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Abstract

We investigate the behaviour of Waveform Relaxation methods (WR) for some model

problems. First it is shown how convergence (of the iteration) is related to stability of

some one-step integration schemes. Then we investigate the computational complexity

of a 1-0 and 2-D heat equation when WR is used in combination with nested iteration

and assess its efficiency, in particular compared to straightforward methods based on

Gaussian elimination. Finally we present some results, showing the performance of WR.

November 24,1993
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1 Introduction

WR is a rather new iterative method for solving ordinary differential equations (ODEs). It
was 1982 when WR was introduced by E. Lelarasmee in his Ph.D. dissertation on the time
domain analysis of large scale nonlinear dynamical systems. In [2] the essential part of
WR is explained to be the decomposition of large scale systems into smaller subsytems. The
subsystems are solved separately on the whole time interval. The advantage of this approach
is the possibility to use different discretiza tions and time stepping schemes for the various
subsystems. The WR method was further investigated by White & Odeh in [7]. In this article
the authors show that WR is a contraction mapping in a space with an exponentially scaled
norm and converges uniformly with respect to all x in the spatial domain. In [4] Nevanlinna
proves that WR even converges superlinearly on every finite interval [O,T]. He also notes
that the iteration process may be ill-conditioned and correspondingly the actual algorithm
numerically unstable. Furthermore he shows that it is quite well possible to predict from
the computer data how the iteration has to stop.

An interesting feature of WR is the fact that it can be implemented on a parallel computer.
Applications of this are extensively studied in [6]. An entirely different approach to WR
can be found in [1]. Juang's analysis quantifies convergence properties of various iteration
methods, and assesses the influence of equa tion ordering within the Gauss-Seidel procedure.
Loosely speaking, the accuracy order of an approximation is one less than the number of
matching terms in the Taylor expansions of the approximation and of the solution of the
differential equation. Using the definition of accuracy, Juang shows in [1] the convergence of
the WR method in an alternative way. Furthermore, it is investigated there how the ordering
of the subsystems influences the order of accuracy.

Our aim is to look at WR used for solving PDEs. These PDEs may have dissipative or
oscillatory behaviour. In §2 we introduce the WR method. Then, in §3, we analyse stability
and convergence of WR applied to simple, but characteristic ODEs. In §4 we investigate
efficiency of WR applied to the heat equation in 1-0 and 2-D. Finally, in §5 we show some
numerical examples sustaining the analysis.

2 WR Basics

To explain the basics of WR we consider the following autonomous ODE:

{
X =F(x)
x(O) = XQ •

(l)

This ODE can be solved using an iterative method. To this end we reformulate (l) in such a
way that the resulting equation induces a contraction mapping:

x - G(x,Y) =F(x) - G(x,Y), (2)
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where G(x, y) is the iteration function. G(x, y) has to be chosen such, that G(z, z) = F(z).
Denoting the k-th iterate by x k this then leads to the iteration scheme:

xk+l = G(xk+l, x k). (3)

In order to make this to practical procedure we now require G to satisfy the following,
sometimes conflicting, conditions:

• the remaining ODE for xk+l is easy to solve;

• the iteraton should converge rapidly.

For fast convergence it is necessary that G looks like F. One may e.g. take the so called
Newton WR formula:

of
G(x,y):= ox .y. (4)

Other examples of choices for G, named after the equivalent iterative methods in matrix
theory, are:

1. the Jacobi WR formula

where

(5)

2. the Gauss-Seidel WR formula

where

(i=I, ... ,m).

(i=I, ... ,m).

(6)

(7)

(8)

The WR method will be used with appropriate numerical integration schemes. An illustra
tive example of its use as a Picard-like iteration scheme based on analytical solutions can be
found in [6], page 13:

Example 2.1
Consider the following ODE:

x = (~1 ~) x, x(O) = ( ~ ) ,

with solution

(
sin(t) )

x = cos(t) .

Applying Gauss-Seidel WR results in the following consecutive iterands:

(9)

(10)

---------------------------------3
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xiO)(t) = 0

xiO)(t) = 1

xil)(t) = t

xil)(t) = 1 - tt2

x~2)(t) = t - !t3

x~2)(t) = 1 - !t2 + i4 t4

•
(II) (t) _ 1I~1 (-1)j t2j+1

xl - /;;;0 ~ (2j+l)!

(11)( ) _ ~ ( 1)j t
2j

X2 t - ~ - (2 ')1
j=O J'

One can easily see that the iteration picks up one additional term of the Taylor series every
iteration sweep. In figure 1 we see this proces for the first terms of the Taylor series of
sin(t). Note: It is interesting to mention that the numerical waveforms computed with Euler

Figure 1: First 8 terms of the Taylor series of sin(t)

Forward are closely related to the analytical waveforms. The first two numerical waveforms
of sinet) are:

• x(1)(i.6t) = i.6t

• x(2)( i .6 t) =i .6 t - (!i3 - !i2+ ~i)(.6tl

The analytical waveforms are respectively x(1)(t) = t and x(2)(t) = t - !t3 .

It can be shown that this iteration converges to the solution:

00. .' t2j+1
Xoo(t) = '" (._1)J =sin(t)

1 f;:o (2j +1)! '

and likewise for X2. Now, it follows for the remainder:

v-I . ,t2j+1 t211

SII(t):= f; (-1)3 (2j + 1)! - sin(t) ::; (2v)!' (t ~ 0).

(11)

(12)

From this example we can draw an important conclusion: the error is unbounded for larger
values of t. This means that if we are computing approximations, too large values of t can
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cause overflow. Moreover, computing approximations on an interval that is too large takes
too much time. These considerations lead us to employ consecutive windows. A window is
a time interval which should be chosen such that a relatively fast convergence is reached as
compared to the whole interval on which we want to calculate the solution.

In order to get some insight into stability and convergence phenomena we shall consider the
following homogeneous nth-order system of linear ordinary differential equations:

x=Ax X=(Xl, ... ,xn)T. (13)

We shall assume that all eigenvalues of A have a negative real part. Applying Gauss-Seidel
WR (according to (8» results in:

il k+l AllX;+l + A12X~ +... + AlnX~, (14)

x'nk+l = A nl X;+1 +... +An,n-IX~~1 + Annx~+l,

where k is the iteration index.
Let

(15)

o
AnI Ann 0

L, B E R nxn, then we can write this system as:

xk+1 = L x k+l +Bxk •

L'-

All 0 o

and B:=

o A12

An-l,n
o

(16)

(17)

We now like to know the solution at 111, specified points ti, 1 :::; i :::; 111, say.
Let Xi := ((XI)i"'" (:l:,Jil be the approximation of x(td at ti and define the global vector
ykby

k (kT k T)TY := Xl .. 'Xm •

We assume xg to be known and hence we can take xa = xg for k > O.

(18)

We shall consider discretizations of Euler Forward and Euler Backward and analyse the
stability and convergence of the resulting schemes. Applying Euler Forward to (17) results
in:

X~+l == x~+l + 6tLx~+1 +6tBx~,+I, , , ,

In terms of the global vector, (19) results in:

Ayk+l = 13yk +C,

where yO is known (see above),

-(In +6tL)

A ·-.-

(19)

(20)

(21)

-------------------------------5



A, B E lRnmxnm and c E lRnm. On is the zero-matrix and In the identity in lRnm xnm. On is
the zero vector in lRn

•

Simple calculation reveals that:

In +6tL

(In +6tL )m-2
(In +6tLr-1 (In +6tL)m-2

(23)

From this it can be seen that

6tB

(In +6tL)(6tB) (24)

(In +6tL)(6tB) 6tB On

Apparently A -1 B is lower triangular with only zeros on the diagonal. Hence all eigenvalues
of A-1 B are zero, Le. p(A-1 B) = max{ 1>'1 I >. E <7(A-1B)} = O. So convergence of the WR
iteration is always guaranteed when Euler Forward is applied, Le. there is no convergence
restriction. Note, however, that convergence may be slow if .4-1B is very skew. In order to
assess the stability of this discretization we may simply consider the stability of the limiting
case, i.e. k -7 00. We then see that (19) results in

Xi +6tLxi +6tBxi

(I +6tA)xj.

(25)

(26)

Hence, requiring stability is equivalent to requiring

p(I + 6tA) ;:; 1.

This coincides with the 'normal' Euler Forward stability condition.

Next we turn to Euler Backward. Applying this discretization to (17) results in

(27)

(1 ;:; i;:; 171 -1). (28)

(29)

Again we see that if the iteration converges the solution is the same as obtained using
Euler Backward in combination with the MOL. Rewriting (28) for global vectors gives the
following iteration:

----------------------------------6



---------------------------§ 2

where, again, yO is known and now

In - 6tL On On

-In In - 6tL

A'- On (30).-

On
On On -In In - 6tL

6tB On On xO
0

On On

S·- andc := (31).-

On
On On 6tB On

where A,S E Rnmxnm and c E R nm .
From this it follows that:

(In - 6tL)-1 On

{In - 6tL)-Z (In - 6tL)-1

(32)

So we find that A-I B equals:

(In - 6tL)-1(6tB) On

(In - 6tL)-Z(6tB) (In - 6tL)-1(6tB)

. (33)

On
(In - 6tL)-\6tB)

Thus convergence is easy to assess. We only have to require that the moduli of the eigen
values of (In - 6tL)-1(6tB) be less than one. Because of the block structure of A-IS we
immediately find:

p«In - 6tL)-1(6tB)::; 1.

as necessary and sufficient to let (28) converge.

(34)

Similar to the Euler Forward discretization we can find out about stability by considering
the case k --+ 00. From (28) we thus deduce:

Xi+1 = Xi + 6tLxi+l + 6 tBxi+1

{:} Xi+1 = (I - 6tA)-IXj.

(35)

(36)

-------------------------------7
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Stability is apparently equivalent to requiring p((I - 6tAr 1
) ::; 1. Because all eigenvalues

of A have a negative real part, this condition is always satisfied and hence we have no
stability restriction.

In [6J an analoguous algebraic proof is given for general multistep methods. An analytic
proof is given by Miekkala and Nevanlinna in [3] using the Picard-LindelOf iteration.

3 WR applied to second order ODE

As remarked before we like to get insight in stability and even more in convergence behaviour
of WR for simple situations. In particular we like to include some oscillatory cases and hence
need ODEs of order n = 2 at least. In this section we shall mainly survey the results for the
general second order case (still with two eigenvalues with negative real part). The tedious
calculations involved in this analysis are given in [5].
Consider the matrix:

(
0: (3)A:= , 8 (37)

Assume A has eigenvalues Aand It, both with negative real part. Our aim is to derive
conditions for convergence and stability of the WR iteration in terms of the time step 6t.
One can show that for Euler Forward we have the following property:

Property 3.1
To guarantee a stable WR iteration for Euler Forward, we have:

if A, It are real, (38)

and:
/\ -(A + It)
wt< A 'It

if A, It are complex. (39)

•
Note that we have no convergence condition because p(A-1B) = o.

Similarly one can show the following property for Euler Backward:

Property 3.2
Euler Backward is convergent in the following cases. If (3, 2: 0 then there is no condition. If
(3"( < 0, the condition depends on the sign of oJj + (3"(, summarized in table 1. In this table we use

(6t) - (c.Hl-V(c.-e5l-4th •
2 - 2(ao+th) .

Although not treated here, it is obvious that the trapezoidal rule and indeed all O-methods
in between will exhibit similar convergence properties as Euler Backward. Since we shall
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exclusively deal with dissipative problems we may trust to have convergence for .those
methods.

4 WR applied to the heat equation in l-D and 2-D

From a complexity point of view there is hardly anything to be gained when applying WR
to an ODE with full matrices. Actually, WR may be even slower if no particular solution
properties are present. This situation may be different for sparse systems, in particular those
arising from discretized partial differential equations (PDEs).

We shall investigate the situation for 1-D and 2-D heat equations where we apply Euler
Backward (and in computational examples the trapezoidal as well which has discretisation
errors that allow the time step to be of the order of the spatial step).

Consider the following 1-D linear initial-boundary value problem:

{

~~ = ~ +.1r
Z
Sin(1rX) 0 < x < 1,t > 0,

u(x,O) = g(x) 0 < x < 1,
u(O, t) = u(l, t) = 0 t > O.

The limiting stationary solution of this PDE is given by:

u(x,t) = sin(1rx).

(40)

(41)

(42)

In order to solve this PDE numerically we discretize by method of lines (MOL), Le. first
the spatial derivatives in the PDE are replaced by finite differences. We shall use a central
difference scheme on an equispaced grid, This leads to the following ODE for the time
variable t (if x is not a boundary point):

~; (x, t) == :Z (u(x - h, t) - 2u(:z:, t) +u(x +h, t)) + 1rZsin(1rx).

We discretize the time variable using Euler Backward. This results in:

us+1 = US + 6t [u s+1 _ 2us+1 + U S+1 ] + 1rz 6 t sin(1rx)r r hZ r-1 "r+1 . , (43)

where 'It: is an approximation of u( 1'h, 86t). We then formulate a system of equations at
every point:

6t
-/iT
1 +2

6t
/iT

(44)

-------------------------------9
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which can be solved using Gaussian elimination. The computational complexity WGE of
this method follows from:

WGS = GGE X T,

where GGE is the computational complexity of Gaussian elimination:

GGE = O(n),

and T is the number of time points. We find:

WGE = O(n X T).

We can now formulate the following:

Theorem 1 There is no convergence condition for WR Gauss-Seidel when applied to (42).

(45)

(46)

(47)

Proof
Let a := ~:,.. The theory in §2 is immediately applicable, so the condition for convergence
is given by (34):

p((In - 6tL)-1(.6.tB»:S 1.

The matrix In - 6tL can be written as:

1 +2a

-a

(48)

(49)

or
1

(/

In - 6tL = (1 +2a) -1+2<7

-a 1 +2a

=: (1 +20 )(In - N). (50)

(In - .6.tL)-l can now easily be calculated:

-1':2<7 1

Hence:
1 00 ( a)i 1

II (In - 6tL)-11Ioo :S 1 + 20- L 1 +2a = 1 + a
1=0

So:

(51)

(52)

--------------------------------10
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For larger values of a (in particular when 6.t = O(12»:

p((In - 6.tL)-l(6.tB» == 1 - -11
+a

(54)

•
From (54) we see that for small values of (J, p differs from 1 significantly. This can be used to
speed up the iterative proces. Let a grid MI be defined by:

MI := {(Xi, tj)IO :5 i:5 n A 0 :5 j :5 T A X;+l - Xi = 121 A tj+l - tj = 6.tI}. (55)

We introduce nesting ofequations according to the following algorithm:

Nested iteration

1.i=O
2.repeat

3.create initial approximation on grid A~

4.repeat
5.solve the PDE on grid A~ using WR Gauss-Seidel

until [convergence]
6.project solution on grid A~+l

7.i=i+l
until [desired grid is reached]

New grids can be chosen according to ones own needs. The convergence of the iterative
process can be deduced as follows. Assume we have an initial guess at grid MI-1. The
maximum accuracy we can reach at this grid is 0(127-1)' If we have a solution with error
O(h7-d, the projection on grid AIl is used as the initial guess on Ai[, which consequently
contains an error 0(127-1)' Note that linear interpolation to prolongate MI-1 on MI induces
errors 0(127); so the initial error on grid }.Ii[ is 0(127-1)' The error in the i-th iterand on grid
Mlobeys:

II elill oo ~ pi II eloll oo ' (56)

On grid MI we have II eloll oo = 0(121-1)' The iteration can stop if the maximum accuracy is
obtained:

II elill oo :5 ch7::} /i :5 (h~J2.
From this it follows that we need at most II iterations, where:

2 log (--.!!:L)
I

hl_l
1:= log(p)

iterations to reach maximum accuracy on grid Ai[.

In the following we assume+ geometrically nested grids, i.e.

1( . 1 (X'+l =- a:I+xi+1),t'+1 =- ti+ti+1).'22 . '22

(57)

(58)

(59)

-------------------------------11
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Because of this geometric nesting, the computa tionalcomplexity WwR at a certain window is
determined by the complexity at the finest grid on that window, as the sum of an increasing
geometrically series is approximately equal to the maximum term. Therefore we have:

IWR =

WWR = O(IwR x n x T).

The number of iterations IWR follows from (58):

-loge4)

loge 1~(1)

- (1 + (7) log(4).

We find:

(60)

(61)

(62)

n2

WWR = OCT x n X T) = 0(123) (63)

If we compare (47) and (63), we can only conclude that WR performs worse than Gaussian
elimination in this 1-D case.

Now consider the 2-0 analogue of (40):

{

~~ =S +~ +21r2sin(:ll"X)sin(1rY)
u(x, y,O) =g(x, y)
u(O,y,t) = u(1,y,t) = °
u(x,O, t) = u(x, 1, t) =°

The stationary solution of this POE is given by:

°< x < 1, t > 0,
0<x,y<1,
0< y < 1, t > 0,
0<x<1,t>0.

(64)

u(x,y,t) = sin(1l"x)sin(1rY).

As in the 1-0 case we find:

1 +4<7

-(J

In - 6tL =
-(J

-(J -(J 1 +4(J

or:

(65)

(66)

(67)

It can be seen that the computational complexity for Gaussian eliminiation is much larger
than in the 1-0 case. For the 2-0 case we have:

Wes = Cos x T (68)

--------------------------------12
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where CaE is the computational complexity for Gaussian elimination at a certain time point.
In the 2-D case the matrix involved has also a banded structure, but now with bandwith n,
where n is the number of points in one spatial direction. We therefore find:

CaE = O(n2
X n x n) = O(n4

). (69)

So,
WCE = O(n4

X T). (70)

The computational complexity for WR in the 2-D case can be derived like in the 1-D case.
For the number of iterations needed to reach convergence on the finest grid, we find:

..:..

-log(4) (71)
log(p)
-log(4)

(72)
log (1~2(1)
(1 +20") loge4) (73)

The computational complexity, identical to (60), equals:

WWR = O(II X n2 X T)

n2
OCT x n2 x T)

O(n4 )

(74)

(75)

(76)

According to (68) and (76) we conclude that WR is more efficient than direct time stepping
with Gaussian elimination in the 2-D case. Roughly speaking it is a factor n faster.

5 Numerical results

We have tested WR (Gauss-Seidel and Euler Backward), combined with nested iteration
wherever necessary, for several problems. Our first example is a problem with a solution
that is periodic in time.

Example 5.1
Consider the problem

~~ = ~ +~ +sine7rx) sine7rY)'
(27r2 cos(27rwt) - 27l"wsin(27l"wt»

u(x, y,O) = °
It(O,y,t) = It(1,y,t) = °
U(.T,O,t) = u(x,1,t) = °

O<x<1,t>O,
O<x,y<1,
O<y<1,t>O,°< x < 1, t > 0.

(77)

We start by taking w = wet) = 1. One can see that for t ~ 1, the solution is given by

u(x,y,t) = sin(7l"x) sin(7rY) cos(27l"t). (78)

-------------------------------13
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H we use (as an obvious choice) the time-windows [0,1], [1,2] and [2,3] and set h = D.t, we
obtain the following table (where n = ~). Here the waveform on the first window is simply
taken equal to 0 and on subsequent windows equal to the solution at the previous window.
The column conVtest is the actually estimated contraction factor (through taking norms of
iterates), whereas cOnVtheor. denotes the theoretical contraction factor (d. (67». Note the
slight overhead on the first window.

Example 5.2
Table (2) shows that the actual waveform is not exploited by this method. Apparently the
interpolation on a coarse mesh, needed to start on the next window, causes the method to
start almost from scratch. Hence we show in table (3), (4) and (5) the results on window 2
and 3 when started with the waveform of these windows for various finer grids. This then
shows the great success of WR for periodic problems; Note however, that solutions need to
be in a fairly periodic steady state form to have full advantage; see e.g. second and third
window in (5).

Example 5.3
Our final example contains a problem which is nonperiodic (in time), but which nevertheless
exhibits a sort of waveform (at least is periodic asymptotically). Using w = w(t) = l~t' its
solution reads:

where

u( x, y, t) = sine7i:I:) sine7iY) cos(27iwt) , (79)

. . t ( )
w = w( t) = 1 + t . 80

Using the experience of the previous example we now employ nested iteration on the first
window ([0,1]) and a fairly fine mesh on subsequent windows ([1,2] and [2,3]). Again the
approxima tion on [0, 1] was taken to be equal to zero, but equal to the values on the previous
window for subsequent intervals, see table (6) and (7).

We conclude that nested iteration is an excellent idea for efficiently computing solutions on
a window. Once a waveform is found we can proceed with the solution on the finer grids as
an initial value for subsequent windows.
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ao + f3'Y ~ 0 ao + f3'Y < 0
a < 0,0 < 0 no condition 6t < (6t)2
a < 0, 8> 0 not relevant 6t < (6t)2
a> 0,8 < 0 not relevant 6t < (6t)2

Table 1: Convergence conditions Euler Backward

window n conVtest cOnVtheor. iterstest iterStheor.

1 2 1.0000 0.8000 2 3
4 0.8637 0.8889 2 6
8 0.9493 0.9412 11 11
16 0.9785 0.9697 32 23
32 0.9898 0.9846 80 45

2 2 1.0000 0.8000 2 3
4 0.8458 0.8889 2 6
8 0.8802 0.9412 3 11
16 0.9665 0.9697 21 23
32 0.9897 0.9846 76 45

3 2 1.0000 0.8000 2 3
4 0.8525 0.8889 2 6
8 0.8808 0.9412 3 11
16 0.9669 0.9697 21 23
32 0.9895 0.9846 76 45

Table 2: w(t) = 1

window n conVtest cOnVtheor. iterstest iterstheo,·.
1 2 1.0000 0.8000 2 3

4 0.8637 0.8889 2 6
8 0.9493 0.9412 11 11
16 0.9785 0.9697 32 23
32 0.9898 0.9846 80 45

2 8 0.9144 0.9412 2 11
16 0.9665 0.9697 8 23
32 0.9898 0.9846 74 45

3 8 1.0446 0.9412 2 11
16 0.9648 0.9697 2 23
32 0.9898 0.9846 58 45

Table 3: ;.,:(t) = 1
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window n conVtest cOnVtheor. iterstest iterStheor.

1 2 1.0000 0.8000 2 3
4 0.8637 0.8889 2 6
8 0.9493 0.9412 11 11
16 0.9785 0.9697 32 23
32 0.9898 0.9846 80 45

2 16 0.9667 0.9697 21 23
32 0.9901 0.9846 72 45

r----_3_--1B!j6 0.9782 I 0.9697 I
32 0.9892 0.9846

'---------'

Table 4: w(t) = 1

2
8

23
45

window n conVtest cOnVtheor. iterStest iterStheor.

1 2 1.0000 0.8000 2 3
4 0.8637 0.8889 2 6
8 0.9493 0.9412 11 11
16 0.9785 0.9697 32 23
32 0.9898 0.9846 80 45

2 ~ 0.9902
~=:3:==~~ 0.9898

0.9846

0.9846

169

2

45

45

Table 5: w(t) = 1

window n conVtest cOnVtheor. iterstest iterSthe07'.

1 2 1.0000 0.8000 2 3
4 0.6490 0.8889 2 6
8 0.9024 0.9412 7 11
16 0.9708 0.9697 24 23
32 0.9900 0.9846 78 45

2 8 0.8653 0.9412 12 11
16 0.9635 0.9697 16 23
32 0.9901 0.9846 70 45

3 8 0.8699 0.9412 8 11
16 0.9642 0.9697 18 23
32 0.9900 0.9846 74 45

Table 6: u.J(t) = l~t

-----------------------------17



window n conVtest cOnVtheor. iterstest

1 2 1.0000 0.8000 2
4 0.6490 0.8889 2
8 0.9024 0.9412 7
16 0.9708 0.9697 24
32 0.9900 0.9846 78

2 16 0.9632 0.9697 64
32 0.9900 0.9846 69

3 16 0.9625 0.9697 47
32 0.9900 0.9846 70

Table 7: w(t) = l~t

§5

iterStheor.

3
6
11
23
45

23
45

23
45
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