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Abstract 

Selection of control actuators and sensors aimed at Robust Performance (RP) is an important 
issue. This Input Output (IO) selection could be based on p-synthesis, which is generally time- 
consuming. The basic idea of a new and more efficient IO selection method is to get rid of the 
structure of the combined uncertainty/performance block A arising in RP  control problems. 
For this purpose, the concept of Worst Case Uncertainty (WCU) is introduced. This is the 
smallest uncertainty (in Xm norm sense), that violates the considered RP requirement. 

The IO selection method proceeds as follows. First, an optimal p-synthesis is performed 
including all actuators and sensors (full IO set). Second, for the closed-loop, WCU data is 
generated across a frequency grid. Third, a representative, real-rational, proper, and sta- 
ble transfer function matrix is constructed for this data. Fourth, this (possibly structured) 
WCU representation is absorbed into the generalized plants for other IO sets and the struc- 
tured A reduces to an unstructured performance block. Finally, IO selection amounts to 
checking criteria for the existence of a stabilizing controller achieving a specified closed-loop 
Xm norm. From previous research it is known, that this can be performed efficiently. 

The proposed IO selection method relies on a necessary condition and IO sets may be incor- 
rectly accepted. This necessity is due to two distinct sources. First, the WCU representation 
may considerably differ from the WCU data. As a result, the WCU representation may not be 
worst case for al! freqirencies, not even for the f d l  IO set on which it is based. Second, even if 
the WCU representation is perfect for the full IO set, it may not be for other IO sets. While 
an unstable WCU representation may be easily constructed for the WCU data, a suitable 
stable one may not be possible. Therefore, a few construction procedures are discussed which 
impose stability at the price of dropping, e.g., the perfect phase approximation. 

Actuator and sensor selection for an active suspension is used as an example to evaluate 
the effectiveness and efficiency of the IO selection method. It appeared, that only one of 
the proposed WCU constructions could be applied “succe~sfu1Iy.’~ On the one hand, for this 
specific problem the IO selection method is ineffective. For a weak RP level requirement, many 
IO sets are incorrectly accepted, but the results are better for a strong RP level requirement. 
A remaining question is, if this can be concluded in general. On the other hand, for the 
application the IO selection method is considerably more efficient than IO selection based 
on p-synthesis. Therefore, combining the necessity-based method from this report with a 
sufficiency-based method from previous research and p-synthesis provides an effective and 
expectedly efficient approach to IO selection. 
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Chapter 1 

Introduction 

Preceding the design of a controller, it must be decided on an appropriate number, placement, 
and type of actuators (inputs) and sensors (outputs). This process will be called Input 
Output (IO) selection and each possible combination of inputs and outputs is called an IO set. 
Various IO selection methods are surveyed in [16]. Compared to other stages in control 
system design, IO selection has attracted little attention. Nevertheless, IO selection is crucial, 
since the IO set may put fundamental limitations on the achievable performance. It also 
affects control system complexity, hardware expenses, maintenance, and reliability. If the 
number of candidate IO sets is large, a systematic IO selection method could be invoked 
to complement the designer’s experience and physical insight into the system and to avoid 
overlooking favorable candidates. For a quick evaluation of IO sets, such a method should be 
eficient. It should also be eflective, in the sense that all IO sets are designated for which the 
intended objectives can and cannot be met. 

In this report, a new IO selection method for linear control systems is proposed. The goal 
is to find those IO sets for which there exists a controller achieving a desired level of Robust 
Performance (RP). Such IO sets are termed viable. From a practical viewpoint, the viable 
IO set(s) with the fewest actuators and sensors may be preferred. The question if an IO set is 
viable could be answered by p-synthesis. However, a more efficient approach to IO selection 
is desirable, since the number of candidate IO sets can be huge and a single p-synthesis 
requires quite some time. Other known IO selection methods aimed at RP are also based on 
necessary conditions (like the LMI-approach in [8,12,15]), or on sufficient conditions (like the 
D-scale-estimate approach in [15,18]). 

The basic idea of the method presented here is to get rid of the structure in the combined 
uncertainty/performance block, which arises in RP control problems. For an unstructured 
block (e.g., for nominal performance), IO selection can be performed efficiently by checking 
X, controller existence conditions for each IO set as in [14,17]. The suggested IO selection 
method involves four steps. First, ,u-synthesis is performed for the full IO set including all can- 
didate actuators and sensors. Second, for the resulting closed-loop and a specified frequency 
grid, data is generated for the smallest uncertainty which violates RP. This uncertainty will be 
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CHAPTER 1. INTRODUCTION 2 

called “Worst Case Uncertainty (WCU). ” Third, a real-rational, proper, and stable (RX,) 
transfer function matrix is constructed to represent the WCU data. This uncertainty rep- 
resentation is finally absorbed into the generalized plants for the other IO sets and under 
the remaining unstructured performance block, the X, controller existence conditions are 
checked. 

The report is organized as foollows. The background of the WCÜ is detailed in Chapter 2 and 
the new IO selection method is proposed in Chapter 3. Different ways to construct RX, 
representations are discussed in Chapter 4. The IO selection relies on necessity, so nonviable 
IO sets may be accepted. This shortcoming is illustrated for an active suspension application 
in Chapter 5 .  In Chapter 6, conclusions on the usability of the method are drawn and some 
remaining questions are put forward. 



Chapter 2 

Worst Case Uncertainty 

Before the IO selection method is presented in Chapter 3, the concept of WCU arising in 
complex structured singular value ( p )  theory is introduced for matrices in Section 2.1. The 
use of p for control problems is dealt with in Section 2.2. The consequences of absorbing a real- 
rational, proper, and stable WCU representation into the plant are addressed in Section 2.3. 

2.1 p and Worst Case Uncertainty for Matrices 

In this section, the structured singular value p is treated as a matrix function operating on 
complex matrices M E CYxm (see, e.g., [lo]). In the definition of p, there is an underlying 
structure A, which is a set of block diagonal matrices. Here, A is restricted to be made up 
of ju12 complex blocks, leaving out real and complex repeated blocks. This restriction avoids 
extra complications in the first exploration of the IO selection method and in the p-synthesis 
for the full IO set. For a discussion on control system analysis and design for more general A 
structures, it is referred to [20] (p-analysis) and [19] (,u-synthesis). For the matrix feedback 
connection in Fig. 2.1, the following structures are considered: 

A, = {A, = diag(A,, , . . . , A,,) : AUz E C? "";}, 

Ap = {A, : Ap E ern' x n l } ,  

A = {A = diag(A,,A,) : A E PXn},  

with: 

k k 
ml + Erni = m and nl+ E ni = n. 

i=l i= 1 

(2.1) 

In case of control system design, the structured block A, accounts for modeling uncertain- 
ties, while the unstructured fictitious block Ap accounts for performance specifications, see 
Section 2.2. Note, that each block in A is allowed to be nonsquare. Often, norm bounded 
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CHAPTER 2. WORST CASE UNCERTAINTY 4 

W* z* 

Figure 2.1: Matrix interconnection with w = (,P.) and z = (z) 
subsets are used: 

Ba, = {A, E A, : a(A,) 5 i}, 

Ba, = {A, E Ap : a(A,) 5 i}, 

Ba ={A E A :  a(A) 5 i}, 

with i? the largest singular value of a matrix. The structured singular value p is defined as 
follows, see, e.g., [IO]: 

Definition of p: Given a matrix M E CYXm and a compatible block diagonal structure A, 
the structured singular value p ~ ( A 4 )  0f .M with respect to  A is defined as: 

1 
:= mina,A {a(A) : det(I  - M A )  = O}’ (2.4) 

unless no A E A makes I - M A  singular, in which case p a ( M )  := O .  

It is instructive to give a “feedback” interpretation of the p definition [lo]. Consider Fig. 2.1, 
which represents the l o ~ p  equations z = Mw ar,d w = AZ. As long as I - M A  is norisingular, 
the only solutions z and w to these equations are z = w = O. However, if I - M A  is 
singular there are infinitely many solutions and the norms of z and w can be arbitrarily large. 
Motivated by connections with dynamic systems, the constant matrix feedback system in 
Fig. 2.1 is called “unstable.” Likewise, the system is “stable” when the only solutions are 
zero. Tnus, p ~ ( A 4 )  provides a meas-we of the smallest structiired O causizg instability. The 
maximum singular value of this destabilizing A is exactly l / p ~ ( . M ) .  

Exact computation of p cannot be performed efficiently in general. Instead, p is approximated 
by lower and upper bounds, which are based on the following inequalities: 

Since the gap between these bounds can be arbitrarily large, they are not directly suitable 
for p computation. To (partially) solve this, transformations on M are used, which do not 
affect p,  but which do affect p and O. The upper bound will not be further discussed (see, 
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e.g., [lo]), because only the lower bound is related to the IO selection method. For lower 
bound computation, the subset Q of Pxn is defined [lo, 111: 

Q = {Q E A : Q*Q = I n } ,  (2.6) 

with Q* the conjugate transpose of Q. The ,u lower bound in (2.5) can now be tightened to 
give an  exact expression for p: 

pi ( M )  := max p(M&) = PA ( M ) .  (2.7) 
QEQ 

Note, that the lower bound is actually an equality. Unfortunately, the quantity p(MQ) can 
have multiple local maxima, which are not global. Thus, local search cannot guarantee to 
obtain p,  but can only yield a lower bound. Using the ,u-Synthesis and Analysis Toolbox [i] 
(abbreviated “p-Tools”), both upper and lower bounds for p are computed with the function 
mu. Though for the lower bound there are open questions about convergence, it is stated 
in [i, Chapter 41, that the computation usually works quite well (at least for complex A). It 
is assumed in this report, that the p lower bound exactly equals p. 

The minimum A from (2.4) making I - MA singular is denoted and plays a key role in 
the IO selection. Its corresponding uncertainty block a, will be referred to as the Worst 
Case Uncertainty (WCU) and is given an interpretation in Section 2.2. It is emphasized, 
that a is not unique. Using the p-Tools function mu, Ä is obtained from the p lower bound 
computation, see [lo, Section 71 and [ll]. For this construction, each diagonal block in a has 
rank one and C(Ä) = a(&,) = . . . = a(&) = a(&,) = l / p i ( M ) .  Though the sub-blocks in 
a, and nP are not required to have the same norm, it is a legitimate and convenient property. 
Throughout the rest of this report, a is assumed to be constructed with the p-Tools algorithm 
and hence it is assumed to have the two properties mentioned above. Further details on the 
construction of Ä are not figured out and could be further investigated. 

It will now be shown how the WCU lays the foundation for the IO selection proposal. Consider 
Fig. 2.1, with M partitioned as: 

So, Ml1 and correspond to the loops around A, and AP respectively. Closing M with 
A,, w* and z* are related according to x* = &(Ad, A,)w*, with the upper Linear Fractional 
Transformation (LFT) : 

Z ( M ,  A,) := M22 + M21&(1- MllA,)-1M12. (2.9) 

In the sequel, the “main loop theorem” plays an important role. This theorem is formulated 
below for structured Ap [lo], which is a more general case than considered in the rest of the 
report: 

Main Loop Theorem: Let y > O be given. Then: 

(2.10) 
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From the definition of p, it can be verified that ~A, (M, , )  5 ,uA(M), see also [21, Chap- 
ter l i ] .  Though possibly ~ A ~ ( M ~ ~ )  = ~ A ( M ) ,  an essential assumption in this report is 
p ~ , ( M , l )  < p a ( M ) .  In the context of control system design, this implies that the robust 
stability problem is “easier” than the robust performance problem (which includes robust 
stability). The assumption simplifies the development of the theory and will generally be 
satisfied for practical problems. The following notion plays a key role in this report: 

WCU Theorem: A s s u m e  p ~ ~ ( M , l )  < ~ A ( M ) ,  then  the WCU Ä, satisfies the equality: 

and therefore (with y a positive scalar): 

pA(M) < y * S(Fu(M,Äu)) < 7 .  (2.12) 

Proof: First, recall that Ä is defined as a minimum A making I - MA singular and hence 
(according to the definition of p) ~ A ( M )  = A. The following can always be written: 

det(1- MA) = det 
-M2,A, I - Mz2Ap 

(2.13) 

Under the assumption , L L A ~ ( M , ~ )  < ~ A ( M ) ,  I-MllA, is nonsingular for all A, E S(Ä)Ba, .  
Invoking Schur formulas (see [21, Section 2.3]), equality (2.13) can be rewritten as follows for 
A E c(a)B&: 

det(1- MA)  = det(1- MllA,) det(1- Mz2Ap - M2,A,(I - MllAu)- lMlzAp)  
= det(1- M11A,) det(I - F,(M, A,)Ap). (2.14) 

For the considered A, det(I  - MllAu)  is never zero and so the left hand side is zero if and 
only if det(I  - F,(M, A,)Ap) = O .  The fact that Ä = diag(Ä,, Ä,) is a smallest A for which 
I - M A  is singular implies, that the block Ä P  with ??(ap) = a(&) is a smallest Ap for which 
I - Fu(M, &)Ap is singular for all A, E S(a)Ba,. Hence (compare with the main loop 
theorem) : 

Now replace A, and A in (2.14) by a, and r 
for which I - M [  ‘0. 
is singular, i.e.: 

o 1 respectively. Since nP is a smallest Ap 

o ] is singular, Ä P  is also a smallest Ap for which I - F,(M, &)Ap 
A P  

L 0 A ~ J  

/-LA(M) = pAp(Fu(M, Au)). (2.16) 

Notice, that Ä, maximizes the right hand side of (2.15). The proof of (2.11) is completed by 
noting that pa,(.) = O ( - )  for the unstructured Ap. Finally, (2.12) follows trivially from (2.11). 
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G :  
K :  
M :  
A, : 

A :  
Ap : 

2.2 p and 

W* 

r 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

generalized plant p : output from uncertainty block 
controller g : input to uncertainty block 
generalized closed-loop w* : exogenous variables 
uncertainty block z* : regulated variables 
performance block u : manipulated variables ( inputs)  
diag(&, A,) y : measured variables (outputs) 

Figure 2.2: Standard control system set-up 

Worst Case Uncertainty for Control Systems 

In this section, p is treated for dynamic control systems. More details are given in [i, Chap- 
ter 41 and [21, Chapter li]. Essentially, the standard control system set-up in Fig. 2.2 can be 
viewed as a dynamic equivalent of the constant matrix interconnection in Fig. 2.1. G is called 
the generalized plant, which includes nominal plant data and design filters. The latter reflect 
performance specifications and characterizations of exogenous variables and system uncer- 
tainties. These uricertsirities are represeritec! by the (possibly structured) block A,, while a 
f ict i t ious unstructured block Ap accounts for performance specifications. As in [21, Chapter 
111, it is assumed, that A is in RX,, i.e., A is real-rational, proper, and stable (real-rational 
functions are fractions of polynomials in a complex-valued variable s with real coefficients). 
The following sets now represent RE, Transfer Function Matrices (TFMs), which are “dy- 
namic versior,s” af the mstrices in (2.1) a d  (2.3): 

M ( A )  = {A E RX, : A(jw) E A ‘d w E IR}, 
(2.17) 

M ( B p )  = {A E RX, : A(jw) E BA ‘d w E R}, 

Analogous definitions apply for the uncertainty block ( M ( A , )  and M ( B , _ ) )  and for the 
performance block ( M ( A , )  and M ( B n p ) ) .  The generalized plant G and the controller K 
are assumed proper and real-rational with stabilizable and detectable state-space descriptions 
[21, Chapter 161. Controllers with the additional property of being internally stabilizing are 
termed “admissible” [21, Chapter 161 and the set of all admissible controllers is denoted I C A .  
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The generalized closed-loop M relating w = (,P.) and z = (,4) is obtained by a lower LFT: 

M = E ( G , K )  := GI1 + G12K(I - GzzK)-lG,l. (2.18) 

The partitioning of M is the same as for the constant matrix interconnection in (2.8) and G 
is partitioned as follows: 

[ ; I  = [ G:: G::] [ i n ] .  (2.19) 

With p it is possible to test particular properties of the closed-loop M, e.g., Robust Perfor- 
mance (RP). A control system is said to achieve RP if it is stable and meets the performance 
specifications in the presence of a class of uncertainties M(A,). The performance require- 
ment is expressed as an Z- norm bound on the TFM between w* and z*, i.e., on the 
perturbed TFM Fu(M,A,). For a stable TFM T ,  the ?lm norm is defined as follows, see, 
e.g., [21, Chapter 41: 

llTllc0 := supo(T(jw)). (2.20) 
w 

The following provides a necessary and sufficient test for an RP level y [21, Chapter 111: 

Robust Performance Theorem: Let y > O and let A, and M in Fig. 2.2 be stable. For 
all A, E $M(BP,) ,  the uncertain system F,(M,Au) is stable and ~~Fu(M,A,)~~w < y, i e . ,  
robust performance i s  achieved, if and only i f :  

Testing condition (2.21) is referred to as p-analysis, while designing a controller K such 
that (2.21) is met, or llM1lp is minimized, is called p-synthesis. For a more thorough treat- 
ment of p-analysis and p-synthesis in the case of complex A, see, e.g., [21, Chapter 111. 
In practice, p-analysis is performed in an interesting frequency range for a finite number of 
frequencies (“frequency grid”). For a given frequency grid and closed-loop M ,  a smallest 
A ( j w )  making I - M ( j w > A ( j w )  singular for G I I  cmsidered frequencies (not just one, which 
is, however, enough to violate RP) is denoted Ä ( j w ) ,  with á ( Ä ( j w ) )  = l / p ~ ( M ( j w ) ) .  Its 
sub-block Ä, is called a Worst Case Uncertainty, since it is a smallest uncertainty A, for 
which a(F,(M, A,)) = ,UA(&!), i e . ,  for which the RP level y = IIMIIp is violated. 

2.3 Worst Case Uncertainty as Transfer Function Matrix 

In this section, the focus is on representing the WCU data in &(ju) by a real-rational, 
proper, and stable (RZ,) transfer function matrix &(s). As will become clear in Chap- 
ter 3, the motivation is to get rid of the structured A hampering IO selection, by absorbing 
&(s )  into the generalized plant G and leaving the unstructured performance block Ap alone. 
Throughout the rest of this report, it is assumed that all features which are crucial for the 
investigated problem are covered by the designer-specified frequency grid fl = {u1,. . . , wN} .  
This is important for p-synthesis and for the construction of meaningful WCU data. 
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By assuming p ~ , ( M , , ( j w ) )  < p ~ ( M ( j w ) )  and applying (2.12) over the frequency grid R, 
the following is guaranteed: 

,UA(M(jw)) < y 'd W E fl e o ( F , ( M ( j W ) , Ä , ( j W ) ) )  < y 'd W E R. (2.22) 

If &(ju) is perfectly represented for all w E R by a real-rational and proper 8,(s), i.e., 
n,( jw)  = &(.ju) 'v' w E R, the following is evident: 

p ~ ( M ( j w ) )  = Cf(F,(M(jw), &(ju)))  = 8 ( F u ( M ( j ~ ) ,  &(ju)))  'd w E Q. (2.23) 

If this perfect representation is also stable (i.e., A, E 727-1,) and if 11&11, occurs inside R, 
the combination of (2.22) and (2.23) yields: 

IIMIILL < Y l l ~ U ( ~ , ~ U ) I l ~  < Y* (2.24) 

Suppose M with llM1lLL < y is given and the corresponding WCU data Ä, has a perfect RX, 
representation a,. According to (2.24), this implies the existence of an admissible controller 
K achieving ~ ~ F l ( F , ( G , & ) , K ) ~ ~ ,  < y. If M results from an optimal ,u-synthesis, hence 
llM1lfi = p cannot be reduced further, then also minKEICA l/Z(F,(G, a,), K)llm = p. 

Now, imperfect WCU representations A, are considered, for which the following three as- 
sumptions must be met: 

1. a ( & ( j ~ ) )  5 C(&( jw) )  'd w E R. 

2. l l & l l m  := sup, C(&( jw) )  5 supwEQ C(&( jw) ) .  So, the magnitude of the WCU repre- 
sentation is not larger than the maximum magnitude of the WCU data in the considered 
grid. 

So, in the specified grid the magnitude of the 
WCU representation is never larger than the magnitude of the data. 

3. llF,(M, &)ll, I supuEQ a(F,(M, a,))- So, the magnitude of the perturbed closed- 
loop is not larger than llM1lLL, which is assumed to be achieved in R. 

Under these assumptions, the following inequality replaces (2.23) : 

O(FU(M(jW), & ( j W ) ) )  I *(F,(M(jw),  &(j4)) 'd W E R. (2.25) 

This is explained as follows. Recall, that &(ju) is a maximizing uncertainty in the right 
hand side of (2.15). However, if &(ju) # &(ju), the representation a, does not neces- A 

sarily maximize the right hand side of (2.15) and (2.25) follows. So, for an imperfect A, 
which is not larger than Ä,, there is a gap between ,uA(M) and i?(F,(M,&)). Under the 
three assumptions listed above, the equivalences in (2.22) and (2.24) are now replaced by 
implications: 

PA(M(jw)) < y E R * C ( & ( M ( j w ) , & ( j w ) ) )  < y \J w E fl, (2.26) 
1 1 ~ 1 1 P  < Y =+ l l ~ ~ ( ~ , & J I L  < Y. (2.27) 

The main conclusion is, that / /F,(M,~,)I l ,  < y is necessary for IIMIILL < y with an im- 
perfect WCU representation a,. So, an RP level llM1lp < y is possible only if for the 
generalized plant absorbing a a, meeting the three assumptions, there exists a controller 
achieving rninKEKA &?i(F,(G, &,),K)II, < y. 



Chapter 3 

Input Output Selection Proposal 

The WCU concept offers some prospects for IO selection. In analogy to the D-scale estimation 
approach to IO selection in [15,18], the effects of employing the WCU from the full IO set for 
other IO sets will be studied. 

To start with, consider the full IO set for which the generalized plant and the closed-loop 
are denoted G* and M* respectively. Suppose M* results from an optimal ,u-synthesis, with 
IIM*II, = P and corresponding WCU data &(ju).  This implies the following for all w E Q: 

5(F,(M*, A,)) I b' A, E M(A,) with 5(A,(jw)) 5 a(Ä,(jw)).  ( 3 4  

For the WCU data corresponding to M*, the following holds: 

(3.2) 
1 
- = mina(A,(jw)) = ~ ( A , ( j w ~ ) )  ti w E Ro, p W E 0  

with Qo the frequencies (usually one) where ,u.a(M*) is largest. So, the minimum magnitude 
of the 'f lCu equals 5 for w E O0, but for other w E 0 the magnitude of A, may Se larger and 
even infinite. The following notion from the Robust Performance Theorem in Section 2.2 plays 
an important role throughout the rest of this chapter: for the optimal M* with ~ ~ M * ~ ~ ,  = P, 
there is a particular Au in the set iM(Bp, , )  for which the performance level ,O is not achieved, 
i e . ,  there is a A, E $M(Bp, , )  for which O(F,(M*, A,)) = p. 

Next, consider subsets of the full IO set. The lowest achievable llM1lp values for these IO sets 
are larger than or equal to IlM*II, = P, since eliminating actuators and sensors will never 
improve the best achievable control (obviously, if P is larger than or equal to the RP require- 
ment y, the full IO set and its subsets are nonviable). This implies the following for the WCU 
data corresponding to the optimal closed-loops: 

1 
- = a(AU(jwO))  b' w E Qo for full IO set 2 mina(&(jw)) for other IO sets. (3.3) 

In words: the minimum magnitude of the WCU for the full IO set is always larger than or 
equal to the minimum magnitude of the WCU for a different IO set. However, this remark 

P W € Q  
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may not hold true frequency-by-frequency, i.e., for each w E R (also for w E flo) the WCU 
for the full IO set may be smaller than for a different IO set. It is emphasized, that the 
minimum magnitude of the WCU for a different IO set is not necessarily achieved for the 
same frequencies flo. 

Now, it will be shown how the WCU for the full IC set could Se used to asses other 
IO sets. Recall from Section 2.3, that the existence of an admissible controller N- achieving 
lIF.,(M*, < y (with a, fulfilling the three assumptions) is necessary for the existence 
of a K achieving 11M*11, < y. So, it is necessary for the full IO set to be viable with respect to 
the RP level y. If a close-to-perfect R’7-ítl, representation e, N Ä, were used, this condition 
would be tight (i.e., almost necessary and sufficient) for the full IO set. As should be clear 
from (3.3) and the remark below (3.3), for other IQ sets this a, may either be too large, or 
too small for particular frequencies. Hence, for other IO sets it is a priori unknown whether 
minKEKa ~ / E ( F . u ( G , ~ u ) , K ) ~ ~ m  < y is a necessary or a sufficient condition for IIMII, < y. 
This ambiguity is circumvented by using a WCU representation a, with / / & l l m  = $. So, 
a, E iM(BA,)  and the condition is always necessary. Considered over the frequency grid, 
a , ( jw )  may be much smaller than & ( j w )  for the full IO set. A few approaches to construct 
WCU representations are discussed in Chapter 4. 

The resulting A, may still be outside the class of uncertainties $ M ( B A _ )  the system is 
required to robustly perform against (i.e., a, may still be too large), since it is based on 
WCU data Ä, from an optimal ,u-synthesis: 5 > $. Equivalently, the best achievable RP 
level with the full IO set may be larger than strictly required: < y. To resolve this, a, 
from the full IO set is scaled down by the factor 5 1, so: 

- p -  1 a, := -Au E -M(B,J. 
Y Y (3.4) 

The motivation to use a, from the full IO set for other IO sets is based on the following 
reasoning. The optimal M for an IO set which is “almost as good” as the full IQ set will have 
approximately the same dynamic behavior as M*, i.e., M*(s)  x M ( s ) .  As a result, ,ua(M*) N 

,u*(M) and the WCU data for M* and M (if constructed with the same algorithm) are 
approximately the same. In that case, A, for the full IO set is also a good WCU representation 
for the other equally good IO sets, provided A, is a good representation of Ä, for the full 
IO set. 

Define G := F,(G,&) and 
proposed: 

:= &(G,K).  The following IO selection method is now 

IO Selection with Worst Case Uncertainty: Consider Fig. 2.2 and the WCU represen- 
tation a, corresponding to the full IO set’s optimal closed-loop with llaullm = l/p. Assume 
y > p. For each candidate IO set, the generalized plant with the down-scaled A, absorbed 
into it is constructed and it is tested if there exists an admissible controller K E I C A  achiev- 
ing IIMlloo < y. Since this is a necessary condition for existence of a K E K A  achieving 
//Mllp < y, IO sets which do not meet this condition are nonviable for the RP level y. 
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To check the existence of an admissible controller achieving llG1lm < y, conditions involving 
the solutions to two algebraic Riccati equations are used. To apply the conditions, the state- 
space description of G must satisfy the standard X, assumptions (see, e.g., [ Z l ,  Chapter 171 
and [14, Section 2.3]), which are usually not restrictive for practical problems. Some of these 
assumptions could be dropped if a linear matrix inequality approach were used instead, see, 
e.g., [4]. The employed conditions are given a short interpretation here; for details, the reader 
is referred to [21, Chapter 168~171 and [14, Section 2.41: 

1. Check if the open-loop direct feed-through from w* to z* is not “too large,” since K 
cannot completely cancel this effect. 

2. Check if K with full information on w* and the states of G (ideal output set) meets 
I l ~ l l m  Y. 

3 .  Check if K with full access to z* and the states of G (ideal input set) meets ll&fllm < y. 

4. Based on results from 2 and 3,  check if the combination of input set and output set 
meets ~ l N r l l ~  < y. 

The candidate IO sets are subjected to these conditions, for which functions from p-Tools [i] 
form the basis. As soon as one condition fails, the others need not be checked. 

Due to the necessary character of the IO selection method, it may be ineffective: candidate 
IO sets may be incorrectly accepted. This necessity stems from two distinct sources. First, 
across the frequency grid, the WCU representation Ä, for the full IO set may be “smaller” 
than the WCU data a,. As explained above, this is due to the need for a WCU representation a, that is in the relevant class of uncertainties + M ( B A u ) .  Second, even if Ä, were perfect 
for the full IO set, it may not be “as bad” as the true WCU representation for other IO sets. 
The necessity can also be interpreted by noting, that the WCU representation Ä, is one 
specific uncertainty in the set $M(BA, ) .  However, the requirement llM1lp < y implies, that 
RP should be achieved against all uncertainties in this set. If Ä, is not worst case V w E Q, 
controller design for only Ä, is easier than for all uncertainties in $ M ( B A ~ ) .  

The effectiveness of the IO selection method may deteriorate further if the variables in w and 
z are directly linked with u and y. First, this occurs for uncertainties in A,, which are related 
to 3 ~r y, s11ch as multiplicative and additive input and output uncertainties. Second, sensor 
noise and actuator weights may be contained in w* and z* respectively (connected via A,). 
In these two cases, p-synthesis for the full IO set accounts for additional control objectives 
compared to other IO sets. Consequently, the difference between the full IO set’s a, and the 
WCU representations resulting from p-syntheses for the other IO sets may become larger. 



Chapter 4 

Construction of 
WCU Representations 

This chapter discusses a few approaches to generate EXfl, representations for the WCU data 
A,. Recall, that the p lower bound is assumed to equal the exact p.  Suppose again, that the 
full IO set’s closed-loop M* results from an optimal ,u-synthesis and that ~ ~ M * ~ ~ p  = 0. The 
aim is to construct a suitable WCU representation A, E iM(BA,) .  If i?(&) = l / p ~ ( M )  is 
not flat across the frequency grid R, it makes no sense to approximate the magnitude of a,, 
since the perfect A, would not be in the relevant set i M ( B p U ) .  Instead, modified data & 
with a(&) 5 V w E R should form the basis for IO selection. 

The difference between i?(.Fu(M*, A,)) and S(.F,(M*, a,)) depends on the difference between 
the magnitude and phase of a, and A,. Intuitively, a good A, E $M(BAY) (causing a small 
difference) is all-pass with CT(&) = i V w E R and with a perfect approximation of the phase 
data of a,. In this respect, ÄL with C?(n:) = $ V w E R and arg(&) = arg(&) V w E R 
will be used as modified WCU data. Alternatively, a & with flat magnitude i and newly 
generated phase data could be used. This new arg(&) may be better suited for the case 
with restricted WCU magnitude. From the p-definition (2.4) it is seen, that this involves 
a constrained optimization procedure (A E $BA- instead of A E A). This will not be 
considered and could be a subject for further research. 

The WCU representation may be improved by a higher order of A,. However, the order 
of G equals the order of G plus the order of a, and increasing the order of A, may in- 
crease the computation time for IO selection. If the difference between C?(F.(M*, &)) and 
O(.F,(M*, a:)) is small, the order of a, may be qualified high enough. So, there is a trade-off 
between effectiveness (a high order a, may improve effectiveness) and efficiency (a low order 
A, may improve efficiency). 

To illustrate the construction procedures, a feigned RP problem for the mechanical system 
in Fig. 4.1 is considered. The mass, spring, and damper parameters are set to one. Constant 
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Figure 4.1: Mass-spring-damper example system 

*7-----l 30G1 

1.8 
1 O-’ 1 oo 1 O’ 

Frequency [rad/s] 

Figure 4.2: WCU data a, (- -), flattened magnitude data 
WCU representation Â, (-); * corresponds to wo where p is largest. 

(..), and fourth order unstable 

design filters are used: the filters for the regulated displacement z: and the disturbance force 
w: are set to 0.5 and the filters for the control force z; and the acceleration sensor noise 
w; are fixed at 0.1. The mass parameter is considered 100% uncertain. For a pure nominal 
performance problem (no A,), an Xco optimization yields llM1lco = 0.25, while llM1lco = 0.00 
for a pure robust stability problem (no A,). An optimal p-synthesis for the RP problem 
yields IIMIIp = ,í3 = 0.50. For a frequency grid R containing 51 logarithmically evenly spaced 
points between 0.1 and 10 [rad/s], Fig. 4.2 depicts the corresponding WCU data a, and the 
flattened data & used for the construction of Â,. With the p-Tools function fitsys, a 
fourth order Â, can be generated, which closely matches the magnitude and phase of a:, see 
Fig. 4.2. However, this Â, has three unstable poles and thus cannot be used for IO selection. 

A [‘nice” ( i e . ,  low order, “smooth,” bounded inbetween data points) approximation to the 
WCU data may be easily constructed if it is allowed unstable. However, a nice and stable 
WCU representation may be difficult to find, OF may not be possible at all if the WCU data 
better matches an unstable representation. To guarantee stability, the perfect phase or per- 
fect magnitude approximation could be dropped, as done in Section 4.1 and 4.2 respectively. 
In Section 4.3, a construction is discussed which perfectly matches the magnitude and phase 
in the data points, but the resulting high order a, may have undesirable behavior inbetween 
those points. Finally, Section 4.4 summarizes some additional approaches to WCU construc- 
tions, which could not be used successfully for the example system and which have no good 
perspectives for IO selection purposes in general. 
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Figure 4.3: WCU data Ä, (--) and all-pass, first order, and stable WCU representation a, 
(-); * corresponds to wo where p is largest. 

4.1 All-Pass WCU Representation 

For the first construction, the function dypert from p-Tools is used, see also [i, Chapter 41. 
Assuming that Qo consists of the single frequency wo, the resulting a, is perfect for wo. In 
the software, ,O in (3.2) corresponds to  IIM*IIpr, which is the lower bound version of ~ l M * l ~ p ,  
see (2.21). For each mi x ni sub-block Lui, the WCU representation au; is all-pass with 
magnitude 5 and order mi + ni - 1. For a scalar A,, the dypert construction is easily 
interpreted. For the complex number &,(jwo) = &( jwo)  with wo > O, there is a real number 
a > O such that by a proper choice of the sign, the following holds: 

The WCU representation is then given by: 

If wo = O and la,[ is real and finite, all real a > O are allowed; if wo = O and la,[ is complex 
or infinite, there is no solution. For a purely real number &(juo) and wo 2 O, a = O and 
a, = ~ln,(jLL)~)I. 

An advantage of the dypert representation is its relatively low order, leading to relatively 
small computation times for IO selection. A possible disadvantage is due to the dypert  
representation being based on WCU data for the single frequency wo. This fixes the behavior 
for all other frequencies in Q and so the phase of a,( jw)  and the phase of &(ju) may differ 
significantly. For the example system, this is illustrated in Fig. 4.3, where wo = 0.40 [rad/s] 
and Q! = 0.24 in (4.2). 
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4.2 Minimum-Phase WCU Representation 

The second construction generates an E X m  WCU representation which closely matches the 
phase data of a,. This construction is based on Bode's gain-phase relationship, see, e.g, 
[13, Section 2.11. Consider a Single Input Single Output (SISO), stable, mininurn-phase 
system T ( s )  and assume T(0) > O. The unique relation between the gain IT(jw)I and the 
phase argT(jw) [rad/s] of the frequency response is then given by: 

The term In - in (4.3) is infinite at w = w* ,  so argT(jw*) is primarily determined by the 

I dw - $, which justifies the following commonly local slope N ( w * ) .  Moreover, J-", In w-w* . ; - 
used approximation for stable minimum-phase systems: 

I 
I /  

n- 
2 2 dlnw* * 

7r d In IT(jw*)  I 
argT(jw*) N -N(w*)  = - (4.4) 

In the context of IO selection, the approximation (4.4) is employed to generate new magnitude 
data for the WCU, based on the phase data arga,(jw). In a subsequent step, a minimum- 
phase E X w  representation a, is constructed for the combination of the original phase data 
and the new magnitude data, see below. 

To generate new magnitude data, (4.4) is rewritten. Realizing that dlnw* = $dw*, the 
following results: 

with C = e' a constant to be chosen, see below. Given the phase arg&(jw), new magnitude 
data can be obtained by numerical integration over the frequency grid (in this report, a 
trapezoidal integration scheme is used). With the original phase data and the new magnitude 
data, the new WCU complex frequency response is generated by substitution in: 

a; (ju) = I A; ( j u )  1 ,j arg a u  ( j u ) .  (4.6) 

Next, the p-Toolbox function f itsys is used to generate a minimum-phase R X c o  represen- 
tation for n x ( j w ) .  Finally, the constant C is used to scale the magnitude of this WCU 
representation so llAullm = i. 

For the example system, this construction is illustrated in Fig. 4.4. For an eighth order a,, 
the phase is reasonably close to the phase of the data, while there is hardly any difference 
between la,] and lnxl (the latter is not depicted). The phase approximation cannot be 
further improved by increasing the order. This is due to the fact, that the fitsys function 
used for approximating A; first generates an approximation which may have poles and zeros 
in the right half plane and then simply flips these poles and zeros around into the left half 
plane (for the eighth order a,: three poles and two (out of eight) zeros in the right half 
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Figure 4.4: WCU data a, (--), flattened magnitude data lÄLl (.-), and minimum-phase, 
eighth order, stable WCU representation a, (-); * corresponds to wo where p is largest. 

plane). While this leaves lÂul unchanged, this does not hold for arga,. It is expected, that 
if the new data a: exactly corresponds to a stable minimum-phase system, f itsys will also 
generate such a system. However, this ideal situation does not occur due to the approximation 
in (4.4). Note from Fig. 4.4, that is considerably smaller than 5 in fl; ll&1103 = i is 
achieved at w = 00, i.e., outside iR. 

4.3 Nevanlinna-Pick WCU Representation 

The so-called Nevanlinna-Pick Interpolation (NPI) problem is considered to construct an 
RZ, WCU representation Â, which perfectly matches the magnitude and phase of for a 
subset of frequencies 0, fl. Only the ‘[scalar” NPI problem is discussed here [3, Chapter 91, 
which yields a SISO transfer function T ( s ) .  The more general “matrix” NPI problem can be 
found in [2, Chapter 181, or, as an alternative, the scalar NPI problem could be solved for 
each entry in a h ( j w ) .  

Nevanlinna-Pick Interpolation Problem: Let {al,. . . , a,} be a set of points in the right 
half-plane û? and {bl,. . . , b,} a set of points in @. The classical Nevanlinna-Pick interpolation 
problem is to find a complex-rational, proper, and stable transfer function T ( s )  satisfying: 

IlTllm 51, 
T ( a i )  = bi, i = 1,. . . ,n. 

Equation (4.8) states that the graph of T ( s )  must pass through each point (ai ,  bi). The NPI 
problem may not be solvable. A necessary condition for solvability is Ibi I 5 1 ‘d i. To guarantee 
solvability, the so-called Pick matrix (see [3, Section 9.21) must be positive semi-definite. The 
ij-th entry of this matrix is given by a;+a;. If the NPI problem is solvable, the algorithm 
documented in [3, Section 9.31 is used here to construct a solution. It is emphasized, that 
there are an infinite number of solutions if [bil < 1, because a complex-rational, proper, and 

1-b.b*: 
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stable transfer function Q(s ) ,  ~ ~ Q ( s ) ~ ~ ~  5 1 is free to choose. The effect of Q on T ( s ,  Q ( s ) )  is 
not easily interpreted and therefore Q = O or Q = 1 will be used here. 

The interpolation of the data in &(jw) differs from the classical NPI problem in a few 
respects, but this does not cause insurmountable problems. First, the data points ai = j w i  
are located on the imaginary axis instead of in (c+. This boundary NPI problem is treated 
in [2, Chapter 211, where a “trick” for the discrete-time case gives rise to the following idea 
to retain the classical NPI problem. The data ai = jw i  is shifted into û? by adding a small 
positive real number E :  úi = E + j w i  /f i. By choosing E arbitrarily close to zero, it can be 
shown that the NPI problem for the shifted frequency data is always solvable if [bil 5 1. 
However, to avoid numerical problems, E should not be chosen too small in practice. After 
solving the NPI problem, the state-space matrix A of T ( s )  is transformed into A - d. 

Second, the classical NPI problem aims at constructing a complex-rational transfer function, 
while Â, must be reubrational. However, [3, Chapter 91 states the following: if the data 
in {a1 ,  . . . , a,} and { b l ,  . . . , b,} occurs in complex conjugate pairs, then a complex-rational 
solution T ( s )  can be written as T ( s )  = %(T(s ) )  +jS(T(s ) )  and the real-rational part %(T(s) )  
is also a solution to the NPI  problem. Realizing that for a real-rational solution T(s*)  = T*(s ) ,  
the frequency data vector and the WCU data vector are augmented with their complex 
conjugates to give [ >: ] and [ q:(jw) ] respectively, which are supplied to the construction 
algorithm of [3, Section 9.21. 

A:, (ju) 

Third, for the classical NPI problem to be solvable each Ibil should not be larger than one. 
This will not hold in general and therefore, &U(jw) is scaled as follows: 

and with 19, a positive real number slightly larger than one. From examples it is observed, that 
for O2 = 1 the NPI problem may not be solvable if E is not small enough. For the scaled data, 
the construction algorithm of [3, Section 9.31 is invoked and the solution is scaled backwards 
by multiplying with &ûZ. 

A more accurate WCU representation is obtained if 0, contains more frequency points, but 
this will increase the order of a,. More specific, for N, frequencies in Os, the order of Â, 
is 4N,. Recall, that the frequency data is mirrored into the real axis, so the construction 
is actually based on 2N, data points. So, the order of a, grows rapidly with N,, which 
endangers the IO selection efficiency. 

In Fig. 4.5, the NPI  construction procedure is illustrated for the mass-spring-damper system. 
Parameters E = and O2 = 1.01 are used, Q(s )  = O, and 0, contains six logarithmically 
evenly spaced points in 0 (if more points are used, numerical problems occur). A 24th 
order WCU representation a, results. For this example, there is hardly any difference if 
Q(s )  = 1 is used instead of Q(s )  = O. Figure 4.5 shows, that Â, exactly equals in the 
data points. However, inbetween these points there are large differences between the data 
and the approximation, especially for the phase (note, that the phase plot is now restricted 
to the range [-18O0, 180°]). Indeed, the NPI problem does not impose other requirements 
inbetween data points than the Xm norm requirement on T(s ) .  
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Figure 4.5: WCU data nu (--), flattened WCU data IALI for (o) ,  and 24th order stable 
WCU representation au (-) based on Nevanlinna-Pick interpolation; * corresponds to wo 
where p is largest. 

4.4 Other WCU Constructions 

The findings with some other construction procedures are summarized. Since they were not 
successful for the mass-spring-damper example and are expected not to be useful in general, 
these procedures are not further considered for the IO selection application in Chapter 5. 

The first construction amounts to approximating an unstable transfer function by a stable 
one. As shown for the example, an unstable WCU representation with au N may be 
easily constructed. The idea is now to split up the unstable au into a stable part a: E R X f l ,  
and an anti-stable part a; E R31; (all poles in the right half plane), so au = a: + a- u *  

Next, the anti-stable part is replaced by a stable transfer function, which results from solving 
the so-called Nehari problem, see, e.g., [21, Chapter 81 and [9, Section 6.61. Essentially, a 
minimization problem in the form infsERX,_llR- 5’11, is solved, with R E RZ&. Afterwards, 
the stable approximation of the anti-stdde A; is added to the stable part A: to give a stable 
WCU representation. Since the Nehari problem only involves an 31, norm minimization 
related to the anti-stable part, the resulting au may differ considerably from the original 
data &. This has also been observed for the mass-spring-damper example; see Fig. 4.6, 
where the third order anti-stable part of the unstable a, in Fig. 4.2 is replaced by a second 
order stabie transfer function. 

The second type of constructions a priori require the poles of au to have a negative real 
part (via constraints in the involved optimizations). In [ 6 ] ,  an approach is described that in 
the SISO case aims at finding a stable transfer function &(s)  that optimally describes the 
frequency-response data &(ju) in a weighted I,-sense (“minimize the maximum magnitude 
of the weighted error”). The construction involves two steps: first, an initial estimate for au 
is generated by linear programming; second, this estimate is improved by solving a nonlinear 
programming approach. The first step is implemented in the MATLAB compatible package 
CURVEFIT [5], but the second step is not. However, according to [5], in many cases the 
optimal approximation after the second step is hardly any better than the initial estimate. 
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Figure 4.6: WCU data a, (--), flattened WCU data IALI (e.), and third order stable WCU rep- 
resentation a, (-) from solving the Nehari problem; * corresponds to wo where p is largest. 

1 O-’ 1 oo 1 o’ 
Frequency [rad/s] Frequency [rad/s] 

Figure 4.7: WCU data a, (--), flattened WCU data InLI for s2, (o) ,  and 12th order stable 
WCU representation a, (-) from CURVEFIT; * corresponds to wo where p is largest. 

To get an idea of the prospects of this construction, the first step is solved for the example. 

Up to our knowledge, there are two MATLAB functions to construct stable transfer functions. 
First, f i t s y s  from p-Tools could be used, but the algorithm is not documented. Second, 
invfreqs f r ~ m  the Signa! Processing T d b o x  [?] irivolves a weighted minimization iri 12-sense 
(“minimize the sum of the weighted squared errors”). 

Using any of these three construction procedures for the example system, it is observed 
that the approximation inbetween data points may be arbitrarily bad, both with respect 
to magnitude and phase. This is due to the fact that only a finite number of data points 
is considered and the construction procedures do not impose requirements inbetween points 
(this is unknown for the f i t s y s  algorithm). While the Nevanlinna-Pick procedure guarantees 
an R, norm bound for a,, this does not apply for these procedures. For the CURVEFIT 
procedure, the above is illustrated in Fig. 4.7. Also, the procedures easily run into numerical 
problems, even for a small number of frequency points in the subset Os of s2. 



Chapter 5 

1 0  Selection for an Active 
Suspension 

The IO selection method is used to select actuators and sensors for active vehicle suspension 
control. Section 5.1 sketches this problem. For nine typical IO sets, controllers are designed 
and the results of ?lm optimizations for differently perturbed plants are compared in Sec- 
tion 5.2. Finally, Section 5.3 discusses the IO selection results for 45 candidate IO sets and 
compares the efficiency and effectiveness of the proposed method with those of two other 
methods. 

5.1 Control Problem Formulation 

An active suspension for the tractor-semitrailer combination in Fig. 5.1 is considered. To 
control the suspension, two actuators (u1, u2> placed between the axles and the tractor 
chassis are proposed as candidate inputs, while suspension deflection sensors (yi, yz) and 
chassis acceleration sensors (y3, y4) are suggested as candidate outputs. This yields 45 distinct 
candidate IO sets. 

‘The control objectives are the following. First, the heave (z:) and pitch (z;)  accelerations 
should be small for good driver comfort. Second, the suspension deflections (23, z:) must 
satisfy space limitations and, third, the tire deflections (z;, z:) must be limited for good 
handling properties and minimum road surface damage. Finally, z* contains weights for each 
input u to account for actuator limitations. The exogenous variables w* are the derivatives 
of the road surface height (wy, w,*) and the noise for each output y. The design filters in the 
generalized plant G quantifying these control objectives are documented in [15,18] and not 
repeated here. 

Due to cargo variations, the semitrailer mass is a major uncertainty source; see the point mass 
“Au” in Fig. 5.1. This mass is assumed to vary between the values for an empty and fully 
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Figure 5.1: Tractor-semitrailer combination 

loaded semitrailer, with the nominal mass taken the mean of these two. This gives a 90% 
variation around the nominal value. Note, that A, is real parametric. However, the IO se- 
lection method and controller designs in this report assume complex uncertainties and may 
therefore yield conservative results. Since A, has dimension 1 x 1, the WCU representation 
Â, is found by constructing a scalar transfer function. 

Figure 5.2 depicts the p-plot (dashed) after an optimal p-synthesis for the full IO set. The 
plot is relatively flat for frequencies below 100 [rad/s] and the maximum value IIM*II, = 
IIM*IIpl = ,í3 = 0.75 is reached around wo = 33 [rad/s]. The magnitude and phase of the 
corresponding WCU data is shown in Fig. 5.3 (and Fig. 5.4). For this problem, only an 
unstable WCU representation Â, could be generated which closely matches the modified 
WCU data &L. Therefore, the two WCU constructions proposed in Section 4.1 and 4.2 are 
invoked. The construction based on Nevanlinna-Pick interpolation is not considered, since it 
causes numerical problems if more than one data point is supplied to the algorithm. These 
problems are due to approximate pole/zero cancellations in 8, and they may also be due to 
the poles and zeros being close to the imaginary axis. 

The all-pass and minimum-phase WCU representations are depicted in Fig. 5.3 and 5.4 re- 
spectively and the magnitudes of the closed-loops with Â, absorbed are shown in Fig. 5.2. 
The first order all-pass Â, is perfect (in magnitude and phase) for w = wo, but for other 
frequencies it deviates significantly from the data. If Â, is absorbed into M*, Fig. 5.2 shows 
that i?(F,(M*, a,)) = O(F,(M*, a,)) for w = wo. For other frequencies, O(F,(M, au)) 5 
O(F,(M*,&)). Obviously, Â, is not worst case 'd w E R. For the minimum-phase a,, the 
phase approximation cannot be improved by increasing the order further than six. Though 
arga ,  fits reasonably well with argá,, the magnitude lÂul is considerably smaller than 
]&l. The all-pass and minimum-phase WCU representations both meet the three assump- 
tions listed in Section 2.3. 
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Figure 5.2: Magnitude of the perturbed TFM between w* and z* for the WCU data 
6(.Fu(M*, nu)) = p a ( M * )  (--), for the minimum-phase WCU representation 6(.Fu(M*, au)) 
(-.), and for the all-pass WCU representation before (-) and after (..) 3-1, optimization; * 
corresponds to (wo, ,û) 
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Figure 5.3: Worst case uncertainty data nu (--) for the full IO set and first order all-pass 
WCU representation a, (-); * corresponds to (wo, ,û) 
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Figure 5.4: Worst case uncertainty data A, (--) for the full IO set, flattened magnitude 
data IALI ( . a ) ,  and sixth order minimum-phase WCU representation a, (-); * corresponds to 
(wo, P)  

5.2 31, Optimizations for Perturbed Plants 

Prior to the IO selection in Section 5.3, X, optimizations are performed for generalized 
plants absorbing Â,’s with distinct magnitudes (minKEICa /lFl(G, K)llw, with t ~ l = l O - ~  in 
the y-iteration). This will be done for the nine IO sets in Table 5.1, which give a good 
indication of the importance of each candidate actuator and sensor. Based on the 11M11, 
values from optimal p-synthesis, it is concluded that the actuator (u2) and sensors (y2 and 
y4) at the rear of the tractor are more important for RP than those at the front. Table 5.1 
also lists the optimal llMllm values for Nominal Performance (NP), i.e., for the case without 
uncertainty. Recall, that a, = fa, E $ M ( B A _ ) .  So, by manipulating y, the magnitude of 
the WCU representation is varied. For the all-pass a,, three different cases are considered: 
1) y = 1, 2) y = 0.8, and 3) y = p = 0.75. For the minimum-phase a,, only y = 1 and y = p 
are studied. 

Applying the minimum-phase WCU representation - a,, Table 5.1 shows that 112i/rll, is the 
same for y = 1 and for y = p. Moreover, llMllw = llMll,, i.e., the smallest achievable 
closed-loop X, norm is the same for the generalized plant with a, absorbed and for the 
generalized plant without uncertainty (“a, = O”). Apparently, a, is too small, as may have 
been foreseen from Fig. 5.4. For this reason, the minimum-phase W-CU representation is not 
further considered in this chapter. 

The all-pass WCU representation a, is now studied. A first observation from Table 5.1 
is, that for the full IO set absorbing Â, (= a, for y = p) into G yields IIMllw = 0.17, 
which is significantly smaller than JJMIJ, = 0.75. This is because Â, is not the worst case 
uncertainty ‘d w E R, not even for the full IO set (see Fig. 5.2). As a result, the new controller 
from an X w  optimization for G can further reduce @(F,(M*, a,)) for frequencies where this 
magnitude is large (e.g., for w = wo), by letting it increase for frequencies where it is small. 
Figure 5.2 illustrates this effect. X w  optimization for G returns a closed-loop magnitude 
which is considerably smaller than O(Fu(M*, a,)) for frequencies below 76 [rad/s], yielding 
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Table 5.1: Nine typical 10 sets with )1MJ), from optimal p-syntheses (RP), llMIJoo from 
Xm optimizations without uncertainty (NP), and with ll.i@lloo from Xm optimizations with 
a, absorbed into G. 

2 ~ 1 ~ 2 ~ 3 ~ 4  u1 1.06 0.17 0.23 16.35 11.64 0.17 0.17 
3 y1 ~ 2 ~ 3 ~ 4  u2 0.75 0.27 0.28 0.27 0.27 0.27 0.27 

4 Y1 Y2 ~ 1 ~ 2  0.76 0.15 0.15 0.19 0.25 0.15 0.15 
5 Y3 Y4 ~ 1 ~ 2  0.76 0.16 0.15 0.16 0.17 0.16 0.16 

6 Y1 ~ 1 ~ 2  1.01 0.16 0.23 12.54 13.93 0.16 0.16 
7 Y2 ~ 1 ~ 2  0.76 0.27 0.28 0.26 0.26 0.27 0.27 
8 Y3 U1u2 0.83 0.17 0.22 0.51 0.53 0.17 0.17 
9 Y4 ~ 1 ~ 2  0.76 0.28 0.28 0.27 0.27 0.28 0.28 

a too optimistic indication l/&flloo of the achievable RP level. 

A second observation from Table 5.1 is, that each IIGllm for y = 1 is considerably smaller 
than one for all typical IO sets, even for IO sets 2 and 6 with 11M11, > 1. So, the nine 
IO sets pass the necessary condition for existence of a controller achieving the RP level y = 1. 
Moreover, each IIGllm is significantly smaller than the corresponding //MI[,. Apparently, the 
applied WCU representation is much “smaller” than the true WCU for each IO set. Also 
notice, that a smaller llG1lm does not imply a smaller IIMII,; compare, e.g., IO set 2 and 3. 
Therefore, predicting the IO sets’ lowest achievable IIMII, based on Ilfilloo seems useless if 
A, is not representative. For the smaller value y = 0.8 (and hence for larger a,), IO sets 
2 and 6 yield IIMllm > 0.8, which is in line with their llM1lp values. For IO set 8, however, 
Illi/rllm < 0.8 despite the fact that IIMIIp > 0.8. 

Next, the focus is on y = p, which is the case without down-scaling: A, = A,. Under the 
assumption that the p-synthesis results are correct, ))M1), < 0.75 is only possible for typical 
IO sets 1 and 3. All nine l lkllm values are smaller than the corresponding 11M11, values, 
except for IO sets 2 and 6. For these IO sets, /lkllm > 0.75 and so they are correctly rejected 
for y = 0.75. However, IO set 8 is incorrectly accepted. These results are made plausible by 
Fig. 5.5, which shows that for IO sets 2 and 6 the magnitude of A, is considerably larger than 
that of the actual WCU data Ä, for frequencies in a region around wo (mind the different y- 
axis ranges and assess the results for IO sets 4, 7, and 8 in this perspective). For IO sets 2 and 
6, the maximum of ,u and hence the minimum of ??(au) also occurs at a different frequency 
wo N 13 [rad/s] than for the full IO set. 

Table 5.1 also shows, that for IO sets 5, 7, and 9 the optimal ( lM( ( ,  value for NP may be 
slightly larger than the optimal Il&!llm value with a, absorbed into the nominal generalized 
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loops (-) and magnitude of the all-pass WCU representation & (--) for the fuZZ IO set's 
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plant. Moreover, for IO sets 3, 7, and 9 the optimal llullm may slightly decrease for an 
increasing magnitude of a,; for IO set 2, the decrease is large if y = ,O is used instead of 
y = 0.8. An exact explanation for these counter-intuitive phenomena (“performance is better 
in case of (a larger) uncertainty”) is currently lacking. Apparently, if the WCU representation 
is not worst case ‘d w E 0, absorbing it into the plant may have a positive effect on the plant 
dynamics. For the nine typical IO sets, the effect of varying y in the range [0.75, 11 on the 
optimal Ilullm is shown graphically in Fig. 5.6. Quite counter-intuitively, l l f i l l m  for IO sets 2, 
6, 7, and 8 does not monotonically decrease for increasing y and hence decreasing magnitude 
of a, E $M(B*J .  

5.3 Input Output Selection Results 

IO selection is performed for the 45 candidate IO sets. The results of the proposed method 
involving the WCU representation ( WCU-based IO selection) are compared with the results 
from two other approaches: 

1. p-based IO selection: This method is based on the D-K iteration approach to subopti- 
mal p-synthesis, see, e.g., [21, Chapter li]. Using third order D-scales and a frequency 
grid with 60 points between 10-1 and lo3 [rad/s], the D-K iteration is stopped in two 
cases: if 11M)), < y (IO set is viable), or if the reduction in IIMII, is less than 0.01 
and llM1lp > y (IO set is nonviable). One of these criteria is usually met within five 
iteration steps. Assuming the p-synthesis results to be correct, this method provides a 
necessary and suficient condition for IO set viability. 

2. DSE-based IO selection [15,18]: This method extends the generalized plants G with 
diagonal scalings. These are the so-called D-Scale Estimates (DSEs) obtained from a 
p-analysis for the full IO set’s optimal closed-loop M*. Since the DSE from the full 
IO set may not be optimal for other IO sets, this method provides a suficient condition 
for IO set viabiiity. Eere, a fourth order DSE is used. 

Starting with the full IO set, smaller candidates are checked and subsets of nonviable IO sets 
are directly rejected, since eliminating actuators and sensors will never improve control. Other 
silggestions to improve the eficiency are given in [L5, Chapter 7’1). The results of the three 
IO selection methods with different RP test levels y are listed in Table 5.2. The CPU times 
apply for a Silicon Graphics workstation (Indy, 200MHz, R4400SC). It is emphasized, that 
for the WCU-based and DSE-based methods the CPU times exclude the time for optimal 
p-synthesis with the full IO set (CPU=196 [SI). This is fair, because also for the p-based 
IO selection, it is sensible to find out what the best achievable RP level is by first performing 
an optimal p-synthesis for the full IO set. 

The main conclusions from Table 5.2 are the following. For y = 1, the p-based IO selection 
rejects 17 IO sets. These are the 15 IO sets using the single front actuator u1 and yl/ul u2, 
yl/u2 with the single front suspension deflection sensor yi. The WCU-based IO selection 
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Table 5.2: Number of accepted IO sets and CPU time for IO selection based on three different 
approaches 

RP test level p-based WCU-based DSE-based 
accepted sets CPU [SI accepted sets CPU [SI accepted sets CPU [SI 

w - 1  -- 78 3.29 lo3 45 62 26 76 
Y = 0.8 26 3.81 103 28 42 24 67 

method accepts all 45 IO sets, so 17 sets are incorrectly accepted. Note, that this ineffec- 
tiveness is in line with the ?-Lm optimization results in Table 5.1. For y = 1, the DSE-based 
IO selection rejects 19 IO sets, but y 3 / ~ 1  u2 and ~ 3 / ~ 2  can achieve IIMIIp = 0.83 and so they 
are incorrectly rejected. 

For y = 0.8, 26 IO sets should be termed viable: in addition to the 17 IO sets nonviable for 
y = 1, y 3 / ~ 1  u2 and y 3 / ~ 2  using the single front acceleration sensor y3 should be eliminated. 
It appears, that the WCU based IO selection incorrectly accepts these two IO sets, while the 
DSE based method incorrectly eliminates yi y 3 / ~ 1  u2 and yl y 3 / ~ 2  with ~ ~ M ~ ~ p  = 0.76. 

These results clearly show, that (due to necessity) the WCU-based method may incorrectly 
accept nonviable IO sets, while (due to sufficiency) the DSE-based method may incorrectly 
reject viable IO sets. Hence, both methods may not be effective, depending on the considered 
problem. Combining these two methods with p-synthesis may improve effectiveness as follows. 
First, the candidate IO sets are subjected to the WCU-based method. Second, the accepted 
candidates are subjected to the DSE-based method. Obviously, the remaining IO sets are 
viable. However, for the IO sets accepted in the first step and rejected in the second step, it is 
unclear whether they are viable or not. For a manageable number of such IO sets, p-synthesis 
could now be invoked to get an unambiguous answer to IO set viability. For the considered 
problem and y = 0.8, four IO sets are accepted in the first step and rejected in the second 
step. These are the viable IO sets yi y 3 / ~ 1 ~ 2  and yl y 3 / ~ 2  and the nonviable IO sets y 3 / ~ 1  u2 
and Y3/u2- 

Table 5.2 finally shows, that for this particular problem the WCU-based IO selection method 
is slightly more efficient than the DSE-based method. Though a larger number of IO sets 
are tested for the WCU-based method, the CPU times are smaller: a factor 1.2 and 1.6 for 
y = 1 and y = 0.8 respectively. This is due to the fact, that the DSEs increase the order 
of the generalized plant G by eight, while the WCU representation increases the order only 
by one. The DSE-based IO selection in turn is considerably more efficient than the p-based 
IO selection: a factor 43 and 57 faster for y = 1 and y = 0.8 respectively. 
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Discussion 

A new method for actuator and sensor selection (IO selection) was proposed. Basically, the 
method eliminates the structure in the combined uncertainty/performance block arising in 
robust performance problems. This is achieved by constructing a real-rational, proper, and 
stable (RXm) representation of a Worst Case Uncertainty (WCU) and absorbing this into 
the generalized plant. For the remaining unstructured performance block, the IO selection 
method proposed in [14,17] can be used. Essentially, the existence of a stabilizing controller 
achieving a closed-loop Xm norm bound is checked. This involves conditions on the solutions 
to two Riccati equations. The WCU data and RXm WCU representation 8, are determined 
from the full IO set’s closed-loop after an optimal p-synthesis. The IO selection relies on a 
necessary condition for IO set viability, since the WCU representation is not guaranteed to 
be really worst case for all frequencies, not even for the full IO set on which it is based. 

A major problem encountered for the IO selection method is the requirement that a, must 
be stable. As a result, a suitable (close to data points, bounded inbetween data points, 
low order, “smooth”) Â, is not easily constructed and may not be possible at all. In this 
respect, a remaining question is if a simple criterion exists (or can be developed), which checks 
whether or not such a suitable WCU representation exists. Moreover, the way in which the 
WCU data is generated by the p-Tools function mu could be studied more thoroughly, to find 
out if differently generated WCU data makes the construction of a stable Â, possible. For the 
WCU data obtained with mu, the magnitude is flattened, while the phase is kept the same. 
This modified WCU data is used for the construction of a,. As an alternative, a method 
could be developed to directly construct WCU data with all-pass magnitude. However, even 
if 8, perfectly matches the WCU data for the full IO set, it may not be the worst case 
for other IO sets. So, another remaining question is, if the effectiveness can be predicted of 
IO selection with Â, derived for the full IO set. 

For the two examples studied in this report, unstable WCU representations were straight- 
forwardly constructed. To impose stability, different construction procedures were proposed. 
The three most promising are the following: 1) an all-pass Â, with possibly large differences 
between its phase and the phase of the WCU data, 2) a minimum-phase Â, with its phase 

30 
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closely matching the data, but with possibly too small magnitude, and 3) a A, which perfectly 
matches the data points, but with possibly high order and undesirable behavior inbetween 
data points. 

An active suspension control problem was used to evaluate the IO selection method. For 
this application, WCU construction 3) could not be used due to numerical problems. Con- 
struction 2) appeared too small and was useless for IO selection. Therefore, IO selection was 
performed for construction 1). Depending on the RP test level, many nonviable IO sets were 
accepted, i.e., the IO selection was not selective. For the specific problem, the IO selection 
appeared to be more effective if the WCU representation was scaled up, or, equivalently, if the 
RP requirement was strengthened. However, it is not clear if this tendency is general. The 
IO selection method appeared to be considerably more efficient than IO selection based on 
p-synthesis. By suitably combining the necessity-based IO selection method employing the 
WCU with the sufficiency-based method from [15,18] and p-synthesis, an effective IO selection 
approach results, which may also be more efficient than IO selection based on p-synthesis. 
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