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1. Introduction

1.1.  Strain localisation for softening materials

A large number of materials are characterised by a softening behaviour. These materials show
a decrease of the load-carrying capacity when the limit load is exceeded. All deformations localise
in finite small bands before fracture occurs. The corresponding conventional stress-strain diagram
will show a descending branch (negative slope). This phenomenon is commonly called sfrain
softening accompanied by strain localisation. The use of a strain-softening model in a classical
continuum theory does not lead to hyperbolic field equations, describing the equilibrium of the
material. The finite element solution converges to a localisation zone with zero thickness if the
meshes refine. The solution becomes mesh-sensitive. (Needleman, 1988)

1.2. Aims of the study

In order to remedy the ill-posedness of the initial value problem for strain-softening models in
classical continuum-formulations, many numerical techniques are recently developed. Several
directions of avoiding the problem are advocated (de Borst 1992, Simo 1988, Sluys 1992):

¢ Using a rate dependent crack model

¢ Making the softening modulus dependent on element size

+ Using a gradient dependent model (de Borst 1991)

¢ Viscoplastic regularization coupled with a physical scale dimension limiting the local
defect size

¢ Using a Cosserat continuum model

+ Using a nonlocal approach (Brekelmans 1993)

+ Adaptive mesh-refinement, etc.

This study focuses on the viscous regularization of localisation by strain-softening to obtain a
finite element formulation that is no longer mesh-sensitive. The localisation in narrow bands is
examined, and the different results for progressively refined meshes are compared. The theoretical
underlying approach is based on a viscous/creep damage-evolution law and Perzyna's viscoplastic
model.

The analyses will be carried out under dynamic conditions, where inertia-effects will be taken
into account (the wave propagation problem). Mode I and mode I-localisation are simulated by
reflection of the loading-waves which causes the yield limit to be exceeded. On the other hand, a
second analysis is performed, without wave propagation or inertia-contributions. In this case, small
imperfections were used to obtain localisation. A brief discussion of the influence of an
imperfection on the nature and width of the localisation zone is made.

To examine the failure by strain-localisation, two simple models are used, a two-dimensional
tension bar and a one-dimensional shear layer. The influence of some model parameters is also
evaluated. It is important to remark that this study only analyses the numerical performance of the
presented viscous damage models, and does not really simulate experimentally measured data.

1.3.  Outline of the study

The two viscous regularization techniques are theoretically described in Chapter 2. Paragraph
2.1 deals with the viscous damage model, while paragraph 2.2 treats of Perzyna's viscoplastic model
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involving damage. The implementation in a finite element formulation is described in paragraph
2.3.

The numerical analyses that are carried out, are described in Chapter 3. The models are
sketched and the corresponding results are discussed. The two-dimensional tension bar is treated in
paragraph 3.1. Paragraph 3.1.1. treats of the dynamic approach including inertia-effects (wave
propagation), while paragraph 3.1.2. deals with a quasi-static analysis without inertia-contributions.
The shear layer model is analysed in paragraph 3.2.

The essential conclusions are summarised in Chapter 4.

TUE-WFW (N L) / KMS-COBO (BE) 3 Viscous regularization of strain localisation
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2. Viscous regularization - the damage approach

Throughout the elaboration of the theoretical model tensor notations will be used to derive the
constitutive relations.

2.1. The viscous damage evolution law

To describe the mechanical behaviour of strain-softening materials, an internal state variable,
the damage, will be incorporated into the constitutive model (Kachanov 1986, Lemaitre and
Chaboche 1990). The damage is assumed to be isotropic. Consequently the damage D will be a
scalar variable. To incorporate this damage-variable in the constitutive model, the global elastic
constitutive equation is modified as follows :

o =(01-D)*D.,:¢ (2.1.1)

(*D being the elastic stiffness tensor, and D being the damage ).

Assuming that at a time t the entire displacement field ( and thus the total strain) and the current
damage values are known, one can determine the stress tensor at time t+At for a given strain
increment : "%

One may then write AG = ¢ — ¢' , where AGis depending on the state variables and the

damage at time t , the incremental displacement field, the chosen time step and the model
parameters.
Rewriting the global constitutive relation in a rate format :
o =(1-D)*D.:€ - D*D_:¢
which in its incremental linearised form (second order terms neglected) gives :
Ac =(1-D")*D_:e'** - (1-DH)*D,: ¢
Ac =(1-D'-AD)*D_:(e' + Ag) - (1-D")*D_: €'
Ac =(1-D'-AD)*D_: Ae — AD*D,: €' 2.1.2)

t+A

AD = [Ddt
t

AD is calculated by means of an Euler forward prediction giving :

AD = D'.At whereD' = [<LS) — C>j|
K(1-D)

(2.1.3)
The damage evolution law used in this model is based on the creep damage evolution law from
Kachanov (Kachanov 1986), where the parameter C is added. C represents a threshold value for
damage initiation and evolution. The model parameters K and C fully control the viscous (or creep)
character of the evolution law. Damage increments are calculated explicitly to simplify the
equations to solve. An implicit damage scheme would introduce a non-symmetric tangential
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stiffness tensor on this level and a system of equations in the next paragraph that would become
quadratic. The drawback of this choice is a restriction on the time step that is used to integrate the
differential equations.

4 -1 t
_ D7 e mae- — & ap
1-D'~ AD

The non-linear tangential stiffness tensor then becomes :

‘D= 0-D'~AD) ‘D,
81

AG = ‘D :ag -AqQ with AqQ = *D '] ————AD
1-D'~ AD

2.2. Perzyna's constitutive model for viscoplasticity

During an infinitesimal increment of stress, changes of strain are assumed to be composed of an
elastic and a plastic part . The total strain rate can then be decomposed as follows :

=8 +8,

Analogous to the previous paragraph one has Ac = ¢"* — ' , where AG is supplementary
depending on the viscoplastic strain field. The viscoplastic strain rate in the Perzyna model

(Perzyna 1966,1971, Timmermans 1991) for associative plastic flow is given by :
. of
= £y
€p = YO(D) Py

where f stands for the chosen yield function, and where y stands for a viscous material model
parameter
J(S)

The Von Mises yield function f = —x will be used to describe the yield surface. J(8)

represents the equivalent stress and $ the stress deviator, while k represents the yield limit. The
yield function and the viscoplastic strain rate depend on the current damage value D and the stress
tensor O . The function ¢(f) will here be chosen as (f/x )™ where N is a material model parameter
to fit experimental data. The global constitutive equation then becomes :

¢ =(1-D)*D,:(e-¢,)

Rewriting the global constitutive relation in a rate format :
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6 =(1-D)*D.:(e-¢€,) - ‘D.:(g-g,)D

which in its incremental linearised form gives :

AG =(1-D'-AD)*D_: (g' + Ag — 8;,“A8Vp) - (1-DYHY*D,: (e' - s‘vp)

Ac =(1-D'-AD)‘D,: (Ae —Ae )— AD*D_: (g'—¢€" ) )
v v (2.2.1)

The incremental viscoplastic strain can be determined by means of an interpolation-parameter 6
according to the chosen integration scheme (0 = 0 explicit ; 6 # 0 implicit ).

Ae, =[(1-0)€, +0E 5" ]At

w 222)
o] oe. |
é‘t;At = é:}p +|ia—c;p:| tAC +{a—1;p:| AD
223)
Define ‘R = 28—‘—"4
o0

- |00 of  Of

Elaboration of “R for the Von Mises yield function

f= @) - K
1-D

NER R

1 : 1
= ———-—x wherel], = ES:S with§ = G-:tr(G)I
2

1-D
o _o o8
oG 0SS OC

o 1 a1 1 3 38
88 1-D 88 1-D2J(S)2 2(1- D)I(S)

&S sy 1y
00 3
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of 38
80 2(1-D)I(S)

(tr(8)=0)

azzf: 1 [_3_§ —12}_ s , 3 (41_111)}
o*c 1 2 J(S)® 23(S) 2I(S) 3

_[@-p ot ot 3 A1 1|
| I(s) o060 2(1-D)i(s) 3 |

.2 o (3 . o of
=R= y[8f6686+1(8)(2(1 51 3D+ 0= c)]

aM = 37 L
define ‘M E(I 3H)

% e
of
SR =y| N L £ (4M (1- )7-6193)
56 o0 ' 3(8)(1-D) 00 00 (2.2.4)
ORI
aévp_é‘(vd)gfg)_ a“l—D K) (l—D)ZJ(S)}
o o ! aD |
5 (_&Sl) 1
3¢ |U-D (1-D)
27(S) aD
_ s | J(S)_KN‘I s 1 J(S)_KN 1|
2J(S) 1-D (1-D)*1-D \1-D (1-D)? 2.2.5)

AD is calculated in the same manner as outlined in the previous paragraph. To evaluate the
balance between the implicit scheme of the viscoplastic strain and the explicit damage scheme,
numeric iterative controls are performed to justify this approximation. The accuracy is found to be
very good.

Substituting the equations (2.2.4) and (2.2.5) into equation (2.2.3) :
St AL aM,
g =gl +*‘R:AC+ZAD (2.2.6)

vp

TUE-WFW (NL) / KMS-COBO (BE) 7 Viscous regularization of strain localisation
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Rewriting (2.2.2), using (2.2.6) gives :

Ae, =(&:, +0*R:AG+0ZAD)At 2.2.7)
Substituting (2.2.7) in (2.2.1) :

AG =(1-D'— AD)*D_: (A€ € At-8*R:AG At—-0ZADAt) - *D (€' —€' ) AD
vp

a - . (e'—¢€")
—— <« +0*'RAt[:AC = A€ —€.  At-0ZADAt - —————2— AD
1-D'~ AD P 1-D'— AD

4D -1 -1
‘Db =| ————+06*Rat
1-D'— AD
) (e'—¢€')
Ao = “‘Diag —Aq with Aq = *D ':| € At+0ZAD AL+ —r—2—
P 1-D'— AD

The incremental stress tensor and the new tangential stiffness tensor will be used in a finite element
formulation in the next paragraph.

One can easily verify that the viscous damage model is fully incorporated in the extended model
presented above.

2.3. Implementation in a finite element formulation

To implement the viscoplastic constitutive model (or the viscous damage model which is a part of
it) in a finite element model, we shall now use the matrix-vector notation. concisely

2.3.1. The dynamic problem - wave propagation

The spatially discretised equation of motion describing the balance of momentum at time
t+At is given by the concisely written version of

Mawm — ft+At _ ft+At or

~ ~ext ~int

TUE-WFW (NL) / KMS-COBO (BE) 8 Viscous regularization of strain localisation
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J'H_ _H.a t+At dv = — fUA j t+At (231)
v -~ ~ext v
inwhich &' is the acceleration array at time t+At
'™ is the stress array at time t+At
H is the matrix containing the interpolation polynomials

p is the density
B is the strain-nodal displacement matrix

(B=LH with L the differential operator matrix )

£ is the external load array at time t+At

~¢xt

£ is the internal force array at time t-+At

~int

t+At

To determine fB_T o~ dV anEuler forward method is used
Vv

t+At t+At

[BT c"*dV =[BT ¢'dV +j jBTcdtdv f! +j jBTcdth (23.2)
v v

~int

t-+At
jBf_ c;s dtdV is evaluated introducing the incremental stress vector
1

< t——

t+At

[ [BT6dtdV = [BT AcdV
Vot v

The incremental stress array is derived from the viscoplastic constitutive model as
elaborated in the previous paragraph :

Ac =D,'Ag - Aq = D,'BAa ~ Ag
[B' AcdV = [B'D.B ~ JB' Aqd (2.3.3)
v - v k%
where Ad stands for the incremental displacement array
Substituting (2.3.2) and (2.3.3) in (2.3.1) yields
Mg = £ - f - jBT D;BAadV + jBT AqdV
or
ME™ = g‘*:“ -f - K'Aa + [BT AqdV (2.3.4)
€Xi ~ 1 ~ v -~

where K' stands for the global stiffness matrix K' = [B” DB dV
v

A direct time integration method using an implicit time integrator is used to obtain a fully
discrete equation of motion. Assuming that the acceleration varies linearly over the time
step, the following Newmark time integration scheme is used :

TUE-WFW (NL) / KMS-COBO (BE) 9 Viscous regularization of strain localisation
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2.3.2.

2.3.3.

SURAL ét +[(1_a)-§t+a§t+m]At

1R

(2.3.5)

[
18

at+At _ t +§-:t At‘f‘{(%‘”‘B)gt +B-§:’(+At;]At2

where o and 3 are the Newmark integration parameters.

Equation (2.3.5) together with equation (2.3.4) results in a system of equations where
aa 3t 54 are the unknown variables to be determined. This system can be solved if

the initial and boundary conditions are specified (Sluys 1992).

The dynamic Shock module of the DIANA finite element program is used to perform the

Newmark time integration.

Implementation without inertia-effects

In this case, equation (2.3.4) can be readily transformed into the following equation :

f** = f' + K'Aa - [BT AqdV
v

~ext ~int

which can be easily implemented in a classical non-linear formulation.

Integration parameters - remarks

It is important to remark that the chosen integration scheme results in a tangential
stiffness matrix that remains symmetric. The gain in accuracy that would be achieved by
using more complicated schemes would render the system of equations to calculate ACG
non-linear with a non-symmetric tangential stiffness matrix. The time needed to solve the
problem would increase drastically.

The numerical implementation of the stress factor A(] has been done on integration
point level (while calculating AG) and not on the global level of the internal forces
(IE AqdV in (2.3.4)). The iterative Newton-Raphson scheme used to solve the global

v

system of equations automatically corrects this error, and all equations are fully respected.
The time-step must be chosen such that the solution is sufficiently accurate. In

addition of the requirements imposed by the stability of the integration scheme, one should

assure a dynamically accurate solution. A critical time step size (Hughes, 1987) to impose

is At< = where |_ is the element length and ¢, is the longitudinal elastic wave velocity

¢
(¢, :F)
p

A consistent mass matrix is used to reflect the mass distribution in the elements. In
combination with an implicit scheme, this choice leads to more accurate results. All
dynamic calculations have been performed with a time-integration parameter = 0.5 and
Newmark parameters oo = 0.5 and § = 0.25 (trapezoidal rule). This choice makes the

. 1 (a+1)?
Newmark method unconditionally stable (o = > and 2 ——)

TUE-WFW (NL) / KMS-COBO (BE) 10 Viscous regularization of strain localisation
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This analysis will not deal with geometrical non linearity. Some results reflect strains
that are to elevated to be modelled without a geometrical non-linear model. Nevertheless,
the results are exploited, because the principal aim of this analysis is to verify the stabilising
influence of the viscous contributions in the constitutive equations and not the exact
calculation of the strains during deformation.

TUE-WFW (NL) / KMS-COBO (BE) 11 Viscous regulavization of strain localisation
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3. Numerical analyses

3.1. 2D-Tension Model

3.1.1. Wave propagation problem

3.1.1.1. Tension bar - Meshes

Numerical experiences are performed on the tension bar presented in fig 3.1.1. For
reasons of symmetry only a fourth of the bar will be modelled by a finite element mesh.

Y

3

50 mm

20 mm
T €
: €
«

fig. 3.1.1
Mesh refinement is concentrated near the vertical symmetry-axis (Y-axis) from 2, 4, 8 to
16 elements over a range of 10 mm. -

T
-

€0 L O O O O |
L9520

! \
i EEENEREN] IHRUAN
fig. 3.1.2
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Symmetry-boundary conditions are applied on the symmetry-axes. The four meshes, used
to examine localisation by wave-reflection, are visualised in fig 3.1.2. Use has been made
of quadrilateral parabolic eight-noded isoparametric elements with a nine point Gauss
integration scheme.

3.1.1.2 Geometry- & material parameters

Length mesh = 50 mm
Width mesh = 10 mm
Thickness - = 025 mm
Young's modulus = 2000 MPa
Poisson's ratio = 04

) kg
Density = 1000 —

m

3.1.1.3. Boundary conditions - loading

Along the symmetry-axes, all displacement-components perpendicular to the axis are
suppressed while all other components remain free. At the right boundary several loading-
types were tested. It appeared that applying an increasing displacement (with a constant
rate) results in a spurious solution as shown in figure 3.1.3 ( load-displacement curve at
the right edge). Although this solution seems to be unacceptable, mesh refinement leads to
exactly the same curve. The inclusion of an algorithmic damping in time, to exclude
artificial higher-order frequencies, or any variation of the time step ( even for very small
time-steps) still leads to the same solution. The results are probably due to the interaction
of the incremental iterative integration on the one hand, and the rapid inertia-waves on the
other hand. Numerically, the material cannot follow the imposed load rate. Other authors
have also encountered similar problems.

350, ——

S — R—-/lla
e ANid
é 150 V

e

100 5 / by

sor\/wz -~/

0 i . z H i

0 0.5 1 1.5 2 25 3 3.5 4
Displacement [mm]

fig. 3.1.3
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Another loading-type is used to exploit the results more efficiently. A block wave with a
vertical stress front (fig. 3.1.3.b.) is applied to the right edge of the mesh (a fourth of the
bar : fig 3.1.1.). The wave is applied by means of a uniformly distributed force. The load
level has been chosen such that the response of the bar remains elastic until the left
boundary is reached. The double in stress due to reflection of the tensile wave causes the
triggering of localisation. The tensile wave propagates to the right and failure occurs
before it reaches the right edge again.

fig. 3.1.3.b.
The stress level q applied to the right edge is 11 MPa.

3.1.1.4. Viscous damage model

Model parameters

The following numerical values were used to simulate localisation throughout the viscous
damage model.

Damage: K = 1 MPa/s™*

cC = 15 s!
r = 4
D, = 08

Damage initiation starts at a stress-level G, equal to 15 MPa, which is exceeded after
reflection.

The time step used for the time-integration is chosen mesh-dependent at = 50 % of the
critical time-step (calculated with the smallest element). This choice is justified in §2.3.3.

Coarse Mesh : At = 16,107 s
MediumMesh: At = 8107 s
Fine Mesh : At = 4107 s

Extra fineMesh: At = 2107 s
The elastic wave speed obtained with the numeric values of §3.1.1.2. is 1414 m/s.

Results

The results of the axial strains along the symmetry-axis of the bar (X-axis) is shown in fig
3.1.4. The localisation stabilises and the fine meshes globally present the same localisation
width. All results have been taken at time 64 ps, which corresponds with load step 40, 80,
160 and 320 respectively for each mesh. At 64 us, the loading wave traversed 90 mm (50
mm elastically, 40 mm after reflection). At this time failure occurs because the critical
damage is reached in a small zone of the bar. The coarse mesh is somehow a little to
scabrous and cannot really represent the fine localisation zone. Fig 3.1.5 represents the
same results at an earlier stage (time 50 us), where the wave traversed 70 mm.

TUE-WFW (NL) / KMS-COBO (BE) 14 Viscous regularization of strain localisation
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Strains are smaller and the global localisation zone is still wider, but mesh objectivity
remains globally preserved. The strain-development that nicely reflects the wave
propagation and the appearance of the localisation zone is represented in fig. 3.1.6 below.
Reflection occurred at time step (time 35 ps).. The deformed mesh in the failure stage is
given in figure 3.1.7 below.

Straim-cvolution

5.08%3-82 k T T T T T T T % T T T T T T T

S Y

» -
°
®
3
°

o "

T T 1T
LA WL OOV
T )

SIADA / 1-DPEAS PATA AUALYSZS
LOAD SET: 330 -

DISPLACEHEAT NORNAL MIU: ©.00 MREZ: 0.501868

Hin
et

fig. 3.1.7,

It is also interesting to analyse the local strain distribution in the bar, which shows more
2D-effects. Fig. 3.1.8. and fig 3.1.9 show the results for the four meshes. Again, the
coarse mesh is represented in the upper left corner, the medium mesh in the lower left
corner, the fine mesh in the upper right corner and the extra fine mesh in the lower right
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corner. Fig 3.1.8 was taken at time 64 us and fig 3.1.9 at time 50 pis. Locally some small
differences occur on fig. 3.1.8.. On the local level, mesh orientation slightly influences the
results in the final stage of the failure mechanism, when damage increases rapidly. This
rapid increase of damage and strain is precisely the cause of the local numeric differences
that appear between the meshes. These differences are very small in fig 3.1.9, where
damage has not yet attained a high value.
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3.1.1.5.Perzyna's viscoplastic model involving damage

Model parameters
Following numerical values were used to simulate localisation by the viscoplastic damage-
model. '
Damage : K 0,3 MPa/s™?
C = 50 s!
r = 3
D, = 038 D, stands for the critical damage level (= the maximum
achievable damage)
Viscoplasticity ;y = 100s™’
N = 2
k = 15 MPa

The yield limit x and the damage threshold K.C are fixed at 15 MPa. The time-step is
chosen identically to the value in §3.1.1.4.

The exponent in the damage evolution law is taken smaller than in the previous paragraph.
The exponential character of the damage evolution law is decreased in favour of the
viscosity of Perzyna's model. The value 100 s~ for v is necessary to permit the rise of the
viscoplastic strain in a short time.

Results

The results are taken at the same instants as in the viscous damage model. Fig3.1.10.
shows a typical deformed mesh. Fig 3.1.11 presents the axial strains along the symmetry-
axis for the four meshes.

BIANA / I-DEAL DATA ANALYSEES

aaaaaaaaaaaaa WORMAL HI¥: 0.00 NAZ: 2.5014%0

TR T 7 ™1
Tean! 1[1/ 1 \ \
Aiiiiresmns
- T Hlll {
!
A T TC
fig. 3.1.10.

It can be observed that the stress distribution in the bar is smoother with the viscoplastic
model. This twofold model is more capable to fit to different strain-patterns that can be
measured by experiments. The damage ensures the localisation, while the global double
viscosity takes care of the regularization. The 2D-plots of the Von Mises strains in fig.
3.1.12. on page 23, show that some small differences remain between the meshes in the
failure stage.
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3.1.2. Viscous analysis without inertia-effects

3.1.2.1.Tension bar - Meshes

Without inertia effects, the load is immediately transferred to the whole bar. The load
level must exceed the yield limit or the damage limit to get strain-softening. Some kind of
imperfection must be used to trigger localisation in a certain point or area. Many
possibilities are available to create a weaker zone in the bar, from where localisation starts.
In this study six different type of imperfections were used to overcome this problem.

Reduction of the element thickness

Applying a supplementary small load

Applying a supplementary small displacement

Using a small initial damage in some integration points
Using a tension bar with a conical varying section
Using a tension bar with a circular varying section

A e

A commonly used type is the reduction of thickness of certain elements. It was found
that such an imperfection favourites the localisation in a zone that depends on the width of
the adapted elements. The size of the reduction also influences the localisation-time and
the final results. Applying supplementary loads or displacements leads to results that are
strongly dependent on the load-type. Another promising imperfection is the use of initial
damage in some integration points (near the vertical symmetry-axis). The localisation that
can be obtained is very clear. Nevertheless this imperfection is not used for further
analysis because it induces an inherent mesh-dependence. The initial damage values on
integration point level are numerically treated continuously during integration on element-
level. Consequently, the width of the weakened zone that corresponds with an integration
point depends on the size of the mesh.

Finally an imperfection of the geometry is used. The tension bar of fig 3.1.1 is
modified by reducing the width at the centre of the bar from 20 mm to 19 mm. A linear
variation (conical bar) between 20 mm at the right edge and 19 mm in the centre, leads to
a localisation pattern that starts from the angular point on the Y-axis. To avoid this a
quadratic variation is used (which leads to a circular-type) with the centre of curvature on
the Y-axis. The three meshes that are built on this last model are visualised in fig 3.1.13.
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fig. 3.1.13

Symmetry-boundary conditions are applied on the left and lower boundary of the mesh.
Quadrilateral parabolic eight-noded isoparametric elements with a nine-point Gauss-
integration scheme are used. '

The material parameters are identical to those of §3.1.1.2.

3.1.2.2. Boundary conditions - loading

A comparison with the dynamic model is not very useful. In the dynamic model the load-
level was kept under the yield limit to trigger localisation after wave-reflection. In this
case the load-level must exceed the yield-limit. A block wave cannot be used reasonably
when there is no wave propagation. Therefore a linear time-varying displacement
(constant rate) was used to excite the model. The numerical tests were performed with
two different load-rates, 0.01 mm/s and 0,1 mm/s.

3.1.2.3. Viscoplastic damage-model

Model parameters
Damage : K = 15 MPa/s’®
C =1 s
r = 3
D, = 08
Viscoplasticity :y = 0.02 57!
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N = 3

k = 15 MPa
The time-domain of this analysis is fundamentally different from the one used in the
dynamic analysis. The numerical values of the damage parameters and the viscosity in
Perzyna's model are chosen differently. The yield limit is approximately exceeded after a
displacement of 0.38 mm, or 38 s for the slow rate and 3.8 s for the medium rate. The
elastic part of the loading is calculated with a large time-step, while a smaller time step is
used for the remaining viscoplastic-softening part. For all three meshes 0,25 s ( slow rate)
and 0,025 s (medium rate) are used as time-steps. The integration parameter O is taken
equal to 0,5.

Results - slow rate load

All results are taken at time . The deformed fine mesh is represented in fig 3.1.14. Fig
3.1.15 shows the comparison between the different meshes. The axial strain evolution (in
time) on the symmetry-axis is represented in figure 3.1.16 for the fine mesh. All results are
taken at time 57,5 s which corresponds with load step 97 and a global displacement of
0,575 mm at the right edge.

fig. 3.1.14.

Globally, mesh-objectivity is still preserved for the applied load-rate. The viscosity ¥ and
the damage parameters K and C must be well chosen for a certain range of load-rates. For
this example, other values were used where mesh-sensitivity clearly appeared. Slow rates
need a small value for y. On the other hand, if ¥y becomes to small, the failure mechanism
will be entirely controlled by damage. The parameters of the damage evolution law of
Perzyna's viscoplastic model must be fitted to one another to obtain acceptable mesh-
insensitive results. This complicates an adequate choice of a parameter-set to describe a
material's behaviour correctly. Figure 3.1.17 shows the Von Mises strains that are
calculated with the fine mesh. Again, it is obvious that 2D-effects (little shear bands)
appear in the final failure stage.
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fig. 3.1.17.

Results medium rate load

To evaluate the influence of the load-rate and the viscous rate-dependence a second
analysis is carried out on the same meshes. The results are taken at time 7,5 s (load step
127) before failure occurred. The imposed displacement is 0,075 mm at this time. Fig
3.1.18 represents the axial strains for the three meshes. This figure clearly shows the
viscous character of the constitutive model. A larger global displacement leads to smaller
strains in a wider localisation zone. Localisation is relatively delayed. Fig 3.1.19
represents the load-displacement curves for both rates with their global softening branches.
The comparison between the three meshes is shown in fig. 3.1.20 for both rates. No
differences can be observed, which confirms the global mesh-insensitivity.
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2D-tension bar : quasi-static analysis
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3.2. Shear layer model

3.2.1. Model - meshes - boundary conditions - loading

A 1D-shear model is used to check and compare the results for a different material, with a
different geometry and in mode Il-localisation (Sluys 1992). The verification has been
done for the dynamic analysis, including inertia-effects. The sketch of the model is given
in fig 3.2.1. The layer can be taken from a semi-infinite strip.

fig. 3.2.1.

On this model four meshes are build, with progressively refined elements. The width of
the strip is refined with the mesh (the elements remain square). A plot of the four meshes
is given in figure 3.2.2. Quadrilateral linear four-noded isoparametric elements with a nine
point Gauss integration scheme are used. In the centre of the layer (X-axis) the horizontal
displacements are restrained to zero because of symmetry considerations.  All
displacements in the y-direction are constrained to zero. Additional linear constraints need
to be applied to render the problem one-dimensional. All horizontal displacements of the
nodes on a same y-level are set equal to one another. A block wave is applied to the upper
and lower boundary as sketched in figure 3.2.1.

Geometry and material parameters

Coarse mesh : 20 elements 5 mmx 5 mm Layer width =5 mm
Medium mesh : 40 elements 2,5 mmx 2,5 mm Layer width=2,5 mm
Fine mesh . 80 elements 1,25 mmx 1,25 mm Layer width=1,25 mm
Extra finemesh: 160 elements 0,75 mmx 0,75 mm Layer width = 0,75 mm
Thickness = 0,1 mm

Young's modulus E = 9800 MPa
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Poisson's ratio v = 04
Density p = 500kg/m}

[]
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[T I TITITT]
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fig3.2.2
The integration parameter O is taken equal to 0,5. The shear wave velocity is given by

c, = \/E where p stand for the shear modulus p =
p

. For the chosen material a
2(1+v)

shear wave velocity of 2646 m/s is found. The two shear waves start from the upper and
lower boundary, meet in the middle and reflect toward the boundaries again. The total
time to cross over the length of the layer is approximately 38 ps. The time-step is chosen
mesh-dependent for reasons of dynamic stability (§3.1.1.4 and 2.3.3).

Coarse mesh : At = 101077 s
Medium mesh : At = 5107 s
Fine mesh : At = 25107% s

Extrafinemesh: At = 12,5107% s

A block wave with a vertical stress front is applied to the upper and lower boundary,
analogous to §3.1.1.3. The load F is taken equal to q.A where q stands for the shear
stress load and A for the mesh-dependent cross-section area of the layer. The shear stress
level is taken equal to 40% of the yield limit. After reflection in the centre of the layer the
yield limit will be exceeded. The yield limit for the viscoplastic model and the damage
threshold value are both fixed at 100 MPa.

3.2.2. Viscous damage regularization

Model parameters

Damage: K = 2 MPa/s™*
C = 50 57!
r = 4
D, = 038
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Results

All results are taken at time 36 ps, which corresponds with load step 36, 72, 144 and 288
for each mesh. At this time the shear wave has travelled trough 95 mm of the layer (50
mm elastically to the centre, 45 mm backwards to the boundaries). The results of the
maximal principal strain distribution along the layer for the different meshes are given in
figure 3.2.3. The corresponding deformed meshes in figure 3.2.4. show clearly the
localisation zone. The global width of the localisation zone is almost identical for all
meshes, but the fine meshes show two peaks indicating localisation in two symmetric
integration points. Fig 3.2.5 illustrates the growth in time of these two peaks. The centre
of the layer is unloading, (shear strain is decreasing in time), which might indicate that the
localisation zone starts to propagate to the boundaries. In this sense, the results remain
partially mesh-dependent. Another parameter-set can be chosen to avoid this problem.

The analysis including viscoplasticity shows much better results on this topic.

|
]
|

LER V0 O 1 O U O N 0 0 O 0 0 0 0 O
Ry

fig 3.2.4

The shear strain evolution in the layer is given in figure 3.2.5
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3.2.3. Perzyna's viscoplastic - damage regularization

Model parameters
Damage: K = 0,1 MPa/s™’
C = 1000 5!
r = 2
D, = 038
Viscoplasticity :;y = 30. s’
N = 2
k = 100MPa

The damage evolution law chosen for this analysis differs from the previous one by its
tempered exponential character. Damage increase progresses more smoothly.

Results

Identically to the paragraph above, all results are taken at time 36 ps (load step 36, 72,
144 and 288). The results of the maximum principal strain distribution along the layer for
the different meshes are given in figure 3.2.6. The corresponding deformed meshes in
figure 3.2.7. show once more the localisation zone and the mesh-objective result that is
obtained. The strain peaks for the fine and extra fine meshes are smaller than in the
previous case. The better result is found with parameters that suit better the material
behaviour. The deformed meshes no longer show the irregularities of figure 3.2.4. Again,
we may conclude that Perzyna's viscoplastic model gives a smoother local result then the
viscous damage approach alone.

TUE-WFW (NL) / KMS-COBO (BE) 35 Viscous regularization of strain localisation



(ID 0900 S / (TN Mdm-AnL

9¢

UOISYVO0] 1D fO uoNIIDNEaL SHOIS1|

Looslisation zone Plot of Fumction(ms) - ocurrest

0.10 T T T T T T T T T T T T T T T 6.10 T T T T T T T T T ¥ T T T T T
©.008-02 0.008-0%
§6.00x-02 B6.008-02
t o B [ o p
r - E r - -
a a -
i i
Ny, oor-02 Ny.oos-nz
: 2,008
o
0.0 20,0 s, 0 0.9 00,0 100.0 0.0 0.0 “w.e 0.0 vo.0 100.0
Global y coordinate Global y weordinate
Load casss: 36 Load opamws 144
maximum principal Ltrain maximum principal Ctradan
Tap surface Top wurfacs
Lovalisation zona Lhoecslisation 20ne
0,10 T T T T T T ¥ T T T T T T T T 0,18 T T T T T T T T T T T T ¥ T
- o L J
L - - B
V.00E-0Q2 V.008-032
S§6.t0x-.02 S§6.008-02
t r b it o -
r - - r [ -
a ] a
i i
Ny.o0x-02 N4.o0n
- .
2.00B 02 2.0082
o T
SRR A ey
0.00

.0 20.0 0.0 ev.0 0.0 tea.q 0.0 20,0 0.0
Glabal ¥ ocsordinate

Load camna .72

maximum principal Strain

0.0 10,0 100.0
Glabal y coordinate
Load panes 298

maninum principal Stradn

Top murface

Toap surface

Fig 3.2.6.

Maximum principal strains at 36 us - Shear model - Perzyna's viscoplasticity involving damage : Coarse mesh (upper left corner) , Medium
mesh (lower left corner), Fine mesh (upper right corner), Extra fine mesh (lower right corner)

SEER T

060°€6 MAM



M. Geers WFW 93.090

L]

—

[

L
[
L

fig 3.2.7

It appears that viscous regularization (damage and viscoplasticity) is a very useful
numerical tool in dynamic problems (significant strain rates). The shear strain evolution in
the layer is given in figure 3.2.8 below.
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fig. 3.2.8.
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It is important to remark that the mesh-objectivity depends on the viscous character that is
attributed to the viscoplastic model or the damage evolution law. Another choice for the
numerical parameters leads to other results. This is shown in figure 3.2.9. where no
localisation was found in the first case and a very narrow localisation-band in the second
case. The numerical values should be chosen appropriate to the material and the applied
load. In this analysis all parameters were fitted to control the localisation time.
Modification of the parameters results in a different localisation-width with possibly
different localisation-times.

fig. 3.2.9.
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4. Conclusions

The results from the present study confirm the regularizing capacities of viscous
models in localisation by strain-softening. Comparisons with other studies using a strain-
softening function instead of damage are not as evident as they seem. Models using a
strain-softening function need to be coupled to a constitutive model to operate correctly
(by relating the rate of the hardening/softening parameter to the viscoplastic strain rate). A
damage model with a viscous behaviour is capable to ensure dynamic regularization of
strain localisation itself. The viscoplastic component in the combined constitutive model
permits to do the fine-tuning and offers a broad range of possible numerical parameters to
fit calculations to experiments.

Most of the conclusions have been made while discussing the results. What is essential
can be summarised as follows :

1. A viscous damage approach permits to regularise the strain localisation for strain
softening materials. An adequate parameter set should be used to fit on reality.

2. The combination of a viscous damage evolution law and Perzyna's viscoplastic model
leads to mesh-objective results if parameters are well chosen. Strains are smoother
distributed in the localisation zone.

3. Viscous regularization is useful for dynamic and quasi-static problems. All parameters
are rate-dependent and should be adapted to the rate or frequencies of the applied
load.

4. Conclusions towards the merits of a regularizing constitutive model, must be made
with care. The failure criterion fully determines whether mesh-insensitivity is ensured
or not. If the analysis is carried out long enough, damage will always exceed the
critical value on integration point level (thus mesh-dependent). The viscous
regularization delays this inherent mesh-independence and widens the localisation zone.
If failure occurs before the viscous model loses mesh-insensitivity, the model satisfies
for that particular failure criterion.

5. Although results may satisfy globally, some small local differences will always remain
between the meshes. Some of these differences still arise from a local mesh-
dependence, but others may simply result from the convergence to the exact solution.
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