predicted 
error. Second, an error estimate will be calculated for the electromagnetic fields in a room with two 
dielectric walls. In this case, the predicted truncation error differs much more to the actual error. 
The results obtained from the analysis of the truncation error will be used to improve the computer 
program. The program determines the minimal number of terms of the double series which will be 
needed for obtaining the desired level of accuracy (the accuracy is provided by the user of the program). 

Error estimate for electromagnetic fields inside a perfectly conducting room 

Only G Exx (representing the x-component of the electric field generated by a point-source in the 
x-direction) will be considered in order to avoid an unnecessary large amount of formulas. An 
error estimate for the other components of the Green's dyad can be obtained in a similar way. The 
Green's function G Exx is calculated by substituting the values d l = 0 , d2 = a, EI = E2 = E3 = EO, 

Ji.1 = Ji.2 = J1.3 = Ji.O in equation (A.2). The Green's function has the following form 

4 0000 

G Ji.O ""(k2 k2). m7ry . m7rYs . n.7rZ . n7rZs 
Exx = --2 ~ L...- 0 - x sm -- sm -- sm -- sm --

bcko m=1 n=1 b b c c 

cos kx(xs - a) cos(kxx) 
for x :<::: x" 

(2.126) 

with kx = Jk6 - (";,,,)2 - (nc,,)2. The truncation error for GExx in the interval x > Xs can be 
obtained in a similar way, therefore it will not be calculated here. Depending on the argument of 
k5 - (";,,,)2 - (nc,,)2, we will distinguish between two situations [LeytenlDolmans 95] 

Domain 1 (DJ) : (m7r)2 (n7r)2 -b- + --;:: - k6 :<::: 0 

Ga 4Ji.O ""(k2 2). m7ry . m7rYs . n7rZ . n7rZ, 
E = --L-L 0 -at sm--sm--sm--sm--x 

xx bck6 ED b b c c 
m,n I 

cos(alx) cosal(a - x s ) 

al sin (ala) 

(2.127) 
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Domain 2 (D2) : (
m1r)2 (mf)2 
-b- + -;:- -k~>O 

Cb -2/lO ""(k2 2). m1ry . m1rY, . n1rZ . n1rZs 
Exx = --2-~0 0 +a2 sm-b-sm--sm--sm--x 

bckO D bee m,nE 2 

e"'(X-X,) [I + e-2",(a-x.)] [I + e-2",xJ 
0<2 [I - e 2",aJ 

The closed domain DJ and the open domain D2 are presented in figure 2.3. 

n 
Domain 2 (D,) 

.......................... 

(0,0) 

Figure 2.3: Two dimensional grid (f3min ? ko). 
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(2.128) 

m 

The assumption will be made that the computation is carried out in such a way that all the terms of 
the double series at the grid-points in DJ are evaluated. So we will restrict our analysis to the Green's 
function in domain D2. The following inequality is obtained for the Green's function in D2 

The following functions are investigated more closely 

(2.129) 

(2.130) 
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(2.131) 

An upper bound for the function gl ("'2) for "'2 2': "'2min has to be found before an integral theorem 
can be used to calculate the error estimate. In this section, only the component G Exx is presented. 
In case other field components will be calculated, functions comparable to g2("'2) and g:l("'2) will 
appear in the Green's functions. Therefore, upper bounds for these two functions will also be given. 

The following limits of 93("'2) are obtained 

lim g3("'2) = l. 
°2-00 

(2.132) 

The function g3("'2) will never exceed the value I, therefore, the following inequality will be used: 
g3 ("'2) < 1. Likewise, the function g2("'2) :S 1+ e-2"2min (a-X.). 

The upper bound for 91("'2) is found in a different way. First, the limit of gl("'2) is given by 
lim gl ("'2) = I. Then, the derivative of gl ("'2) with respect to "'2 is given by: 

a2~OO 

Due to the fact that gl ("'2) is a decreasing function, we can write gl ("'2) :S gl ("'2min). Notice that in 
practice, the functions gi(X) (i=I,2,3) will be approximately equal to unity. 

In order to get an integral representation, the following integral-theorem is used 

If I (x) > 0 for x E [0, 00), I (x) real positive decreasing function, then 
i. SN - 1(1) :S IN :S SN-l 

ii. 1= I (t )dt converges <==? f: I (n) converges 
o n=1 

N N 
with IN = 1 I(t)dt and SN = L: I(n). 

n=l 

The variables m and n (summation-indices) are transformed to a new set of variables f3 and,,! using 
the following equations 

b 
m = -f3cos,,!, 

7r 

C f3 . n=- sm"!. 
7r 

(2.135) 

After substitution of the variables,,! and f3 in equation (2.128) the boundary between the two 
domains is given by f3 = ko. When the numerical calculations are restricted to the domain 
o < f3 < f3min, 0 :S "! :S 7r /2, the absolute value of the truncation error is given by 

IL: L: G~xx(m,n)l:s (2.\36) 
(~"'" )2+( ne" )2>.8~in 



2.5 Estimate of the truncation error 25 

Using the variable p, with p2 = /32 - kil, we obtain 

ILL G~xx(m,n)I:o; (2.137) 
(~71" )2+( n; )2>f3~in 

Solving the integral results in 

(2.138) 

with ( = V /3;'in - kil(x - xs). 
Two interesting observations can be made from (2.138): 

- The number of terms needed to obtain a required accuracy increases for x approaches x s' 

- The error estimate (for 91 (/3min) approximately equal to unity) and the size of domain DI are 
independent of the variable a. This implies that for large values of the dimension a, the computational 
time does not increase for the presented Green's function. This means that propagation in corridors 
or tunnels can be calculated very efficiently with the presented Green's functions. 

In the remainder of this report, the truncation error will be denoted by the symbol O(/3min). The 
'exact' Green's function may be written as 

(2.139) 

where (; Exx is the computed Green's function and O(/3min) is the truncation error. The 'exact value' 
of the Green's function represented by G Exx(/3max) will be calculated by summation of many terms. 
The error estimate predicts an exponential decay of the Green's functions with respect to /3, therefore 
the partial sums can be used to represent the 'exact' value of the Green's function. 
The predicted error will be compared to the actual error for the following configuration 

• Dimensions of the room: a = 5.I3m, b = 4.04m, c = 3.02m 

• Location of the point-source: (x" y" zs) = (0.75m, 0.20m, O.4m) 

• Location of the observation point: (x,y,z) = (2.0m,0.50m,2.3m) 

• Frequency is 2.0 GHz which corresponds to the wavenumber ko = 41.89 m- I 

• Partial sum representing 'exact value' calculated with /3max = 80 

The predicted error is given by equation (2.138) and the actual absolute error is computed by 

(2.140) 
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The actual relative error is given by 

b (/3 . ) -/ G Exx(/3max) - (; Exx((3min) / 100% 
actual,r mzn - G (/3) x 

Exx max 
(2.141) 

The two truncation errors (predicted and actual errors) as a function of the size of the grid /3min are 
compared to each other in figure 204. 

error 1%] 
2,-----------------------, 

1.5 

- Actual error 

... Predicted error 

0.5 

41.9 42 42.1 42.2 42.3 42.4 42.5 

grid size fj min 

Figure 2.4: Percentages of predicted and actual truncation errors 

As expected the actual error remains below the predicted error. Furthermore, figure 204 shows that 
the truncation error is less than 0.2 %. For this particular configuration, it is sufficient to restrict the 
computations to domain DI. If the distance between the location of the transmitter and the location 
of the receiver becomes smaller (in particular the x-coordinates of the receiver and transmitter), the 
truncation error will increase. However, the truncation error will decrease rapidly as a function of 
the grid size (determined by /3min). We will now verify in a numerical way the assumption that the 
truncation error is not depending on the length of the room (denoted by the symbol a). For this 
purpose, the following configuration is used 

• Dimensions of the room: Sm < a < 100m, b = 4.04m, c = 3.02m 

• Location of the point-source: (x" y" zs) = (O.7Sm, O.20m, o Am) 

• Location of the observation point: (x, y, z) = (2.0m, O.SOm, 2.3m) 

• Frequency is 2.0 GHz which corresponds to the wavenumber ko = 41.89 m- I 

• Grid size /3min = 42 

Figure 2.5 shows clearly that the accuracy of the computed electromagnetic fields is not depending on 
the length of the room. It can be concluded that the same computation time is needed for calculation 
of the fields in a small room or in a large tunnel. 

The truncation error is calculated for a room with perfectly conducting walls. The next step is to 
obtain an error estimate for the electromagnetic fields inside a room with two dielectric walls. 



2.5 Estimate of the truncation error 

absolute error IV/mJ 
100,-----------------, 

80 ................................................ --

60 .................................................. --

40 .................................................. . 

20 

°5L-~1~5~2~5~3~5~4~5~5~5~6~5~7~5~85~~95~ 
length of room [metersl 

_. Predicted error 

- Actual error 

Figure 2.5: Absolute values of predicted and actual truncation errors 

Error estimate for the electromagnetic fields inside a room with two dielectric walls 

27 

The assumption will be made that the dielectric losses of the walls are negligible. The consequences 
of this assumption will be evaluated at the end of this analysis. It is more difficult to obtain an error 
estimate due to fact that G Exx consists of complicated expressions for a room with two dielectric 
walls (appendix A.I - A.5). First we will use the same transformation as in the previous section: 

b 
m = -(Jcos" 

IT 

c(J . n = - sm, 
IT 

(2.142) 

The numerical calculation will be restricted to the domain 0 < (J < (Jmin, 0 ::; , ::; IT /2. An error 
estimate will be derived for (J > (Jmin' If f3 > > max(k1, k2, k3 ), we may write 

The expressions Z'mn, Z2mn and Dmn (appendix A) are reduced to 

(2.144) 

(2.145) 
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Dmn = sin(k2x(d2 - dJ))( -ki" - ZlmnZ2mn) + COS(k2x(d2 - dJ))(k2xZlmn - k2xZ2mn) "" 
(2.146) 

Using the above approximations, we arrive at the following integrals 

Interval I: 0:<::: x :<::: dl 

-"- - 1 
e{3(x.-x) ;' d, dj3. 

_1_~_f2._f2. 
elf) £1 E3 

(2.147) 

Solving the integrals results in 

(2.148) 

The same procedure can be used for the error estimate in interval 2. 

Interval 2: dl < x :<::: x, 

(2.149) 

Interval 3: x, < x :<::: d2 

(2.150) 
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Interval 4: d2 < x :0; a 

~ ~ b 2/LJ EJ I L.. L.. G Exx(m, n)I:o; 2 x 
(""")'+("")'>fJ' . 'lrkJ E2 + EJ 

b c mtn 

(2.151) 

Notice that the predicted error decreases for increasing values of the wavenumber ki. Furthermore, 
there are now additional factors --'1-+ and --'L+ present in the predicted errors for interval I and 4. 

(I E2 £2 £3 

The predicted errors are valid for f3min » max(k l , k2, kJ)' Such a large value of f3min becomes 
necessary for x approaches x,. In this situation, f3min must be chosen very large to obtain the desired 
accuracy. To illustrate this, we will investigate the following configuration: 

• Dimensions of the room: a = 5.13m, b = 4.04m, c = 3.02m 

• Location of the point-source: (x" y" z,) = (0.75m, 0.20m, O.4m) 

• Location of the observation point: (x,y,z) = (0.78m,0.50m,2.3m) 

• Frequency is 2.0 GHz which corresponds to the wavenumber ko = 41.89 m- I 

• Thicknesses of the two dielectric walls: dl = a - d2 = 40cm 

• Permittivity of each wall: EI = EJ = 3Eo 

• Grid size: 150 < f3min < 250 

• Partial sum representing 'exact value' calculated with f3max = 350 

The predicted and actual truncation errors versus the size of the grid f3min are presented in the figures 
2.6 and 2.7. Notice that the absolute errors are very large, this is due to the fact that an unrealistic 
source current strength of I A1m2 generates very high electric fields inside the room. In practice, the 
source current at the feed point of the antenna will be lower, which causes smaller absolute errors. The 
source current strength does not influence the relative errors. The differences between the predicted 
and actual errors are larger for the configuration with the two dielectric walls than for the configuration 
with perfectly conducting walls. This is due to the fact that in the error estimate for the fields inside 
the room with two dielectric walls more approximations have been made. In the majority of the field 
computations for a room with perfectly conducting walls, the actual error is 10% of the predicted 
error. In most cases, the actual error is I % of the predicted error for field computations in a room with 
two dielectric walls. For this configuration it can be concluded that the predicted error has a more 
'conservative' nature. 
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Figure 2.6: Absolute value of predicted truncation error 
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Figure 2.7: Absolute value of actual truncation error 

We will now compute the truncation error of the electromagnetic fields inside a room with lossy, 
dielectric walls. In this case no predicted errors are available. Therefore, we will only show the actual 
error which is defined by 

bactual = G Exx{f3max = 250) - G Exx(f3min = 150) 

• Dimensions of the room: a = 5.l3m, b = 4.04m, c = 3.02m 

• Location of the point-source: (x" y" Zs) = (0.75m, 0.20m, 0.4m) 

• Location of the observation point: 
situation A: (x,y,z) = (0.78m,0.50m,2.3m) 
situation B: (x, y, z) = (0.35m, 0.5m, 2.3m) 

• Frequency is 2.0 GHz which corresponds to the wavenumber ko = 41.89 m- I 

(2.152) 
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• Thickness of each dielectric wall: dl = a - d2 = 40cm 

• Pennittivity of each wall: .'1 = ,; = 3'0 

• Losses of the wall: 0 < .'; < I and 0 < E~ < I 

• Grid size: f3min = 150 

• Reference grid size: f3max = 250 

The actual error versus the dielectric loss is presented in figure 2.8. The receiver is located in volume 

V2. 

absolute error 
30,---------------------------, 

25 

20 

15 1-Actual error I 
\0 

5 

oL-------------------------~ 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

dielectric loss (er") 

Figure 2.8: Absolute value of actual truncation error (situation A) 

Figure 2.8 shows clearly that the dielectric loss has no influence on the accuracy of the computed 
fields. The error as a function of the dielectric loss for a receiver located inside the dielectric wall is 

shown in figure 2.9. 
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Figure 2.9: Absolute value of actual truncation error (situation B) 
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In this case, the truncation error decreases for increasing values of the dielectric losses. Therefore, it 
can be concluded that the inability of the error-estimate technique to model the dielectric losses has 
no significant impact on the accuracy of the computed fields. 

The major advantage of using an error-estimation technique is that the calculations can now be done 
automatically. The user of the program defines a maximum absolute error which he wants to tolerate 
in the computed electromagnetic fields. The software program determines the size of the grid that 
corresponds to the given truncation error, after which the computations can start. The size of the grid is 
updated automatically for each observation-point in order to stay below the maximum truncation error. 

The following conclusions can be drawn from the error-estimate analysis: 

1) Due to the fact that the truncation error depends on the radius (3min only, it is more convenient to 
use an elliptical grid instead of a rectangular grid. In this way, the smallest amount of computations 
has to be carried out for obtaining the desired accuracy. 

2) The truncation error increases for x approaches x" if the grid-size is kept at a constant level. This 
error is of the order (x - x,)3. 

3) For large values of the length of the room, denoted by the symbol a, the computational time does 
not increase for the presented Green's function. This means that propagation in corridors or tunnels 
can be calculated very efficiently with the presented Green's function. 

2.6 Fields of a half-wave dipole antenna 

Up to now, the electromagnetic fields inside a room generated by an electric point-source have been 
analysed. In practice, cellular radio systems consist of sophisticated equipment (for example base 
stations, mobile telephone transceivers and paging systems). The antennas mounted on these devices 
differ much compared to the electric point-source (which is only a theoretical modelling tool). One 
of the most widely used antennas for wireless handsets is the quarter wavelength monopole antenna. 
Several other antennas are used, such as planar inverted F antennas, patch antennas and half-wave 
dipoles. The electromagnetic fields inside a room caused by a half-wave dipole and combinations of 
half-wave dipoles will be subject of study in this section. 

Remember that the electric field in a room can be obtained for prescribed currents on the source 
(equation (2.110». The assumption will be made that the current on the dipole resembles a cosine 
distribution. Normally, this current distribution is used for a dipole with an infinitely thin radius and 
operating in a free-space environment. In [Leersum 95], it is shown that this assumption is valid for 
dipoles very close to a perfectly conducting wall. For arbitrary current distributions, the calculation 
of the integrals in (2.110) must be done numerically. In case of a half-wave dipole, this integration 
is performed analytically, which reduces the computation time significantly. If the coupling between 
various transmitting antennas is negligible, superposition can be used for calculating the fields of 
several transmitters (e.g. arrays and diversity systems). 

The electric field is given by 

Ei(i) = -jw J J J GEi(f',r,)· J:(f',)dV,. (2.153) 
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The current distribution (using the above mentioned assumptions) of a half-wave dipole is given by 

(2.154) 

for an x-directed dipole located in region 2 (this region is depicted in figures 2.1 and 2.2). The strength 
of the current at the feed-point of the transmitting antenna is denoted by the symbol 10. Only the 
field Eix (parallel to the source) will be considered for the sake of brevity. The other electric field 
components can be obtained in a similar manner. Substitution of (2.154) in (2.153) gives 

(2.155) 

To illustrate the procedure for deriving Eix , we will calculate Eix in the interval 0 :S x :S d1 (interval 
1). The electric field in the intervals 2 - 4 can be obtained in a similar way. The component G Elxx 
of the Green's dyad is presented in the appendix by equation (A. 1 ). Substitution of (A. I) in (2.155) 
results in 

(2.156) 

Assuming that term by term integration is permissible, we may write 

4jwloJ1.l 00 00 [l x,+% 
Elx = 2 L L arm, n) A Z2mn sin(k2x(x' - d2 )) COS(k2(X' - xs))dx' 

bck t m=l n=l x s-'4 

~+t ] + Ix _~ k2x COS(k2x(X' - d2)) COS(k2(X' - xs))dx' , 
, 4 

(2.157) 

with arm, n) = (kr-kyx) sin(kymY) sin(kymys) sin(kznz) sin(kznzs) cos(k1xx)/(Dmn cos(k1xdll). 

Solving the first integral in the right-hand side of equation (2.157) and using some algebraic manipu
lations results in 

x 8 +1. 
Z2mn 1._

t
4 

sin(k2x(x' - d2))cos(k2(X' - xs))dx' = 

-2Z2mnk2 sin(k2x(xs - d2)) COS(k2xi) 
(2.158) 

kix - ki 

The same procedure can be used for the calculation of the second integral in (2.157). In this way, the 
following formula for the electric field in the x-direction due to a half-wave dipole transmitter in the 
same direction is obtained 

8jwlok2J1.l ~ ~ [k2 k2 ]. (k ). (k ). (k ). (k ) Elx = - 2 L L 1 - Ix sm ymY sm ymYs sm znZ sm znZs' 

bck1 m=l n=l 

COS(klxX) COS(k2x i) [Z2mn sin(k2x(xs - d2)) + k2x COS(k2x(Xs - d2) )] 

Dmn COS(klxdl)(kix - k~) 

(2.159) 
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The current on the half-wave dipole antenna has a more 'distributed nature' compared to a point-source 
current Therefore, it could be expected that the numerical convergence of the double series has been 
improved, Attention will be paid in the remainder of this section to the differences of the numerical 
convergence between the point-source and the half-wave dipole antenna computations, The above 
assumption will be verified for a receiver positioned nearby (singularity at the source) and far away 
from the source, The numerical truncation error will be calculated as a function of the size of the grid 
(3min (see section 25 for details). This error will be presented as a.percentage of the' exact' field value. 

The following room configuration has been used 

• Dimensions of the perfectly conducting room: a = 5.13m, b = 4.04m, c = 3.02m 

• Locations of the point-source and feed-point of the ~ dipole: (x" y" z,) = (0.75m,0.2m,OAm) 

• Locations of the observations points: 

Near the source (x, y, z) = (0.77m,0.22m,OA2m) (position A) 

Further away from the source (x, y, z) = (2m,lm,2.3m) (position B) 

• Frequency is 2.0 GHz, which corresponds to the wavenumber ko = 41.89 m- I 

• 'Exact' fields are calculated with (3max = 250 

The truncation error (half-wave dipole transmitter) at position B is presented in figure 2.10. 
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Figure 2.10: Truncation error for ~ dipole at position B 

Figure 2.10 shows clearly that the error becomes negligible in case (3min exceeds the wave number 
ko. This can be explained by the fact that the terms of the series decay exponentially in this region. 
The truncation error using a point-source (same dimensions of the room) is shown in figure 2.11. 
Again, the error becomes negligible for (3 > ko. At (3 = 42, the truncation errors for a half-wave 
dipole and a point source are 0.051 % and 0.056%, respectively. It can be concluded that the numerical 
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Figure 2.11: Truncation error for point source at position B 

errors for the truncation of the series of the two types of sources are comparable. 

We will now investigate the numerical convergence for a receiver positioned near the transmitter 
(position A). The truncation error will be increased due to the singular behaviour of the transmitted 
electromagnetic fields. The truncation errors are shown in figure 2.12 and 2.13. 
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Figure 2.12: Truncation error 4 dipole at position A 
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Figure 2.13: Truncation error point source at position A 

Although the numerical errors are increased, the errors for the two types of sources are comparable to 
each other. 

For multiple sources, the electric field can be found by using the superposition principle. In order to 
use this principle, it will be assumed that there is no coupling between the sources. For example, the 
electric field due to two sources is given by 

(2.160) 

fortwo sources located at the coordinates (x" y" z,) = (Xsl, y,l, Z,I) and (X,2, Y,2, Zs2). 

The following conclusions can be drawn 

• In this section the electromagnetic fields due to a half-wave dipole antenna have been presented. 
These fields are obtained by solving the integrals analytically. In this way, a computationally 
efficient software program has been developed. 

• The convergence properties of the double series describing the fields for the two types of 
sources have been compared to each other. It has been found that the differences in numerical 
convergence are negligible. 

Several results of the electromagnetic fields due to a half-wave dipole or combinations of half-wave 
dipoles are presented in chapter 3. 
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2.7 Port voltage, signal-to-noise ratio and bit error rate 

In the previous sections, the electromagnetic fields due to a point-source or a half-wave dipole have 
been discussed. It is important to study the fields inside an indoor environment in order to understand 
the problems that can arise in such an environment. It will be shown in chapter 3 that the fields 
in a room are very irregular compared to the more uniform fields in free-space. However, it is not 
sufficient to calculate electromagnetic fields only. To design an optimal receiver, it is necessary to 
model the interaction between the electromagnetic fields and the type of receiving antenna. For this 
purpose, a Thevenin representation of the receiving antenna system will be derived using Lorentz 
reciprocity theorem. Depending on the type of the antenna system, some antennas will operate better 
in an indoor communication link than other types of antennas. In this section, the induced port voltage 
of a receiving antenna will be calculated by using the results of the previous sections. The antenna 
terminals will be modeled as an accessible port for which a voltage and a current is defined in the 
network sense. The received voltage will be calculated analytically for a half-wave dipole receiver by 
integration of the electromagnetic fields weighted by the current on the receiver. The voltage at the 
terminals of the antenna will become the most important parameter for designing an optimal receiving 
antenna unit. In chapter 3, the voltages of several diversity systems (selection diversity, optimal gain 
combining and linear combining) will be obtained and compared to each other. 

The presence of noise degrades the performance of the indoor communication link. If the noise power 
at the receiver input is in the same order of magnitude as the signal power, inferior performance 
will occur. A measure for the signal quality is given by the signal-to-noise ratio. This ratio can be 
calculated from the signal and the noise power levels. The signal power is obtained by calculating 
the voltage and the current at the receiver terminals (obtained from the indoor electromagnetic fields). 
The noise will be presented by a zero mean stationary Gaussian bandlimited process. The noise power 
is obtained by multiplying the constant of Boltzman, the noise temperature and the noise bandwidth. 
The bandwidth of the noise will be assumed to be the same as the bandwidth of the signal. 

The amount of noise has an impact on the maximum errorless rate of data transmission over a channel. 
The bit error rate depends on the signal-to-noise ratio of the telecommunication link. The relationship 
between the signal-to-noise ratio and the bit error rate is determined by the modulation scheme. In 
section 2.7.3, the probability of error for a DECT receiver will be described in terms of the signal and 
noise power at the receiver input. 

In the sections 2.7.1, 2.7.2 and 2.7.3, the voltage, the signal-to-noise ratio and the bit-error rate will 
be theoretically analysed for a half-wave dipole receiver. In chapter 3, the performances of several 
diversity systems will be compared to each other by using the results of this section. 

2.7.1 Thevenin representation of a receiving antenna 

Most of the work presented here has been published in [LeytenlDolmans 95]. The analysis presented 
in [LeytenlDolmans 95] was very briefly. In this subsection some of the missing details have been 
added. Furthermore, the voltage of a half-wave dipole operating in a room with two dielectric walls 
will be calculated analytically. This will improve the computation time significantly. 

To obtain a Thevenin representation of the receiving antenna, we need a reciprocity relation between the 
transmitting and receiving properties of an antenna. This relation can be obtained by using Lorentz's 
reciprocity theorem for electromagnetic fields. The following figure shows the configuration under 
consideration. 
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Figure 2.14: Receiving antenna in an indoor environment 

The perfectly conducting walls of the room are depicted by Se. The source is present in volume Vc 
which is enclosed by the surfaces Sb and Se. The receiving antenna consists of two parts: the suscep
tible part and the terminal domain. In this way, the parts of the receiving system that are susceptible 
to electromagnetic radiation are separated from the parts that are not susceptible to electromagnetic 
radiation. The susceptible part of the receiving antenna is present in the volume Vb bounded by the 
closed surfaces Sa and Sb. The surface Sa is considered as the termination of the antenna system. 
Normal to Sa and Sb the unit vectors na and nb are defined. 

The antenna operates in two different states: the receiving state and the transmitting state. In the trans
mitting state, the accessible port of the antenna is fed by a source. This source is contained inside the 
volume Va. The electromagnetic fields due to this source will be denoted by the symbols (ET, fiT). 
The voltage across the port and the current fed into the port are given by vT and iT, respectively. In the 
receiving state, the electromagnetic fields generated by the transmitting antenna (denoted by 'source' 
in figure 2.14) are incident upon the receiving antenna. These electromagnetic fields are represented by 
(ER, fiR). The induced voltage and current at the accessible port are given by v R and iR, respectively. 

We will consider the vector function ET X jjR - ER X jjT for the volume Vb. Taking the divergence 
of the vector function ET X jjR and using Maxwell's equations results in 

(2.161) 

where /L2 and <2 are the permeability and permittivity of the materials in Vb. We have used the 
assumption that the volume Vb contains no sources. Interchanging the states 'R' and 'T', we can 
derive the divergence of a second vector function ER X jjT . Combination of these two vector 
functions and using the theorem of Gauss gives 

(2.162) 
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The next step is to introduce the voltages vR , vT and the currents iR, iT in the left-hand side of 
(2.162). The terminal domain Va is assumed to be very small compared to the wavelength. Therefore 
the static form of the Maxwell's equations will be used. The electric field on the surface Sa is defined 
by a scalar potential <I>R,T 

(2.163) 

This expression is substituted in the left-hand side of (2.162). 

The relationship (V'b) x A = V' x (bA) - bV' x Ahas been used. The second integral in the left-hand 
side of (2.164) can be solved by using Green's theorem. The closed surface Sa is divided in two 
surfaces Sa' and Sa'" Green's theorem can be written as 

(2.165) 

where the integration is taken along the entire boundary C of S such that S is on the left as one 
advances in the direction of integration. Because the closed surface Sa is divided in two surfaces with 
opposite directions of integration, the second integral in the left-hand side of (2.164) vanishes. The 
following expression is obtained 

(2.166) 

The electric and magnetic fields are predominantly concentrated around the conductors which are 
connected to the susceptible part. Hence, the integration over Sa is reduced to an integration over the 
terminals of the antenna. Then, the port VOltage across the terminals of the antenna is equal to the 
scalar potential <I> at the terminal surface. The port current is equal to the integration of the curl of the 
magnetic field ii along the terminal surface. Equation (2.166) is now written as 

(2.167) 

The right-hand side of this equation is reduced to a more useful expression by decomposing the field 
in the receiving state into the incident field (iI, iiI) and scattered field (is, iis). 

(2.168) 

The incident field is defined as the field of the source inside Vc when the receiving antenna is not 
present. This incident field can be written as 

(2.169) 
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Several components of the Green's dyad G Ei have been presented in the appendix. These compo
nents have been written in terms of a double series. The electric fields due to a point source or a 
half-wave dipole antenna have been discussed in the previous sections. These fields are incident upon 
the receiving antenna. 

The scattered field can be associated with the currents induced by the incident fields on the susceptible 
part of the antenna. Substitution of (2.168) in (2.167) results in 

vRiT - vTiR = J is, (f;I x jF - f;T x jiI). nbdS 

+ J is, (f;s X jiT - f;T X jis) . nbdS. 

(2.170) 

Now, Lorentz reciprocity theorem will be applied to volume Ve. The sources of the scattered fields 
are located outside this volume, therefore we can write 

(2.171) 

The right -hand side can be rewritten in a more useful form 

(2.172) 

The tangential components of the electric field f;T (field generated by a source connected to the 
terminals of the receiving antenna) must vanish at the perfectly conducting walls at Se. The tangential 
components of the electric field in the receiving state can be written as 

(2.173) 

The first expression in the right-hand side of this equation, namely fie X EJ , is equal to zero (see 
equation (2.8)). Therefore, the tangential components of the scattered electric field are also zero at the 
perfectly conducting surface Se. This means that the second integral in the right-hand side of (2.170) 
vanishes. We arrive at the following expression 

(2.174) 

The transmitted field is proportional to the input current iT, provided that the antenna is linear with 
respect to the electromagnetic field quantities. Normalisation of the transmitted field to the input 
current results in the normalised field (tJ', hT ). These normalised fields would be emitted if the 
antenna was fed with a unit current. Accordingly, equation (2.174) is rewritten as 

(2.175) 

where the impedance z of the antenna is given by the quotient of the port voltage and the port current 
in the transmitting state. 
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This equation can be interpreted as the Thevenin representation of the receiving antenna. The antenna 
is modelled as an ideal voltage source [R, represented by the integral over Sb, in series with the 
antenna impedance z. The Thevenin representation is presented by figure 2.15. 

z 

+ 

Figure 2.15: The Thevenin representation for a receiving antenna 

In case multiple antennas are used at the receiving unit, the equivalent Thevenin representation is 
given by a N-port with internal voltage sources [fJ and an internal impedance matrix Z N. 

In general, the integral in (2.175) must be evaluated in a numerical way. However, the received 
voltage of a half-wave dipole antenna will be calculated analytically. For this purpose, the surface 
Sb is chosen to coincide with the conductors of the antenna. In free space, the magnetic field on the 
conductors of a dipole connected to a source is known. Here, the same behaviour of the magnetic 
field is used for a receiving antenna placed inside a room with two dielectric walls. In [Leers urn 95], 
it is shown that the current distribution of a half-wave dipole very close to a perfectly conducting wall 
resembles the free-space current distribution. The tangential part of the normalised magnetic field for 
an x-directed receiving antenna with wire radius p is 

(2.176) 

with -),,/4 :S x - Xr :S ),,/4. The coordinates of the centre of the antenna are given by (x" y" zr). 

Equation (2.175) can be rewritten as follows 

(2.177) 

Using the boundary conditions on the perfect conductors of the receiving antenna gives fib x tr = O. 
Substitution of (2.177) in (2.176) results in 

(2.178) 

The open circuit voltages will be calculated, this implies that the dipoles are not connected to a load 
or circuit; iR = O. We will assume that the transmitting antenna can be represented by a point source 
at the coordinates (x" y" zs). This source is directed in the x-direction. Received voltages for other 
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directions of the source can be obtained in a similar way. Furthermore, we will only calculate vR in 
the interval 0 :S x :S d I (interval I). The received voltages in the intervals 2 - 4 can be obtained in a 
similar manner. For a point source, the incident field upon the receiver is given by 

Using equation (A. I), we can write 

R -4jWJLl 1xd,\/4 00 00 2 2. . . . 
v = 2 L L (k 1 - k 1x ) sm(kymY) sm(kymY,) sm(kzn z ) sm(kznz,)· 

bckl x.-,\/4 m=l n=l 

COS(klxX') [Z2mn sin(k2x(x, - d2)) + k2xcos(k2x(X, - d2))] cos(k2(x' - Xr)) dx'. 
Dmn cos(klxdIl 

Assuming that term by term integration is permissible, we may write 

-4jWJLl 00 00 1x.+,\/4 
v R = 2 L L ,(m,n) cos(k1xx')cos(k2(X' - xr))dx', 

bckl m=l n=l x.->./4 

with 

,(m, n) = (ki - kTx) sin(kymY) sin(kymY,) sin(kznz) sin(kznz,)· 

[Z2mn sin(k2x(x, - d2)) + k2x COS(k2x(X, - d2))] 
Dmn cos( klxdIl 

Solving the integral in (2.181) and using some algebraic manipulations results in 

(2.179) 

(2.180) 

(2.181) 

(2.182) 

(2.183) 

At this point, the received voltage of a half-wave dipole antenna due to a point source transmitter is 
obtained. Even though it will not be presented here, the received voltage due to a half-wave dipole 
transmitter can be calculated in a similar manner. In this case, the electric field which is described 
in section 2.6 must be substituted in (2.178). Thus, we are now able to calculate the electromagnetic 
fields caused by point-sources or half-wave dipoles. Furthermore, we are able to calculate the received 
voltages of point-sources and half-wave dipole receivers. If other antennas will be used, the voltage can 
be obtained by numerical integration in case the current on the antenna is known. The received voltage 
as a function of the receiver position inside the room will be presented in chapter 3. Furthermore, 
the voltages for multiple receiving antennas (diversity systems) will be shown in chapter 3. For this 
configuration, the equivalent Thevenin representation is given by a 2-port. We will neglect the mutual 
coupling between the antennas. This means that we will use the same current distribution on the 
multiple antennas. 

2.7.2 Signal-to-noise ratio 

In chapter 3 it will be shown that the electromagnetic fields vanish at some points inside the room. 
This can be explained by the fact that a standing-wave pattern will occur inside a room. If the receiving 
antenna is positioned at one of these points, the presence of even low level noise can seriously degrade 
the performance of the system. A measure of performance is given by the signal-to-noise ratio at the 
receiver output. This signal-to-noise ratio is a function of the position of the receiver inside the room. 
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By visualising the signal-to-noise ratio, it can be shown in which areas of the room problems might 
occur. The signal-to-noise ratio can be spatially averaged over all possible receiver locations. This 
value of the signal-to-noise ratio will be used as the basis for comparing the performances of various 
receivers inside the room. 

The signal-to-noise ratio is calculated from the signal and the noise power levels. The signal power 
is obtained by calculating the received voltage at the receiver terminals. The noise power will be 
calculated at the load of the receiver. This can be explained by the fact that the signal is very weak at 
this point in the system. Thus, the additive noise at the receiver input will have considerable influence 
on the quality of the output signal. Further amplification of signal power will increase noise power 
also. We will assume that this noise can be modeled by a zero mean stationary , Gaussian random 
process. 

We will calculate the time-average power that is fed into the receiving antenna system. Up to now we 
have obtained the open circuit voltages of a receiver. Because in this situation no current flows into the 
circuit, the delivered electromagnetic power is zero. Therefore we will terminate the antenna system 
with a perfectly matched load. In this way, there is a maximum power transfer from the transmission 
line into its load. The equivalent Thevenin representation is shown in figure 2.16. 
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I I 
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z· 
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Figure 2.16: The Thtivenin representation for a receiving antenna with a characteristic load 

The current if is defined as the current flowing into the load. Therefore the currents i R and if are 
related by if = _iR The time-average power that is dissipated in the load is given by 

Remember that the received voltage depends on the position of the receiver inside the room. 
fore, the received signal power is a function of the receiver position also. 

(2.184) 

There-

The noise limits the rate of information transmission. The noise is an unwanted signal that can arise 
from a variety of sources. We will restrict the analysis to thermal noise, which is caused by the thermal 
motion of electrons in conducting media. The assumption is made that the noise may be described by 
a Gaussian process, which means that the amplitude-time distribution is Gaussian in nature. In many 
communication systems, this assumption is justifiable. 
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The power spectral density of thermal noise across the terminals of a resistor of value R is given by 
[Shanmugam 85] 

Gv(f) = 4RkT [~:] . (2.185) 

where k is the constant of Boltzman. The temperature of the resistor is denoted by T. In (2.185), the 
assumption is made that the power spectral density does not depend on the frequency f. This is valid 
for If I :0; 103GHz, which is inside the range of the frequency used for our communication system. 
The noise power delivered to the characteristic load is written as 

Pn = kTB, (2.186) 

where B is the noise bandwidth, which is taken the same as the bandwidth of the signal. 

It is assumed that the message component and the noise component in the received signal are mutually 
independent. Then we may define the local signal-to-noise ratio as the local time-average signal 
power divided by the time-average noise power. 

5 50 PL I I Is ((rh x h7) . ij! + (ih x ifF) . jjI)d512 
- = 10 log - = 10 log - = 10 log '-'-=b-'-'--'-'----':;-c=~:-'-;-:,---'----'----'-
N No Pn 8kTBRe(z) 

(2.187) 

Note that we assume a Gaussian distribution for the noise component of the received signal. The 
message component of the signal is calculated by using the Green's function technique which is 
described in the previous sections. The received signal-to-noise ratio depends on the exact location 
of the receiving antenna which is shown clearly by measurements [Bot 93]. 

2.7.3 Bit error rate 

Our primary goal is to develop antenna systems which will operate well in indoor environments. 
We will focus our attention on digital communication systems. Digital communication provides 
many advantages for transmitting and processing information such as improved quality of the signal. 
Furthermore, many services can be offered which are not available on an analogue system. For digital 
cordless systems many standards exist, for example [White 94]: 

• CT2. This standard describes the second generation of cordless telephones. With this system, 
calls are made within 200 metres of a base station. The frequency is 865 MHz and the bit rate 
of this system is 72 kb/s. 

• PCN (Personal Communication Network). The new standard for PCN based on GSM is known 
as DCS 1800. PCN is intended for both speech and data services at home and in business. The 
frequency is 1.8 GHz and the bit rate is 270.8 kb/s. 

• PHS (Personal Handy Phone System). This standard is used in Japan. The frequency is 1.9 
GHz and the bit fate is 384 kb/s. 

• DECT (Digital European Cordless Telephone System). DECT is specified to provide a wide 
area of applications such as voice, data and ISDN services. DECT is also intended fOf indoor 
communication. The frequency is 1.9 GHz and it uses a bit rate of 1.152 Mb/s. 

The performance of these systems are measured by the probability of error. We will calculate the bit 
error rate for DECT systems operating in an indoor environment. 
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The DECT receiver is based on noncoherent FSK (frequency-shift keying) [Wittneben 94]. The 
frequency of the carrier is changed to switch between the various wavefonns. In the FSK modulation 
scheme, two wavefonns are used to represent the binary digits '0' and' I'. These wavefonns are given 
by 

(2.188) 

For coherent detection, a phase coherent local carrier is needed to receive the signal. Noncoherent 
detection systems do not require a phase coherent local oscillator signal. The signal will be detected 
in the receiver by using two bandpass filters with center frequencies 1c + 1d and 1c ~ 1d. In this way, 
the two signals s 1 (t) and 82 (t) can be distinguished. In FSK systems, the filter bandwidth B is usually 
2rb, in which rb denotes the bit rate [Shanmugam 85]. However, in DECT systems Gaussian-filtered 
frequency shift keying is used with a bandwidth of half the bit-rate. Thus, the filter bandwidth is !rb. 
The noncoherent FSK receiver is shown in figure 2.17. 
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Figure 2.17: Noncoherent demodulation of binary FSK signals 

Due to symmetry, the threshold is set at zero. The bit error rate is given by [Shanmugam 85] 

I A2 
P. = -exp---. 

e 2 4kTB 
(2.189) 

This fonnula will be rewritten using the definition of the signal-to-noise ratio. In (2.189), the average 
signal power is A 2/2. In our description, the average received power in the characteristic load of the 
antenna is IER I2/8Re(z). We may write 

I 
Pe = :zexp 

16kTBRe(z) 
(2.190) 

where the local signal-to-noise ratio So/No is defined in section 2.7.2. Substitution of (2.187) in 
(2.190) gives 

(2.191) 
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The bit error rate depends on the location of the receiving antenna. The calculation of the bit error 
rates for diversity systems is carried out in such a way that the voltages of the multiple antennas are 
combined. The signal-to-noise ratio and the bit error rate are calculated using the voltages and the 
noise power. 

The following figure shows the probability of error Pe of a noncoherent GFSK (Gaussian frequency 
shift keying) receiver versus the signal-to-noise ratio for a non-fading environment. 
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Figure 2.18: Bit error rate versus signal-to-noise ratio for FSK 

The voltages and signal-to-noise ratios of various diversity receivers are calculated in chapter 3. 



Chapter 3 

Results 

3.1 Introduction 

Four quantities will be calculated in this chapter; electric fields, received port voltages, signal-to-noise 
ratios and bit error rates. 

The electric field due to a point-source and a half-wave dipole antenna are presented in this chapter. 
The field pattern inside a room with perfectly conducting walls is compared to the electromagnetic 
field inside a room with two dielectric walls. 

The received voltage of a half-wave dipole antenna will be presented as a function of the position 
of the receiver inside the room. It will be shown that the received voltages can be very low at some 
points inside the room. Space diversity can be used to improve the performance of a receiving system. 
The voltages received by a space diversity receiver, which combines the voltages in several ways (e.g. 
equal gain combining, maximal ratio combining, selection diversity and switch diversity), are shown 
in section 3.6. 

Finally, the signal-to-noise ratios and the bit error rates of the various diversity receivers are compared 
to each other. 

3.2 Electromagnetic fields inside a room due to a point source 

Our main interest concerns the analysis of the fundamental processes of wave propagation inside a 
room. The fields inside a room will be subject of study in order to obtain insight in the problems 
that can arise in an indoor environment. In [Dolmans 95], the electromagnetic fields inside a room 
with perfectly conducting walls have been discussed. In such a configuration, the amplitUdes of the 
electromagnetic fields change rapidly. This means that the electromagnetic fields vanish at some 
points inside the room. However, the mean value of the electromagnetic fields in a highly reflecting 
room is larger than the corresponding value in a room with lossy, dielectric walls. These high electric 
fields can be used to enhance internal communications, therefore, it is reported that some buildings 
are now being built with shielding materials embedded in their structure [Moriyama 92]. We will 
make a comparison between the fields inside a highly reflecting room and inside a room with lossy, 
dielectric walls. In this way, the effect of absorption and scattering of the electromagnetic fields at a 
dielectric wall can be examined. The first configuration consists of a room with perfectly conducting 
walls. The dimensions of the room, the location of the source, the observation line and the frequency 
are given in table 3.1. 
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dimensions location point source observation line frequency 

a=5m x, = 0.752 m 0~x~5m /=2GHz 

b=4m Ys =0.202 m Y = 1.6 m 

c=3m z, = 0.4 m z =2.26m 

Table 3.1: Parameters peifectly conducting room 

An x-directed electric point source is used as transmitting antenna. The absolute values of the electric 
field in the orthogonal directions are presented in the following figures. 
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The three figures show clearly that the absolute value of the electric field changes rapidly. It is obvious 
that the electric fields vanish at some points inside the room. Similar to wave propagation in free 
space, the electric field in the same direction as the source (in this case x- direction) is very strong. 
The magnetic field and the vector of Poynting have been presented in [Dolmans 95] and [Kant 94]. 

The electric field inside a room with two dielectric walls will be presented. The electric fields of the 
two configurations are compared to each other. In this way, the scattering and the absorption of the 
electromagnetic fields at the dielectric walls can be investigated. The configuration which is described 
in table 3.1 will be used. At the two walls, dielectric layers are present with thicknesses d, and a - d2. 
The dielectric materials described in [Kant 94] have been used. The real part and the imaginary part 
of the relative permittivities of the dielectric walls are equal to 4.5 and 0.13, respectively. 

dimensions point source observation line dielectric walls frequency 

a=5m x, = 0.752m 0~x~5m '1 = 4.5, ,I{ = 0.13, d, = 40 em f =2GHz 

b=4m y, = 0.202 m y = 1.6 m ,; =4.5,,~ =0.13, a - d2 =40cm 

c=3m z, = 0.4 m z =2.26m 

Table 3.2: Parameters room with two dielectric walls 

The electric field due to a point source in the x-direction is presented in the following figures. The 
maximal values of the electric fields inside the dielectric walls are much lower than the maximal values 
of the field inside the room. Just like in free-space propagation, the electric field in the x-direction is 
larger than the electric fields in the other two directions. The maximal values of the electric field in the 
dielectric configuration are much lower than the corresponding peak values in the perfectly conducting 
room. Furthermore, the number of points inside the room where the electric fields completely vanish 
is decreased considerably. It can be concluded that the dynamic range (difference between maximal 
and minimal field values) is reduced due to the presence of the dielectric walls. 
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The next comparison will be made between the electric fields of the two configurations in an ob
servation plane. The dimensions of the room and the location of the source are not changed. The 
observation plane is given by 0 ::; x ::; 5m, 0 ::; y ::; 4m, Z = 2.26m. The maximal and mean values 
of the three components of the electric field inside the observation plane are given in table 3.3. 

field component mean value maximal value 

IExl 13131 VIm 65887 VIm 

IEyl 3794 VIm 19826 VIm 

IEzl 7057 VIm 29369 VIm 

Table 3.3: Mean and maximal electric field inside a perfectly conducting room 

The same calculation is done for the electric field inside the room with two dielectric walls. The 
maximal and mean values are presented in table 3.4. 

field component mean value maximal value 

IExl 1334 VIm 6294 VIm 

IEyl 236 VIm 1100 VIm 

IEzl 272 VIm 1550 VIm 

Table 3.4: Mean and maximal electric field inside a room with two dielectric walls 

Notice that the electric fields are very high inside the room, caused by the moment of the dipole which 
is equal to unity. We are only interested in comparing the various responses of the configurations, 
therefore the strength of the source is not important for our analysis. The dimensions of the observation 
plane are very large compared to the wavelength (33 >. x 27 >.). Due to the irregular field pattern, it 
is difficult to show the electric field inside such a large observation plane. For this purpose, colour 
graphs are used for plotting the absolute value of the dominant electric field Ex. The electric field in 
the observation plane of a room with perfectly conducting walls is shown in figure 3.7. The electric 
field inside a room with two lossy, dielectric walls is presented in figure 3.8. In these pictures, the 
colour represents the amplitude of the electric field. A receiver located in a blue region of the picture 
suffers from the fact that the electromagnetic energy is very low. For several applications, the quality 
of the received signal can be too low in these regions. The field pattern is normalised to the peak 
value. In the two pictures, the electric fields are normalised to the peak values Ex = 65887 VIm and 
Ex = 6294 VIm, respectively. The low values of the field inside a dielectric wall are shown clearly 
in figure 3.8. Furthermore, it is evident from the two colour graphs that the field inside a perfectly 
conducting room is much more irregular than the field inside a room with two dielectric walls. 



52 Results 

abs(Ex) for room with perfectly conducting walls 

0.0 0.9 1.8 2.7 3.6 
< 

·40 ·32 ·24 ·)6 ·8 o 

abs(Ex) [dB] 

Figure 3.7: IExl in a room with perfectly conducting walls 

abs(Ex) for room with two dielectric walls 

0.0 1.8 2.7 3.6 4.5 

x-axis [m1 

';-\ . . 
·40 ·32 ·24 ·)6 ·8 o 

abs(Ex) [dB] 

Figure 3.8: IExl in a room with two dielectric walls 



3.3 Electromagnetic fields inside a room due to a half-wave dipole 53 

3.3 Electromagnetic fields inside a room due to a half-wave dipole 

In the previous section, the electromagnetic fields due to a point-source transmitter have been inves
tigated. A more realistic source is the half-wave dipole antenna. The fields of this transmitter inside 
a room with two dielectric walls are obtained by using the results of section 2.6. 

The configuration is presented by table 3.1. The centre of the half-wave dipole is given by the 
coordinates (xso y" zs) and the length of the antenna is 7.5 cm. The location of the centre of the 
antenna will be called 'position A'. The antenna is directed in the x-direction. The y-component of 
the electric field is shown in figure 3.9. 
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Note that the figures 3.9 and 3.2 are very similar, only the amplitudes differ from each other. The 
similarity between the two figures can be explained from the fact that the room is very resonant. This 
means that only a few terms of the double series contribute to the electric field. Furthermore, the 
formulas for the two types of sources (for example 2.159 and A.I) are comparable. Consequently, the 
electric fields generated by the two types of sources can be the same, even for non-resonant structures. 

The differences between the amplitudes of the figures 3.9 and 3.2 are caused by the differences in 
radiated power levels. The current density on the point-source is I A/m2 According to [Jeuken 88], 
the radiated power is 10 k5 Watt (ko is the wave number in free space). This formula is only valid 
for free-space propagation and it makes use of the assumption that the observation point is located in 
the far field region. However, the total radiated power in a large room can be approximated by the 
free-space radiated power. For our configuration, the total radiated power of a point source is 17545 
Watt. The total power radiated by a half-wave antenna is ~ Ifol2Ra. The real part of the antenna 
impedance is denoted by Ra. For our configuration, the amplitude of the current fo is I A and the 
total radiated power is 36.5 Watt. It can be concluded that the point source radiates 480 times more 
power than the half-wave dipole. The average electric field in the room caused by a half-wave dipole 
will be J 480 = 22 times less than the average field caused by a point source. This is the reason that 
the figures 3.9 and 3.2 differ much in the amplitudes of the electric fields. 

The field caused by multiple transmitters can be found by using the superposition principle. For 
example, the field caused by one source will be added with the field caused by another source. In 
order to use this principle, it will be assumed that the coupling is negligible between the two sources. 
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This means that the same current on the two antennas will be used. Diversity at the base station can 
be used to reduce performance loss. In this way, the mobile receiving system can be kept simple. For 
DECT systems, this can be realised by signal measurements in preceding time slots. Using the two 
antennas simultaneously, the transmitting power will be increased. Therefore, it is common practice to 
use the antenna with the largest signal strength for transmission in the next time slot [Wittneben 94]. 
The selection of the antenna is based on the observations of the received signals at the different 
antennas. The effect of diversity will be demonstrated by using a second antenna spaced ),,/2 apart 
from the first antenna. The y-component of the electric field is shown in figure 3.10. 
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Notice that in general the fades in figure 3.9 do not correspond to the fades in figure 3.10. Thus, the 
performance can be improved by using transmit antenna selection diversity. However, we will not 
focus on this kind of diversity. In section 3.6, the performance of diversity systems at the receiving 
part of the communication link will be discussed. 

3.4 Port voltage of a half-wave dipole antenna 

It has been shown that the electromagnetic fields are very irregular inside a room. Some buildings are 
now being built with shielding materials embedded in their structure to enhance internal communica
tions [Moriyama 92]. However, most manufacturers want to provide indoor communication systems 
with an acceptable quality in conventional buildings. For this purpose, it is necessary to investigate 
methods for reducing the rapid signal variations in the mobile radio transmission path. The quality of 
the telecommunication link can be improved by developing new antenna systems, for example multi
element antenna arrays. To design new antenna systems, the interaction between the electromagnetic 
fields and the type of antenna must be modelled. In section 2.7, a Thevenin representation is obtained 
by using the Lorentz reciprocity theorem. The received voltage is calculated using the Thevenin 
representation. The induced voltage on the antenna port is not only a function of the electromagnetic 
field in the room. The voltage depends on the polarisation of the antenna and the current distribution 
on the antenna also. 

The received voltage of a half-wave dipole antenna, positioned inside a room with two dielectric walls, 
will be calculated in a vertical plane inside the room. The radiated power of the transmitter (point 
source) is 200 m Wand the frequency is 2 GHz. 
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The configuration is presented in figure 3.11 and table 3.5. The point source and the half-wave dipole 
receiver are directed into the x-direction. The received voltage changes rapidly in the observation 
plane. The absolute values of the mean and maximal received voltage in the observation plane are 0.28 
Volt and 1.87 Volt, respectively. The voltage in a part of the observation plane, namely 1m < x < 3m, 
1.5m < z < 2m, is presented in figure 3.12. 
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Figure 3.11: Side view 

point source observation plane dielectric walls 

x, = 0.752 m O~x~a E; = 4.5, E'{ = 0.\3, d j = 40 cm 

y, =0.202 m y = 0.35 m E~ = 4.5, Eq = 0.13, a - d2 = 40 em 

z, = 0.4 m O~z~c 

Table 3.5: Parameters room with two dielectric walls 

It is obvious from figure 3.12 that the received voltage almost vanishes at some points inside the room. 
As indicated in chapter 2, the received voltage is proportional to the integral over the antenna surface 
of the total incident field at each location. Unfortunately, very small antennas must be used for indoor 
communication in order to minimize the size of the mobile unit, therefore, multipath fading is a severe 
problem in mobile telecommunication links. An antenna system located in a fade will not function 
properly. The rapid signal variations can be reduced by using multiple antenna systems. In the next 
section, diversity techniques for improving the average signal strength inside an indoor environment 
will be discussed. 
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Results 

3.5 Classification of diversity systems 

The previous sections have shown that there are rapid variations in electromagnetic fields and received 
voltages inside a room. We will now consider methods of reducing these signal fluctuations in such 
a way that acceptable transmission of data is obtained. The classical way for reducing the effect of 
fading is to transmit a signal from a single antenna to a number of receiving antennas. The distance 
is made large enough to ensure independent fading. This kind of diversity is called space-diversity 
reception. The transmitting and receiving antennas can be interchanged, resulting in space-diversity 
transmission (shown in section 3.3). Other diversity techniques than spaced antennas have been 
invented. The basic diversity classifications are given by [Jakes 93] 

• Space diversity. The spacing of the multiple antennas is often larger than ),,/2 for obtaining 
uncorrelated signals at the receiver. Space diversity will be extensively studied in this chapter. 

• Polarisation diversity. Signals which are transmitted on two orthogonal polarisations can be 
received separately with this kind of diversity. The spacing between the antennas may be 
minimized by the fact that orthogonality is sufficient to obtain uncorrelated signals. 

• Angle diversity. The receiver consists of highly directive antennas pointing in different direc
tions. 

• Frequency diversity. Several frequencies are used to achieve uncorrelated signals. The number 
of antennas can be reduced; on the other hand a greater part of the frequency spectrum will be 
used. Furthermore, multiple transmitters will be required to generate the various frequencies. 

• Time diversity. The samples will be separated sufficiently in time in order to obtain uncorrelated 
signals. 
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Space. polarisation and angle diversity schemes require multiple antennas. The received voltage (or 
current) of each antenna can be combined in many different ways. We may distinguish between 
[Jakes 93]. [Lee 82]. [Freeman 87] 

Selection diversity 

This is a simple method for combining the received voltages of multiple antennas. The output of one 
antenna at a time will be used. The antenna having the highest signal-to-noise ratio is connected to 
the remainder of the circuit. In practice. the antenna with the largest signal plus noise power level is 
used. since it is difficult to measure the signal-to-noise ratio. The selection combiner is presented in 
figure 3.13. 

antenna 1 

antenna 2 

• 
----------:c-

• 
V2 + n2 

Vout = max{lvd.lv21} 
'0---

selector signal 

Figure 3.13: Selection diversity 

Using selection diversity. the received voltage is equal to the maximal value of the voltages of the two 
antennas. Selective combining is difficult to implement, because a floating threshold level is needed. 
A more practical technique is switched combining [Lee 82]. 

Switch diversity 

This kind of diversity makes use of a switch-and-stay strategy. One antenna with an output voltage 
VI or V2 is used until the signal level drops below a predetermined threshold A. Then, the antenna 
switch is activated. selecting the other antenna. If this antenna is also positioned in a fade, the switch 
is not activated again in order to avoid excessive switching. If rapid switching is tolerated. the strategy 
will be called switch-and-examine strategy. The switched-combined signal performs worse than the 
selective combined signal, except at the threshold level. The switch combiner is presented in figure 
3.14. The switch strategy is shown in the right part of the figure. Depending on the previous state of 
the switch and the strength of the received signal in the two branches. the switch can be activated. 
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antenna I 

antenna 2 

Maximal-ratio combining 

• VOUI={: 'Q-___ v, v, ----------:c-
• 

switch signa1 

Figure 3.14: Switch diversity 

Results 

if vout,old = Vj and IVII < A 
if vout,old = V2 and IV21 < A 
if vout,old = Vl and IVII ;?: A 
if Vout,old = V'l and IV21 2: A 

In maximal-ratio combining, the signals are added up, each weighted with the complex conjugate of 
the received signals. This combining technique is presented in figure 3.15. 

antenna 1 

antenna 2 

VI 

V, 

gain + phase 
control 

gain + phase 
control 

Figure 3.15: Maximal ratio combining 

The output of the diversity receiver can be written as 

Voul 
}----

(3.1) 

where vi denotes the complex conjugate of the received voltage at the receiving antenna i. The 
noise component of the signal in branch i is represented by ni. This combining technique is an 
optimal technique; however, it is difficult to achieve the correct weighting factors. It is difficult to 
realize a cophasing circuit having a precise and stable tracking performance in a rapidly changing, 
random-phase, multipath fading environment [Feher 95]. Therefore, costly design is required for using 
this technique. If no gain control can be used, equal gain combining may be a solution to this problem. 
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Equal-gain combining 

The gains of the maximal ratio combiner are all set to a constant value of unity, resulting in an equal
gain combiner. The detection of the signals is obtained by using a simple phase-locked summing 
circuit. The output of the receiver is given by 

(VI + nllvj (V2 + n2)vi 
Vout = IvIJ + IV21 . (3.2) 

There are many other combining techniques; for example using pilot signals, scanning diversity, etc. 
These techniques are not mentioned here for the sake of brevity. In the next section, the received 
voltages for the four combining techniques will be calculated as a function of the location of the 
receiver. 

3.6 Received voltage of four space-diversity receivers 

In this section, the four diversity receivers will be compared to each other. The received voltages 
(without load) in a room with two dielectric walls will be calculated using the analysis described in 
chapter two. The configuration is presented in table 3.6. 

dimensions point source observation plane dielectric walls 

a=5.13 m Xs = 0.752 m 0:0: x:O: a El = 4.5, El = 0.13, d l = 40 em 

b=4.04m Ys =0.202 m Y =0.35m E~ = 4.5, E~ = 0.13, a - d2 = 40 cm 

c= 3.02m Zs =O.4m 0:0: z:O: c 

Table 3.6: Parameters room with two dielectric walls 

The observation plane is given by 0 < x < a, Y = 0.35m, 0 < z < c. The received voltages of 
the diversity receivers are normalised to the port voltage of the x-directed point-source transmitter. 
The radiated power of the transmitter is 200 m Wand the frequency is 2 GHz. The absolute value 
of the received voltage of a single half-wave dipole antenna is shown in the first figure. Although 
the voltages are calculated in the entire observation plane, only a section of this plane is presented, 
namely 1m < x < 3m, Y = 0.35m and 1.5m < z < 2m. 

The received voltage is more than 55 dB below the voltage of the transmitter in the 'black regions. 
There is a great possibility that an antenna located in such a region does not function properly. Using 
a space-diversity antenna system, the second antenna might receive a better signal. The received 
voltages of four diversity systems (x-directed antennas spaced ),,/2 apart) are shown in the following 
figures. It is assumed that the coupling between the antennas is negligible. Thus, the same current 
distribution is used on both antennas. 
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Figure 3.16: Voltage of half wave dipole 
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Figure 3.17: Switch diversity Figure 3.18: Selection diversity 
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Figure 3.19: Equal gain combining 
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Figure 3.20: Maximal ratio combining 

61 

-35 

The total noise power of the equal gain combiner and the maximal ratio combiner exceeds the noise 
power of a single antenna receiver. The differences in noise power have been subtracted from the 
received voltage. In this way. the four figures can be compared to each other. 

The received voltage has been calculated for all receiver positions in the observation plane. The 
average signal level is improved by using diversity systems. The gains obtained by the four diversity 
techniques are shown in table 3.7. 

switch diversity selection diversity equal gain combining maximal ratio combining 

1.0 I dB 1.87 dB 3.22 dB 3.53 dB 

Table 3.7: Gains of the four diversity techniques 

As expected, the optimal combining method is the maximal ratio combiner. The slightest improve
ment is obtained by using switch diversity compared to the other three diversity systems; however, 
switch diversity is easy to implement. The perfonnances of the four diversity techniques calcu
lated by the Green's function technique and the Lorentz reciprocity theorem resemble the results of 
[Jakes 93, p. 317]. 
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Although the average signal level is improved by only a few decibels, the number of regions with a 
signal level below -SO dB is decreased. The sizes of these regions as a percentage of the size of the 
observation plane are presented in table 3.8. 

single antenna switch diversity selection diversity equal gain combining max. ratio combining 

23.S % 14 % 7.7 % 4.7 % 3.4 % 

Table 3.8: Sizes of the regions with Ivl < -50 dB 

3.7 Bit error rates and signal-to-noise ratios in a large room 

The average signal-to-noise ratio is very high in a small room with a line of sight connection between 
the transmitter and the receiver. Due to this fact, the average quality of the telecommunication link 
inside such a small room is excellent. However, an antenna positioned in a deep fade inside the room 
can still receive too less electromagnetic energy to function properly. 

The indoor signal strength and the bit error rate inside a large room (with an obstacle) have been 
presented in [Lawton 93]. Using a ray-tracing technique, the authors found that even with diversity 
techniques very high error rates were obtained. To compare these results with our model, we will 
consider the electromagnetic fields and the received voltages inside a large room. Remember that in 
section 2.S the conclusion was drawn that the truncation error for the Green's function is not depending 
on the length of the room. This means that we are able to calculate the fields inside a large room 
without any extra computational effort. 

The dimensions of the room, the location of the source, the observation line and the frequency are 
presented in table 3.9. 

dimensions location point source observation line frequency I 

a=2Sm Xs = 3.S m IO m::; x ::; 11.5 m f =2GHz 

b=4m Ys =0.2m y=2.S m 
I 

c=3m Zs =0.4m Z = 1.8 m 

Table 3.9: Room configuration 

The thicknesses of the two walls are I m and the perrnittivities of the walls are Er = 4.S - jO. 13. 
Due to the perfectly conducting walls, no energy will flow outside the room. It can be expected that 
the mean signal strength will exceed the signal strength presented in [Lawton 93]. Therefore, the 
dielectric walls are very thick in order to simulate the losses for an indoor telecommunication link. 
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The room consists of free space with permittivity EO and permeability /l0. The radiated power P, of the 

x-directed transmitter is 200 mW. The strength of the point source is V [~k5 = 3.376 x 10-3 [Am]. 

The absolute value of the received voltage along the observation line is given in figure 3.21. 

O.S 

0.6 

0.4 

0.2 
~ ____ ~ ____ ~ ____ -L __ ~~ ____ ~ ____ ~ ______ ~~ 

10.0 10.2 10.4 10.6 1O.S 

x [m] 

Figure 3.21: Received voltage 

11.0 11.2 11.4 

The received voltage will be used to calculate the signal-to-noise ratio along the observation line. 
The signal power is given by IVrecl2 /(SRe(z)). The impedance z of the receiving half-wave dipole 
antenna is 73 Ohm. The noise bandwidth will be taken equal to the channel spacing, which is 1.7 
MHz for DECT systems. The noise temperature is 300 K. Thus, the noise power is -141.5 dBW. The 
signal-to-noise ratio will be calculated using the signal power and the noise power. The signal-to-noise 
ratio along the observation line is presented in figure 3.22. 

110.0 

105.0 

100.0 

10.0 10.2 10.4 10.6 10.8 

x [m] 

11.0 

Figure 3.22: Signal-to-noise ratio 

11.2 11.4 

The signal-to-noise ratio is very high, this means that the bit error rate will be very low inside the 
room. However, very high bit error rates are reported in [Lawton 93]. In this paper, the predicted 
signal-to-noise ratio is larger than 45 dB when source and receiver are 10 meters apart. Such a large 
signal-to-noise ratio would also result in a high-quality telecommunication link. This means that the 
high error rates in [Lawton 93] must be caused by another fading phenomenon, for example frequency 
selective fading (delay spread). 
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Up to now, we have only taken into account the relationship between signal-to-noise ratio and bit 
error rate. Using wide-band pulse transmission, a series of delayed and attenuated pulses (echoes) 
will be received inside a room. These unwanted echoes, which will cause intersymbol interference, 
can be characterised by the RMS delay spread. It can be expected that the delay spread in a perfectly 
conducting room will be very high. Time-domain electromagnetic fields are needed for evaluating the 
RMS delay spread inside a room. The time-domain electromagnetic fields generated by a Gaussian 
current source will be investigated in a future report. 



Chapter 4 

Conclusions 

This report describes the variations of electric fields, received voltages, signal-to-noise ratios and bit 
error rates in an indoor environment. The signal received by a mobile system can be very weak at 
some points in the room, caused by destructive interference of the electromagnetic fields. A model 
has been developed to obtain insight in the fundamental processes of wave propagation in a room. 

The Green's function technique has been used for modelling the electromagnetic fields in a room 
with two dielectric walls. With this model, the effect of absorption and scattering of electromagnetic 
waves at a dielectric wall can be examined. The Green's functions are described by double series. 
An estimate is given for the accuracy of the electromagnetic fields. Furthermore, it has been found 
that the truncation error of the series is independent of one dimension of the room. This means that 
wave propagation in a large room can be described very efficiently with the presented Green's func
tion. The electromagnetic fields are calculated for point sources and half-wave dipole transmitters. 
The electromagnetic fields generated by a half-wave dipole antenna are obtained by performing an 
integration analytically, which reduces the computation time. 

The interaction between the electromagnetic fields and the mobile receiver is modelled by a Thevenin 
representation. The received voltage of a half-wave dipole antenna can be calculated analytically. The 
induced voltage on the receiver is not only a function of the electromagnetic field but also depends on 
the current distribution of the receiving antenna. The received voltage changes rapidly inside the room. 

Diversity receivers can be used for reducing the rapid signal variations in the mobile transmission 
path. Four diversity receivers have been investigated for improving the average signal level inside the 
room. The four diversity techniques (categorized by increasing gains compared to a single antenna) 
are: switch diversity, selection diversity, equal gain combining and maximal ratio combining. It has 
been shown that space diversity can be used to reduce the sizes of the regions with low values of the 
electromagnetic field components. 

Finally, the signal-to-noise ratio along an observation line inside the room has been presented. It can 
be concluded that the quality of the received signal depends greatly on the location of the receiver. 
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Appendix A 

Electromagnetic fields inside a room 

Electric field in the x-direction due to a point-source in the x-direction. 

Interval I: 0 :s: x :s: d1 

4 0000 

G Elxx = - b;~ L L [ki - kix] sin(kymY) sin(kymY,) sin(kznz) sin(kznz,)· 
I m=l n=l 

COS(klxX) [Z2mn sin(k2x (x, - d2)) + k2x COS(k2x(X, - d2))] 
Dmn cos(k1xdIl 

Interval 2: d1 < x :s: x, 

Jl.2 «_ _) -u r-r 
k2 ' 2 

Interval 3: x, < x :s: d2 

4 0000 1 
G"bxx = - 1'; L L [k~ - k~x] sin(kymy) sin(kymY,) sin(kzn z ) sin(kzn z,) k D . 

bck2 m=l n=l 2x mn 

COS(k2x(X - d2)) [k2xZlmn sin(k2x(x, - dIll + k~x COS(k2x(X, - dIll] + 

sin(k2x(x - d2)) [ZlmnZ2mn sin(k2x(x, - dIll + k2xZ2mn COS(k2x(X, - dIll] 
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(A.I) 

(A.2) 

(A.3) 
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Interval 4: d2 < x :s:: a 

4 0000 

GE3xx = -b;; L L [k~ - k~x] sin(kymY) sin(kymYs) sin(kznz) sin(kznzs)' 
3 m=l n=l 

COS(k3x(X - a)) [Zlmn sin(k2x(xs - dIll + k2x COS(k2x(Xs - dIll) 
Dmn COS(klx(d2 - a)) 

with 

klx = Vkr - (¥)2 - (!Z)2 

ka = Vk~ - (¥)2 _ (~)2 

k3x = Vk~ _ (";,,,)2 _ (n;)2 

Z2mn = -~ tan(k3x(d2 - a)) 
'3 

Electric field in the x direction due to a point source in the z direction 

Interval I: O:s:: x :s:: d1 

4 0000 

GElxz = JL~ L L mr sin(kymY) sin(kymY,) sin(kznz) cos(kznzs)' 
bck1 m=l n=l c 

klxYlmn COS(klxX) [sin(k2x(x s - d2)) + k2xY2mn COS(k2x(Xs - d2llj 
Jmn sin(k1xdIl + 

(A.4) 

(A.5) 

[kr - krxtoS(klXX)JLl {[k~ _ kr] Mmn (A.6) 
mn 

[k2xk~JL2Cos(k3x(d2 - a)) COS(k2x(dl - d2)) - k3xk~JL3 sin(k3x(d2 - a)) sin(ka(d1 - d2))j + 

[k~ - k~] JL2Lmn COS(k3x(d2 - allk2xkrJL2} 



Interval 2: dl < x :S Xs 

[k2xk~1'2 COS(k3x(d2 - a)) COS(k2x(X - d2)) - k3xk~/13 sin(k3x(d2 - a)) sin(k2x(x - d2))] + 

[k~ - k~]/12L=n COS(k3x(d2 - a)) [klxk~1ll sin(klxdt} sin(k2x(d1 - x))+ 

k2xkr /12 COS(klxdt} COS(k2x( dl - x))] 

Interval 3: Xs < x :S d2 

[k2xk~1'2 COS(k3x(d2 - a)) COS(k2x(X - d2)) - k3xk~/13 sin(k3x(d2 - a)) sin(k2x(x - d2))] + 

[kS - ki]I'2L=n COS(k3x( d2 - a)) [klxkilll sin(klxdt} sin(k2x( d1 - x))+ 

k2xki 1'2 cos(k1xdt} COS(k2x( d1 - x))] 

Interval 4: d2 < x :S a 

4 0000 

GE3xz = /1; L L mr sin(ky=Y) sin(ky=Ys) sin(kznz) cos(kznzs)' 
bck3 ==1 n=l C 

[k2x Yl=n COS(k2x(Xs - dt}) + sin(k2x(xs - dt})] k3xY2=n COS(k3x(X - a)) 
J=n sin(k3x(d2 - a)) + 

[k~ - k~x] COS(k3x(X - a)) [k2 k2] M (k d)k k2 
K 

2 - 1 mn cos Ix 1 2x 31L2 + 
=n 
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(A. 7) 

(A.S) 

(A.9) 
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with 

k lx = Jk? - U'f'-)2 - {'Z)2 

k2x = Jk~ - U'f'-)2 _ (~)2 

k3x = Jkj - (rr;n2 _ (':,,,)2 

/11 
Ylmn = -k- tan ( klxdd 

/12 Ix 

Y2mn = /1
k
3 tan(k3x(d2 - a)) 

/12 3x 

Magnetic field in the z-direction due to a point-source in the x-direction. 

Interval I: 0 :0: x :0: d I 

4 00 00 

GHlzx = be L L ";," cos(kymY) sin(kymYs) sin(kznz)sin(kznzs)' 
m::::l n=l 

cos(klxx) [Z2mn sin(k2x(xs - d2)) + k2x COS(k2x(Xs - d2))] 

Dmn cost klxdl) 

Interval 2: dl < x :0: Xs 

Gk-2zx = ~ f f ";," cos(kymY) sin(kymYs) sin(kzn z ) sin(kznzs) k ~ . 
m=l n=l 2x mn 

COS(k2x (xs - d2)) [k2xZlmn sin( k2x(X - dIl) + kix COS(k2x(X - dIl) 1 + 

sin(k2x(xs - d2)) [k2xZ2mn COS(k2x(X - dIl) + ZImnZ2mn sin(k2x(x - dIll] 

(A. 10) 

(A. II) 

(A.12) 

(A. 13) 



Interval 3: x, < x :s d2 

2 4 ~ ~ m7r . . . 1 
G H2zx = be ~ ~ -b- cos(kymY) sm(kymY,) sm(kznz ) sm(kznz,) k D . 

m=ln=1 h = 

COS(kh(X - d2)) [k2xZlmn sin(k2x(x, - dIll + kix COS(k2x(X, - dIll] + 

sin(k2x(x - d2)) [k2xZ2mn COS(k2x(X, - dIll + ZImnZ2mn sin(k2x (x, - dIll] 

Interval 4: d2 < x :s a 

4 = = I 
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(A. 14) 

GH3zx = - L L mb
7r 

cos(kymY) sin(kymY,) sin(kznz ) sin(kzn z,) D (k (d _ )). 
be m=1 n=1 mn cos 3x 2 a (A.15) 

COS(k3x(X - a)) [Zlmn sin(k2x(X, - dIll + k2x COS(k2x(X, - dIll] 

with 

klx = ,jkr - (IT)2 - (7)2 

k2x = Jk~ - (IT)2 - (7)2 

k3x = Jk~ - (b~)2 - (";n 2 

(A.l6) 
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Magnetic field in the y-direction due to a point-source in the z-direction. 

Interval!: 0 ~ x ~ dl 

20000 

GHlyz = bILl L L EOn sin(kymY) sin(kymY,) cos(kznz)cos(kznzs)' 
CIL3 m=l n=l 

klxYlmn COS(klxX) [sin(k2x(Xs - d2)) + k2xY2mn COS(k2x(Xs - d2))] 
Jmn sin(klxdil + 

(ntr) 2 JLI ! - COS(klxX)---' 
C IL2 Kmn 

[ki - kr] Mmn [k2xk~IL2COs(k3x(d2 - a))COS(k2x(dl - d2)) 

-k3xkiIL3 sin(k3x(d2 - a)) sin(k2x(dl - d2))] + 

[k~ - ki] IL2Lmncos(k3x(d2 - a))k2xkrJL2} 

Interval 2: dl < x ~ Xs 

20000 

Gk2yZ = b JL2 L LEOn sin(kymY) sin(kymYs) cos(kznz) cos(kznzs)' 
CfJ,3 m=ln=l 

-k3xkiM sin(k3x(d2 - a)) sin(k2x(x - d2))] + 

[k~ - ki] IL2Lmncos(k3x(d2 - a)) [klxkiJL2sin(kIXdIlsin(k2X(dl - x))+ 

k2xkrIL2COs(klxdil COS(k2x(dl - x))] 

(A.17) 

(A.!8) 
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Interval 3: x, < x :S d2 

2 00 00 

GJl2yZ = be L LEOn sin(kymY) sin(kymY,) cos(kznz ) cos(kznz,), 
m=ln=l 

,;:[ s:.::in::.:(,-,k=:2x~(:.::X,,-, _---'d""l.!.c) ),--+"--"k~2x;,,:Y;:..oI~m,,,n..:.Co.::.:s:..'.(:.::k2:::x..c( x::..;s'------=d~Il~) ]u.::[ c..:.OS::.:(..:.k2=:x",( X=-----'d::.=2:.e) ),---..::k~2x:..:Y:..:2:!!.:m~n..:.s=in:.o:( k::..;2=x~( X=------=d:::2!..!) )~] + 
Jmn 

(
n7r)2_l . 

C Kmn 

[kI - krJ Mmn cos(klxdIl [k2xkjJl2 COS(k3x(d2 - a)) COS(k2x(X - d2)) 

-k3xkIJl3 sin(k3x(d2 - a)) sin(k2x(x - d2))] + 

[kj - ki] Jl2Lmn COS(k3x( d2 - a)) [klxkIJl2 sin(klxdIl sin(k2x( dl - x))+ 

k2xkf Jl2 cos(k1xdIl COS(k2x( dl - x))] 

Interval 4: d2 < x :S a 

2 00 00 

GH3yz = - L LEOnsin(kymy)sin(kymy,)cos(kznz)cos(kznz,), 
be m=l n=l 

k3xY2mn COS(k3x(X - a)) [sin(k2x(x, - dIll + k2xYlmn COS(k2x(X, - dIll] 
Jmn sin(k3x(d2 - a)) + 

(A.19) 

Jl3 (n7r)2 COS(k3x(X - a)). (A.20) 

Jl2 e Kmn 

[kI - krJ Mmnk2x kjJl2 cos(klxdIl+ 

H - ki] Jl2Lmn [klxkiJll sin(k1xdIl sin(k2x(dl - d2)) + k2xkfJl2cos(klxdIlcos(k2x(dl - d2))] 
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with 

klx = Jk'f - U7!-)2 - (7)2 

k2x = Jk~ - (¥)2 - (7)2 

k3x = Jkj - ('/,,,)2 - (nn2 

1'1 
Ylmn = -k- tan(klxdIJ 

1'2 Ix 

Y2mn = I'k
3 

tan(k3x(d2 - a)) 
/L2 3x 

Electromagnetic fields inside a room 

(A.21) 

(A.22) 
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