

On-site customer analytics and reporting (OSCAR)

Citation for published version (APA):
Thomaidis, P. (2014). On-site customer analytics and reporting (OSCAR): a portable clinical data warehouse for
the in-house linking of hospital and telehealth data. [EngD Thesis]. Technische Universiteit Eindhoven.

Document status and date:
Published: 01/10/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/f6803932-ce5b-420c-bbe9-1c5e9c1836d3

 On-Site Customer Analytics and

Reporting (OSCAR)

Panagiotis Thomaidis
September 2014

On-Site Customer Analytics and
Reporting (OSCAR)

Panagiotis Thomaidis

September 2014

i

ii

On-Site Customer Analytics and Reporting (OSCAR)
A portable clinical data warehouse for the in-house linking of hospital

and telehealth data

Panagiotis Thomaidis

Eindhoven University of Technology
Stan Ackermans Institute / Software Technology

Partners

Philips Research Eindhoven University of Technology

Steering
Group

Helen Schonenberg
Charalampos Xanthopoulakis
Mykola Pechenizkiy

Date September 2014

iii

Contact
Address

Eindhoven University of Technology
Department of Mathematics and Computer Science
MF 7.090, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
+31402474334

Published by Eindhoven University of Technology

Stan Ackermans Institute

Printed by Eindhoven University of Technology

UniversiteitsDrukkerij

ISBN 978-90-444-1316-8

A catalogue record is available from the Eindhoven University of
Technology Library
(Eindverslagen Stan Ackermans Instituut ; 2014/058)

Abstract This document conveys the results of the On-Site Customer Analytics
and Reporting (OSCAR) project. This nine-month project started on
January 2014 and was conducted at Philips Research in the Chronic
Disease Management group as part of the H2H Analytics Project.

Philips has access to telehealth data from their Philips Motiva tele-
monitoring and other services. Previous projects within Philips Re-
search provided a data warehouse for Motiva data and a proof-of-
concept (DACTyL) solution that demonstrated the linking of hospital
and Motiva data and subsequent reporting. Severe limitations with the
DACTyL solution resulted in the initiation of OSCAR. A very im-
portant one was the unwillingness of hospitals to share personal pa-
tient data outside their premises due to stringent privacy policies,
while at the same time patient personal data is required in order to link
the hospital data with the Motiva data. Equally important is the fact
that DACTyL considered the use of only Motiva as a telehealth source
and only a single input interface for the hospitals.

OSCAR was initiated to propose a suitable architecture and develop a
prototype solution, in contrast to the proof-of-concept DACTyL, with
the twofold aim to overcome the limitations of DACTyL in order to
be deployed in a real-life hospital environment and to expand the
scope to an extensible solution that can be used in the future for mul-
tiple telehealth services and multiple hospital environments.

In the course of the project, a software solution was designed and con-
sequently deployed in the form of a virtual machine. The solution
implements a data warehouse that links and hosts the collected hospi-
tal and telehealth data. Hospital data are collected with the use of a
modular service oriented data collection component by exposing web
services described in WSDL that accept configurable XML data mes-
sages. ETL processes propagate the data, link, and load it on the OS-
CAR data warehouse. Automated reporting is achieved using dash-
boards that provide insight into the data stored in the data warehouse.
Furthermore, the linked data is available for export to Philips Re-
search in de-identified format.

Keywords telehealth, hospital information systems, Motiva, data warehouse, web
services, virtualization

Preferred
reference

P.Thomaidis, On-Site Customer Analytics and Reporting (OSCAR):
A portable clinical data warehouse for the linking of hospital and tele-
health data. Eindhoven University of Technology, SAI Technical Re-
port, September, 2014. (978-90-444-1316-8)

iv

Partnership This project was supported by Eindhoven University of Technology
and Philips Research.

Disclaimer
Endorsement

Reference herein to any specific commercial products, process, or
service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation,
or favoring by the Eindhoven University of Technology or Philips
Research. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the Eindhoven University of Tech-
nology or Philips Research, and shall not be used for advertising or
product endorsement purposes.

Disclaimer
Liability

While every effort will be made to ensure that the information con-
tained within this report is accurate and up to date, Eindhoven Univer-
sity of Technology makes no warranty, representation or undertaking
whether expressed or implied, nor does it assume any legal liability,
whether direct or indirect, or responsibility for the accuracy, com-
pleteness, or usefulness of any information.

Trademarks Product and company names mentioned herein may be trademarks

and/or service marks of their respective owners. We use these names
without any particular endorsement or with the intent to infringe the
copyright of the respective owners.

Copyright Copyright © 2014. Eindhoven University of Technology. All rights

reserved.
 No part of the material protected by this copyright notice may be re-

produced, modified, or redistributed in any form or by any means,
electronic or mechanical, including photocopying, recording, or by
any information storage or retrieval system, without the prior written
permission of the Eindhoven University of Technology and Philips
Research.

v

Foreword
When it comes to research, it is commonplace that your project objectives are often
vague or you begin your efforts based on – later proved – false assumptions. You are
usually aware of the tools and technologies to employ, yet it is far from certain that your
outcome shall live up to your expectations. Things look “easy” or “difficult” depending
on the assumptions you make in the early beginning.

In the H2H business unit of Philips Research, we take pride in delivering innovation that
matters to people’s lives, with a particular focus on Telehealth services and applications.
Towards improving our inventions, we are constantly looking for the facts and figures
that can allow us to evaluate the efficiency and efficacy of our remote patient health
monitoring applications. In order to close the loop between patient hospitalizations and
home tele-monitoring and investigate the Return On Investment for our services, we
need to combine the patient clinical and telehealth data. It was fair to assume that such a
linkage could easily take place at the comfort of an office at the High Tech Campus.

Hardly was that really the case. Stringent privacy and data protection laws expressly
forbid the export of personal patient clinical data outside the hospital premises. This
entailed that clinical and telehealth data analysis and linkage must take place on-site,
notwithstanding the variability and complexity of Hospital IT Infrastructures. This ren-
dered the deliverable of the DACTyL project non-deployable and gave rise to the OS-
CAR project in January 2014.

Panagiotis worked meticulously in order to derive a comprehensive software architec-
ture that could fit into the variability of Hospital IT Infrastructures, perform the linkage
in-house and generate the necessary reports and exports. Thinking out of the box, he
proposed a design that welcomed changes; rather than enforcing an interconnection
standard to Hospital IT, he suggested constructing the interfaces dynamically, based on
the messaging formats favored by the Hospital administrators; instead of placing hard-
ware equipment inside the Hospital server room, he implemented OSCAR, a configura-
ble Virtual Machine that could fit in a USB stick and be directly deployed on the Hospi-
tal VMware infrastructure. His solution was ingeniously crafted, easily configurable,
and seamlessly integrating into the Hospital IT infrastructures.

As a trainee for 9 months in Philips Research, Panagiotis lived up to my original expec-
tations. A so-called “silent power”, he would be working quietly in his desk, drafting
potential design alternatives on the whiteboard, asking the key questions, and proposing
the appropriate solutions. As a graduate of the Electrical and Computer Engineering
Faculty of the Aristotle University of Thessaloniki (AUTH), I was confident about his
technical background and I appreciate the inquiring mind he developed in his OOTI
program. I would only advise him to work on his presentation skills, as I can sense the
stiff “engineer” attitude that AUTH graduates often have.

Upon writing these lines, we are considering the ways of taking his work even further,
by aligning OSCAR with the Philips Healthcare Platform and performing benchmarking
and qualitative analysis. His work would serve as a reliable basis to start from.

Charalampos Xanthopoulakis PDEng, Senior Software Designer, Philips Research
September 2014

vi

Preface
This document is the technical report of the On-Site Customer Analytics and Re-
porting (OSCAR) project. The report describes the design and development of a
portable, extensible analytical system capable of combining hospital and tele-
health data in order to provide automated reporting. The project lasted for nine
months (January - September 2014) and was conducted for and within Philips
Research, in Eindhoven.

This document also constitutes the final thesis of the author, Panagiotis Tho-
maidis as part of the Stan Ackermans Institute Software Technology PDEng pro-
gram of the Eindhoven University of Technology and should serve as proof of his
skills as a software designer. The Professional Doctorate in Engineering (PDEng)
program, also known by its Dutch name Ontwerpers Opleiding Technische In-
formatica (OOTI), spans two years of training and projects for various industry
partners. OSCAR is the author’s final project that concludes the PDEng program.

The work of the author included technical aspects such as collecting the require-
ments, creating the architecture, design, and implementation and project man-
agement aspects such as planning and documenting.

Non-technical readers should refer to Chapters 1, 2 and 3 that set the context and
goals of the project and Chapter 11 where the results are summarized. Technical
readers will be interested in Chapters 5-9 that describe the system requirements,
architecture, design, implementation, and deployment respectively.

September 2014

vii

Acknowledgements
A number of people contributed through the duration of this project. First and
foremost I would like to thank Helen Schonenberg and Charalampos Xanthopou-
lakis my supervisors from Philips Research. On our weekly update meeting they
provided guidance and support in the development effort of this project. I would
also like to thank Mykola Pechenizkiy my TU/e supervisor for his valuable con-
tribution and meaningful feedback.

All the OOTI coaches should be thanked for improving my technical and profes-
sional skills in this two year program. I would also like to thank my colleagues at
OOTI who provided a friendly and constructive working atmosphere. Special
thanks should go to Ad Aerts the General Director of the Software Technology
program and Maggy De Wert, the OOTI secretary.

I would also like to thank the anonymous community of the internet who provid-
ed answers to technical questions, problem solving, tutorials, and useful domain
knowledge.

Last but not least I would like to thank my family and loved ones for their support
during the past two years and especially during the writing of this report.

Panagiotis Thomaidis
September 2014

ix

Executive Summary
The On-Site Customer Analytics and Reporting (OSCAR) project lasted nine
months and was conducted at Philips Research in the Chronic Disease Manage-
ment group as part of the H2H Analytics Project. Its goal was to develop an ex-
tensible data warehousing framework that collects and links hospital and tele-
health data and provides automated reporting and Return on Investment analysis
of telehealth solutions.

Philips has access to telehealth data from their Motiva tele-monitoring and other
services. Previous projects within Philips Research provided a data warehouse for
Motiva data and a proof-of-concept solution, DACTyL, which demonstrated the
linking of hospital and Motiva data and subsequent reporting. Severe limitations
with the DACTyL solution resulted in the initiation of OSCAR. A very important
one was the unwillingness of hospitals to share personal patient data outside their
premises due to stringent privacy policies, while at the same time patient personal
data is required in order to link the hospital data with the Motiva data. Equally
important is the fact that DACTyL considered the use of only Motiva as a tele-
health source and only a single input interface for the hospitals.

OSCAR was initiated to propose a suitable architecture and develop a prototype
solution, in contrast to the proof-of-concept DACTyL, with the twofold aim to
overcome the limitations of DACTyL in order to be deployed in a real-life hospi-
tal environment and to expand the scope to an extensible solution that can be used
in the future for multiple telehealth services and multiple hospital environments.

In the course of the project, a software solution was designed and consequently
deployed in the form of a virtual machine. The solution implements a data ware-
house that links and hosts the collected hospital and telehealth data. Hospital data
are collected with the use of a modular service oriented data collection compo-
nent by exposing web services described in WSDL that accept configurable XML
data messages. ETL processes propagate the data, link, and load it on the OSCAR
data warehouse. Automated reporting is achieved using dashboards that provide
insight into the data stored in the data warehouse. Furthermore, the linked data is
available for export to Philips Research in de-identified format.

Extensibility of the solution is achieved first of all with the use of a modular data
collection component that allows new web services to be implemented and placed
to work side-by-side the existing ones. While it was considered that a generic
non-programming solution was not feasible for the data collection component we
kept the software design simple while automating the extension and customiza-
tion process as much as possible. For the data warehouse and reporting compo-
nents, the use of off-the-self tools allows for easy maintenance and extensions.
More specifically, new facts and dimensions, new ETL processes, new OLAP
cubes, and new dashboards can be added to the system, to support new reporting
requirements without affecting the existing ones.

All in all, OSCAR provides Philips with a framework that can serve as the basis
portable analytics platform for supporting reporting for its healthcare customers
in the future.

xi

Table of Contents
Foreword .. vi

Preface ... vii

Acknowledgements .. ix

Executive Summary ... xi

Table of Contents ... xiii

List of Figures ... xvii

List of Tables .. xix

1. Introduction ... 1

1.1 Context ... 1

1.2 Motivation .. 1

1.3 Motiva .. 2

1.4 Project history .. 3
1.4.1. Motiva Data Warehouse (Motiva DWH) 3
1.4.2. Data Analytics, Clinical, Telehealth, Link (DACTyL) 4

1.5 OSCAR Scope and Goals ... 6

1.6 Report outline ... 7

2. Stakeholder Analysis ... 8

2.1 Philips Research ... 8

2.2 Eindhoven University of Technology (TU/e) 8

2.3 St. Anna hospital in Geldrop .. 8

3. Problem Analysis ... 10

3.1 DACTyL constraints ... 10

3.2 OSCAR ... 10

3.3 Design opportunities .. 12

4. Domain Analysis .. 13

4.1 Introduction .. 13

4.2 The healthcare data domain (healthcare analytics) 13
4.2.1. Hospital Information Systems (HIS) 13
4.2.2. Healthcare Standards ... 14

4.3 Business Intelligence (BI) and Data Warehousing 16

4.4 Web Services .. 20

4.5 Virtualization .. 21

xiii

5. System Requirements .. 23

5.1 Requirements overview ... 23

5.2 User roles ... 23

5.3 Use case scenarios ... 24

5.4 Functional requirements .. 26

5.5 Non-functional requirements .. 27

6. System Architecture .. 29

6.1 OSCAR as a black box .. 29

6.2 OSCAR system overview .. 31

6.3 Data Collection .. 31
6.3.1. Data flow ... 32

6.4 Data Warehouse and Reporting ... 34

7. System Design .. 37

7.1 Data Collection .. 37
7.1.1. Landing Area (Persistence layer) ... 38
7.1.2. Web Service layers .. 38
7.1.3. Web services internal design ... 39
7.1.4. Landing Area schema .. 41

7.2 Data Warehouse ... 43
7.2.1. Data Warehouse schema .. 43
7.2.2. Loading the landing area data into the data warehouse 44
7.2.3. De-identification .. 45

7.3 Reporting .. 45

8. Implementation .. 47

8.1 Process ... 47

8.2 Technical background .. 47
8.2.1. Microsoft SQL Server [7] and related tools............................. 47
8.2.2. Microsoft SharePoint [10] ... 48
8.2.3. Eclipse [11] .. 48
8.2.4. Java annotations [14] ... 49
8.2.5. Apache Axis [6] ... 49
8.2.6. Hibernate [15] .. 49
8.2.7. Apache Tomcat [17] .. 51
8.2.8. VMware tools [19] ... 51

8.3 Data Collection .. 52
8.3.1. Landing Area ... 52
8.3.2. Design alternatives .. 54

8.4 Data Warehouse ... 56
8.4.1. Design Alternatives ... 56

8.5 Reporting .. 56

9. Deployment .. 59

9.1 General ... 59

xiv

9.2 Deployment at Philips .. 60

10. Verification & Validation .. 61

10.1 Verification ... 61

10.2 Validation ... 61

11. Conclusions ... 65

11.1 Results... 65

11.2 Future work .. 66

12. Project Management .. 67

12.1 General ... 67

12.2 Process ... 67

12.3 Communication ... 68

13. Project Retrospective ... 71

13.1 General ... 71

13.2 Design opportunities revisited .. 71

13.3 Challenges .. 71

13.4 Strong Points .. 71

13.5 Improvement Points .. 72

Glossary ... 73

Bibliography .. 75

About the Authors .. 77

xv

List of Figures
Figure 1 - OSCAR organizational context ... 1
Figure 2 - Motiva Architecture .. 2
Figure 3 – The projects that led to OSCAR. .. 3
Figure 4 - DACTyL off-site deployment ... 5
Figure 5 - DACTyL on-site deployment .. 5
Figure 6 - OSCAR Envisioned Architecture ..11
Figure 7 - Hospital Interface Engine...14
Figure 8 - Main classes of the HL7 Reference Information Model15
Figure 9 - Data warehouse generic architecture ...16
Figure 10 - Example of a simple star schema ...18
Figure 11- OLAP cube with 3 dimensions [2] ..19
Figure 12 - The web services stack ...20
Figure 13 - OSCAR use case scenarios ..25
Figure 14 - OSCAR technical context ..29
Figure 15 - OSCAR high-level architecture ...31
Figure 16 - OSCAR data flow ..32
Figure 17 - Input transformation without a landing area33
Figure 18 - Input transformation with a landing area ...33
Figure 19 - Interfacing via a common data model ..34
Figure 20 - OSCAR data linking ..35
Figure 21 - Data Collection component structure ...37
Figure 22 - Data Collection component design ..39
Figure 23 - Data flow within the landing area web service39
Figure 24 - Landing Area web service ..40
Figure 25 - Hospital data web service ..41
Figure 26 - Input transformations using a landing area ..41
Figure 27 - Example of a landing area schema based on the data warehouse

schema ...42
Figure 28 - OSCAR Data Warehouse component ..43
Figure 29 - Landing area example ..44
Figure 30 - OSCAR Reporting component ...45
Figure 31 - ETL processes built with SSIS ...48
Figure 32 - Hibernate mapping file ..50
Figure 33 - Java class with JPA annotations ...50
Figure 34 - Database Hospitalization table ...51
Figure 35 - Java Hospitalization class ..51
Figure 36 - Landing Area Generator components ..53
Figure 37 - Landing Area Generator workflow ..53
Figure 38 - Data flow within the landing area web service53
Figure 39 – Data collection implementation workflow ..54
Figure 40 - OSCAR hospital deployment diagram ...59
Figure 41 - OSCAR project timeline ..68

xvii

List of Tables
Table 1 - Example of ICD-10 Hierarchy .. 16
Table 2 - Simplified report on hospitalizations [1] .. 20
Table 3 - OSCAR user roles ... 24
Table 4 - OSCAR aspects and role concerns .. 24
Table 5 - OSCAR functional requirements ... 27
Table 6 - OSCAR non-functional requirements .. 27
Table 7 - The input philosophy of hospital vs. telehealth data 30
Table 8 - Technologies used per OSCAR component 47
Table 9 - Persistence technology options ... 55
Table 10 - Data transformations technology options 55

xix

1.Introduction

This chapter introduces the On-Site Customer Analytics and Reporting (OSCAR)
project and its context. More specifically, the organizational context and previous
relevant projects are presented. An outline of the rest of this report is also provided.

1.1 Context
Philips Research is part of the Philips Corporation. Its function is to provide technol-
ogy options for innovations in the areas of Healthcare, Consumer Lifestyle, and
Lighting. Philips Research works on everything from spotting trends and ideation to
proof of concept and, where needed, first-of-a-kind product development [1]. Within
Philips Research, OSCAR is part of the H2H Analytics Project, which is part of the
Chronic Disease Management group, as shown in Figure 1.

Figure 1 - OSCAR organizational context

1.2 Motivation
The ever increasing cost of healthcare is a modern challenge that affects govern-
ments, insurance companies and care providers. Hence, a major challenge in
healthcare is to provide high-quality care for an increasing number of patients more
efficiently using limited financial and human resources [2].

One of the actions towards the direction of cost reduction is the increased use of tele-
health. Philips Research is actively involved in innovations in the telehealth domain.
This domain covers a family of products and services that address health related
needs of people in a decentralized way. In telehealth systems, the caregiver is geo-
graphically separated from the care consumer and the treatment is individually tai-

Philips Research

Chronic disease
management group

H2H Analytics project

Work-stream 4:
Models for Data

Management,
Reporting &

Analytics

OSCAR

1

lored to the patient’s needs. This patient-centered concept of bringing the care from
the hospital to the patient at home is expected to result in cost-reduction as it aims to
reduce the number of hospitalizations [2]. In the area of telehealth, Philips offers Mo-
tiva, a system that supports chronic disease management, including telehealth, educa-
tion and coaching. The Motiva system is managed by the Hospital to Home (H2H)
business sector of Philips Healthcare.

Philips is interested in supporting customer (e.g. hospitals) reporting needs and ob-
taining healthcare data for research purposes. More specific to the aim of OSCAR,
there is a demand for linked hospital and telehealth data, so as to investigate the tan-
gible benefits of Philips telehealth services, a particular use case being the reporting
on the Return on Investment of the Motiva service.

1.3 Motiva
Motiva serves as a telehealth data source for OSCAR. For this reason, it is briefly
described here, to provide the reader with an overview of the Motiva system in par-
ticular, but also telehealth systems in general.

Using measurement devices, such as weighing scales, blood pressure monitors and
glucose meters enhanced with the Bluetooth technology, the vital signs of a patient
are transmitted to a set-top box. That device acts as a medical gateway; see Figure 2,
as it maintains a connection with a back-end subsystem that collects the health status
information of the patient. The operator of the back-end, the so-called Motiva nurse,
has a good overview of the patient’s health. The nurse can intervene with the aim to
stabilize the patient within a safe zone and prevent any unnecessary hospitalization of
the patient. To improve the efficiency of the system, the developers of the Motiva
system introduced the Care Plan, an integral set of messages, reminders, surveys and
videos that are used to stimulate the patient into maintaining a healthier life-style.
The Motiva system is managed by the Hospital to Home (H2H) business sector of
Philips Healthcare.

Figure 2 - Motiva Architecture

Figure 2 shows the three main components that comprise Motiva:

• The measuring devices and medical gateway in the patient’s home
• The back-end which hosts a database that maintains all Motiva data
• A health clinic call center where the Motiva nurse is located

2

The operation of Motiva consists of the following steps:

1. The patient takes his vital-sign measurements using the corresponding elec-
tronic devices

2. The measurements are transferred to the medical gateway via Bluetooth
3. The medical gateway sends the data to the Motiva DB for storage and pro-

cessing
4. The Motiva nurse views the patient data, vital signs, lab results, medications

on a Clinical UI and intervenes if necessary
5. The patient views measurements, messages, videos, and surveys on his tele-

vision

Motiva serves as the specific telehealth product whose data was used to demonstrate
OSCAR. The interest for OSCAR focuses in the Motiva DB, see Figure 2, and the
data that it contains. OSCAR is thus designed under the principle that it should be
compatible with Philips telehealth solutions that share the same general architecture
as Motiva.

1.4 Project history
The developments within Philips that led to OSCAR began with the Motiva system,
more particularly, the data collected in the Motiva DB and the need for an automated
reporting tool for it. Thus, the Motiva Data Warehouse (Motiva DWH) project was
conducted in which a data warehouse for Motiva data was developed to provide au-
tomated, scalable reporting on Motiva Key Performance Indicators (KPIs).

The need for linked telehealth and hospital data still remained. Therefore, the DAC-
TyL project was initiated. It delivered a proof-of-concept solution to answer the
question of whether the Motiva DWH system can be extended to link hospital and
telehealth data to provide combined reporting and how a system could be implement-
ed to gather the necessary hospital data.

OSCAR was initiated to continue were DACTyL left off in order to move from a
proof-of-concept solution to a functional prototype. Figure 3 depicts the sequence of
the projects that led to OSCAR. The projects are described in more detail in the fol-
lowing sections.

Figure 3 – The projects that led to OSCAR.

1.4.1. Motiva Data Warehouse (Motiva DWH)
The Motiva DWH project was an attempt for the creation of a telehealth data ware-
house. Its aim was to replicate the existing Motiva reporting in a data warehouse,
moving from labor intense, un-scalable, manual reporting to a scalable, automated
reporting system.

The outcome of this project is a data warehousing solution that consists of:

• An analytical database, with a data model in the form of a star schema, on
top of which various dashboards and reports can be built to investigate the
Key Performance Indicators (KPI’s) of Motiva

Motiva
Data

Warehouse
DACTyL OSCAR

3

• A set of ETL processes that load the data from the Motiva DB to the analyt-
ical database

• A set of reports that visualize the Motiva data, provided to demonstrate the
applications of the underlying data warehouse.

To give an impression of the reporting capabilities the data model contains the fol-
lowing fact tables:

• Task
• Suspension
• Vital measurement

And the following dimension tables:

• Location
• Clinician
• Patient
• Task
• Closing reason
• Suspension reason
• Measurement type

Readers unfamiliar with data warehousing and star schema concepts may refer to
Chapter 4.

The database was implemented using the Oracle Database (ODB) tool, the ETL was
implemented using the Oracle Data Integrator (ODI) tool, and the reporting using the
Oracle Business Intelligence (OBIEE) tool.

In conclusion the Motiva DWH project showed that a data warehouse is suitable for
automated reporting and provided a specific implementation customized on Motiva
data.

1.4.2. Data Analytics, Clinical, Telehealth, Link (DACTyL)
DACTyL was a proof-of-concept project launched to investigate:

• How to obtain hospital (clinical) data
• How to link hospital and telehealth data
• How to report on the linked dataset

The DACTyL solution was built on top of the Motiva DWH by expanding the data
warehouse schema to include hospital related tables (to record hospitalization events
with respect to the patient, admission, discharge, mortality dates, and diagnosis
codes) and by adding support for methods to accept hospital data and load them into
the data warehouse.

The DACTyL implementation had the following characteristics:

• Oracle tools for the data warehousing and reporting (the same as the Motiva
DWH project)

• A Java server hosted on the Apache server to accept hospital data in the
form of XML messages

• Reporting on hospitalization events, in addition to those of the Motiva DWH
• Implementation on a physical machine (laptop)

4

There were two possible deployment options for the DACTyL system, namely de-
ployment within Philips or within the hospital. The two options are depicted in Fig-
ure 4 and Figure 5.

Hospital Philips Research

DACTyL

Cardiologist

Hospital Information System

Hospital IT Infrastructure

SOAP & XML

Virtual Machine

Reports

Philips Corporate Laptop

Web Service

Researcher

Motiva
Data

Reports

Figure 4 - DACTyL off-site deployment

Hospital

DACTyL

Cardiologist

Philips Corporate Laptop

Hospital Information System

Hospital IT Infrastructure

Web Service
SOAP & XML

Researcher

Virtual Machine

Motiva
Data

Reports Reports

Figure 5 - DACTyL on-site deployment

In Figure 4, the St. Anna hospital is depicted on the left and Philips Research on the
right. Within the hospital lies the hospital information system that contains, among
others, the data stores and communication sub-systems that DACTyL interacts with.
The DACTyL system is hosted within Philips Research. This deployment assumes a
communication channel between the hospital information system and DACTyL via
the internet, so that DACTyL can collect the necessary hospital data in a push-
fashion model. Telehealth data would already be loaded on the DACTyL data
warehouse. After the data is collected and linked, reports are provided to the
cardiologists and researchers. Nevertheless, this approach has a very important limi-
tation. That is, the unwillingness of hospitals to share personal patient data outside
their premises due to stringent privacy policies, while at the same time personal pa-
tient data is required in order to link the hospital data with the Motiva data.

The limitations with the off-site deployment led to the on-site deployment, Figure 5,
where the laptop that hosts DACTyL has been moved to the hospital. This deploy-

5

ment option met the unwillingness of the hospital IT department to accept the de-
ployment of foreign hardware on their premises, due to security concerns.

Despite its limitations, the results of the DACTyL project were demonstrated in a
hospital (St. Anna Ziekenhuis, Geldrop) on their request, where they acknowledged
the added value of linked reporting offered by DACTyl. This, in combination with
the limitations of DACTyL was the start of the current project. The limitations of
DACTyL are described in Chapter 3 where the problem analysis of OSCAR is
performed.

1.5 OSCAR Scope and Goals
In previous work within Philips, the Motiva DWH project demonstrated the applica-
tion of data warehousing and automated reporting on Motiva data (telehealth). DAC-
TyL went one step further and combined hospital and Motiva data. OSCAR is based
on the proof-of-concept DACTyL and was initiated to build upon it, to make it scala-
ble and suitable for deployment at hospitals. To build upon the DACTyL system,
OSCAR aims to address those requirements that are needed to deploy it in a real-life
context, such as interoperability and extensibility. In addition the DACTyL system
should be re-designed and re-implemented using more appropriate technologies.

OSCAR aims to create a hospital and telehealth analytics framework. Specific im-
plementation details of this framework include the interfaces used for the data collec-
tion, the schemas of the databases in the system, and the design of the exposed re-
ports-dashboards; these aspects define the business processes or use cases that OS-
CAR supports. While DACTyL supported one business process, namely patient hos-
pitalizations, OSCAR aims to develop a system that is extensible to multiple business
processes. For example OSCAR may initially support reporting on patient hospitali-
zations intended to provide an overview to the hospital clinicians. Later, when a new
reporting need is identified, for example vital sign measurement reports, OSCAR will
need to be extended to accept the new data, store it, and provide the corresponding
reports.

OSCAR enables Philips to begin cooperation with the hospital stakeholders in order
to define specific input data interfaces to support and business processes to report on.
This process can only take place in an iterative, agile, fashion in collaboration with
the relevant stakeholders, the hospital clinicians, IT department and data owners.
This includes the issue of gathering requirements for specific end-user reports. We
consider this the topic of future work and thus outside of our scope.

All in all, OSCAR is expected to provide value to Philips by:

• Addressing customer reporting needs, for example to provide new insights
based on the complete patient’s story as he moves between home monitoring
and hospitalization

• Enabling and providing experience on the cooperation with hospitals and
other healthcare business partners, for example from a legal perspective

• Providing a source for linked hospital and telehealth data for research pur-
poses, which can be used for the development of new models and algorithms

The OSCAR project covers the following:

• Design and implementation of the functionality as mentioned in the system
functional and non-functional requirements

• Investigation of relevant technical and healthcare standards
• Investigation of alternative technologies
• Creation of examples of reports (interactive dashboards) to demonstrate its

functionality

6

1.6 Report outline
Chapter 2 introduces the OSCAR stakeholders and explains their interest and influ-
ence in the project.

Chapter 3 describes the problem of collecting and linking healthcare data and
providing reporting in the context of this project

Chapter 4 provides the reader with the necessary domain knowledge, including clin-
ical and data warehousing concepts, to understand the later chapters.

Chapter 5 documents the functional and non-functional system requirements. It also
explains the user roles that are associated with OSCAR and lists important con-
straints.

Chapters 6, 7, and 8 describe the proposed solution in terms of its architecture, de-
sign, and implementation. The design decisions are documented and there are links
back to the system requirements.

Chapter 9 describes issues related to the deployment of the OSCAR solution.

Chapter 10 documents how the system is tested and offers a mapping between the
implemented features and the system requirements.

Chapter 11 documents the results of OSCAR and outlines relevant future work.

Chapter 12 documents the project management activities.

Chapter 13 is a reflection of the author over the whole project and its process.
■

7

2.Stakeholder Analysis

This chapter provides a short overview of the parties that are stakeholders for the
OSCAR project.

2.1 Philips Research
Philips Research and more specifically the H2H Analytics project is interested in the
OSCAR software solution, the experience gained from the cooperation with the hos-
pitals, and the linked data that is collected. A more indirect stakeholder is the Philips
H2H business unit of Philips Healthcare which is planning future healthcare projects
(e.g. the Digital Healthcare Platform, a platform to create, deploy and manage health
applications) with which OSCAR must try to align.

Specific stakeholders from Philips are the following:

• Helen Schonenberg - R&D Scientist (Company Supervisor)
• Charalampos Xanthopoulakis PDEng - Senior Software Designer (Company

Supervisor)
• Steffen Pauws - Senior Scientist (Project Manager of the H2H Analytics

project)

Helen Schonenberg provided guidance concerning the form of the solution and pro-
vided most of the requirements. She was also the connection with the previous pro-
jects (Motiva DWH and DACTyL). The role of Charalampos Xanthopoulakis was
that of a technical advisor. He provided assistance with decisions concerning the ar-
chitecture, design and implementation and evaluated the proposed solutions. Steffen
Pauws communicated the longer term strategy from a business perspective.

Another Philips stakeholder is the Philips IT department which imposed specific re-
quirements on the used technologies.

2.2 Eindhoven University of Technology (TU/e)
The Eindhoven University of Technology is responsible for the educational aspect of
this project.

The representative stakeholder from the TU/e is Mykola Pechenizkiy - Assistant Pro-
fessor, who has the role of university supervisor. The university supervisor should
make sure that the design and documentation meet the standards of a PDEng project.
Meetings with the university supervisor took place every month in order to share and
discuss the state of the project. He also had the role of helping with the academic
aspects of the project.

Another TU/e stakeholder is Ad Aerts, the Program Director of the Software Tech-
nology PDEng program. He is a stakeholder in the sense that he must ensure that the
project meets the quality requirements of the PDEng program.

2.3 St. Anna hospital in Geldrop
The St. Anna hospital in Geldrop will be the organization where the OSCAR proto-
type is deployed. More specific stakeholders from the hospital are

• The clinicians at the hospital who will be the users of the reporting capabili-
ties of OSCAR

• The data owner who is responsible for maintaining the hospital data
• The hospital IT department who will be responsible for deploying and in-

tegrating with OSCAR

8

• The legal officer who is responsible for dealing with legal issues, such as
obtaining patient consents for using their data within the project

Discussions with the St. Anna hospital took place before the beginning of this pro-
ject, when the results of the DACTyL project were demonstrated to them. The dis-
cussion and demonstration served to get the hospital stakeholders interested in the
project, to establish some reporting requirements, and to discuss deployment options.
The outcome of those meetings heavily influenced the envisioned OSCAR solution
mostly by making apparent some constraints on the deployed system (privacy issues
in sharing patient personal data outside the hospital, security concerns when deploy-
ing foreign computers to the hospital). The constraints are discussed in the problem
analysis, Chapter 3, and the system requirements analysis, Chapter 5.
■

9

3.Problem Analysis

This chapter describes the problem that OSCAR attempts to solve. The problem de-
scription begins from the existing DACTyL solution.

3.1 DACTyL constraints
DACTyL was overall a successful project but it was bounded by certain limitations
which became apparent in follow-up meetings with the hospital stakeholders. The
results are summarized below.

• Results of DACTyL
o Working proof of concept
o Displayed end-to-end functionality (from XML input to hospitali-

zation reports)
o Displayed data linking and reports based on the source data sets

• Constraints imposed by the hospital
o Regarding the off-site deployment of DACTyL, hospitals may

share only de-identified patient data outside their context due to
strict privacy policies. Thus rendering data linking outside the hos-
pital impossible since it would require the hospital to share the per-
sonal details of their patients

o Regarding the on-site deployment, the hospital IT is skeptical about
hosting external computers (DACTyL laptop) within their premises

• Constraints provided by Philips IT
o The Philips IT department strongly favored the use of Microsoft

tooling and discouraged the use of the technologies employed in
DACTyL

As can be seen from the list of constraints, DACTyL could not be immediately de-
ployed to the hospital due to the aforementioned constraints. Also, the scope of
DACTyL was too narrow, as it only considered Motiva as its telehealth data source
and only hospitalizations events as the business process for which it collected data
and reported on. Thus, the interfaces with the hospital were custom made and not
extensible enough, as is the case with WSDL-based web services.

3.2 OSCAR
The aim of OSCAR was to expand on the solution proposed by the DACTyL project,
re-designing and re-considering the design decisions taken, in order to overcome any
weaknesses and make a realistic prototype. In addition, OSCAR was required to wid-
en the scope in order to take into account the scalability of the system to multiple
telehealth systems, multiple hospital business processes, and multiple sites (hospi-
tals).

OSCAR Problem statement: How can we provide on-site reporting on identified,
linked clinical and telehealth data for the clinician, combined with de-identified data
extracts for external researchers in a scalable, configurable way?

During our initial meetings the stakeholders from Philips Research described the
problem by using an envisioned solution, a proposed system with the desired charac-
teristics in order to communicate their view on the system requirements. This served
as an initial input to us, in order to later define and refine the system requirements,
which are described in Chapter 5.

In the envisioned solution the DACTyL laptop has been replaced by a virtual ma-
chine as the container that hosts the software system. The virtual machine should be
deployed within the hospital virtual machine infrastructure. The reason for choosing
a virtualized solution is twofold.

10

• It overcomes the constraint that the hospitals are not willing to accept for-

eign physical machines in their premises
• More and more hospitals turn to virtualized solutions to set-up their infra-

structure; therefore, it will be easy to deploy such a solution.

The envisioned architecture for OSCAR is shown on Figure 6.

Hospital Philips Research

Hospital Information System

OSCAR

Hospital IT Infrastructure Reports Reports

Respiratory

De-identified
Linked Data

SOAP & XML

SOAP & XML
Radiology

SOAP & XML

Cardiology

Cardiologist Researcher

Telehealth Data

Web Service

Figure 6 - OSCAR Envisioned Architecture

Figure 6 shows the separate hospital and Philips IT infrastructures. OSCAR is de-
ployed within the hospital. It gathers the hospital data from the various hospital data
stores and the telehealth data are uploaded from Philips. It presents the linked data to
the Cardiologist in the form of reports and also shares de-identified data with Philips
to be used by the researchers. The reader should note that the envisioned solution is
generic in the sense that it does not consider specific reporting use cases. This ge-
nericity was expected to be an important aspect of the final OSCAR solution.

The following steps explain the functionality of OSCAR:

1. Philips and a healthcare institution agree on some information that clinicians
wish to view on reports, for example that the clinicians want to receive an
overview of their patients’ hospitalizations along with their Motiva vital
sign measurements.

2. If OSCAR supports the desired interfacing and reporting functionality it can
be used as is. Otherwise the OSCAR maintainer configures an OSCAR in-
stance based on the agreed reporting requirements. OSCAR should be con-
figured to accept the necessary input data and generate the required reports-
dashboards.

3. OSCAR is given to the hospital IT administrator, for example in a storage
medium such as a USB stick or an external hard disk.

4. The hospital IT administrator installs OSCAR on the hospital virtual infra-
structure. In addition the hospital IT administrator must configure the net-
work access to the virtual machine.

5. The hospital IT administrator connects the hospital data sources to the OS-
CAR web interfaces. This allows the hospital data to be provided to OS-
CAR.

6. Messages from the hospital, containing for example hospitalization data, are
sent to OSCAR via the interfaces.

11

7. Motiva data is imported to OSCAR by the OSCAR maintainer after the hos-
pital IT administrator has given him/her access rights to the system. The da-
ta are digested by OSCAR, to extract for example Motiva vital sign meas-
urements and other information.

8. OSCAR generates and exposes reports based on the linked hospital and Mo-
tiva data. These reports contain personalized patient data and are intended
for the hospital clinicians.

9. The clinicians log-in on the OSCAR dashboards and view the reports on
their own PC.

10. Philips researchers get data exports of the de-identified linked data. The ex-
traction of the data exports must be performed in collaboration with the IT
department of the healthcare institution, for example a date and time can be
agreed for Philips to connect to the deployed OSCAR instance via a secure
remote connection to download the extracted data files.

The steps that were outlined already allow us to shape a view of the functionality of
OSCAR. We believe that the main challenge of this project lies in supporting the
process described in step 2, namely the configuration of OSCAR to support new use
cases.

3.3 Design opportunities
We identified the following design criteria, defined in [3], as relevant for this project.
These criteria can be used to assess the quality of the proposed solution.

Ease of use: This concerns the ease of use for the stakeholders. The relevant stake-
holders are the hospital IT department, the clinicians, and the Philips parties who will
be in charge of maintaining, configuring, and extending OSCAR.

Genericity (Extensibility, Reusability): The extent to which OSCAR can be used in
multiple hospitals for multiple reporting needs. Every hospital and every reporting
requirement introduces new data collection, data storage, and data presentation
needs. In addition, the different input data models introduce interoperability issues
that need to be dealt with before systems can share their data.

Technical feasibility: This concerns the certainty that it is technically possible to
produce OSCAR and deploy it in a real-life context. In other words the project
should not just be a theoretical study; it should comprise the first steps towards the
development of a production application.
■

12

4.Domain Analysis

This chapter contains the analysis of the domains that are relevant to OSCAR.

4.1 Introduction
The OSCAR project lies on the intersection of three major domains, namely the web
services, healthcare, and data warehousing domains. Moreover, it involves aspects of
integration (between different technologies) and interoperability (of data between
different sources). In this chapter we attempt to provide the reader with the necessary
knowledge on these domains in order to better understand the architecture, design,
and implementation chapters, Chapters 6, 7, and 8.

4.2 The healthcare data domain (healthcare analyt-
ics)
Healthcare is one of the domains that are being transformed by the introduction of
data analytics. Every aspect of the healthcare process creates a vast amount of data
that can be captured and analyzed in order to improve the level of the services pro-
vided. OSCAR is concerned with data from hospitals and telehealth, such as Motiva,
described in Chapter 1.

4.2.1. Hospital Information Systems (HIS)
A Hospital Information System (HIS) is a comprehensive, integrated information
system designed to manage all the aspects of a hospital operation, such as medical,
administrative, financial, and legal and the corresponding service processing. Hospi-
tals are extremely complex institutions with large departments and units that coordi-
nate care for patients. Hospitals are becoming more reliant on the ability of the HIS
to assist in the diagnosis, management, and education for better and improved ser-
vices and practices. In health organization such as hospitals, implementation of HISs
is inevitable due to many mediating and dominating factors such as organization,
people and technology. As soon as OSCAR is deployed on the hospital it will essen-
tially be a part of the HIS. It should be able to interface with the rest of the HIS sys-
tems in order to collect the clinical data and provide reports.

An important part of the HIS is the Electronic Medical Record (EMR) where patient
details are stored. The data in the EMR is the legal record of what happened to the
patient at the hospital. EMRs are often part of a local stand-alone health information
system that allows storage, retrieval and modification of records. The EMR system is
an application environment composed of multiple components. The core of the sys-
tem is the clinical data repository. This area permanently stores all available data.
The data model used for storage is designed by the system vendor. The EMR system
plays an important role for this project, because it is a source location of the clinical
data OSCAR aims to collect.

Another important domain term is the Electronic Health Record (EHR). The term
describes a record in digital format that is capable of being shared across different
care delivery organizations. The EHR is a shareable version of the EMR. An EHR
system may include data such as demographics, medical history, medication and al-
lergies, immunization status, laboratory test results, radiology images, vital signs,
personal statistics such as age and weight, and billing information. The sharing of
information supported by the system may occur by means of network-connected en-
terprise-wide information systems and other information networks or exchanges.
EHRs can form the basis of the messages that are sent from the HIS to OSCAR.

In order to connect the various subsystems of the HIS together, a utility system is
used, usually called communication broker or interface engine. The interface engine

is designed to simplify the creation and management of interfaces between separate
applications and systems within an organization. Interface engines undertake messag-
ing between systems, and normally manage any mapping, translation and data modi-
fication necessary to ensure the effective exchange of data around the organization.
Rather than connecting all systems to each other individually, a highly complex, time
consuming and unreliable process, an interface engine acts as the intermediary party
for all messaging between hospital systems, as illustrated in Figure 7. The interface
engine is an important system for this project because it is able to create a communi-
cation path between the hospital systems and OSCAR.

Figure 7 - Hospital Interface Engine

4.2.2. Healthcare Standards
Healthcare standards are standards that are designed to allow healthcare-related or-
ganizations and systems to meaningfully exchange information by relying on a com-
mon set of concepts and a common vocabulary. Healthcare standards are a way to
simplify the interfacing process, since all systems will be able to speak a “common
language” as defined by the standard. In this respect, they are relevant for the current
and future versions of OSCAR, and, in general, any healthcare system that aims to
exchanging meaningful messages.

Health Level 7 (HL7)
The task of standardization in healthcare is done by various organizations. The lead-
ing position belongs to Health Level 7 (HL7). HL7 is a U.S.-based, ANSI-accredited
health information standards development organization. Its specifications are mostly
for application-level messaging among hospital information systems (HISs). Other
recent areas of interest include the structure and content of clinical documents and
decision support. There are two major working versions of HL7 standards, version 2
and version 3, in addition to some minor ones. The 2.4 version is by far the most
widely implemented standard in health informatics worldwide. The main goal of HL7
v2 was to standardize messaging between HIS and achieve syntactic interoperability.

The third version of HL7 aimed primarily to defining application messages, but now
using a well-defined information model, the Reference Information Model (RIM). Its
main classes are shown in Figure 8. The core classes of RIM are shown in blue and
the first level of subclasses is shown in white. The RIM aims to form the foundation
for all information modeling within HL7. Since the RIM aims to be a reference mod-
el that encompasses the entire healthcare domain, its knowledge can be useful in un-
derstanding any healthcare application.

14

Figure 8 - Main classes of the HL7 Reference Information Model

The classes in the RIM model are briefly described below [4]:

Act: Every happening is an Act
Examples: Procedures, observations, medications, supply, registration

ActRelationship: Relate Acts with one another
Examples: composition, preconditions, revisions, support
„
Participation: Participation defines the context for an Act
Examples: author, performer, subject, location
„
Roles: The participants in an Act are Roles
Examples: patient, provider, practitioner, specimen, employee
„
Entities: Roles are played by Entities
Examples: persons, organizations, material, places, devices

One of the standards that HL7 has produced is the Clinical Document Architecture
(CDA). CDA is an XML-based markup standard intended to specify the encoding,
structure and semantics of clinical documents for exchange. Its semantics are derived
from the HL7 RIM and it uses the HL7 Version 3 Data Types, which are also part of
the RIM. CDA document content is intended to be human-readable and supporting
narrative text, yet still having some structure and allow for medical coding to repre-
sent concepts in a computable manner. CDA is HL7’s proposed way to achieve se-
mantic interoperability. The CDA specification is intentionally abstract so that the
implementors can define their own flavor of the CDA document which serves their
domain specific needs. Different organizations use different implementations of the
CDA specification such as the Continuity of Care Document (CCD). These
implementations are restrictions of the original abstract model.

The CDA is important for this project as it is the state of the art standard designed to
provide semantic interoperability, applicable in the data collection aspect of OSCAR.
From a software point of view the RIM and the CDA document are abstract domain
models. They are published in the form of UML diagrams by HL7 and in also the
form of XML Schema specifications. The latter is the form that we are mostly
interested in since the XML Schema document can help in the implementation of the
OSCAR data collection interfacing components. As already mentioned, OSCAR
should try to make use of, or at least be compatible with, possible CDA documents
the hospital is using for exchanging patient information with third parties.

Clinical Vocabularies
Medicine is one of the few domains where extensive domain knowledge is defined
through a controlled vocabulary. Clinical vocabularies are another type of healthcare

15

standard. They are published and maintained by organizations and usually have a
specific area of focus.

A very useful vocabulary is the 10th revision of International Classification of Dis-
eases (ICD-10). ICD was originally published by the World Health Organization for
classifying and coding of mortality cases. Other uses include establishing a common
naming and description of diseases and collection of comparable data for epidemio-
logic and healthcare management studies. The vocabulary is organized in three hier-
archical levels: Chapters, blocks and codes. An example can be seen in Table 1.
ICD-10 is relevant for this project as it is used to relate a hospitalization event with
particular diseases by including the relevant ICD-10 codes in the respective hospital
messages.

Chapter Block Code
Diseases of the circula-
tory system Chronic rheumatic heart

diseases

I05.0
Mitral stenosis

I05.2
Mitral stenosis with insuffi-

ciency

Hypertensive diseases

I11.0
Hypertensive heart disease
with (congestive) heart fail-

ure
I12.0

Hypertensive renal disease
with renal failure

Table 1 - Example of ICD-10 Hierarchy

4.3 Business Intelligence (BI) and Data Warehousing
OSCAR can be characterized as a data warehousing solution. The purpose of a data
warehouse is to provide the technical infrastructure to support BI applications. In
simpler terms data warehouses are tools that can help people understand their busi-
ness better, based on data.

BI is the process of transforming data to useful information for decision makers. BI
applications are usually associated with a specific data warehouse that maintains the
necessary data in the appropriate form. Figure 9 shows a generic architecture for a
data warehouse that supports BI.

Data Sources Data Staging Area

Extract Transform
Load (ETL)

Dimensionally
structured
database

Data Warehouse Reporting

Reports

Reports

Reports

OLAP
Cube

Figure 9 - Data warehouse generic architecture

Data sources (Operational Systems)

16

They are the traditional database systems that store transactional data of the organiza-
tion’s business. Operational systems in hospitals are part of the HIS and store the
daily transactions with patients; for example one such data store is the EMR that
stores patient details, or a database that stores patient hospitalizations. Another data
source for OSCAR, apart from the hospital ones, is the Motiva database, described in
Section 1.3. These databases are generally used one record at a time in contrast to
analytical databases which are used for reporting and where summaries and aggre-
gates of multiple data records are usually preferred. The value of the data warehouse
lies in collecting data from multiple data sources and presenting a unified view on the
data they contain.

Data Staging Area
The data staging area is a storage area as well as a set of ETL processes that extract
data from the source systems. It is everything between the source systems and the
data warehouse. Data staging is not meant for reporting, but as a temporary location
where data from the source systems is stored, cleansed, and transformed in order to
be loaded into the data warehouse.

The storage of the staging area is not necessarily a database. It could also be flat files
for example. It can be structured like the normalized source systems or be an unstruc-
tured data storage space. It fully depends on the design requirements and the needs of
the development process.

Extract, Transform, Load (ETL)
ETL, as the name implies, is the process of extracting data from one location, trans-
forming it, and loading it in another location, the locations usually being databases or
files. During transformation, the data is converted to the desired schema of the output
database or file, values are perhaps filtered and cleansed, and in general it is ensured
that the data is in a suitable format.

ETL processes can be implemented either by using a suitable programming language,
like Java, or by using dedicated tools like the Microsoft SQL Server Integration Ser-
vices or the Oracle Data Integrator.

Data transformation is a necessary step in the data warehousing process, because the
schemas of the input data stores and the schema of the data warehouse are often quite
different. First of all, we would like to load the data warehouse with data that come
from multiple data stores, thus a need for a unified data schema. Secondly, the data
sources are operational systems (schema more suitable for day-to-day business opera-
tions) whereas the data warehouse is dimensional (schema more suitable for report-
ing).

Presentation Area
The presentation area is what is generally called a data warehouse and takes the form
of one or more databases. It is the place where cleaned, transformed data is stored in
a dimensionally structured database schema and made available for analysis purpos-
es. In the presentation area, the disparate data that has been introduced to the system
from the various sources are linked and presented as a unified model.

Linking refers to the process of combining data from multiple input data stores into a
unified data warehouse schema. It is done based on an entity that is known to both
the input system and the data warehouse, for example patient records. Linking then
refers to the process that matches patient records in the input data with patient rec-
ords in the data warehouse, updating the patient personal information when required.
Thus, the patient records form a meeting point between the data from the multiple
input sources. Common attributes for linking a specific patient record between differ-
ent data stores are certain unique identifiers, such as the patient Social Security
Number, of the combination of the first name, last name and date of birth.

17

Dimensionally structured database (star schema)
The data presentation area usually takes the form of a database with a star schema.
The star schema consists of one or more fact tables referencing any number of di-
mension tables. Fact tables record business events and dimension tables set the con-
text of those events, for example where and how the events took place and who was
involved. A visual example of a star schema is shown in Figure 10.

Figure 10 - Example of a simple star schema

In the example of Figure 10 the business event that is recorded in the fact table is
patient hospitalizations. The two dimension tables set the context of the hospitaliza-
tion in terms of the admission, discharge, and mortality dates (if applicable), and pa-
tient personal details.

Fact tables record measurements or metrics for a specific event. Fact tables generally
consist of numeric values, and foreign keys to dimensional data where descriptive
information is kept. Dimension tables usually have a relatively small number of rec-
ords compared to fact tables, but each record may have a very large number of attrib-
utes to describe the fact data. Dimensions can define a wide variety of characteristics
concerning when and where the event happened as well as who and what was in-
volved.

Online Analytical Processing (OLAP) cube
The OLAP cube is a data structure that indexes the available data from the fact tables
of the data warehouse. The dimensions of the cube correspond to the dimension ta-
bles in the data warehouse and form a coordinate system that can be used to select
specific fact records based on constraints in the dimensions. Figure 11 shows an illus-
tration of a cube with three dimensions; calendar, patient and diagnosis. The OLAP
cube is an n-dimensional cube in the general case, but it is easier to visualize an ex-
ample with three dimensions (the example is taken from [2]).

18

Figure 11- OLAP cube with 3 dimensions [2]

Every intersection of three dimension points is a fact, represented by a record in a
fact table. Figure 11 could contain facts about patient hospitalizations. If we request
data from the cube for patient “Orestis” with diagnosis code “I12.0” at calendar date
“04-05-2008” the cube will return at most a single fact row with the hospitalization
event, if such a row exists. With this in mind the cube can be seen as an alternative
representation of a fact table.

Things become more interesting when the cube receives a request with fewer dimen-
sion points. As an example consider the top left cube in Figure 11. The cube returns
all data that has “Orestis” as a dimension point. It treats the missing dimension points
for calendar and diagnosis as wildcards. This is termed “slicing”.

The bottom case shows a more advanced operation that is related with the dimension
levels in a hierarchy. The dimension is a physical database table with a number of
columns. Any dimension column attribute can play the role of a dimension point. For
instance, the columns in the row for date “11-02-2012” may also capture the year,
month and day in different representations, as well as day number, week number, day
of the week, and so on. In the example, the cube receives a query with dimension
points “gender=M,” “chapter=Diseases of the circulatory system” and
“month=August 2008.” The “month=August 2008” attribute certainly exists in a
number of dimension rows in the calendar dimension. The same holds for the other
attributes also. The result, as can be seen in Figure 11, is a smaller cube and this is
termed “dicing.”

If the user edited the request and instead of setting “month=April 2008”, specified the
dimension point “year=2008,” he would receive a more general result as an answer
and this is termed “drilling up.” Instead, if he specified “calendar week=15”, he
would get a more detailed result and this is termed “drilling down.”

Table 6 shows what an end user report could look like. In this example hospitaliza-
tion events are measured. The column “Hospitalizations” contains the aggregated
result. In Table 2 the measurement “hospitalizations” is summarized. For other use
cases the average, minimum, maximum, of a measurement can be used.

19

Time Diagnosis Patient Hospitalizations
August 2008 Diseases of the

circulatory system
M 120

September 2008 Diseases of the
circulatory system

M 100

Table 2 - Simplified report on hospitalizations [2]

Software vendors provide tools that simplify the creation of OLAP cubes out of a
data warehouse, for example the Microsoft SQL Server Analysis Services [5] tool
that we used for this project. The cube acts as an interface between the reports used
by the user and the actual data warehouse. The OLAP cube requires upfront configu-
ration and loading of the data warehouse data and then it provides fast access to that
data for reporting. Based on the OLAP cube, software vendors sell tools that can be
used to create automated reports and interactive dashboards. One such tool is the
SharePoint dashboard designer.

Agile business intelligence
In order to design reports meaningful to the users an evolutionary approach is re-
quired, termed agile business intelligence. The approach consists of multiple itera-
tions of designing example dashboards, getting user feedback, and refining them until
the users are satisfied. During the process the underlying facts and dimensions of the
data warehouse may also have to be refined.

4.4 Web Services
Web services can be used to fulfil the data collection needs of OSCAR, especially its
interfacing with the hospital information systems. This section discusses some as-
pects of web services that are related to OSCAR.

Network communication protocols operate in layers, where each layer uses the func-
tionality supported by the layers below, see Figure 12.

Network

XML-based messaging

Web service descriptionWSDL

SOAP

HTTP

Figure 12 - The web services stack

HTTP
HTTP functions as a request-response protocol in the client-server computing model.
Communication is initiated when the client submits an HTTP request message to the
server. The server, then provides resources such as HTML files and other content, or
performs other functions on behalf of the client, and returns a response message.
HTTP resources are identified and located on the network Uniform Resource Loca-
tors (URLs).

SOAP
SOAP is a protocol specification for exchanging structured information in the im-
plementation of web services in computer networks. It relies on the XML Infor-
mation Set for its message format, and relies on HTTP for the message transmission.
SOAP forms the foundation layer of a web services protocol stack, providing a basic

20

messaging framework upon which web services can be built. It defines an envelope
that can hold the structured XML messages that are communicated in a web service.

WSDL
The Web Services Description Language is an XML-based interface definition lan-
guage that is used for describing the functionality offered by a web service. The ac-
ronym is also used for any specific WSDL description of a web service (also referred
to as a WSDL file), which provides a machine-readable description of how the ser-
vice can be called, what parameters it expects, and what data structures it returns. It
thus serves a purpose that corresponds roughly to that of a method signature in a pro-
gramming language. The WSDL file also contains the XML Schema definitions that
describe the input and output messages that are sent and received. The WSDL file
describes the interfaces between the HIS and OSCAR.

XML and XML Schema
The Extensible Markup Language (XML) is a markup language that defines a set of
rules for encoding documents in a format that is both human-readable and machine-
readable. Using XML messages is a way of exchanging structured data over the net-
work.

The XML Schema (XSD) is a language that allows one to create a description of a
type of an XML document, typically expressed in terms of constraints on the struc-
ture and content of documents of that type, above and beyond the basic syntactical
constraints imposed by XML itself. These constraints are generally expressed using
some combination of grammatical rules governing the order of elements, Boolean
predicates that the content must satisfy, data types governing the content of elements
and attributes, and more specialized rules such as uniqueness and referential integrity
constraints.

The interoperability aspect of web services
Interoperability is a key term for OSCAR. It describes the communication between
OSCAR and the hospital information systems and is the aspect that defines whether
meaningful data can be exchanged.

Syntactic interoperability
If two or more systems are capable of communicating and exchanging data, they are
exhibiting syntactic interoperability. Specified data formats, communication proto-
cols and the like are fundamental. XML or SQL standards are among the tools of
syntactic interoperability. This is also true for lower-level data formats, such as en-
suring alphabetical characters are stored in a same variation of ASCII or a Unicode
format (for English or international text) in all the communicating systems.

Syntactical interoperability is a necessary condition for establishing semanting in-
teroperability.

Semantic interoperability
Beyond the ability of two or more computer systems to exchange information, se-
mantic interoperability is the ability to automatically interpret the information ex-
changed meaningfully and accurately in order to produce useful results as defined by
the end users of both systems. To achieve semantic interoperability, both sides must
refer to a common information exchange reference model. The content of the infor-
mation exchange requests is unambiguously defined: what is sent is the same as what
is understood.

4.5 Virtualization
The term virtualization broadly describes the separation of a resource or request for a
service from the underlying physical delivery of that service. With virtual memory,
for example, computer software gains access to more memory than is physically in-
stalled, via the background swapping of data to disk storage. Similarly, virtualization

21

techniques can be applied to other IT infrastructure layers - including networks, stor-
age, laptop or server hardware, operating systems and applications. This blend of
virtualization technologies - or virtual infrastructure - provides a layer of abstraction
between computing, storage and networking hardware, and the applications running
on it. The deployment of virtual infrastructure is non-disruptive, since the user expe-
riences are largely unchanged. However, virtual infrastructure gives administrators
the advantage of managing pooled resources across the enterprise, allowing IT man-
agers to be more responsive to dynamic organizational needs and to better leverage
infrastructure investments.

Virtualization is an important concept in OSCAR, since it is a technology increasing-
ly being adopted by hospitals. By building OSCAR in the form of a virtual machine,
it should be relatively easier to deploy it within the hospital VM infrastructure.
■

22

5.System Requirements

In this chapter the OSCAR system requirements are laid out. The requirements pre-
sent a more analytical approach towards the definition of the problem and desired
solution. In this sense they are based on the stakeholder analysis, Chapter 2, and
problem analysis, Chapter 3.

5.1 Requirements overview
The goals of OSCAR can be summarized as follows:

• To extend the DACTyL system in order to address those requirements that
are needed to deploy it in a real-life context, such as

• Interoperability
• Extensibility
• Portability
• Any other aspect that is deemed important during the course of the

project
• To re-design and re-implement the DACTyL system using more appropriate

technologies

Derived from the above, OSCAR should address the following issues:

• Interoperability: To design a system able to retrieve data from hospital in-
formation systems by interconnecting using the relevant standards to allow
as broad interfacing capabilities as possible

• Extensibility: To create tools and methodologies that will allow a user
(maintainer) to add support for future interfacing or business intelligence re-
quirements

• Integrating with the hospital: To design a system that
o Supports BI dashboards and reports for clinicians/cardiologists
o Makes it as easy as possible to integrate into the hospital IT infra-

structure
• User acceptance: To design a system that is accepted and used by the

stakeholders

5.2 User roles
User roles are the behaviors that external actors are expected to play in relation to
OSCAR. Based on the stakeholders described in Chapter 2 and the problem analysis
in Chapter 3, we identify the following user roles, see Table 3.

To better understand each role, we divided them to three groups according to the as-
pect they are concerned with, see Table 4.

Technology: The roles associated with the technology aspect are interested in ob-
taining software licenses, setting-up, deploying, and integrating OSCAR in the hospi-
tal IT infrastructure.
Data: The roles associated with the data aspect are interested in integrating, linking,
de-identifying, and gaining access to data.
Information: The roles associated with the information aspect are interested in the
business intelligence and insights that the reports are providing.

5.3 Use case scenarios
We identify the following use case scenarios for OSCAR:

• Configure OSCAR
• Deploy OSCAR to the hospital
• Load telehealth data from Philips
• Export data for Philips
• View business intelligence reports

The scenarios and corresponding actors are shown in Figure 16.

Table 3 - OSCAR user roles

Table 4 - OSCAR aspects and role concerns

24

Hospital IT Administrator

Data Provider

Clinician

OSCAR Maintainer

Researcher

Deploy OSCAR

Import telehealth data

Export data

View business
intelligence reports

Configure OSCAR

Figure 13 - OSCAR use case scenarios

The use case scenarios are decomposed in the specific steps below.

Configure OSCAR

1. Configure the data warehouse with the appropriate facts and dimensions
2. Configure the data collection component, including the landing area and in-

put interfaces (this step requires the input of the hospital IT department
since the interfaces must be mutually agreed upon)

3. Configure the ETL processes within OSCAR
4. Configure the reporting component including the dashboards (this step re-

quires the input of the hospital clinicians since the reports-dashboards are in-
tended for them)

Deploy OSCAR to the hospital

1. The OSCAR maintainer places OSCAR in a storage device
2. The OSCAR maintainer gives the storage device to the hospital IT adminis-

trator
3. The Hospital IT administrator installs and initializes OSCAR in the hospital

IT infrastructure
4. The Hospital IT administrator performs all necessary configuration tasks to

connect the hospital interface engine to the deployed OSCAR instance

Import telehealth data from Philips
Scenario 1:

1. The OSCAR maintainer visits the hospital premises with the telehealth data
extract in a storage device

2. The hospital IT administrator provides access to OSCAR
3. The OSCAR maintainer loads the data files to OSCAR
4. The OSCAR maintained runs the appropriate ETL process to process the

telehealth data files

Scenario 2:

1. The hospital IT administrator provides secure remote access to the deployed
OSCAR instance

2. The OSCAR maintainer connects via the secure connection and loads the
telehealth data extract files to OSCAR

25

Export data for Philips
Scenario 1:

1. The OSCAR maintainer visits the hospital premises
2. The hospital IT administrator provides access to OSCAR
3. The OSCAR maintainer copies the de-identified linked data files generated

by OSCAR to a storage device and brings them back to Philips

Scenario 2:

1. The hospital IT administrator provides secure remote access to the deployed
OSCAR instance

2. The OSCAR maintainer connects via the secure connection and copies the
de-identified linked data files to Philips

View business intelligence reports

1. The clinician uses a web browser and navigates to the OSCAR business in-
telligence URL

2. The clinician provides valid user credentials to a login page
3. The clinician selects a report from a list and views the content

5.4 Functional requirements
The system requirements were identified based on meetings with the stakeholders
from Philips Research. During these meeting the stakeholders described the existing
and desired systems and introduced their envisioned architecture and use case scenar-
ios. The functional requirements that we extracted are described in Table 5. The
reader can note that the requirements roughly correspond to the various parts of a
data warehouse.

Id Name Description
F1 Deployment

OSCAR should facilitate easy deployment in different hospital IT infra-
structures

F2 Interoperability

OSCAR should be able to communicate with different hospital IT infra-
structures, using different data sharing standards, as well as different
kinds of schemas defined by the specific informational requirements. For
example common such technologies are Http, SOAP, XML and HL7
CDA. It is part of the project to identify the most relevant ones and im-
plement support for them.

A common way to achieve interoperability is by describing the interfaces
(Web Services) between systems based on WSDL and XSD, therefore
the OSCAR should support these technologies

F3 Data import

The on-site deployment of OSCAR should be able to digest data from
internal data sources (hospital data) and external data sources (Tele-
health, Motiva).

F4 Linking

OSCAR should link the incoming data from the different sources, based
on patient identification information, in a unified model (data warehouse
model). This linking should occur within the hospital boundaries, be-
cause the identification information that is required for the linking cannot
be taken outside the hospital premises.

F5 Storage

OSCAR should store all the incoming data, in other words no incoming
data should be “thrown away”.

F6 Data export The on-site deployment of OSCAR should provide methods to export

26

 linked, de-identified data to an external destination, in order to facilitate
off-site analysis of the de-identified data by Philips research.

F7 On-site reporting

The OSCAR should offer detailed reporting on-site based on the linked,
identified data. This reporting is to be used by the Intended Clinician for
decision support.

F8 Supporting fu-
ture use cases

OSCAR should be extensible in order to add support for new or addition-
al informational needs of its users with minimal effort.

OSCAR should be extensible with respect to different hospital IT infra-
structures and different input sources within a hospital with minimal ef-
fort.

Table 5 - OSCAR functional requirements

5.5 Non-functional requirements
The nonfunctional requirements describe the qualities of the system. The non-
functional requirements that we consider relevant for SOCAR are listed in Table 6.

Id Name Description
NF1 Extensibility/Adaptability OSCAR should be open for extensions with new provid-

ed services to the HIS, for instance to support new inter-
facing technologies or protocols. Furthermore, it should
be as easy as possible to implement those extensions

NF2 Privacy & Security Only authorized users should be able to access and per-
form operations on OSCAR

NF3 Ease of use (user-
friendliness)

It should be possible for the Analyst to get access to his
data, for the clinician to view his reports, for the main-
tainer to extend, for the data provider to configure his
system and start sending messages in as few user steps as
possible

NF4 Compatibility OSCAR should use technologies that are compatible with
the software policies of Philips and the Hospital IT de-
partments

NF5 Reliability (in terms of
technology)

OSCAR should pass the necessary validation tests before
being handed to the hospital IT for installation

NF6 Reliability (of the overall
data flow)

The OSCAR should ensure the integrity of the data at
each stage of processing

NF7 Efficiency The OSCAR should keep system usage as low as possible
(memory, processing, and disk space)

NF8 Safety OSCAR should not interfere with and pose a risk towards
the rest of the hospital operations, especially critical ones

Table 6 - OSCAR non-functional requirements

■

27

6.System Architecture

This chapter begins by approaching OSCAR as a black box, outlining the relation
between OSCAR and its context, the hospital information system. It continues with
the view of OSCAR in high-level components and a justification for the architectural
design decisions. The architecture aims to fulfill, in the best way, the requirements as
described in Chapter 5.

6.1 OSCAR as a black box
OSCAR is designed with the view to be deployed within the hospital IT infrastruc-
ture. This is the only viable solution given the constraints that are imposed due to
privacy and security issues (for justification and earlier alternative deployment op-
tions refer to Chapters 1 and 3). The technical context of OSCAR is summarized in
Figure 14.

The input of OSCAR is patient-related data from healthcare services (hospital and
telehealth). Its outputs are

• Reports aimed at clinicians within the hospital and
• De-identified linked data extracts aimed at researchers

 In both output cases the data from the various data sources must be linked. In con-
trast, clinician reports expose identified data, whereas data extracts for Research can
only contain de-identified data.

Hospital Infrastructure

Hospital
Interface

Engine

Lab data

EHRs

HIS data

OSCAR

Telehealth
data

De-
identified

data extract

Reports

Clinician

Researcher

Figure 14 - OSCAR technical context

Figure 14 demonstrates, first of all, that OSCAR is deployed within the hospital in-
frastructure. Hospital input messages come from the Hospital Interface Engine that
collects them from the various hospital data stores. Telehealth data are directly fed to
OSCAR by the OSCAR maintainer. The two outputs, reports for clinicians within the
hospital, and data extracts for researchers outside the hospital, are also shown.

Hospital data input

In general, the hospital data that OSCAR aim to collect exists in data stores scattered
throughout the hospital; in Figure 14, the lab data, EHRs, and HIS data are examples
of hospital data stores. In order to access that data, OSCAR either has to communi-
cate directly with the data stores or wait passively and let a hospital application send
the data to it, this application is the Hospital Interface Engine, described in Chapter 4.
The former approach is pull-based and the latter push-based. OSCAR uses the push-
based communication approach, where it is passively awaiting for messages and the
hospital interface engine initiates all communication. The push-based approach was
selected for two reasons:

• It avoids the problem of having to integrate with the multitude of hospital
data stores by using a single point of contact (the interface engine)

• It limits the processing burden imposed on the hospital information system
by allowing the hospital system to decide when the communication happens
(preferably when it will not interfere with critical hospital applications)
which is one of the non-functional requirements of OSCAR (NF8)

• Clinical data are generated in the course of time and so the HIS may decide
on the most suitable moment in time to share the data with OSCAR

When OSCAR is deployed in a hospital the hospital IT administrator must configure
the hospital interface engine in order to connect with OSCAR and send the appropri-
ate messages with the data from the data stores

For more details on the distinction between pull and push based strategies and the
integration options, the reader may refer to the DACTyL project report [2].

Telehealth data input
Telehealth data, in the current setup, comes in the form of periodic data extracts from
a central database, the Motiva database that was described in Section 3.1. Since this
database exists outside the hospital, and external connections to OSCAR are not al-
lowed, due to hospital security and privacy policies, the data extract is loaded inside
OSCAR manually by the OSCAR maintainer and is then parsed to extract the desired
data. This includes, among others, patient personal details and information such as
patient vital sign measurements.

On a higher level of abstraction, there is no conceptual difference between telehealth
and hospital data since they all correspond to input data sources. Having a distinction
only serves the purpose of describing two different input philosophies. For a descrip-
tion of the characteristics of each philosophy see Table 7.

 Hospital data Telehealth data

Channel Web Services Periodic data extract +
ETL process

Source Internal to the hospital External to the hospital

Periodicity Continuously updated Updated when a new data
extract becomes available

Table 7 - The input philosophy of hospital vs. telehealth data

Detailed reports (clinicians)
The purpose of these reports is to give the clinicians an insight into the linked, identi-
fied data that OSCAR has gathered. Clinician reports take the form of dashboards
with interactive tables and diagrams. The reports should be exposed and viewable by
clinicians within the hospital network. Access rights to the reports are determined by
the hospital IT administrator.

30

De-identified data extracts (research)
Research data extracts are a copy of the linked clinical and telehealth data that exist
within OSCAR. Due to privacy policies, any patient identification data is removed
before exporting these outside the hospital context.

6.2 OSCAR system overview
Based on the problem analysis in Chapter 3, the data warehousing domain analysis in
Chapter 4, the system requirements in Chapter 5, and the previous analysis OSCAR
is divided in three components.

1. Data Collection
2. Data Warehouse
3. Reporting

As shown in Figure 15, data enters OSCAR via the Data Collection component.
Then, it is processed and stored in the Data Warehouse. Finally, it is exported via
reports with the Reporting component. Data extracts for research are exported direct-
ly from the Data Warehouse.

The division in these components was chosen to underline the separation of concerns
within OSCAR, to gather, store, and export/report on data. It is also a way of isolat-
ing the data gathering from the reporting functionality.

Hospital Infrastructure

Hospital
Interface

Engine

Lab data

EHRs

HIS data

OSCAR

Telehealth
data

De-
identified

data extract

Reports

Clinician

Researcher

Data
collec
tion

Data
Wareh
ouse

Report
ing

Figure 15 - OSCAR high-level architecture

6.3 Data Collection
The Data Collection component exists in order to decouple the rest of the OSCAR
system from the external world, in this respect it can be viewed as a proxy of the Da-
ta Warehouse. It is an implementation of a data warehouse staging area. The Data
Collection component carries the burden of managing the multiplicity of inputs and
providing a simple output towards the Data Warehouse.

Some of the challenges that the designer of this component faces are the following

• Different/multiple inputs (different systems, different hospitals)
• One harmonized/normalized output
• Data transformations defined in an extensible way
• Easy to develop/deploy extensions

31

The following section shows how these challenges are handled at the architecture
level by discussing the data flow within OSCAR.

6.3.1. Data flow
In general, data flows in from external systems via the OSCAR interfaces (web ser-
vices), it is collected and stored in a central, dimensional database warehouse and it is
exposed for reporting, see Figure 18.

Hospital
Interface Engine

OSCAR interfaces
(web services) Data processing Data warehouse Reporting

Hospital OSCAR

Figure 16 - OSCAR data flow

OSCAR is required to support multiple input interfaces and be extensible to new
ones. In general, the more interfaces there are, the more options will be available in
the process of integrating with a new system. Also, there is a possibility that a hospi-
tal wants to communicate with OSCAR using a specific interface, it should be possi-
ble then for the OSCAR maintainer to add support for that new interface.

As discussed, web services can be used as the interfaces to connect OSCAR to data
input sources. Web services operate by exchanging messages in a request-response
fashion. The messages that are exchanged conform to specific data models, also
called schemas. OSCAR must support multiple input data schemas and be extensible
to new ones.

It is also a requirement to support reporting on the linked data. Therefore, the data
from the multiple sources needs to be linked, and stored in a single place in order to
support the subsequent reporting. Essentially, this justifies the use of the data ware-
house architecture in this project.

Data transformations
This section discusses the processing of the data after it has entered OSCAR via the
interfaces (web services). As discussed in Section 4.3, data transformations are a
necessary ingredient in any data warehouse. In OSCAR we considered two possible
approaches to designing these transformations. The approaches are shown in Figure
17 and Figure 18.

32

OSCARtext

Hospital
Interface 1

Hospital
Interface 2

Telehealth
interface

Data Warehouse

Transform

Transform

Tra
nsfo

rm

OSCAR
Data Collection

Figure 17 - Input transformation without a landing area

OSCARtext

Hospital
Interface 1

Hospital
Interface 2

Telehealth
interface

Data Warehouse
Transform

OSCAR

Landing Area Transform

Tr
an

sfo
rm

Transform

Data Collection

Figure 18 - Input transformation with a landing area

In Figure 17 input data is transformed on the fly by the Data Collection component
and loaded directly to the data warehouse. In Figure 18 input data is first transformed
and then loaded in the landing area database. Then, in a separate process, it is trans-
formed and loaded into the data warehouse. The second approach has several ad-
vantages over the first one, which make it more suitable for OSCAR.

• It adds one more degree of freedom in the design of the transformation pro-
cess.

• It allows for asynchronous communication between the Data Collection and
Data Warehouse components. The benefit is that input data are stored as
soon as they enter OSCAR leading to the lower usage of HIS resources at
the time of the communication. The ETL processes that load the landing ar-
ea data to the Data Warehouse can be performed at a different time when it
is more suitable to the HIS.

• It allows transformations that are common to the various inputs to be im-
plemented only once (between the landing area and data warehouse), thus
avoiding duplication of functionality.

33

• There is a clear separation of concerns in the transformations; individual
transformations are concerned only with getting the data inside OSCAR,
whereas the aggregate transformations are concerned with cleaning the data,
linking and maintaining a consistent state in the data warehouse.

The design of the schema of the landing area is described in Chapter 7.

Semantic interoperability
Semantic interoperability was explained in Section 4.4. In order for two systems to
achieve semantic interoperability, the exchanged messages must conform to a model
that is known to both systems, see Figure 19. Such a model is, for example, the HL7
CDA. When the exchanged messages are described in XML, the model is described
using an XML Schema definition. Before integrating Philips and the hospital agree
on the XML Schema definitions that will be used for the exchanged messages be-
tween the OSCAR and the HIS; then, the OSCAR maintainer customizes OSCAR
and the hospital IT administrator customizes the hospital interface engine according-
ly. Using this model-driven approach, it is much easier to integrate, since the model
description is the only thing necessary to fully describe the messages passed between
the hospital interface engine and OSCAR. Also, there exist software tools [6] that can
parse the XML Schema definitions and automatically generate the processing infra-
structure required.

Data Processing System 1 Data Processing System 2Message

Model

In
st

an
ce

 o
fUses Uses

In
st

an
ce

 o
f

Meta-Model

Figure 19 - Interfacing via a common data model

Syntactic interoperability
When OSCAR is deployed in a hospital it exposes web services that are ready to re-
ceive incoming data from the hospital interface engine. We choose web services,
since this is a widely used and well established technology. The protocol used to
transfer the data is http and the data is XML documents packaged in SOAP messag-
es. Http is deemed sufficient since the communication takes place strictly within the
hospital intranet.

6.4 Data Warehouse and Reporting
The Data Warehouse component is responsible for storing the data that OSCAR re-
ceives. It should be able to accept its input data from the Data Collection component.
Based on data warehousing concepts this storage was chosen to be a relational data-
base in a star schema (dimensional design). The data warehouse should be able to

34

hold the variety of the data that we want to report on, i.e. all data that enters OSCAR
and be extensible to new facts and dimensions.

The Reporting component is responsible for generating and exposing OLAP cubes
based on the data in the Data Warehouse. It is also responsible for exposing, via net-
work, the dashboards for the clinicians.

Linking
The star schema of the data warehouse consists of facts and dimensions that describe
(healthcare) business processes, for example hospitalizations. The various facts
should be linked. This means that some dimensions need to be shared between facts,
the data warehouse bus.

Linking was discussed in Section 4.3. There it was established that there is a need for
a common entity on which to base the linking on. In the case of OSCAR, we assume
that such an attribute is the social security number of the patient in combination with
the date of birth. For the Netherlands the identification number is the BSN. Figure 20
schematically demonstrates the process.

OSCARtext

Hospital
Interface 1

Hospital
Interface 2

Telehealth
interface

Data Warehouse
Transform

OSCAR

Landing Area

Tr
an

sfo
rm

Transform

Data Collection

Patient
Records

Transform

Lookup patient-
OSCAR-ID

Figure 20 - OSCAR data linking

In Figure 20, patient data from the landing area is matched against the patient records
in the data warehouse. Each patient known to OSCAR receives a specific unique ID.
The patient matching operation is called a lookup. In case patients do not exist in the
system yet, new patient records are created to describe their data.

De-identified data extract
In order to facilitate de-identified data exporting for researchers the Data Warehouse
component contains an ETL process that generates a de-identified data extract. This
data extract can be provided to the researchers at Philips in a way that conforms to
the hospital privacy policies; for example a date and time can be agreed for the re-
searchers to connect to the deployed OSCAR instance via a secure remote connection
to download the extracted data files. If the previous approach is not accepted by the
hospitals due to the external internet connection that is required, another approach is
for a Philips researcher to visit the hospital premises and be given access via the hos-
pital intranet.
■

35

7.System Design

This chapter continues where the Architecture description left off and elaborates on
the internal design of each of the three main OSCAR components that were identified
in Chapter 6, namely Data Collection, Data Warehouse, and Reporting.

7.1 Data Collection
The Data Collection component exposes interfaces that allow external systems to
connect with and push healthcare data to OSCAR. Various standards and technolo-
gies can be used for this purpose.

In addition to being used for interfacing, web services may also be used for the inter-
nal structure of the component, in a service oriented design. Using a service oriented
design provides a high level of flexibility. Services may be created, deployed and
modified independently of each other; also, via the use of WSDL, a service oriented
design encourages the use of well-defined interfaces between the various sub-
components/services.

In OSCAR the web services are organized in a layered pattern where each subse-
quent layer exposes a new interface to its environment, see Figure 21.

Landing
Area Web

Service

Landing Area

Web
Service 1

Web
Service 2

Figure 21 - Data Collection component structure

7.1.1. Landing Area (Persistence layer)
The base of the Data Collection component is a persistence layer, the landing area
database shown in Figure 21. The importance of the landing area was discussed in
Section 6.3. The landing area resembles a bucket where data is stored until it is pro-
cessed and moved to the Data Warehouse.

The landing area database and the relational database management system (RDBMS)
that exposes it constitute a minimal working Data Collection component. The
RDBMS allows the remote insertion of data into the system by issuing SQL com-
mands to the landing area database. This approach is used when the data from Philips
Motiva telehealth services are loaded into the system. To insert those data into OS-
CAR there is an ETL process that extracts data from their source transforms it, and
loads it to the landing area by connecting directly to the RDBMS.

7.1.2. Web Service layers
OSCAR exposes web services to facilitate the communication between itself and
external systems. The “back-end” of the web services can be connected to the landing
area and provides the means for the external systems to load data into it. The external
system in the case of the hospitals is the hospital interface engine described in Chap-
ter 4.

To improve the integration of OSCAR with other systems, the web services are de-
scribed in Web Service Definition Language (WSDL) files. By providing these
WSDL files to the hospital, it is straightforward for the hospital IT administrator to
use existing tools to generate the communication infrastructure (web service client)
required for exchanging messages with OSCAR. Some of the most commonly used
programming languages (Java, C++, .NET), along with popular ETL tools (Oracle,
Microsoft) do support fully automated generation of the web service client for a well-
defined WSDL, thus accelerating the integration process.

For future interfacing requirements, such as a custom input schema requested by a
hospital, it is possible to implement web services to support any format of input as
long as the web service can transform and store it to the landing area or pass it to
other web services for subsequent processing.

Specific input schemas that can be supported by the exposed web services include the
following:

• Landing Area schema: The most straightforward option is to expose a web
service that accepts messages in the landing area schema, as no schema
transformations would be needed to load the input messages into the landing
area database.

• DACTyL hospitalization schema: A schema that comes from the DAC-
TyL project, described in Chapter 1. It is a custom input schema for receiv-
ing hospitalization data.

• HL7 CDA schema: The HL7 CDA schema, described in Chapter 3, is
adopted by the NHS, UK and other healthcare institutions. It is already in
use by hospitals and therefore it would require less effort from the hospital
side to integrate with it.

Whereas Figure 21 depicts the generic design of the Data Collection component,
Figure 22 shows the design of the specific Data Collection component that was im-
plemented. It contains an example of a three-layered Data Collection component. The
external systems (for example the hospital interface engine) can be connected to the
hospital data web service or the landing area web service depending on which is easi-
er for the hospital IT department to support. In addition, the Motiva data are loaded
directly to the landing area via an ETL process that connects directly to the RDBMS.

38

Landing Area
Database

Landing Area
Web Service

JDBC

Landing Area
Schema

Hospital data
Web Service

Hospital data
Schema

Hospital
Interface

Engine
(Hospital)

Motiva DWH

ETL

OSCAR Data Collection

Figure 22 - Data Collection component design

7.1.3. Web services internal design
Landing Area Web Service
The landing area web service accepts messages in the same schema as the landing
area. Once a message has been received its contents are stored in the landing area.
Figure 23 outlines the data flow that takes place within the landing area web service.

2. XML message
is converted to

Java objects

3. Java objects
are converted to
SQL commands

4. SQL
commands load
the data into the

landing area

1. Web Service
receives XML

message

Figure 23 - Data flow within the landing area web service

 The landing area web service consists of the following components:

• A web service described in WSDL that accepts XML messages that conform
to the landing area schema (implements Steps 1 and 2 in Figure 23)

• A database connection that is used to store the input messages into the land-
ing area (implements Steps 3 and 4 in Figure 23)

• A description of the landing area schema (as an XML Schema (XSD) and
using Java classes) (this description must exist in order to make Steps 2 and
3 in Figure 23 possible)

Figure 24 shows the class diagram of the landing area web service.

39

<<Web Service>>
LandingAreaWebService LandingAreaConnection

<<Database>>
Landing Area

<<interface>>
LandingAreaWebServiceInterface LandingAreaSchema

Figure 24 - Landing Area web service

In Figure 24 it is important to note that both the web service interface and the landing
area connection use the same schema (the same data model).

Hospital data web service
The hospital data web service accepts messages in an input schema, for example the
HL7 CDA schema. Once a message has been received its contents are transformed
and sent to the landing area web service. The hospital data web service consists of the
following components:

• A web service described in WSDL that accepts XML messages that conform
to the desired input schema

• A client that sends output messages to the landing area web service; the cli-
ent must conform to the WSDL description of the landing area web service

• A description of the input schema (XSD, Java)
• A description of the landing area schema (XSD, Java)
• A transformer that transforms instances of the input schema to instances of

the landing area schema

Figure 27 shows the class diagram of the hospital data web service.

40

<<Web Service>>
HospitalWebService

<<Web Service Client>>
LandingAreaWebService

<<interface>>
HospitalWebServiceInterface HospitalInterfaceSchema

<<interface>>
LandingAreaWebServiceInterface LandingAreaSchema

Transformer

Figure 25 - Hospital data web service

It is interesting to note the differences between Figure 25, the hospital data web ser-
vice and Figure 24, the landing area web service. In Figure 25 the connection to the
database has been replaced by the client to the landing area web service. Also, a new
component has been introduced, the transformer, which transforms the input data
from the input schema to the landing area schema.

7.1.4. Landing Area schema
The data model of the landing area needs to be designed in such a way that it im-
proves the extensibility characteristics of OSCAR. In terms of the data flow within
OSCAR, the landing area is an intermediate step between the input interfaces and the
data warehouse, see Figure 26. To “flow” between the input interfaces, the landing
area, and the data warehouse, the data needs to be transformed from one schema to
another. Initially, data from each input interface is transformed individually, and then
all the data in the landing area is transformed aggregatively. Conceptually, the indi-
vidual transformations are handled by the OSCAR Data Collection component and
the common transformations are handled by the OSCAR Data Warehouse compo-
nent.

OSCARtext

Hospital
Interface 1

Hospital
Interface 2

Telehealth
interface

Data Warehouse
Transform

OSCAR

Landing Area Transform

Tr
an

sf
or

m

Transform

Data Collection

Figure 26 - Input transformations using a landing area

41

The Landing Area is what determines the division between the individual and the
aggregate transformations. The ideal design would be one where individual transfor-
mations only account for the unique characteristics of each input model and the rest
is handled by the aggregate transformations.

The design drivers for the Landing Area schema are the following:

• The Landing Area schema should depend on the Data Warehouse schema
and not on the input schemas, for extensibility reasons

• It should be made easy to transform the input data to the Landing Area
schema

We can bridge the two, seemingly conflicting, requirements by designing the Land-
ing Area schema as a de-normalized version of the Data Warehouse schema. This
means that the Landing Area schema mirrors the data warehouse schema with the
difference that the foreign keys in each table are substituted with the attributes of the
table they point to. Figure 27 demonstrates this with an example.

In the example, the data warehouse schema consists of a Fact table that records hos-
pital admissions and the relevant Dimension tables, Patient and Calendar. The land-
ing area schema contains the same tables but each table has been “de-normalized” to
include the attributes of the tables it depends on; in this case, the Fact_Admission
table has had its foreign keys replaced with the attributes of the corresponding di-
mension table.

Figure 27 - Example of a landing area schema based on the data warehouse
schema

The use of this design for the landing area simplifies the transformations. It is easier
to transform the input data to the landing area schema than to the data warehouse
schema, which is the main goal of using the landing area. Also, transforming data
from the landing area to the data warehouse is straightforward since the tables in the
two schemas have a one-to-one correspondence.

The advantages of the proposed design are listed below:

• Simpler transformations (individual and common)

42

• Lower implementation redundancy (the transformation between the landing
area and the data warehouse is implemented only once and works for all in-
put data)

• The landing area design depends directly on the Data Warehouse schema
and not on the input schemas (stability)

• The solution is conceptually intuitive, the landing area represents an inter-
mediate step in the transformation between input interface and data ware-
house schemas

• The creation of the Landing Area can be automated based on the data ware-
house schema

7.2 Data Warehouse
The Data Warehouse component is at the core of the OSCAR functionality. On the
input side it is the place where all data is linked and stored. On the output side it
forms the basis for the provided reports and data extracts. It is illustrated in Figure 28
and consists of the following parts:

• The analytical database (also called data warehouse)
• A copy of the analytical database but which does not contain patient person-

al identification data, the de-identified database
• The ETL process that loads data from the landing area to the data warehouse
• The ETL process that de-identifies the data for exporting

Landing Area
Database

OSCAR Analytical
Database (Star

schema)

OSCAR Data Warehouse

OSCAR De-identified
Database

ETL ETL

Figure 28 - OSCAR Data Warehouse component

7.2.1. Data Warehouse schema
The Data Warehouse schema is in the form of a star schema, as dictated by the data
warehouse design principles mentioned in Chapter 4. The facts and dimensions are
derived based on:

• Previous Philips projects, namely the Motiva DW and DACTyL projects
• Specific data requirements proposed by the clinician
• Concepts from the HL7 RIM
• Concepts based on Clinical Data Warehouse implementations from the liter-

ature

On one hand the specific schema of the Data Warehouse should be stable and support
a wide range of healthcare business processes. On the other hand the goal is not to
limit OSCAR to some specific facts and dimensions, but rather to allow flexibility to
add new ones and remove existing ones in the future.

43

7.2.2. Loading the landing area data into the data warehouse
Section 7.1 described the landing area schema and its relation to the data warehouse
schema. Since we derived the landing area schema directly from the data warehouse
schema, we should now be able to go “backwards” and design a generic way to trans-
form the landing area data to load it into the data warehouse.

Process 1 - Loading tables without foreign keys (dimension tables)
The process to load dimension tables is simple since the corresponding table in the
landing area is exactly the same, so there is one-to-one mapping of the attributes. Of
course the ETL process has to take care of checking for consistency and checking for
updating existing records, if they already exist.

Process 2 - Loading tables with foreign keys (fact tables)
The landing area table that corresponds to a fact table in the data warehouse contains
the attributes of the fact table and the attributes of all related dimensions. The process
to load a fact table has to follow the steps outlined below:

1. Split the attributes of the fact table and the related dimension tables
2. Load each related dimension by using Process 1
3. Lookup all foreign keys for the relevant dimension tables
4. Using the looked-up foreign keys and the attributes of the fact table fill in

the fact table using Process 1

The process can skip any dimensions for which data is pre-calculated and pre-loaded
to OSCAR. Such dimensions are Calendar, Time, and ICD-10 codes.

The previous description can be better understood with an example. Suppose that we
have the landing area and data warehouse as described in Figure 29.

Figure 29 - Landing area example

The ETL process then performs the following steps:

Load dimensions

1. Load the patient dimension using Process 1 (take care to handle existing
records correctly, avoid duplicates)

Load facts
1. Load the patient contained within the Fact_Admission table in the landing

area using the attributes Patient_MotivaID, Patient_CountryID (take care to
handle existing records correctly, avoid duplicates)

44

2. Lookup the surrogate key of the patient that corresponds to the attributes Pa-
tient_MotivaID, Patient_CountryID in the Dim_Patient table

3. Lookup the surrogate key of the date in the Dim_Calendar table
4. Load Fact_Admission in the data warehouse using the keys from steps 2 and

3 (take care to handle existing records correctly, avoid duplicates)

7.2.3. De-identification
De-identification is performed by altering the rows that contain patient personal in-
formation. The schema of the de-identified data extract is the same as the data ware-
house schema only without any information that can link patient data to the actual
person. This can be achieved by omitting all the patient personal attributes in the pa-
tient dimension table in the data warehouse.

7.3 Reporting
The Reporting component offers access to the data stored in the data warehouse. It
exposes this data in the form of reports and dashboards intended to provide an insight
in underlying trends in the data.

The Reporting component is illustrated in Figure 30 and consists of:

• OLAP cubes that expose the data contained in the data warehouse
• Dashboards that are exposed via a web application that connects to the

OLAP cubes and visualize their data

OSCAR Analytical
Database (Star

schema)

OLAP cube

Dashboards

OSCAR Reporting
component

Figure 30 - OSCAR Reporting component

These components are realized by off-the-self tools to minimize the implementation
effort required. These tools require configuration that specifies the location of the
data warehouse, the data model and which tables/attributes are available for usage in
the end user reports.
■

45

8.Implementation

This chapter describes the implementation of OSCAR. The discussion starts with a
list of the tools and technologies that were used and continues with a description of
each component. The implementation is based on the system requirements, architec-
ture, and design described in Chapters 5, 6, and 7.

8.1 Process
The OSCAR implementation process consisted of the creation of a series of proto-
types, each one enriched with improved functionality over its predecessors. The ini-
tial implementations were based on the same technologies as the DACTyL project,
whereas later ones diverted from them, to better support the system requirements and
constraints.

Table 8 presents an overview of the technologies used for the implementation of each
OSCAR component.

Component Implementation tools

Data Collection Java, Eclipse, Apache Tomcat server

Data Warehouse Microsoft SQL Server: Management
Studio, Integration Services

Reporting Microsoft SQL Server Analysis Services,
SharePoint, SharePoint Dashboard De-
signer

Table 8 - Technologies used per OSCAR component

8.2 Technical background
Every software project is an attempt to build the desired functionality out of the set of
languages, frameworks, and tools that are available. This section briefly describes the
main technologies that were used to implement OSCAR. Some alternatives are also
mentioned, which were used in early prototypes but were later rejected.

8.2.1. Microsoft SQL Server [7] and related tools
The Microsoft SQL Server is one of the most popular database management systems
available. Furthermore, it comes bundled with tools for the creation of data ware-
housing solutions and business intelligence applications.

The Microsoft SQL Server was used due to its popularity, its alignment with the task
of building a data warehouse, and the fact that the Philips IT department strongly
encouraged the use of Microsoft tooling.

SQL Server Management Studio (SSMS) [8]
It is a software application that is used for configuring, managing, and administering
all components within Microsoft SQL Server. The tool includes both script editors
and graphical tools. All the databases in OSCAR are built using this tool.

Microsoft SQL Server Integration Services (SSIS) [9]
SSIS is a tool that allows the user to build ETL processes and define workflow tasks.
The OSCAR ETL processes that are implemented with SSIS are the following:

1. Loading the landing area data to the data warehouse
2. Loading the Motiva data to the landing area
3. De-identifying the data warehouse to generate the data extract

The ETL processes, with respect to the OSCAR architecture are shown in Figure 31

Hospital Infrastructure

Hospital Interface
Engine

Lab data

EHRs

HIS data

OSCAR

Telehealth
data

De-
identified

data extract

Reports

Clinician

Researcher

Data
collection

Data
Warehouse

Reporting

2

1
3

Figure 31 - ETL processes built with SSIS

The workflow tasks that are implemented using SSIS include the periodic refreshing
of the data in an OLAP cube and the periodic execution of the aforementioned ETL
processes.

Microsoft SQL Server Analysis Services (SSAS) [5]
SSAS is a tool that provides a visual way for designing and deploying OLAP cubes.
It is used to build the OLAP cube that exposes the OSCAR data to a reporting appli-
cation.

8.2.2. Microsoft SharePoint [10]
SharePoint is a web application platform, with tools intended for non-technical users.
SharePoint can provide intranet portals, document and file management, collabora-
tion, social networks, extranets, websites, enterprise search, and business intelli-
gence. For OSCAR we are interested in the last capability, business intelligence.

SharePoint provides a tool to build interactive dashboards by connecting to an OLAP
cube and identifying the relevant Facts, Dimension and data. It is then able to host
these dashboards so that they are viewable via a web browser.

SharePoint was chosen because of its closeness to the other Microsoft tools we were
using and because of its aim towards non-technical users.

8.2.3. Eclipse [11]
Eclipse is one of the most popular IDEs. It contains a base workspace and an extensi-
ble plug-in system for customizing the environment to support the development of
any kind of application.

Eclipse was used as the development platform for the Connection layer (web ser-
vices) in the DACTyL project, so it was chosen to be used for this project as well. In
fact, initial OSCAR versions also used the same plug-ins as DACTyL, but were later
changed to others that were deemed more suitable.

48

Eclipse Modelling Framework (EMF) [12] and Teneo [13]
EMF is a model driven development framework where the developer can design
models and the framework can produce java source code that implements them. For
more information see the DACTyL report [2].

One of the most useful tools of EMF is Teneo. Teneo provides the ability to map
database tables to EMF models, thus creating a model-oriented way of storing mod-
els in a database. Internally, it uses Hibernate and performs the mappings automati-
cally to ease the developer.

Teneo was used in the early versions of OSCAR, but it was later replaced by Hiber-
nate, more details are provided in Section 8.3.

Eclipse Enterprise Edition
We decided to use the Enterprise Edition of Eclipse due to its support for creating
applications that include, and combine, web services, XML, and data storage.

8.2.4. Java annotations [14]
Annotations are a form of syntactic metadata that can be added to the Java source
code. Annotations are often used by frameworks as a way of conveniently applying
behaviors to user-defined classes and methods that must otherwise be declared in an
external source (such as an XML configuration file). Their biggest value is that by
using them the source code becomes much more clean and concise. The following
annotation APIs are relevant for OSCAR:

• Java API for XML Web Services (JAX-WS), used to define the web ser-
vices in OSCAR, more details in Section 8.3

• Java Persistence API (JPA), used via the hibernate implementation to define
the mapping between Java objects and database tables.

8.2.5. Apache Axis [6]
Apache Axis (Apache eXtensible Interaction System) is an open source, XML based
Web service framework. It consists of an implementation of the SOAP server and
various utilities and APIs for generating and deploying Web service applications. It
comes as a plugin in the Eclipse IDE. It is used to generate the client components of
the OSCAR web services based on their WSDL definitions.

In earlier versions in was also used to generate the web services, but was later re-
placed by the JAX-WS annotations.

8.2.6. Hibernate [15]
Hibernate is a Java library that converts working with SQL commands to working
with Java objects. It does this by mapping each table in a relational database to a Java
data object. There are two ways to specify the mapping:

Hibernate mapping file (XML): A hibernate mapping file is an XML document that
describes the mapping between the attributes of Java classes and database tables. An
example is shown on Figure 31.
JPA annotations (JPA): JPA annotations are Java annotations that essentially per-
form the same function as the XML mapping file but without the need for a separate
file. An example is shown on Figure 32.

49

Figure 32 - Hibernate mapping file

Figure 33 - Java class with JPA annotations

Hibernate Tools [16]
Hibernate Tools are used to generate Java classes that correspond to tables in a data-
base. They are useful in that they automate an otherwise tedious process. They come
as a plugin in the Eclipse IDE. Along with the desired Java classes they generate the
mapping configuration using either a Hibernate mapping file or annotations. In OS-
CAR they are used to generate the classes for the tables in the landing area. Figure 34
and Figure 35 show the hospitalization table in the OSCAR landing area and the cor-
responding auto-generated Java class respectively.

50

Figure 34 - Database Hospitalization table

Figure 35 - Java Hospitalization class

8.2.7. Apache Tomcat [17]
Apache Tomcat is an open source web server container. It is used to host the web
services in the OSCAR Data Collection component. Initially, the classic version of
Tomcat was used, but it was later replaced by Tomcat Enterprise Edition due to its
support for Java annotations.

Tomcat Enterprise Edition (TomEE) [18]
Apache TomEE is the Java Enterprise Edition of Apache Tomcat. It is used in OS-
CAR due to its support for Java annotations.

8.2.8. VMware tools [19]
VMware is a company that provides cloud and virtualization software and services.
The free, personal tool that they provide is called VMware Player. VMware player

51

runs on desktop computers and has the ability to create and run virtual machines.
OSCAR was initially developed using this tool.

VMware also offers the vSphere platform which

“Leverages the power of virtualization to transform datacenters into dramat-
ically simplified cloud computing infrastructures and enables IT organiza-
tions to deliver the next generation of flexible and reliable IT services, using
internal and external resources, securely and with low risk.” [20]

VSphere or similar platforms are used more and more to replace hardware servers
due to the inherent advantages they provide. OSCAR takes advantage of their in-
creased popularity and, by being in a form of a virtual machine, can be easily de-
ployed in any organization that hosts a VMware infrastructure.

8.3 Data Collection
As discussed in the Architecture and Design chapters, Chapters 6 and 7, the Data
Collection layer follows a layered design pattern.

8.3.1. Landing Area
The landing area that forms the base of the data collection component is implemented
using the Microsoft SQL Server tools. The Microsoft SQL Server RDBMS forms the
most basic way to interface with OSCAR. The schema of the landing area is derived
from the schema of the data warehouse; this was discussed in detail in Section 7.1.

Landing Area Generator
Due to the direct relationship between the landing area schema and the data ware-
house schema it becomes possible to build a tool to auto-generate the landing area
database by using the data warehouse schema as input.

The Landing Area Generator consists of the following main components:

• Data Warehouse Schema Getter: A component to get the schema of the
data warehouse, in the case of a data warehouse implemented with Mi-
crosoft SQL Server this requires queries to the system tables of the SQL
Server

• User Configuration Getter: A component to get user configuration, via an
XML configuration file

• Database Builder: A component to generate the tables of the landing area
• Landing Area Generator: A component to orchestrate the whole process

Figure 36 shows the internal structure of the Landing Area Generator tool and Figure
37 illustrates the workflow process of generating the landing area.

52

LandingAreaGenerator

DWSchemaGetter UserConfigGetter DatabaseBuilder

<<Database>>
DataWarehouse

<<XML>>
UserConfiguration

<<Database>>
LandingArea

<<uses>> <<uses>> <<uses>>

Figure 36 - Landing Area Generator components

Get data
warehouse

schema

Get user
configuration

Design the
landing area

structure

Build the landing
area

Figure 37 - Landing Area Generator workflow

The components of the Landing Area Generator were implemented in Java using the
Eclipse IDE. The connections to the SQL Server database used the JDBC interface.
The XML user configuration component was implemented using a library called
XStream [21].

The Landing Area Generator is useful in making the implementation of the data col-
lection faster by removing some of the manual work of the landing area database
configuration. We implemented it to allow for the faster generation of OSCAR proto-
types.

Loading the Motiva data to the landing area
The Motiva data extract is an SQL server database dump. The Motiva data need to be
extracted from this database, transformed, and loaded into the landing area. We used
SSIS in order to implement the ETL process that performs this task.

Landing Area Web Service
The Landing Area Web Service was described in Chapter 7. The data flow within the
landing area web service, Figure 38, is repeated here for easier reference.

2. XML message
is converted to

Java objects

3. Java objects
are converted to
SQL commands

4. SQL
commands load
the data into the

landing area

1. Web Service
receives XML

message

Figure 38 - Data flow within the landing area web service

53

The landing area web service is implemented using Java. The first step to implemen-
tation is to make our Java program aware of the landing area schema. For this we use
the Hibernate Tools to generate Java classes that correspond to the database tables
(the Java objects in Figure 38 are instances of these classes). The auto-generated
classes already contain JPA annotations that can be used to map the XML message to
Java objects as well as to map the Java objects to SQL commands. The former is
achieved using the JAX-WS API implemented by the Apache TomEE server and the
latter is achieved using the Hibernate tool.

Conceptually a web service takes the form of a function (in the software sense). It has
a name, input types, and an output type. Using the JAX-WS API we write this func-
tion as a usual Java function and use annotations to define it as a web service. We
create a separate web service for each Java class that corresponds to a table in the
landing area. The WSDL description and the mapping between XML message and
Java objects are implicitly implemented by the TomEE server using the Java annota-
tions.

It is possible to automate the creation of the landing area web services, since they
follow the same template, the only variation being the function name and input type.
We created a Java program that uses the Apache Velocity [22] (a Java-based tem-
plate engine) library to generate the web services based on the Java classes in the
landing area schema.

By implementing the components as described above we have achieved a seamless
way to store the data from the input XML to the landing area. Furthermore, we are
able to automatically generate the new landing area and new web services after a
change in the data warehouse. The workflow to implement the landing area and the
corresponding web services is described in Figure 39.

Generate landing
area schema Java

classes

Generate web
service

components

Deploy the web
service

Generate landing
area database

Figure 39 – Data collection implementation workflow

Hospital data web service
This web service is implemented in Java in a similar way to the landing area web
service. The difference is that instead of a connection to the database it has a web
service client that implements the interface described by the landing area web service
WSDL. The client is automatically generated, using the Apache Axis [6] tool, from
the landing area web service WSDL file.

The hospital web service is described in its own WSDL file, which can be given to
the hospital for configuration of the hospital interface engine. The transformation of
the data from the input schema to the output schema is defined in Java.

8.3.2. Design alternatives
This section discusses some technology alternatives that were considered for the im-
plementation of the Data Collection component.

Modeling
By modeling we refer to the way that the various data schemas are represented within
the system. We had three main alternatives

• Java classes
• EMF models
• XML schema (XSD)

54

The decision on which one to use was based on the level of maturity of its related
tools and the support of those tools for the OSCAR non-functional requirements.

The main goal was to achieve a seamless flow of data from web service input to da-
tabase. This was achieved by auto-generating the Java classes from the landing area
database (Hibernate tools) and using those same classes with annotations in order to
allow Tomcat EE to generate the XSD schema.

Persistence
Persistence here refers to the way that the Java program communicates with the data-
base. The alternatives are listed in Table 7

JDBC The most primitive way is to use the JDBC interface library

provided by Microsoft. This allows for SQL queries to be sent
to the database.

Hibernate Hibernate uses JDBC but allows the programmer to work with
Java classes instead of SQL queries directly.

Teneo (EMF) Teneo goes one step further and allows the programmer to
work with EMF models instead of classes or SQL queries.

Table 9 - Persistence technology options

JDBC was rejected from the beginning because it is a much more crude and error-
prone way of communicating with the database. Teneo was the easiest one to use but
it could not be combined well with the web services. In other words, we could not
find a direct way to use the EMF models to define the web services. Also, Hibernate
is a much more mature tool in general.

Transformations
The matter of how to define transformations is closely related to the modeling ap-
proach that is taken. Some approaches are listed in Table 8.

Java The most straightforward approach when

implementing a Java program
EMF transformations Various tools that allows the program-

mer to define EMF model transfor-
mations, model to model or model to text

XSLT A standard for the definition of XML
transformations

SSIS A tool for building ETL processes

Table 10 - Data transformations technology options

SSIS is a good option, especially due to the aim of the tool towards non-technical
users, but is only suitable to define transformations between databases and cannot be
combined with web services.

XSLT transformations are a good candidate and there exist Java libraries that can
execute them. They were not implemented due to limited project time and unfamili-
arity on the part of the team members. Nevertheless, they can be the basis for the
implementation of future web services.

EMF transformations were considered but rejected due to the immaturity of the tools.
Perhaps in the future this will become a more suitable approach.

Java was chosen to implement the transformations mostly on grounds of its versatili-
ty.

55

8.4 Data Warehouse
The Data Warehouse component is responsible for maintaining the analytical data-
base, loading it with data from the Landing Area, and generating the de-identified
data extract. It consists of a database and two ETL processes. The database was im-
plemented using the Microsoft SQL Server. The ETL processes were implemented
using SSIS.

Implementation of the ETL to load the landing area data
In Chapter 7 we described a generic way to design the ETL processes that load the
landing area data to the data warehouse. Based on that design, and shaped by the spe-
cifics of the configuration of the SSIS tool our ETL implementation takes its final
shape.

SSIS divides the ETL process in Data Flow Tasks. Each task gets the input from a
data store, performs various operations on it and loads it in another data store. For the
purpose of the ETL processes that load the landing area data the operations on the
data correspond to the steps described in Section 7.2.2. The best way to divide out
ETL processes for scalability and elegance is to implement a Data Flow Task for
each table in the landing area. In this way, new Data Flow tasks can be added, when
new tables are added to the landing area without affecting the existing implementa-
tion.

8.4.1. Design Alternatives
Building the ETL processes
There were two main alternatives:

• SSIS
• Java

We decided to use SSIS. The decision was based on the following facts

• Using SSIS requires less implementation effort since the tool provides a
complete framework for implementing and deploying ETL whereas Java
would require much of this functionality to be built from scratch

• The project team has mostly soft programming skills and prefers, where
possible, to use off-the-self tools that require configuration instead of pro-
gramming

• The SSIS solution provides scalability, it is also tested and verified, while
with Java such provisions would greatly increase the implementation effort
required

A full-blown Java implementation approach would use Service Oriented Architecture
to define simple transformations as web services. Other web services would orches-
trate the use of the simpler ones to perform the required tasks. We decided that such
an approach would essentially re-create the functionality that is already present in
SSIS.

8.5 Reporting
The output of the Reporting component is predefined dashboards such as the Return
on Investment reports and patient reports that take their input from the data ware-
house. The intermediate step between the data warehouse and the dashboards is an
OLAP cube.

To implement the OLAP cube we used the Microsoft SSAS tool. The tool requires
the connection details to link to the data warehouse. It parses the structure of the da-
tabase and generates the OLAP cube with limited further configuration required.

56

In the OLAP cube configuration we can specify which table attributes are visible to
the reporting tool and specify the dimension hierarchies for every dimension. Unlike
other tools, SSAS does not allow for changes to the underlying data schema such as
calculating new attributes.
OSCAR dashboards were built using the SharePoint Dashboard Designer and are
hosted on a SharePoint server. The dashboards are compositions of different elements
such as interactive tables, user prompts and graphs which are designed based on the
structure of the OLAP cube.

The decision to use Microsoft SSAS and SharePoint to implement the Reporting
component was driven by the following facts:

• Preference for easy-to-use tool (soft-programming-skilled users)
• Philips IT department encourages use of Microsoft tooling
• Off-the-self components are already tested and verified

It is off course possible in future versions of OSCAR to use different tools for report-
ing, as long as the tools can connect to the SQL Server data warehouse that hosts the
collected, linked data.
■

57

9.Deployment

This chapter describes the deployment of OSCAR. It starts with an introduction on
some general deployment concepts and continues with the specific case of the de-
ployment within the Philips IT infrastructure.

9.1 General
In order to overcome the various privacy related constraints, it was decided that OS-
CAR should take the form of a virtual machine. Thus, all the components described
in the Chapters 6, 7, and 8 should exist within this virtual machine. Virtualization
also offers the added ability to provide OSCAR with extensible hardware resources;
for example, to add more hard disk space to OSCAR to support increasing data space
requirements.

The OSCAR prototype is deployed in the form of a VMWare Virtual Machine.
VMWare was selected as it is the leading virtualization platform according to their
market share. Also, both Philips and hospitals, where OSCAR will be deployed, host
a VMWare virtualization infrastructure. This allows the easy deployment of OSCAR
within the hospital VMWare infrastructure and within the Philips VMWare infra-
structure for testing.

The Virtual Machine itself contains the Windows Server 2008 operating system.
Windows server contains an installation of Microsoft SQL Server 2012, Microsoft
SharePoint 2010, and the Apache TomEE server.

Figure 40 shows the planned OSCAR deployment within the hospital IT infrastruc-
ture.

text

Hospital Infrastructure

Labs Meds HIE VMWare Infrastructure

Windows Server 2008

TomEE

WS Hospital
interface WS LandingMotiva Landing Area Data Warehouse

ETL
LoadMotiva

ETL
LoadLandingDashboards

SQL Server 2012SharePoint
2010

OSCAR

Clinician PC

OLAP cube

Figure 40 - OSCAR hospital deployment diagram

The bottom layer in Figure 40 is the Hospital IT infrastructure since OSCAR is de-
ployed in the hospital. The hospital IT contains the clinician PC, the various data
stores, the Hospital Interface Engine, and the VMWare infrastructure. OSCAR is
hosted in the VMWare infrastructure and contains all the described components.

The TomEE server hosts the web services as .war files. The SQL Server hosts the
databases and SSIS ETL processes (which are run periodically) as well as the OLAP
cube. The SharePoint server hosts the implemented dashboards.

For the deployment to be complete the HIE must be configured to fetch the data from
the hospital data stores and push it to the OSCAR web services. Also, the URL of the

OSCAR dashboards must be provided to the clinicians so that they are able to view
them via their PCs. In addition, the hospital IT administrator should also determine
the access rights to the intended clinicians and open the appropriate network connec-
tions.

9.2 Deployment at Philips
OSCAR was deployed within the Philips VMWare infrastructure for testing. The
OSCAR virtual machine was initially created and deployed in a laptop using the
VMware Player tool. In order to deploy it within the Philips VMWare infrastructure
the virtual machine files were copied in a USB stick and given to the Philips IT ad-
ministrator. He deployed OSCAR and provided its URL location within the Philips
intranet so that we could connect via remote desktop connection and manage it.

Later, when new versions of OSCAR were developed, the existing OSCAR deploy-
ment was upgraded using the remote desktop connection which provides the look and
feel of a physical machine.
■

60

10. Verification & Validation

This chapter provides an account of the suitability of the OSCAR system to meet the
system requirements as described in Chapter 5. The suitability is described in terms
of verification (checking if OSCAR works as expected) and validation (checking if
OSCAR fulfills the system requirements).

10.1 Verification
This section describes how each OSCAR component was verified. Due to the differ-
ent technologies involved, we adjusted our approach per component.

Data collection
To ensure the correct functioning of the data collection component, we have to en-
sure that data from the various inputs reach the landing area correctly. To test this,
we implemented a small application that acts as the hospital interface engine and
feeds OSCAR with dummy data via its interfaces. This hospital interface engine sim-
ulator generates messages with random data and sends it to the hospital interface web
service and the landing area web service. Once the messages were sent, the landing
area was checked to make sure that it contained the same data as the XML messages.

The WSDL files of the OSCAR web services were tested by using them to generate
web service clients in Java as well as in C#. In both cases, the web service clients
were able to send messages to OSCAR successfully.

Data warehouse component
In the data warehouse component, we had to ensure that the implemented ETL pro-
cesses were working correctly. We did this by running the ETL processes with vari-
ous inputs, while checking the contents of the analytical database.

Concerning the ETL that loads the data from the landing area to the data warehouse,
it was tested by running the process multiple times, with various inputs and observing
the data that was loaded in the data warehouse. The following cases were covered:

• Run the ETL process with empty input records
• Run the ETL process with duplicates in the input data
• Run the ETL process with input data that already existed in the data ware-

house to observe that the processes did not crash and no duplicates were in-
serted

Reporting component
By using off-the-self tools for the reporting component, the testing was kept to a min-
imum. We implemented the OLAP cube and dashboards and checked whether they
were viewable from a remote PC using a browser and navigating to the proper URL.
The dashboards also served as a testing tool since they expose the underlying OLAP
cube structure and data revealing any errors.

10.2 Validation
This section summarizes how the requirements for this project were met by mapping
the implemented features with the system requirements as described in Chapter 5.

Require-
quire-
ment Id

Name Description

F1 Deployment

OSCAR should facilitate easy deployment in different hospitals.

Met by The use of a VMware virtual machine facilitates the easy deployment in the VMware

61

infrastructure found in hospitals

F2 Interopera-

bility

OSCAR should be able to communicate with different hospital IT infra-
structures, using different data sharing standards, as well as different
kinds of schemas defined by the specific informational requirements. For
example common such technologies are Http, SOAP, XML and HL7
CDA. It is part of the project to identify the most relevant ones and im-
plement support for them.

A common way to achieve interoperability is by describing the interfaces
(Web Services) between systems based on WSDL and XSD, therefore
the OSCAR should support at least these technologies

Met by As described in Chapter 8, OSCAR supports both WSDL and XSD. Furthermore, by
using a service oriented design for the data collection component we allow for future
extensions to support any desirable input technology and schema

F3 Data import

The on-site deployment of OSCAR should be able to digest data from
internal data sources (hospital data) and external data sources (Tele-
health, Motiva).

Met by OSCAR facilitates the importing of telehealth data extracts by copying them to a specific
location within the virtual machine. Then, there is an ETL process to load the telehealth
data to the landing area. Hospital data are digested in the OSCAR web services.

F4 Linking

OSCAR should link the incoming data from the different sources, based
on patient identification information, in a unified model (data warehouse
model). This linking should occur within the hospital boundaries (be-
cause the identification information that is required for the linking cannot
be taken outside the hospital).

Met by The data warehouse component of OSCAR maintains records of patients and their per-
sonal details. The ETL process that loads the data from the landing area to the data ware-
house uses these records to perform the linking.

F5 Storage

OSCAR should store all the incoming data, in other words no incoming
data should be “thrown away”.

Met by There are no processes implemented for emptying the defined Data Warehouse, only the
hospital IT administrator can do that. Also, the data warehouse and landing area schemas
are designed so as to be able to store all the data contained in the input messages.

F6 Data export

The on-site deployment of OSCAR should provide methods to export
linked, de-identified data to an external destination, in order to facilitate
off-site analysis of the de-identified data by Philips research.

Met by There is an ETL process in the data warehousing component that de-identifies the data
and creates the data file for exporting.

F7 On-site re-

porting

The OSCAR should offer detailed reporting on-site based on the linked,
identified data. This reporting is to be used by the clinician for decision
support.

Met by The requirement is met by the dashboards that are exposed by the SharePoint server
based on the SSAS OLAP cube.

F8 Supporting OSCAR should be extensible in order to add support for new or addition-

62

future use
cases

al informational needs of its users with minimal effort.

OSCAR should be extensible with respect to different hospital IT infra-
structures and different input sources within a hospital with minimal ef-
fort.

Met by This requirement is supported by the OSCAR architecture and design which allow for
new components to be added. More specifically:

• New dashboards can be added using SharePoint
• New input interfaces can be added by creating new input web services
• New facts and dimensions can be added to the data warehouse and landing area

■

63

11. Conclusions

This chapter summarizes the results of OSCAR and discusses possible future exten-
sions for the OSCAR system.

11.1 Results
OSCAR was initiated to build upon the results of the previous proof-of-concept pro-
ject, DACTyL, with the view to overcoming its limitations and providing an extensi-
ble solution to efficient collection and reporting on linked hospital and telehealth
data.

The DACTyL solution allowed the collection of patient hospitalization data, linkage
with the Motiva data at Philips and automated reporting on the Return on Investment
of the Motiva service. A previous Philips project, the Motiva DWH, had already pro-
vided a data warehouse for automated reporting on Motiva data, yet it was limited
with respect to the supported reporting functionality.

In light of the constraints identified, as well as the stakeholder functional and non-
functional requirements, a high level system architecture was proposed and a proto-
type implementation was developed that accepts, links, and provides reports on hos-
pital and Motiva data, while at the same time being extensible to new types of data
input and reporting requirements. The prototype OSCAR implementation was de-
ployed within the Philips virtualization infrastructure in order to demonstrate the
proposed solution. Thus, a transition from the proof-of-concept solution of DACTyL
to a prototype solution OSCAR took place successfully.

A major challenge in this project was the heterogeneity of the different HISs with
which OSCAR is required to interface. We refrained from setting a strict input inter-
face for OSCAR and expecting the HISs to conform to it; instead we designed our
Data Collection upon the principles of extensibility, so that it can be adapted to sup-
port the most suitable interfaces negotiated between Philips and the hospital IT; this
constitutes a considerable change in viewpoint from DACTyL. To the extent possi-
ble, we tried to make the customization process faster by proposing the use of a ser-
vice oriented design for Data Collection and a model-driven approach throughout the
system. We also used off-the-self data warehousing tools to further enhance this
character.

Support for specific use cases, such as specific input data and output reports, is a
matter of working alongside the end users (clinicians) and refining gradually their
requirements. Also, the reports are constrained by the data available for input. Thus,
as new data becomes available, new reports are possible, and the process is repeated.

The support of specific inputs is a matter of negotiation between the data owners
(managers of the hospital data stores), the hospital IT admin (manager of the interfac-
ing layer) and the OSCAR maintainer (manager of the OSCAR interfaces). The pro-
cess has both technical aspects, but also organizational and legal aspects to it. Tech-
nical aspects include the syntactic and semantic interoperability of OSCAR and the
HIS systems, while organizational aspects include the negotiations that need to take
place, privacy issues, and the acquisition of patient consents for using their data.

It is evident that the above processes cannot be solved with a “simple” data ware-
housing software solution, due to their cutting across organizations and departments
and requiring negotiations between multiple stakeholders. Nevertheless, the resulting
OSCAR system supports Philips by providing the technical basis to ease and auto-
mate the technical steps involved.

11.2 Future work
Future work for OSCAR should focus on going forward with a real-life deployment
in a hospital. Apart from hands-on experience with practical aspects of deployment
and usage, this will also result in new use cases from the clinicians. Such a process
would allow OSCAR to be refined and improved. Other aspects that need to be re-
fined are the processes for the exchange of telehealth data and de-identified linked
data exports between the hospital and Philips.

During the OSCAR project we proposed a generic architecture and design that may
be potentially implemented using a variety of different tools and platforms; for ex-
ample using Oracle tools instead of Microsoft or Linux as the operating system of the
virtual machine instead of Windows. This genericity allows for different versions of
OSCAR to be implemented and deployed in the future according to the preferences
and policies of the host organization.

On a different vein, there is ongoing work within Philips on healthcare IT frame-
works projects, most notably the Data Healthcare Platform, and the alignment of
OSCAR with them will be important in the future as these projects offer an oppor-
tunity for OSCAR to find new use cases. In general, the landscape is changing and
any future work on OSCAR should help find a place for it in this landscape.
■

66

12. Project Management

Whereas the previous chapters described the results of OSCAR, this one is concerned
with the process of the project, those aspects that shaped the way that the project was
developed.

12.1 General
In general, during the project we followed an agile process, each step being guided
by the results thus far and discussions that we had with the project team. A reason for
this is that developing a data warehousing and business intelligence application is an
agile process as it requires collaboration with the end users in a process of gradual
refinement of their requirements. In addition, due to our unfamiliarity with the data
warehousing domain and the heterogeneity of the technologies involved it was hard
to make accurate time estimates of the tasks during this project. Therefore, each
phase of the project was planned as soon as the previous one was completed. At
the end of each phase the work done was presented in the project team meetings. In
general, tight deadlines were not set to allow modifications along the way whenever a
better way of doing things was found.

Our tasks during the project can be roughly divided in four groups.

1. Domain: Study the domain, the user requirements, and previous relevant
Philips projects

2. Design: Create the architecture, design
3. Implementation: Development and deployment of OSCAR prototypes
4. Documentation: Document and communicate the work

Tasks associated with the domain involved getting acquainted with the relevant do-
mains and concepts. It was very important to investigate and build some toy applica-
tions with the various tools that could potentially be part of the final solution, such as
web services with Java, Eclipse Modelling Framework applications, and Microsoft
SSIS and SSAS application examples. Also, published research papers on the clinical
data warehousing domain and relevant internet websites were a source of domain
knowledge for us. In addition, we studied previous work done inside Philips, namely
the DACTyL and Motiva DWH projects. Lastly, our discussions with the project
team allowed us to obtain the required knowledge on the stakeholder requirements.

Tasks associated with the design included defining a suitable architecture, and de-
signing each OSCAR component in a way that best support the system requirements.

Tasks associated with the OSCAR implementation involved coming up with the
best tools and technologies to match the system design while supporting the system
functional and non-functional requirements. The challenge with implementation was
our initial unfamiliarity with the domain as well as the vast array of tools that are
available.

Lastly, tasks associated with documenting the project included writing the final re-
port, preparing PowerPoint presentations and presenting the project results in meet-
ings with the stakeholders.

12.2 Process
A general timeline of the OSCAR project is shown in Figure 41.

Figure 41 - OSCAR project timeline

As mentioned before, the process was agile with the results of each phase determin-
ing the following one. The main goals of each phase are outlined below, in chrono-
logical order.

In the first phase we investigated the domain and experimented with available tools
and technologies. We also studied the DACTyL project and developed an initial OS-
CAR prototype based on the technologies of the DACTyL solution for interfacing.
During this period we combined the activities of reading documentation, online
sources and articles, trying out open source healthcare systems and completing tuto-
rials for the various tools used (Microsoft BI tools). The knowledge and experience
gathered from these activities contributed in the specification and decomposition of
the requirements.

In the second phase we defined and refined the system requirements, based on our
discussions with the project team. The requirements were based on the team’s previ-
ous experience with the DACTyL project and their previous meetings with Philips
and hospital stakeholders. We created a corresponding PowerPoint presentation for
better communicating the requirements with the project team.

The implementation phase involved the development of OSCAR prototypes using
various technology alternatives as well as the definition of the high level system ar-
chitecture and inter-component designs. An important step was to re-implement the
parts of the Motiva DWH project related to OSCAR, namely the Motiva data ware-
house and corresponding ETL processes, from an Oracle to a Microsoft implementa-
tion. The new implementation allowed us to demonstrate the data warehousing and
reporting capabilities of OSCAR ETL processes, OLAP cube, dashboards).

The next phase was involved taking a look into the system non-functional require-
ments, mainly the extensibility requirements and trying to support it in OSCAR in the
best possible way. For instance, we implemented an improved Data Collection com-
ponent, with improved auto-generation of software parts.

The last phase included writing of the final report, implementation of a final demon-
stration and presentations for stakeholders within Philips.

12.3 Communication
For the first two months of the project once per week we had a progress update meet-
ing with the two company supervisors. Afterwards this was replaced with a bi-
weekly meeting. In addition, there was a bi-weekly meeting with the work package
team. Finally, there were informal meetings whenever it was considered necessary.
During the progress update meetings the following tasks were performed:

• Report on the progress of the current deliverables
• Presentation of intermediate results-findings

The requirements were communicated by the Philips supervisors using an envisioned
solution as a communication medium to explain what was required. Meeting with the

68

hospital stakeholders were conducted before the beginning of the OSCAR project
and their requirement were communicated via the Philips supervisors as well.

Once per month, during the project steering group meeting (PSGM) all the delivera-
bles for the past month were presented. During a PSGM meeting the following tasks
were performed:

• Presentation of the current position of the project
• Presentation of future work
• Discussion over the state of the project

 ■

69

13. Project Retrospective

This chapter presents a reflection account of the author on the course of the OSCAR
project.

13.1 General
This project was both very challenging and interesting. Since we started with limited
knowledge on the domain and technologies involved, at every step, we learned some-
thing new. In the meantime, we discovered that each of the domains that constitute
this project is huge in its own right with many sub-domains. Achieving the right bal-
ance between research depth (research into the domain specific) and width (research
into a wide range of domains) was a particular challenge for us.

13.2 Design opportunities revisited
In Chapter 3 the following design criteria were considered important for OSCAR:

• Ease of use
• Reusability (Extensibility)
• Technical realizability

We believe that the OSCAR architecture, design, and implementation support these
criteria. The Microsoft tooling that we used helps the ease-of-use aspect of OSCAR
because they are well-known tools specifically targeted to data warehousing solu-
tions. Moreover, by using a modular, service-oriented approach for the data collec-
tion and providing clear WSDL interfaces the data collection component can be ex-
tended without having to depend upon the specific implementation of the current
services, this supports the reusability aspect of OSCAR. By adding new web services
next to the existing ones allows the whole system to be re-used even when the inter-
facing requirements change. The technical realizability of the system is demonstrated
by the deployment of the OSCAR virtual machine within the Philips VMware infra-
structure.

13.3 Challenges
A challenge came from the fact that most of the used technologies were unknown to
us in the beginning of the project. Furthermore, during the course of the project we
kept discovering more technologies that required research and prototyping to be
evaluated.

Another challenge was the lack of specific use cases, specific in terms of the data that
was required to be collected and information to be reported on, since OSCAR was
expected to be a generic reporting framework. This led to vagueness in the require-
ments and difficulty in defining the specific goals of the project.

A last challenge was the fact that the previous projects DACTyL and Motiva DWH
used technologies incompatible with OSCAR, therefore, we did not have the luxury
of re-using parts of those solutions but a considerable effort was required to re-
implement any required functionality. This includes the database schemas and the
ETL processes that load the Motiva data to the data warehouse.

13.4 Strong Points
We identify the following strong points for our approach and results:

• Balancing the exploration of a huge domain with a concrete implementation.
We believe that we singled out concepts of the domain that are relevant for
this project and for the future versions while implementation a concrete so-
lution.

• Adopting technology. In this project we worked with different tools and had
to learn and adapt fast.

• Working incrementally. We created a basic version and then build the proto-
type incrementally focusing on a different layer per iteration.

13.5 Improvement Points
We identify the following points in which we could improve:

• Defining concrete usage scenarios (specific data inputs, specific reports) in
the beginning of the project and basing the rest of the work on that scenario.
It would be very useful to have a concrete use case running throughout the
project because it would provide a more concrete understanding to us and
the stakeholders and a basis for demonstrations.

• Conducting the deployment of OSCAR in a real-life environment. It would
be very interesting and useful to conduct a deployment during the course of
the project in order to judge the quality of our work and refine the user inter-
facing and reporting requirements based on a tangible system.

• Estimating documentation effort. We underestimated the documentation ef-
fort. We could have avoided this pitfall if the documentation effort had
started earlier.

■

72

Glossary
BI Business Intelligence
CDA Clinical Document Architecture
DACTyL Data Analytics, Clinical, Telehealth, Link. The name of a

project predecessor to OSCAR.
Data Model /
Data Schema

A description of the data in terms of concepts, their proper-
ties, and relationships

Data ware-
house

A collection of systems and processes that enable reporting
and data analysis.

Dimension In a data warehousing context, Dimensions provide struc-
tured labeling information to otherwise unordered numeric
measures. The dimension is a data set composed of indi-
vidual, non-overlapping data elements. The primary func-
tions of dimensions are threefold: to provide filtering, group-
ing and labeling.

DW/DWH Data Warehouse
EHR Electronic Health Record
EMR Electronic Medical Record
Fact In a data warehousing context, a fact is a value or meas-

urement, which represents a fact about the managed entity
or system.

H2H Hospital to Home
HIE Hospital Interface Engine, a system used for the communi-

cation between the various systems within the hospital IT
infrastructure

HIS Hospital Information System
HL7 Health Level Seven International [24]
ICD-10 International classification of diseases version ten
Linking The process of unifying data from multiple sources based

on a common known entity
Motiva Motiva is a secure, personalized healthcare platform that

leverages consumer electronics and broadband to connect
patients and their care providers, thereby enabling care
models for patients in their homes.

Operational
source

An external system such as a hospital information system.

OSCAR On-Site Customer Analytics and Reporting. The name of
the current project.

RDBMS Relational Database Management System, a system that
manages relational databases, offering interfaces for exe-
cuting SQL queries on them.

RIM Reference Information Model, see also HL7

Bibliography

[1] "Philips Research," [Online]. Available:

http://www.research.philips.com/.
[2] A. Papakostopoulos, "DACTyL," Eindhoven University of Technology,

2013.
[3] K. v. H. a. K. v. Overveld, "Criteria for assessing a technological," 2010.
[5] [Online]. Available: http://technet.microsoft.com/en-

us/library/ms175609%28v=sql.90%29.aspx.
[6] "Apache Axis," [Online]. Available: https://axis.apache.org/axis/.
[7] "SQL Server," [Online]. Available: http://msdn.microsoft.com/en-

us/sqlserver/aa336270.aspx.
[8] [Online]. Available: http://msdn.microsoft.com/en-

us/library/ms174173.aspx.
[9] [Online]. Available: http://technet.microsoft.com/en-

us/library/ms141026.aspx.
[10] [Online]. Available: http://technet.microsoft.com/en-

us/library/ee428287%28v=office.14%29.aspx.
[11] [Online]. Available: https://www.eclipse.org/.
[12] [Online]. Available: http://www.eclipse.org/modeling/emf/.
[14] [Online]. Available: http://en.wikipedia.org/wiki/Java_annotation.
[15] "Hibernate," [Online]. Available: http://hibernate.org/.
[16] "Hibernate Tools," [Online]. Available: http://hibernate.org/tools/.
[17] "Apache Tomcat," [Online]. Available: http://tomcat.apache.org/.
[18] "Apache TomEE," [Online]. Available: http://tomee.apache.org/apache-

tomee.html.
[19] "VMware," [Online]. Available: http://www.vmware.com/.
[20] "Vsphere feature," [Online]. Available:

http://www.vmware.com/files/pdf/key_features_vsphere.pdf.
[21] "XStream," [Online]. Available: http://xstream.codehaus.org/.
[22] "Apache Velocity," [Online]. Available: http://velocity.apache.org/.
[23] "Health Level Seven International," [Online]. Available:

http://www.hl7.org. [Accessed 2013].
[24] M. R. Ralph Kimball, The Data Warehouse Toolkit, Wiley.
[25] C. Adamson, Star Schema The Complete Reference, McGraw Hill

Professional.
[40] Oracle, "VirtualBox.org," Oracle, [Online]. Available:

https://www.virtualbox.org/.
[42] Philips, [Online]. Available:

http://www.philips.com/about/company/missionandvisionvaluesandstrat
egy/index.page.

[43] Philips, [Online]. Available: www.philips.com.
[45] World Health Organization, "International Classification of Diseases

(ICD)," [Online]. Available: http://www.who.int/classifications/icd/en/.
[46] Eclipse, "Eclipse Modeling Framework (EMF)," [Online]. Available:

http://www.eclipse.org/modeling/emf/.
[47] "Teneo," [Online]. Available: http://wiki.eclipse.org/Teneo.
[48] Hibernate, "Hibernate," [Online]. Available: http://www.hibernate.org/.
[49] Oracle, "Oracle Data Integrator," [Online]. Available:

http://www.oracle.com/technetwork/middleware/data-

integrator/overview/index.html.
[50] Oracle, "Oracle Business Intelligence Enterprize Edition 11g," [Online].

Available: http://www.oracle.com/us/solutions/business-
analytics/business-intelligence/enterprise-edition/overview/index.html.

[52] Apache Software Foundation, "Code Generator Wizard Guide for
Eclipse Plug-in," [Online]. Available:
http://axis.apache.org/axis2/java/core/tools/eclipse/wsdl2java-
plugin.html.

[55] "Easily create Web services clients with Visual Studio .NET," [Online].
Available: http://www.techrepublic.com/article/easily-create-web-
services-clients-with-visual-studio-net/.

[56] L. C. w. J. Stagnitto, Agile Data Warehouse Design, DecisionOne,
2012.

76

About the Authors
Panagiotis Thomaidis received his Diploma in Elec-
trical and Computer Engineering from the Aristotle
University of Thessaloniki, Greece in 2011. During his
studies he focused on Software Technology and Com-
putational Intelligence. His diploma thesis, titled
“Computational Intelligence (Transductive Support
Vector Machines and applications on classification
problems)”, studies the robustness of a semi-
supervised learning variant of the Support Vector Ma-
chine. Also, during his studies, he got involved with
PANDORA, the University’s robotics team, where he

worked on improving the robot’s SLAM subsystem, in C. Furthermore, he did an
internship in ALTEC Software working with Java to create a Blog feed monitor ap-
plication. He has broad interests ranging from painting and graphic design to soft-
ware and artificial intelligence and is always researching new tools and languages
looking for new concepts and ideas. In October 2012 he started working for the
Eindhoven University of Technology as a PDEng candidate for the Stan Ackermans
Institute Software Technology Program. From January 2014 until September 2014 he
worked at Philips Research on the project described in this report.

77

	Cover Thomaidis
	TR Thomaidis.Panagiotis
	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Context
	1.2 Motivation
	1.3 Motiva
	1.4 Project history
	1.4.1. Motiva Data Warehouse (Motiva DWH)
	1.4.2. Data Analytics, Clinical, Telehealth, Link (DACTyL)

	1.5 OSCAR Scope and Goals
	1.6 Report outline

	2. Stakeholder Analysis
	2.1 Philips Research
	2.2 Eindhoven University of Technology (TU/e)
	2.3 St. Anna hospital in Geldrop

	3. Problem Analysis
	3.1 DACTyL constraints
	3.2 OSCAR
	3.3 Design opportunities

	4. Domain Analysis
	4.1 Introduction
	4.2 The healthcare data domain (healthcare analytics)
	4.2.1. Hospital Information Systems (HIS)
	4.2.2. Healthcare Standards
	Health Level 7 (HL7)
	Clinical Vocabularies

	4.3 Business Intelligence (BI) and Data Warehousing
	4.4 Web Services
	4.5 Virtualization

	5. System Requirements
	5.1 Requirements overview
	5.2 User roles
	5.3 Use case scenarios
	5.4 Functional requirements
	5.5 Non-functional requirements

	6. System Architecture
	6.1 OSCAR as a black box
	6.2 OSCAR system overview
	6.3 Data Collection
	6.3.1. Data flow

	6.4 Data Warehouse and Reporting

	7. System Design
	7.1 Data Collection
	7.1.1. Landing Area (Persistence layer)
	7.1.2. Web Service layers
	7.1.3. Web services internal design
	7.1.4. Landing Area schema

	7.2 Data Warehouse
	7.2.1. Data Warehouse schema
	7.2.2. Loading the landing area data into the data warehouse
	7.2.3. De-identification

	7.3 Reporting

	8. Implementation
	8.1 Process
	8.2 Technical background
	8.2.1. Microsoft SQL Server [7] and related tools
	8.2.2. Microsoft SharePoint [10]
	8.2.3. Eclipse [11]
	8.2.4. Java annotations [14]
	8.2.5. Apache Axis [6]
	8.2.6. Hibernate [15]
	8.2.7. Apache Tomcat [17]
	8.2.8. VMware tools [19]

	8.3 Data Collection
	8.3.1. Landing Area
	8.3.2. Design alternatives

	8.4 Data Warehouse
	8.4.1. Design Alternatives

	8.5 Reporting

	9. Deployment
	9.1 General
	9.2 Deployment at Philips

	10. Verification & Validation
	10.1 Verification
	10.2 Validation

	11. Conclusions
	11.1 Results
	11.2 Future work

	12. Project Management
	12.1 General
	12.2 Process
	12.3 Communication

	13. Project Retrospective
	13.1 General
	13.2 Design opportunities revisited
	13.3 Challenges
	13.4 Strong Points
	13.5 Improvement Points

	Glossary
	Bibliography
	About the Authors

	Back cover SAI reports

