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Abstract

In multilayer injection moulding process, two or three polymeric materials
are sequentially or simultaneously injected in a mould to make products that,
for example, consist of a core layer of a material with specific properties
enclosed by a shell layer of another material. For a succesful application of
this technique to complex shaped products, it must be known which material
has to be injected at what time to get the desired layer distribution. This can
be achieved by numerical simulation of the flow during filling of the mould.
Particle tracking is modelled by labeling each particle with its "identity".
The identity of a particle, for instance its position and time at inflow into
the mould, does not change. Therefore this problem can be expressed as a
conservation law which can be added to the set of balance and constitutive
equations needed to describe the injection moulding process.

The conservation of identity is written as an instationary scalar convection
equation. For the numerical solution of this type of equation, a large class
of methods are available. Methods based on the Finite Difference Method
(FDM) and the Finite Element Method (FEM) are tested with the convection
of a Gaussian hill. For FDM the Van Leer scheme seems to give the best
results, that means little diffusion with no dispersion. For FEM the Galerkin
finite element method with a Crank-Nicholson time discretization gives the
best results, but with still unwanted dispersion. The latter solution method is
chosen for implementation in VIp, a software package for moulding processes
based on FEM.

The results show that particle tracking based on the conservation of iden­
tity is an attractive method. The Galerkin FEM needs some improvement
as expected from the result of the test problems. Future research should
be focused on that problem and also on the experimental validation of the
calculations.

For a detailed description of the flow of a particle it is not only needed to
use the right modeling strategy but also the right material data. Therefore
in this report attention has been paid to the rheological characterization
of two amorphous thermoplastics. The properties in shear of a polystyrene
and a polycarbonate melt are measured using a rotational rheometer. Both
linear and non-linear viscoelastic measurements are discussed. Finally the
material data are fitted to three different constitutive models: a generalized
Newtonian model, the Leonov model and the Wagner model.
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Notation

Quantities

A, a
~a
A
-1, g
4
I

scalar
vector
second tensor
column
matrix
second unit tensor

Operations and functions

AC
ii·b A·B,
A:B
A-I A-I, -
ll iill,IIAII
It =tr(A)

It
It =det(A)

Ad = A -ltr(A)I
aT AT- ,-
V
a
aa
at

conjugation
inner product
double inner product. .
InverSIOn
norm
first invariant of a second order tensor,
or trace
second invariant of a second order tensor
third invariant of a second order tensor,
or determinant
deviatoric part of a second order tensor
transposition
gradient operator
material time derivative
spatial time derivative

IV



Chapter 1

Introduction

The injection moulding process is a flexible production process for the fab­
rication of plastics parts. Characteristic for this process are the complex
shaped, integrated products manufactured in large numbers with small cycle
times. Nowadays there are a number of different injection moulding tech­
niques available. Examples are: gas assisted-, foam-, thermoset-, (reinforced)
reaction-, two-shot-, and multilayer injection moulding. In this report the at­
tention will be focussed on the modeling of the multilayer injection moulding
process.

For the sake of clearness a short description of the injection moulding ma­
chine and the process will be given. The injecton moulding machine consists
of an injection and a clamping unit (Fig 1.1). The injection unit contains of
a screw rotating in a heated barrel for plasticizing the granulated polymer
fed by the hopper. When sufficient material is plasticized the screw acts as
a piston and pushes the melt through a nozzle and runner system into the
mould cavity. The clamping unit contains the two mould halfs and prevents
the mould from opening by the high pressure that occurs during the process.
The process can be divided in three stages: the injection, packing and hold­
ing, and the cooling stage. In the injection stage the molten polymer is forced
into the mould. After complete filling of the cavity extra material will be
injected to compensate for the shrinkage, the so-called packing and holding
stage. From the moment the gate is frozen completely no more material can
be added and the cooling stage begins. When the temperature is decreased
below the ejection temperature the mould is opened and the product can be
taken out for further cooling to the ambient temperature.

1.1 Multilayer injection moulding

In the multilayer injection moulding process, two or three polymer materials
are sequentially or simultaneously injected in the mould to fabricate prod-
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clamping unit

moving mould half

injection unit
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non-return valve

fixed mould half

Figure 1.1: Injection moulding machine

)

ucts with a layered structure. The distribution of the layers in the product
depends on the position of the. gate, geometry of the injection nozzle and
the method of injection (simultaneous and/or sequential). By changing the
sequence of injection of two components A and B (A,B; A,B,A; A,B/A,A;
A,A/B,A; etc.) the thickness and also the place (centric or excentric) of
the layers can be controlled (see Fig. 1.2). The multilayer technology differs
from the multi-shot injection technology, where a first shot after complete
solidification is placed in a larger mould-cavity followed by the injection of a
second shot against or around the previous shot.

The multilayer (or multicomponent, sandwich or co-) injection technique
is first developed by leI in 1967 ([19]). They were able to produce large,
light-weigth, and stiff products. The sequential injection of two components
(A,B; A,B,A) limited the practical applications to sandwich constructions
with a three layered structure. The component B, the core layer, often con­
sists of the A material with a physical or chemical foaming agent. In this way
large parts with hard, flat, and glossy skin layers could be moulded without
high clamping forces, since the shrinkage is compensated for by the expansion
of the core material instead of packing at high pressures as in the conven­
tial injection moulding process. Applications of the thick-walled (> 4 mm)
products can be found in the automotive, housing, and sanitary branches.
In applications where thin-walled products are more suitable, light-weight,
high-stiffnes products can be moulded more economically using ribs.

During the last years the multilayer injection moulding technology has

2 Chapter 1



f\
III ---~{\'----- ___--J{\'--- _

" ,I

Figure 1.2: Schematic representation of two component injection moulding with
sequential, simultaneous, and combined injection

been applied to thin-walled products using the Battenfeld two-channel tech­
nique (see Fig. 1.3) [17]. With this technique not only sequential injection
is possible as in the ICI technique, but also simultaneous injection of two
components (A,A/B,A; A,B/A,A). In this way, thin, excentric layers can be
realized in a product to fabricate products consisting of three layers in one
cycle. Until now this only could be achieved with the multi-shot method.

Some examples of applications are shielding against electro-magnetic in­
terference of e.g. computer housings, where a Faraday-cage is created by a
conductive layer inside the product, or in barrier products, where a thin layer
of a material with a low permeability for gases is enclosed by outer layers
that provide other desired properties of the product (like stiffness and ap­
pareance) combined with water resistency. In this way the advantage of the
injection moulding process with his versatility in geometrical design of the
products can be extended with the ability of combining different materials
with their specific properties in one product. However, some limitations of
the existing technology should be overcome. First the ability of injection of
two components only has to be extended to three components. As in compar­
ison with coextrusion techniques] where polar and apolar materials together
with a third component as a glue (compatibilizer) are used to get attractive
combinations in one product, these material combinations would make also
the multilayer technique more competitive. This limitation is being removed
by the development of a three component injection moulding machine at our
laboratory based on the Battenfeld system. Secondly, the complexity of the
products is limited to relatively simple geometries. To overcome this draw­
back, one must be able to predict the flow of every particle in the mould. For
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Figure 1.3: Principal of mould filling with the Battenfeld system

this purpose numerical tools have to be developed for calculating the flow
path of particles. In that case it is also possible to predict what has to be
injected given a desired layer distribution in a product. Only with such a
tool a succesfull application of the multilayer technique for complex shaped
products is possible.

1.2 Scope of the work

A flexible multilayer injection moulding technology together with numerical
simulation tools for predicting the flow paths during mould filing should be
developed. The injection technology will be realized in two steps. First an
injection moulding machine will be equipped with a valve system capable of
controlling the flow of the three components. Secondly a more flexible sys­
tem will be constructed based on an accumulator between the distribution
device and the mould as proposed by Vos et al. [61]. Besides the practical
applications of the multilayer technique, this method will be used as a test of
numerical models which describe the flow during the injection phase of the
process. Within the modeling of the flow, the melt is considered as a gener­
alized Newtonian fluid. Visco-elastic stresses are calculated by substitution
of the calculated flow-field into a visco-elastic constitutive equation. This is

4 Chapter 1



called the decoupled approach [15], i.e. the viscoelasticity of the material
is supposed to have no significant influence on the flow kinematics. With
the multilayer technique the total deformation history can be investigated
experimentally and compared with the numerical calculations. In that way
a validation of the decoupled approach will be accomplished. Viscoelastic
stresses are important for predicting the influence of material properties and
process conditions on product quality, especially for the use in precision in­
jection moulding.

1.3 Outline

This report mainly deals with the mathematical modeling of the multilayer
injection moulding process. In chapter 2 the basic equations will be given
with special emphasis on the modeling of the particle tracking and the foun­
tain flow phenomena. Input data is important in simulation of the injec­
tion moulding process. In chapter 3 the rheological characterization of two
commercial amorphous polymers will be presented. The important model
parameters will be calculated from the measured data. Chapter 4 deals with
the solution of the problem of particle tracking. As well as finite difference
methods as finite element solution methods will be discussed. Results of
calculations will be given in chapter 5.
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Chapter 2

Modeling the multilayer
injection moulding process

Modeling the multilayer injection moulding process is almost identical with
that for convential injection moulding. Therefore no detailed derivation of
the equations will be given in this chapter. The reader is refered to literature:
Douven [15], Isayev [22], Tucker [28], and Sitters [56].

In section 2.1 and 2.2 briefly the main balance and constitutive equations
will be given. Section 2.3 deals with the problem of particle tracking. In the
last section the fountain flow phenomena are discussed.

2.1 Fundamental equations

The full set of equations needed to describe the injection moulding process
consists of the balance equations and the constitutive equations. First the
balance equations will be given followed by the constitutive equations used
in this report.

2.1.1 Balance equations

From the continuum mechanics, which main goal is the determination of the
fields of density, temperature, and motion for the material points considered,
the balance equations can be derived. These balance equations read in their
local form as follows:

Balance of mass (continuity equation)

(2.1)

where p denotes the density, v the velocity vector, and V the gradient oper­
ator.
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Balance of momentum

V. tTC + pf = pii

with tTC the Cauchy stress tensor, and f the specific body force.

Balance of moment of momentum

Balance of energy (first law of thermodynamics)

pe = tT : D - V .h+ pr

(2.2)

(2.3)

(2.4)

where e is the specific internal energy, D is the deformation rate tensor, h
the heat flux vector, and r is the specific heat source.

2.1.2 Constitutive equations

The set of balance equations only can be solved if relations for tT, hand e as
function of density, temperature and motion are known. In this section the
constitutive equations for the Cauchy stress tensor and the thermal properties
will be given in their final form. For a more detailed description the reader
will be referred to Douven, chapter 2 [15].

Cauchy stress tensor

There are many different constitutive models for relating the Cauchy stress
tensor to the independent variables p, T and x. Here, three different models
will be discussed. First the generalized Newtonian fluid model will be de­
scribed. This model is most commonly used in simulating the injection phase
of the multilayer injection moulding process. It neglects all the viscoelastic
effects of the polymers. The other two models, the compressible Leonov and
the Wagner model, are capable of describing viscoelastic effects. The com­
pressible Leonov model is a differential constitutive equation whereas the
compressible Wagner equation is written in an integral form.

Generalized Newtonian fluid behaviour

Ignoring the elastic effects and assuming that tTd is only a function of the
shear rate, the material behaviour of a polymer melt can be presented by a
compressible generalized Newtonian model. The equations read as follows:

8

tT = -pI + (Td

P = po - Jl tr(D),

Jl = Jl(Po, T, p, Ird
),

(Td = 21]Dd

1] = 1](Po , T, p, Ird
)

(2.5)
(2.6)

(2.7)
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(2.12)

(2.8)

(2.9)

(2.10)

(2.11)

with p. and TJ are the bulk and shear viscosity respectively, p the hydrostatic
pressure, T the temperature, and I the unit tensor.

Compressible Leonov model

The compressible Leonov model is a viscoelastic differential constitutive
equation that can be used for calculation of the flow-induced stresses that
occur during injection of a viscoelastic fluid into the mould. For this purpose
the original formulation by Leonov [39, 40] is extended to compressible flu­
ids (Baaijens [1]). The model is given for the multi-mode case, because this
representation has the best predictive quality.

tT = -pI + tT: + tTp

m
d "" TJi - d

tTe = L..J 'i"B ei'
i=1 '

V = v(p, T)
1 - d --d

Dpi = 40i (Bei - Bei )
.!. _ d - - de
Be; - (L - Dpi) . Bei +Bei· (L - Dpi)

where TJi and Oi are the viscosity and relaxation time of mode i respectively,
TJr is the retardation viscosity, v is the specific volume, L is the velocity
gradient tensor, and Be is the Finger tensor. The parameters TJi, Oi and TJr
can be determined by measuring the linear viscoelastic functions only ([41])
as will be shown in chapter 3 where also the temperature dependency of these
parameters will be discussed.

Compressible Wagner model

The Wagner model (Wagner [63, 62]) is a special case of the K-BKZ model
([32, 5]). In this representation factorability, i.e time effects are separated
from strain effects, is assumed (Larson [35]).

t

tT = -p(p(t))1 + JM(t - T)h(li,I2 )C;d(T) dT
-00

p = p(p,T)

(2.13)

(2.14)

with t the time, M the memory function, h the damping function, C t the
relative deformation tensor and 11,12 invariants of Ct. The memory function
M can be obtained by measuring the linear viscoelastic functions. For deter­
mination of the damping function h, measurements in the non-linear regime
have to be carried out. There are various ways of expressing the damping
function h. Wagner et al. [65] choose

h(II,I2 ) = me-nlVI-3 +(1 - m)e-n2VI-3 (2.15)

Modeling the multilayer injection moulding process 9



where Papanastasiou et al. [46] propose

(2.16)

(2.17)

The memory function can be expressed with a continuous relaxation time
spectrum H(O)

M(t - r,T) = j H~O) e-(t-T)/9 dlnO
-00

where the relaxation time 0 depends on the temperature. When H is repre­
sented as a discrete relaxation time spectrum

m

H(O) = L GiOi~(O - Oi)
i=l

(2.18)

with ~ the Dirac delta function and Gi the relaxation shear modulus of mode
i, the memory function reads:

M(t - r, T) = f: Gi e-(t-T)/9,

i=l Oi

Thermal properties

(2.19)

The constitutive equations for the thermal behaviour are Fourier's law for
the heat flux vector and an equation for the internal energy. Fourier's law
reads:

(2.20)

(2.21 )

with ~ the thermal conductivity tensor. The specific internal energy e can
be written as (Bird [7], Sitters [56])

. t Po. T (ap ) .
e = Cp + 2"P+ 2" aT Po

p P Po

Cp = Cp(Po, T) = (:~)
Po

where Cp is the thermal capacity at constant hydrostatic pressure and 9 =
e + Polp is the specific enthalpy. It must be noted that equation (2.21) is
derived under assumption that the elasticity has a neglible contribution to
the mechanical dissipation.

10 Chapter 2



2.2 Thin film approximation

The geometry of injection moulded products gives the opportunity to simplify
the equations considerably. In the most practical applications the thickness
of a injection moulded product is small (0.5-4 mm) compared with the other
dimensions. The cavities consist of narrow, weakly curved channels, and
therefore the thin film approximation can be employed (Hieber and Shen [23],
Sitters [56], Boshouwers and van der Werf [9], Douven [15]).

A local Cartesian vector base Oe : {et, e2, i3} can be defined in every point
of the midplane of the mould. Where the vector i3 is normal with respect
to the midplane. An arbitrary vector ii can be d~composed in a vector ii*
parallel to the midplane and a component in the direction of i3

(2.22)

(2.25)

(2.23)

(2.24)

Because of the high viscosity of a polymer melt the Reynolds number (ratio
of viscous forces and the inertial forces) is small and therefore the inertial
and body forces in the momentum equation (2.2) may be neglected. The
main consequences of the approximation are that

• the pressure is independent of the i3 direction
• the velocity gradients parallel to the midplane are small compared with

those in the i3 direction
• the velocity components in the i3 direction are small compared with

the components tangent to the midplane
• the thermal conduction parallel to the midplane may be neglected with

respect to conduction in the e3 direction

As a consequence the shear rate -r = V2nd
: n d reduces to I 88V: I. Fi-

X3

nally the term in equation 2.6 containing the bulk viscosity p, is neglected,
which implies that the thermodynamic pressures is equal to the hydrostatic
pressure. With these simplifications the set of equations for a generalized
Newtonian fluid read as

a e •

v*.V*+~ =_e
ax~ P

V*p = aae (7]aa~), aa~ = 0,X3 X3 X3
T· a (\ aT) .2 T (ap) .PCp = - A- + 7]/ - - - paXe axe P T3 3 p

This set of equations is instationary, non-linear and coupled because the
viscosity and density are both temperature and pressure dependent.

The pressure field is solved numerically by the Galerkin finite element
method in the midplane of the cavity. The temperature and the velocity fields

Modeling the multilayer injection moulding process 11



are solved by the finite difference method in the full domain of the cavity.
Therefore the thin film approximation often is called the 2!D approach.
Further details regarding to the numerical solution of this problem can be
found in Douven, chapter 4 ([15]).

2.3 Particle tracking

In simulating the multilayer injection moulding process it is needed to known
where and when a material particle has to be injected to end up at the desired
position in the product. A way of particle tracking is to follow a certain
particle during the flow by constructing its flow path t. Given a particle cp
at the position Xo at time to its flow path i can be expressed as:

t: x{xj,tj;t) Vt E [to,tj]
with x{xo, to; to) = Xo

(2.26)

(2.27)

Because the velocity vector vex, t) is tangent to i, the flow path can be
constructed by integrating

dx -'( -' )
dt = v x, t (2.28)

with equation (2.27) as initial condition. This initial value problem can be
adequately solved by a Runga-Kutta integration method (Caspers [11]). A
disadvantage of this method is that for every time step the velocity field must
be stored. This requires a large storage capacity.

Another method of particle tracking is to give particles when they enter
the mould a set oflabels e, representing their 'identity' ([47, 48, 67]). During
the flow in the mould th; identity of each particle does not change. For that
reason the conservation of identity can be expressed by

. De .
t = --=- = 0 In r m,
~ Dt - {{x,t) = [(x,t) on r e (2.29)

where eis for instance a column containing the starting position and time
(xo, Yo,~o, to), or the colour and viscosity. The problem of particle tracking
can be solved with either a Lagrangian or an Eulerian approach.

Lagrangian approach

The path of every particle can be determined under consideration that:

x = x{xo, t), (2.30)

From equation 2.30 it may be clear that {(x, t) = {(xo, to).

Eulerian approach

12 Chapter 2



In a fixed frame of reference the conservation of identity can be expressed as:

ae -4

-=+11· "\1& = 0at ~-
(2.31)

In this representation the change of label values in space is calculated instead
of tracking particles. The actual tracking can be carried out by determining
the positons of a given set of labels in time. For the use in multilayer injection
moulding, the label values at the end of filling give information where and
when every particle has entered the mould. By pointing out specific layers in
the product, only the label values of the particles in these layers have to be
determined to know what configuration must be injected to get the desired
multilayer product. The main advantage of the method of conservation of
identity is that the storage capacity required is much smaller than for the
path construction method because only the label values at one time (end of
filling) must be stored. Moreoever, using the Eulerian approach the followed
path of the particles is not important. Numerical experiments have showed
that the Eulerian approach turned out to be the most flexible and efficient
in use ([11,58]).

It must be noted that both methods only give the desired result, i.e. the
prediction of the injection sequence for a desired configuration of the layers,
if the material properties of the injected materials are the same. Because
the material properties affect the velocity field, only the injected sequence
of materials can be traced back. All other configurations will lead to wrong
results. However, this result can be used as a start condition in an iteration
loop. Such a iteration process proceeds as follows:

1. Simulate the injection with one material.
2. Point out the desired configuration and determine the injection se­

quence.
3. Use this sequence for the simulation of the injection with the different

components.
4. Point out the desired configuration, etc.
5. Repeat step 3 and 4 until the injected and calculated configuration

correspond to a sufficient degree.

2.4 Fountain flow phenomena

During the filling of a mould cavity two flow regimes can be recognized:
the main flow and a front flow. In the front flow a specific flow pattern
behind the advancing free surface has been observed experimentally. Tracer
studies gave detailed information of the deformation of the fluid when it
passes the front region (Coyle et al. [14], Cogos et al. [21], and Schmidt [53]).
These observations showed that a fluid particle that enters the front flow

Modeling the multilayer injection moulding process 13
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first decelerates in the direction of the flow and obtains at the same time
a velocity component in the direction normal to the flow thus spilling the
material outwards to the mould walls (figure 2.1). This phenomena, known

::=s
.------------------------

~

Figure 2.1: Fountain flow phenomena

as the fountain effect (Rose [52]), has an important effect on the particle
distribution in a moulded product especially for all material elements close
to the mould walls. Local breakthrough of core layers to the outside of the
product is completely controlled by the fountain region and mostly undesired,
although some applications just ask for a specific material at the outside of
the product (colour, gloss, UV stability, soft touch, etc.). Therefore it is
important to incorporate the fountain flow effects in the modeling of the
multilayer injection moulding process.

The studies dealing with the modeling of the fountain flow can be divided
in those who describe an interface between two liquids or those describing a
free front advancing in a capillary tube or in between plates. Bhattacharji
and Savic [6] made the first attempt to give an semi-analytical solution of
the Navier-Stokes equations for the liquid/liquid interface. Numerical solu­
tions were obtained using the Marker-and-Cell technique (Cogos et al. [21]
and Kamal et al. [30, 31, 34]), or finite element methods (Behrens et al. [4],
Coyle et al. [14], and Mavridis and coworkers [43, 44]). Dupret and Van­
derschuren [16], Manas-Zlowzower et al. [42] Sitters [56] proposed a simple
model that can be used well in combination with the thin-film approxima­
tion. In this model the fountain flow is idealized by a single straight line
moving with the average front velocity Vs (see figure. 2.2). These models,
defined in two dimensions, can be used for the three dimensional flow in a
mould hy assuming that the pressure gradient tangent to the front (~) can
be neglected. In the front region a curved x-s plane can be constructed in
the direction normal to the front (figure 2.3) where such a 2D front model
can be applied.

Depicting the fountain flow in the Lagrangian framework with the mould
wall moving with -vs , the front flow can be divided in two parts (figure 2.4):
a high-velocity region 0 < Z < Z/ and a low-velocity region z/ < Z < H/2,
where z/ is the position where vs(z) = vs' According to the balance of mass

14 Chapter 2



•
11 -2J...... - _ - - - --

-:J
Figure 2.2: Simplified front model in injection moulding

Figure 2.3: Fountain flow model in injection moulding

(assuming an incompressible fluid), the relation between the inflow Zi and
the outflow position Zo can be expressed by:

%/ %0

J(vs(z') - vs) dz' =J(vs - vs(z')) dz'
%i %/

(2.32)

In the case of a Newtonian fluid it can be derived easily that Zj = 1/V3H/2
and that z~ - Zo + Zi - zf = O. With this simple model an estimation can
be made of the gapwise distribution of some quantities if it is assumed that
the properties of a particle are not influenced by the fountain flow. For
some applications, however, the residence time in the fountain flow is of
importance. For example in the case of multilayer or in reactive injection
moulding. Therefore this model has to be adapted.

The semi-analytical model of Bhattacharji and Savic gives the opportu­
nity to derive relatively easy a relation between the residence time in the
front flow and the inflow or outflow position ([58]). With the known ve­
locity field (see Appendix A) the flow paths can be constructed (Fig 2.5).
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Figure 2.4: Lagrangian representation of simplified front model (only one mould
half is considered)

Integrating along a flow-path, corresponding with an certain inflow position
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Figure 2.5: Flow paths in the fountain region for a certain time interval

until a particle re-enters the main flow, gives the residence time. The resi­
dence time and inflow position both as function of the outflow position are
plotted in figure 2.6. This representation can be parametrized by fitting the
curves with a polynomial. In this way not much extra computing effort is
required for incorporating a front model.

2.5 Conclusion

The balance and constitutive equations given in this chapter can be applied
for simulating the 'normal' as well as the multilayer injection moulding pro­
cess. In the latter case, an extra conservation law is added for solving the
particle tracking problem. In the next chapter, the aspects of the numerical
solution of the particle tracking problem, are discussed.
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Chapter 3

Rheological characterization

In describing the flow in the mould the material behaviour of the molten
polymer plays an important role. This chapter deals with the determination
of the rheological properties of two amorphous polymers, a polystyrene (PS,
Styron 678E from DOW Chemical) and a polycarbonate (PC, Makrolon CD
2000 from Bayer) in shear flow.

3.1 Viscoelastic measurements

The experiments for determining the properties of a viscoelastic fluid in shear
can be divided in measurements in the linear and the non-linear viscoelas­
tic regime. The linear properties are often determined by oscillatory shear
experiments, while the non-linear properties can be determined by transient
measurements.

3.1.1 Oscillatory shear experiments

The linear viscoelastic properties are measured by small amplitude (i.e in the
linear viscoelastic regime) oscillatory shear experiments. They were carried
out on a Rheometries Dynamic Spectrometer RDS-II. For the measurements
a circular shaped specimen is placed between two parallel disk and heated
above Tg • By imposing a sinusoidal shear strain on the sample the respons
can be measured. The shear strain is of the form

"Y(t) = "Yo cos(wt) = "Yo~(eiwt) (3.1)

where "Yo is the shear strain amplitude and w is the angular frequency. In the
linear viscoelastic regime the shear stess T12 will be sinusoidal with frequency
w, but with a different amplitude and out of phase with the strain input.

(3.2)
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This equation can also be expressed as:

T12(t) = "'toG' sinwt + "'toG" coswt (3.3)

with G' the storage modulus and G" the loss modulus as the real and imagi­
nary parts of the complex shear modulus G* respectively. The dynamic shear
modulus Gd and the loss angle 6 are defined as

G'
tan 6 = G" (3.4)

Besides the complex shear modulus, a complex viscosity can be defined:

-~
TJ* = -G* = TJ' - iTJ"

w
(3.5)

with TJ' = :' and TJ" = ~'.
The temperature dependency of the shear moduli and the viscosity can

be modeled by assuming that the material is thermorheologically simple. For
such a material it is observed that a set of isothermal curves (for instance
Gd as function of w) can be shifted onto a mastercurve by a shift along the
logarithmic time or frequency axis. The shift depends on the temperature
difference between the mastercurve and the shifted curve. The mastercurve
constructed, spreads over several decades in time or frequency while the mea­
surements are carried out within a limited time or frequency range. Besides
the horizontal shift, also a small vertical shift of the curves, due to den­
sity changes with temperature, has to be applied. The mastercurves can be
described by:

Gd(waT, To) = brGd(W, T)

6(waT' To) = 6(w, T)

(3.6)
(3.7)

(3.8)

(3.9)

where To is the reference temperature corresponding with the temperature
of the mastercurve and aT = a(T, To), bT = b(T, To) are the horizontal and
vertical shift factors respectively. The horizontal shift factor for amorphous
polymers can be described well with the so called WLF-equation. Williams,
Landel and Ferry [66] found that for amorphous materials, in the range from
the glass transition temperature Tg to about Tg + lOOK, the shift function
can be modeled by

1 cl(T - To)
og aT = - C2 + T + To

where Ct, C2 are material constants. The vertical shift factor is often modeled
by a temperature-density correction

b
T

= pTo
pT
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The construction of the mastercurve proceeds as follows: first shift the
loss angle 6 horizontally along the frequency axis onto a mastercurve. Then
apply the so obtained shift to the dynamic modulus Gd and shift these curves
vertically onto the mastercurve. Only in this way, both shift factors can be
determined seperately (Leblans [38]). The results of this procedure can be
found in the figures 3.1 to 3.3 for the PS melt and in the figures 3.4 to 3.6 for
the PC melt. The WLF-parameters are listed in table 3.1. From figure 3.3b it
can concluded that the temperature density correction for PS cannot describe
the vertical shift factors.

IPS Styron 678E IPC Makrolon CD2000 I
Cl 4.54 3.05
C2 K 150.36 134.72
To K 462 511

Table 3.1: WLF parameters
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Figure 3.1: Loss angle as a function of angular frequency at various temperatures
for PS Styron 678E. To =462K.
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Figure 3.2: Dynamic modulus as a function of angular frequency at various tem­
peratures for PS Styron 678E. To =462K.
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Figure 3.5: Dynamic modulus as a function of angular frequency at various tem­
peratures for PC Makrolon CD2000. To =511K.
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3.1.2 Non-linear shear flow experiments

The non-linear shear flow behaviour is measured by means of three types of
experiments:

• step strain stress relaxation
• stress growth at constant shear rate
• stress relaxation after cessation of steady shearing flow

With the results of these tests the damping function in the Wagner model can
be determined. Moreover, they can be used for testing the predictive quality
of the viscoelastic constitutive models obtained. The non-linear shear flow
behaviour can be described by the transient shear viscosity 1], the transient
first normal stress coefficient tPb and the relaxation modulus G, defined as

(3.12)

(3.11)

(3.10)+-(t .) T12(t)
1]' ,'Yo = -.-

'Yo
e,.+.-(t . ) _ Tll(t) - T22(t)
'1-'1 ,'Yo - •2

'Yo

G(t, 'Yo) = T12(t)
'Yo

where the superscript denotes that the property is measured in a start-up
shear (+) or in a relaxation after steady shear flow experiment (-) respec­
tively.

The experiments are carried out on a Rheometries Dynamic Spectrometer
RDS-II and on a Rheometries Mechanical Spectrometer RMS-800 (at DSM
Research) using a plate-cone geometry. With the latter apparatus, it is
possible to measure the first normal stress difference ass well. It proved
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to be impossible to measure the non-linear properties accurate enough for
PC with the available apparatus ([55]). Therefore only results for the PS
samples are given.

Step strain stress relaxation

In a step strain stress relaxation experiment a shear strain ,0 is imposed
upon a relaxed fluid. The strain history is given by

{

0 for t - t' < t
,(t, t') = 1'0· (t - t') - 1'ot for t $ t - t' < t + ~t,0 = 1'o~t for t - t' ~ t +~t

(3.13)

where ~t is the finite time needed for imposing the shear strain ,0 on the
sample. Figure 3.7 shows the measured shear relaxation modulus for ,0 =
0.5,1,2,3,4, and 5 at a reference temperature of To = 462K with flt = 0.06s.
The maximum ,0 is limited to a value of 5 to avoid overload of the torque
transducer of the apparatus.
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Figure 3.7: Shear relaxation modulus for "Yo = 0.5,1,2,3,4, and 5 for PS Styron
678E at T = 462K.
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Stress growth at constant shear rate

By applying a constant shear rate 1'0 on a sample, the strain as a function of
time is defined by:

')'(t, t') = {70 • (t - t') for t - t' < t
')'ot for t - t' ~ t (3.14)

The transient viscosity 1/+ and the transient primary normal stress coefficient
1/Jt are measured at T = 462I< for the shear rates: 1'0 = 0.2,004,1,2, and
48-1 . The maximum shear strain value was ')' = 20 for all shear rates. The
results are given in figure 3.8 and figure 3.9.

10~ r------.,--I----~'-----....,Ir-----.....,

'Y =0.2.-1 <>

'Y = 0.4.-1 +
'Y = 1.0.-1 []

'Y = 2.0.-1 x

'Y =4.0.-1 6.

-

103 L...- -..L ....1 1L...- --I

10-1

t [s]

Figure 3.8: Transient shear viscosity for a start-up flow at constant shear rates of
i'o =0.2,0.4,1,2, and 48-1 for PS Styron 678E at T =462K.

Stress relaxation after cessation of steady shearing flow

When a constant shear rate experiment is continued long enough, the stresses
will reach steady-state values. After cessation of the stationary flow the
stresses will decay to zero. Neglecting the time of the sudden stoppage, the
shear history can be expressed as:

26

{
o for t - t' < t

')'(t, t') = 1'0. (t - t') -1'ot for t - t' ~ t (3.15)

Chapter 3



-

lOll r--------r-,-----.,.,--------"r----------.
.:, =0.2.-1 <>
.:, =0.(0-1 +

<> <> <> <> <> <> <> <> <> <> • -1
• ~ +++++++ "y = 1.0. C+... .:, =2.0.-1 X

i ~ c c c c c c c . _. 0 -1 A
•• "y - ••

tXXXXXXXX
~

!AAAAAAA
.A

•Ai
A·•t10

2 L..-::.... ..L...- ...L- ..J1 ---'

10-1

Figure 3.9: Transient primary normal stress coefficient for a start-up flow at con­
stant shear rates of 70 = 0.2,0.4,1,2, and 4s-1 at for PS Styron 678E
T = 462K.

Again the transient viscosity TJ- and the transient primary normal stress coef­
ficient tPl are measured at T = 462K for the shear rates of ..yo = 0.2,0.4,1,2,
and 48-1 . The results are shown in figure 3.10 and figure 3.11.
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Figure 3.10: Transient shear viscosity after cessation of steady flow at shear rates
of 'Yo = 0.2,0.4,1,2, and 4s-1 for PS Styron 678E at T =462K.
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Figure 3.11: Transient primary normal stress coefficient after cessation of steady
flow at shear rates of 'Yo = 0.2,0.4,1,2, and 4s-1 for PS Styron 678E
at T = 462K.
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3.2 Determination of the model parameters

In order to use viscoelastic models to calculate the material behaviour in
various types of deformations like e.g. injection moulding, it is necessary that
the model parameters are available. For the models described in Section 2.1.2
this implies the determination of the relaxation spectrum and the damping
parameters.

3.2.1 Relaxation spectrum

In the linear viscoelastic regime, the relation between deformation and stress
can be described by the Boltzmann superposition principle, which is given
by:

t

r12(t) = JG(t - t')-y(t') dt'
-00

(3.16)

where G(t) is the linear shear relaxation modulus. In using any of the models
available, an explicit mathematical function of the modulus is needed. Often
the function of a generalized Maxwell model is used:

N t-t'

G(t - t') = EGie-6i
i=l

(3.17)

in which Gi the shear modulus and (}i the relaxation time corresponding to
the i-th relaxation mode. For the use of this representation, N pairs of values
(Gi, (}i) have to determined from the experimental data.

Some authors ([38, 54]) prefer a continuous relaxation spectrum instead
of a discrete one. Then the expression for the relaxation modulus reads:

00, J t-t'G(t-t)= H(r)e--r dlnr
-00

(3.18)

in which the relaxation time r spreads out over several decades in time.
The experiments most used in determining relaxation spectra are the

small amplitude oscillatory shear experiments. In the following, the measured
data presented in Section 3.1.1 will be used to fit the relaxation spectra.

Continuous relaxation spectrum

Using a continuous relaxation spectrum the expressions for G' and G" for a
certain frequency Wj read:

J
oo (wor)2

G'(w .) = H (r ) J dIn r
J -00 1 + (wjr)2
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00

G"(Wj) = JH(r)l +~~.r)2 dlnr
-00 J

(3.20)

In practice, the upper and lower limits of the integral are replaced by In rmax

and In rmin respectively.
For the determination of H (r) from the discrete oscillatory shear data,

several approximate relations are available (see [8, 18]), e.g.

or

H(r) = ~ [G"L=l/'!" (3.21 )

(3.22)

The spectrum obtained via this approximation is first extrapolated linear
at both ends over at least two decades in time. Accordingly H(r) can be
optimized iteratively so that the experimental mastercurves of the storage
and loss moduli can be described over the whole frequency range within
experimental error ([29, 38, 54]). The iteration procedure can be summarized
by:

1. calculate H(r) with (3.22).
2. calculate C' and C" with the equations (3.19) and (3.20)
3. calculate 6.G' = G' - C' and 6.G" = G" - C".
4. if 6.G'/ G', 6.G"/ G" ~ u then go to 6, else go to 5.
5. calculate 6.H = ~6.G", update the trial solution H +- H +6.H, and

go to 2.
6. stop the iteration procedure.

where u is the relative error of the input data. The results of this procedure
for PS and PC are shown in figure (3.12) and (3.13) respectively. For PC,
the calculated moduli deviate from the measured ones at both ends of the
frequency window. In this case, the spectrum can be adjusted by hand to fit
the experimental data correctly. Then, it can be shown that the dip in the
spectrum at the lefthand side vanishes.

Although for the use of a spectrum as a material property the continuous
representation gives the most information, in viscoelastic calculations the
discrete spectrum is far more practical. In this case only a limited number
of relaxation modes have to be calculated repeatedly, rather than evaluating
an integral over several decades in time.
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Figure 3.12: Continuous relaxation spectrum for PS Styron 678E at T = 462K

Discrete relaxation spectrum

Using a discrete relaxation spectrum with N relaxation modes, the storage
and loss moduli for a certain frequency Wj are given by:

(3.23)

(3.24)

(3.26)

(3.25)

The spectrum for the Leonov isfor the multimode Maxwell behaviour.
slightly different (Upadhyay et al. [57]):

'( ) ~ OiWJ
G Wj =!- TJi 1+ (w.O.)2

.=1 J •

"( ) ~ Wj
G Wj = TJrWj +~ TJi 1+ (Wj Oi)2

Because TJi = G/Ji , the Leonov model differs only from the Maxwell model in
having an additional paramater TJr.

There are various techniques for fitting these equations to the experimen­
tal data. It is well-known that the determination of a discrete spectrum is an
ill-posed problem (see [3, 25, 26, 27, 45]). This leads to undesired phenom­
ena, such as a strong dependence of the solution of the choice and number
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Figure 3.13: Continuous relaxation spectrum for PC Makrolon CD2000 at T =
5UK

of parameters - some choices may even lead to negative values, which is
physically not meanigful - and standard errors that can become as large as
or even larger than the solution values. In the following, four techniques will
be treated:

• linear least squares
• linear least squares with regularization
• Levenberg-Marquardt method
• Bayesian estimation method

These techniques deal with the minimization of the object function 1l:

M[N (GA/

() )2 N (GA

,,() )2]1l = I: I: Wj _. 1 +L Wj - 1
j=1 i=1 G'(Wj) i=l G"(Wj)

(3.27)

where G', G" are the approximations of the moduli given by ( 3.23) and ( 3.24)
and G', G" are the measured data. Some definitions used in the description of
the four methods will be given below. Let g = [al aM]T a column vector of
the M parameters to be fitted. Let also'!!. = [1 l]T, ~ = '!!. - ~ the residual
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(3.28)

vector, with

G"(WM)
G"(WM)

all column vectors of length 2M. Then (3.27) can be written as minimizing

1i(g) = ~II~ - r!lI~

where 11-112 is the 2-norm. The minimum of (3.28) occurs where the derivatives
of 1i with respect to g vanishes. The 2M x n matrix containing the derivatives
with respect to the parameters ai is called the Jacobian matrix and looks like

IS=
_1_81l(wt} ... _1_81l(Wl)
G"(wt} 8al G"(Wl) 8an

1 81l(WML.. 1 81l(WM)
G"(WM) 8al G"(WM) 8an

Finally, the square error is defined by:

(.2 = 1/(2M - n)!{~ (3.29)

Linear least squares If the data have to be fitted to a model that is
a linear combination of some basis functions, a general linear least squares
method can be applied. For a relaxation spectrum, this means fitting the
moduli Gi for fixed relaxation times. Thus, the estimation for y can be
written as fJ = E~l ISg. Generally the N relaxation times are equaliy spaced
on the log~rithmic time axis between Omin = l/wmax and Omax = l/wmin.

The parameters can be estimated by solving the so-called normal equa­
tions

Rheological characterization
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by Gauss-Jordan elimination or LU-decomposition. However, this method is
susceptible to round-off errors (Press et al. [51]) because the normal equations
are in some cases close to singularity. Normally, this gives the user the
warning that some basis functions, or some combinations of basis functions,
are closely related. However, in the case of fitting the relaxation spectrum, it
is sometimes desirable to fit a large number of relaxation modes to the data.
This is, for example the case if the spectrum obtained is used to characterize
the material.

This problem can be overcome by using a Singular Value Decomposition
(SVD). In a overdetermined system (2M> N), SVD produces a solution
that is the best approximation in the least-squares sense. In the SVD the
2M X N matrix can be written as

(3.31)

where Tl is an 2M x 2M orthonormal matrix, l:' is an N x N orthonormal
matrix, and W is an N x N diagonal matrix with positive numbers - the
singular values of matrix IS - in descending order. Then, the estimation of
the parameters can be calculated with:

(3.32)

(3.33)

and the standard error in the estimate of parameter ai is given by

N V;2
u 2

( ai) = L: i;
k=l Wkk

Equation 3.33 shows that if the singular values of IS are small, the standard
error in ai increases, meaning that a broad range of values for that parameter
can fit the experimental data. This gives an idea of the ill-posedness of the
problem. In practice one has to decide which of the small singular values are
still meaningfull. If some singular value is smaller than a certain tolerance,
the corresponding parameter is if no significance and can be thrown out the
equation by setting the reciprocal of the singular value to zero (Press [51]).

The above mentioned solution methods often gives negative values for
the estimated relaxation moduli. From a mathematical viewpoint this is
correct, because it is just a fit, but these negative values are not physically
meaningful. In this case a constrained optimization routine which forces
ai ~ can be helpful. However, the large standard error of the estimated
parameters still exists.

Linear least squares with regularization Recently, Honerkamp and
Weese [25, 26, 27] proposed a method based on Tikhonov regularization.
This regularization technique is used for solving ill-posed problems and is
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introduced to reduce to values of the standard errors. The method is based
on the SVD. The regularized version 1 of (3.32) is given by:

(3.34)

in which the regularization parameter A > O. It can be derived that (3.34)
is the solution of the minimization problem

n

rr = 1i +ALa~ = minimum
i=l

(3.35)

(3.36)

The main problem when using this method is the determination of an appro­
priate regularization parameter. Honerkamp proposed the following (extra)
minimization problem to obtain A:

n A2 n W2
T( ') '" (U )2 + 2 2'" ii • •

A = ~ W~ A - i1f. (j ~ W.~ A = mtmmUm
1=1 n + 1=1 n +

where (j is the average standard error of the experimental storage and loss
moduli. With this method Honerkamp and Weese were able to calculate
a hypothetic relaxation spectrum using a large number of relaxation times,
without the occurence of negative values of ai. However, using the regular­
ization for fitting the spectrum to the mastercurves of PS and PC did not
give the desired results. Regardless how many relaxation times were chosen,
the regularization parameter always was close to zero.

Levenberg-Marquardt method With the nonlinear least squares method
of Levenberg-Marquardt it is possible to make a nonlinear regression to de­
termine Gi as well as fh. The Levenberg-Marquardt method searches the
solution in the direction defined by the modified normal equations (Gill et
al. [20])

(3.37)

where A is a non-negative scalar and the subscript k denotes the iteration
number. It is interesting to note that this is the same form as used in
the regularization method, with the only difference that (3.37) is iteratively
solved instead of in one step.

The estimation of the spectrum with the Levenberg-Marquardt method
can be summarized by:

1. give an initial guess for g.
2. calculate square error (;2(g) with (3.29).
3. pick a value for Ak' for instance Ak = 1.

lif K is not written in the SVD-form this equation reads as g = (KTK + >.I)-lKT '!!
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4. solve (3.37) for Sg and calculate f2(g + Sg).
5. if f2(g + Sg) > f2(g), increase Ale by a factor 2 and go back to 4.
6. if f2(g+Sg) < f2(g), decrease Ale by a factor 2, update the trial solution

q +- g +Sg, and go back to 4 until convergence has reached (within the
given limits)

For the initial guess, the approximate relation (3.22) can be used.
The results of this method are rather good. The estimated parameters

were all positive, if the right initial value for A, for instance 1 :5 A:5 10, was
chosen. It proved to be useful to scale the relaxation moduli to prevent that
the matrix (KfKle + Alel) becomes ill-conditioned.

Bayesian estimation method Using a Bayesian estimation method not
only information of the model and the measurements is used as in a least
squares estimation, but also knowledge of the error distribution, and the prior
density function of the parameters (weighting) can be used (Verbeek [60)).
Like the Levenberg-Marquardt method, the Bayesian method estimates the
relaxation times and moduli at the same time.

This estimation method combined with the Gauss-Newton optimization
method proves to be rather robust and requires much less intervention of
the user in comparison with the Levenberg-Marquardt method. As prior
knowledge, a relative error of the parameters can be used.

Results The Bayesian estimation method gives the best results from a
mathematical point of view. The relaxation spectrum which has the smallest
square error in combination with the restriction that the estimated values for
the confidence interval must be smaller than the parameter values is chosen
as the best fit. This procedure is sligthly different from the one of Baumgartel
and Winter [3]. They start with a large number of relaxation times (between
1 or 2 per decade) and the spectrum is fitted using a non-linear least squares
method. The number of relaxation times is altered during the computation.
The criterium for reducing that number was the occurence of negative Gi's
and the occurence of coinciding relaxation times. The spectrum with the
smallest square error in combination with the smallest number of relaxation
times was chosen as the best fit. Unfortunately, they have revealed no further
details of their method.

The results are summarized in table 3.2 and 3.3 for PS and PC respec­
tively.

3.2.2 Damping parameters

The parameters of the models for the damping functions can easily be fitted
with a linear least squares method. However, the data to be fitted are difficult
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Wagner Leonov

Tlr = 1.096 Pas
(}i s Gi Pa (}i s Tli Pas
2.223.10- 7 8.639.106 8.835.10 ·7 1.297 ·10°
9.587.10-6 3.879.105 1.127.10-5 3.044.10°
1.947.10-4 1.146.105 1.175.10-4 1.236 . 101

3.113.10-3 6.634.104 1.144.10-3 7.185 . 101

3.181 .10 2 4.230.104 8.898.10 3 4.186.102

2.583.10-1 1.656· 104 5.842.10-2 1.718 .103

1.902 ·10° 2.330.103 3.290.10-1 3.881 .103

1.946.100 4.202.103

Table 3.2: Linear viscoelastic parameters PS Styron 678E at T =462K

Wagner Leonov

Tlr = 1.017 Pas
(}i s Gi Pa (}i s Tli Pas
5.993.10 7 2.424.106 6.154·10 6 4.092.100

1.282 .10 5 5.831.105 6.223.10 5 3.537.101

1.015 .10 4 5.215.105 4.338.10 4 1.911 .102

6.048.10 4 3.789.105 2.290.10 3 3.823 .102

2.942.10-3 1.263. 105 1.110.10-2 2.479 .102

1.304.10-2 1.558 . 104 6.710.10-2 1.595.101

7.609 . 10 2 1.490.102

Table 3.3: Linear viscoelastic parameters PC Makrolon CD2000 at T = 511K

to obtain. There are several ways to get h as a function of the shear strain,.
The first method makes use of the results of the step strain stress relax­

ation experiments (figure 3.16). It can be derived that G(t, 10) = Gl(t)h(,o),
with Gl(t) the linear shear relaxation modulus (Laun [36, 37]). The moduli
can be shifted vertically onto the linear relaxation modulus to form a mas­
tercurve. The amount of the vertical shift G(t"o)/Gl(t) gives the value of
h for the corresponding 10. In this way it was possible to determine h up to,0 = 5, which is rather limited.

The second method uses the results of the stress-growth experiments to
determine the values of the damping function. Following Wagner [64], h(,)
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(3.39)

(3.38)

can be derived from the measured TI2(t) and NI(t) with, = :yt:

h( ) = .!. [TI2({) _ .!. J'Y (') mt({') d ,]
, , Gt({) :y 0 T12, Gt2({1) ,

h( ) = 2- [NI({) _ .!. J'Y N ( ') ml({') d I], ,2 Gl({) :y 0 I, Gt2({1) ,

where m l is the linear viscoelastic memory function. In this way, values for
h(,) up to , = 20 can be obtained.

The parameters of the models for the damping function can also be de­
termined directly by fitting the equation that decribes the experiment to
the experimental data. For example, the exponential model for the damping
function, can be obtained to fit equation (B.3) to the measured transient
viscosity. It proved that the primary normal stress in the constant shear rate
experiments is most sensitive to the choice of the parameters in the model,
so this type of experiments is preferred over the steady-state viscosity data.

Now the damping values are determined, the models of the damping func­
tions can be fitted to the data (figure 3.14). The parameters of the damping
functions models can be found in table 3.4. In contrast with the findings
of Laun [37], the values of the damping function determined with the step
strain experiments differ not much of the values obtained with (3.39).

D PS Styron 678E I
m 0.84
nl 0.34
n2 0.19

[I] 0.14

Table 3.4: Damping function parameters (Wagner double exponential and Pa­
panastasiou)

3.3 Comparison of constitutive models

With the spectrum determined and the damping parameters found it is pos­
sible to predict various types of shear flow experiments with the constitutive
equations. The expressions that describe a particular shear flow can be found
in Appendix B. The comparisons are given for PS only. The calculations are
carried out using the linear viscoelastic parameters determined in the previ­
ous section. The non-linear behaviour of the melt is described by the double
exponential damping function for the Wagner model.
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Figure 3.14: Damping function of PS Styron 678E as evaluated form step-strain
experiments and constant shear rate experiments. The lines repre­
sents the fitted models.

Steady state viscosity

Applying the empirical Cox-Merz rule, the steady-state viscosity values can
be considered equal to the values of the dynamic viscosity

7]('1) = 7]d(w)lw=-r 7]d = )7]/2 + 7]"2 (3.40)

To check the validity of the Cox-Merz rule, the steady state viscosity is
measured for shear rates up to 28-1 with the Rheometries RMS-800 and in the
high shear rate region with a capillary rheometer (both at DSM Research).
The measured results and the model predictions are depicted in figure 3.15
for PS. The predicted values with the Wagner model are slightly below the
measured values. However, it may be concluded that the experimental results
compare well with the model predictions.

Step strain stress relaxation

For this type of strain history the results are only calculated with the Leonov
model. The damping function of the Wagner model is fitted to these results,
so it is of no use to check the predictive quality of this model with this
experiment. The results can be found in figure 3.16. The predicted relaxation
modulus deviates from the measured modulus in the region of small ,0' At
higher shear strains the predicted moduli agree well with the measured ones.
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Figure 3.15: Steady state shear viscosity as function of shear rate of PS Styron
678E at T = 462K

Stress growth at constant shear rate

The results of the predictions of the Wagner and Leonov model for the con­
stant shear rate experiments can be found in figure 3.17 and 3.18. In the
low shear rate region, the predictions are worse than at the higher shear
rates. In spite of the fact that the parameters of the damping model are
fitted with the data of the primary normal stress coefficient, the results are
a little disappointing. The difference at the smaller times (the delay with
respect to the measured values) is probably due to a radial flow of the melt
in the cone-plate gap (Laun [37]). However, the essential features such as
the stress-overshoot are described by both models.

Stress relaxation after cessation of steady shearing flow

Finally the predictions of the Wagner and the Leonov model are given for
the stress rela.xation after cessation of steady shearing flow experiment. The
results are shown in figure 3.19 and figure 3.20. The largest differents
between the predicted and the measured values are found with this experi­
ment. Again the predictions at relatively low shear strain values are much
worse than at the higher strains, especially at the longer times. The observed
difference in this region is probably due to the fact that the maximum relax­
ation time used for the calculations is too small. Extending the relaxation
time spectrum with higher values for the relaxation times will give better
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Figure 3.16: Step strain stress relaxation experiments for PS Styron 678E at T =
462K.

results (see Appendix C). However, adding more modes to the spectrum will
increase the computating time with numerical calculations of realistic flows
considerably, because for every relaxation mode the stress must be evalu­
ated. Moreover, from a mathematical viewpoint the spectrum with more
modes than in the 'optimal' spectrum is less accurate, because the estimated
confidence interval can become as large as the estimated parameter values.
For the extended spectrum given in Appendix C, the confidence intervals for
most of the parameters are nearly as twice as large as the parameter values
itself!

3.4 Conclusion

In this chapter two viscoelastic constitutive equations are compared with
experimental results. For that purpose the model parameters are fitted. The
model predictions using the mathematical best fit give a poor description
of the stress growth at constant shear rate and the cessation after steady
shearing experiments. The results obtained with an extended spectrum fit
the measurements quite well. For the numerical simulations of the multilayer
injection moulding process a generalized Newtonian constitutive equation is
used (see Appendix D).
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Figure 3.17: Transient viscosity for PS Styron 678E for stress growth at constant
shear reates of to =0.2,0.4,1,2, and 48-1 at T =462K.
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Figure 3.18: Transient primary normal stress coefficient for PS Styron 678E for
stress growth at constant shear reates of to = 0.2,0.4,1,2, and 48-1

at T =462K.
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Figure 3.19: Transient viscosity for PS Styron 678E for stress relaxation after
steady shear with shear reates of 1'0 = 0.2,0.4,1,2, and 48-1 at
T = 462K.
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Figure 3.20: Transient primary normal stress coefficient for PS Styron 678E for
stress relaxation after steady shearing with shear reates of 1'0 =
0.2,0.4,1,2, and 48-1 at T =462K.
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Chapter 4

Numerical aspects of particle
tracking

In this section several numerical schemes will be discussed to solve the insta­
tionary scalar convection equation (2.31). One problem that must be dealt
with is the ability of convecting steep gradients in the solution field. In the
application to particle tracking, these gradients are introduced in the solution
by the redistribution of the scalar values in the front region or by the oc­
curence of weldlines. The convection equation can be solved by either FDM
or FEM techniques. The performance of these schemes is tested with two
model problems, a translating Gaussian hill in ID and a rotating Gaussian
hill in 2D (Molenkamp test [50]).

4.1 Finite difference solution

The class of hyperbolic partial differential equations, to which the instation­
ary convection type of equations belong, can be solved with a large number of
FDM schemes (see for instance Hirsch [24]). Some of the schemes are devel­
oped for dealing with large gradients in the solution field. Most of them stern
from the field of gas-dynamics for the calculation of the travelling of shock­
waves. In this section, a brief overview of some schemes is given together
with some illustrative examples in ID and 2D.

For convenience the one-dimensional convection equation is used for de­
riving the FDM schemes. The problem is stated as: find a solution e(x, t)
of

Be Be
-+v-=O
Bt Bx
e(x, 0) = </>(x)

(4.1)

(4.2)

with </>(x) a known filed, and v 2:: O. The time domain of interest is given by
T =]0, t[ and the spatial domain by n =] - 00, 00[, so there is no influence of
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boundary conditions. The equation is computed in a m X k equally spaced
grid in the space-time domain in which a meshpoint is represented by (x, t) =
(i~x, n~t).

A finite difference scheme is derived by chosing an appropriate approxi­
mation of the temporal and spatial derivative in (4.1). The following schemes
will be treated:

• Forward Euler schemes

- central difference
- first order upwind
- Van Leer

• Backward Euler schemes

- central difference

• Crank-Nicholson scheme
• Baker and Oliphant scheme

This schemes demonstrate the most important features of these numerical
approximations, such as stability, numerical diffusion and dispersion. The
schemes are at most second order accurate in space. Higher order schemes
are not treated, because they are seldom found in practical applications.

Forward Euler schemes

In this type of schemes, the temporal derivative is approximated by forward
difference formula. This leads to an explicit scheme, since each discretized
equation contains only one unkown at time t+~t. The Euler explicit schemes
are first order accurate in time (O(~t)).

Central difference

Writing the spatial derivative as a central difference formula, the well-known
scheme of O(~t,~X2) reads:

=0

i+1

n+1 n n n
Ci - Ci ci+1 - Ci_1

tlt + v 2~x

The computational molecule looks like:

n+1
v-

n _---~I__---..
i-I
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(4.7)

(4.6)

It can be derived easily by a check of consistency that the truncation error
fT of this scheme is given by:

~t 282C (2 2)
fT = -TV 8x2 +0 ~t ,~x (4.4)

The equivalent differential equation contains an additional (numerical) diffu­
sion term with a negative coefficient. It may be obvious that this scheme is
unstable, since the negative numerical diffusion causes amplification of any
disturbance.

First order upwind

In the first order upwind scheme, the spatial derivative is approximated by
a first order backwards difference formula:

c~+l - C"!- C"!- - C"!-
~ ~ + v ~ ~-I = 0 (4.5)
~t ~x

In this case, only one meshpoint in the upstream direction is used :

n+I
v-

n.._---..
i-I

The truncation error is given by

( ~t 2 ~x)82c (2 3)
fT = - -v - v- - +0 ~t ~x

2 2 8x2 '

This scheme adds numerical diffusion to the original differential equation.
The scheme is conditionally stable for

v~t 1-<
~x -

Equation (4.7) is called the Courant-Priedrichs-Lewy (CFL) condition. It is
useful to define the dimensionless number C ou = t:, called the Courant
number. With this definition the CFL-condition is expressed as Cou ~ 1.

Van Leer

The Van Leer FDM combines two schemes, the first order upwind scheme
and the second order accurate upwind scheme of Fromm ([33, 50, 59]). The
method works with a flux-limiter to switch between the two schemes. The
fluxes are calculated across the cell-boundaries of a certain mesh-point. For
equally spaced meshpoints, this implies that a staggered grid is used to cal­
culate the fluxes. This is shown in the computational molecule.
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n+l
'IJ-

.·····-·-·~····--····r·········.

i+lu·•··
n_-~-"""~_~-"
i-I

._._-_ ~ _~ .........•

Inbetween the points i and i +1 an downstream point d represents the down­
stream cell boundary of point i, whereas the upstream point u is the down­
stream point of mesh-point i - 1. The value of Cd is calculated using the flux
limiter: If

Ici-l - 2ci +ci+ll 2:: Ici-l - ci+ll

there are wiggles detected and Cd = ci, corresponding to the upwind flux of
the first order upwind scheme, otherwise Cd is calculated with

cn = C"!' + (1- Coun)(ci - Ci-l)(ci+l - cf)
d I (n n)Ci+l - Ci-l

which is the limited Fromm flux. With these fluxes the values at time-level
t + Ci.t can be calculated with the formula:

(4.8)

where CoUd' Cou~ are the Courant numbers evaluated at the downstream
and upstream cell boundaries respectively. In other words: as long as the
solution field is smooth a high order scheme is used, but if oscillations occur
they are damped out with a first order upwind scheme. It can be derived
that the Van Leer scheme is O(Ci.t, Ci.x2

) if no onset of wiggles is detected,
otherwise the scheme is of order O(Ci.t, Ci.x). Because of the incorporating of
the first order upwind scheme, the Van Leer scheme is conditionally stable
for Cou < 1.

Backward Euler schemes

Chosing a backward difference for the temporal derivative, the implicit or
backward Euler schemes can be derived. Now1 the unknowns appear all at
time-level i+- f).t. The Euler implicit schemes are all first order accurate in
time (O(Ci.t)). Central difference

The difference scheme can be derived by simple changing the subscripts n in
the spatial derivative of (4.3) by n +1:

c,,!,+l - c"!' c,,!,+l - c,,!,+l
I I + V 1+1 1-1 = 0

Ci.t 2Ci.x
With the computational molecule:

(4.9)
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i + 1i-I
n + 1 ....----63------e

­11

n

The truncation error derived by a check of consistency is of the form:

ti.t 282C (2 2)
fT = -v 8 2 +0 ti.t ,ti.x2 x

(4.10)

i + 1

(4.11)

(4.12)

The first term in the truncation error represents the numerical diffusion. In
constrast with the explicit scheme, the diffusion coefficient is positive, so that
this scheme is unconditionally stable for all v.

Other difference formulas for the spatial derivatives can be used as well
(for instance an upwind difference), but will not given here.

Crank-Nicholson scheme

In the Crank-Nicholson scheme 6 mesh-points are considered in evaluating
ci+1, 3 at time-level nand 3 at level n + 1. In fact, it is a weighted average
of the explicit and implicit Euler schemes.

n + 1 ....---....-----e

­11

n ....---....-----e
i-I

Using a central difference formula for the convection term, the scheme is
formulated by:

C~+1 _ e"!- e~+1 _ e~+1 ·cn en
I I + (}v 1+1 I-I + (1 _ (})v i+1 - i-I = 0

ti.t 2ti.x 2ti.x

with 0 ::; () ::; 1. The Crank-Nicholson scheme appears for () = 1/2. The
truncation error is given by:

2ti.t ( ) 8
2
c ) 8

3
c (4 4)

fT = -v 2"" 1 - 2(} 8x2 + (. .. 8x3 +0 ti.t ,ti.x

The scheme is unconditionally stable, because the numerical diffusion is pos­
itive for 0 ::; () ::; 1. However, for () = 1/2 this term vanishes and the order
of accuracy in time is increased by one. In that case, the truncation error
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i+1

(4.14)

contains additional dispersion, causing oscillations when steep gradients in
the solution field are present.

Using this scheme with an upwind difference formula instead of the central
difference for the convective derivative the diffusion is introduced and the
order of accuracy in space is reduced to O(Ax).

Baker and Oliphant scheme

In the implicit scheme derived by Baker and Oliphant, three time-levels are
considered in evaluating the temporal derivative. Using the central difference
formula for the convective term, the finite difference scheme reads:

3c,:,,+l - 4c':" + C,:,,-1 c,:,,+l - c':"+l
I I I +v 1+1 1-1 =0 (4.13)

2At 2Ax
With the computational molecule:

i-1
n + 1e----~---......

­ v

n

n-1

The truncation error is given by:

_ (v3At2 VAx 2
) fPc 1"'\( A 4 A 4)

fT- ------ -+V ut uX
3 6 ox3 '

The truncation error of this unconditionally stable scheme is dispersive.

Test problems

The presented finite difference schemes are tested with a convection of a
Gaussian hill. The explicit schemes are tested in 1D as weI as in 2D. The
conditions of the test problems are:
1D:

1 1
v = 1, x E [0,1], At = 90' Ax = 50' to = °and tend = 0.4.

</>(x) = exp (_~(x -0-°.
2 )2)

2D (Molenkamp test):

1 1
v = [21ry,21rx], (x,y) E [0,1] x [0,1], At = 470' Ax = Ay = 40'

to = 0, and tend = 1.

.I..() (1((X-O.3)2 (Y-O.3
2
)))

'f' x,y = exp --2 +
0- 0-
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where u = 0.06. The maximum Courant number is Cou = 0.55 for both the
test problems.

Test problem 1

The results of the test problem for the explicit central scheme are shown in
figure 4.1a. For this scheme the Gaussian hill is convected in 10 time'steps,
clearly demonstrating the instability of this scheme.

a. b.

1.5 1.5

initia.l - initial -
1 ca.lc. - 1 .. ca.lc. -

exa.ct ...... : exa.ct ......

C 0.5 c 0.5

10.2 0.4 0.6 0.8

-0.5 L.-_..1-_....L.._---L_--1_---I

o10.2 0.4 0.6 0.8

-0.5 L.-_..1-_....L.._---L_--1_---I

o

:r: :r:

Figure 4.1: Translating Gaussian hill. Euler explicit schemes: central difference
(a) and first order upwind (b)

The results of the other two explicit schemes are shown in figure 4.1b
and 4.2a. In both cases the convected solution is flattened compared with
the exact solution. The Van Leer scheme proves to be much less diffusive
then the first order upwind scheme. The maximum of the solution is con­
vected well, in terms of position, by both schemes. The diffusive nature of
the implicit,central scheme can be seen in figure 4.2b. with this scheme the
maximum of the convected solution lags behind the maximum of the exact
solution. The same phenomenon occurs with the Crank-Nicholson,central
(figure 4.3a) and the Baker and Oliphant,central scheme (figure 4.3b). How­
ever, these schemes are much less diffusive than the other ones, but the
numerical dispersion introduces oscillations in the upstream direction.
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1.5 1.5

initia.l initial

1 1 .. calc.

': exact

C 0.5 c 0.5

0 0
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o

x

Figure 4.2: Translating Gaussian hill. Euler explicit, Van Leer scheme (a) and
Euler implicit, central difference scheme (b)

a. b.

1.5 1.5

initia.l initia.l

1 1

c 0.5 c 0.5

0 0

-0.5 -0.5
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

x x

Figure 4.3: Tranlating Gaussian hill. Crank-Nicholson, central difference scheme
(a) and Baker and Oliphant, central difference scheme (b)

52 Chapter 4



Test problem 2 (Molenkamp test)

The initial solution of this test problem is plotted in figure 4.4. The Gaussian
hill is rotated a full revolution with the first order upwind and the Van
Leer scheme. The results are shown in figure 4.5 and 4.6. In 2D the first
order upwind is much more diffusive than in ID, the maximum height is
dropped below 14% of the initial value. The Van Leer scheme shows the
same behaviour, but the maximum is still 50% of the initial value.

Figure 4.4: Initial solution for Molenkamp test

0.5

o

Figure 4.5: Rotating Gaussian hill. Euler explicit, first order upwind

From the test problems it can be concluded that the Van Leer finite
difference scheme gives the best results, i.e. no oscillations and an exact
convection of the maximum.
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0.5

Figure 4.6: Rotating Gaussian hill. Euler explicit, Van Leer

4.2 Finite element solution

The finite element method (FEM) originates from the field of structural
analysis. Nowadays, a lot of attention is paid to develop methods for solv­
ing convection dominated type of problems, e.g. in simulating the flow of
viscoelastic fluids.

In FEM the space domain is divided in elements of arbitrary shape and
size, usual triangles or quadrilaterals for a 2D problem. Within an element
a number of points (nodes) are defined in which the unknown values are
determined. The field variables are approximated by a linear combination of
known shape functions. The approximate solution ch of c(x) can be written
as:

Nnd

ch(x) = L: NA(x)CA
A

(4.15)

where the summation is performed over all nodes Nnd, NA(X) is the shape
function for node A and CA is the approximate solution at that node. Consider
a one-dimensional finite element mesh with piecewise linear shape functions,
then the shape functions are illustrated by:

1

o

54

A-l A A+l

Chapter 4



Using the weighted residual formulation, the weak form of the convection
equation is given by

Be ....
(w, Bt +v· \7e) = 0 J4.16)

In the Bubnow-Galerkin FEM, the weighting functions ware taken equal
to the shape functions N. Due to the symmetry of the interpolation of the
weighting functions, the Bubnow-Galerkin FEM gives a central difference
scheme for the convective derivative when used on a uniform mesh. It is
known in the previous section that this type of difference schemes are unsta­
ble or that they introduce oscillations depending on the choice of the time­
integration (explicit or implicit). This behaviour is clearly demonstrated in
figure 4.7 and 4.8. In these figures the results are plotted of the Molenkamp
test with the same test conditions as with the FDM schemes. The time­
integration is performed by the Euler implicit (figure 4.8) and the Crank­
Nicholson method (figure 4.7). The calculations are performed with the
finite element package SEPRAN using 3200 linear triangular elements.

0.5

Figure 4.7: Rotating Gaussian hill. Galerkin solution with the Crank-Nicholson
time-integration

In accordance with the results of the 1D test problem, also oscillations in
the upstream direction are generated.

With the knowledge obtained from the analysis of the finite difference
schemes, it proves desirable to use an upwind scheme to get rid of the oscilla­
tions. Therefore, the weighting functions have to be modified in such a way
that the upstream nodes are weighted heavier than the downstream nodes.
For this purpose, Hughes and Brooks [10] proposed to modify the weighting
function by:

w= w+av· Vw

Numerical aspects of particle tracking
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Figure 4.8: Rotating Gaussian hill. Galerkin solution with the Euler implicit time­
integration

For linear 1D elements such a weighting function is plotted in figure 4.9. Now,

+1

Figure 4.9: Upwind basis functions for SUPG in a one dimensional mesh

the weighting functions differ from the shape functions, which is known as the
Petrov-Galerkin FEM. For the basis functions given in figure 4.9 the method
is called the Streamline Upwind Petrov Galerkin (SUPG) FEM. Results of
thi" method for the Molenkamp test are shown in figure 4.10. The tempo­
ral derivative is approximated by the Crank-Nicholson time integration and
again 8200 linear triangular elements are used. The test conditions are equal
to the conditions given for the FDM schemes.

There are various other methods developed for solving the convection
problem which are not discussed here, because they are not yet implemented
and tested. Some of these schemes are known for finite element formulations
and for finite difference schemes. For example, the Explicit Taylor-Galerkin
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Figure 4.10: Rotating Gaussian hill.
integration

SUPG with Crank-Nicholson time-

method is better known as the Lax-Wendroff finite difference scheme [2]. The
equivalence of the Van Leer scheme in FEM is the Taylor-Galerkin Discontin­
uous Finite Element Method (TG/DFEM) [13]. A promising method is the
Time Discontinuous Galerkin Least Squares (TD/GLS) method. With this
method the weighting function in not only modified by adding the derivative
of the weighting function, but it is modified with the whole differential equa­
tion. This requires a finite element discretization of the time as well, because
the weighting funtion has become time-dependent. Using an upwinding by
discontinuity in time the problem size can be reduced, because only one time
slab has to be considered at the time. Results of these methods can be found
in: Baaijens [2] and Pironneau [49].

4.3 Conclusion

In this chapter numerical schemes are discussed for solving the instationary
scalar convection equation. For the simulation of the multilayer moulding
process, the Galerkin FEM with the Euler implicit time-integration is im­
plemented in VIp. Some results can be found in the next chapter. The
oscHlations introduced by this scheme are undesirable for particle tracking,
since then additional label values are created. Hence, the more advanced
finite element techniques will be studied in future.

Numerical aspects of particle tracking 57



Chapter 5

Numerical simulations

In this chapter particle tracking in a simple 2D geometry is done using the
Van Leer finite difference scheme. The results obtained serve as a reference for
the finite element implementation in VIp. Further the simulation of filling a
T-shaped cavity is compared with results obtained with INJECT-3, in which
the particle tracking is carried out using an Euler explicit upwind scheme.

5.1 Particle tracking in 2D

The influence of the type of front model on particle tracking is studied by
the simulation of the isothermal filling of a end-gated rectangular cavity (fig­
ure 5.1) with a Newtonian fluid. The problem can be simplified to 2D, since
the main flow is unidirectionally. The velocity vx(z), which is independent

Figure 5.1: Mould geometry of the rectangular strip

of time and position, is given by:

3 ( z2)vx(z) = '2 VQ 1 - H2
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where Vo is the gap-averaged velocity. Particle tracking is done by means
of the Van Leer finite difference scheme. The x-z plane is discretized using
n gridlines and m gridlevels for the x, z direction respectively, both equally
spaced. The time steps taken are related to the gridline spacing ~x by:
~t = ~x/vo. For that reason, the flow front position is moved one gridline
every time step. To enforce numerical stability when using the Van Leer
scheme, the convection of the label field is carried out in 2 steps, so that
the maximum Courant number is equal to 0.75. In this problem, the particle
identity is represented by the starting time and position (to, zo) when entering
the mould cavity. Using either the simplified front model or the parametrized
version of the Bhattacharji and Savic model, the convection problem can be
reduced further to ID, since the label values at different gridlevels are coupled
at the front region only.

The cavity dimensions are L x W x 2H = 300 x 75 x 2 mm3 • The
mould is filled in tjill = Is with timesteps of ~t = 1/150. The average
velocity is Va = 300mm/s and the gridlevels are spaced with ~z = 1/40. For
the calculations the following dimensionless variables are used: x* - x/L,
z* = z/H, v;(z*) = vx/vo, and t* = t/tjill. Because of symmetry, only one
mould half is considered.

The need of a finite difference scheme that is able to convect steep gradi­
ents in the solution field may be clear of figure 5.2. In this figure, the t*- and
the z*-label values on a certain gridlevel above the folding line zf are plotted,
clearly demonstrating the presence of steep gradients in the solution. In this

a. 1 b. 1

0.8 0.8

0.6 .. 0.6... ......... ......
* *....

0.4 N 0.4

0.2 0.2

0 0
0 0.5 1 0

\

0.5 1

~H ~H

Figure 5.2: Label values on gridlevel z* = 0.8, t*-labels (a) and z*-labels (b).
Dashed line represents the folding line.

figure, the influence of the numerical diffusion of the Van Leer scheme can
be seen by the smoothing of the sharp transitions in the label fields.

The residence time distribution for filling the mould is plotted in figure 5.3
for both front models. The curve for the maximum residence time t* = 1 is
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Figure 5.3: Residence time distribution in filling a mould. Full line: simplified
front model, dashed line: Bhattacharji and Savic front model

not shown in the figure, because that value is get lost due to the numerical
diffusion introduced by the Van Leer scheme (t~ax = 0.98). Normally, this
envelope is situated between the curves with t* = 0.9 and starts at (x*, z*) =
(0,1) and ends at (x*,z*) = (l,ljJ3). Particles below this line of maximal
residence time have never reached the flow front, whereas particles above it
have experienced the fountain flow. It is obvious that the difference between
the two models only occurs in the area above that envelope.

The use of the conservation of identity method in simulating the multi­
layer injection moulding process is demonstrated in figure 5.4. In figure 5.4a
a specific layer distribution is indicated to produce a multilayer product.
The corresponding injection sequence is given in figure 5.4b, where the z*­
label values are plotted against the t*-label values. For instance, this plot
can be used for programming the injection moulding units for injecting the
two components. The injection sequence obtained with the simplified front
model differs not much from the one obtained with the Bhattacharji and
Savic model. Therefore, it can be concluded that the simplified front model
is accurate enough for this application. However, for processes where the res­
idence time plays an important role, e.g. in the reactive injection moulding,
the Bhattacharji model has to be used (Castro end Macosko [12]).

5.2 Multilayer injection moulding

In the numerical simulation of the multilayer injection injection moulding
process the midplane is discretized by a FEM mesh for solving the impuls
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Figure 5.4: Specific layer distribution of a multilayer product. Desired layer distri­
bution (a) and corresponding injection sequence (b). Full line: Bhat­
tacharji and Savic front model, dashed line: simplified front model

equation and a FDM grid is used for the calculation of the energy equation in
the thickness direction (2~D approach). During the simulation, the gridspac­
ing of the FDM grid is altered in such a way that the number of gridpoints in
the fluid and in the solid layer are kept constant. In this way, the gripoints
with the same gridnumber form a plane in which the convection equation can
be solved. Therefore, the spatial dimension of the particle tracking problem
is reduced to 2D. The particle tracking procedure is implemented in VIp, a
FEM based program for simulating moulding processes. Therefore the con­
servation of identity equation is solved using the Bubnow-Galerkin FEM.
The Euler implicit time integration is used, because this schemes is uncon­
ditionally stable and less dispersive than the Crank-Nicholson method.

First, the isothermal filling of the rectangular strip (figure 5.1) with a
non-Newtonian polymer melt is simulated. The particle identity is again de­
fined by the starting position and time (to, Yo, zo) when entering the mould
cavity. The convection problem is solved using a 2 x 20 mesh of bilinear rect­
angular elements while the thickness direction is divided into 21 gridlevels.
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The fountain phenomena is modeled with the simplified front model. Fig­
ure 5.5 shows the label values at a gridlevel above the folding line. A small

a. 1~----,.--------, b. 1,-------.,------,
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0.6 _
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0.5 1 0.5 1
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Figure 5.5: Label values at gridlevel z = 0.8, t*-labels (a) and z*-labels (b)

oscillation can be seen in the neighbourhood of the discontinuity in the z­
label values. Due to the numerical diffusion introduced by the Euler implicit
scheme the t-Iabel values close to the sharp transition is much more smoothed
when compared with figure 5.2a. In figure 5.6 the z*-label values are plotted
against the t*-label values for the same specific layer distribution as shown in
figure 5.4a. This plot clearly shows the influence of the numerical diffusion

1

0.8

..... 0.6...:..
*N 0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t* [-]

Figure 5.6: Injection sequence for producing a multilayer product

on the calculated injection sequence (compare with figure 5.4).
In appendix D more results can be found. The y-label distribution in

the midplane of the product is plotted in figure D.l. Due to oscillations the
maximum y-label value is somewhat larger than the maximum y-coordinate.
Finally, in figure D.2 in appendix D the time-labels at the mould wall are
plotted. This figure gives information when breakthrough of a second com-
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ponent in sequential injection occurs. In this case the second component may
be injected after 0.2638 to avoid breakthrough of that component.

The last example is the isothermal filling of aT-shaped strip. The geom­
etry of the T-strip is plotted in 5.7. The results can be found in appendix D.

2

Figure 5.7: Mould geometry of the T-strip

The t- and the y-labels in the midplane are plotted for different percentages
of filling: 50, 60, 70, 80, 90, and 100%, The same example was used by Van
der Velden [58], who applied a first order upwind scheme with Euler explicit
time integration. The results agree well with those of Van der Velden [58],
in spite of some oscillations that occur. When using the Galerkin FEM, they
appear first when the fluid reaches the corner of the side part of the cavity.
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Chapter 6

Conclusions and
recommendations

In this report, the multilayer injection moulding process is modeled in or­
der to predict the injection sequence or configuration needed for producing
a product with a specific layer distribution for one component only. The
simulation of the flow in thin-walled products is established using the 2!D
approach. To predict the layer distribution in a product the flow history of
material elements has to be known. For that purpose, a particle tracking
procedure is developed based on the conservation of identity of the particles.
Particles are labeled when they enter the mould with their identity. During
the flow in the mould the identity does not change, hence the the particle
tracking problem can be modeled with a conservation law of the form of a
scalar convection equation. This equation can be solved with several FDM or
FEM techniques. Besides the accurate solution of the particle tracking, also
the material behaviour has to be known well. Linear and non-linear viscoelas­
tic measurements are carried out to characterize the rheological behaviour
of two amorphous melts. The predictive quality of two non-linear viscoelas­
tic models, the Wagner and Leonov model, is tested using the experimental
results.

Conclusions

The modeling of the particle tracking with the conservation of identity method
proves to be flexible and requires much less storage capacity compared with
the path-reconstruction method. The label distribution at the moving flow
front can be modeled adequately using either the Bhattacharji and Savic
or the simplified model. For the purpose in multilayer injection moulding,
the simplified front model, which neglects the residence time in the front
region, is accurate enough. Due to the label redistribution at the flow front,
steep gradients occur in the label solution fields. For that reason, numerical
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schemes has to be found which are able to convect solutions with disconti­
nuities or steep gradients. From the finite difference schemes tested, the Van
Leer scheme proves to give the best results, although the numerical diffusion
introduced by the scheme is considerable when used on a coarse grid. The
Galerkin FEM with a Crank-Nicholson time integration is used for solving
the particle tracking problem in the injection moulding simulation. In spite
of oscillations introduced by this numerical scheme, the results are promising.

In the characterization of the visco-elastic material behaviour, special
attention is paid to the determination of the relaxation spectrum of a polymer
material. Fitting a discrete spectrum to the data of the storage and loss
moduli proved to be ill-posed. With a non-linear regression technique often
non-physical negative relaxation strengths and/or times occur. The Bayesian
estimation procedure used, is rather robust and the so obtained spectrum
fits the linear viscoelastic experiments quite well. However, in describing
the start-up and cessation after steady shear flow experiments the model
predictions deviates considerably from the experimental results, especially
in the case of the relatively small shear rates. Extension of the discrete
relaxation spectrum with longer relaxation times will improve the model
predictions. The mathematical best fit gives in this case a rather poor fysical
fit.

Recommendations

The study described in this report gives rise to the following recommenda­
tions for future research:

• The particle tracking procedure implemented in VIP, a programm for
simulation of moulding processes, has to be improved by using a FEM­
technique more capable of convecting solution with discontinuities or
steep gradients than the Galerkin FEM. The SUPG, TD/GLS and
TG/DFEM are possible alternatives.

• The particle tracking in 2~D-geometries has to be extended for use
with products with bifurcations or changing wall-thicknesses. At this
moment, it is possible that at different positions in the product the
same identity labels are present, because no special treatment in above
mentioned cases is implemented.

• The simulation of the filling of a multilayer product has to be extended
to handle the flow of different materials in one mould cavity.

• For the simulation of the injection of reactive materials, the Bhat­
tacharji and Savic fountain flow model has to be implemented in VIp.

• Post-processing procedures are needed for representing the results ­
injection sequence or configuration - for 2~D geometries. Also, the
results have to be translated to injection conditions for controlling the
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multilayer injection moulding machine.
• The simulated results should be compared with results carried out on

a multilayer injection moulding machine.
• To avoid extrapolation of the time or frequency domain when using a

viscoelastic model in the injection moulding simulation, experiments in
the high shear rate region has to be carried out.

• Checking the validity of the decoupled approach in viscoelastic calcu­
lations.
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Appendix A

Fountain flow model of
Bhattacharji and Savic

The analytical solution of the 2D fountain flow is derived by assuming that:

• the fluid behaves Newtonian and is incompressible.
• the contact angle at the wall is 90° and the front is flat.
• there is no wall-slip except at the moving contact line.
• the inertia terms can be neglected.
• the conservation of momentum can be considered to be quasi-stationary.

With the origin positioned at the free surface, the problem can be formulated
by:

(A.I)

with the boundary conditions:

V x = Vx for z = H/2, x > 0

Vx = 0 for x = 0

V z = 0 for z = H/2

8vx = 0 for z = 0
8z

8vz = 0 for x = 0ax
where H is the gap-height of a rectangular channeL The streamfunction -,p
is defined by:

8-,p
V x =--

8z
8-,p

Vz =-
8x

. (A.2)

Integrating (A.I) analytically and simplifying the expression for -,p so ob­
tained, gives the following formulas for the velocity components behind an
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advancing front ([12]):

(
1 Z2 ) .[ 5 " • x )]VZ(X,Z) = -Vz '2 - 6H2 1-1.45e- 11 sm(0.76 +2H +

-0.53 (1 - 80~:) [e-5N sin(2;)] (A.3)

) _ Z ( Z2) [ -5£' ( x )vz(x, Z = Vz H 1 - 4H2 3.63e H sm 0.76 + 2H

-1.45e-5i cos(0.76 +2~)] (AA)

-2~ (1-16~:) [1.32e-5jj sin(2~) - 0.53e-5jj cos(2~)]

The particles in the front region can be tracked by integrating the velocity
field using a Runga-Kutta integration technique. The flow paths can be
constructed for a specific residence time of the particle in the fountain region.
In this way, two relations can be derived that give the residence time in the
front and the position of inflow as a function of the position of outflow of the
fountain region. The relations are fitted with a 6th order polynomial ([58]):

6

*( *) '" *iZi Zo = LJ aiZo
i=O
6

t;(zo) =~ biz;i
i=O

The coordinates are made dimensionless by zi = zd2H and z; = zo/2H and
the residence time by t; = t);". The parameters ai and bi are:

0 4.377 76324.9
1 -25.336 -576340.5
2 74.619 1810274.2
3 -118.676 -3025308.9
4 103.284 2836063.3
5 ~46.599 -1413695.4
6 i 8.330 292695.3

The results of the fit can be found in figure 2.6.
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Appendix B

Expressions of non-linear shear
flow experiments for Wagner
and Leonov model

The expressions that describe the non-linear shear flow experiments pre­
sented in section 3.1.2 are summarized in this appendix for the Wagner and
the Leonov models. The expressions for the Wagner model are derived using
the single exponential damping function. The derivation of these expressions
with the double exponential damping funtion proceeds in the same way, be­
cause 0"12(t) = flO"12(t, nl) + f20"12(t, n2)' For the Leonov the components of
the Finger tensor Bei will be given.

Step strain stress relaxation

Wagner model

Using (3.13) the expression for the relaxation modulus reads (Laun [36]):

-n N _ ttil.t [ tlt tlt 00 1 tlt k-2]
G(t"o) = e "Yo L:Gie 9, 1 +- +- L: -(- +n, o) (B.1)

i=l 2()i ()i k=3 k! ()i

Leonov model

With the initial conditions:

BUi(O) := 1 +12~t2 = 1 +1~

B12i (O) = :yl:i.t = 10

B22i (0) = 1

the expression for the relaxation modulus reads (tlt -+ 0):

N 'TJi 4e-t / 9,

G(t"o) = t; ()i 4 +15(1 _ e-2t/ 9i )
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Stress growth at constant shear rate

Wagner model

The transient viscosity and primary normal stress coefficient can be expressed
by:

(B.3)

(BA)

+( .) - ~ Gi()i [1 -tr,i (1 - . ()·t .)]
f] t, "Yo - L...J (1 + . ().)2 - e n"Yo a r,a

i=l n"Yo a

.1.+( .) - 2~ Gi()r [1 - -tr ,i(l . - n10()i 2 )]
'P t, "YO - L...J (1 + . ().)3 e + tr,a 2 tr,i

i=l n"Yo a

with the reduced time tr,i = t(l/()i + n-Yo). The expression for the steady
state viscosity can be derived easily by substituting tr,i ~ 1 in the above
given equation for f]+.

Leonov model

(B.7)

(B.5)

(B.6)

(B.8)

(B.g)

For shear flow, the transient viscosity and primary normal stress coefficient
are given by:

. 1 ~ f]i -
f](t,"Yo) = f]r +-. L...J fiB12i

"Yo i=l a

. 1 ~ f]i - -
1/;(t, "Yo) = 72 L...J fi(Blli - B 22i )

"Yo i=l a

The components of the Finger tensor has to determined numerically by solv­
ing the following set of equations:

:.. . - 1 -2 -2
B lli = 2"YO B 12i - 2()i (Blli + B 12i - 1)

:.. - 1 - - -
B 12i = 10B 22i - 2()i (Blli +B22i)B12i
- - -2

B lliB22i - B 12i = 1

with the initial conditions:Blli(O) = B22i (O) = 1 and B12i(O) = O.

Stress relaxation after cessation of steady shearing flow

(B.lO)

(B.ll)

Wagner model

The transient viscosity and primary normal stress coefficient for this type of
experiment are given by:

N G.().
-(t ')" a a -tIO'

f] ,"Yo =L...J(1+ . ().)2 e •i=l n"Yo a

.1.-( .) _ 2~ Gi()r -tlOi
'P t, "Yo - L...J (1 + . ().)3 e

i=l n"Yo a
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(B.13)

(B.12)

Leonov model

For the cessation after steady shearing analytical expressions for the compo­
nents of the Finger tensor are derived by Upadhyay [57]:

_ 4f3ie- t / o,
B12i =

(1 - f3;e- 2t/O,hia~ +4

- - 4aif3ie-t/o,
B lli - B22i = ----'----;==

(1 - f3;e-2t/o'h/a~ +4

with

Blli(O) +B 22i (0) - 2

Blli(O) + B 22i(0) +2
(B.14)

The initial conditions are the steady state values given by:

B .(0) _ V2 ( )22l - VI + Xi B.15

Substituting the components of the Finger tensor in the equations (B.5) and
(B.6) gives the relations for 7]- and t/J- respectively.
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Appendix C

Prediction Wagner model with
extended spectrum

In order to improve the predictive behaviour of the Wagner model for the
cessation of steady shear flow experiments, a relaxation spectrum with a
larger number of relaxation times (N=12) is used. The spectrum is fitted
with the Levenberg-Marquardt method, because the maximum relaxation
time fitted with the Bayesian estimation method is too low the describe this
type of experiment accurately enough. However, the confidence intervals of
most of the parameters are larger than the parameter values itself and also
the square error is much larger: 0.00479 for the Bayesin method and 0.112
for the Levenberg-Marquardt method. The number of modes is about 1t
per decade. The parameter values are summarized in table C.l. The results
for the cessation of steady shear flow experiment are plotted in figure C.l
and C.2. The model predictions using this relaxation spectrum is much better
than the results presented in figure 3.19 and 3.20. Also the start-up shear flow
experiment is desribed much better with this spectrum (see figure C.3). The
other non-linear shear flow experiments can also be predicted more accurate
using this spectrum. Of course, the model predictions with the Leonov model
can be improved in the same way.
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Wagner

()i S Gi Pas
7.659.10 ·7 1.433 . lOt>
1.011 . 10 -t> 6.189.105

2.908.10-6 2.934.105

1.699.10 5 1.558.105

3.328.10-4 9.455.104

1.516 . 10 .;j 6.743.104

6.579.10 3 5.077.104

2.848.10-2 3.593.104

1.233. 10 1 1.970.104

5.337.10 1 7.245.103

2.310.100 1.524· 103

1.000.101 1.890 . 10~

Table C.1: Linear viscoelastic parameters PS Styron 678E at T = 462K, fitted
with Levenberg-Marquardt method
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Figure C.1: Transient viscosity for PS Styron 678E for stress relaxation after
steady shear with shear reates of 'Yo = 0.2,0.4,1,2, and 4s-1 at
T = 462K.
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Figure C.2: Transient primary normal stress coefficient for PS Styron 678E for
stress relaxation after steady shearing with shear reates: "10 =
0.2,0.4,1,2, and 48-1 at T =462K.
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Figure C.3: Transient primary normal stress coefficient for PS Styron 678E for
stress growth at constant shear rates of "10 = 0.2,0.4,1,2, and 48-1 at
T = 462K.
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Appendix D

Numerical simulations
multilayer injection moulding
process

For the numerical simulations of the multilayer injection moulding process
the steady state viscosity is modeled by a 7-constant Cross model:

( . T) 1]o(T,p) (D )
1]" ,p = 1 + (1]01Ir*)I-n .1

with:

(
-A1(T - T*))

1]o(T,p) = D1 exp A
2
+T _ T*

T*(p) = D2 +D3P, A2(p) =..42 +D3P

The parameters are listed in table D.l.

Al 25.74
A2 K 61.01
D1 Pas 4.76.1010

D2 K 373
D3 K/Pa 5.1 .10-7

n 0.25
r----,-~

Pa 3.08.104T*

Table D.l: Parameters in 7-constant Cross model for PS Styron 678E

The Tait equation is used to model the pIlT-relation:

lI(p,T) = (ao +al(T - Tg)) (1 - 0.0894ln(1 +plB))
B(T) = Boe-B1T , Tg(p) = Tg(O) + sp
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The parameters are given in table D.2. The thermal capacity is considered

ao m3 /kg 9.72.10 4

al m;j/(kgK) 5.4 . 10 ·7

Bo Pa 2.5.108

B1
C -1 4.1.10 -3

Tg(O) K 373
s K/Pa 5.1 .10-7

Table D.2: Parameters in Tait equation for PS Styron 678E

to be constant Cp = 2000 J / (kgK) just as the thermal conductivity A
0.16 J/(m K).

The process conditions are:

IRect. strip IT-strip

Q m3 /s 4.5.10-5 1.92.10-5

Twa1/ K 550 550
Tin; K 550 550
2H m 2.10-3 2.10-3
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Results rectangular strip

Lobel y-coordinote

Min, Mo.: O.OOOE+OO

Lobel inj. time

Min, Mo.: O.OOOE+OO

time = 1.01 3E+00 [5] gddlml

2.626E-Ol [5]
Figure 0.1: Y·label distribution in midplane of ca.vity (above) and time-label dis­
tribution at the mould wall (below) at the end of filling.
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Results T-shaped strip

Label y-caordinote

Min, Max:-5.819E-03

Min, Mox:-6.362E-03

4020E-02 [m]

4.020E-02 [m]

Figure D.2: Y~la.be1 distribution in midplane of cavity a.t 50% (above) and 60%
(below) of the filling stage.
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Lobel y-coordinote

Min, Mox:-l .006E -02

Lobel y-coordinote

Min, Mox:-9.770E-03

time'" 1.627E+00 [s] 9"dlevel

4.019E-02 [m]

Figure D.3: Y-Iabel distribution in midplane of cavity at 70% (a.bove) and 80%
(below) of the filling stage.
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Label y-coordlnate lime= 1.809E+00 [5] 9rid'..."

Min, Max:-8.490E-03

4.011 E-02 [m]Min, Max:-8.481E-03

Lobel y-coordinate time = 2.007E+00 [5] 9"d'.,., ,1IIIIIIIiIIi_=-
Figure 0.4: Y-label distribution in midplane of cavity at 90% (above) and at. the
end (below) of the filling stage.
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1.012E+OO [5)

Lobel inj time time = 1.012E+OO [5] 9"dlevel I1IiiiiII__=-
Min, Max' 2657E-Ol

1.205E+OO [5]
Figu.re 0.5: Time-label distribution in midplane of ca.vity at 50% (above) and 60%
(below) of lbe filling 'lage.
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Lobel inJ. lime

Min. Mox: 3.308E-Ol

Lobel inj. time

Min. Mox: 4.052E-Ol

1 412E+OO [5]

time= 1.627E+OO l5] 9ndlm' I

Figure D.6: Time-label distribution in midplane of cavity at 70% (above) and 80%
(below) of the filling stage.
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Label inj. time

Min, Max: 3.294E-01

Label inj. time

Min. Max: 2.056E-01

1809E+00 [5]

Figure 0.7: Time-label distribution in midplane of cavity at 90% (above) and at
the end (below) of the filling stage.

Numerical simulations multilayer injection moulding process 87



Bibliography

[1] F. P. T. Baaijens. A constitutive equation for compressible polymeric
liquids. Philips Internal Report 311/87, Philips Research Laboratories,
1987.

[2] F. P. T. Baaijens. Applied computational mechanics 2, 1992.

[3] M. Baumgartel and H. H. Winter. Determination of discrete relaxation
and retardation time spectra from dynamic mechanical data. Rheol.
Acta, 28:511-519, 1989.

[4] R. A. Behrens, M. J. Crochet, C. D. Denson, and A. B. Metzner. Tran­
sient free-surface flows: Motion of a fluid advancing in a tube. A IChE.
J., 33:1178-1168, 1987.

[5] B. Bernstein, E. A. Kearsley, and L. J. Zapas. A study of stress relax­
ation with finite strain. Trans. Soc. Rheology, 7:391-410, 1963.

[6] S. Bhattacharji and P. Savic. Real and apparent non-Newtonian be­
haviour in viscous pipe flow of suspensions driven by a fluid piston. In
A. F. Charwat, editor, Proc. 1965 Heat Transf. Fluid Mech. Inst., pages
248-262. Stanford University Press, 1965.

[7] R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena.
John Wiley & Sons, New York, 1960.

[8] H. C. Booij and J. H. M. Palmen. Some aspects of linear and nonlinear
viscoelastic behaviour of polymer melts in shear. Rheol. Acta, 21:376­
387, 1982.

[9] A, H. M, Boshouwers and J, J van der Werf. Inject-3} A Simulation
Code for the Filling Stage of the Injection Moulding Process of Thermo­
plastics. PhD thesis, Eindhoven University of Technology, 1988.

[10] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin
formulations for convection dominated flows with particular emphasis
on the incompressible Navier-Stokes equations. Computer Methods in
Applied Mechanics and Engineering, 32:199-259, 1982.

89



[11] L. W. Caspers. Calculation of trajectories in the numerical simulation
of the injection moulding process. Master's thesis, Eindhoven University
of Technology, 1991. (in Dutch).

[12] J. M. Castro and C. W. Macosko. Studies of moldfilling and curing in
the reaction injection molding process. A IChE. J., 28:250-260, 1982.

[13] K. Y. Choe and K. A. Holsapple. The Taylor-Galerkin discontinuous
finite element method, An explicit scheme for nonlinear hyperbolic con­
servation laws. Finite Elements in Analysis and Design, 10:243-265,
1991.

[14] D. J. Coyle, J. W. Blake, and C. W. Macosko. The kinematics of fountain
flow in mold-filling. A IChE. J., 33:1168-1177, 1987.

[15] L. F. A. Douven. Towards the Computation of Properties of Injection
Moulded Products: Flow- and Thermally Induced Stresses in Amorphous
Thermoplastics. PhD thesis, Eindhoven University of Technology, 1991.

[16] F. Dupret and L. Vanderschuren. Calculation of the temperaure field in
injection molding. A IChE. J., 34:1959-1972, 1988.

[17] H. Eckardt. Co-injection charting new territory and opening new mar­
kets. J. of Cellular Plastics, 23:555-592, 1987.

[18] J. D. Ferry. Viscoelastic Properties of Polymers. John Wiley & Sons,
New York, third edition, 1980.

[19] P. J. Garner and D. F. Oxley, 1969. British patent No.1, 156, p.217,
Assigned to ICI.

[20] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimizatiom.
Academic Press, London, 1981.

[21] C. G. Gogos, C. Huang, and L. R. Schmidt. Pol. Eng. Sci., 26:1457,
1986.

[221 c, A. Hieber. In A. L Isay(w, editor, Injection and Comp1'cssion Molding
(fi'~ndamcntaI8, eha,pter :~,farcel Dekker, Inc., 1987.

[23] C. A. Hieber and S. F. Shen. A finite-elementjfinite-difference simulation
of the injection-molding filling process. J. Non-Newtonian. Fluid Mech.,
7:1-32, 1980.

[24] C. Hirsch. Numerical computation of internal and external flows. Vol 1
& 2. John Wiley and Sons, Chicester, 1988.

90



[25] J. Honerkamp. Ill-posed problems in rheology. Rheol. Acta, 28:363-371,
1989.

[26] J. Honerkamp and J. Weese. Determination of the relaxation spectrum
by a regularization method. Macromolecules, 22:4372-4377, 1989.

[27] J. Honerkamp and J. Weese. Tikhonovs regularization method for ill­
posed problems. Continuum Mech. Thermodyn., 2:17-30, 1990.

[28] C. 1. Tucker III. Fundamentals of Computer Modeling for Polymer
Processing. Hanser Publishers, Munich, 1991.

[29] H. Janeschitz-Kriegl. Polymer Melt Rheology anf Flow Birefringence.
Springer-Verlag, Berlin, 1983.

[30] M. R. Kamal, E. Chu, P. G. Lafleur, and M.E. Ryan. Computer simu­
lation of injection mold filling for viscoelastic melts with fountain flow.
Pol. Eng. and Sc., 26:190-196, 1986.

[31] M. R. Kamal and P. G. Lafleur. Computer simulation of injection mold­
ing. Pol. Eng. and Sc., 22:1066-1074, 1982.

[32] A. Kaye. Technical Report Note No. 134, College of Aeronautics, Cran­
field, U.K., 1962.

[33] K. Koenen. Flux-limiting methods and the implementation of Van leer's
scheme in PHOENICS. Technical report, Institute for Continuing Edu­
cation, Eindhoven University of Eindhoven, 1991.

[34] P. G. Lafleur and M. R. Kamal. A structure-oriented computer simu­
lation of the injection molding of viscoelastic crystalline polymers part
I: Model with fountain flow, packing, solidification. Pol. Eng. and Sc.,
26:92-102, 1986.

[35] R. G. Larson. Constitutive Equations for Polymer Melts and Solutions.
Butterworths, Boston, 1988.

[36] H. M. Laun. Description of the non-linear shear behaviour of a low
density polyethylene melt by means of B.n experimentally determined
strain dependent memory function. Rheal. Acta, 17:1--15, 1978.

[37] H. M. Laun. Prediction of elastic strains of polymer melts in shear and
elongation. J. of Rheol., 30:459-501, 1986.

[38] P. Leblans. Constitutive analysis of the nonlinear viscoelasticity of poly­
mer fluids in various types offlow. PhD thesis, University of Antwerpen,
1986.

91



[39] A. I. Leonov. Nonequilibrium thermodynamics and rheology ofviscoelas­
tic polymer media. Rheol. Acta, 15:85-98, 1976.

[40] A. 1. Leonov. On a class of constitutive equations for viscoelastic fluids.
J. Non-Newtonian Fluid Mech., 25:1-59, 1987.

[41] A. I. Leonov, E. H. Lipkina, E. D. Paskhin, and A. N. Prokunin. The­
oretical and experimental investigation of shearing in elastic polymer
liquids. Rheol. Acta, 15:411-426, 1976.

[42] 1. Manas-Zloczower, J. W. Blake, and C. W. Macosko. Space-time dis­
tribution in filling a mold. Pol. Eng. Sci., 27:1229-1235, 1987.

[43] H. Mavridis, A. N. Hrymak, and J. Vlachopoulos. Finite element simula­
tion of fountain flow in injection molding. Pol. Eng. and Sc., 26:449-454,
1986.

[44] H. Mavridis, A. N. Hrymak, and J. Vlachopoulos. The effect of fountain
flow on molecular orientation in injection molding. J. of Rheol., 32:639­
663, 1988.

[45] N. Orbey and J. M. Dealy. Determination of the relaxation spectrum
from oscillatory shear data. J. of Rheol., 35:1035-1049, 1991.

[46] A. C. Papanastasiou, 1. E. Scriven, and C. W. Macosko. An integral
constitutive equation for mixed flows: viscoelastic characterization. J.
Rheol., 27:387-410, 1983.

[47] G. W. M. Peters. Modeling of the injection moulding of reactive materi­
als. Technical Report WFW 89050, Eindhoven University of Technology,
1989.

[48] G. W. M. Peters, 1992. Private communication.

[49] O. Pironneau. Finite elements methods for fluids. John Wiley and Sons,
Chicester, 1989.

[50] M, Pourquie, Numerical compaxison of advection schemes to be used on
/:'-'tUk, grid. Technica.l Report MEAH-94, Laboratory for Aero- and

Hydrodynamics, Delft University of Technology, 1990.

[51] W. H. Press, B. P. Flannery, A. A. Teukolsky, and W. T. Vetterling. Nu­
merical Recipes; The Art ofScientific Computing. Cambridge University
Press, New York, 1988.

[52] W. Rose. Nature, 191:242, 1961.

92



[53] L. R. Schmidt. A special mold and tracer technique for studying shear
and extensional flows in a mold cavity during injection molding. Pol.
Eng. Sci., 14:797-800, 1974.

[54] B. J. R. Scholtens. Linear thermoviscoelasticity and characterization of
noncrystalline epdm rubber networks. J. of Pol. Sci: Pol. Phys. Ed.,
22:317-344, 1984.

[55] M. J. H. Schouenberg. A comparison of two constitutive equations for
non linear visco-elastic material behaviour in shear flow. Master's thesis,
Eindhoven University of Technology, 1991. (in Dutch).

[56] C. W. M. Sitters. Numerical Simulation of Injection Moulding. PhD
thesis, Eindhoven University of Technology, 1988.

[57] R. K. Upadhyay, A. I. Isayev, and S. F. Shen. Transient shear flow
behavior of polymeric fluids according to the Leonov model. Rheol.
Acta, 20:443-457, 1981.

[58] P. J. L. van der Velden. Particle tracking in reactive flows. Master's
thesis, Eindhoven University of Technology, 1991. (in Dutch).

[59] B. van Leer. Towards the ultimate conservative difference scheme. ii.
monotonicity and conservation combined in a second-order scheme. J.
of Compo Phys., 14:361-370, 1974.

[60] G. Verbeek. Estimation of non-linear dynamical systems with applica­
tion to landing gear. Technical report, Institute for Continuing Educa­
tion, Eindhoven University of Technology, 1991.

[61] E. Vos, H. E. H Meijer, and G. W. M. Peters. Multilayer injection
molding. Int. Pol. Proc., 6:42-50, 1991.

[62] M. H. Wagner. Analysis of time-dependent non-linear stress-growth data
for shear and elongational flow of a low-density branched polyethylene
melt. Rheol. Acta, 15:136-142, 1976.

[63] M. H.Wa,gner. Prediction of primaTy normal stress difference from shear
viscosity data using a :'Jingle integral constitutive equation. Rheol. Acta,
16:43-50, 1977.

[64] M. H. Wagner. A constitutive analysis of uniaxial elongational flow data
of a low-density polyethylene melt. J. of Non-Newtonian Fluid Mech.,
4:39-55, 1978.

[65] M. H. Wagner, T. Raible, and J. Meissner. Rheol. Acta, 18:427, 1979.

93



[53] L. R. Schmidt. A special mold and tracer technique for studying shear
and extensional flows in a mold cavity during injection molding. Pol.
Eng. Sci., 14:797-800, 1974.

[54] B. J. R. Scholtens. Linear thermoviscoelasticity and characterization of
noncrystalline epdm rubber networks. J. of Pol. Sci: Pol. Phys. Ed.,
22:317-344, 1984.

[55] M. J. H. Schouenberg. A comparison of two constitutive equations for
non linear visco-elastic material behaviour in shear flow. Master's thesis,
Eindhoven University of Technology, 1991. (in Dutch).

[56] C. W. M. Sitters. Numerical Simulation of Injection Moulding. PhD
thesis, Eindhoven University of Technology, 1988.

[57] R. K. Upadhyay, A. I. Isayev, and S. F. Shen. Transient shear flow
behavior of polymeric fluids according to the Leonov model. Rheol.
Acta, 20:443-457, 1981.

[58] P. J. L. van der Velden. Particle tracking in reactive flows. Master's
thesis, Eindhoven University of Technology, 1991. (in Dutch).

[59] B. van Leer. Towards the ultimate conservative difference scheme. ii.
monotonicity and conservation combined in a second-order scheme. J.
of Compo Phys., 14:361-370, 1974.

[60] G. Verbeek. Estimation of non-linear dynamical systems with applica­
tion to landing gear. Tech.nical report, Institute for Continuing Educa­
tion, Eindhoven University of Technology, 1991.

[61] E. Vos, H. E. H Meijer, and G. W. M. Peters. Multilayer injection
molding. Int. Pol. Proc., 6:42-50, 1991.

[62] M. H. Wagner. Analysis of time-dependent non-linear stress-growth data
for shear and elongational flow of a low-density branched polyethylene
melt. Rheol. Acta, 15:136-142, 1976.

[63J M. H. Wa,gner. Prediction of prima,ry normal stress difference from shear
viscosity data using a single integroJ eOD.stitutive equation Rheol. Acta,
16:43--50, 1977.

[64] M. H. Wagner. A constitutive analysis of uniaxial elongational flow data
of a low-density polyethylene melt. J. of Non-Newtonian Fluid Mech.,
4:39-55, 1978.

[65J M. H. Wagner, T. Raible, and J. Meissner. Rheol. Acta, 18:427, 1979.

93



[66] M. L. Williams, R. F. Landel, and J. D. Ferry. J. Am. Chern. Soc.,
77:3701, 1955.

[67] W. F. Zoetelief and G. W. M. Peters. Multilayer injection moulding:
Particle tracking. In Procedings 8th Annual Meeting Pol. Proc. Soc.,
New Delhi India, pages 99-100, march 1992.

94




