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Ideiifijkation of Jlynninical System witli Friction Using Neural Netwosks 

Abstract 

This study examines the use of neural networks for prediction of dynamical systems. After 
a brief introduction to neural networks and their architecture, a iunction was approximated by 
a neural network, introducing the backpropagation learning algorithm. Because of the slow 
convergence, this learning algorithm was substitiited by the superior Levenberg-Marquardt 
training technique. 

A neural network was used to identify a second-order linear dynamical system (a double 
mass-spring-damper system without friction). It was shown that this system can easily be 
identified with a prediction type network without hidden neurons. The linear dynamical 
system was transfmmed into a non-linear dynamical system by adding friction. This system 
can be identified with a neural network with only a few hidden neurons. 

Finally a control application for this system has been examined. If a neural network has to 
estimate the force needed to realise a prescribed displacement of mass 1, this displacement is 
attained with a small error. However, the calculated force fluctuates between large positive 
and negative values. Additionally the network is able to give an estimation of the 
displacement of mass 2, which can be used to implement a control law. 
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Identification of Dynamical Systems with Friction Usinp Neusril Networks 

1. An introduction to neural networks 

A neural network is a parallel, interconnected network of elementary units caled neurons 
A feedforward neural network called perceptron is made up of layers of neurons n i th  
connections between neurons of successive layers. The intermediate layers between the 
output layer and the network's input are called hidden layers. All the inputs to each neuron 
combined determine the internal state of the neuron named activation. The combining 
function, vhich defines how to accumulate the inputs, is usually a simple addition of the 
inputs and a bias, the threshold of the neuron. The activation function or transfer functicn 
relates the output of the neuron with its activation. 

is accomplished by modifj4ng the interconnection strengths amon2 neurons called weighrs 
The bias of a neuron can be regarded as an input unit with a constant value of minus one 
together with a variable weight value. The "knowledge" of the network lies therefore in iis 
weight values. 

The performaxe of the network car, be improved by training it with new irfo-mation This 

The next section deals with some choices that have to be made when constructing a neural 
network. In section 3, a neural network has been used for function approximation. Ar first, 
the backpropagation learning algorithm has been applied, but later on it was substituted by the 
Levenberg-Marquardt optimization algorithm. Section 4 and 5 deal with a dynamical system 
without and with friction, respectively. 

3 
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2. The network architecture 

2. I Number of layers 
Cybenko [4] has shown that a neural network with at least one hidden layer (containing 

sigmoidal non-linearities) can represent any arbitrary function, i.e. it can model any continues 
non-linear transformation. With more hidden layers the network learns faster, but training of 
the network becomes much more complex and therefore results in longer computation times. 
Moreover, too many hidden layers may produce local minima on the error surface. A 
reasonable choice is therefore a neural network with one hidden layer. Hence in this study the 
neuron structure of the network will be: inpui units -+ hidden neurons -+ o ~ t p ~ t  neuons. 

2.2 Number of neurons 

the number of output neurons. The number of input neurons depends on the system to be 
identified as well as the number of past outputs one wishes to use as input (which actually 
depends on the implemented system too). The more neurons in the hidden layer, the more 
likely it is that the system learns to reproduce the input-output combinations. However, the 
use of more hidden neurons results in longer computation times when training the network. 
Too few neurons may cause "underfitting". The network is only able to fit a part of the whole 
training set. On the other hand, too many neurons may result in "overfitting". All training 
combinations are fitted well, but when tested with a not-trained combination, the neural 
network produces an output that differs greatly ftom the target output. 

The nature of the application, in this case identification of a dynamical system, determines 

2.3 Dy namical representation 

has to train the neural network not only with the current data but also with the past data 
Therefore it will be necessary to use previous outputs as new inputs. This can be 
accomplished in two different ways [9], [3]: 
O One possibility is to use a feedforward network and take the past measurement outpicts of 
the system as inputs to the network. This is often called a "series-parallel identification model" 
or "prediction model". 
O The other possibility is to use a recurrent network As current inputs to the network. the 
estimated outputsporn the network are taken This is often called a "parallel identification 
model" or "simulation model". 
These two schemes that establish the network architecture are visualised in Figure 1. 

The system to be considered is dynamical. Because of this time dependent behaviour one 

Figure I :  Prediction and simulation model ofsystem identif cation. 
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In contrast to the prediction model, the stability of the simulation model cannot be assured. 
There is no guarantee that the parameters will converge or that the output error e (this is the 
difference between the estimated output of the neural network jj and the desired or real 
output of the systemy) will tend to zero [9]. Furthermore no previous estimated outputs are 
initially known. 

Since no feedback loop exists in the prediction model, a less complex training technique 
can be used to adjust the parameters, reducing the computation time considerably compared 
to the simulation model. Hence in this study for neural network identification the prediction 
model will be used. 

2.4 Training data 

network "learns" by comparing this estimated output with the desired output y On the basis 
of the difference e between these outputs the parameters of the network will be adapted. The 
input-output combinations can be presented to the network in two different ways: 
O One possibility is to present the patterns (input-output combinations) one by one and to 
adapt the network parameters immediately after each pattern. This is called "pattern mode" or 
"pattern learning". 
O Another possibility is to present all combinations of the training set (or epoch) as a whole 
batch to the neural network. The network is updated after the entire batch of data is 
processed. This is called "batch mode" or "batch learning". Generally a network in batch 
mode learns faster. Hence this mode will be used in this study. 

An input presented to the neural network results in an estimated outputj A neural 

2.5 Activation functions 

the neural network can also represent non-linear systems. The function most often used in 
neural networks, due to its smoothness and differentiability, is the sigmoid function. Usually 
two kinds of sigmoid functions are used (in this study the second one): 

By using a non-linear function as activation function (transfer function) in the hidden layer, 

O The logistic (unipolar/ binary/ íogsig) transfer function with a range of O to 1.  

(a  is the "slope parameter", fiequently chosen i) 1 
i+ e-au 

4@> = 

O The hyperbolic tangent (bipolar/ tansig) transfer function with a range of - 1 to 1 : 

I , 1-e  -2au e2au -1 - - ~ ( u )  = tanh(a u) = 
1+e-2au e2au +1 

By using a linear function, 

d u )  = u 

in the output layer, the output of the neural network is not limited to absolute 1, but can equal 
any desired limited value. The input layer usually acts as an input data holder which 
distributes inputs to the hidden layer. Then the neurons in the input layer do not need an 
activation function. 

5 
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When training the network with a specific training technique, more aspects have to be 
considered. For example, when using backpropagation the learning rate is an important 
training parameter. Some of these aspects will be discussed while explaining the training 
algorithm (in the appendices). 

To understand a little of what is going on in neural networks it is useful trying to 
approximate a function with a neural network. This is the main goal of the following section. 

6 
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3. Function approximation 

A multilayer neural network may be viewed as a function approximator. An input to the 
neural network results in a specific output depending on the network architecture and weight 
values. Given a function to be approximated, multiple desired input-output pairs can be 
constructed. For every input a known output target exists. The neural network simply has to 
learn to successfully associate the input with the target. This learning means that the neural 
network has to  find such weights (and biases) for which the output errors for al input-output 
pairs are minimal, or at least acceptably small. 

3.1 Least squares minimization 

the successive layers. Each neuron computes its output value according to the equation 
When an input pattern is presented to the neural network, it propagates forward through 

where x,'(k) denotes the kth output of neuronj in the Zth layer and w:, the weight of the 
connection between the zth neuron in the (I-1)th layer and theJth neuron in the Zth layer, b,' is 
the threshold or bias of thejth neuron in the Zth layer and  NI-^ is the number of neurons in the 
(I-1)th layer. The function pi'(-> is the activation function of the Zth layer (described in 
paragraph O) and v,'(k) is the activation of neuronj in layer Z. 

be written as 
Regarding the bias as a weight together with an input equal to minus one, this equation can 

where the weight vp$ (corresponding to the fixed input xk-' = -1) equals the bias b; applied to 
neuronj in layer 1. 

For a network with one hidden layer and a linear activation function in the output layer the 
kth value of outputj of the network is given by 

The numbers O, 1 and 2 as well as the dummy variables h, i andj  refer to the input layer, 
hidden layer and output layer respectively. Thus No refers to the total number of network 
inputs (excluding the threshold) and xho(k) is the kth value of the hth input to the network 

The error signal at theJth output neuron when presenting the neural network with the kth 
input-output combination is defined by 

7 
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The error criterion which is generally used in the training of neural networks is the sum of 
squared errors. For a network presented with K pairs of desired input-output combinations 
and N2 outputs, the instantaneous error function for the kth input-output combination is 

or in vector notation, 

where 
- e ( k )  is the kth output error vector (belonging to the kth input-output combination) 

y( k )  is the kth desired output vector (the output of the real system) 

p( k )  is the kth estimated output vector (the output of the neural network) 

11 is the Euclidean norm; Ilxlr = x1 + -. - -t x, . 

with components (el(k),.--,eN2 ( k ) )  

with components (y,(k),---,yN2 ( k ) )  

with components (jl(k),-.-,jN2 ( k ) ) .  
2 2 

The average squared error is obtained by summing E(k) over all k's (the entire training set 
with K combinations) and then normalizing with respect to the set size K, as shown in vector 
notation by 

k=l k=l 

This error criterion is a function of all the free parameters (i.e., weights and biases) of the 
network. The objective of the learning process is to adjust these free parameters so as to 
minimize Eov. This minimization can be done with several optimization techniques. 

3.2 Bnckpropagation 

to be approximated with the backpropagation learning algorithm is 
An often used optimization technique is "backpropagation", see appendix A. The function 

y = 1 x 2  - 2~ t-5 2 

Together with the choices made earlier, this leads to a neural network with three layers An 
input layer with one input unit (receiving x) and no activation function, a hidden layer with 
tangent sigmoid activation functions and an output lclyer with one output neuron (giving y )  
and a linear activation function. The number of neurons in the hidden layer will be varied. 
When using only the simple form of backpropagation, the network learning i s  very slow. 
Using backpropagation with adaptive learning rate and addition of a momcntum term the 
network learns less slowly but still the computation time is very long. Figure 2 shows the 
results of training the neural network with the improved backpropagation, after presenting it 
1000 times (number of iterations or epochs is 1000) with the whole training set consisting of 
21 input-output targets. The cross signs represent the target output, the different line types 
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represent different numbers of hidden neurons, as indicated by the legend. The improvement 
obtained by using more hidden neurons (but not too much) can, in this particular case, also be 
obtained by increasing the number of training epochs. In general, a minimal number of hidden 
neurons are required. 

2.5' , 
-1 -0.5 O 0.5 1 1.5 2 2.5 3 3.5 4 

X 

Figure 2: Function approximation using the backpropagation algorithm. 

The average squared error E,,,, displayed in Figure 3, decreases slowly, illustrating the 
slow convergence of the backpropagation algorithm. Furthermore the backpropagation 
algorithm may become trapped at local minima and can be very sensitive to user selectable 
parameters. 

I 
O 100 200 300 400 500 600 700 800 900 1000 

epoch number 

Figure 3: Training error (backpropagation) 

10-11 
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3.3 Levenberg-Marquardt optimization 

appendix B. Another attempt to approximate the function y = .5 x2 - 2 x + 5 has been carried 
out with this Levenberg-Marquardt training algorithm. Figure 4 shows the results of a 
neural network with two hidden neurons. The training took 24 seconds for about 120 epochs. 
Apparently the network is appropriate to approximate this function. The network can even 
approximate more complicated functions (i.e. functions with more non-linearities). Figure 
5 shows the decreasing average squared error during training. The Levenberg-Marquardt 
algorithm has superior convergence properties compared with backpropagation and will be 
used to train the networks of the remaining part of the present study. 

A better learning algorithm is the Levenberg-Marquardt optimization technique, see 

Levenberg-Marquardt training results 

-1 - 

X 

Figure 4: Function approximation using the Levenberg-Marquardf algorithm. 

epoch number 

Figure 5: Training error (Zevenberg-Marquardt algorithm). 
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4. Second-order linear dynamical system 

4.1 System description 

A double mass-spring-damper system, as represented in Figure 6, is to be identified with a 
neural network. The force F(t )  is the input u(t) of the system. The left and right mass equal 
ml and m2, respectively. The output of the system consists of both the displacement xl ( t )  of 
mass ml and the displacement x2(t) of mass m2. The spring constants are ki and k2. The 
damper constants are bi and b2. 

. 

Figure 6: Double mass-spring-damper system. 

The equations of motion resulting from force balance are: 

F - k , ( x ,  - x 2 ) - b 1 ( i l - i 2 ) = m 1 x 1  

kl (xi - x2) + bl(il - i,) - k2x2 - b2X2 = m2x2 

Written in matrix notation: 

with 

m l = 5  kl=25 b1=5 
m2=3 k2= 100 b2=5 

The eigen frequencies of this system are: 

4.2 The discrete form of the equations of motion 
The derivative of a function can be written in various ways: 

dx . x ( t + A t ) - x ( t )  x ( t )  - x ( t  - A t )  Y ( t  + A f )  - X( f - A t )  XE--= 11m = lim = lim 
dt At+m At &+a> At Al+W 2 At 

With omission of the limit (At + .o) the last three terms are called forward, backward, and 
central divided differentiation, respectively. 

11 
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With discrete time k and sample frequencyf, = 1IAt the first and second derivatives can be 
approximated by 

% ( k )  = f, {x(k) - x(k - i)> 
(a backward divided differentiation) 

q k )  = f, {X(k  + 1) - X(k) )  = f,2 (x(k + i) - 2 x ( k )  +x(k -i)) 
(a forward differentiation on x followed by a backward differentiation on the derivative) 

Combining these equations with the equations of mctior, leads to 

q(k+l) = function(q(k),q(k- l),u(k) > 
with q(k) = [xl(k) x2(k)lT 
and u(k) =F(k) 

So it is shown that to be able to approximate the second-order dynamical system, the input 
to the neural network has to consist of the force u(k) and the actual as well as the previous 
positions, q(k) and q(k-1) respectively. The output is an estimation of the next positions 
q@+O 

input = [ u@); Xi(& x@); q(k-1); xz(k-1) ] 

output = [i, (kt-1); i, (k+l)]  

4.3 Training & testing 

in appendix B. The neural network will be divided into two parts, one part per output. 
Consequently not every hidden neuron is connected with both outputs, but with only one of 
them. Since both outputs are indirectly connected to all the input neurons, this does not 
matter for the functioning of the neural network. The motive for this division is twofold 
Firstly the Levenberg-Marquardt optimization programme (in Matlab) that was available is 
limited to only one output. Secondly this separation reduces the computation time. In 
Figxe 7 the neural network architecture is visualised with two times three hidden neurons. 

The used training algorithm is the Levenberg-Marquardt optimization technique described 

Figure 7: Neural network architecture. 
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For the sampling frequencyf, a value of 20 Hz has been chosen. The fold frequency V; / 2) 
has to be greater than the maximum eigen frequencyf,, of the system (sampling theorem of 
Shannon). The chosen sample frequency satisfies the usually applied criterion of fs > 10 * 

fmm. The number of training epochs is 400. The applied force used for training is an 
accumulation of several sinusoidals (see 
frequency (= 8 / 2.n N 1.3 Hz) sinaller than the sampling frequency: 

Figure 8, upper part), with the maximum 

u(k) = 10{sin(k) + sin(2k) + sin(3k) f sin(6.5k) + sin(8k)) 

The eigen frequencies of the simulated system, 0.32 HZ and 1 .04 Hz, match sin(2k) and sin 
(6.5k), respectively. So the input signal contains all frequencies that are relevant for this 
system. The input u used for testing, is a block form with amplitude 10 CN] and period 10 [SI 
(see Figure 8, lowest part). 

input u, traininq 
40 1 

o 2 3 4 5 6 7 8 9 10 

input u. testing 

-5' I 
I , , 1 

O 1 2 . 3  4 5 6 7 8 9 1 0  

Figure 8: Input for training (upper part) and input for testing (Icwest par9 

I I 
O 1 2 3 4 5 6 7 8 9 10 

time 

time 

Figure 9: Neural network output and system outpuf. 
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5. Second-order system with friction 

5.1 System description 
The system that will be used in this section is the same as used in section 4 (represented in 

Figure 6) but with the addition of friction. The friction forces working on mass m1 and m2 are 
Ffi and Ff2 , respectively, see Figure 12. Taking friction into account, the system becomes 
non-linear. In this section the performance of the neural network identifiing this non-linear 
system will be examined. 

k: y5 
u@> * 4 

# - ml m2 1 

b2 bi 
- 

Ff 1(t) 

x1 (t> x2 (t> 

Figure 12: Double mass-spring-damper system with friction. 

The equations of motion resulting from force balance are: 

u-F,] -k , (x ,  -x2)-b,(X, -X,)=m,X, 

-Ff , + kl (xi - x2 ) + b, (XI - X2 ) - k2X2 - b2X2 = nl,X2 

For the friction force a sign function can be used: 

F’ = c1 . sign(2,) with cl = pk mig 

Ff , = e, .sign(X2) with c2 = pk nz,g 

with p k  the kinetic friction coefficient (taken 0.7) and g the gravitation acceleration (taken 10 
[m/s2] ). This friction model however is not easy to implement. In the static case, if the 
velocity is zero, the friction force equals the force acting upon the mass. In this case the 
friction force can be any value between plus and minus the maximum friction force maï!F’ 1 
(a point anywhere on the vertical dotted line in Figure 13) but cannot be simply calculated by 
solving the equations of motions. It is easier to use the hyperbolic tangent (tanh or tansig) 
function instead of the sign function (see Figure 13): 

max F’ = c1 = , u k  m,g = 35 [NI l i  
max Ff = c2 = , u k  m2g = 21 m] I I  

15 
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-1. 1 
-le-O7 -6e-O8 -2e-O8 2e-08 6e-08 le- 

x 
)7 

Figure 13: Friction force (normalized at maximum force) as function of velocig; 
implemented with Ff = tansig(x- 10’) {solid line) and Ff = sign(x) {dotted line). 

When a small force acts upon the mass, it will get a very small velocity. The mass will not 
displace noticeably but the fiction force Ff increases. Ffwill equal the force exerted upon the 
mass. Because iff’ is smaller, X increases and therefore Fftoo, until &-balances the forces 
exerted upon the mass. So the net force equals zero. Only if Ff has reached his maximum 
max1F’’ 1, a net force not equal to zero can be present. 

Figure 14 shows the positions XI and x:, resulting when an increasing force u (represented 
in the upper part of the figure) is applied to the system without (represented in the middle 
part) and with friction (lowest part of the figure). Comparison of the middle and lowest part 
of the figure shows the eminent influence of the implemented fiiction on the output of the 
systern. 

-101 I I 1 
O 2 4 6 0 10 12 14 16 18 20 

time k 

Figure 14: Influence of an increasing force (upper part) applied ío the system without (middle part) 
and with friction (lowest part). 
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5.2 Training & testing 

friction. The used training data are represented in 
increases with time and is an accumulation of sinusoidals: 

The network architecture is the same as used in section 4, dealing with a system without 
Figure 15. The input u to the system 

u = Sk(sin(k) + sin(3k) + sin(6k) +sin(8k)) 

200 

1 O0 

3 0  

-1 O0 

-200 

-300' I 
O 2 4 6 8 10 12 14 16 18 20 

time k 

5- 

x o  

-5 - 

-1 o 
O 2 4 6 8 10 12 14 16 18 20 

tune k 

Figure 15. Input (u) fo and output (xi andx2) ofthe J3/sfeni with frctian 

Figure 16 shows the results of testing the network with 2 times 1 O hidden neurons and 
with the input u =25(sin(l.5k)+cos(3k)+1.5sin(3.2k+2)-1+k/10). The network imitates 
the system very well, indicating that the considerable amount of friction causes no problem. 
Even a network with only a few hidden neurons generates a relatively small output error This 
good performance is a result of the used model, namely a prediction model. The network 
input consists of the real positions x1 and x2 and only has to estimate these positions at one 
time step later. 

-.i;:.'-i -rI:-~ 
-2 

-0.6 
-30 10 20 O 10 20 

0.035 

O 

-0.035 

O 10 20 O 10 20 
- 0 . L  -0.011 

Figure '16: Neural network output brediction model) and system output. 
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When using the simulation model for testing, the neural network performance is not good at 
all (see Figure 17), even when the input u is the same as used for training. But that is not 
surprising since the neural network has not been trained for simulation. 

outprtlSystem&ovtprt1 Sinuldon oqutZSyctem&ou@ut2Simuldon 

error of oupxrtl Smulation error of oqutZCimuiation 

u 
-40- 10 x) -I0 10 x) 

Figure 17: Neural network output (simulation mode0 and system output, 
represented by a dotted and a solid line, respectively. 

5.3 A control application 
An interesting application of a neural network concerning the double mass-spring-damper 

system with friction (represented in Figure 12) is to prescribe the position XI of mass nz1. X l d .  

The neural network input consists of the present as well as the previous positions of both 
masses and the desired position of mass ml at one time step later. The network has to 
estimate the force u needed to realise this desired position. It is useful to construct a network 
that additionally estimates the position of mass m2 at one time step later, 2,. This estimated 
position can be regarded as the desired position of mass m2 while mass ml follows a 
prescribed path. The reason for this additional part is the use of a control law, to be explained 
later. 

The input to and output of the neural network are (see Figure 18): 
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Figure 19: Desiredposition of mass I ,  estimatedposition of mass 2 and real position of both masses. 
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Figure 20: Neededforce to realise the desired position of mass I .  

When the initial conditions of the system deviate from the desired initial conditions, a 
control mechanism can be applied to quickly eliminate the differences. A suitable control law 
is the PD-controller, implemented by 

+Q@,,(k +i>-X,(k))  + D 2 ( q C  +l)- X2(k))  

where u d  is the needed force, to obtain the desired position of mass 1, computed by the neural 
network. In the previous test the initial positions were xI(0) =lo and x2(0) = 5 instead of the 
desired xi = x2 = O. Therefore the desired and real positions differed in the beginning Using 
the PD-control law with all coefficients equal to ten, the error in the positions disappears 
much faster, as shown by Figure 21. 
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Figure 21: Desired, estimated and real posifions when using a PD-control law. 
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6. Discussion & conclusion 

For the training of a neural network, several optimization techniques are available. The 
technique used has much influence on the performance of the neural network. Because. 
dependent on the chosen training technique, the training may stop in a local minimum xi th  a 
large average squared output error, or continue till a small output error is attained. An often 
used algorithm is backpropagation, but because of its slow convergence and its high chance 
to become trapped in a local point on the error surface, other training alrorithrns may be more 
satisqing and less irritating. A good alternative is the Levenberg-Marquardt optimization 
technique. Perhaps some modification to this technique can improve its performance even 
more. 

A second-order linear dynamical system (a double mass-spring-damper system without 
friction, with as input a force working on one mass and as output the positions of both 
masses) can easily be identified with a prediction type network without hidden neurons A 
non-linear dynamical system (the same system but with the addition of friction) can be 
identified with a neural network with only a few hidden neurons. When testing with a 
simulation model instead of a prediction model, the network output deviates strongly fiom 
the desired output. This is not surprising, because the network has not been trained for 
simulation. Creating a simulation type network that performs well, will be difficult, as the 
input to the network is not the real but the (by the network) estimated output of the system. 
A deviation of the network output will affect the next output. So the output error can 
increase with time resulting in an unstable system. In view of this problem, a neural nehvork 
with a simulation model is a challenge for further research. 

If the neural network has to estimate the force needed to realise a prescribed displacement 
of mass 1, this displacement is attained with a small error. However, the calculated force 
fluctuates between large positive and negative values, for some unsolved reason. Additionally 
the network is able to give an estimation of the displacement of mass 2. This can be used to 
implement a control law to eliminate deviations in the initial conditions. 

In this numerical study a simulated dynamical system provided the data for training and 
testing the neural network. A logical continuation on this research would be to train and 
implement a neural network on the basis of a real system. Data obtained from real 
measurements introduce additional complexities like noise and measuring faults 
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Appendix A: Backpropagation 

In backpropagation the "gradient method" is used for minimizing the output error. The 
gradient method is an optimization technique based on linear approximation of the objective 
function. Say one wishes to find the w for which the function E(w) is minimal. Then the 
gradient method gives a simple iteration formula: 

where 
n is the iteration number 
rln 

VE(w(n)) is the gradient of E(w(n)) at a point y(n) ,  a vector with components 
is the stepsize (2 O), often vn = 7 for all iteration steps n 

This method is the same as choosing the ''local steepest descent" (The steepest descent 
direction is opposite to the gradient direction.), and is often called "method of steepest 
descent". In the neural network application with backpropagation, w is the weight vector 
containing all input weights to the zth neuron of layer Z (including the threshold b:), wf with 

components wI1 ,-. ., WIN,- ,  ,b:) . E is the partial error function E(k) or average error function 

EreV and 77 is the learning rate parameter. So the basic idea is to evaluate the partial derivative 
of the error function with respect to the weights. 

( l  

The weights are updated according to 

with the increment AW:.~(~) given by 

(This is the adjustment in batch mode, which has been used in this study. In pattern learning 
the summation over k has to be omitted.) 

With the use of &(k), the error signal of the zth neuron of the Zth layer, which is back- 
propagated in the network, this equation can be transformed into 

The errcr signal at the output neurons (in layer m) is 

and for the neurons in the hidden layer 
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The smaller the learning rate parameter 77, the smaller the changes to the weights in the 
network will be from one iteration to the next. This smoother trajectory in weight space is 
attained at the cost of a slower convergence. If, on the other hand, the learning rate is too 
high so as to speed up the rate of learning, the resulting large chwges in weights may cause 
an unstable network. The backpropagation method can be improved by using an "adaptive 
learning rate" q, which is not fixed, but changes with the iteration n. Another method to 
increase the rate of learning and yet tc zvoid the danger of instability is to modi@ the weight 
increment by including a momentum term a,, (O 5 la,,] 2 l), which determines the influence of 
past weight changes on the current direction of movement in the weight space, as shown by 

K 
Aw:, (n )  = a,Aw:, (n- 1) + vnc 4 (k)x:-'(k) 

k=l 

The inclusion of momentum in the backpropagation algorithm tends to accelerate descent of 
the partial derivative dE(k)/ahJ,(k) in steady downhill directions and has a stabilizing effect in 
directions that oscillate in sign. The momentum term may also reduce the chance that the 
learning process terminates in a shallow local minimum on the error surface instead of the 
desired global minimum. 
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Appendix B: Levenberg-Marquardt optimization 

In the gradient method, the notion of local linear approximation of the objective function 
f(x) is basic. Another approach is to use the quadratic approximation at a point x(n), i.e. the 
function 

where 
(.;) 
V2fx) 

is the scalar product in R'; ( X J )  = x f i l  + ... + xg, 
is the Hessian matrix H with elements 2'fc.) / &,aj 

Then the iteration function is 

x ( n +  1) = x(n)-[v2f(x(n))]-lvf(x(n)) 

This is Newton's method 

The Levenberg-Marquardt optimization technique is a modification of Newton's method, 
to make it globally convergent. The iteration function is 

where I is the unity matrix (or unity second order tensor). For a, = O the method becomes 
Newton's. As a, -+ 00 the direction tends to the antigradient (steepest descent). Thus this 
formula is a compromise between these two methods. 
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