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SYMBOLIC ANALYSIS AND DESIGN FOR (NONAFFINE) NONLINEAR CONTROL
SYSTEMS

Bram de Jager *

* Faculty of Mechanical Engineering, Eindhoven University of Technology, P.Q. Box 513,
5600 MB Eindhoven, The Netherlands. Email. A.G.de. Jager@wfw. wib.tue.nl

Abstract. For the analysis and design of dynamical systems symbolic tools are a great help.
In the past, several algorithms for nonlinear control systems have been implemented in
MapLE. This implementation has been extended to also handle nonaffine models and to
include more algorithins. Three examples taken from the literature in this area illustrate
the power and limitations of the implementation. For system models that are more than
a little complex symbolic computation cannot be fully enjoyed due to the complexity of
the algorithms that are more than polynomial in some measure of the problem size.

Keywords. Nonlinear control systems, algorithms, linearization, robot control, flexible
arms, induction motors, automeofive control.

1. INTRODUCTION

Symbolic computation, also known as computer algebra,
is a powerful tool for solving tough and intricate problems
in applied mathematics. With the advent and improvement
of commercially available packages this tool is becoming
generally available and used. It promises drastic changesin
the way problems, in fields as diverse as one can imagine,
are tackled.

In the past a closely ted set of symbolic computation
functions, together called the Nox2CON package, has been
presented that solves some problems in the analysis and
design of nonlinear control system, see (Van Essen and
De Jager, 1993; De Jager, 1993; De Jager, 1994a; De Jager,
1995a; De Jager, 1995h). The functions available in the
package range from the computation of the zero dynam-
ics of the model, that does not need to have a well-defined
relative degree, to computing exact linearizing or input-
output linearizing feedbacks. All functions are hased on
constructive algorithms and implemented in MAPLE.

A model of the system must be available for the computa-
tion. The mode}, in general a set of nonlinear differential
and algebraic equations in the state, input, and output of
the system, was assumed to be affine in the input. For sev-
eral problems appearing in practice this was too restrictive,
see (De Jager, 19955} for an example in vehicle dynamics,

so it was decided to extend the NoNZCON package to allevi-
ate this problem and some others.

Two approaches were used to make the package suitable
for nonaffine models. First, several computations, e.g., the
relative degree (using a definition in (Nijmeijer and Van der
Schaft, 1991)), the normal form, the zexo dynamiics, the ex-
act linearization, and the input-output linearization, were
enhanced to be able to gracefully handle nonaffine models.
Secondly, an option was added to make a nonaffine model
affine by extension of the state space and redefinition of
its input.

Besides these enhancements to handie nonaffine models,
the Dynamic Extension Algorithm was added as an option
to give an affine model a (well-defined) relative degree, by
state extension and feedback, in those cases it did not have
one yet. Furthermore, the package was extended with anew
and potentially more efficient algorithm to compute the
local zero dynamics for affine models with a well-defined
relative degree that was proposed in (Kwatny and Blanken-
ship, 1994). Finally, a function was added to compute a
feedback achieving disturbance decoupling for affine mod-
els.

Other packages are available. For an example, see (Blanken-
ship et al, 1995). Some recent additions to this field are
in nonlinear H,, control (Mgller-Pedersen and Petersen,
1995) and in discrete time nonlinear systems (Post, 1995).




The goal of this paper is to describe some of the enhance-
ments to the NonNZCon package, to comment on several as-
pects of the implementation, and to provide some realistic
examples of the use of the new facilities.

The following Section presents some theoretical back-
ground in the form of (comments on) algorithms. Section 3
provides several implementation details while Section 4
covers the examples. The paper closes with a discussion
of the results and an indication of some directions for fu-
ture research.

2. ALGORITHMS

The two standard models used are
X=fx)+gxu, y="h(x

for affine systems and

(1)

x=f(x,u), y=~hx (2)

for nonaffine systems, with x € R” the staté, u € R™ the
input, ¥ € R” the output, f a vector field, g representing
a set of vector fields g; (column-wise), and & is a column
with stacked scalar functions h;.

Modifications to two algorithms will be discussed (1o com-
pute the relative degree and normal form) that are useful in
the case of nonaffine models. Also the Dynamic Extension
Algorithm will be touched up on.

2.1 Relative degree

The relative degree of a nonaffine model of a nonlinear
system in (x°, u°} is, based on the definition in (Nijmeijer
and Van der Schaft, 1991, p. 417), the set of integers »,
i=1,...,p such that,

a—i-L’;h,-(x,u)=0 Vk<r,l<isplsjzm
J

and the matrix

LL‘?‘ hl(X, H)

.l a "
Lf h]_(x, H) e m aum

au1
Ageglx, 1) =

d _n
aulLf hp(x,u) ...

2
. L hp(x, u)
is nonsingular in (x°, u°), with Lrhy(x, u) the Lie derivative,
i-e., the derivative with respect to x of h;(x, u) along f

ohy
Lehy(x, u) = a—x’f.

Remark that the requirement that A is to be nonsimgu-
lar is not posed in (Nijmeijer and Van der Schaft, 1991).
The main differences with the definition for affine mod-

els is that there the term al—_I.f is replaced by the deriva-

J
tive along g;: Lg; and the conditions do not depend on u-.
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For affine models both definitions are, however, equiva-
lent. The two definitions are implemented in the function
reldeg. If no set of integers can be found that fulfills the
two conditions, the relative degree is said to be not well-
defined.

2.2 Dynamic extension

If a model does not have a well-defined relative degree,
several tools or algorithms are not applicable anymore,
restricting the analysis and design objectives that can be
achieved for this model. To remedy this, a preliminary ex-
tension of the state space and state feedback are employed.
The extension of the state space is necessary, because the
relative degree is invariant under static state feedback, ne-
cessitating the use of dynamic state feedback.

The recursive algorithm presented in (Isidori, 1989, p 384),
to which one is referred for more details, essentially iden-
tifies (cornbinations of) input channels that have to be
“delayed” by an integrating action. The dynamic feedback
from a single recursion step is

u = &x(x) + B1{x)T + Balx)vy
é =V,

where v; is the set of “delayed” inputs and v, the set of
inputs that are not delayed. The functions o, §;, and 8>
are commuted by the algorithm. The algorithm terminates
if the relative degree becomes well-defined, or, when this is
hot possible, after a bounded number of steps, where the
bound is at most n.

A restriction of the algorithm is that only square MIMO
models are considered. Furthermore, additional states are
introduced in several input-output channels, potentially in-
troducing additional phase lag that may make the model
more difficult to control. Due to the increase of the dimen-
sion of the state space the model becomes also less suited
for symbolic computation: memory and compute time re-
quirements may increase.

2.3 Normal form and zero dynamics

Normal forms for nonlinear models are useful for theoret-
ical developments, because only a restricted class of mod-
els is 10 be considered, other classes can be transformed
1o the normal form class, but are alsc valuable in their own
right, because they may highlight interesting characteris-
tics of the model. One of those characteristics is the zero
dynarnics. Because the computations involved in obtaining
a normal form are often rather tedious, it is of advantage
to automate this.

Normal forms have been defined for several classes of
models, ameng them affine models with or without a well-
defined relative degree and nonaffine models with a well-
defined relative degree, but not (vet) for nonaffine models
without a well-defined relative degree.

The original computation of the normal form, that was
only suitable for affine models with a well-defined relative




degree, could easily be adapted to incorporate nonaffine
models. It was also extended to affine models without a
well-defined relative degree by building the “generalized”
normal form proposed in (Isidori, 1989, p. 308}, making
use of the Zero Dynamics Algorithm (Isidori, 1989, p. 290).

Given the normal form, the zero dynamics can easily be
derived for affine models. If the model is nonaffine a com-
plication may arise because the zeroing Input zer, need
not be unique. Besides the computation of the zero dy-
pamics by means of the normal form, another potentially
more efficient algorithm to compute the local zero dynam-
ics proposed in (Kwatny and Blankenship, 1994) was im-
plemented. One should consult the original paper for the
details of the algorithm, but we remark that it can only be
used for affine models with a well-defined relative degree.

For models that do not have a well-defined relative degree,
that can therefore be put in the generalized normal form
only, the zero dynamics is computed directly by the Zero
Dynamics Algorithm, which is possible under some condi-
tions. This algorithm can also be used for models with a
well-defined relative degree, circurmventing the derivation
via the normal form, but not for nonaffine models. There
the normal form has 10 be compuied first.

Remark that for affine models with a well-defined relative
degree there are three options available to compute the
zero dynamics, namely by

{1) first computing the normal form, and deriving the
zero dynamics from this form,

(2) applying the Zero Dynamics Algorithm,

(3) using the proposal in (Kwatmy and Blankenship, 1994).

Differences occur, at least for the implementation in
Non&Con, in the coordinates used to represent the results.

3. IMPLEMENTATION

The (modifications of) algorithms discussed in the previ-
ous section are rather straightforwardly implemented in
MapLE using the linear algebra facilities and the procedures
to solve sets of nonlinear algebraic equations and sets of
nonlinear partial differential equations (De Jager, 1994b).

One of the problems in the implementation stems from the
determination or selection of a suitable solution, that is not
unigue, for an under-determined set of algebraic equations
in the Dynamic Extension Algorithm, which is not grace-
fully handled by the standard MapiE facility soTve. A work
around has been implemented.

4. EXAMPLES

The three examples 1o be presented use interesting mod-
els of electro-mechanical systems, i.e., & two link robot with
an elastic joint (an affine mode! without well-defined rel-
ative degree taken from (Isidori, 1989)), a voltage fed in-
duction motor (a nonaffine model taken from (Nijmeijer
and Van der Schaft, 1991)), and a four-wheel vehicle with
steering (nonaffine and/or no well-defined relative degree)
described in (De Jager, 1995h).
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Example 1 The first example is a two link mechanism with
an elastic joint between the two links. Its model is (see
(Isidori, 1989, pp. 398-401))

with
fal = —653(2xaxg + X3) + 2(1/2x3 — 1/20x2)
4 (2 + 3ca)1/2%; — 5%3 — 383%3)

fsl = Bs3(2xaxs + XE) + %{2 +9c3)(1/2x3 — 1/20x3)

— (2 + 3¢a)(1/2x2 — 5x3 — 353x3)
fol = 3(2 + 3c3)53(2x4x5 + X%) — (2 + 3¢3)X1/2x3 — 1/20x%2)
—3(—-1+ 2c3}1/2x2 — 5x3 — 3.5'3?(%)

and
0 0
0 0
0 0
g= —2/1 2/1
21 %(2 +9cd)/1
(2 + 3c3)/1 —(2+3c3)/1
while the output is defined by

h

4

and the following abbreviations are used

1=10+9c
C3 = 008 X3
53 = Sinxs.

Here x1,..., X3 represent the rotational coordinates of link
1, joint 2, and link 2 respectively, and x4, ..., X Tepresent
the velocities. For the parameters appearing in the original
equations, integers have been filled in to simplify the com-
putations by reducing the intermediate expression swell.

The following computation of the relative degree in the
point x° = 0 shows that it is not well-defined.

reldeg: the matrix Adeg turns out to be singular!

reldeg: the initial state conditions for which the
matrix Adeg turns out to be singular are:
{al1}

with
P 2/1
deg = | (2 4 3ea)/1 =2+ 36/

Awell-defined relative degree is achieved with the Dynamic
Extension Algorithm in two steps. This is illustrated with
the following (condensed) output of the algorithm.




Step 1:

2
alpha: [~ 6 sin(x[3]) x[6] xf4] - 3 sin(x[31) x[6]

2
- 9/2 x[3] + 9/20 x[2} - 3 sin(x[3]) x[4]

- 15/2 cos(x[31) x[31 + 3/4 cos(x[3]) x[2]

2
~ 9/2 cos(x[31) sin(x[3]) x[4] ]
[]
[ol
L 2 ]
[ -5-9/2 cos(x[3]) 11
beta : [ 1
[ 0 1]
reldeg: the matrix Adeg turns out to be singular!
H 1 0]
Adeg: [ ]
L ~1-3/2 cos(x[3]) ©]
Step 2:
[ 0]
alpha: [ ]
[ 0]
[T 0]
beta : [ ]
[0 1]
calculating Adeg
X 1 0 ]
Adeg: [ 1
[ -1-3/2cos(x[3]) 1/16 ]

&

rdeg: [ 4, 4]

vector relative degree WELL-defined!

Itis easily verified that the two sets of ocand § that are com-
puted, when combined in the correct way, agree with the
result in (Isidord, 1989, p. 401) that the final dynamic state
feedback (or dynamic extension) which gives the model a
well-defined relative degree is

) = m(—fdx) + ;) + 19
W =w

=%

§‘= V1.

Example 2 This example considers a voltage fed mduction
motor. The medel is taken from (Nijmeijer and Van der
Schaft, 1991, pp. 267, 419), with a correction of a printing
error. It is nonaffine and given by

Bx; wxy ujcosus
-— + —_— — —_————
(o + B)x; —wx; + L + gLS oL,
X3 X4 Uy Sinm
_ — — + — ——— T
F=1 wx;—{o+ By oL T LT oL, (3)

—ooLexy + 1y cosuz
—OLexy + wy sinus
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2 2
- Xa +X4 ]
XzX3 — X1X4

Here x; and xp represent components of the stator cur-
rent, x; and x4 are the corresponding flux components.
The speed of the motor w is considered constant, Just as
all the other model parameters. The total stator flux and
stator torque are the outputs. The model does have a well-
defined relative degree in (x*, u®) = (0,0,x3, x5, uS,0), but
it is not full, so 3 #; < n, as shown by

reldeg: the initial state conditions for which the
matrix Adeg turns out to be singular are:

{xi4] = 0, x[3] = x[1] sigma Ls}, {ul1] = 0},
2 2
x[4] + x{3] - x[3] sigma Ls x[1]
{x{2} = 1,
x[4] sigma ts
{x[3] = 0, x[4] = 0}
vector relative degree = [1, 1]

total relative degree = 2

Adeg = [ 2 (x[3] cosQu[2]) + x[41 sinCu[21)),

+ 2 U1l (- x[3] sin(u2]) + x[4] cos(u[21)]

[- x[4] cos(u[2]1)/(sigma Ls) + x[2] cos(uiz])

+ x[31 sin(ui2])/(sigma Ls) - x[1] sinCul2]),
-ufl1(- x[4] sin(ul2])/(sigma Ls) + x[2] sinCu[2])

- X[3] cos(u[2])/(sigma Ls) + x[1] cos(u[2])]

This result is in agreement with the one given in (Nijmeijer
and Van der Schaft, 1991, p. 419). Because the relative de-
gree for this nonaffine model is well-defined, the zero dy-
namics can be computed, and because the model is non-
affine this is done by computing the normal form with the
function normform, Selected results from the computation
are the following.

zero dynamics:

etal[lldot = -(eta[2] alpha sigma Ls eta[1]

2
+ etaf2] eta[l] sigma Ls beta - omega eta[2]

2 2
- RootOf(_Z + eta[2] ) sigma omega eta[l] Ls

2 2
- RootOF(LZ + eta[2] ) sigma beta eta[2])

/ (etal[2] sigma Ls),
eta[2]dot =

2 2
alpha sigma Ls etall] RootOf(_Z + etal2] )

eta[2]

zeroing input uzero: [ 0, ldcuzero[2] ]




The interpretation of the last line of the resuit is simple.
To keep the output y = 0 for all ¢, the input uy should be
0, and the value of input iz does not matter. This is easy
to check from the differendal equations (3). The input u;
does only occur in combination with ua. When uy = 0 the
value of u; is irrelevant. The dynamics of the model under
the constraint that y = 0 is given by the two differential
equations for 1.

The model can also be input-output linearized with the
function inoutlin. The raw results of the 10 lineariza-
tion are voluminous. From the linearizing feedback only
the second component of u is presented, as follows.

jo linearizing feedback (ulin[2]):
arctan{(- 2 v[2] sigma Ls x[3}

2 2

+ 2 x[2] sigma Ls x[3) alpha x[1]

2 2 2
sigma Ls

x[2] x[4] aipha

2 3

x[3] x[2] sigma Ls beta - 2 omega x{3]

x[4] x[1] sigma Ls beta x[3]
x[4] omega x{2] sigma Ls x[3]

2
omega x[4] x[3]

2

x[4] alpha sigma Ls x[2]

2
x[3] omega x[1] sigma Ls

2
x[3] alpha sigma Ls x[2]

/
x[2] sigma Ls v[1} - x[4] vi1}} /
/

2 2 2

(2 x[1] sigma Ls x[3] alpha

z2 2
+ 2 x[1] sigma Ls xE43 alpha x[2]
+ x[1] sigma Ls v[i] + 2 v[2] sigma Ls x[4]

2
- 2 x[3]

alpha sigma Ls x[1]
+ 2 x[3] x[2] sigma Ls beta x[4] - x[3] vil]
- 2 x[3] omega x[1] sigma Ls x[4]

2
- 2 x[4] alpha sigma Ls x[1]
2
- 2 x[4] x[1] sigma Ls beta
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2
- 2 x[4] omega x[2] sigmz Ls

2 3
x[4] + 2 omega x[41 ))

Due to the complexity of the output, it is difficult to verify
the result by simple inspection.

+ 2 omega x[3]

Example 3 This last example considers a vehicle steering
stability problem. It is posed more extensively in (De Jager,
1995k}, Refer to this for the complete model equations,
that will not be repeated here. The original model is non-
affine. In the present research the model is simplified by
assuming the lateral tire forces Fy and F,, at front and rear,
to be constant and not functions of the state and steering
angle. The reason for this simplification is that the com-
putation for the original model could not be completed.
Several results will be discussed concerning the simplified,
but still nonaffine, model given by the following equations

X4 ]
X5
Xg

—Frsin(u; + x3) — Fr sinx; + Uz COSX3

f= 15‘4 ]
Frcos(uy + x3) + FrcOSX3 + Up 5I0X3
M
aFfcosuy — bFy
Ju J
h= X4 COS X3 + X5 Sinx3 — Uy

| (X1 + pcos x3)% + (X2 + psinxz)® — Rg] '

where x;, Xz represent the position of the COM {(center-of-
mass) and x3 the rotation around COM, the states x4,...,Xg
represent the corresponding velocities. The output y is de-
fined in such a way that it is zero for a curving maneuver
with constant radius R, and constant forward speed com-
ponent Uy. The input u; is the steering angle and u; is the
traction force.

First, the relative degree of the model is computed. It is
well-defined. See the output of the function reldeg.

vector relative degree = [ 1, 2]

total relative degree 3

The zero dynamics can be computed successfully, butit is
complicated, making it tedious to deriveits characteristcs,
e.g., to decide if the zero dynamics is stable.

Second, state extension (an integrator in the first input
channel) and input redefinition have been used to get a
model that is affine. It appears that the affine model does
not have a well-defined relative degree, so the Dynamic Ex-
tension Algorithm is applied, giving an affine model with
well-defined relative degree, that is of higher order than the
original one. The computation of the normai form for this
extended model could not be completed due to interme-
diate expression swell. The zero dynamic could therefore
not be computed.

The vehicle model presented in (Kwatny and Blankenship,
1994) has also been investigated. The algorithms to com-
pute the zero dynamics were able to finish their computa-
tion for this model. So it appeared that it is ruch easier to
handle.




The results of the first two examples are satisfactory. For
the last example, which has a quite complicated model de-
scription, the results are disappointing due to

+ the complexity of the algorithms,
» limitations of the computer algebra system.

Based on the MAaPLE results for several examples, not all
presented here, the following conclusions can be drawn.

» To make amodel affine and to give it a well-defined rel-
ative degree are relatively simple problems, that can
be solved rather easily by symbolic computation tools,

» making a nonaffine model affine is not always advan-
tageous, the affine model of larger dimension may be
more involved for computational purposes,

« the newly proposed algorithm to compute the zero
dynarnics is more efficient than the other two methods
presented,

o the full vehicle zero dynamics problem can be solved
by none of the algorithms presently available, model
simplifications are mandatory.

5. DISCUSSION

The extensions to the NoNECON package enable one to treat
alarger class of models, including those that occur in prac-
tice for frequently encountered systems.

The extended NONECON package is successful for low order
models that do not contain large intricate expressions. For
large order models the package is less successful, among
others due to an infrinsic limitation in MapiE for the han-
dling of large numbers of objects. To avoid this limitation,
and so to fully exploit the power of symbolic computation,
one can hardly avoid to become familiar with the peculiar-
ities of the program used for implementation. Ideally one
would want to avoid this. This should be improved.

Some other problems stem from the need to solve intricate
sets of nonlinear ((partial) differential) equations. For these
kind of problems - very difficult ones - no powerful, built-
in, ready to use, functions are available. Therefore, some
ad-hoc facilities were implemented to improve the capabil-
ity of MaPLE in this respect, see, e.g., (De Jager, 1994b). This
should be improved also.

The main wouble lies, however, in the fact that the algo-
rithms (and their implementations) are rather complex.
While in numerical computations cne is ready o accept
a computational complexity growth rate that is a cube of
the problem size, in symbolic computations one should be
ready to accept a double exponential relation, see (De Jager,
19944). This means that slightly larger problems than
those used in this paper will readily become intractable,
gathering dark clouds at the horizon for practical symbolic
computation.
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