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1. Introduction.

During the last decade, various process models, or models for concurrency, have been
proposed; we mention Milner's synchronisation trees in CCS (see [13]), the metrical
process spaces of De Bakker and Zucker [4], the models based on preorders between
processes of Hennessy and Plotkin [11] and the failure semantics of Brookes, Hoare
and Roscoe [9] and Hoare [12]. (For more complete references we must refer to
Bergstra and Klop [6].) Starting with Milner, there has been a growing interest in an
algebraic treatment of concurrency. Here is our point of departure: rather than fixing a
particular process medel, we start with axioms describing a class of models. There are
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two reasons for this axiomatic methodology. One is that when so many different (but
often related) process models arise as the last years have witnessed, it is becoming
profitable to attempt an organisation into an axiomatic framework. The second reason
is that, being interested in actual specification of processes and verification of process
behaviour, we adhere to the principle that one must be able to perform such
specifications and verifications exclusively in algebraical terms - rather than in one
particular process model. Thus we hope to get, eventually, at a greater manageability
of specifications and verifications: ideally, we want pure algebraic formula
manipulations, rather than having to resort to particular process representations, such
as transition diagrams, Petri nets, or failure sets. This, for the obvious reason that such
particular representations are much harder to represent mechanically than equations
in an algebraic format, where we can hope to profit from the experience obtained in the
culture of abstract data type specifications. |
A consequence is that we wish to adhere as much as possible to equations. However,
as this purely equational medium would not be sufficiently expressive (viz. to prove
equations between expressions denoting infinite processes), we will also admit, as is
usual in an algebraic/axiomatic style, proof rules, or as we will also call them,
conditional axioms. A typical example of such a proof rule is the Recursive
Specification Principle below, stating that if processes p,q satisfy the same (guarded)
equation, one may mferthe equation p =q.
Not surprisingly, it ‘turns out that in computations with mﬂmte processes one often
needs information about the alphabet o(p) of a process p. E.g. if p is the process
uniquely defined (specified) by the recursion e'quation X = a-x (where 'a' is an atomic
-action), we have ofp) = {a}. An example of the use of alphabet information is given by:

ax)NI=0 = 7(x)=x , (CA4)
in words: if no action from I occurs in process X, then hiding (abstracting from) actions
of Iin x has no effect. A more interesting axiom is conditional axiom CA2, which allows .
one to commute abstraction and parallel composition (in appropriate circumstances); it
is vital for the verification of systems with three or more components put in parallel.
In order to attach a precise meaning to conditional axioms of the above form we need
some insight in the notion of the alphabet a(p) of process p. We assume that p has
been specified by means of a recursive specification with guarded recursion. Then one .
can effectively find sets a4 (p), ao(p), az(p), ..., and B4(p), Bo(p), B3(p), ..., such that

aq(p) S op(p) < az3(p) S ... € ()

B1(p) 2 Ba(p) 2 B3(P) 2 ..... 2 (P) |
(see 3.2, 4.5). In general U an(p) = a(p) but N Bu(p) = a(p) need not hold

n>1 n21

(this is connected with the fact that on the basis of a given recursive specification of p .
the alphabet a(p) cannot in general be e‘ffectiVely compufed see 3.5). In practical
cases, either one finds n,m such that eq(p) = Bu(P) p)), or Bn p) is sufficiently small
to verify the condition of a conditional axiom. We cail thxs small theory about alphabets
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the a/B-calculus. Though very simple, this o/B-calculus seems to be an indispensable
tool in system verification based on process algebra (as we will call an algebraic
framework such as the one presented below).

in the last sections we describe thr"ee‘_examples of simple system verifications which
extensively demonstrate the use of the conditional axioms CA1-7.

System verifications of a related nature, but performed in a model, can be found in
Sifakis [15] and Olderog [14].

The consistency of CA1-7 on top of ACP, + KFAR + RSP is a nontrivial issue. We refer
o [3] for such a consistency proof. In this paper, we just check each of the laws in detalil
for all finite processes. Here RSP is the Recursive Specification Principle, already
mentioned above (see 2.9), and KFAR is Koomen's Fair Abstraction Rule, explained in
3.4. There, we find a rather unexpected connection between KFAR and determination
of alphabets.

2. Algebra of communicating processes with silent steps.

2.1 The axxomatxc framework in which we present this document is ACP_, the algebra
of communicating processes with silent steps, as described in- Bergstra & Klop [7}. In
this section, we give a brief review of ACP,.

Process algebra starts from a finite collection A of given objects, called atomic actions,
atoms or steps. These actions are taken to be indivisible, usually have no duration and
form the basic building blocks of our systems. The first two compositional operators we
consider are -, denoting sequential composition, and + for alternative composition. If x.
and y are two processes, then x-y is the process that starts the execution of y after the
completion of x, and x+y is the process that chooses either x or y and executes the
chosen process. Each time a choice is made, we choose from a set of alternatives. We
do not specify whether the choice is made by the process ifself, or by the environment.
Axioms A1-5 in table 1 below give the laws that + and - obey. We leave out - and

brackets as in regular algebra, so xy + z means (x-y) + z.

On intuitive grounds x(y + z) and xy + xz present different mechanisms (the moment of
choice is different), and therefore, an axiom x(y + z) = xy + xz is not included.

We have a special constant d denoting deadlock, the ackno.w!edgem'e'nt of a process
that it cannot do anything anymore, the absence of an alternative. Axioms A6,7 give the
laws for 8.

Next, we have the parallel composition operator ||, called merge. The merge of
processes x and y will interleave the actions of x and y, except for the communication

actions. In x|ly, we can either do a step from x, or a step from y, or x and y both
synchronously perform an action, which together make up a new action, the

communication action. This trichotomy is expressed in axiom CM1. Here, we use two

auxiliary operators || (left-merge) and | (communication merge). Thus, x{l y is x]ly, but
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with the restriction that the first step comes from x, and x l y is x|ly with a communication
step as the first step. Axioms CM2-9 give the laws for || and |. On atomic actions, we
assume the communication function given, obeying laws C1-3. Finally, we have on the
left-hand side of table 1 the laws for the encapsulation operator dyy. Here H is a set of
atoms, and dy blocks actions from H, renames them into 8. The operator dy can be
used to encapsulate a process, i.e. to block communications with the environment.

The right-hand side of table 1 is devoted to laws for Milner's silent step t (see [13]).
Laws T1-3 are Milner's t-laws, and TM1,2 and TC1-4 describe the interaction of T and
merge. Finally, 1y is the abstraction operator, that renames atoms from I into 7.

In table 1.we have a,b,c e Ag (i.e. AU {d}), x,y,z are arbitrary processes, and H,I C A.

X+y=Y+X A1 XT =X ‘ T1
X+(y+2)=(X+y)+2 A2 TX + X = 1X | T2
X+X=X A3 a(tx+y)=altx+y) +ax T3
(X+Yy)z=XZ+YyZ A4 '

(xy)z = x(yz) AS5

X+d=X AB

dx =9 , - A7

alb=bla C1

@lb)lc=al(blc) c2-

Sla=3 Cc3

xlly = x|Ly +yl x +x]y CM1

all x=ax , CM2 t|lx=1x : TM1
ax|ly = a(x|ly) CM3 x|y =(x]ly) TM2
x+y)llz=xlz+ylz CM4  1|x=35 TCH
ax|b = (a|b)x  CM5 x|t=58 TC2
albx = (a|b)x CM6  wly=xly TC3
ax|by = (a|b)(xlly) cM7  x|ty=xly TC4
(x+y)lz=xlz+y]z CM8 v

xl(y+z)=x]y+x!z- CM9 odylt)=1 DT

‘ : T(t) =7 » TH

oH(a)=a ifagH - D1 ch(a) =g ifagl T2
oy(@)=0 ifaeH : D2 (@) =1 ifacl TI3
oH(x +y) = oy(x) + dy(y) D3 (X +y) = 17(x) + 77(y) T4
BH(xy) = 3H(¥)-(y) D4 ylxy) = ty(x)1yly) Ti5

Table 1. ACPT.
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2.2 Definition: The set of basic terms, BT, is inductively defined as follows:
i.t,0e BT : ii.ifte BT, thentte BT
ii.ifte BT andae A,thenate BT iv.ift, s e BT, then t+s e BT.

2.3 Elimination theorem: (BérgStra & Klop [7]) Let t be a closed term over ACP.. Then
there is a basic term s such that ACP,  t=s.

2.4 Theorem 2.3 allows us to use induction in proofs. The set of closed terms modulo
derivability (the initial algebra) forms a model for ACP,. However, most processes
encountered in practice cannot be represented by a closed term, but will be specified
recursively. Therefore, most models of process algebra also contain infinite processes,
that can be recursively specified. First, we develop some terminology.

2.5 Definitions: i) Let t be a term over ACP., and x a variable in t. Suppose that the
abstraction operator 1y does not occur in t. Then we say that an occurrence of x in t is
guarded if t has a subterm of the form a's, witha e Ag (so a=t!) and this x occurs in s.
(l.e. each variable is preceded by an atom.) ,
ii) A recursive specification over ACP. is a set of equatnons {x =ty 1 xe X}, with X a
set of variables, and ty a term over ACP and variables X (for each xe X). No other
variables may oceur in ty.

iii) A recursive specification {x = t, : xe X} is gUarded if no ty contains an abstraction
operator 1y, and each occurrence of a variable in each t, is guarded.

2.6 Notes: i) The constant T cannot be a guard, since the presence of a T does not lead
to unique solutions: to give an example, the equation x = tx has each process starﬁng
with a t as a solution.

i) A definition of guardedness involving j is very complicated, and therefore, we do
not give such a definition here. The definition above suffices for our purposes.

2.7 Definition: On ACP., we can define a projection operator n,, that cuts off a
process after n atomic steps are executed, by the axxoms in table 2 (n21, ae Ag, x,y are
arbitrary orocesses)

Table 2. Projection.
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Remarks: Because of the t-laws, we must have that executing a T does not increase
depth. A process p is finite if it is equal to a closed term; otherwise p is infinite. Note
- that if p is finite, there is an n such that nn(p) = p.

2.8 Theorem: If the set of processes P forms a solution for a guarded recursive
specification E, then n,(p) is equal to some closed ACP-term for each p € P and n21,
and this term does not depend on the particular solution P.

Proof: Let EM be the n-th expansion of E, i.e. the recursive specification obtained by
substituting terms ty for variables x occurring in the right-hand sides of its equations,
repeating this procedure n times. Since E is guarded, we see that in the n-th expansion
of E, each variable is n times guarded. Since the set P is a solution of E, and EM is
obtained by substitution, P is also a solution of EN. Now we calculate Tn(p) using the
equation for p in E", with the axioms in table 3 above. We see that nn(p) does not
depend on which processes we substituted in the right-hand side of this equation:
since each variable was n times guarded, the calculation stops before the variable is
reached. It is easy to finish the proof.

2.9 Theorem 2.8 leads us to formulate the following two principles, which together
imply that each guarded recursive specification has a unique solution (determined by
its finite projections). _
The Recursive Definition Principle (RDP) is the assumption that each guarded
recursive specification has at least one solution, and the Recursive Specification
Principle (RSP) is the assumption that each guarded recursive specification has at
most one solution. In this paper, we assume RDP and RSP (for more about these

principles, see [3]).

To give an example, if p is a solution of the guarded recursive specification {x = a- x}
we find w,(p) = a" for all n>1, so we can put p = a®. For more information, see [3].
Abusing language, we alsc use the variables in a guarded recursive specification for
the process that is its unique solution. ‘

2.10 In Baeten, Bergstra & Klop [3], a model is presented for ACP,., consisting of
rooted, directed multigraphs, with edges labeled by elements of Au {5,7}, modulo a
congruence relation called rooted tS-bisimuiation (comparable to Milner's
observational congruence, see [13]). In this model all axioms presented in this paper
hold, and also principles RDP and RSP hold.

Moreover, each element in this model can either be specified by a guarded recursive
specification, or can be found from such a process by abstraction (by an application of
the operator ty). - |

2.11 The axioms of Standard Concurrency (displayed in table 3, on the following
page) will also be used in the sequel. A proof that they hold for all closed terms can be
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found in Bergstra & Klop [7].

xlLy)lLz = x[L(yllz)
(x]ay)ll z = x| ayU_z

le YIX

xlly = yllx

xlylz)=(xly)lz

x|l (yllz) = (xliy)lz

Table 3. Standard concurrency.

3. Alphabets.

3.1 Definition: The alphabet of a process is the set of atomic actions that it can
perform, so is a subset of A. In order to define the alphabét function o on closed terms,
we have the axioms in table 4 (ae A, x,y are arbitrary processes).

§=0 o ABY

o

ofT) = AB2
afax) = {a} w-aX) AB3
aTx) = a(x) AB4
a(x +y) = alx) U aly) . AB5

Table 4. Alphabet.
Note that «(8) = a(t) = @ is necessary by axioms A6 and T1.

3.2 Now we want to define « on infinite processes. :
We define the alphabet for solutions of guarded recursive specifications (which are in
general infinite processes) by adding the following axiom to table 4:

afx) = U afmn(x)) ABSG.

n21 : o

By theorem 2.8, each nt(x) is a closed term, if x is the solution of a guarded recursive
specification, so a(r(x)) can be determined with the axioms in table 4. It is not hard to
see that equation AB6 holds for all closed terms (using structural induction), so this
axiom does not contradict axioms AB1-5. Further note, that since the partial unions
a{mq(x)) U ... v a(rp{x)) form an increasing sequence (as n—ee), and the set of
alphabets is finite (since A is finite), the sequence will be eventually constant, and the
limit will always exist. o
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3.3 We still have not defined the alphabet for all processes that we want to consider. To
give an example, if x is given by the guarded recursive specification {x = ax} (we say x
=a®), puty = t{a}(x), and then the process y cannot be given by a guarded recursive
specification (y is the process t?). To define the alphabet of such processes, found by
abstraction from certain actions in a process given by a guarded recursive
specification, we add one more axiom to table 4:
oftp(x)) = ofx) - I AB7.
Again, it is clear that this axiom holds for all closed terms.

3.4 Example: Let x be given by {x = ax}, and definey = r{a}(x), Z = y'b (with bza). What
is the alphabet of z? Well, we know a(x) = {a} (for n(x) = a" for each n21), so afy) =
a(x) - {a} = &. Then, a(z) =alyb) = a(’c{a}(x)-b) = a(T{a}(X)‘T{a}(b)) = a(r{a}(x-b)) = ox'b)
- {a} = @, for np{xb) = a" for each nz1.
We can motivate this result in a different way, if we use Koomen's Fair Abstraction Rule
(KFAR, see [3], and Vaandrager [16]): ' ‘

- x=ix+y,iel = 1(x) =v17ly) KFAR. ,
- KFAR expresses the fact that, due to some fairness mechanism, i (usually some
internal action) resists being performed infinitely many times consecutively. Here, we
have X = ax = a:x + 9, so by KFAR_ y= r{a}(x) = 10. Thyen_z =yb = 1db = 1d, and we see
again that afy) = a(z) = . "

3.5 Theorem: it is in general undecidable, to which set a(x) is equal.
Proof: Let K be a recursively enumerable, but not recursive subset of N (the set of
natural numbers). In Bergstra & Klop [5] a recursive specification, parametrised by n
N, over finitely many variables xq,...,Xk is given (k depends on K), such that we have
the following: x4(n)=b® ifne K |

| x4(n) = bM-stop if n e K (for some m e N). o
(here b, stop are atomic actions). Thus we have a{x4(n)) = {b} if n ¢ K and a(x{(n)) =
{b,stop} if n e K. Since K is not recursive, determining whether n e K, for a givenn, is
undecidable, so determining a(x4) is undecidable.

4. a/f-calculus and conditional axioms.

4.1 Axiom AB6 in 3.2 gives' a sequence of subsets of ox), which will converge to a(x).
However, as we remarked, finding a(x) itself can sometimes be very difficult. Luckily, in
applications it is often sufficient to have a superset of a(x), which is not too big. With
such a superset, we can even determine «(x) in many cases. For this reason, we
define B(x) in 4.4. First we need theorem 4.2. A piece of notation: if B,C < Au{S,1}, we
define B|C = {b lc:beB,ce C} - {6} (we leave out 8, so that B |Cisan alphabet).
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' 4.2 Theorem: The following hold for all closed ACP-terms t,s:
i aft's) Caft) U als) '
i, atlls) = at) U afs) U aft) | afs)
iii. at]s) < aftlls)
iv. at]s) € atls)
v. a(9y(t)) < oft) - H
Proof: By theorem 2.3, we only have to prove these statements for all basic terms.
i. We use induction on the structure of t, as defined in 2.2.
Case 1:ift =1, afts) = a(ts) = a(s) = aft) U afs); if t = §, afts) = a(ds) = a(8) = @ C
a(d) U afs). - '
Case 2:if t = 1t', then a(ts) = aftt's) = aft's) C a(t’) U afs) (by induction hypothesis) =
af{t) U afs). B -
Case 3:ift = at' (a € A), then a(ts) = a(at's) = {a} U aft's) C {a} U a{t') U afs) (by
induction hypothesis) = a(at') U ofs).
Case 4:ift =t' + 1", then a(ts) = a((t’ +1")s) = aft's + t"s) = a(t's) U a(t"s) C aft’) Uafs) U
a(t") U afs) (by induction hypothesis) = a{t' +t") U a(s).
ii. This is more complicated. We do simultaneous induction on t and s, and write
| t=2 at + X ’tt'j+(‘t)+5,
1<l 15 -
S= X bKSk+ > "CS'n+(‘C)+5
1<k<sK 1<n<N

with IJ,K,N 2 0, g;,by € A, and the single Tt may or may not occur. By induction
hypothesis we can assume that ii holds for all terms

tllsy, tlls'n, tills, tillsg, tills'p, t'-lls, tilisk, t'sz'n.
To expand tils, we use the rules of table 1.

tls=38+2g tHs + > Tt HS)+(1:S)+

+ Zby(tllsi) + T aftlis'n) + () + X (| bty

+Yatlts + Tt lbksk+2'ct £
Now the three summands on the Iast line can be skipped, since they are summands of
other terms (for instance, each aitilrs’n = aitils‘n is a summand of t(t[|s'y), see
Bergstra & Klop [7], 3.6). Next we use definition 3.1, and obtain: .

aftlls) = U {apualtlls) U U a(t’ lls) U (afs)) w u {bytuadtlsy)

iel jed KeK
U aftlls’y) u(aft) u N {a; | byt [Isy).
ne N i,k with & | by =0

Now we apply the induction hypothesis, and obtain
aftlls) = U {a}ua(t)ua(s )uat)la(s)uu on(tj) (s)ua loc yu
iel o jed

w {byluaft )ua(sk)ua ,ask)u vl aft)ua(s'p)ua(t) loc (s'n)
keK neN
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U {ay | byua(t)ua(s) o) [ alsy) =

ik with 2| b5
= U {gjjuaft) v U a(t‘j) val)vu {bualsy) v U als’y) vals)u
iel jed keK neN
) oc(t;)loc(s) v U oc(t'j)la(s)u ) a(t)la(sk) U a(t)loc(s’n) U
iel jed keK ne N
) {g | by} w alt;) Ia(sk).
ik with 2| b5

Now it is not hard to see, that the union of the first part of the first line is «aft), of the
second part afs), and the union of the last two lines is a(t) loc(s). This finishes the proof
of statement ii. "

iii, iv: these follow immediately from axioms CM1 and ABS.

v: We use induction on the structure of t, as given in 2.2.

Case 1: if t=5, a(dy(t)) = a(dH(8)) = a(d) = a(d) - H, if t=1, a(A(t)) = a(O(T)) = (1) = (7}
- H. : ' :

Case 2:if t=tt', a(dy(t)) = a(oy(tt)) = a(dy(t)) < aft) - H (by induction hypothesis) =
oftt’) - H. .

Case 3: if t=at', and a € H, we have a(dy(t)) = a(dy(at’)) = a(d-an(t)) = a(d) =T C
afat’) - H; if a e H, a@y(t)) = ady(at’)) = aa-oy(t)) = {a} u a(@n(t)) < {a} v (aft') - H)
(by induction hypothesis) = ({a} U a(t)) - H = (at') - H. |
This finishes the proof of theorem 4.2.

Remark: In the sequel we will assume that theorem 4.2 holds for all processes x,y. We
refer to [3] for a proof that it is consistent to do so.

4.3 Definition: suppose t(X{,....,Xp) is an ACP-term with variables X{ - X We define a
set-term corresponding to t, involving the alphabets of these variables. We do that by
applying the rules in 3.1, 3.3 and 4.2 to aft), working from the outside in. We go-on until- -
we only have unknowns a(xj) left, so o is not applied to any composite term. We obtain
a(t) C t"(o(xq),..... ;a(Xp)), where t* is a term over the signature with as sort the
powerset of A, as functions set union v, set difference -H (a unary operator for each H
appearing as a subscript in a d4 or 1), and communication | (as defined in 4.1), and
as constants {a} for each ac A, and @.

Example: if t = a-x4(x1l[xo + d(x3)), then t* = {a} U a(xg)uo(xq)ua(xo) U efxq) la(xz)
U (axg)-H). '

4.4 Definition: Let {x = t, : xe X} be a guarded recursive specification, and let xe X.
Suppose t, contains variables xy,....,x,. Then define (x) to be least fixed point of the
equation |

BX) = t"(B(Xq),-ovrr BlXn): |
Note that this least fixed point will always exist, since terms t* over (Pow(A), U, -H, )
{a}) are monotonic (i.e. a relation X C Y is preserved under the operations). Thus, B(x)
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is the limit of successive approximations t,*(@,....,9), t,"(tx{(D.....9),...... 140 (D,...,9)),
etc..

4.5 Theorem: Let E = {x =t : xe X} be a guarded recursive specification and let xe X.
Then a(x) € B(x). | | | |
Proof: Let EM be the n-th expansion of E, as defined in 2.8. Let Bn(x) be the B(x)
belonging to the equation for x in EN,
We claim that then B(x) 2 Bn(x), for each x e X. Let t”x be the right-hand side of the
equation for x in EN. To prove the claim, first take n=2. Suppose t2X has variables
X{,...Xk. Then tzx*(B(x1), s BlXi)) = 1" (4 " (B(X4 ,1), r)y wey txk*(B(Xk,1)1 L)) =

= 1,7 (B(x4), ..., B{xy)) = B(x) (for certain variables Xi,j)-
Therefore, B(x) is a fixed point of equation x = tzx*(x1, ..y Xi). Since Po(x) is the least
fixed point of this equation, we must have B(x) 2 Bo(x). The general case follows by
iteration. This proves the claim. : A
- By theorem 2.8, wp(x) is equal to some closed term, which is independent of the =~
processes supstituted for the variables in ty. Therefore ‘

ofin (X)) = almn () = almn e (XqmnXi))) = Amn (N (3,....8)) €

C aft"y(3....8)) €t (D,....0) C Bp(x) < Bx), ‘

and with axiom AB6 it follows that o(x) € B(x). - o

4.6 Notes: i) It can be shown that the fixed point B(x) can be reached from @ in finitely
many iterations, if we assume that the specification is finite and assume the
Handshaking Axiom alblec= & (the Handshaking Axiom says that only two-way
communications can occur; assuming it holds ensures that all possible communication
actions are generated the first time). |
ii) We cannot have in general that A Bn(x) = a(x), because that would make the

n=1 :

determination of «(x) decidable, contradicting 3.5.

4.7 Example: A bag Bij with input port i and output port j (i) is given by the guarded
recursive specification ‘ :

Bi= 3 ri(d)(sid)Bl) (see Bergstra & Klop [5]).

deD - L : - :

Here D is a finite set of data, ri(d) means receive d along i, and sj(d) means send d
along j. We find a(xz(Bij)) =of 2 ri(d)[sj(d) + X ri(e)]) = {ri(d),sj(d) : de D}, and on the
: deD eeD
other hand a(B) = {ri(d),sj(d) : de D} u a(B) v {sj(d) : de D} l o(B) using 4.2, so B(B) =
{ri(d),sj(d) : de D}. Since a(no(B)) € a(B) < B(B), we must have a(B) = {ri(d),sj(d) :
de D}. In this way we can calculate the alphabets of many interesting specifications. In -
the proofs of the following theorems, extensive use is made of this so-called
o/B-calculus.
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4.8 In the following table 4, we present 7 conditional axioms:

a() | (ey)nH) < H - = ayixly) = 4(xIap(y) CA1
a) ey =2 = xly) = txlle(y) CA2
oaofx)y"nH=0 = oJy(X) =x CA3
ax) "I=0 = 7p{Xx) =X CA4
H=Ju = dy(x) =9 °dK(x) ' CA5
I=JukK = 1p(x) = 15°Tk(X) CA®b6
HNI=0 = T°H(X) =dy°7(x) CA7

Table 4. Conditional axioms.

4.9 Theorem: Axioms CA1-7 hold for all closed ACP -terms.
Proof: By theorem 2.3, we only have to prove these statements for all basic terms t,s.
CA1: We do simultaneous induction on t and s, as in the proof of 4.2, and write
t=2 at + X tt'j-+("c)+6,
1<iI 1<j<d
s= X bgsk+ X hpS'm+ 2 wWph+()+0
1<ksK 1<m<M - 1<n<N aE
with LJKMN 20, ;e A bye A-H, hp e H, and the single T may or may not occur.
Now g; e aft) and h, € a(y) N H, so by assumption g; l hm € H for each i<I, m<M. Now
oy(tlls) = (1) + & + X ony(ay)-on(tlls) + Z o aH(t lls) +
+ 2 bp-dp ti[sk) +2T aH(tHS + 2 on(q; I bk aH(’( HSk
+2 aH(aiti l’tS' )+ 2 aH ‘Et' ! kak) +> aH I‘CS
As in the proof of 4.2, we see that we can omxt the last three summands. Now we apply
the induction hypothesis, which is possxble since a(t) a(t'j) C aft) and afsy), a(s'y) <
ofs). We obtain ' e o R
\ aH(THS (1) + 0 + X Ilay) oy HaH( + 2 Ton( "HBH
+ T by-on(tliopy(sk)) + Z woy(tloy(s'y)) + Z oy(a; ﬁbk )-I( t HaH Sk))-
We use the same argument to add the terms
2 oy(a l‘C@H(S'n)) +2 aH(’t‘t'j‘ | bi-oH(sK) + 2 aH(ﬁ'j ! T-dH(S'h))-
Then we see that the sum of the last two expressions is dy(tl|d(s)), and the proof is
finished. | : o
CAZ2: the proof that CA2 hdld_s for all closed terms is entirely similar to the proof of
CA1. Note that now we have to have g l hpy =293 (fge aft),hp e a(s) N I), so that
T1(ait; l hms"m) = T1((@; | hm)(tlls"m)) = 8, and all these terms drop out.
CA3: this is by induction on the structure of t. We have four cases:
Case 1:t =8 ort. Immediate. _
Case 2: if t=1t', we have by assumption @ = a(t) " H = a(t') " H, so aH(> dy(tt) =
CTont) =t =t ' :
Case 3: if t=at’ (a € A), we have by assumpﬁon B=oat)nH=({alvat))nH,soag H
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and a(t') " H = @, whence oy(at) = dy(a)oy(t) = at' = t.

Case 4;ift=1t +1", we have by assumption @ = a(t) " H = (a(t') U a(t")) " H, so d(t') N H
=@ and aft") " H=03. Then dy(t) = dy(t' + ") = oy(t') + aH(t"') =t +{" =1t

CAA4: entirely similar to the proof of CA3. | |

CAS5: by induction on the structure of t. We have four cases:

Casel:t=do0rr !mmedlate

Case 2:if t=tt', dy(t) = oy(w) = o (t) = 9 %k (1)-94%KK(t") (induction hypothesis) =
dj°0k () = 9%k (). ' : |

Case 3:ift=at'anda ¢ H, thenalsoa¢ Janda ¢ K. Thus OH(t) = I(at) = a-oy(t) =
dy°dk (a)-d°dk(t’) (induction hypothesis) = ¢ °0k(at’) = 0%k (t); if a € H, we have two
cases: ST

Case 3.1:ae K. Then aH(t) dp(at) = 3 = 3y(8) = 9;°%K (at') = 3,°9k (1)

Case 3.2: Otherwise. Then a € J-K, s0 dy(t) = dy(at’) = & =0 (a-dkl(t)) =

= d (dk(a)ok(t)) = 9% (at') = d%dk(t).

Case 4:if t=t' + 1", dyy(t) = oy(t' +1") = Iy(') + Oy (t") = 9 °0K(t) + 2 Jo9(t") (induction- -
hypothesis) = 3 (3 (t) + dk(t")) = 3 J°aK(t' +1") = 95°9(1). |

CAG6: similar to CAS.

CAT7: by induction on the structure of t.. We have four cases:

Case1:t=8 or 7. Immediate.

Case 2: if t=tt', 11°9(t) = 74 BH( ) = 1oyt = ‘c-aH%I(t’) (induction hypothesis) =
In°Tr(et) = ooty (t).

Case 3:if t=at' (a € A), we consider three subcases: ,
Case 3.1:ae I,ae H. Then 1°%y(t) = T1°0H(at’) = a-tpedy(t’) = a-o°ry(t) (induction
hypothesis) = dpy°ty(at’) = ay°ty(t).

Case3.2:ae 1, ae H. Thent°0y(t) = TPon(at) = 7y(8) =8 = dylat(t)) =

= opy(tg(a)11(t)) = o°ry(at) = o°r(t). '

Case 3.3:ael,ae H. Then 1%u(t) = T1°0H(at) = tp(a-dn(t)) = T (t)) =

= T-d°17(t)) (induction hypothesis) = Ilvty(t)) =on(t(a)Ty(t)) = on°tp(at) =

= dpy°ty(t).

Case 4:if t=t' + 1", 1p°%0y(t) = T (t' + t") = PO (t) + TI°OH(t") = oy°tr(t) + oylry(t”)
(induction hypothesis) = dyy(t(t') + 17(t")) = o4° rI(t +1") = 9y°y(t).

4.10 Remark; Conditional axioms CA5-7 are special cases of more general properties
of renaming operators, of which dyy and 71 are two examples.
For more information about renaming operators, see Vaandrager [16].

5. Examples

5.1 Suppose we have two bags, linked together as in fig. 1.
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: channel ba channel ba | channel
input _Z =~ 8129 —._._oz ng? —-—-—->3 output
Fig. 1

We want to prove that the external behaviour of this system again is a bag. Therefore,
we want to 'hide' the internal channel 2.

Let D be a finite set of data, and let the atomic actions ri(d), sj{d) be as in example 4.7.
We define c2(d) = r2(d)152(d), the communication of a de D along channel 2. All
other communications yield 8. Further, we define:

Encapsulation: H = {r2(d),s2(d) : de D} (all unsuccessful communications). |
Abstraction: 1= {c2(d) : de D} (all internal actions).

5.2 Theorem: B13 = ¢I°aH(B1 2|23,
Proof: a(B12[B23) = 3 r1(d)-dn(s2(d)B12(B23)

deD o (using standard concurrency, see 2.11) =

=3 r1(d)dy°dysp(d)(B'?l(s2(d)BZ3)) (by CAS5) =

~deD _ '

=3 (d)-aH°a{32( }(B 121dts2(q) } (d)[IB23))  (by CA1, see note 1 below) =
deD _ : - |

=Y ri(d)-ay( (812)j(c2(d)s3(d)[1B23)) ~ (CAS5, and see riote 2 below) =
deD

=3 ri(d)-oy(c2(d)-s3(d)l|( B12|823)) - (standard concurrency) =
deD , : ‘ '

=3 r1(d)dy(c2(d)-s3(d)llan(B121B23)) (by CA1, see note 3 below) =
deD

= Y ri(d)(c2(d)s3(d)llon(B12(823)) ~(by CA3, see note 4 below).
deD ‘ ,

Using this result, we get that tI°aH(B12HBz3) =
=3 ri(d)r(c2(d)-s3(d)lonB12B23) =
deD

=% ri(d)ty(rr(c2(d)s3(d)lt°an(B1211BZ3) (CA3 twice, use note 3) =
deD ‘ "

=% ri(d)a(esd(d)lyonB12IB23) =

deD Lo ' : SRR ,

=3 ri(d)(rs3(d)|lt o (B12)B23)) (by CA4, see note 5 below) =
deD :

=3 ri(d)(s3(d)llon(B12)B23) (see note 6 below).

deD A

Therefore, the process T°dy( 81211823 satisfies the defining equation of B13. By the
Recursive Specification Principle (see 2.9), we obtain 813 = T1°dH( 812}1823
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Note 1: «(B12) | ((s2(d)|B23) ~ {s2(d)} < {r1(e), s2(e) : ee D} | {s2(d}} = @ (each deD).
Note 2: 2 Le’t deD. Then on the one hand
c2(d)s3(d)[B%° = c2(d)(s3(d) [B%3) + T _r2(e)-(s3(e)llc2(d)s3(c)][B3),
eeD
and on the other hand , :
a{sz(d)}(sz(dme%) = cZ(d)-a{sz(d)}(SS(d)][823) + eze Dr2(e)-a{32(d)}(s3(e)HsZ(d)H823) =
= c2(d)(s3(d)[|B23) + T r2(e)-sp(qyy(s3(e)lls2(d)|1B23)
e<D | (by CA3, see note 7 below) =
= c2(d)(s3(d)[1B%%) + = _r2(e)-dysp(q)j(s3(e) 3y (s2(@)B23))
: eeD (by CA1, argue as in note 1) =
= o2<d><s3(d)us23> + 2 r2(e)(s3(e) 19 p(qy(s2(d)1B23))
ecD (by CA3, see note 8 below)
Thus we see that both process c2(d)s3(d d)[|B23 and process 8{32 (d)}{s2(d )/IB23) satisfy
the guarded equation
x = c2(d)(s3(d)[B23) + = r2(e)-(s3(e) x).
eeD
Therefore by the Recurswe Specmcatlon Principle,
c2(d)s3(d)|IBZ3=d;55 )y (s2(d) |B23).
Note 3: {c2(d), s3(d) : de D} |A = @, since r3(d) does not occur.
Note 4: a(c2(d)s3(d)l9(B12)B23)) A H C
< [{c2(d), s3(d)} U (A-H) U {c2(d), s3(d)} | (A-H)] A H = (A-H) A H = @, for each deD.
Note 5: c(t°0(B! 2{1823)I1153(d)) AT1C [(A) U {s3(d)} U (AT) [{s3(d)})] N I=[A]] AT=
=, for each deD. ' 7 o
Note 6: r1(d)(ts3(d)||x) = r1(d)ts3(d)| x = r1(d)s3(d)|Lx = r1(d)(s3(d)|x).
Note 7: a(s3(d)|1B23))  {s2(d)} = [{s3(d)} U {r2(e), s3(e) : e D} LU
U {s3(d)} [{r2(e), s3(e) : ee D}] N {s2(d)} < [A-{s2(d)}] N {s2(d)} = @, for each deD.
Note 8: a(s3(e) Ha{sz ()8 (@)IB23)) A {s2(d)} C ({s3(e)} U (A-{s2(d)}) U {s3(e)} | A) A
N {s2(d)} < (A-{s2(d)}) n {sZ(d)} @, for each d,eeD. '
This finishes the proof of theorem 5.2.

5.3 We can easily generalise the theorem above to the situation where we have more
than 2 bags connected in a row. To illustrate, we will consider the case of 3 bags. We
define ri(d), si(d), ci(d) as before (see 4.7, 5.1), and further: '
Encapsulation: Hn = {sn(d),m(d) : de D} (n=2,3); H = H2 U H3;

Abstraction: In = {cn(d) : de D} (n=2,3); I=12 U I3.

5.4 Theorem: B'4 = 1°9,(B12||B23||B34).

Proof: By 5.2, we have B24 = 153 45( 82311834 and B4 = 1;5°9( 51211524
Therefore 1,°94(B12||B23||B34) =

=15°113°02°03(B12)B23|B34) (CA5, CA6) =
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= T12°0H2°T13° Mg (B 2B23(B34) (CA7) =

= T10°9H2°13%0H3(B  2lI9H3(B23]B34) (CA1, see note 1 below) =
= 112°9H2°713(B12(o3(B23(1B3%) (CA3, see note 2 below) =
= 110°0H2°t13(B 1 2l713°93(B23(|B3%)) (CA2, see note 3 below) =
= 10°02°113(B1 2||B24) (by theorem 5.2) =

= ‘51.2°3Hz(81 2||B24) (CA4) =

=14 (by theorem 5.2).

- To finish the proof, we only need to check some alphabets:
Note 1: a(B12) | (c«(B23]|B34) A H3) < {r1(d), s2(d) : de D} |H3 = @.
Note 2: a(B12HaH3(B231|B34)) A H3) C [(A-H3) U (A-H3) U (A-H3) | (A-H3)] A H3 = @.
Note 3: «(B'12) | a(dy3(B23]B34) n13) c Al13 = @.

5.5 Our final example is somewhat more involved. It considers a bag with test for
empty. Such a bag (with input port 1 and output pdrt 2) can be defined by the following
guarded recursive specification (notations as before):
BO = X (r1(d)By + s2(9))-BD
- deD

Bd s2(d) + X r1(e)(BglBy)
eeD

, 'To see that this indeed defines a bag with test for empty, consider the following lemma.

5.6 Lemma: ‘8{32(@)}(86) =B12 (notaticn from 4.7) 7
Proof. We prove the lemma with the Recursive Specification Principle, here applied to
an infinite recursive specification. We will show that for all multisets G of elements of D

we have  BI2|( || s2(e)) =( || Be)dso(@p(BD) ()
v eeG esG
(for G=2, we define BI2||( || s2(s)) =B'2 and ( || Bg)-d(sp(2)}(BO) = djsp(3)}(BO)),
ec@ 1%

by showing that both sides satisfy the same recursive specification.
We see that the lemma follows immediately from (*). To show (¥), we consider two
cases:
Case 1: G=@. Then 8{52(@)}(89) ZZD(H (d)-a{sz(@)}(Bd) + 8)'8{82(6)}(B®) =
e

= ¥ r1(d)-Bg- 8{32( 1}(B2) (by CA3, see note below),

deD

and on the other hand B12 = 3 r1(d)(B'2||s2(d)) by definition.
deD

Note: a(By) = {s2(d)} u {r1(e) :eeD} U U{oc(BeHBd ceeD} = {s2(d)} u{rti(e) :eeD} u
U U{a(Bg 1 eeD} U a(Bg) = w U{a(Bg l Bg :ee D}. Since 3(Bgy) is the least fixed point of
this equation, it follows easily that B(Bg) = {s2(e), ri(e) : e D}. Thus B(By) Nn{s2(9)} =@
whence a(By) N{s2(D)} = &. " :



ALPHABETS IN PROCESS ALGEBRA 17

Case 2: G#Q. In this case, we need the Expansion Theorem of Bergstra & Tucker
[8]: let processes x4,...,Xxp be given and assume the Handshaking Axiom (see 4.6).
Then we can prove:

x1Ix5]l.. nxn-z LT xd+ = oqlx)lLe T ).
1<i<n 1<k<n 1<i<j<n © 1<k<n

Kt K|

The Ex'pansion Theorem (ET) says that if we have a merge of a number of processes,
then we can start with an action of one of the processes, or with a communication
between two of them. Using the Expansion Theorem here, we get:

BI2I( Il s2e))= T s2)B'2( || s2e))+T ri(@B2)( |  s2(e)), and
ecG deG ee G-{d} deD ee Gu{d}

(Il Bg)d (BY) = T s2(d)( | )-d (BY) +

ecG o =20 deG  eeG-{d} e {32(@)}

+3 ridy( | Bo)-0 (BO).
deD ee Gu{d} & s2(0))

5.7 Now suppose we want to link this bag with empty test to a regular bag. Between the
two, we interpose a one- -place buffer, that 'forgets’ the empty test, i.e. a process defined
by the following guarded recursive equation:
T = ¥ (r2(d)s3(d) + r2(2))- TA.
deD

Thus we have the situation of fig. 2.

] bag with 5 buffer 3 bag 4
input ——pf Dtest | Tyl withd | ° o —» output
, 34
BO TO 1 B
Fig. 2.

5.8 We define H2, H3,12, I3 as in 5.3, and define in addition:
Encapsulation: HD = {r2(Q), s2(3)}, H = H2 U H3 U HY:
Abstraction: 1=12 U 13 U {c2(D)}.
We want to prove the following theorem:
11°0(BO(TEB34) = :B14. |
Before we can prove this theorem, we need to prove a number of lemmas. First, defme
a (regular) one-place buffer T by:

T= 2 r2(d)s3(d)T.
deD
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5.9 Lemma: a{rg(g)}(T@) =T. |
Ma{rz(g)}.ﬂ-@) =dEED(r2(d)S3(d) +5)-a{r2(@)}(T@) =dz; 52(d)83(d)-a{r2(®)}(—r@).

Now use the Recursive Specification Principle.

5.10 Lemma: Define P = oo g (BD|ITD). Then there is a process Q such that

P =c2(0)-P + QP and c2(9) ¢ «(Q). '
Proof: We will give an infinite guarded recursive specification for Q. This specification
‘has variables P(G) and P(G,d), for each multiset G of elements of D, and each deD.
The intuitive meaning of these processes is that P(G) describes the bag with contents
G, while the buffer is empty, and P(G,d) describes the bag with contents G, the buffer
filled with d. We have the following equations:
Case 1:G=@. Q= X ri(d)-P{{d})

deD
P(@)=P .
P(@,d) =s3(d) + X ri(e)-P({e},d)
eeD
Case 2: Gz0. P(G)= X c2(d)-P(G-{d},d) + ¥ r1(d)-P(Gu{d})
‘ ~ deG : deD ’

P(G,d) = s3(d)-P(G) + X ri(e)-P(Guie},d)
: eeD o

Then we have P = dpyo_Hp(BDITO) =
= c2(D)-0HoHE(BOITY) + X ri(d)oqo HE(By-BDITO) =

deD ;

= c2(Q)-P + I ri(d)-P({d})-P = c2(@)P + Q-P,

deD
~which follows from the following two equations:
(1) SHauHE(( || Bg)BOITY) = P(G)-P
: eeG _
(2) IHouHE(( || Bg)BD|s3(d)TQ) = P(G,d)-P
ee

We prove these equations by showing that both sides satisfy 'the same guarded
recursive specification. :
Case 1: G=0. Equation (1) is shown above. To show (2): ) o
IHoUHE(BD[s3(d)TO) = s3(d)-dyo Hp(BDITD) + X DBHZUI.@(BQ-B@Hsfs(d)T@),

ee
and P(D,d)-P = (s3(d) + X ri(e)P({e},d))-P = s3(d)-P + X ri(e)-P{{e},d)-P.

eeD : eeD

Case 2: G=@. For equation (1), see the following:

HouHE(( | Bg)BOITO) = = c2(d)oqo Ha(( | Bg)BOIs3(d)TO) +
eeG ‘ eeG ~eeG-{d}




ALPHABETS IN PROCESS ALGEBRA o . 19

+ 2 r1{d)-ooHa(( H' Bé)B@Hs3(d)T®) (by Expansion Theorem), and
deD ‘ee Gu{d} : |

P(G)P = 3 c2(d)P(G-{d},d)-P + 3 r1(d)P(Gu{d})-P

. deG deD

| Fo.r equation (2), consider the following statements:
'aHZUHQ( H B )BD||s3(d)TD) = s3(d)- 4o Hg(( || Bg)BDITD) +

eeG
+ X r (f)-aquH@(( I )B@HsS(d)T@) (by Expansion Theorem), and
feD ee GU{f} ,
P(G,d)-P = s3(d)P(G)-P + 2 r1(fiP(Gu{f},d)-P
feD

This finishes the proof of the first half of the lemma. To prove the second half, it is not
much trouble to show that for all multisets G and all de D,
B(P(G)) = {r1(d), c2(d), s3(d) : de D} (G=O), and
, B(P(G,d)) = {r1(d), c2(d), s3(d) : de D}.. S
Thus, B(Q) = {r1(d), c2(d), s3(d) : de D}, whence c2(Q) ¢ B(Q) and c2(J) ¢ o(Q).

5.11 Note: If we can use priorities on atomic actions (see Baeten, Bergstra & Kiop [2]),
then Q can be defined by a finite recursive specification, as follows. If all actions s3(d)
(for de D) have priority over all c2(e) (for ee D), and 6 implements this priority (i.e.
6(s3(d)x + c2(e)y) = s3(d)6(x)), we can deﬁne

Cq=c2(d)Tq + X r1(e)(CgliCq) (for deD)

eeD
Tqg=s3(d) + X ri(e)(TyliCe) ~ (fordeD)
eeD .
Q=3I r1(d)6(Cy).

deD

5.12 Lemma: ’C{C2(@)}(P) = 1-8{C2(®)}(P).
Proof: By 5.10, we have P = c2(Q)P + QP. Applying KFAR (see 3.4) to this equation, we
get _ Yc2(D (P) =T T{Cz(g)}(QP) = T'T{CZ{Q)}(Q)’T{CZ(@)}(P) =
=1tQ- ‘Crﬁor@\}(P)
by CA4, since c2(Q) ¢ o(Q). On the other hand .
Ta{CZ( )}(P) = ’C~a{02(@)}(02(@)P +QP) =1(0 + a{cg(@)}(QP)) =
= ’C-a{cz(g)}(Q)‘a{cz(g)}(P) = T~Q~8{C2(@)}(P) by CAS3,
so by the Recursive Specification Principle r{cg(@)}(P) = 'c-a{cz(@)}(P).

5.13 Lemma: TIZU{CZ(@)}OaHZUH@(B@”Tg) = €'112°8H2(B1 2HT).
Proof: 1o ic2(@)) PH2uHE (BAITO) = -
=112°%c2(@)) H2uHE(BDITO) (by CA6) =

= 12(T9(c2 (@)} OH2UHE(BDITO) (by 5.12) =
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= 1-112°8H2°a{02(@)}UH@(B@HT@ (by CA5) =
= T712°0H2°9(c2(2)}UHB Ofc2( )}uH@ (BD)orcoz)uHD(TD))
(by CA1, see note 1 below) =

= 1120129 (c2(@)3uHE O ic2(@), r2(@)} 91s2(2)} (B 01c2(2), s2(2)Pfr2(2)}(TO))

= T112°0H2°0(c2(2)}UHEP{c2(2), r2(@))(B A 19jc2(g), s2()(T)
(by 5.6 and 5.9) =
= TT5%p0° a{cz(@}uH@(anT (by CA3, see note 2 below) =
= T10°9o(B12T) (by CAS3, see note 3 below).
Note 1: This is because {c2(@)}UHQ is closed under communication.
Note 2: o(B'12) = {r1(d), s2(d) : de D} by 4.7, and o(T) = {r2(d), s3(d) : deD} is easily
proved. N .
Note 3: e(B12[T) = a(B12) U () U a(B12) | (T) = {r1(d), s2(d), c2(d), r2(d), s3(d) :
deD}. :

5.14 Lemma; 113°8H3(THB34) =B34,
Proof: 1y3°0H3(TIIB34) = t13( T r2(d)-dp3(s3(@)T(B34) =

deD
=3 r2(d)t3(c3(d)-ay3(TIIB34|Is4(d)) =
deD '
=T r2(d)t113°0H30H3(TIB34)Is4(a)) ~ (by CA1, note that A|{s4(d)} = @) =
deD
=3 r2(d)t3Eps(TIB3%)]s4(d)) (by CA3) =
deD : o .
=3 r2(d)- ‘513('513°3H3 (T11B34)|Is4(d) (by CA2) =
deD » ,
=T r2(d)(t13°0H3(TIB34)[Is4(d)) ~ (by CA4).
deD : :

Therefore, tI3°aH3(THB34) satisfies the defining equation of 824, So by the Recursive
Specification Principle tI3°aH3(THB34) = B24,

5.15 Lemma: (Van Glabbeek [10]) ACP_ I tx|ly = t(x[ly).
Proof: tx|ly = wx[Ly + y[Ltx + 1x ly = (x|ly) + yltx + x| y. Therefore txly = wx|ly +(x]ly).
On the other hand t(x]ly) = x|ly = 1|y = t(xx]ly) = t(tx|ly) + wx|ly. Therefore t(x|ly) =

(xlly) + oxlly.

5.16 Now we can finally prove the theorem refered to in 5.8.

Theorem: t;°9(B2I|T2|B34) = 1814,

Proot: 1,°3(B@[T@1B34) = |

= 113°T20{c2(B)} PH3 PH2UHE B@HT@HB34 (by CA5 and CA6) =
= 113°0H3 12u{c2(@) PH2uHE BRITOIB3Y)  (by CA7) =
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= 113°0H3°T12U{c2(D)} aHZuH@(aquHe(BQ’HT@)HB34
(by CA1, see note 1 below) =

=’613°9H3°‘512u{c2(®)}(aquH@ (BO|T®)B3%)  (by CA3, see note 1 below) =

= 13°0H3°T12u{c2(0)) F12uic2(@)) PHauHe (B TO) B
, (by CA2, see note 1 below) =

= 113°0H3 (T2 U{c2(D)) angH@ (BO|[TD)|[B34) (by CA4, see note 1 below) =

= 113°0H3(T %2 (B 12T B34 (by 5.13) =

= T113°9p3(t2°0H2(B 12 T) B34 (by 5.15) =

= ©113°0H3 T2 0H2( 12°8H2 (8121134 (by CA3, CA4, see note 2 below) =
= ©713°3H3 T2 %0H2 (B 1 2] T|B3%) (by CA1, CA2, see note 3 below) =
= T1p°0H T3 dHa(B 1 2[TIIB34) (by CA7) = |
= TT12°0H2° 13 °IH3( 512”’513"31-13 T|IB34)) ~ (py CA1, CA2, see note 4 below) =
= 1115°02(B12[l13°03(T[1B34) (by CA3, CA4, see note 4 below) =
= tp°0p2(B12(B24) (by 5.14) =

=814 | '_ (by 5.2).

Note 1: By 4.7, a(B3%) = {r3(d), s4(d) : deD}. Thus a(B34) | (A-{s3(d) : deD}) = @, and
also ((A - (H2UHD)) U a(B34)) N (H2UH) = B, and ((A - (12u{c2(@)}) L a(B34) A
(12u{c2(@)}) = @. ,

Note 2: Likewise, we show ((A-H2) U a(B34)) m H2 = @ and ((A- 12) U a(834)) NI2=0,
Note 3: a(B12||IT)| (B34 =

= ({r1(d), s2(d) : de D} U {r2(d), s3(d) : de D} L {c2(d) : de D})| {r3(d), s4(d) : de D} =
={c3(d) : de D}. The result is @ if we intersect a(B12[|T) with 12 or H2.

Note 4: c(B12) | o(T||B34) = {r1(d), s2(d) : de D} | {r2(d), s3(d), c3(d), r3(d), s4(d) : de D}
= {c2(d) : de D}. The result is & if we intersect a(T]IB34) with I3 or H3.
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