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ABSTRACT 

A review is presented of recent work on quantization and 
overflow effects in digital filters. These unwanted non­
linear phenomena include parasitic oscillations (limit 
cycles) and quantization noise. Modern stabilization methods 
and noise optimization strategies are discussed~ A comprehensive 
bibliographY contains the relevant original contributions dealing 
with the analysis of various finite wordlength effects and 
measures to reduce or avoid them. 
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Finite wordlength effects in digital filters - a review 

I. Introduction 

In most applications signal processing in digital filters is intended to be 

performed in the form of linear operations, which for the important class of 

time-invariant systems are of the convolution type. The digital encoding of 

the various signals, however, implies that in general the required linearity 

can be achieved only to a certain degree. Fortunately, the deviation from 

the linear behaviour can be made arbitrarily small through choosing suffi­

ciently long binary words. Yet there remain typical finite-wordlength effects 

that cause an actual digital filter to behave as a (weakly) nonlinear system. 

Contrary to the finite wordlength of the signals to be pror:essed the finite 

wordlength of the filter coefficients does not affect the linearity of the 

filter behaviour. This effect only amounts to restrictions on the linear 

filter characteristics, resulting in discrete grids of pole-zero patterns. 

Once a filter design with some combination of permitted coefficients' meets 

the required specifications (with regard to amplitude and phase characteris-­

tics) the actual filter performance differs from that predicted by linear 

theory only as to the previously mentioned nonlinear finite-wordlength 

effects. These effects, which divide into those due to "signal quantization" 

and those due to "overflow", form the subject matter of tho present paper. 

Our interest in coefficient quantization is only indirect and stems from some 

relation between the sensitivity of the filter characteristics to parameter 

variations on the one hand and the generation of quantization noise due to 
o 

signal quantization on the other. This relation states that in general low-

sensitivity structures (allowing short coefficient words) are distinguished 

by low noise levels [11]-[17]. 

The majority of quantization and overflow phenomena can be dcriv.,d from a 

simple model, in which appropriate nonlinear, memory less components (NL) are 

inserted into an otherwise linear, idealized digital system. 

, In the binary format a coefficient can only assume a value p/2" with 
peZ and neN. 
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A typical NL characteristic is shown in Fig. 1.1; it is characterized by a 

fixed-point number representation (with 3 bits yielding 2' different signal 

levels), rounding R as quantization, and saturation as overflow correction. 

T 

-r p 

Region 81 Input. ......... 

I 

Fig. 1. 1. Characteristic of a finite-wordlength nonlinearity. 

Also other combinations can be conceived and will be studied in due course. 

Common to all these nonlinear characteristics are the following properties: 

a) For inputs whose magnitudes are smaller than p (Region A) the output is 

close to the input; the difference is that the former is machine-representa­

ble, while the latter is unrestricted; b) for all inputs whose magnitude is 

greater than p (Region B) the magnitude of the output cannot exceed p. Region A 

models quantization after multiplication by a constant factor, whereas Region B 

represents the correction required in connection with adder overflow. 

The question where the various nonlinearities NL have to be inserted into 

the linear network, can be straightforwardly answered for any structure and 

its pertinent computation scheme. Care must be taken that every feedback 

loop must contain at least one NL element to avoid ever-increasing word­

lengths. FIR filters without loops do not strictly require such elements; 

quantization and overflow correction is, however, often applied for inten­

tional wordlength limitation. In any case, the AD-converter preceding a dig~ 
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tal filter ultimately causes every digitally realized system with analogue 

input/output terminals to exhibit more or less nonlinear signal distortion. 

In a common approximation, quantization and overflow are not only conceptu­

ally decoupled, but also analytically treated as independent effects. This 

implies that for large signals the fine quantization structure is neglected 

and the Region A-part of the nonlinear characteristic is replaced by a 450 

straight line. Apparently this approximation can only be justified if the 

total number of quantization steps is large enough or, in other words, the 

binary words are sufficiently long. Even for this extreme case several 

authors have queried the validity of the decoupling approximation [18]-[22]. 

Indeed, there are overflow effects that can only be properly understood in 

connection with the quantization fine structure. As an example, consider a 

filter initially in the zero state and then excited by a short, strong pulse 

such that overflow occurs at some point inside the filter. Assume that the 

idealized (quantization-free) filter asymptotically returns to equilibrium 

(zero state), which implies "overflow stability" (cf. Section III). 

Apparently, the filter has "forgotten" the overflow after a sufficiently 

long time. With quantization, the situation is not as simple: before exci­

tation, the filter might (necessarily) oscillate in a limit cycle mode, 

while after overflow the filter does not recover to the zero state but again 

enters a limit cycle. The mode of oscillation can, however, be completely 

different from the former one. Because ·the filter never forgets the over­

flow, it has apparently to be considered as unstable. 

Recently, chaotic overflow oscillations have been observed [23]. Also in 

that case the quantization has been neglected in the first instance. Taking 

the fine structure of the NL characteristic into account, the filters under 

consideration become finite-state machines with strictly periodic (non- cha­

otic) oscillations. 

These examples belong to a small group of exceptional phenomena where the 

decoupling assumption fails even for a large dynamic range. (long binary 

words). For most effects to be treated in this paper it is valid with suffi­

cient accuracy. 
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The simple NL-model with a characteristic like that of Fig. 1.1 does not ap­

ply to all finite-wordlength mechanisms. This is particularly true for all 

types of "controlled rounding" (CR), in which the treatment of the least sig­

nificant bit is not controlled by the signal to be quantized but by another 

signal. So it is often devised that an external, mostly stochastic signal 

controls the quantization or that an internal signal within the filter per­

forms that task. More complicated schemes leave the decision about the roun­

ding direction (upwards or downwards) to more than one control signal, one of 

which may be the signal to be quantized. All these methods are in current use 

to suppress quantization limit cycles and will be discussed in Section IV. 

We note that also a controlled overflow correction is conceivable, although 

attempts in this direction have not yet been reported. 
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II. Quantization and overflow characteristics 

Returning to the NL model we have still to review other characteristics for 

quantization and overflow than that shown in Fig. 1.1. Although less frequent­

ly used than its fixed-point counterpart, a floating-point realization of a 

digital filter often deserves consideration. Also for this arithmetic finite­

wordlength effects have to be reckoned with, including limit cycles (24] and 

quantization noise (25]. A completely different design approach of a more 

recent date makes use of "residue ari thmetic", (a number-theoretical tool). 

The associated finite-wordlength effects have not yet drawn too much atten­

tion (26]-(29]. 

For conventional fixed-point arithmetic we can mainly choose from three quan­

tization schemes with specific individual merits: (a) rounding n, (b) magni­

tude truncation MT, (c) value truncation VT. Each method is characterized by 

a peculiar instruction rule concerning the direction of quantization (upwards 

or downwards): (a) for R towards the nearest machine-representable number (b) 

for MT towards zero (c) for VT always downwards. Let x and Q(x) denote the 

unquantized and quantized number, respectively, and let further ~(x) = Q(x) - x 

denote the "quantization error", and q the quantization step size, then we have 

I~R (x) I s q/2 

leH (x) I < q 

I~VT (x) I ( q 

(2.1) 

which admits the conclusion that rounding is the most attractive form of .quan·­

tization with regard to the average error signal amplitude. The specific ad­

vantage of magnitude truncation lies in its inherent capability of limit cycle 

suppression (cf. Section IV), that follows from energy considerations in con­

nection with the basic MT property \Q.T(x)1 s Ixl. Finally, value truncation 

is the natural quantization method for a two's complement arithmetic. Its 

formal treatment is similar to that of rounding due to the simple relation 

QVT (x) = Q. (x - q/2) (2.2) 
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stating that VT yields the same results as R after adding the constant signal 

q/2 to the unquantized signal. 

Comparing the two main quantization schemes "rounding" and "magnitude trunca­

tion" We observe fundamental differences in their nonlinear signal processing 

behaviour, which follow from their error characteristics ~(x), cf. Fig. 2.1. 

., 

f 
&JXl , 

-, 
x ---> 

Quantization error ~(x) for rounding R 

and magnitude truncation MT. 

f 
eM/x) , 

., 
x ---> 

It is true that both characteristics are strictly deterministic, i.e. with 

every x a unique error signal 6(X) is associated. Nevertheless, We are in­

clined to attribute "quasi-random" features to the rounding characteristics 

in the following sense. If x(k) is assumed" to represent a stationary random 

prOCess characterized by a probability density function P(x) and an .autocorre­

lation function Su (m) = E{x(k) x (k--m)} this process is transformed by the 

rounding error characteristic into another process &(k). which "almost always" 

has white-noise character with s,' (m) = q2/12 J(m) as well as a uniform prob­

ability distribution in the interval - ~ < 6 < ~. This property is the basis 
2 - - 2 

for the well-established white-noise model of the rounding error [30]. which 

we also adopt in this paper. The reliability of this model improves with in­

creasing level of the signal x(k) and with increasing spread of its power 

spectrum. It fails completely if x(k) varies periodically. associated with a 

line power spectrum. Then also 6(k) is periodic and. hence. not noisy. Such a 

periodicity applies e.g. when a recursive filter oscillates in a limit cycle 

mode (cf. Section IV). 

'The symbol k denotes the discrete time variable. 
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To analyze the corresponding error characteristic for magnitude truncation we 

first split it into two parts according to Fig. 2.2. The first part resembles 

the ~R (x) characteristic and will henceforth be referred to as the "quasi­

rounding" component ~QR(X) of magnitude truncation. The white-noise model of 

the rounding error likewise applies to quasi-rounding, so that Rand MT essen­

tially differ in the second part of the MT error characteristic, the so.-called 

"sign-part" ~SGN(X), (cf. Fig. 2.2). 

Fig. 2.2. 

., -, 
x --+ 

Decomposition of the quantization error for magnitude truncation 

into a quasi-rounding and a sign part. 

As to their signal-processing behaviour, the quasi-rounding and the sign part 

are basically dissimilar. While the former part lends itself to a modelling 

as an additive (white-)noise source', the latter remains an essentially non­

linear component whose output is strongly correlated with the input signal. 

In some applications a straight line through the origin with an appropriate 

negative slope can be advantageously split off from ~SGN (x), resulting in 

slight modifications of the filter coefficients and, ultimately, in effects 

of detuning (including o-factor modifications). Apparently such detuning is 

level-dependent and decreases with increasing signal amplitude. What remains 

is a pure nonl1near sIgnal degradatlon, that leads to a number of interference 

phenomena (including crosstalk [31]-[34]) and that has to be interpret ordi­

nary distortion in the audio region. 

"If the system contains more than one quantizer, the model is extended 
such that the various noise sources are uncorrelated. 
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While quantization has to be accepted as an unavoidable concomitant of any 

digital signal processing, the situation is less constraining with respect to 

overflow. Obviously, overflow can be completely avoided through using suffi­

ciently small input signals: For a given impulse response (considered between 

the input terminal and a node of potential overflow) and for a prescribed 

overflow level an upper bound for the input signal can easily be derived [35]. 

Nevertheless, it is common practice to accept a small risk of overflow, occur­

ring for very unfavourably chosen excitations. Thus the dynamic range of a 

filter is better exploited, ultimately resulting in a lower quantization noise 

level. This mild "scaling policy" consciously tolerates a small nonzero prob­

ability of overflow. So, infrequent overflows and accompanying interruptions 

of normal operation are accepted under the obvious tacit assumption that after 

each overflow the normal operation recovers; preferably with high speed. 

The required recovery automatically leads to the paramount problem of overflow 

stabiI ity. To discuss this item we assume that the underlying idealized, linear 

system is stable and that quantization can be neglected (decoupling assump­

tion). Then the stability problem is attacked in two steps, (a) under zero­

input conditions, (b) under nonzero-input conditions. Stability according to 

(a) is defined as absence of spontaneous oscillations, particularly of periodic 

nature. A system stable in this sense is asymptotically (from a certain time 

instant kg) overflow-free. Then it behaves linearly and (exponentially) ap­

proaches the equilibrium point in which all state variables become zero. Sta­

bility according to (b), the so-called "forced-response stability" is defined 

for a certain class U. of input signals u(k). Such signals are defined with 

the aid of the idealized linear system and characterized by the property that 

for at least one initial condition the overflow threshold is never reached. 

The filter with overflow correction is then called "forced-response stable" 

if for any u{k) E U. and any initial condition the response asymptotically 

(k .. 00) approaches the waveform of the linear counterpart. 

So for the given class of input signals the actual filter eventually "forgets" 

former overflows and becomes overflow-free. Clearly, forced-response stabil­

ity is a stronger condition than zero-input stability and includes the latter. 
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If the system is excited with a rathe,- irregular waveform, zero-input stab il­

ity will often suffice; only for periodic waveforms the stronger condition is 

strictly required. 

Mainly three overflow characteristics have been proposed: (a) saturation (b) 

zeroing (c) two's complement, cf. Fig. 3.4 with V = O. Saturation yields the 

smallest deviation from the normal operation, although during overflow the 

filter becomes more or less inoperative. It has also the best stability prop­

erties (cf. Section III). Zeroing means that the output is set to zero, if 

the input exceeds the overflow threshold; it can be easily generalized to rc­

set all states, when one state exhibits overflow. Two's complement overflow 

amounts to a periodic continuation of the 45° straight line; its advantage 

lies in the automatic correction of intermediate overflows. With regard to 

stability it is the least favourable overflow correction so that the choice 

of the linear circuit is more restricted than for the other characteristir.s. 

We conclude this section with a few remarks on the aim and organization of 

the paper. First of all, a comprehensive bibliography covers all nonlinear 

finite-wordlength effects in one-dimensional digital filters published in rec­

ognized journals and conference proceedings. Multidimensional filters and co­

efficient quantization have been left out of consideration. The text has been 

written in awareness of existing review articles [3]-[lOJ and should espec:i­

ally be viewed as an extension of Claasen's (et all paper of 1976; in fact, 

it is a progress report covering the past twelve years. It should further be 

noted that not all aspects are treated with the same elaborateness. So, only 

a brief discussion is devoted to structure optimization with respect to quan­

tization noise, mainly due to an exhaustive treatment of this subject in two 

recent textbooks [lJ,[2J. 

The references from [424J onward are recent contributions (published in the 

years 1987 and 1988) to non-linear effects in digital filters, which were 

added after the manuscript of this report was completed, and as such are not 

referenced in the text. 

For ease of reference, a bibliography in alphabetical order of all authors is 

added. 
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III. Overflow oscillations 

In recursive filters, quantization and overflow can lead to instabilities, 

even if the underlying linear filter is designed to behave stable. Instabil­

ities due to· quantization ("limit cycles") lead to relatively small deviations 

from the linear behaviour. While these effects wi II be treated in the next 

section, we now deal with those instabilities that are related to register 

overflow. The associated oscillations have large amplitudes; because of their 

disastrous effects on the filter behaviour they have to be absolutely avoided. 

One of the main factors determining their occurrence is the "overflow charac­

teristic" (i.e. the way overflow is corrected), of which we treat the three 

commonly used types (a) saturation (b) zeroing (c) two's complement. 

A. Zero-input oscillations 

We begin with a study of overflow oscillations (38)-[69] in the original 

sense, i. e. for an otherwise unexcited digital system. In addit ion to this 

"zero-input" condition we assume that (a) overflow and quantization can be 

treated independently ("decoupling assumption") and (b) overflow correction is 

only required for signals entering a delay element. The latter assumption 

excludes all structures where intermediate overflows occur. For sake of 

conciseness, we restrict the following discussion to second-order sections 

with complex poles. Compared with real poles, complex conjugate pole-pairs 

generally favour all forms of parasitic oscillations (particularly for high 

Q-values) and thus deserve special consideration. In due course, we summarize 

more general results for higher-order sect ions and wi thout reference to 

complex pole pairs. 

The 2 x 1 state vector 11 = (x, ,x,)' in a second-order system satisfies the 

fundamental difference equation 

~(k+l) = F(A ~(k» 

where 

A = (all ala] 
a., "02 

(3.1) 

denotes the system matrix, while F(o) stands for the overflow characteristic. 
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It is understood that [F(A ~)ll = F(A ~)i' i.e. the individual components of 

A ~ undergo the same memoryless and local (i.e. not contro)led by other sig­

nals) overflow correction. The question to be analyzed is: Under which cir­

cumstances (choice of A, F and initial conditions) does (or does not) (3.1) 

admit periodic solutions? 

Due to the overflow bound, which is henceforth normalized to unity, the state 

variables satisfy the condition IXI I s I, resulting in a state vector con­

fined to the interior of the unit square (cf. Fig. 3.1). Without overflow 

(Le. as long as IXI lSI) the solution of (3.1) is found as 

- [(r+jQ)k+j~l - rk - -
~(k) = Re{X(~r + j~ )e } = Xe [~rcos(nk+'I')-~ sin (nk+'I'l J, (3.2) 

where er±jQ denotes the complex eigenvalues of A and ~r :!: j~ denotes the 

pertinent eigenvectors. It is tacitly assumed that r < 0, expressing linear 

stability. Further, without loss of generality, the real and imaginary parts 

~r. ~ of the suitably normalized eigenvector are assumed to be orthogonal, 

i.e. ~t~ = O. (This freedom is provided by the indeterminacy of the complex 

magnitude of any eigenvector). Finally, the constants of integration (x,~) 

are determined by the initial conditions. 

Fig. 3.1. 

1 

-1 

Trajectory of the state vector K(k) in the phase plane 

and the overflow boundary. 
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If, for the time being, time k is viewed as a continuous variable, ~(k) de­

scribes a trajectory in the phase plane. For the (unrealizable) case r = 0 

this would be an ellipse with main axes in the direction of ~,. and ~. For 

r < 0 (corresponding to poles inside the unit circle), we obtain a nonclosed, 

ellipse-like curve spiralling towards the origin, cf. Fig. 3.1. 

Of course, these results only apply to the digital filter as long as overflow 

does not occur <lXI I ~ 1). In general, this condition is not met for all initial 

conditions li(O) inside the unit square. Only the initial vectors ~(O) of the 

region R of Fig. 3.2 lead to "allowed" l!(k) for all (continuous) values" of k. 

t 

Xl -

-1 

Fig. 3.2. Region R of initial states that never lead to overflow. 

What occurs if ~(O) is outside R? Then, at some time instant k, the linearly 

determined l!(k) might leave the unit square, andoverflow correction has to be 

applied. This correction introduces one of two basic state modifications: 

(a) ~ is moved towards the origin (b) l! is moved away from the origin. 

"Note that the discrete character of k causes also some points outside R 
(but inside the square) to be allowed as initial conditions x(O), because 
parts of the continuous curves of Fig. 3.1. are not actually-occupied. 
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Case (a) is wanted because it supports the natural linear motion; no oscilla­

tion occurs if all overflows are corrected this way. Case (b) is dangerous, 

because it compensates or even overcompensates the linear behaviour and, 

hence can (but need not) lead to oscillations. Of course, these statements 

ask for an unambiguous definition of "distance from the origin". Instead of 

the widely used euclidean norm our definition is guided by the linear state 

motion, according to (3.2). 

Following 

(3.3) 

two variables X,~ can be associated with each state ~. Particularly, the 

variable X is determined from ~ as 

(3.4) 

Comparing (3.3) with the linear motion as described by (3.2) one reco&~izes 

X = Xerk, i. e. a monotonically decreasing function X(k). Combined with the 

fact that X· is a quadratic form in x" x. as formulated by (3.4), the para­

meter X· is. a natural candidate for a Lyapounov function". Observe that the 

curves X" const constitute a family of "concentric" ellipses (with axes along 

~r and ~) and that low-X ellipses are enclosed by high-X ellipses. Naturally, 

we choose X as the "distance from the origin". 

Overflow correction isnowvisualized in Fig. 3.3. An uncorrected state point B 

is transformed into B', B" , B'" after applying saturation, zeroing, and two'S 

complement, respectively. For this example all types lead to an increase of X 

and, hence, to a movement away from the origin. On the other hand, for point C 

this is only true for zeroing and two's complement. 

'Other Lyapounov functions are discussed under the head "limit cycles", 
cf. Section IV. 
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For some ellipse geometries it is possible to use appropriate overflow char­

acteristics such that the state always moves towards the origin and oscilla­

tions are suppressed. Obviously this is not the case for the arbitrarily ori­

ented ellipse of Fig. 3.3. However, it is easily recognized that for an ellipse 

whose axes coincide with the x, -x.-axes, each of the three overflow correc­

tions satisfies the stability condition, while for an ellipse with a 450 incli­

nation stabilization can be obtained at least with a saturation characteristic. 

-1 

-1 

Fig. 3.3. Ellipse X = constant in the phase plane. 

It should be noted that in this picture the potentiality for stabilizing over­

flow is determined by the eigenvectors of A and not by the eigenvalues. While 

the latter determine the speed with which the trajectories are traversed, the 

eigenvectors determine the appearance of the ellipse, i.e. the orientation of 

the axes and their length ratio. These parameters are essentially determined 

by the filter structure, examples of which are the (a) normal filter (b) wave 

digital filter (c) direct-form filter as depicted in Fig. 4.1. The correspon-

ding system matrices are [42], (36], (37] 

A = [a ~ 4b ail 
t -~-4b-a' a ' 

A = t [a+b+l 
a-b+l 

a+b-l) 
a-b-l ' A = [~ ~] (3.5) 

(a) (b) (c) 

where a = 2er cosO, b = _e2r are the coefficients of the characteristic polynomial. 
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For (a) the ellipse degenerates into a circle, so that all overflow charac­

teristics lead to stabilization. For (b) and high Q-values (b ... -1) the ellipse 

axes coincide with the x, - x. -axes so that again all characteristics satisfy. 

while for (c) and high Cl--values the ellipse axes have a 45° inclination so 

that stability is obtained with saturation. However. also for low Cl--values 

and even for real poles stability can be guaranteed" [21]. [22]. [38]. 

Normal filters and wave-digital filters of orders higher than two can likewise 

be stabilized with all types of overflow characteristics [39]-(44]. However. 

higher-order direct-form filters are in general unstable with respect to over 

flow; high-period and chaotic oscillations have been observed in such struc­

tures (45J-(5lJ. occasionally with oscillator applications in mind (52].(53]. 

Observe that every stability requirement yields sufficient conditions; often 

these conditions can be weakened with various analytic measures (54].(55] or 

with computer-generated Lyapounov functions [56].[57]. Attempts have also been 

reported with unconventional overflow characteristics (21J.(58] and overflow 

signalling schemes [59]-[61]. Special investigations have been published on 

the stability properties of wave-digital filters [70]-[74]. normal filters 

[75]. lattice filters [76)-[79). block-state realizations [80]-[81]. and 

multi-input-multi-output structures [82]-[83]. while experimental results 

have been reported in [7]. Parasitic oscillations in more complicated 

systems. particularly those formed by single-input-single-output systems 

under looped conditions have been discussed in [47).[51).[84]. 

B. Forced-response stability 

In the previous SUbsection we have discussed sufficient conditions guarantee­

ing that no zero-input overflow oscillations occur. The non-existence of such 

oscillations was viewed as an absolute design requirement that every usable 

filter has to meet. 

"The pertinent proofs are constructed with other Lyapounov functions 
and other ellipse geometries, cf. eq. (4.8) of Section IV. 
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An ill-designed filter can exhibit autonomous oscillations under suitable 

initial conditions. Physically, these are e.g. determined through connecting 

the digital circuit to a power supply or as a residue of former (meanwhile 

terminated) input signals. Such an initial condition need not immediately 

cause overflow but can lead to it after a number of time steps. Thereafter 

overflow becomes periodic or asymptotically periodic or irregular (chaotic). 

All these instabilities are characterized by the non-existence of a time in­

stant, after which overflow ceases to occur. 

On the other hand, stability implies that such a time instant does exist. 

This requirement is also the starting point for the forced response stability 

to be discussed in this subsection [85]-[90]. 

Occasional overflows are allowed, but there has to exist a last overflow, 

after which the system behaves linearly and thus recovers from potential 

former overflows. Aaympto-tically (k ..... ) there remains the "forced response", 

which is independent of the initial conditions and, as such, not affected by 

all former overflows. 

Stability in this sense depends upon the excitation. For each digital filter 

a (possibly empty) set of input signals exists for which stability holds. An 

apparent minimum requirement is that only such input signals u(k) are admit­

ted for which the associated linear filter (without overflow correction) does 

not exceed the overflow level after some time ko' The ensemble of all such 

signals (with ko unspecified) is said to form the class Uo (definition "A"). 

Besides this definition "A" an alternative definition "B" is in current use 

which examines u(k) only for k ~ ko . Following "B" we have u(k) E Uo iff there 

exists an initial condition at k = ko such that the linear filter does not ex­

ceed the overflow level for all k ~ ko ' Apparently, the past history of u(k) in 

the "A" interpretation is condensed in the initial condition' according to "B" 

so that the "tails" of the "A" signals form the class Uo in the "B" sense [86J-[87J. 

'In an uncontrollable system it can occur that not all initial conditions 
can be generated with the aid of suitable input signals. In such an 
exceptional case, the "B" definition is more general. This definition was 
already introduced in Section II. 
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A stable filter with overflow correction always exhibits a finite number of 

overflows (which may be zero or one in special cases) after k = k •• which num­

ber depends upon the initial condition at k •. Assuming that u(k) eU •• there 

is at least one initial condition (mostly a set of neighbouring initial con­

ditions) with no overflow after k = k •. 

If stability in the above sense holds for all u(k) e U •• the filter is called 

"forced-response stable" with respect to U. [87j. Since excitations u(k)" U. 

are meaningless in the context of stability. the addition "with respect to 

U." is often omitted. Weaker forms of stability are found with respect to sub­

sets of U. such as U\i with a scale factor c satisfying 0 ~ c < 1. Compared with 

U. the signal amplitudes are reduced by a factor c such that u(k)/c e U. [91j. 

In this notation c = 0 corresponds to "zero-input stability" being the weakest 

form of stability. It is somewhat surprising that systems whose stability is 

guaranteed only for zero input also behave stable for most excitations of 

practical importance. In fact. only periodic or almost-periodic' signals appear 

to be able to produce forced-response instabilities (with commensurate periods) 

in such systems. 

Concerning the analytic investigations of forced-response stability it is a 

lucky circumstance 

zero-input problem 

that the nonzero-input problem can be transformed into a 

with time-varying nonlinearities [87j. Let x(k) and ~(k) - -
denote the state vectors of the actual and the idealized filter with excita­

tion u(k) such that (cf. (3.1» 

~(k+l) = F{A.l!.,(k) + .l! u(k)} 

~(k+ 1) = A ~ (k) + .l! u(k) 

then the difference vector g =~. -!; satisfies the homogeneous difference equation 

g(k+l) = F{!;(k+l)+Ag(k»)-!;(k+I). 

• As an example. we refer to [92j-[94j. where an "irrationally" sampled 
continuous-time sinusoid has evoked instability. 

(3.6) 
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Let us consider a certain component of ~(k+l) and Ag(k) and denote it provi­

sionally by y and ~, respectively. Then the same component of the right-hand 

term of (3.6) reads as F{y+~} -y, i.e. a time-varying (due to y=y(k» non­

linear function of ~. With a linearly determined y(k) the function F{y + -} - y 

is a shifted replica of F{-}, with equal horizontal and vertical y-shifts of 

the F-plot. Fig. 3.4 shows the result for the three basic overflow character­

istics. 

Fig. 3.4. 
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Plots of F{~+~}-v for (a) saturation, (b) zeroing 

(c) two's complement. 
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With the knowledge that for many structures (e.g. normal and wave-digital 

filters) the condition IF(6) I ~ 161 ensures zero-input stability we can like­

wise conclude that (3.6) has a stable solution (with g(k) .. O for k .... ) if 

IF(vt~) - vi ~ Ib I· From Fig. 3.4 we conclude that this is true for saturation 

if Ivl < 1, for zeroing if Ivl < 0.5, and for two'S complement if v~O, i.e. for 

eKcitations that are elements of U., ug.' , ug, respectively, (in the sense of 

definition "A" as given abovel. 

We conclude this section with some phenomena occurring in an unstable filter. 

For a given u(k) E U. there exists a set of initial conditions, for which no 

overflow occurs. In general, there exists another set of initial conditions, 

which leads to a finite, nonzero number of overflows. Finally, due to the 

assumed instability, a third set of initial conditions gives rise to an 

infinite number of overflows. It is only in this situation that the instabil­

ity becomes manifest. For a periodic excitation, the response, too, becomes 

asymptotically periodic, but the period need not be the same. Suhharmonics 

can occur, but also completely different periods are observed [85]. In gen­

eral, the asymptotic response is not unique, even if the periods of excita­

tion and response are equal. Additional pulse excitations can lead to jump 

phenomena from one response to another [95),[96]. 
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IV. Quantization limit cycles 

Besides the large-amplitude overflow oscillations treated in the previous 

section, still other parasitic oscillations are observed in recursive digital 

structures, which have their origin in the quantization fine structure and, 

as a result, have relat i vely small ampli tudes. These osci llat ions can occur 

under zero- or (nonzero)constant-input conditions and are generally called 

"1 imit cycles". Together with quantization noise (cf. Section V) they are 

considered as the most serious deviation from linear behaviour under normal 

operating conditions of a digital filter. In contrast with quantization noise, 

they can, however, be completely avoided. Unfortunately the involved techniques 

complicate the noise analysis such that a systematic noise minimization cannot 

be achieved with analytic tools. Thus in current literature we observe almost 

independent studies of limit cycle suppression and of noise optimization. The 

first problem mostly deals wlth quantization by magnitude truncation MT (or 

related methods) while the second is completely based on rounding R. 

The main factor determining the occurrence of limit cycles is the quantization 

characteristic. In this section we mainly consider Rand MT quantization; modi­

fied quantizations like controlled rounding CR and stochastic quantization 

require additional signals and, as such, more complicated descriptions than a 

simple characteristic. 

A. Limit cycle suppression with Lyapounov and other deterministic methods 

The analytical treatment ~f limit cycles resembles that of overflow oscilla­

tions. This implies an organization of the present section similar to that of 

Section III. Againwe begin with second-order systems with complex poles under 

zero-input conditions, for which 

li(k+l) = f(Ali(k» (4.1) 

likewise applies with the only modification that now f(.) is allowed to be a 

more general nonlinear vector function. The former strictly component-wise 

application of the scalar overflow characteristic F(.) is thus abandoned. 
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This generalization allows for the most general quantization scheme, in which 

not only state variables (= components of ~) 'are subject to quantization, but 

also intermediate products or sums. 

Whereas in the overflow problem li denotes a continuous set of variables, quan­

tization implies a discrete-amplitude character of ~ with all xl integer 

multiples of the quantum q. Reckoning with the fact that all solutions of the 

homogeneous equation (4.1) are bounded for k ~ ~, any filter with quantized 

state variables can consequently be viewed as a finite-state machine. 

While for any arbitrary initial condition ~(O) ~ Q the state ~(k) in a linear 

filter asymptotically approaches the origin (~(k) ~Q for k ~ .. ), this is not 

the rule for the nonlinear fii ter described by (4.1). Instead, for some k " kG 

the state ~(k) enters a limit cycle. This is a periodic motion characterized 

by N state points which are cyclically occupied by ~(k). "Accessible" limit 

cycles can be entered from points outside the cycle which together with all 

their predecessors form a (mostly immense) set of state points to be assigned 

to such a cycle (97J-(99J. On the other hand, "inaccessible" cycles have to 

be started on the cycle itself. Limit cycles of period 1 consist of one point, 

which can be accessible or inaccessible. If and only if the origin ~ = Q is 

ultimately reached from any initial condition (implying accessibility of the 

origin) the filter is limit-cycle free. 

Wi thout any quantization (corresponding to the ideal, linear filter), the 

trajectory of the state vector~k)would follow an ellipse-like curve spiral­

ling towards the origin, as shown in Fig.3.l. In the actual filter, quantiza­

tion introduces a slight modification of the state vector such that its quan­

tized version becomes a point in the quantization grid, located in the close 

vicinity of the state before quantization. Like the overflow correction dis-­

cussed in Section III, quantization can be associated with a state motion to­

wards the origin or away from it. The first motion supports the linear motion 

and ensures freedom of limit cycles if quantization is always performed this 

way. Clearly, this rule provides a sufficient condition. Conversely, quantiza­

tion correction away from the origin does not admit any conclusion: limit 

cycles can, but need not occur. 
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The above statements ask for a definition of "distance from the origin". In 

contrast with the straightforward definition of Section III we take a more 

general standpoint by identifying any "Lyapounov energy function" of the asso­

ciated linear filter with the square of the distance from the origin. Such a 

function P(x) is 

(a) a quadratic form" P = )J,' Q)J" where 

(b) Q is symmetrical and positive definite, corresponding to P > 0 for all )J, ~ Q, 

and 

(c) the system dynamics is such that P decreases with increasing time: 

P(ji(k+ 1» < P(X(k». 

For the linear system with X(k+l) =Aliik) condition (c) reads as 

(c') Q-A'QA is positive definite. 

All matrices Q satisfying conditions (b) and (c·) are candidates for "energy 

matrices" defining an appropriate energy function. If, for one of such matrices, 

quantization lowers the energy P, freedom of limit cycles is guaranteed. In 

terms of (4.1) this condition reads 

(4.2) 

If (4.2) holds, condition (c) for the energy function is satisfied in the 

linear and in the nonlinear filter, so that P is also a Lyapounov function of 

the nonlinear system. Care must be taken if < is replaced by = in (4.2) so that 

energy is not changed by quantization. If, moreover, "definite" in condition 

(e l
) is relaxed into "semi-definite" t it can occur that energy remains constant, 

asscociated with the risk of a limit cycle. Such a situation occurs for a mar­

ginal choiceofQ for which in the linear filter periods of low and high ener­

gy decrease alternate. The other extreme is a continuous decrease in exponen­

tial form, as found for the distance definition of Section III. 

Historically, Lyapounov theory (with appropriate modifications) was first 

applied to wave digital filters, i.e. structures derived from classical LC­

twoports. For the second-order section of Fig. 4.1b with A given in (3.5b), Q 

is advantageously chosen in the diagonal form 

"Notice that P = const represents an ellipse in an x, -x. -plane. 
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Q ~ ~[l+ao-b 0] l-.a-b . (4.3) 

With this choice the ellipses P ~ const have axes parallel to the coordinate 

axes. Further, the linear energy decrease per time step reads 

P(~(k+l» -P(~(k» =-(l-a-b)(l+a-b)(l+b)[x, (k)+x.(k)J2/4 $ O. (4.4) 

Observe that P is a marginal LyapoWlov fWlction, since for x, + x. = 0 the 

energy P remains constant. It appears, however, that one time step after this 

occurs, x, + x ... 0 so that energy again decreases. Applying MT quantization on 

the individual state variables reduces lx, I and Ix.1 and, consequently, also 

P, so that limit cycles are forbidden [70]-[73],[100],[101]. 

Fig 4.1. 

( 

a b 

Recursive parts of second-order structures in normal form (a), 

wave digital form (b) and direct form (c). 

The filter coefficients are interrelated by a" = a •• = a/2; 

1 f ' a,. ~ -a" ~ Z,. -4b-a'j 1 Z(l-a-b) , ., z = 1 
Z(1+a-b) • 

A widely used, straightforward design of a second-order section is in the 

dlrect corm of Fig. 4.1c with A given by (3.5c). Herewe choose advantageously 

Q = [
l-b 
-a 

-a] 
1-b (4.5) 
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with ellipses P = const under 45·. The linear energy decrease per time step is 

given by 

P(l(k+l» -P(l(k» = -(l+b) [x, (k+l) -x, (k-l)]2 ~ O. (4.6) 

Although, due to x2 (k+l) = x, (k), only the state variable x, needs to be quan­

tized, MT is unable to perform that task throughout without energy increase. 

This can be understood geometrically, since in parts of the ellipse MT causes 

a state motion away from the origin'·, cf. Fig. 4.2. 

In an alternative approach, we combine the linear and nonlinear (quantization) 

operation, which at least yields a non-increasing energy function. First re­

call that "2 (k+l) =", (k) so that some grid point M in the state space is al~ 

ways linearly transformed into a point on a straight line through the mirror 

point M* with respect to the 45° line, cf. Fig. 4.2. Let M' denote the result of 

this linear transformation of M, and let M" denote the result of the subsequent 

quantization, then M' lies on the line segment "2 (k+ 1) = x, (k) inside or on the 

Lyapounov ellipse (due to (4.6» while M" is desired to lie there, too. 

r I 
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Fig. 4.2. State~space of a second-order direct form filter, 

··Other (permitted) choices of Q-matrices might lead to such ellipses, 
that MT throughout reduces energy, cf. (4.8). 
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Realizing that, according to their definitions, M" and M* are grid points, we 

con-elude that M* is a suitable candidate for M" ,but also any (if existent) 

inter-mediate grid point between M' and M* To achieve minimum error, we 

choose for M" the grid point nearest to M'. This construction yields the 

quantization rule that x, (k+l) has to be quantized "in the direction" of 

x, (k) = x, (k-l). 

Unfortunately, this "controlled rounding" eR does admit constant-energy limit 

cycles of periods 1 or 2, in which the state jumps between M and M* or, for 

M = M*, remains constant at M [102]. 

It is an advantage of eR that not only zero-input stability (with the excep·­

tions mentioned) is achieved, but also stability under any constant-input 

condition, because the quantization rule only involves signal differences 

[102]. With some additional hardware, limit cycles of periods 1 and 2 can be 

suppressed, too, but at the expense of the general constant-input stability 

[103],[104]. This is not the case for eR applied to wave digital filters, in 

which stability holds for all constant inputs (105]-(108]. A number of other 

solutions are based upon the elementary insight that eR can be reduced to MT 

by first subtracting the control signal, then applying MT, and finally again 

adding the control signal. Structures thus derived from wave digital sections 

are often presented in mUlti-output form with lowpass, highpass, bandpass and 

al1pass outputs [109]-[113]. Also second-order structures of the wave-digital 

type with only one MT quantizer have been devised, which are stable for 

zero-, constant-, and alternating input signals [114]-[116]. In these solu­

tions, not the states are quantized, but some intermediate signal". 

A third important class of second-order sections are the normal filters (also 

"couped sections") cf. Fig. 4.1a. Ina certain sense, theyexhibit the best over­

flow and limit cycle behaviour (and,moreover, excel with respect to quantiza­

tion noise), abenefit that has to be paid for with twice the number of multi­

plications (4 instead of 2 for wave digital and direct-form sections). 

The A matrix is given by (3.5a), the Q matrix is the unit matrix, and P is the 

square of the euclidean distance from the origin. The energy decrease per 

unit time reads 

"This is an example of a more general vector function f(o) in (4.1). 



-26-

P(lI(k+l» -P(lI(k» =-(l+b)(xnk) +x~(k» ~ 0 (4.7) 

and vanishes only for l:\(k) = Q. Thus, P is a regular Lyapounov function, whereas 

the corresponding functions for wave digital and direct-form filters only belong 

marginally to this class (in a strict sense, they are not Lyapounov functions). 

The curves P = constant now degenerate into concentric circles, and MT applied 

to the individual state variables ensures zero-input stability. 

It is a common property of normal and wave digital filters that 0 is a diago­

nal matrix and that P = constant are ellipses oriented parallel to the coordi­

nate axes. Only this ellipse geometry allows for nT quantizations applied to 

the individual state variables, without risk of limit cycles [117]-[122]. 

The question arises: which A matrices admit a diagonal "energy matrix" O? This 

problem has the solution [42].[43] 

la,,-s,21 + det A < 1. (4.8) 

All filters with matrices A satisfying (4.8) remain zero-input stable under 

MT quantization of the individual state variables and, for the same reason, 

under any overflow correction. Do the three basic section types satisfy (4.8)? 

The answer is "yes" for the normal form. "yes" iff lal - b < I for the direct 

form, "almost yes" for the wave digital form with the inequality sign 

replaced by an equality sign (reflecting the marginal character of the 

Lyapounov function). Also "lattice filters" and "minimum-norm filters" 

[76).[44] satisfy (4.8). 

Higher-order filters with orders n > 2 are often designed through appropriate 

generalizations of second-order sections. In the present state of the art, only 

the ladder filters, particularly the wave digital filters (WDF) appear to be 

sufficiently developed such that a direct n-th order approach is feasible. Due 

to the availability of a recent review article [36] on WDF design, including 

nonlinear parasitic effects, we can confine ourselves to the brief statement 

that. because of its inherent passivity properties, MT can often be (partly) 

replaced by R without risk of limi t cycles, which results in lower quanti zation 

noise levels [123],[124]. 
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In addition, investigations on limit cycles in floating-point arithmetic WDF 

design [125), [126) and in half-synchronic filters [74) as well as filters 

under looped conditions [84) deserve to be mentioned. Apart from the WDF 

approach, most higher-order filters are designed in parallel- or cascade 

form, in which cases knowledge about stability of second-order sections 

suffices. 

Concerning stability with respect to constant (nonzero) inputs, which has so 

far been touched upon only in ad hoc situations, wemention a general principle 

to convert a stable ButonOlIIOUS system into a system with input terminals stable 

under any constant excitation. Inmore explicit terms, let an autonomous system 

satisfy (4.1) (where f has the original meaning of a scalar quantization char­

acteristic) and let further the solution of (4.1) approach zero for k ..... (ex­

pressing freedom of limit cycles), then through suitably supplying such a sys­

tem with an input terminal, a constant-input stable system can be created as 

follows. At each quantization point i, some signal Vi is added after quantiza­

tion, while the same signal is subtracted after the sum signal has passed the 

subsequent delay element. The pair of injected signals vi is proportional to 

the input signal, Vi (k) = b i u{k), so that the state in the modified system 

satisfies 

1[(k+l) = f{A(1[(k) - Q u(k»} + Q u (k). (4.9) 

For a constant excitation u(k) = U the difference vector 1[(k) - lfU satisfies the 

original equation (4.1) so that the state vector asymptotically approaches the 

stationary solution QU without superimposed limit cycles [127)-[134). 

So far, all limit-cycle suppressing mechanisms made use of MT (including the 

related CR) quantization, utilizing its energy reducing property. On the other 

hand, roundlng R can amplify the signal magnitude by a factor c 52, where the 

maximum factor c = 2 occurs for a signal magnitude equal to half a quantization 

step. In an attempt to achieve freedom of limit cycles also for R quantization, 

the nonlinear energy increase has to be compensated by an equal energy decrease 

associated with the linear filter operation. In concrete terms, the necessary 

damping finds expression in the condition II All < K, where II All denotes the nonn 

of the system matrix. 
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If this condition is not met by the design requirements. the matrix A can be 

transformed into some power AL by means of a "block-state realization" or a 

"matrix-power feed-back" such that II AL II < * and R quantiza-tion can be 

applied without risk of limit cycles (80)-[83). For high-Q filters this 

method. however. requires a great amount of hardware. 

Besides the basic limit-cycle suppressing concepts discussed so far. a vast 

amount of ideas has been published dealing with special structures and more 

complicated (deterministic) stabilization methods. Due to space limitation. 

we can only present them in summarized form. Multirate filters (135). error 

feedback (136)-[138). digital incremental computers (139) and other special 

structures (140)-[143) belong to this category. Much attention has been paid 

to the stability of direct-form second-order sections in certain regions of 

the a-b-parameter plane and with respect to certain cycle periods (particu­

larly periods 1 and 2). Most of the pertinent publications belong to the 

earlier period of research on nonlinear effects in recursive digital filters; 

as such. they have essentially contributed to our present understanding of 

these phenomena. With the advent of modern universal (1. e. for all coefficients 

and all periods) methods for limit cycle elimination the results of these in­

vestigations have to some extent lost their practical value (144)-[149). In 

this context. frequency-domain criteria formed a powerful analytic tool to 

derive sufficient stability criteria (150)-[154). Special investigations 

concern coupled-form filters [155]. cascaded sections [156]-[158]. sections 

with non-uniform internal wordlength (159).[160) and with small input signals 

[ 161). 

The instabilities mentioned at the end of Section III have their counterparts 

also in the context of quantization effects. Under periodic excitation the 

solutions likewise need not be unique; jump phenomena and subharmonics (with 

relatively small amplitudes) result from such instabilities [162]-[167]. 

Measures for the suppression of such subharmonics have been proposed 

[168)-[170]. 
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B. Limit cycle suppression with stochastic methods 

Another way to eliminate the various types of limit cycles is to control 

quantization through an external random Signal. This way potential conditions 

favourable to the occurrence of parasitic oscillations are irregularly dis­

turbed which results in an asymptotic, albeit noisy approach of the zero state. 

The disadvantages of such stochastic methods are evident: they require addi­

tional random sources (preferably independent sources for all quantizers) 

and, at a first glance, yield additional quantization noise. The latter point 

is, however, compensated by the flatness of the noise spectrum that contrasts 

with the (mostly) narrow bandwidth of the noise generated by MT quantization. 

Particularly in high--Q filters the ultimate noise contributions at the output 

terminals can thus be considerably smaller than those occurring with deter­

ministic stabilization methods. Another advantage is the avoidance of cross­

talk, as discussed in Section II. 

The simplest method is random rounding, where the decision about the handling 

of the least significant bit is exclusively left to the exterior random sig­

nal [1711, [1721. A variation on this strategy is found when the unquantized 

signal is supplemented with random dither, whose spectral distribution is 

flat and whose amplitude distribution is uniform in the interval [-qJ2, q/2]. 

The complete signal is subsequently subject to R quantization [173],[174]. In 

contrast with this "uniform random dither", the former random rounding is 

occasionally referred to as "binary random dither". In rough terms, uniform 

r.d. has a better noise performance, whereas binary r.d. is superior with 

respect to limit cycle suppression. In a variant, uniform r.d. is subject to 

spectral shaping, particularly with a bandstop characteristic. The resulting 

"bandstop dither" has an improved noise performance, to be sure, but is cost­

ly to implement [175],[176]. 

Guided by the inherent properties of Rand MT quantization, one can combine 

their respective merits into "random quantization", in which an external ge­

nerator randomly switches between R and MT quantization, with comparativelY 

short MT operating times. This way the excellent R noise properties are 

coupled with the stabilizing capability of MT quantization, which has to be 

paid for with a prolonged limit cycle expiration time (177]-[180]. 
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C. Properties of limit cycles 

So far attention was focused on the suppression of all forms of limit cycles. 

Occasionally, however, such parasitic oscillations are wanted (as in a digital 

oscillator) or at least tolerated (with the argument of saving additional 

hardware). In either case, it is worthwhile to get acquainted with various 

properties of limit cycles, if these can occur. This is particularly true for 

their I118xlmum ampl itude, as its knowledge enables a user to apply a coarse re­

quantization such that a potential limit cycle remains smaller than a quanti-­

zation step. This "screening" of limit cycles is, in fact, the classical tech­

nique to cope with this phenomenon [181]. Usually, the requantization is only 

applied at the lowest signal levels (thus forming a threshold detector), al­

though it then fails to work under constant-(nonzero) input conditions. In 

view of the modern sUppression methods the "screening" method introduces a 

relatively high degree of signal distortion. 

In second-order sections with complex poles at z = er±jo (with r < 0, 0> 0) the 

limit cycle amplitude is tightly bounded by the expression 

.. 
q(sinO)-l ~=oerklsin(k+l)nl 

being thet, norm II hll of the filter'S impulse response h(k) (apart from the 
1 

factor q). To the best of our knowledge, II hI! cannot, in general, be cast in , 
closed form; this fact has motivated many authors to derive simpler upper 

bounds, more or less higher than II h II, [ 182]- [200] . 

Besides the amplitude, also the power of a limit cycle has an upper bound 

[201]-[203]; the same holds for certain nOrmS of the output signal [204], 

[205]. Many papers deal with amplitude bounds in special structures, such as 

filters with error feed-back [206],[207], multirate filters [208], coupled-
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form filters [209]-[212], digital incremental computers [213]-[216], wave 

digital filters with internal oscillations [217], cascade sections [218]­

-[220]. Special attention has been devoted to rolling-pin limit cycles 

[221]. [222J and to filters using floating-point arithmetic [223)-[228). 
Amplitude bounds of limit cycles have also been derived with Lyapounov 

functions (229)-[232J and computer simulations [233)-[237). 

Many investigators have studied special forms of limit cycles. Besides the 

aforementioned rolling-pin [221),[222) almost sinusoidal waveforms have been 

explored or simply presupposed [144)-[150].[189).[190].[209)-[216),[229]­

-[232). In many structures periods 1 and 2 attract particular attention 

[146], [147). [211)-[220). [240)-[242) as well as other special periods [162)­

-[167).[201),[202],[229)-[239]. Symmetry considerations and associated 

pairing of limit cycles can be found in various papers [97), [229], [243). 
Finally we refer to some experimental observations [157),[158),(218).[219). 
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V. Quantization noise 

A. Error statistics 

In contrast to the largely deterministic treatment of the non-linear 

effects of quantization and overflow in a zero-input or a constant-input 

situation, the error during normal operation of a digital filter, i.e. in 

the presence of a more or less arbitrary input signal, is generally treated 

on a stochastic basis. The keyword here is 'arbitrary': in strict mathemat­

ical terms only a random signal, when passed through a quantizer, can cause 

a random error. In case of a rounding quantizer, however, even a determinis­

tic, non-periodic input may result in a random nature of the rounding error 

£R' which is then designated quantization noise or roundoff noise. 

If the input to a rounder has a range of sufficiently many quantization 

steps and a sufficient spectral width, the white-noise model for the round­

ing error (cf. Section II) may be applied [30]. Specifically, the error is 

uniformly distributed in the range [-q/2, q/2] if the error function £R(x) 

of Fig. 2. I operates on a large number of different values of the argument 

x. This will be the case for any non-periodic signal, the wordlength of 

which is reduced by a sufficient number of bits. As a result, the error 

carries a power of q2/12, where q is the quantization step size. In most 

practical cases successive errors are uncorrelated with each other and with 

the quantized signal [245]. In order to determine the total power of this 

quantization noise (or the noise spectrum) at the filter output, we simply 

add the contributions of the various quantizers each filtered linearly to 

the output. 

The statistics of the truncation error tMT are not that readily evalua­

ted. Of course the quasi-rounding part tOR of this error (cf. Fig. 2.2) is 

subject to the above observations concerning £R' The sign part t SGN ' how­

ever, introduces an error that is strictly deterministic, leading to ordi­

nary distortion and crosstalk as was already stated in Section II. Neverthe­

less, a statistical treatment of this error is worthwhile if the signal to 

be quantized is random. In a current analysis the filter input signal is as­

sumed to be a gaussian random process [246], [248], [249]. Again, the sign 

part tSGN of the truncat~on error is decomposed into a linear part (with an 
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appropriate negative slope) that is completely correlated with the quantized 

signal and an additive (uncorrelated) part that is interpreted as coloured 

noise. Figure 5.1 shows the quantization noise models for rounding and 

magnitude truncation, where sxx denotes the autocorrelation function of any 

signal x .~ ___ ~_ 

v( k) ocr; W(k~ 
E(k) 

4MT~ ~) 
vl+K Te(k) 

q2 ff. Svv(m) svv(m)] 
see(m) = 12o(m)+ 2nlarcsm svv(O) - svv(O) 

Fig. 5.1. Quantization noise models for R and MT. The model for the 

MT-error is valid for Gaussian excitation of the filter. 

The multiplier 1+K causes a level-dependent (slight) modification of the 

filter coefficients and, ultimately, filter detuning, an effect which de­

creases with increasing signal amplitude. Moreover we observe that although 

the noise powers associated with the quasi-rounding part and the sign part 

of the truncation error are almost equal at their source, viz. 

s (0) ee = 
2 2 

q q 
'" IT + IT' (5. 1 ) 

the contribution of &SGN to the output noise power may substantiallY exceed 

that of &QR. This is the case e.g. for an MT-quantizer in the feedback loop 

of a high-Q filter: The frequency region in which the source noise spectrum 

is concentrated coincides with the passband of the linear system from quan­

tizer to filter output. The source noise spectrum exhibits a similar reso­

nance peak, as dictated by the filter poles [255]. 

The statistics of the quantization error are contained in a number of 

papers [245]-[270], [30], (25]. These include random rounding (247] (also 

ref. [171], [172]), which can be modelled similar to conventional rounding 
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(R), and an error analysis of the distributed arithmetic [256] as well as 

floating point arithmetic [265]-[270], [25]. Controlled rounding (CR) can be 

translated into MT [264] leading to comparable noise powers [250]. 

B. Optimal structures 

Most papers on quantization noise adopt the white-noise model (implying 

R quantization) and deal with fixed-point arithmetic with a certain quanti­

zation step size q. The resulting noise power at the filter output depends 

on 

- the filter parameters and consequently on the desired frequency response, 

- the scaling criterion which is used, 

- the filter structure. 

Starting from a given filter structure (e.g. direct form, normal form, wave 

digital structure) we can significantly reduce the influence of the filter 

parameters on the output quantization noise power. This is done by means of 

error-feedback, which we will discuss in the next subsection. Conversely, 

given a certain (linear) system function, we may try to find the optimal 

structure, i. e. the structure achieving the lowest possible output noise 

power. This problem was first solved using a state-space description of a 

digital filter [289], [296], [305], and a great number of papers has been 

devoted to optimal and sub-optimal structures since that time [271]-[314]. 

Furthermore, error-feedback and structure optimization have been compared as 

to their noise reduction performance, or been considered in a combined 

strategy in order to achieve even lower noise levels (315]-(328]. 

As for scaling, clearly, the more conservative we choose our scaling 

rule, the less efficiently we exploit the machine~representable state-space, 

resulting in poor SIN-ratios. Conversely, if we scale too moderately, the 

probability of overflow will be intolerably high. Scaling is performed by 

normalizing the impulse responses f. (k) from fi Her input to the various 
1 

internal nodes (indexed i) with respect to their 1 -norm ilL II (such that 
p 1 P 

IIf.1I = 1, where p can be any positive integer) or, similarly, by normali-
1 p 

zing the corresponding 

L -norm IIF.II (such that 
q 1 q 

frequency responses F. (ejU) with respect to their 
1 

IIF.II =1)[35]. 
1 q 
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The most conservative is l,-scaling, by which absence of overflow is guaran­

teed for the total class of bounded input signals (i.e. tu(k)t S , or equi­

valently nun = " where the overflow-level is set to unity). Next we have .. 
L .. -scaling which prevents overflow for L,-bounded input signals (which in-

clude unit-amplitude sinusoids). The most widely used is 12-scaling (which 

is identical to L2-scaling), primarily because it follows directly from the 

process of structure optimization. The following relations can be shown to 

hold [35]. 

00 '/2 
= [I f~(k) J S 

k=O 1 
nF .11 = max 

1 00 11 

.. 
IFi(e

jll
)I S "fill, = Ilf.(k)l· 

k=O 1 
(5.2) 

For Gaussian random processes, we can interpret IIfi Il2-' as the scaling fac­

tor that ensures equal overflow probabilities for the i-th node register and 

the filter input register. Similarly, if we scale by setting b."fi Il
2 

to 

unity, we can interpret ~ as the number of standard deviations that can be 

represented in the i-th node register if the filter input is unit-variance 

white noise. 

Before proceeding to a brief review on structure optimization, we point 

out that, historically, this was preceded by various strategies (heuristic 

as well as algorithmic using dynamic programming) to optimize a cascade 

connection of (in general) direct-form second-order sections. Higher-order 

filter design by combination of second-order sections is of interest in 

order to reduce the parameter sensitivity of a direct-form realization. 

Optimal structures, in the sense of low sensitivity and low noise, are 

achieved hy a certain pole-zero pairing and ordering of the various sec­

tions, without changing their internal structure [350)-[366). As a rule of 

thumb we may realize a complex conjugate pair of poles together with the 

nearest pair of zeros, working consecutively, starting with the highest-Q 

poles. A similar rule may be given for the correct section ordering (364]. 

Structure optimization (for a comprehensive treatment ref. (2)) is 

based on a state-variable description of a digital filter: 

.lI(k+' ) = 

y(k) = 

A .lI(k) + Q u(k) 

£t .lI(k) + d u(k) 

(5.3) 

(5.4) 
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A state-space filter is a direct realization of the state equations in which 

the components of the two (column) vectors Q and £ are the multipliers in 

the signal paths from the filter input (u(k» to the inputs of the delay 

elements (2l(k+1) and from the outputs of the delays (2l(k» to the filter 

output (y(k» respectively. The 12 -scaling constraint ~ ·lIf i "2 = 1 can be 

met if we apply a diagonal coordinate transformation D-1 to the state ~ of a 

state-space filter to obtain a scaled state ~.: 
-1 

~. = D '.1\, where D = diag {6,"f
I

11 2 , 6.lIf211 2, •.. , ~'lIfnIl2}, and n is the 

order of the filter. As a result the state transition matrix A undergoes a 

similarity transformation 

A = (5.5) 

The trace and the determinant of a matrix (as well as its eigenvalues and 

hence the filter transfer function) are invariant under such a transform­

ation. This is true for any non-singular transformation T-1 applied to the 

state l!. In fact, to find the optimal structure, we seek a coordinate trans­

formation that minimizes the output noise power under the constraint that 

the filter remain properly scaled. 

If we use one quantizer per state variable at the (double-precision) 

summation node preceding each delay element (cf. Fig. 4.1a for the second­

order case). we can assume n rounding errors 6

" 

•..• 6
n 

to be injected at 

2 these nodes. each carrying a power of q /12. Specifically, the total noise 

variance at the output of the scaled filter is given by 

2 
atotal 

62 2 n • 2 • 2 
~. I IIf, "2 'lIg, "2 
'" i=I' • 

• 

(5.6) 

where the impulse responses gi(k) describe the paths from the various error 

sources to the output of the scaled filter. The first equality states that 

the (uncorrelated) contributions to the total output noise may be added. The 

second and third 
• 

6,lfi "2 = 1 and 

equality are valid, because for the scaled filter we have 
• g. (k) = b • 1If. "2 . g. (k) since scaling affects f. and g. in a 
11111 

reciprocal manner. leaving their products unchanged. As a result, the order 

of the two operations • scaling' and • optimization' may be reversed; 
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instead of finding a non-singular transformation of the state li which 
, 2 

minimizes I Igi "2 under the constraint of proper scaling, we may optimize 

2 2 the unsealed filter, i. e. minimize I IIf i "2 ,"gi "2 using an unconstrained 

transformation, and scale the resulting unsealed optimal filter in a final 
-1 

step, using the above diagonal transformation D . 

In order to facilitate the necessary calculations, two fundamental 

matrices K and Ware introduced, which are positive definite and symmetric. 

K = A K At + Q Qt = 
00 

(Ak)t I Ak Q Qt (5.7) 
k=O 

t 
00 

(Ak)t Ak W At W A + I t (5.8) = ££ = !< .£ 
k=O 

Note that the l2-norms squared of the impulse responses f. and g. are on the 
1 1 

main diagonal of K and W resp., so 

definitions of K and Wallow these 

2 2 
Kii = IIf i "2 and Wii= IIgi "2 , The implici t 

norms to be computed by solving two sets 

of linear equations. This is an appealing property since we now can scale 

the filter and calculate the output roundoff noise using only linear algebra 

not involving computation of infinite summations. 

As it turns out, a necessary and sufficient condition for optimality of 

an n-th order filter structure is that the matrices K and Ware directly 

proportional after scaling, i.e. W'= p264'K'. Since K' has equal elements on 

its main diagonal (K:.= 6-2 ), so must have W'. This means that the optimal 
11 

filter is characterized by that the various noise sources at the quantizers 

contribute equally to the total output noise. The factor p2 is called the 

noisegain of the optimal filter, a quantity which depends only upon the 

filter transfer function. The trace of W' (tr(W')= n.p262} is the sum of 

eigenvalues of W' and, in view of the above relation, p62 times the sum of 
, , 

square roots of eigenvalues of the product matrix K W . The eigenvalues of 

KW are invariant under a coordinate transformation (K ~ T-1K T-t , W ~ TtW T 
-1 

and K W ~ T (K W) T) and so we can calculate the noisegain and the output 

noise of the optimal filter without actually performing the optimization 

(which will be the case if we are only interested in what can be achieved): 
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= n.l>2q2.[.!.. i iJ.]2, 
12 n i=l I 

(5.9) 

where iJ. are the square roots of eigenvalues of K W, the so-called second-
1 

order modes of a filter. Hence, the noisegain of the optimal filter is equal 

to the arithmetic mean squared of the second-order modes of the filter. 

In the case of second-order filters (n=2) the condition W' =p2l>4K' can also 

be written as W' =p2l>~'M, where M= [~ b) i.e. a permutation matrix [296]. 

This condition is met if we choose A't=MA'M and £'=pl>2MQ' in (5.8). This 

means that a second-order optimal filter is characterized by12 [296] 

= 

= 

(5.10) 

(5.11) 

where a ij , bi , c i are the elements of the state-transition matrix A, the 

input~tate vector h and the stat~utput vector £, respectively. In each 

second-order state-space filter we are free to choose the parameters a .. , b. 
IJ I 

and c. to satisfy the above relations and will still be able to realize any 
I 

second-order transfer function [282]. The optimal filter is obtained after 

scaling in a final step using D = /)·diag {~K11' ~ Kzz}. 
Again, higher-order filter design is based on combining second-order 

stages (in cascade or in parallel) but now this has a practical reason: The 

number of multiplications per output sample for an n-th order, minimum noise 

filter is (n+1)2, whereas a cascade of second-order subfilters (of the state 

variable type) uses only 4n+1 multipliers. The price we 

h . f' f f d' 13 a somew at In erlor per ormance 0 our eSIgn. 

pay, of course, is 

A connection of 

second-order sections optimized in isolation is called a sectional optimal 

structure. If we optimize a connection of second-order state-variable 

filters as a whole, the overall filter is called block optimal. 

12The primes are omitted since both (5.10) and (5.11) are unaffected by 
scaling. 

l3Contrast this with direct-form filter design, where the cascade of second­
order stages is highly superior to the n-th order design. 
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C. Error-feedback and related noise reduction strategies 

Error or residue feedback [315]- [349J is a noise reduction strategy 

that makes use of the discarded bits of a quantization operation. The basic 

idea is to introduce zeros in the path from the error source to the filter 

output to compensate for the poles that tend to blow up the quantization 

noise, especially for narrow-band filters. Error-feedback leaves the filter 

response unchanged but alters the output noise spectrum, hence it is also 

designated error spectrum shaping (ESS). Most papers on ESS deal with the 

second-order direct form with first- or second-order error-feedback (the 

distinction depending on whether one or two past samples of the quantization 

error are retained and processed). The basic structure is shown in Fig. 5.2, 

where the quantization error ~(k) is understood to be y(k)-v(k). 

-E(k) 

v(k) y(k) 
1=-----+101----,-+ 

Fig. 5.2. Basic error-feedback structure. 

The summation operates on double-precision numbers. The multipliers laj and 

lbj have integer values nearest to a and b, resp., and as a result give rise 

to very simple additional hardware (shifters or inverters). Moreover, no 

extra quantization is required in the feedback loop of the error ~, which is 

a pseudo-double-precision number. 

We can assume an error ~(k)-laJt(k-l)-lbj~(k-2) to be injected at the sum­

ming node of the linear (i.e. quantization-free) filter, yielding an output 

noise spectrum 

where 
-1 -2 

H.( z) " ~-..JI..::a .... 1 ,..::z'r--..J1..::b ... I..::· z:" 
v _ a.z-1 b.z-2· 

(5.12) 
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Error-feedback is most effective when a and b are close to integer values. 

This is the case e.g. for narrow-band low-pass filters (such as interpola­

tion filters) which have poles clustered at z=l, so a and b will be close to 

2 and -1, resp. The resulting error spectrum will be nearly white and its 

power highly insensitive to small changes in the parameters. l4 

For such filters two alternative structures have been proposed [369J, 

which prove to be intimately related to error-feedback structures [318], 

[343]. The first of these splits up the parameters a and b into integer 

parts [aj, [bj .and decimal parts a1:= a-laj and b 1 := b-lbj, introducing 

two quantizers in front of the multipliers a1 and b1 to allow for single­

precision multipliers in combination with double-precision unit-delay 

elements. The resulting filter is basically a second-order error-feedbuck 

structure and as such performs equally well. 

The second alternative [369J is based on the notion that a filter that 

has poles close to z=1 might profit from a change of origin in the complex 

z-plane, as much from the point of view of sensitivity as of roundoff noise. 

Introducing the complex variable ~:= z-1 we can write 

H(z) ~ 

where 

-";2--':'--- ~ -::~"'2'----':'-:~----- = ~2 ~ 
z - a·z - b z +(2-a)'z +(I-a-b) z - a·z - b 

~ 

a . - a-2 and b .- b+a-l. 

~ ~ 

.- H(z), (5.13) 

~-1 
This z realization of the all-pole filter requires a realization of z , 

which is simply a delay with unity gain feedback. Such 'integrator' based 

structures (also known from digital incremental computers [367J) are studied 

in [367)-[378]. They can be interpreted as filter realizations using first­

order error-feedback across each delay element [318J. Also, alternative 

arithmetics are considered (distributed, ROM/accumulator [338], [377]) in-

14Due to the smoothing of the resonance peak in the error spectrum, error­
feedback will also significantly reduce the amplitude of possible limit 
cycles (though not the probability of their occurrence, since filters that 
are free of limit cycles may lose that property by applying error-feedback). 
Perfect error-feedback (i. e. without restricting the feedback coefficients 
to integers) would produce limit cycle-free filters but for the necessary 
double-precision quantizer(s) in the error loop. This is not surprising, 
since perfect error-feedback is just nothing more than double-precision 
arithmetic with a single-precision output [324J. 
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cluding filter zeros (as well as poles) and even error-feedforward in order 

to optimally shape the error spectrum for such zeros [336). 

To conclude this section, we mention some other papers on roundoff 

noise and its reduction. A special choice of structure, such as wave digital 

structures [379)-[389), may significantly reduce the quantization noise (as 

well as the parameter sensitivity). Various topics relating to roundoff 

noise are treated in (390)-(423], such as comparisons between different 

realizations, special arithmetics, sensitivity, scaling, simulation and 

measurement. This group contains contributions which do not necessarily fit 

into one of the main categories on quantization noise, Le. statistics, 

optimization or reduction. Also some papers are included which study quanti­

zation and overflow stability as well as noise in special structures or even 

in a comparison between different solutions, but which cannot be designated 

as review articles such as [3)-[10). 
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