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1. Introduction 

I. 1. Strain localisation for softening materials 

A large number of materials are characterised by a softening behaviour. These materials show 
a decrease of the load-carrying capacity when the limit load is exceeded. All deformations localise 
in finite small bands before fracture occurs. The corresponding conventional stress-strain diagram 
wi!! show i! descending brinch (negative slope). This phenomenon is commonly called símin 
softening accompanied by strain localisation. The use of a strain-softening model in a classical 
continuum theory does not lead to hyperbolic field equations, describing the equilibrium of the 
material. The finite element solution converges to a localisation zone with zero thickness if the 
meshes refine. The solution becomes mesh-sensitive. (Needleman, 1988) 

1.2. Aims of the study 

In order to remedy the ill-posedness of the initial value problem for strain-softening models in 
Several classical continuum-formulations, many numerical techniques are recently developed. 

directions of avoiding the problem are advocated (de Borst 1992, Simo 1988, Sluys 1992): 
+ Using a rate dependent crack model 
+ Making the softening modulus dependent on element size 
+ Using a gradient dependent model (de Borst 1991) 
+ Viscoplastic regularization coupled with a physical scale dimension limiting the local 

+ Using a Cosserat continuum model 
+ Using a nonlocal approach (Brekelmans 1993) 
+ Adaptive mesh-refinement, etc. 

defect size 

This study focuses on the viscous regularization of localisation by strain-softening to obtain a 
finite element formulation that is no longer mesh-sensitive. The localisation in narrow bands is 
examined, and the different results for progressively refined meshes are compared. The theoretical 
underlying approach is based on a viscouskreep damage-evolution law and Perzyna's viscoplastic 
model. 

The analyses will be carried out under dynamic conditions, where inertia-effects will be taken 
into account (the wave propagation problem). Mode I and mode 11-localisation are simulated by 
reflection of the loading-waves which causes the yield limit to be exceeded. On the other hand, a 
second analysis is performed, without wave propagation or inertia-contributions. In this case, small 
imperfections were used to obtain localisation. A brief discussion of the influence of an 
imperfection on the nature and width of the localisation zone is made. 

To examine the failure by strain-localisation, two simple models are used, a two-dimensional 
tension bar and a one-dimensional shear layer. The influence of some model parameters is also 
evaluated. It is important to remark that this study only analyses the numericnl pe~forn~ance of the 
presented viscous damage models, and does not really simulate experimentally measured data. 

1.3. Outline of the study 

The two viscous regularization techniques are theoretically described in Chapter 2.  Paragraph 
2.1 deals with the viscous damage model, while paragraph 2.2 treats of Perzyna's viscoplastic model 
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involving damage. The implementation in a finite element formulation is described in paragraph 
2.3. 

The models are 
sketched and the corresponding results are discussed. The two-dimensional tension bar is treated in 
paragraph 3.1. Paragraph 3.1.1. treats of the dynamic approach including inertia-effects (wave 
propagation), while paragraph 3.1 .Z. deals with a quasi-static analysis without inertia-contributions. 
The shear layer model is analysed in paragraph 3.2 .  

The numerical analyses that are carried out, are described in Chapter 3.  

The essential conclusions are summarised in Chapter 4. 
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2. Viscous regularization - the damaee approach 

Throughout the elaboration of the theoretical model tensor notations will be used to derive the 
constitutive relations. 

2.1. The viscous damage evolution law 

To describe the mechanical behaviour of strain-softening materials, an internal state variable, 
the hmcge,  will be incorporzted into the constitutive node! (Kachanov 1986, Lemaitre and 
Chaboche 1990). The damage is assumed to be isotropic. Consequently the damage D will be a 
scalar variable. To incorporate this damage-variable in the constitutive model, the global elastic 
constitutive equation is modified as follows : 

CJ = ( i - ~ )  4De: E (2.1.1) 

(4De being the elastic stiffness tensor, and D being the damage ). 
Assuming that at a time t the entire displacement field ( and thus the total strain) and the current 
damage values are known, one can determine the stress tensor at time t+At for a given strain 
increment : 
Qne may then write ACJ = - B' , where Aois depending on the state variables and the 
damage at time t , the incremental displacement field, the chosen time step and the model 
parameters. 

Rewriting the global constitutive relation in a rate format : 

(5 = ( ~ - D ) ~ D ~ : ~ S .  - D4De:e 

AU = ( ~ - D ~ + * ~ ) ~ D ~ :  sf + A t  - ( ~ - D ' ) ~ D ~ :  E' 

AG = ( I - D ~ - A D ) ~ D , : ( E ~  + A € )  - ( ~ - D ~ D ~ : E ~  
AU =(i-ot - A D ) ~ D ~ :  AE - a04De:  E' 

which in its incremental linearised form (second order terms neglected) gives : 

t+At .  

A D  = I D d t  

A D  is calculated by means of an Euler forward prediction giving : 
t 

r 
A D  = D ' . A t  whereat  = [( J(S) -C}1 

K(1-D) 

(2.1.2) 

(2.1.3.) 

The damage evolution law used in this model is based on the creep damage evolution law from 
Kachanov (Kachanov 1986), where the parameter C is added. C represents a threshold value for 
damage initiation and evolution. The model parameters K and C fully control the viscous (or creep) 
character of the evolution law. Damage increments are calculated explicitly to simpli@ the 
equations to solve. An implicit damace scheme would introduce a non-symmetric tangential 
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stiffness tensor on this level and a system of equations in the next paragraph that would become 
quadratic. The drawback of this choice is a restriction on the time step that is used to integrate the 
differential equations. 

AD E t  
:AG = A €  - “D e-1  

[ l - D t -  A D ]  1 - D ‘ -  AD 

The non-linear tangefitial stiffness tensor then becomes : 

“Dct = ( I - D ~  - 0) “De 
r 

ACT = “D,‘:AE - A q  with A q  = 4Dct : 1 “ AD] 
1-D‘- AD 

2.2. Perzyna’s constitutive model for viscoplasticity 

During an infinitesimal increment of stress, changes of strain are assumed to be composed of an 
elastic and a plastic part . The total strain rate can then be decomposed as follows : 

. .  
€=E,+€, 

Analogous to the previous paragraph one has A c  = o~+*‘ - O‘ , where AO is supplementary 
depending on the viscoplastic strain field. The viscoplastic strain rate in the Perzyna model 
(Perzyna 1966,1971, Timmermans 1991) for associative plastic flow is given by : 

where f stands for the chosen yield function, and where y stands for a viscous material model 
parameter 

The Von Mises yield function f = - J(s) - K will be used to describe the yield surface. J(S) 
1-D 

represents the equivalent stress and S the stress deviator, while K represents the yield limit. The 
yield function and the viscoplastic strain rate depend on the current damage value D and the stress 
tensor O . The function $( f )  will here be chosen as (f  / K ) ~  where N is a material model parameter 
to fit experimental data. The global constitutive equation then becomes : 

Rewriting the global constitutive relation in a rate format : 
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Cr = ( 1 - ~ ) ~ D ~ : ( i  -iy) - 4 D e : ( ~  - E @  

which in its incremental linearised form gives : 

AG = (i-o'-A~)~D~:(e~ + AE - E' - As ) - ( i - ~ ' ) ~ I l ~ :  (st - E' ) 
vp vp Vp 

AG = ( I - - D ~  -AD)'D~: (AC -AZ ) - b 4 D e :  (€'-et ) 
Vp w (2.2.2) 

The incremental viscoplastic strain can be determined by means of an interpolation-parameter 8 
according to the chosen integration scheme ( 9 = O explicit ; 9 f O implicit ). 

*% = [(i - 9 ) g  t, + 9 i  E A t ] A t  

a i  vp 
Define 'R = - 

d o  

---+$-] a$ af af a2f 
afaoao a 0 2  

Elaboration of 4R for the Von Mises yield function 

- 4 3  J, i 1 
K where J, = - S:S with S = CT --Ttr(CF)I - ~- 

1-D 2 3 

1 aJ(S) - 1 1 3  3s 
2s = - - - af 

dS 1-D as l - D 2 J ( S ) 2  2(1-D)J(S) 
- 

(2.2.2) 

(2.2.3) 
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(tr(S)= O) 3s - af 
aCY 2(1- D)J(S) 
- -  

3 
3 

-- 3 ( 4 1  --II; 1 1  
3 1  

-i- 
[(D-1) af- af- 

= I  L J(S) d o  d o  2(1-D)J(S) 

3 1 
2 3 

define 'M = -('I---II) 

(2.2.4) 

2J(S) dD 

= z  
N-1 

- - ~ [ N ( - - K )  J(S) 
2J(S) 1-D 

(2.2.5) 

AD is calculated in the same manner as outlined in the previous paragraph. To evaluate the 
balance between the implicit scheme of the viscoplastic strain and the explicit damage scheme, 
numeric iterative controls are performed to justie this approximation. The accuracy is found to be 
very good. 

Substituting the equations (2.2.4) and (2.2.5) into equation (2.2.3) : 

&t'At  =Eb + 43R:A.8.+2:bD (2.2.6) 
Vp 

i 

TUE-WFW (NL) 1 KRIS-COB0 (BE) 7 I ~ S C O I L S  regrrlurization of strain locahation 



M. Geen WFW 93.090 

Rewriting (2.2.2), using (2.2.6) gives : 

AC, =(Et, +û'R:Ao+BZAD)At (2.2.7) 

Substituting (2.2.7) in (2.2.1) : 

( E '  - E t  ) 
+ û 4 R A t  : A 0  = A C  -€:pAt-OZADAt - AD 1 i - D ' - A D  

-1 

4 Dc' = [ 4 D ~ 1  + e " ~ h t ]  
1 - D - D  

(Et --Et ) 

1-D'- AD 
with A q  = 'Dct: €;At + 0ZADAt + I ACT = 4Dct :A~  - A q  

The incremental stress tensor and the new tangential stiffness tensor will be used in a finite element 
formulation in the next paragraph. 

One can easily veri@ that the viscous damage model is fully incorporated in the extended model 
presented above. 

2.3. Implementation in a finite element formulation 

To implement the viscoplastic constitutive model (or the viscous damage model which is a part of 
it) in a finite element model, we shall now use the matrix-vector notation. concisely 

2.3.1. The dynamic problem - wave propagation 

The spatially discretised equation of motion describing the balance of momentum at time 
t+At is given by the concisely written version of 
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in which ä t+At is the acceleration array at time t+At 

D ~ + ~ ~  is the stress array at time t+At 
- H is the matrix containing the interpolation polynomials 
p is the density 
- B is the strain-nodal displacement matrix 
(E = LXJ with L the differential operator matrix ) 
f t+At is the external load array at time t+At 

ft+At is the internal force array at time t+At 

- 
- 

- ext 

-Int 

To determine JE ut+At - dV an Euler forward method is used 
V 

t+At t+At  

J E u t + A t d V  - = S g D t d V  - + J  J g 6 d t d V = f t  - -int + J  J E b d t d V  
V t  V V V t  

(2.3.2) 

t+At 

J O dt dV is evaluated introducing the incrementa! stress vector - 
V t  

t+At 

5 J g 6 d t d V  - = J E A o d V  - 
V t  V 

The incremental stress array is derived from the viscoplastic constitutive model as 
elaborated in the previous paragraph : 

Au = D,'AE - Aq = D C t E A a  - - Aq - - - -  - -  

JE AodV - = JB' D:gAadV - - JE AqdV - 
V V V 

where Aä stands for the incremental displacement array 
Substituting (2.3.2) and (2.3.3) in (2.3.1) yields 

or 

(2.3.3) 

(2.3.4) 

where Kt stands for the global stiffness matrix K' = ,f B' DC B dV 

A direct time integration method using an implicit time integrator is used to obtain a filly 
discrete equation of motion. Assuming that the acceleration varies linearly over the time 
step, the following Newmark time integration scheme is used : 

V 
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(2.3.5) 

where a and p are the Newmark integration parameters. 

Equation (2.3.5) together with equation (2.3.4) results in a system of equations where 
are the unknown variables to be determined. This system can be solved if 

the initial and boundary conditions are specified (Sluys 1992). 
The dynamic Shock module of the DIANA finite element program is used to perform the 
Newmark time integration. 

a t + A t  Tt+At  x t + A t  a a 

2.3.2. Implementation without inertia-effects 

In this case, equation (2.3.4) can be readily transformed into the following equation : 

ft-cAt = f '  + &' Aa - jg AqdV 
- v  - ext - int - 

which can be easily implemented in a classical non-linear formulation. 

2.3.3. Integration parameters - remarks 

It is important to remark that the chosen integration scheme results in a tangential 
stiffness matrix that remains symmetric. The gain in accuracy that would be achieved by 
using more complicated schemes would render the system of equations to calculate AG 
non-linear with a non-symmetric tangential stiffness matrix. The time needed to solve the 
problem would increase drastically. 

The numerical implementation of the stress factor A q  has been done on integration 
point level (while calculating AG) and not on the global level of the internal forces 
([E AqdV in (2.3.4)). The iterative Newton-Raphson scheme used to solve the global 

system of equations automatically corrects this error, and all equations are fùlly respected. 
The time-step must be chosen such that the solution is sufficiently accurate. In 

addition of the requirements imposed by the stability of the integration scheme, one should 
assure a dynamically accurate solution. A critical time step size (Hughes, 1987) to impose 

is At< 2 where 1, is the element length and c, is the longitudinal elastic wave velocity 

V 

1 

Cl 

A consistent mass matrix is used to reflect the mass distribution in the elements. In 
combination with an implicit scheme, this choice leads to more accurate results. All 
dynamic calculations have been performed with a time-integration parameter = 0.5 and 
Newmark parameters a = 0.5 and p = 0.25 (trapezoidal rule). This choice makes the 

1 1 (a  + 3)' 
Newmark method unconditionally stable ( a 2 - and p 2 

2 4 
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This analysis will not deal with geometrical non linearity. Some results reflect strains 
that are to elevated to be modelled without a geometrical non-linear model. Nevertheless, 
the results are exploited, because the principal aim of this analysis is to veri@ the stabilising 
influence of the viscous contributions in the constitutive equations and not the exact 
calculation of the strains during deformation. 
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3. Numerical analyses 

3.1. 2D-Tension Model 

3.1.1. Wave propagation problem 

3.1.1.1. Tension &g I Meshes 

Numerical experiences are performed on the tension bar presented in fig 3.1.1. For 

Y 
9 

28 ~lllfl 

reasons of symmetry oniy a fourth of the bar will be modelled by a finite element 

fig. 3.1.1 

I 
I 

. i  

! . .  i *  
i .. . .... ___/ --* i 

100 mm 

Mesh refinement is concentrated near the vertical symmetry-axis (Y-axis) fiom 2,4, 8 to 
16 ments over a range of 10 mm. 

! 

fig. 3.1.2 
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Symmetry-boundary conditions are applied on the symmetry-axes. The four meshes, used 
to examine localisation by wave-reflection, are visualised in fig 3.1 .Z. Use has been made 
of quadrilateral parabolic eight-noded isoparametric elements with a nine point Gauss 
integration scheme. 

3.1.1 .Z. Geometry- & material parameters 
Length mesh - 50 mm 
Width mesh - 10 mm 

0.25 mm Thickness - 
Young’s modulus = 2000 MPa 

0.4 Poissûl?”s ratio - 

- 
- 
- 

- 

Density 

3.1.1.3. Boundary conditions - loading 

ry-axes, all displacement-components perpendicular to the axis are 
suppressed while all other components remain free. At the right boundary several loadmg- 
types were tested. It appeared that applying an increasing displacement (with a constant 
rate) results in a spurious solution as shown in figure 3.1.3 ( load-displacement curve at 
the right edge). Although this solution seems to be unacceptable, mesh refinement leads to 
exactly the same curve. The inclusion of an algorithmic damping in time, to exclude 
artificial higher-order fkequencies, or any variation of the time step ( even for very small 
time-steps) still leads to the same solution. The results are probably due to the interaction 
of the incremental iterative integration on the one hand, and the rapid inertia-waves on the 
other hand. Numerically, the material cannot follow the imposed load rate. Other authors 
have also encountered similar problems. 

Displacement [m] 

fig. 3.1.3 

~ 
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Another loading-type is used to exploit the results more efficiently. A block wave with a 
vertical stress front (fig. 3.1.3.b.) is applied to the right edge of the mesh (a fourth of the 
bar : fig 3.1.1 .). The wave is applied by means of a uniformly distributed force. The load 
level has been chosen such that the response of the bar remains elastic until the left 
boundary is reached. The double in stress due to reflection of the tensile wave causes the 
triggering of localisation. The tensile wave propagates to the right and failure occurs 
before it reaches the right edge again. 

I 

fig. 3.1.3.b. 
The stress level q applied to the right edge is 11 MPa. 

3.1.1.4. Viscous damage model 

Model parameters 
The following numerical values were used to simulate localisation throughout the viscous 
damage model. 
Damage: K = 1 M P ~ / s - ~  

C = 15 s-’ 
r = 4  
D, = 0.8 

Damage initiation starts at a stress-level 6 ,  equal to 15 MPa, which is exceeded after 
reflection. 
The time step used for the time-integration is chosen mesh-dependent at f 50 % of the 
critical time-step (calculated with the smallest element). This choice is justified in $2.3.3. 

Coarse Mesh : At = 16.10-~ s 
MediumMesh : At = 8.10-~ s 
Fine Mesh : At = 4. i0-~ s 
ExtrafineMesh : At = 2.10-~ s 
The elastic wave speed obtained with the numeric values of 93.1.1.2. is 1414 d s .  

Results 
The results of the axial strains along the symmetry-axis of the bar (X-axis) is shown in fig 
3.1.4. The localisation stabilises and the fine meshes globally present the same localisation 
width. All results have been taken at time 64 its, which corresponds with load step 40, 80, 
160 and 320 respectively for each mesh. At 64 ibs, the loading wave traversed 90 mm (50 
mm elastically, 40 mm aRer reflection). At this time failure occurs because the critical 
damage is reached in a small zone of the bar. The coarse mesh is somehow a little to 
scabrous and cannot really represent the fine localisation zone. Fig 3.1.5 represents the 
same results at an earlier stage (time 50 ps), where the wave traversed 70 mm. 

TUE-WFW (NL) / KRIS-COB0 (BE) 14 Jhcoris regrilari~ation of straùa locallrath 



2 0 . 0  3 0 . 0  4 0 . 0  5 0 . 0  
, l i b . ,  I< o.. , d i n . f .  

LOLdC...IO 

x i s r . . "  

l 
Fig 3.1.4. Axial strains on symmetry-axis at 64 ps - ZD-Tension model - viscous damage model : Coarse mesh (upper left corner) , Medium mesh (ìower 

left corner), Fine mesh (upper right corner), Extra fine mesh (lower right comer) 
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Fig 3.1.5. Axial strains on symmetry-axis at 50 ps - 2D-Tension model - viscous damage model : Coarse mesh (upper left corner) Medium mesh (lower 
Ieft corner), Fine mesh (upper right corner), Extra fine mesh (lower right corner) 
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Strains are smaller and the global localisation zone is still wider, but mesh objectivity 
remains globally preserved. The strain-development that nicely reflects the wave 
propagation and the appearance of the localisation zone is represented in fig. 3.1.6 below. 
Reflection occurred at time step (time 35 ps).. The deformed mesh in the failure stage is 
given in figure 3.1.7 below. 

Bg. 3.1.6. 

fig. 3.9.7, 

It is also interesting to analyse the local strain distribution in the bar, which shows more 
2D-effects. Fig. 3.1.8. and fig 3.1.9 show the results €or the four meshes. Again, the 
coarse mesh is represented in the upper left corner, the medium mesh in the lower left 
corner, the fine mesh in the upper right corner and the extra fine mesh in the lower right 
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corner. Fig 3.1.8 was taken at time 64 i t s  and fig 3.1.9 at time 50 ps. Locally some small 
differences occur on fig. 3.1.8.. On the local level, mesh orientation slightly influences the 
results in the final stage of the failure mechanism, when damage increases rapidly. This 
rapid increase of damage and strain is precisely the cause of the local numeric differences 
that appear between the meshes. These differences are very small in fig 3.1.9, where 
damage has not yet attained a high value. 
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3.1.1 S.Perma's viscoplastic model involving damage 

Model varameters 
Following numerical values were used to simulate localisation by the vkcoplastic damage- 
model. 
Damage : K = 0,3 M P ~ / s - ~  

c = 50 s-' 

E, = O.$ 
r = 3  

E, §tad§ fir the criticd dsimge !e.rd (= the rn&=Em 
achievable damage) 

'viscoplasticity :y = i00 s- ' 
N = 2  
K = 1 5 M P a  

The yield limit K and the damage threshold K.C are €ked at 15 ma. The time-step is 
chosen identically to the value in 53.1.1.4. 
The exponent in the damage evolution law is taken smaller than in the previous paragraph. 
The exponential character of the damage evolution law is decreased in favour of the 
viscosity of Perzyna's model. The value 100 s- ' for y is necessary to pearnit the rise of the 
viscoplastic strain in a short time. 
Results 
The results are taken at the same instants as in the viscous damage model. Fig 3.1.10. 
shows a typical deformed mesh. Fig 3.1.1 1 presents the axial strains along the symmetry- 
axis for the four meshes. 

fig. 3.1.10. 
It can be observed that the stress distribution in the bar is smoother with the viscoplastic 
model. This twofold model is more capable to fit to different strain-patterns that can be 
measured by experiments. The damage ensures the localisation, while the global double 
viscosity takes care of the regularization. The 2D-plots of the Von Mises strains in fig. 
3.1.12. on page 23, show that some small differences remain between the meshes in the 
failure stage. 
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3.1.2. Viscous analysis without inertia-effects 

3.1.2.1.Tension bar -Meshes 

Without inertia effects, the load is immediately transferred to the whole bar. The load 
level must exceed the yield limit or the damage limit to get strain-softening. Some kind of 
imperfection must be used to trigger localisation in a certain point or area. Many 
possibilities are available to create a weaker zone in the baï, fïom where localisation starts. 
In this study six different type of imperfections were used to overcome this problem. 

1. Reduction of the element thickness 
2. Applying a supplementary small load 
3. Applying a supplementary small displacement 
4. Using a small initial damage in some integration points 
5. Using a tension bar with a conical varying section 
6 .  Using a tension bar with a circular varying section 

A commonly used type is the reduction of thickness of certain elements. It was found 
that such an imperfection favourites the localisation in a zone that depends on the width of 
the adapted elements. The size of the reduction also influences the localisation-time and 
the final results. Applying supplementary loads or displacements leads to results that are 
strongly dependent on the load-type. Another promising imperfection is the use of initial 
damage in some integration points (near the vertical symmetry-axis). The localisation that 
can be obtained is very clear. Nevertheless this imperfection is not used for further 
analysis because it induces an inherent mesh-dependence. The initial damage values on 
integration point level are numerically treated continuously during integration on element- 
level. Consequently, the width of the weakened zone that corresponds with an integration 
point depends on the size of the mesh. 

The tension bar of fig 3.1.1 is 
modified by reducing the width at the centre of the bar from 20 mm to 19 mm. A linear 
variation (conical bar) between 20 mm at the right edge and 19 mm in the centre, leads to 
a localisation pattern that starts from the angular point on the Y-axis. To avoid this a 
quadratic variation is used (which leads to a circular-type) with the centre of curvature on 
the Y-axis. The three meshes that are built on this last model are visualised in fig 3.1.13. 

Finally an imperfection of the geometry is used. 
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fig. 3.1.13 

Symmetry-boundary conditions are applied on the left and lower boundary of the mesh. 
Quadrilateral parabolic eight-noded isoparametric elements with a nine-point Gauss- 
integration scheme are used. 
The material parameters are identical to those of $3.1.1.2. 

3.1.2.2.Boundq conditions - loading 

A comparison with the dynamic model is not very useful. In the dynamic model the load- 
level was kept under the yield l i t  to trigger localisation afIer wave-reflection. In this 
case the load-level must exceed the yield-limit. A block wave cannot be used reasonably 
when there is no wave propagation. Therefore a linear time-varying displacement 
(constant rate) was used to excite the model. The numerical tests were performed with 
two different load-rates, 0.01 mm/s and 0,l mm/s. 

3.1.2.3. Viscoplastic damage-model 

Model wrameters 

Damage : K = 15 
c = 1 s-* 

De = 0.8 
r = 3  

Viscoplasticity :y = 0.02 s- ' 
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N = 3  
K = 15 MPa 

The time-domain of this analysis is fundamentally different fiom the one used in the 
dynamic analysis. The numerical values of the damage parameters and the viscosity in 
Perzyna's model are chosen differently. The yield limit is approximately exceeded after a 
displacement of 0.38 mm, or 38 s for the slow rate and 3.8 s for the medium rate. The 
elastic part of the loading is calculated with a large time-step, while a smaller time step is 
used for the remaining viscoplastic-softening part. For all three meshes 0,25 s ( slow rate) 
and 0,025 s (medium rate) are used as time-steps. The integration parameter 6 is taken 
equd to 0,5. 

Results - slow rate load 
All results are taken at time . The deformed fine mesh is represented in fig 3.1.14. Fig 
3.1 ~ 15 shows the comparison between the different meshes. The axial strain evolution (in 
time) on the symmetry-axis is represented in figure 3.1.16 for the fine mesh. Al1 results are 
taken at time 573 s which corresponds with load step 97 and a global displacement of 
0,575 mm at the right edge. 

_ - -  

fig. 3.1.14. 
Globally, mesh-objectivity is still preserved for the applied load-rate. The viscosity y and 
the damage parameters K and C must be well chosen for a certain range of load-rates. For 
this example, other values were used where mesh-sensitivity clearly appeared. Slow rates 
need a small value for y. On the other hand, if y becomes to small, the failure mechanism 
will be entirely controlled by damage. The parameters of the damage evolution law of 
Perzyna's viscoplastic model must be fitted to one another to obtain acceptable mesh- 
insensitive results. This complicates an adequate choice of a parameter-set to describe a 
material's behaviour correctly. Figure 3.1.17 shows the Von Mises strains that are 
calculated with the fine mesh. Again, it is obvious that 2D-effects (little shear bands) 
appear in the final failure stage. 

TUE-WFW (NL) / KMSCOBO (BE) 26 i&cous reguiarkahn of struut localisation 



WFW 93.090 M. Geen 

I c 

I rate - Fig 3.1.15. 
Perzyna's viscoplastic model involvh~g damage : Coarse mesh (top), Medium mesh (centre), Fine 
mesh (bottom) 

Axial strains on symmetry-axis at 573 s - 2D-Tension model, sIow lo: 
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fig. 3.1.16.

fig. 3.1.17.

Results medium rate load
To evaluate the influence of the load-rate and the viscous rate-dependence a second
analysis is carried out on the same meshes. The results are taken at time 7,5 s (load step
127) before failure occurred. The imposed displacement is 0,075 mm at this time. Fig
3.1.18 represents the axial strains for the three meshes. This figure clearly shows the
viscous character of the constitutive model. A larger global displacement leads to smaller
strains in a wider localisation zone. Localisation is relatively delayed. Fig 3.1.19
represents the load-displacement curves for both rates with their global softening branches.
The comparison between the three meshes is shown in fig. 3.1.20 for both rates. No
differences can be observed, which confirms the global mesh-insensitivity.
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Fig 3.1.18. Axial strains on symmetry-axis at 7J s - 2D-Tension model, medium load rate - 
Perzyna's viscoplastic model involving damage : Coarse mesh (top), Medium mesh (centre), Fine 
imsh (hett9m) 
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PD-tension bar : auasi-sîatic analysis 

Global displacement [mm] 

fig. 3.1.19. 

fig. 3.1.20. 
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3.2. Shear layer model 

3.2.1. Model - meshes - boundary conditions - loading 

A ID-shear model is used to check and compare the results for a different material, with a 
different geometry and in mode 11-localisation (Sluys 1992). The verification has been 
done for the dynamic analysis, including inertia-effects. The sketch of the model is given 
in fig 3.2.1. The rer can-be taken fi-om a semi-infinite strip. 

100 mm 

fig. 3.2.1. 

On this model four meshes are build, with progressively refined elements. The width of 
the strip is refined with the mesh (the elements remain square). A plot of the four meshes 
is given in figure 3.2.2. Quadrilateral linear four-noded isoparametric elements with a nine 
point Gauss integration scheme are used. In the centre of the layer (X-axis) the horizontal 
displacements are restrained to zero because of symmetry considerations. Ail 
displacements in the y-direction are constrained to zero. Additional linear constraints need 
to be applied to render the problem one-dimensional. All horizontal displacements of the 
nodes on a same y-level are set equal to one another. A block wave is applied to the upper 
and lower boundary as sketched in figure 3.2.1. 
Geometw and ninte~ia~-pa~~nieters 
Coarse mesh : 20 elements 5 mm x 5 mm Layer width = 5 mm 
Medium mesh : 40 elements 2,5 mm x 2,5 mm Layer width = 2,5 mm 
Fine mesh : 80 elements 1,25 mm x 1,25 mm Layer width = 1,25 mm 
Extra fine mesh : Layer width = 0,75 mm 
Thickness = 0,l mm 
Young'smodulus E = 9800MPa 

160 elements 0,75 mm x 0,75 mm 

- 
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Poisson's ratio v = 0,4 
Density p = 500kg/m3 

fig 3.2.2 
The integration parameter 0 is taken equal to 0,5. The shear wave velocity is given by 

. For the chosen material a c, = - where p stand for the shear modulus p = 

shear wave velocity of 2646 ds is found. The two shear waves start fi-om the upper and 
lower boundary, meet in the middle and reflect toward the boundaries again. The total 
time to cross over the length of the layer is approximately 38 ps. The time-step is chosen 
mesh-dependent for reasons of dynamic stability (53.1.1.4 and 2.3.3). 
Coarse mesh : At = 10.10-~ s 
Mediummesh: At = 5.i0-~ s 
Fine mesh : At = 25.10-~ s 

Extrafinemesh: At = 12,5.10-~ s 
A block wave with a vertical stress fiont is applied to the upper and lower boundary, 
analogous to 53.1.1.3. The load F is taken equal to q.A where q stands for the shear 
stress load and A for the mesh-dependent cross-section area of the layer. The shear stress 
level is taken equal to 40% ofthe yield limit. After reflection in the centre of the layer the 
yield limit will be exceeded. The yield limit for the viscoplastic model and the damage 
threshold value are both fixed at 100 m a .  

E t 2(1+ v) 

3.2.2. Viscous damage regularization 

Model parameters 
Damage: K = 2 M P ~ / s - ~  

G = 50 s-' 
r = 4  
D, = 0.8 
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Results 
All results are taken at time 36 ps, which corresponds with load step 36, 72, 144 and 288 
for each mesh. At this time the shear wave has travelled trough 95 mm of the layer (50 
mm elastically to the centre, 45 mm backwards to the boundaries). The results of the 
maximal principal strain distribution along the layer for the different meshes are given in 
figure 3.2.3. The corresponding deformed meshes in figure 3.2.4. show clearly the 
localisation zone. The global width of the localisation zone is almost identical for all 
meshes, but the h e  meshes show two peaks indicating localisation in two symmetric 
integration points. Fig 3.2.5 illustrates the growth in time of these two peaks. The centre 
cfthe hyer is unJozdhg2 (shea stmin is decreasing in time), which might indicate that the 
localisation zone starts to propagate to the boundaries. In this sense, the results remain 
partially mesh-dependent. Another parameter-set can be chosen to avoid this problem. 
The analysis including viscoplasticity shows much better results on this topic. 

fig 3.2.4 

The shear strain evolution in the layer is given in figure 3.2.5 
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Model-DQrum@t@rs 
Damage: K = O,% M P ~ / s - ~  

r - 2  
e = 1000 s-' 

:"y = 30. 8- l  

= 0.8 

N = 2  
K = 100MBa 

The damage evolution law chosen for this analysis differs from the previous one by its 
tempered exponential character. Damage increase progresses more smoothly. 

Results 

Identically to the paragraph above, all results are taken at time 36 ps (load step 36, 72, 
144 and 288). The results of the maximum principal strain distribution along the layer for 
the different meshes are given in figure 3.2.6. The corresponding deformed meshes in 
figure 3.2.7. show once more the localisation zone and the mesh-objective result that is 
obtained. The strain peaks for the fine and extra fine meshes are smaller than in the 
previous case. The better result is found with parameters that suit better the material 
behaviour. The deformed meshes no longer show the irregularities of figure 3.2.4. Again, 
we may conclude that Perzyna's viscoplastic model gives a smoother local result then the 
viscous damage approach alone. 
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fig 32.7 

It appears that viscous regularization (damage and viscoplasticity) is a very useful 
numerical tool in dynamic problems (significant strain rates). The shear strain evolution in 
the layer is given in figure 3.2.8 below. 

fig. 3.2.8. 

~~ 
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It is important to remark that the mesh-objectivity depends on the viscous character that is 
attributed to the viscoplastic model or the damage evolution law. Another choice for the 
numerical parameters leads to other results. This is shown in figure 3.2.9. where no 
localisation was found in the first case and a very narrow localisation-band in the second 
case. The numerical values should be chosen appropriate to the material and the applied 
load. In this analysis all parameters were fitted to control the localisation time. 
Modification of the parameters results in a different localisation-width with possibly 
different localisation-times. 

. . . . . .  . . . . . .  
. . . . . .  
L.-----_._.__ 

fig. 3.2,9. 
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4. Conclusions 

The results from the present study confirm the regularizing capacities of viscous 
models in localisation by strain-softening. Comparisons with other studies using a strain- 
softening fûnction instead of damage are not as evident as they seem. Models using a 
strain-softening function need to be coupled to a constitutive model to operate correctly 
(by relating the rate of the hardeningísoftening parameter to the viscoplastic strain rate). A 
damage model with a viscous behaviour is capable to ensure dynamic regularization of 
straifi !ocalisation itself. The viscop!astic cox~one::t i:: the combined comtit~tive x e d d  
permits to do the fine-tuning and offers a broad range of possible numerical parameters to 
fit calculations to experiments. 

Most of the conclusions have been made while discussing the results. What is essential 
can be summarised as follows : 
1. A viscous damage approach permits to regularise the strain localisation for strain 

softening materials. An adequate parameter set should be used to fit on reality. 
2. The combination of a viscous damage evolution law and Perzyna's viscoplastic model 

leads to mesh-objective results if parameters are well chosen. Strains are smoother 
distributed in the localisation zone. 

3. Viscous regularization is useful for dynamic and quasi-static problems. All parameters 
are rate-dependent and should be adapted to the rate or frequencies of the applied 
load. 

4. Conclusions towards the merits of a regularizing constitutive model, must be made 
with care. The failure criterion fully determines whether mesh-insensitivity is ensured 
or not. If the analysis is carried out long enough, damage will always exceed the 
critical value on integration point level (thus mesh-dependent). The viscous 
regularization delays this inherent mesh-independence and widens the localisation zone. 
If failure occurs before the viscous model loses mesh-insensitivity, the model satisfies 
for that particular failure criterion. 

5. Although results may satisfy globally, some small local differences will always remain 
between the meshes. Some of these differences still arise from a local mesh- 
dependence, but others may simply result from the convergence to the exact solution. 
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