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A BOUNDED-ERROR APPROACH TO ACCURACY ANALYSIS IN ELLIPSOMETRY

M.K. SMIT and J.W. VERHOOF

Delft University of Technology, Department of Electrical Engineering, Laboratory for Telecommunication
and Remote Sensing Technology, P.O. Box 5031, 2600 GA Delft, Netherlands

" A nonlinear Bounded-Error Estimation method is applied to the case of ellipsometric measurement of film
properties. It is shown that this method can be used with advantage for estimating the magnitude of the
measurement errors including systematic errors. :

1. Introduction

Ellipsometry is a fast and nondestructive method for measuring optical film properties [1,2].
The method is based on measuring the complex ratio of the reflection coefficients of a
film-covered substrate for light polarized parallel to and perpendicular to the incidence plane
respectively. From this ratio the thickness and the refractive index of the film can be computed;
if the substrate index is known. If the latter is not known, or the refractive index has a
nonnegligible imaginary part, additional measurements are necessary to determine the unknown
parameters. )

Additional measurements can also be used to increase the measurement accuracy. They can be
obtained by measuring at multiple angles of incidence (MAI), multiple wavelengths (MW) or
both (MAW). We analyzed the accuracy improvements which can be obtained with commercially
available measurement equipment operating at a single wavelength (633 nm) with three fixed
incidence angles (30°, 50° and 70°). '

Accuracy analysis of MAI-measurements has been reported with Least-Squares Estimation
(LSE) methods [3,4] and parameter correlation analysis [S]. In this paper the potential of the
bounded-error approach for analysing measurement accuracy, also in strongly nonlinear regions,
will be demonstrated. A more detailed description of the results is given elsewhere [6]. Further,
the potential of the bounded-error approach for estimating the magnitude of random and
systematic errors will be shown. ) ' '

2. Measurement method

Optical film and substrate properties aré calculated from the measured complex ratio
p=p"/p" o (1)

of the reflection coefficients p? and o° for light polarized parallel and perpendicular to the plane
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of incidence respectively. Usually p is represented by the parameters A and ¥, which are defined
as

A=arg(p), | o (2a)
¥ =arctan( | p|). : (2b)

The parameters A and ¥ can be written as functions of the (complex) film and substrate
refractive indices n; and n, the film thickness d, and the incidence angle ¢, (for details see [1]):

A,=A(nf’ ns, d> ¢0), - (33)
U=V(n, n,d, ¢) - (3b)

If n, is known, and the film absorption (i.e. the imaginary part of n¢) can be neglected, n,; and d
can be determined from a single measurement of A and ¥ using equations (3a) and (3b). With
these formulae the influence of measurement errors in A and ¥ on the calculated values for ng
and d can be analysed. '

The accuracy can be improved by measuring A and ¥ at » incidence angles instead of at a
single one. This gives us 2n equations (the real and imaginary part of equations (3a) and (3b) for
each of the incidence angles) with two unknowns. The usual approach to finding n; and 4 from
this set is made by applying an LSE method. Loescher et al. [3] and Humlicek [4] analyzed the
accuracy in the parameter estimates which is obtained if an LSE method is applied. This analysis
assumes the measurement errors to be normally distributed and described by their covariance
matrix. From this matrix the errors in the unknown parameters can be inferred if equations (3a)
and (3b) can be written in matrix form, i.e. can be linearly approximated around the observation
point.

In strongly nonlinear regions a more complicated approach is necessary to estimate the
parameter errors. To avoid this problem we applied a Bounded-Error (BE) approach, as
introduced by Schweppe [7] and Witsenhausen [8], instead of a conventional LSE method. An
additional advantage of the BE-approach is that it offers an easy means of testing the validity of
the assumptions made about the actually occurring observation errors, which are often difficult
to validate. : _

A recent survey of Bounded-Error estimation techniques has been made by Walter and
Piet-Lahanier [9]. Most authors in this field work with linear approximations. Walter and
Piet-Lahanier [10] describe a method based on minimizing the number of outliers in the
measured data, which also applies to nonlinear models. Norton [11] maps the error bounds of
each individual observation into the (two-dimensional) parameter space, and determines the set
of parameters which are consistent with the noise-corrupted observations as the region enclosed
within all bounds. We applied a closely related approach which will be briefly described below.

For the present problem the observation is represented as a hypercube B in a six-dimensional
space set up by the six measurement entities (A and ¥ at 30°, 50° and 70° incidence angles).
The length of the edges is determined by the magnitude of the errors in the different entities.
Because the possible values of A and ¥ are determined by only two parameters n; and d, the
model response surface (defined by equations (3a) and (3b)) is two dimensional. Figure. 1
illustrates the foregoing for a three-dimensional observation space (a six-dimensional one being
difficult to draw). The (nonlinear) response plane represents the subspace of observations which
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)

)

Fig. 1. Cross-section (shaded region) of a two-dimensional model response surface with a three-dimensional observa-
tion uncertainty region.

are physically possible, the orthogonal lines indicating lines of constant n; and d. The model
membership set S, i.e. the region of values of n; and d which could have caused the actual
observation, given the possible observation errors, is the shaded part of the response plane,
falling within the cube. :

To determine the size and the shape of the model membership set S we applied the
boundary-detection algorithm described by Freeman [12]. In this algorithm a rectangular grid is
defined in the parameter (n;, d) space. The boundary contour is computed by determining
between which two of the eight grid points, surrounding the previously found contour point, the
boundary is located. The one of these two points which is a member of S (i.e. for which the
model response is a member of B), is the next contour point, and the procedure is repeated until
the contour is closed. Application of this algorithm avoids the need of inverting the model
description (equations (3a) and (3b)) in order to determine the parameter bounds. The computa-
tion time of the algorithm is linear in the number of dimensions of the observation space so that
it is capable of handling long measurement records without excessive computation times. The
method is implemented into a computer program, and described in more detail by Smit and van
Vet [13,14].

Figure 2 shows an example of the model membership set computed in this way. From a plot
like this the maximal error in n; and d can be read directly. Further, the effect of a priori
knowledge about one of the parameters, for example n;, on the measurement accuracy of the
other is immediately seen: the membership set is reduced to the slice falling within the error
bounds of n; (the striped region).

If the measurement errors are estimated too optimistically, or if the description of equations
(3a) and (3b) is not exact (e.g. due to film anisotropy or the presence of a thin film of adsorbed
water) no intersection between the cube B and the response plane may occur at all. This gives us
a means of testing the validity of our assumptions about the actual measurement accuracy for A
and ¥. By computing S, as shown in Fig. 2, for a considerable number of independent
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Fig. 2. Membership set for »n; and d, with (striped) and without (dotted) a priori knowledge about the refractive index,

observations, the smallest error-value for A and ¥ for which all observations yield nonémpty sets
may be considered as an indication of the actual measurement accuracy, as will be discussed in
Section 4. ,
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Fig. 3. The measurement errors in the film thickness resulting from a measurement error of 1° in A and ¥:
Curve 1: 30° incidence angle, no restriction on ng, '
Curve 2: 50° incidence angle, no restriction on 7,
Curve 3: 70° incidence angle, no restriction on n;,
Curve 4: 70° incidence angle, &n, < 0.01,
Curve 5: 70° incidence angle, §n, < 0.001,
Curve 6: 30°-50° -70° combined, no restriction on n;.



. MK Smiz; J.W. Verhoof / Accuracy analysis in ellipsometry . 549

3. Accuracy resulfs

To determine the accuracy of the single- and three-angle measurements, we analyzed the effect
of measurement errors in A and ¥ on the estimated values of n; and d for a thermally oxidized
SiO, layer on a silicon substrate.

Figure 3 shows the maximum error in the film, thickness 4, for thickness values ranging from
100 to 400 nm. The error is computed as the half width of the projection of the membership set S
onto the d-axis, as shown in Fig. 2. The curves show the effect of an error of 1° bothin A and
. The first three curves represent the accuracy of results based on a single-angle measurement,
for 30°, 50° and 70° incidence angle respectively. The fourth and the fifth curve show the effect
of a priori knowledge about the refractive index. The sixth curve represents the results of
combining the observations made at 30°, 50° and 70° incidence angle.

The smgle—angle curves show smgulantles in the range from 200 to 300 nm. These smgularmes
correspond to 1A film thickness (i.e. a half wavelength). The 70 ° curve (3) shows a singularity at
A wavelength. This singularity occurs at the pseudo-Brewster angle, which equals 70° for an
oxide-covered silicon substrate. In these regions linear approximations may yield erroneous
results.

4. Accuracy analysis

To test the validity of the applied method we measured a number of records, each consisting
of A and ¥ measured at 30, 50° and 70°, on three silicon substrates covered with thermal oxide
films with 145, 195 and 235 nm thickness respectively (i.e. 0.25\, 0.35A and 0.4A). The
0.25\-substrate was measured at 9 different positions. The other substrates, which showed less
spread in the observations, were measured at 6 positions. The number of measurement records
thus totalled 21 three-angle records or 63 single-angle records.

The random variation of A and ¥ over the substrates was found to amount to +0.15° for A
and +0.4° for ¥. We tested the significance of these figures by substituting them as the
maximum observation errors for all measured records. We found no solutions for n; and d (ie.
all membership sets S were empty) for any of the 21 records. The error value had to be increased
to 0.4° for both A and ¥ for the first nonempty set to appear. On a further increase to 0.6° all
but three empty sets disappeared, which suggests that the systematic errors are considerably
larger than the random ones. The remaining three empty sets all occurred for the 0.25A-film, the
last one disappeared on increasing the measurement error to 1.7°.

These results illustrate that in a practical measurement s1tuat10n the errors may be cons1der-
ably greater than those which are usually presented in the literature (0.01°-0.1°) for comparable
- measurement equipment. The discrepancy may be due to systematic errors occurring in the
observation of A and ¥ (the error structure, see Belforte et al. [15]), but more probably to the
deviation of the experimental measurement configuration from its idealized description (the
model structure, equations (3a) and (3b)), as may occur due to adsorption of a thin water layer,
depolarization due to surface scatter or birefringence due to tension in the film, to mention just a
few examples.

Systematic errors (both in the observations and the model structure) will cause a displacement
of the model response surface and the (hyper)cube, as shown in Fig. 1, relative to each other. If
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this displacement is directed along the response surface, the systematic error is not detectable
with the present approach. If it is directed perpendicular to this surface, however, the lowest
value of the observation errors (i.e. the edges of the hypercube) for which none of the
measurement records yields an empty membership set S, is indicative for the total effect of both
random and systematic errors (a fixed ratio between the observation errors has been assumed).
By computing the membership sets S corresponding to the observation errors so found, we
obtain an estimate of the magnitude of parameter errors resulting from both systematic and
random errors (except, of course, for the worst-case record on which the error estimate was
based).

Assume that the number of measurements is much larger than the number of parameters. The

projection on the response surface of the displacement induced by systematic errors is then likely
to be small in relative terms. The error estimates produced by the above algorithm are therefore
unlikely to be much too optimistic.
- To investigate the practical value of the algorithm we proceeded as follows. For all measure-
ments we computed the refractive index value as the centre of the uncertainty interval. The error
in this value was determined by comparing it to the literature value for fused silica (1.4573, [16])
which is assumed to be close to the value of thermal oxide. In this way maximum errors were
determined for both single and tnree-angle measurements, for the three film thicknesses investi-
gated.

Of a total of approximately 60 independent measurements we found only two cases in which
the real measurement error, ie. the difference between the literature value and the estimated
value, exceeded the one predicted according to the above algorithm. In the worst of them, the-
real error was twice the one predicted. Both discrepancies occurred for the 0.25\ film, for
measurement sets of which the computed parameters coincided with the singularity observable in
Fig. 3 (at 140 nm). If we exclude these measurements, the maximum errors found for the
different measurement records were within 15-80% of the predicted errors, and for 60% of the
series within 40—-80%.

Although no general conclusions can be drawn from these experiments, the results indicate
that in the field of ellipsometry the above algorithm may be applied with advantage to analyse
the magnitude of both random and systematic errors. '

5. Conclusions

Film parameters may be determined from ellipsometric measurement results both with a
Least-Squares Estimation method or a Bounded-Error Estimation method. The latter method
yields reliable accuracy information also in parameter regions where the dependence of the
observations on the parameters is highly nonlinear. Further, it provides a tool for analyzing the
maximal measurement errors, both random and systematic, which occur in the applied measure-

ment procedure. -

References

[1] RM.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
[2] FL. McCrackm E. Passaglia, R.R. Stromberg and H.L. Steinberg,- Measurement of the thickness and refractive



M.K. Smit, J.W. Verhoof ./ Accuracy analysis in ellipsometry - 551

index of very thin films and the optical properties of surfaces by ellipsometry, J. Res. Nat. Bur. Standards 67A
(1963) 363-377. ; . : .
[3] D.H. Loescher, R.J. Detry and M.J. Clauser, Least-squares analysis of the film-substrate problem in ellipsometry,
J. Opt. Soc. Amer. 61 (1971) 1230-1235.
{4] J. Humlicek; Sensitivity extrema in multiple-angle ellipsometry, J. Opt. Soc. Amer. 4 2 (1985) 713-722.
[5} H.W. Dinges, Determination of the optical properties of GaAs and InP by multiple angle of incidence
ellipsometry, J. Physique, Coll. ¢c10, Suppl. au No. 12, Tome 44 (1983) 33-43.
[6] M.K. Smit and J.W. Verhoof, Accuracy analysis in multiple angle of incidence ellipsometry, Thin Solid Films 189
(2) (1990) 193-203. ' .
[7] F.C. Schweppe, Recursive state estimation: unknown. but bounded errors and system inputs, IEEE Trans.
Automat. Control AC-13 (1968) 22-28.
[8] H.S. Witsenhausen, Sets of possible states of linear systems given perturbed observations, JEEE Trans. Automat.
Control AC-13 (1968) 556—358.
[9] E. Walter and H. Piet-Lahanier, Estimation of parameter bounds from bounded-error data: a survey, in: Proc.
12th IMACS World Congress on Scientific Computation, Paris, Vol. 2 (1988) 467-472.
[10] E. Walter and H. Piet-Lahanier, Robust nonlinear parameter estimation in the bounded noise case, in: Proc. 25th
IEEE Conference on Decision and Control, Athens (1986) 1037-1042.
[11] J.P. Norton, Problems in identifying the dynamics of biological systems from very short records, in: Proc. 25th
IEEE Conference on Decision and Control, Athens (1986) 286-290.
(12] H. Freeman, Boundary encoding and processing, in: B.S. Lipkin and A. Rosenfeld, eds., Picture Processing and
Psychopictorics (Academic Press, New York, 1970). ' .
{13] M.K. Smit, A novel approach to the solution of indirect measurement problems with minimal error propagation,
" Measurement 1 (4) (1983) 181-190. ' :
[14] M.K. Smit and C.H. van Vliet, OMTP: Fortran program for optimally solving indirect measurement problems,
Measurement 1 (4) (1983) 209-211.
[15] G. Belforte, B. Bona and V. Cerone, Identification, structure selection and validation of uncertain models with
set-membership error description, Math. Comput.. Simulation 32 (5&6) (1990) 561-569 (this issue).
[16] American Institute of Physics Handbook (McGraw-Hill, New York, 1982).



