

Identification of dynamical systems with friction using neural
networks
Citation for published version (APA):
Houben, M. M. J. (1996). Identification of dynamical systems with friction using neural networks. (DCT
rapporten; Vol. 1996.075). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/d72f1fdc-ba19-4b4c-85f9-2d5f118a2254

Identification of Dynamical Systems
With FriCtiQIl

using Neural Networks

Report no. 96075
A research report by M.M. J Houben
Tutor: dr.ir. M. J.G. v.d. Molengraft

May 1996
Division of Control Engineering
Faculty of Mechanical Engineering
Eindhoven University of Technology

Ideiifijkation of Jlynninical System witli Friction Using Neural Netwosks

Abstract

This study examines the use of neural networks for prediction of dynamical systems. After
a brief introduction to neural networks and their architecture, a iunction was approximated by
a neural network, introducing the backpropagation learning algorithm. Because of the slow
convergence, this learning algorithm was substitiited by the superior Levenberg-Marquardt
training technique.

A neural network was used to identify a second-order linear dynamical system (a double
mass-spring-damper system without friction). It was shown that this system can easily be
identified with a prediction type network without hidden neurons. The linear dynamical
system was transfmmed into a non-linear dynamical system by adding friction. This system
can be identified with a neural network with only a few hidden neurons.

Finally a control application for this system has been examined. If a neural network has to
estimate the force needed to realise a prescribed displacement of mass 1, this displacement is
attained with a small error. However, the calculated force fluctuates between large positive
and negative values. Additionally the network is able to give an estimation of the
displacement of mass 2, which can be used to implement a control law.

1

Identification of Dynamical Systems with Friciion Using hieural Networks

Contents

ABSTRACT

CONTENTS

1. AN INTRODUCTION T û NEURAL NETWORK§

2. THE NETWORK ARCHITECTURE
2.1 Number of Izyrss

2.2 Number of neurons

2.3 Dynamical representation

2.4 Training data

2.5 Activation functions

3. FUNCTION APPROXIMATION
3.1 Least squares minimization

3.2 Backpropagation

3.3 Levenberg-Marquardt optimization

4. SECOND-ORDER LINEAR DYNAMICAL SYSTEM
4.1 System description

4.2 The discrete form of the equations of motion

4.3 Training & testing

5. SECOND-ORDER SYSTEM WITH FRICTION
5.1 System description

5.2 Training 8z testing

5.3 A control application

6. DISCUSSION & CONCLUSION

REFERENCES

APPENDIX A: BACKPROPAGATION

APPENDIX B: LEVENBERG-MARQUARDT OPTIMIZATION

1

2

3

7
7

8

10

11
11

11

12

15
15

17

18

21

22

23

25

2

.-

Identification of Dynamical Systems with Friction Usinp Neusril Networks

1. An introduction to neural networks

A neural network is a parallel, interconnected network of elementary units caled neurons
A feedforward neural network called perceptron is made up of layers of neurons n i th
connections between neurons of successive layers. The intermediate layers between the
output layer and the network's input are called hidden layers. All the inputs to each neuron
combined determine the internal state of the neuron named activation. The combining
function, vhich defines how to accumulate the inputs, is usually a simple addition of the
inputs and a bias, the threshold of the neuron. The activation function or transfer functicn
relates the output of the neuron with its activation.

is accomplished by modifj4ng the interconnection strengths amon2 neurons called weighrs
The bias of a neuron can be regarded as an input unit with a constant value of minus one
together with a variable weight value. The "knowledge" of the network lies therefore in iis
weight values.

The performaxe of the network car, be improved by training it with new irfo-mation This

The next section deals with some choices that have to be made when constructing a neural
network. In section 3, a neural network has been used for function approximation. Ar first,
the backpropagation learning algorithm has been applied, but later on it was substituted by the
Levenberg-Marquardt optimization algorithm. Section 4 and 5 deal with a dynamical system
without and with friction, respectively.

3

Identification of Dynamical Systems with Friction Using Neural Neîworks

2. The network architecture

2. I Number of layers
Cybenko [4] has shown that a neural network with at least one hidden layer (containing

sigmoidal non-linearities) can represent any arbitrary function, i.e. it can model any continues
non-linear transformation. With more hidden layers the network learns faster, but training of
the network becomes much more complex and therefore results in longer computation times.
Moreover, too many hidden layers may produce local minima on the error surface. A
reasonable choice is therefore a neural network with one hidden layer. Hence in this study the
neuron structure of the network will be: inpui units -+ hidden neurons -+ o ~ t p ~ t neuons.

2.2 Number of neurons

the number of output neurons. The number of input neurons depends on the system to be
identified as well as the number of past outputs one wishes to use as input (which actually
depends on the implemented system too). The more neurons in the hidden layer, the more
likely it is that the system learns to reproduce the input-output combinations. However, the
use of more hidden neurons results in longer computation times when training the network.
Too few neurons may cause "underfitting". The network is only able to fit a part of the whole
training set. On the other hand, too many neurons may result in "overfitting". All training
combinations are fitted well, but when tested with a not-trained combination, the neural
network produces an output that differs greatly ftom the target output.

The nature of the application, in this case identification of a dynamical system, determines

2.3 Dy namical representation

has to train the neural network not only with the current data but also with the past data
Therefore it will be necessary to use previous outputs as new inputs. This can be
accomplished in two different ways [9], [3]:
O One possibility is to use a feedforward network and take the past measurement outpicts of
the system as inputs to the network. This is often called a "series-parallel identification model"
or "prediction model".
O The other possibility is to use a recurrent network As current inputs to the network. the
estimated outputsporn the network are taken This is often called a "parallel identification
model" or "simulation model".
These two schemes that establish the network architecture are visualised in Figure 1.

The system to be considered is dynamical. Because of this time dependent behaviour one

Figure I : Prediction and simulation model ofsystem identif cation.

4

Ideiitijcaiion of Dynamical Systems with Friction Using Neural Nehvoi-ks

In contrast to the prediction model, the stability of the simulation model cannot be assured.
There is no guarantee that the parameters will converge or that the output error e (this is the
difference between the estimated output of the neural network jj and the desired or real
output of the systemy) will tend to zero [9]. Furthermore no previous estimated outputs are
initially known.

Since no feedback loop exists in the prediction model, a less complex training technique
can be used to adjust the parameters, reducing the computation time considerably compared
to the simulation model. Hence in this study for neural network identification the prediction
model will be used.

2.4 Training data

network "learns" by comparing this estimated output with the desired output y On the basis
of the difference e between these outputs the parameters of the network will be adapted. The
input-output combinations can be presented to the network in two different ways:
O One possibility is to present the patterns (input-output combinations) one by one and to
adapt the network parameters immediately after each pattern. This is called "pattern mode" or
"pattern learning".
O Another possibility is to present all combinations of the training set (or epoch) as a whole
batch to the neural network. The network is updated after the entire batch of data is
processed. This is called "batch mode" or "batch learning". Generally a network in batch
mode learns faster. Hence this mode will be used in this study.

An input presented to the neural network results in an estimated outputj A neural

2.5 Activation functions

the neural network can also represent non-linear systems. The function most often used in
neural networks, due to its smoothness and differentiability, is the sigmoid function. Usually
two kinds of sigmoid functions are used (in this study the second one):

By using a non-linear function as activation function (transfer function) in the hidden layer,

O The logistic (unipolar/ binary/ íogsig) transfer function with a range of O to 1.

(a is the "slope parameter", fiequently chosen i) 1
i+ e-au

4@> =

O The hyperbolic tangent (bipolar/ tansig) transfer function with a range of - 1 to 1 :

I , 1-e -2au e2au -1 - - ~ (u) = tanh(a u) =
1+e-2au e2au +1

By using a linear function,

d u) = u

in the output layer, the output of the neural network is not limited to absolute 1, but can equal
any desired limited value. The input layer usually acts as an input data holder which
distributes inputs to the hidden layer. Then the neurons in the input layer do not need an
activation function.

5

Ideniijcation ofDynamicaI Systems with Friction Using Neural Networks

When training the network with a specific training technique, more aspects have to be
considered. For example, when using backpropagation the learning rate is an important
training parameter. Some of these aspects will be discussed while explaining the training
algorithm (in the appendices).

To understand a little of what is going on in neural networks it is useful trying to
approximate a function with a neural network. This is the main goal of the following section.

6

Ideiiti$cation of Dynamical Systems with Friction Using Neural Networks

3. Function approximation

A multilayer neural network may be viewed as a function approximator. An input to the
neural network results in a specific output depending on the network architecture and weight
values. Given a function to be approximated, multiple desired input-output pairs can be
constructed. For every input a known output target exists. The neural network simply has to
learn to successfully associate the input with the target. This learning means that the neural
network has to find such weights (and biases) for which the output errors for al input-output
pairs are minimal, or at least acceptably small.

3.1 Least squares minimization

the successive layers. Each neuron computes its output value according to the equation
When an input pattern is presented to the neural network, it propagates forward through

where x,'(k) denotes the kth output of neuronj in the Zth layer and w:, the weight of the
connection between the zth neuron in the (I-1)th layer and theJth neuron in the Zth layer, b,' is
the threshold or bias of thejth neuron in the Zth layer and NI-^ is the number of neurons in the
(I-1)th layer. The function pi'(-> is the activation function of the Zth layer (described in
paragraph O) and v,'(k) is the activation of neuronj in layer Z.

be written as
Regarding the bias as a weight together with an input equal to minus one, this equation can

where the weight vp$ (corresponding to the fixed input xk-' = -1) equals the bias b; applied to
neuronj in layer 1.

For a network with one hidden layer and a linear activation function in the output layer the
kth value of outputj of the network is given by

The numbers O, 1 and 2 as well as the dummy variables h, i andj refer to the input layer,
hidden layer and output layer respectively. Thus No refers to the total number of network
inputs (excluding the threshold) and xho(k) is the kth value of the hth input to the network

The error signal at theJth output neuron when presenting the neural network with the kth
input-output combination is defined by

7

Identification of Dynamical Systems with Friction Using- Neural Networks

The error criterion which is generally used in the training of neural networks is the sum of
squared errors. For a network presented with K pairs of desired input-output combinations
and N2 outputs, the instantaneous error function for the kth input-output combination is

or in vector notation,

where
- e (k) is the kth output error vector (belonging to the kth input-output combination)

y(k) is the kth desired output vector (the output of the real system)

p(k) is the kth estimated output vector (the output of the neural network)

11 is the Euclidean norm; Ilxlr = x1 + -. - -t x, .

with components (el(k),.--,eN2 (k))

with components (y,(k),---,yN2 (k))

with components (jl(k),-.-,jN2 (k)) .
2 2

The average squared error is obtained by summing E(k) over all k's (the entire training set
with K combinations) and then normalizing with respect to the set size K, as shown in vector
notation by

k=l k=l

This error criterion is a function of all the free parameters (i.e., weights and biases) of the
network. The objective of the learning process is to adjust these free parameters so as to
minimize Eov. This minimization can be done with several optimization techniques.

3.2 Bnckpropagation

to be approximated with the backpropagation learning algorithm is
An often used optimization technique is "backpropagation", see appendix A. The function

y = 1 x 2 - 2~ t-5 2

Together with the choices made earlier, this leads to a neural network with three layers An
input layer with one input unit (receiving x) and no activation function, a hidden layer with
tangent sigmoid activation functions and an output lclyer with one output neuron (giving y)
and a linear activation function. The number of neurons in the hidden layer will be varied.
When using only the simple form of backpropagation, the network learning i s very slow.
Using backpropagation with adaptive learning rate and addition of a momcntum term the
network learns less slowly but still the computation time is very long. Figure 2 shows the
results of training the neural network with the improved backpropagation, after presenting it
1000 times (number of iterations or epochs is 1000) with the whole training set consisting of
21 input-output targets. The cross signs represent the target output, the different line types

8

r

IdentiJìcatioii oJDynatnical Systems with Fricíion Using Neural Networks

represent different numbers of hidden neurons, as indicated by the legend. The improvement
obtained by using more hidden neurons (but not too much) can, in this particular case, also be
obtained by increasing the number of training epochs. In general, a minimal number of hidden
neurons are required.

2.5' ,
-1 -0.5 O 0.5 1 1.5 2 2.5 3 3.5 4

X

Figure 2: Function approximation using the backpropagation algorithm.

The average squared error E,,,, displayed in Figure 3, decreases slowly, illustrating the
slow convergence of the backpropagation algorithm. Furthermore the backpropagation
algorithm may become trapped at local minima and can be very sensitive to user selectable
parameters.

I
O 100 200 300 400 500 600 700 800 900 1000

epoch number

Figure 3: Training error (backpropagation)

10-11

9

Identification of Dynamical Svsíems with Friciion Usin.g Neural Neíwoi-FIS

3.3 Levenberg-Marquardt optimization

appendix B. Another attempt to approximate the function y = .5 x2 - 2 x + 5 has been carried
out with this Levenberg-Marquardt training algorithm. Figure 4 shows the results of a
neural network with two hidden neurons. The training took 24 seconds for about 120 epochs.
Apparently the network is appropriate to approximate this function. The network can even
approximate more complicated functions (i.e. functions with more non-linearities). Figure
5 shows the decreasing average squared error during training. The Levenberg-Marquardt
algorithm has superior convergence properties compared with backpropagation and will be
used to train the networks of the remaining part of the present study.

A better learning algorithm is the Levenberg-Marquardt optimization technique, see

Levenberg-Marquardt training results

-1 -

X

Figure 4: Function approximation using the Levenberg-Marquardf algorithm.

epoch number

Figure 5: Training error (Zevenberg-Marquardt algorithm).

10

Identification of Dvnamical Svstems with Friction Usina AJeural Networks

4. Second-order linear dynamical system

4.1 System description

A double mass-spring-damper system, as represented in Figure 6, is to be identified with a
neural network. The force F(t) is the input u(t) of the system. The left and right mass equal
ml and m2, respectively. The output of the system consists of both the displacement xl (t) of
mass ml and the displacement x2(t) of mass m2. The spring constants are ki and k2. The
damper constants are bi and b2.

.

Figure 6: Double mass-spring-damper system.

The equations of motion resulting from force balance are:

F - k , (x , - x 2) - b 1 (i l - i 2) = m 1 x 1

kl (xi - x2) + bl(il - i,) - k2x2 - b2X2 = m2x2

Written in matrix notation:

with

m l = 5 kl=25 b1=5
m2=3 k2= 100 b2=5

The eigen frequencies of this system are:

4.2 The discrete form of the equations of motion
The derivative of a function can be written in various ways:

dx . x (t + A t) - x (t) x (t) - x (t - A t) Y (t + A f) - X(f - A t) XE--= 11m = lim = lim
dt At+m At &+a> At Al+W 2 At

With omission of the limit (At + .o) the last three terms are called forward, backward, and
central divided differentiation, respectively.

11

Identification of Dynamical Systems with Friction Using Neural Networks

With discrete time k and sample frequencyf, = 1IAt the first and second derivatives can be
approximated by

% (k) = f, {x(k) - x(k - i)>
(a backward divided differentiation)

q k) = f, {X(k + 1) - X(k)) = f,2 (x(k + i) - 2 x (k) +x(k -i))
(a forward differentiation on x followed by a backward differentiation on the derivative)

Combining these equations with the equations of mctior, leads to

q(k+l) = function(q(k),q(k- l),u(k) >
with q(k) = [xl(k) x2(k)lT
and u(k) =F(k)

So it is shown that to be able to approximate the second-order dynamical system, the input
to the neural network has to consist of the force u(k) and the actual as well as the previous
positions, q(k) and q(k-1) respectively. The output is an estimation of the next positions
q@+O

input = [u@); Xi(& x@); q(k-1); xz(k-1)]

output = [i, (kt-1); i, (k+l)]

4.3 Training & testing

in appendix B. The neural network will be divided into two parts, one part per output.
Consequently not every hidden neuron is connected with both outputs, but with only one of
them. Since both outputs are indirectly connected to all the input neurons, this does not
matter for the functioning of the neural network. The motive for this division is twofold
Firstly the Levenberg-Marquardt optimization programme (in Matlab) that was available is
limited to only one output. Secondly this separation reduces the computation time. In
Figxe 7 the neural network architecture is visualised with two times three hidden neurons.

The used training algorithm is the Levenberg-Marquardt optimization technique described

Figure 7: Neural network architecture.

12

ideniificaíion of Dvnarnical Svstems with Friction Usina Neural hktworks

For the sampling frequencyf, a value of 20 Hz has been chosen. The fold frequency V; / 2)
has to be greater than the maximum eigen frequencyf,, of the system (sampling theorem of
Shannon). The chosen sample frequency satisfies the usually applied criterion of fs > 10 *

fmm. The number of training epochs is 400. The applied force used for training is an
accumulation of several sinusoidals (see
frequency (= 8 / 2.n N 1.3 Hz) sinaller than the sampling frequency:

Figure 8, upper part), with the maximum

u(k) = 10{sin(k) + sin(2k) + sin(3k) f sin(6.5k) + sin(8k))

The eigen frequencies of the simulated system, 0.32 HZ and 1 .04 Hz, match sin(2k) and sin
(6.5k), respectively. So the input signal contains all frequencies that are relevant for this
system. The input u used for testing, is a block form with amplitude 10 CN] and period 10 [SI
(see Figure 8, lowest part).

input u, traininq
40 1

o 2 3 4 5 6 7 8 9 10

input u. testing

-5' I
I , , 1

O 1 2 . 3 4 5 6 7 8 9 1 0

Figure 8: Input for training (upper part) and input for testing (Icwest par9

I I
O 1 2 3 4 5 6 7 8 9 10

time

time

Figure 9: Neural network output and system outpuf.

13

P

4-

2 -

-

-4

- - _ _ In - - 4

O -

- - - - - - ._ - - - - - - 2.- - - _ - - - -

part in output 2 per hidden neuron
0.1 1 1

.._.
-0.1 1

-0.15'
O 2 4 6 8 10

Figure IO: Part in output per hidden neuron.

input to hidden neuron
2

o _ ..
.

I r -

d "[i
I
1
I
I - - - _ _ _ _ - - -1

. Y

O 2 4 6 8 10

_ _ _ - _ _ _ 1
i
I I -i

- - - - - - _
151 ;-- I -

.........................
I . - - . - - . - . - - . . . 1 r . _ . _ _ . - . - . - . _ . _ _

0 y\ - .- _ _

B - - 8

-0 - 2 4 6 8 10

Figure 11: Input to the hidden neurons.

14

Identijìcation of Dynamical Systems with Friction Using Neural Neíwoi-ks

5. Second-order system with friction

5.1 System description
The system that will be used in this section is the same as used in section 4 (represented in

Figure 6) but with the addition of friction. The friction forces working on mass m1 and m2 are
Ffi and Ff2 , respectively, see Figure 12. Taking friction into account, the system becomes
non-linear. In this section the performance of the neural network identifiing this non-linear
system will be examined.

k: y5
u@> * 4

- ml m2 1

b2 bi
-

Ff 1(t)

x1 (t> x2 (t>

Figure 12: Double mass-spring-damper system with friction.

The equations of motion resulting from force balance are:

u-F,] -k , (x , -x2)-b,(X, -X,)=m,X,

-Ff , + kl (xi - x2) + b, (XI - X2) - k2X2 - b2X2 = nl,X2

For the friction force a sign function can be used:

F’ = c1 . sign(2,) with cl = pk mig

Ff , = e, .sign(X2) with c2 = pk nz,g

with p k the kinetic friction coefficient (taken 0.7) and g the gravitation acceleration (taken 10
[m/s2]). This friction model however is not easy to implement. In the static case, if the
velocity is zero, the friction force equals the force acting upon the mass. In this case the
friction force can be any value between plus and minus the maximum friction force maï!F’ 1
(a point anywhere on the vertical dotted line in Figure 13) but cannot be simply calculated by
solving the equations of motions. It is easier to use the hyperbolic tangent (tanh or tansig)
function instead of the sign function (see Figure 13):

max F’ = c1 = , u k m,g = 35 [NI l i
max Ff = c2 = , u k m2g = 21 m] I I

15

Identification ofDvnamica1 &stems with Friction Using Neural Networks

-1. 1
-le-O7 -6e-O8 -2e-O8 2e-08 6e-08 le-

x
)7

Figure 13: Friction force (normalized at maximum force) as function of velocig;
implemented with Ff = tansig(x- 10’) {solid line) and Ff = sign(x) {dotted line).

When a small force acts upon the mass, it will get a very small velocity. The mass will not
displace noticeably but the fiction force Ff increases. Ffwill equal the force exerted upon the
mass. Because iff’ is smaller, X increases and therefore Fftoo, until &-balances the forces
exerted upon the mass. So the net force equals zero. Only if Ff has reached his maximum
max1F’’ 1, a net force not equal to zero can be present.

Figure 14 shows the positions XI and x:, resulting when an increasing force u (represented
in the upper part of the figure) is applied to the system without (represented in the middle
part) and with friction (lowest part of the figure). Comparison of the middle and lowest part
of the figure shows the eminent influence of the implemented fiiction on the output of the
systern.

-101 I I 1
O 2 4 6 0 10 12 14 16 18 20

time k

Figure 14: Influence of an increasing force (upper part) applied ío the system without (middle part)
and with friction (lowest part).

16

Identifkation ofDyviamica1 Systems with 1;riclioii Using Neural Networks

5.2 Training & testing

friction. The used training data are represented in
increases with time and is an accumulation of sinusoidals:

The network architecture is the same as used in section 4, dealing with a system without
Figure 15. The input u to the system

u = Sk(sin(k) + sin(3k) + sin(6k) +sin(8k))

200

1 O0

3 0

-1 O0

-200

-300' I
O 2 4 6 8 10 12 14 16 18 20

time k

5-

x o

-5 -

-1 o
O 2 4 6 8 10 12 14 16 18 20

tune k

Figure 15. Input (u) fo and output (xi andx2) ofthe J3/sfeni with frctian

Figure 16 shows the results of testing the network with 2 times 1 O hidden neurons and
with the input u =25(sin(l.5k)+cos(3k)+1.5sin(3.2k+2)-1+k/10). The network imitates
the system very well, indicating that the considerable amount of friction causes no problem.
Even a network with only a few hidden neurons generates a relatively small output error This
good performance is a result of the used model, namely a prediction model. The network
input consists of the real positions x1 and x2 and only has to estimate these positions at one
time step later.

-.i;:.'-i -rI:-~
-2

-0.6
-30 10 20 O 10 20

0.035

O

-0.035

O 10 20 O 10 20
- 0 . L -0.011

Figure '16: Neural network output brediction model) and system output.

17

Identification of Dynamical Systems with Friction Using Neural Networks

When using the simulation model for testing, the neural network performance is not good at
all (see Figure 17), even when the input u is the same as used for training. But that is not
surprising since the neural network has not been trained for simulation.

outprtlSystem&ovtprt1 Sinuldon oqutZSyctem&ou@ut2Simuldon

error of oupxrtl Smulation error of oqutZCimuiation

u
-40- 10 x) -I0 10 x)

Figure 17: Neural network output (simulation mode0 and system output,
represented by a dotted and a solid line, respectively.

5.3 A control application
An interesting application of a neural network concerning the double mass-spring-damper

system with friction (represented in Figure 12) is to prescribe the position XI of mass nz1. X l d .

The neural network input consists of the present as well as the previous positions of both
masses and the desired position of mass ml at one time step later. The network has to
estimate the force u needed to realise this desired position. It is useful to construct a network
that additionally estimates the position of mass m2 at one time step later, 2,. This estimated
position can be regarded as the desired position of mass m2 while mass ml follows a
prescribed path. The reason for this additional part is the use of a control law, to be explained
later.

The input to and output of the neural network are (see Figure 18):

18

XI 00 * Neural
x2 00
%@-i> + Network
XI &-i)

*

xl (desired & real) x2 (predicted & real)

"'k),

x2 (k + i) *

-20' i -4' I
O 5 10 O 5 10

10 4

5 -

0 - 0 .

-5. -2

-1 o 4

2 - r

.

Figure 19: Desiredposition of mass I , estimatedposition of mass 2 and real position of both masses.

19

Ideníificaiion ofDynainica1 Systems with Fricíion Usii7.r Neural Netivoi-k~

u

0 -

-5

-1 o

1500

I

\

-1 500'
O 1 2 3 4 5 6 7 8 9 1 0

time

Figure 20: Neededforce to realise the desired position of mass I .

When the initial conditions of the system deviate from the desired initial conditions, a
control mechanism can be applied to quickly eliminate the differences. A suitable control law
is the PD-controller, implemented by

+Q@,,(k +i>-X,(k)) + D 2 (q C +l)- X2(k))

where u d is the needed force, to obtain the desired position of mass 1, computed by the neural
network. In the previous test the initial positions were xI(0) =lo and x2(0) = 5 instead of the
desired xi = x2 = O. Therefore the desired and real positions differed in the beginning Using
the PD-control law with all coefficients equal to ten, the error in the positions disappears
much faster, as shown by Figure 21.

xl (desired & real)

15-

><2 (predicted & real)

67

-15' 1
O 5 10

error of xl

I
O 5 10

error of x2

Figure 21: Desired, estimated and real posifions when using a PD-control law.

20

Identification of Dynamical Systems with Friction Using NeuraI Networks

6. Discussion & conclusion

For the training of a neural network, several optimization techniques are available. The
technique used has much influence on the performance of the neural network. Because.
dependent on the chosen training technique, the training may stop in a local minimum xi th a
large average squared output error, or continue till a small output error is attained. An often
used algorithm is backpropagation, but because of its slow convergence and its high chance
to become trapped in a local point on the error surface, other training alrorithrns may be more
satisqing and less irritating. A good alternative is the Levenberg-Marquardt optimization
technique. Perhaps some modification to this technique can improve its performance even
more.

A second-order linear dynamical system (a double mass-spring-damper system without
friction, with as input a force working on one mass and as output the positions of both
masses) can easily be identified with a prediction type network without hidden neurons A
non-linear dynamical system (the same system but with the addition of friction) can be
identified with a neural network with only a few hidden neurons. When testing with a
simulation model instead of a prediction model, the network output deviates strongly fiom
the desired output. This is not surprising, because the network has not been trained for
simulation. Creating a simulation type network that performs well, will be difficult, as the
input to the network is not the real but the (by the network) estimated output of the system.
A deviation of the network output will affect the next output. So the output error can
increase with time resulting in an unstable system. In view of this problem, a neural nehvork
with a simulation model is a challenge for further research.

If the neural network has to estimate the force needed to realise a prescribed displacement
of mass 1, this displacement is attained with a small error. However, the calculated force
fluctuates between large positive and negative values, for some unsolved reason. Additionally
the network is able to give an estimation of the displacement of mass 2. This can be used to
implement a control law to eliminate deviations in the initial conditions.

In this numerical study a simulated dynamical system provided the data for training and
testing the neural network. A logical continuation on this research would be to train and
implement a neural network on the basis of a real system. Data obtained from real
measurements introduce additional complexities like noise and measuring faults

21

Identification of Dynamical Systems with Friction Using i\:fural Networks

References

[13 Adby, P.R. and Dempster, M. A.H. Introduction to Optimization Methods. Chapman
And Hall, London, 1974

[2] Billings, S.A., Jamaluddin, H.B. and Chen, S. Properties of Neural Networks with
Applications to Modelling Non-linear Dynamical Systems. Internutional Journal on
Control, vol. 55, no. 1, p193-224, 1992

[3] Bulsari, A. and Saxén, H. Non-linear Time Series Analysis by Neural Networks: An
Example. IEEE P,roceedings of the Internationd Joint Conference OB _IVezn.al Ahworks,
vol. 1, ~995-998, 1993

[4] Cybenko, G. Approximation by Superpositions of a Sigmoidal Function. Mathematics
of Controls, Signals andSystenis, vol. 2, p303-3 14, 1989

[51 Haykin, S. Neural Networks, a Comprehensive Foundation. Maxwell Macniillan, 1994

[61 Fausett, L. Fundamentals of Neural Networks. Architectures, Algorithms and
Applications. Prentice Hall, 1994

[7] Freeman, J.A. and Skapura, D.M. Neural Networks: Algorithms, Applications and
Progumming Techniques. Addison-Wesley, 1992.

[8] Kollons, S. and Anastassiou, D. An Adaptive Squares Algorithm for the Efficient
Training of Artificial Neural Networks. IEEE Transactions on Circuits and Systems,
vol. 36, no. 8, p1092-1101, 1989

[9] Narendra, K.S. and Parthasarathy, K. Identification and Control of Dynamical Systems
Using Neural Networks. IEEE Transactions on Neural Networks, vol. 1, p4-27, 1990

[101 Ojala, P., Saarinen, J. and Kaski, K. Device Modelling for VLSI Circuit Design with
Technology Independent Neural Network Interface. IEEE Midwest Symposrunz oiz
Circuits and Systems, vol. 1, p688-693, 1995

[l i] Pal, C., Hagiwara, I., Kayaba, N. and Morishita, S. Dynamic System Identificztion by
Neural Network: A New, Fast Learning Method Based on Error Back Propagation.
Journal of Intelligent Material System and Structures, vol. 5, p 127- 13 5, i 994

[121 Polyak, B.T. Introduction to Optimization. Optimization Software, New York, 1987

[i31 Qin, S.Z., SU, H.T. and McAvoy, T.J. Comparison of Four Neural Net Learning
Methos for Dynamic System Identification. IEEE Transactions on Neural Networks,
vol. 3, no.1, p122-130, 1992

22

Identification of Dimamical Systems with Friction UsinP Neusal Neíworks

Appendix A: Backpropagation

In backpropagation the "gradient method" is used for minimizing the output error. The
gradient method is an optimization technique based on linear approximation of the objective
function. Say one wishes to find the w for which the function E(w) is minimal. Then the
gradient method gives a simple iteration formula:

where
n is the iteration number
rln

VE(w(n)) is the gradient of E(w(n)) at a point y(n) , a vector with components
is the stepsize (2 O), often vn = 7 for all iteration steps n

This method is the same as choosing the ''local steepest descent" (The steepest descent
direction is opposite to the gradient direction.), and is often called "method of steepest
descent". In the neural network application with backpropagation, w is the weight vector
containing all input weights to the zth neuron of layer Z (including the threshold b:), wf with

components wI1 ,-. ., WIN,- , ,b:) . E is the partial error function E(k) or average error function

EreV and 77 is the learning rate parameter. So the basic idea is to evaluate the partial derivative
of the error function with respect to the weights.

(l

The weights are updated according to

with the increment AW:.~(~) given by

(This is the adjustment in batch mode, which has been used in this study. In pattern learning
the summation over k has to be omitted.)

With the use of &(k), the error signal of the zth neuron of the Zth layer, which is back-
propagated in the network, this equation can be transformed into

The errcr signal at the output neurons (in layer m) is

and for the neurons in the hidden layer

23

r

Identifcation of Dynamical Systems with Friction Usiiig Neural Networks

The smaller the learning rate parameter 77, the smaller the changes to the weights in the
network will be from one iteration to the next. This smoother trajectory in weight space is
attained at the cost of a slower convergence. If, on the other hand, the learning rate is too
high so as to speed up the rate of learning, the resulting large chwges in weights may cause
an unstable network. The backpropagation method can be improved by using an "adaptive
learning rate" q, which is not fixed, but changes with the iteration n. Another method to
increase the rate of learning and yet tc zvoid the danger of instability is to modi@ the weight
increment by including a momentum term a,, (O 5 la,,] 2 l), which determines the influence of
past weight changes on the current direction of movement in the weight space, as shown by

K
Aw:, (n) = a,Aw:, (n- 1) + vnc 4 (k)x:-'(k)

k=l

The inclusion of momentum in the backpropagation algorithm tends to accelerate descent of
the partial derivative dE(k)/ahJ,(k) in steady downhill directions and has a stabilizing effect in
directions that oscillate in sign. The momentum term may also reduce the chance that the
learning process terminates in a shallow local minimum on the error surface instead of the
desired global minimum.

24

Ideii tijcution of Dyiiamical Systems with Friction Using Neural Networks

Appendix B: Levenberg-Marquardt optimization

In the gradient method, the notion of local linear approximation of the objective function
f(x) is basic. Another approach is to use the quadratic approximation at a point x(n), i.e. the
function

where
(.;)
V2fx)

is the scalar product in R'; (X J) = x f i l + ... + xg,
is the Hessian matrix H with elements 2'fc.) / &,aj

Then the iteration function is

x (n + 1) = x(n)-[v2f(x(n))]-lvf(x(n))

This is Newton's method

The Levenberg-Marquardt optimization technique is a modification of Newton's method,
to make it globally convergent. The iteration function is

where I is the unity matrix (or unity second order tensor). For a, = O the method becomes
Newton's. As a, -+ 00 the direction tends to the antigradient (steepest descent). Thus this
formula is a compromise between these two methods.

25

	Voorblad
	Abstract
	Contents
	1. An introduction to neural networks
	2. The network architecture
	3. Function approximation
	4. Second-order linear dynamical system
	5. Second-order with friction
	6. Discussion & Conclusion
	References
	Appendix A: Backpropagation
	Appendix B: Levenberg-Marquardt optimization

